page_alloc.c 206 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/memremap.h>
  46. #include <linux/stop_machine.h>
  47. #include <linux/sort.h>
  48. #include <linux/pfn.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/fault-inject.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/page_ext.h>
  53. #include <linux/debugobjects.h>
  54. #include <linux/kmemleak.h>
  55. #include <linux/compaction.h>
  56. #include <trace/events/kmem.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/page_ext.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <linux/page_owner.h>
  64. #include <linux/kthread.h>
  65. #include <linux/memcontrol.h>
  66. #include <asm/sections.h>
  67. #include <asm/tlbflush.h>
  68. #include <asm/div64.h>
  69. #include "internal.h"
  70. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  71. static DEFINE_MUTEX(pcp_batch_high_lock);
  72. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  73. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  74. DEFINE_PER_CPU(int, numa_node);
  75. EXPORT_PER_CPU_SYMBOL(numa_node);
  76. #endif
  77. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  78. /*
  79. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  80. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  81. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  82. * defined in <linux/topology.h>.
  83. */
  84. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  85. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  86. int _node_numa_mem_[MAX_NUMNODES];
  87. #endif
  88. /*
  89. * Array of node states.
  90. */
  91. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  92. [N_POSSIBLE] = NODE_MASK_ALL,
  93. [N_ONLINE] = { { [0] = 1UL } },
  94. #ifndef CONFIG_NUMA
  95. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  96. #ifdef CONFIG_HIGHMEM
  97. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  98. #endif
  99. #ifdef CONFIG_MOVABLE_NODE
  100. [N_MEMORY] = { { [0] = 1UL } },
  101. #endif
  102. [N_CPU] = { { [0] = 1UL } },
  103. #endif /* NUMA */
  104. };
  105. EXPORT_SYMBOL(node_states);
  106. /* Protect totalram_pages and zone->managed_pages */
  107. static DEFINE_SPINLOCK(managed_page_count_lock);
  108. unsigned long totalram_pages __read_mostly;
  109. unsigned long totalreserve_pages __read_mostly;
  110. unsigned long totalcma_pages __read_mostly;
  111. int percpu_pagelist_fraction;
  112. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  113. /*
  114. * A cached value of the page's pageblock's migratetype, used when the page is
  115. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  116. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  117. * Also the migratetype set in the page does not necessarily match the pcplist
  118. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  119. * other index - this ensures that it will be put on the correct CMA freelist.
  120. */
  121. static inline int get_pcppage_migratetype(struct page *page)
  122. {
  123. return page->index;
  124. }
  125. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  126. {
  127. page->index = migratetype;
  128. }
  129. #ifdef CONFIG_PM_SLEEP
  130. /*
  131. * The following functions are used by the suspend/hibernate code to temporarily
  132. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  133. * while devices are suspended. To avoid races with the suspend/hibernate code,
  134. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  135. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  136. * guaranteed not to run in parallel with that modification).
  137. */
  138. static gfp_t saved_gfp_mask;
  139. void pm_restore_gfp_mask(void)
  140. {
  141. WARN_ON(!mutex_is_locked(&pm_mutex));
  142. if (saved_gfp_mask) {
  143. gfp_allowed_mask = saved_gfp_mask;
  144. saved_gfp_mask = 0;
  145. }
  146. }
  147. void pm_restrict_gfp_mask(void)
  148. {
  149. WARN_ON(!mutex_is_locked(&pm_mutex));
  150. WARN_ON(saved_gfp_mask);
  151. saved_gfp_mask = gfp_allowed_mask;
  152. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  153. }
  154. bool pm_suspended_storage(void)
  155. {
  156. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  157. return false;
  158. return true;
  159. }
  160. #endif /* CONFIG_PM_SLEEP */
  161. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  162. unsigned int pageblock_order __read_mostly;
  163. #endif
  164. static void __free_pages_ok(struct page *page, unsigned int order);
  165. /*
  166. * results with 256, 32 in the lowmem_reserve sysctl:
  167. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  168. * 1G machine -> (16M dma, 784M normal, 224M high)
  169. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  170. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  171. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  172. *
  173. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  174. * don't need any ZONE_NORMAL reservation
  175. */
  176. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  177. #ifdef CONFIG_ZONE_DMA
  178. 256,
  179. #endif
  180. #ifdef CONFIG_ZONE_DMA32
  181. 256,
  182. #endif
  183. #ifdef CONFIG_HIGHMEM
  184. 32,
  185. #endif
  186. 32,
  187. };
  188. EXPORT_SYMBOL(totalram_pages);
  189. static char * const zone_names[MAX_NR_ZONES] = {
  190. #ifdef CONFIG_ZONE_DMA
  191. "DMA",
  192. #endif
  193. #ifdef CONFIG_ZONE_DMA32
  194. "DMA32",
  195. #endif
  196. "Normal",
  197. #ifdef CONFIG_HIGHMEM
  198. "HighMem",
  199. #endif
  200. "Movable",
  201. #ifdef CONFIG_ZONE_DEVICE
  202. "Device",
  203. #endif
  204. };
  205. char * const migratetype_names[MIGRATE_TYPES] = {
  206. "Unmovable",
  207. "Movable",
  208. "Reclaimable",
  209. "HighAtomic",
  210. #ifdef CONFIG_CMA
  211. "CMA",
  212. #endif
  213. #ifdef CONFIG_MEMORY_ISOLATION
  214. "Isolate",
  215. #endif
  216. };
  217. compound_page_dtor * const compound_page_dtors[] = {
  218. NULL,
  219. free_compound_page,
  220. #ifdef CONFIG_HUGETLB_PAGE
  221. free_huge_page,
  222. #endif
  223. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  224. free_transhuge_page,
  225. #endif
  226. };
  227. int min_free_kbytes = 1024;
  228. int user_min_free_kbytes = -1;
  229. int watermark_scale_factor = 10;
  230. static unsigned long __meminitdata nr_kernel_pages;
  231. static unsigned long __meminitdata nr_all_pages;
  232. static unsigned long __meminitdata dma_reserve;
  233. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  234. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  235. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  236. static unsigned long __initdata required_kernelcore;
  237. static unsigned long __initdata required_movablecore;
  238. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  239. static bool mirrored_kernelcore;
  240. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  241. int movable_zone;
  242. EXPORT_SYMBOL(movable_zone);
  243. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  244. #if MAX_NUMNODES > 1
  245. int nr_node_ids __read_mostly = MAX_NUMNODES;
  246. int nr_online_nodes __read_mostly = 1;
  247. EXPORT_SYMBOL(nr_node_ids);
  248. EXPORT_SYMBOL(nr_online_nodes);
  249. #endif
  250. int page_group_by_mobility_disabled __read_mostly;
  251. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  252. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  253. {
  254. pgdat->first_deferred_pfn = ULONG_MAX;
  255. }
  256. /* Returns true if the struct page for the pfn is uninitialised */
  257. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  258. {
  259. int nid = early_pfn_to_nid(pfn);
  260. if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
  261. return true;
  262. return false;
  263. }
  264. /*
  265. * Returns false when the remaining initialisation should be deferred until
  266. * later in the boot cycle when it can be parallelised.
  267. */
  268. static inline bool update_defer_init(pg_data_t *pgdat,
  269. unsigned long pfn, unsigned long zone_end,
  270. unsigned long *nr_initialised)
  271. {
  272. unsigned long max_initialise;
  273. /* Always populate low zones for address-contrained allocations */
  274. if (zone_end < pgdat_end_pfn(pgdat))
  275. return true;
  276. /*
  277. * Initialise at least 2G of a node but also take into account that
  278. * two large system hashes that can take up 1GB for 0.25TB/node.
  279. */
  280. max_initialise = max(2UL << (30 - PAGE_SHIFT),
  281. (pgdat->node_spanned_pages >> 8));
  282. (*nr_initialised)++;
  283. if ((*nr_initialised > max_initialise) &&
  284. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  285. pgdat->first_deferred_pfn = pfn;
  286. return false;
  287. }
  288. return true;
  289. }
  290. #else
  291. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  292. {
  293. }
  294. static inline bool early_page_uninitialised(unsigned long pfn)
  295. {
  296. return false;
  297. }
  298. static inline bool update_defer_init(pg_data_t *pgdat,
  299. unsigned long pfn, unsigned long zone_end,
  300. unsigned long *nr_initialised)
  301. {
  302. return true;
  303. }
  304. #endif
  305. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  306. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  307. unsigned long pfn)
  308. {
  309. #ifdef CONFIG_SPARSEMEM
  310. return __pfn_to_section(pfn)->pageblock_flags;
  311. #else
  312. return page_zone(page)->pageblock_flags;
  313. #endif /* CONFIG_SPARSEMEM */
  314. }
  315. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  316. {
  317. #ifdef CONFIG_SPARSEMEM
  318. pfn &= (PAGES_PER_SECTION-1);
  319. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  320. #else
  321. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  322. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  323. #endif /* CONFIG_SPARSEMEM */
  324. }
  325. /**
  326. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  327. * @page: The page within the block of interest
  328. * @pfn: The target page frame number
  329. * @end_bitidx: The last bit of interest to retrieve
  330. * @mask: mask of bits that the caller is interested in
  331. *
  332. * Return: pageblock_bits flags
  333. */
  334. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  335. unsigned long pfn,
  336. unsigned long end_bitidx,
  337. unsigned long mask)
  338. {
  339. unsigned long *bitmap;
  340. unsigned long bitidx, word_bitidx;
  341. unsigned long word;
  342. bitmap = get_pageblock_bitmap(page, pfn);
  343. bitidx = pfn_to_bitidx(page, pfn);
  344. word_bitidx = bitidx / BITS_PER_LONG;
  345. bitidx &= (BITS_PER_LONG-1);
  346. word = bitmap[word_bitidx];
  347. bitidx += end_bitidx;
  348. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  349. }
  350. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  351. unsigned long end_bitidx,
  352. unsigned long mask)
  353. {
  354. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  355. }
  356. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  357. {
  358. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  359. }
  360. /**
  361. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  362. * @page: The page within the block of interest
  363. * @flags: The flags to set
  364. * @pfn: The target page frame number
  365. * @end_bitidx: The last bit of interest
  366. * @mask: mask of bits that the caller is interested in
  367. */
  368. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  369. unsigned long pfn,
  370. unsigned long end_bitidx,
  371. unsigned long mask)
  372. {
  373. unsigned long *bitmap;
  374. unsigned long bitidx, word_bitidx;
  375. unsigned long old_word, word;
  376. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  377. bitmap = get_pageblock_bitmap(page, pfn);
  378. bitidx = pfn_to_bitidx(page, pfn);
  379. word_bitidx = bitidx / BITS_PER_LONG;
  380. bitidx &= (BITS_PER_LONG-1);
  381. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  382. bitidx += end_bitidx;
  383. mask <<= (BITS_PER_LONG - bitidx - 1);
  384. flags <<= (BITS_PER_LONG - bitidx - 1);
  385. word = READ_ONCE(bitmap[word_bitidx]);
  386. for (;;) {
  387. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  388. if (word == old_word)
  389. break;
  390. word = old_word;
  391. }
  392. }
  393. void set_pageblock_migratetype(struct page *page, int migratetype)
  394. {
  395. if (unlikely(page_group_by_mobility_disabled &&
  396. migratetype < MIGRATE_PCPTYPES))
  397. migratetype = MIGRATE_UNMOVABLE;
  398. set_pageblock_flags_group(page, (unsigned long)migratetype,
  399. PB_migrate, PB_migrate_end);
  400. }
  401. #ifdef CONFIG_DEBUG_VM
  402. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  403. {
  404. int ret = 0;
  405. unsigned seq;
  406. unsigned long pfn = page_to_pfn(page);
  407. unsigned long sp, start_pfn;
  408. do {
  409. seq = zone_span_seqbegin(zone);
  410. start_pfn = zone->zone_start_pfn;
  411. sp = zone->spanned_pages;
  412. if (!zone_spans_pfn(zone, pfn))
  413. ret = 1;
  414. } while (zone_span_seqretry(zone, seq));
  415. if (ret)
  416. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  417. pfn, zone_to_nid(zone), zone->name,
  418. start_pfn, start_pfn + sp);
  419. return ret;
  420. }
  421. static int page_is_consistent(struct zone *zone, struct page *page)
  422. {
  423. if (!pfn_valid_within(page_to_pfn(page)))
  424. return 0;
  425. if (zone != page_zone(page))
  426. return 0;
  427. return 1;
  428. }
  429. /*
  430. * Temporary debugging check for pages not lying within a given zone.
  431. */
  432. static int bad_range(struct zone *zone, struct page *page)
  433. {
  434. if (page_outside_zone_boundaries(zone, page))
  435. return 1;
  436. if (!page_is_consistent(zone, page))
  437. return 1;
  438. return 0;
  439. }
  440. #else
  441. static inline int bad_range(struct zone *zone, struct page *page)
  442. {
  443. return 0;
  444. }
  445. #endif
  446. static void bad_page(struct page *page, const char *reason,
  447. unsigned long bad_flags)
  448. {
  449. static unsigned long resume;
  450. static unsigned long nr_shown;
  451. static unsigned long nr_unshown;
  452. /*
  453. * Allow a burst of 60 reports, then keep quiet for that minute;
  454. * or allow a steady drip of one report per second.
  455. */
  456. if (nr_shown == 60) {
  457. if (time_before(jiffies, resume)) {
  458. nr_unshown++;
  459. goto out;
  460. }
  461. if (nr_unshown) {
  462. pr_alert(
  463. "BUG: Bad page state: %lu messages suppressed\n",
  464. nr_unshown);
  465. nr_unshown = 0;
  466. }
  467. nr_shown = 0;
  468. }
  469. if (nr_shown++ == 0)
  470. resume = jiffies + 60 * HZ;
  471. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  472. current->comm, page_to_pfn(page));
  473. __dump_page(page, reason);
  474. bad_flags &= page->flags;
  475. if (bad_flags)
  476. pr_alert("bad because of flags: %#lx(%pGp)\n",
  477. bad_flags, &bad_flags);
  478. dump_page_owner(page);
  479. print_modules();
  480. dump_stack();
  481. out:
  482. /* Leave bad fields for debug, except PageBuddy could make trouble */
  483. page_mapcount_reset(page); /* remove PageBuddy */
  484. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  485. }
  486. /*
  487. * Higher-order pages are called "compound pages". They are structured thusly:
  488. *
  489. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  490. *
  491. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  492. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  493. *
  494. * The first tail page's ->compound_dtor holds the offset in array of compound
  495. * page destructors. See compound_page_dtors.
  496. *
  497. * The first tail page's ->compound_order holds the order of allocation.
  498. * This usage means that zero-order pages may not be compound.
  499. */
  500. void free_compound_page(struct page *page)
  501. {
  502. __free_pages_ok(page, compound_order(page));
  503. }
  504. void prep_compound_page(struct page *page, unsigned int order)
  505. {
  506. int i;
  507. int nr_pages = 1 << order;
  508. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  509. set_compound_order(page, order);
  510. __SetPageHead(page);
  511. for (i = 1; i < nr_pages; i++) {
  512. struct page *p = page + i;
  513. set_page_count(p, 0);
  514. p->mapping = TAIL_MAPPING;
  515. set_compound_head(p, page);
  516. }
  517. atomic_set(compound_mapcount_ptr(page), -1);
  518. }
  519. #ifdef CONFIG_DEBUG_PAGEALLOC
  520. unsigned int _debug_guardpage_minorder;
  521. bool _debug_pagealloc_enabled __read_mostly
  522. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  523. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  524. bool _debug_guardpage_enabled __read_mostly;
  525. static int __init early_debug_pagealloc(char *buf)
  526. {
  527. if (!buf)
  528. return -EINVAL;
  529. return kstrtobool(buf, &_debug_pagealloc_enabled);
  530. }
  531. early_param("debug_pagealloc", early_debug_pagealloc);
  532. static bool need_debug_guardpage(void)
  533. {
  534. /* If we don't use debug_pagealloc, we don't need guard page */
  535. if (!debug_pagealloc_enabled())
  536. return false;
  537. return true;
  538. }
  539. static void init_debug_guardpage(void)
  540. {
  541. if (!debug_pagealloc_enabled())
  542. return;
  543. _debug_guardpage_enabled = true;
  544. }
  545. struct page_ext_operations debug_guardpage_ops = {
  546. .need = need_debug_guardpage,
  547. .init = init_debug_guardpage,
  548. };
  549. static int __init debug_guardpage_minorder_setup(char *buf)
  550. {
  551. unsigned long res;
  552. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  553. pr_err("Bad debug_guardpage_minorder value\n");
  554. return 0;
  555. }
  556. _debug_guardpage_minorder = res;
  557. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  558. return 0;
  559. }
  560. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  561. static inline void set_page_guard(struct zone *zone, struct page *page,
  562. unsigned int order, int migratetype)
  563. {
  564. struct page_ext *page_ext;
  565. if (!debug_guardpage_enabled())
  566. return;
  567. page_ext = lookup_page_ext(page);
  568. if (unlikely(!page_ext))
  569. return;
  570. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  571. INIT_LIST_HEAD(&page->lru);
  572. set_page_private(page, order);
  573. /* Guard pages are not available for any usage */
  574. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  575. }
  576. static inline void clear_page_guard(struct zone *zone, struct page *page,
  577. unsigned int order, int migratetype)
  578. {
  579. struct page_ext *page_ext;
  580. if (!debug_guardpage_enabled())
  581. return;
  582. page_ext = lookup_page_ext(page);
  583. if (unlikely(!page_ext))
  584. return;
  585. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  586. set_page_private(page, 0);
  587. if (!is_migrate_isolate(migratetype))
  588. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  589. }
  590. #else
  591. struct page_ext_operations debug_guardpage_ops = { NULL, };
  592. static inline void set_page_guard(struct zone *zone, struct page *page,
  593. unsigned int order, int migratetype) {}
  594. static inline void clear_page_guard(struct zone *zone, struct page *page,
  595. unsigned int order, int migratetype) {}
  596. #endif
  597. static inline void set_page_order(struct page *page, unsigned int order)
  598. {
  599. set_page_private(page, order);
  600. __SetPageBuddy(page);
  601. }
  602. static inline void rmv_page_order(struct page *page)
  603. {
  604. __ClearPageBuddy(page);
  605. set_page_private(page, 0);
  606. }
  607. /*
  608. * This function checks whether a page is free && is the buddy
  609. * we can do coalesce a page and its buddy if
  610. * (a) the buddy is not in a hole &&
  611. * (b) the buddy is in the buddy system &&
  612. * (c) a page and its buddy have the same order &&
  613. * (d) a page and its buddy are in the same zone.
  614. *
  615. * For recording whether a page is in the buddy system, we set ->_mapcount
  616. * PAGE_BUDDY_MAPCOUNT_VALUE.
  617. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  618. * serialized by zone->lock.
  619. *
  620. * For recording page's order, we use page_private(page).
  621. */
  622. static inline int page_is_buddy(struct page *page, struct page *buddy,
  623. unsigned int order)
  624. {
  625. if (!pfn_valid_within(page_to_pfn(buddy)))
  626. return 0;
  627. if (page_is_guard(buddy) && page_order(buddy) == order) {
  628. if (page_zone_id(page) != page_zone_id(buddy))
  629. return 0;
  630. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  631. return 1;
  632. }
  633. if (PageBuddy(buddy) && page_order(buddy) == order) {
  634. /*
  635. * zone check is done late to avoid uselessly
  636. * calculating zone/node ids for pages that could
  637. * never merge.
  638. */
  639. if (page_zone_id(page) != page_zone_id(buddy))
  640. return 0;
  641. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  642. return 1;
  643. }
  644. return 0;
  645. }
  646. /*
  647. * Freeing function for a buddy system allocator.
  648. *
  649. * The concept of a buddy system is to maintain direct-mapped table
  650. * (containing bit values) for memory blocks of various "orders".
  651. * The bottom level table contains the map for the smallest allocatable
  652. * units of memory (here, pages), and each level above it describes
  653. * pairs of units from the levels below, hence, "buddies".
  654. * At a high level, all that happens here is marking the table entry
  655. * at the bottom level available, and propagating the changes upward
  656. * as necessary, plus some accounting needed to play nicely with other
  657. * parts of the VM system.
  658. * At each level, we keep a list of pages, which are heads of continuous
  659. * free pages of length of (1 << order) and marked with _mapcount
  660. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  661. * field.
  662. * So when we are allocating or freeing one, we can derive the state of the
  663. * other. That is, if we allocate a small block, and both were
  664. * free, the remainder of the region must be split into blocks.
  665. * If a block is freed, and its buddy is also free, then this
  666. * triggers coalescing into a block of larger size.
  667. *
  668. * -- nyc
  669. */
  670. static inline void __free_one_page(struct page *page,
  671. unsigned long pfn,
  672. struct zone *zone, unsigned int order,
  673. int migratetype)
  674. {
  675. unsigned long page_idx;
  676. unsigned long combined_idx;
  677. unsigned long uninitialized_var(buddy_idx);
  678. struct page *buddy;
  679. unsigned int max_order;
  680. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  681. VM_BUG_ON(!zone_is_initialized(zone));
  682. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  683. VM_BUG_ON(migratetype == -1);
  684. if (likely(!is_migrate_isolate(migratetype)))
  685. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  686. page_idx = pfn & ((1 << MAX_ORDER) - 1);
  687. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  688. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  689. continue_merging:
  690. while (order < max_order - 1) {
  691. buddy_idx = __find_buddy_index(page_idx, order);
  692. buddy = page + (buddy_idx - page_idx);
  693. if (!page_is_buddy(page, buddy, order))
  694. goto done_merging;
  695. /*
  696. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  697. * merge with it and move up one order.
  698. */
  699. if (page_is_guard(buddy)) {
  700. clear_page_guard(zone, buddy, order, migratetype);
  701. } else {
  702. list_del(&buddy->lru);
  703. zone->free_area[order].nr_free--;
  704. rmv_page_order(buddy);
  705. }
  706. combined_idx = buddy_idx & page_idx;
  707. page = page + (combined_idx - page_idx);
  708. page_idx = combined_idx;
  709. order++;
  710. }
  711. if (max_order < MAX_ORDER) {
  712. /* If we are here, it means order is >= pageblock_order.
  713. * We want to prevent merge between freepages on isolate
  714. * pageblock and normal pageblock. Without this, pageblock
  715. * isolation could cause incorrect freepage or CMA accounting.
  716. *
  717. * We don't want to hit this code for the more frequent
  718. * low-order merging.
  719. */
  720. if (unlikely(has_isolate_pageblock(zone))) {
  721. int buddy_mt;
  722. buddy_idx = __find_buddy_index(page_idx, order);
  723. buddy = page + (buddy_idx - page_idx);
  724. buddy_mt = get_pageblock_migratetype(buddy);
  725. if (migratetype != buddy_mt
  726. && (is_migrate_isolate(migratetype) ||
  727. is_migrate_isolate(buddy_mt)))
  728. goto done_merging;
  729. }
  730. max_order++;
  731. goto continue_merging;
  732. }
  733. done_merging:
  734. set_page_order(page, order);
  735. /*
  736. * If this is not the largest possible page, check if the buddy
  737. * of the next-highest order is free. If it is, it's possible
  738. * that pages are being freed that will coalesce soon. In case,
  739. * that is happening, add the free page to the tail of the list
  740. * so it's less likely to be used soon and more likely to be merged
  741. * as a higher order page
  742. */
  743. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  744. struct page *higher_page, *higher_buddy;
  745. combined_idx = buddy_idx & page_idx;
  746. higher_page = page + (combined_idx - page_idx);
  747. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  748. higher_buddy = higher_page + (buddy_idx - combined_idx);
  749. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  750. list_add_tail(&page->lru,
  751. &zone->free_area[order].free_list[migratetype]);
  752. goto out;
  753. }
  754. }
  755. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  756. out:
  757. zone->free_area[order].nr_free++;
  758. }
  759. /*
  760. * A bad page could be due to a number of fields. Instead of multiple branches,
  761. * try and check multiple fields with one check. The caller must do a detailed
  762. * check if necessary.
  763. */
  764. static inline bool page_expected_state(struct page *page,
  765. unsigned long check_flags)
  766. {
  767. if (unlikely(atomic_read(&page->_mapcount) != -1))
  768. return false;
  769. if (unlikely((unsigned long)page->mapping |
  770. page_ref_count(page) |
  771. #ifdef CONFIG_MEMCG
  772. (unsigned long)page->mem_cgroup |
  773. #endif
  774. (page->flags & check_flags)))
  775. return false;
  776. return true;
  777. }
  778. static void free_pages_check_bad(struct page *page)
  779. {
  780. const char *bad_reason;
  781. unsigned long bad_flags;
  782. bad_reason = NULL;
  783. bad_flags = 0;
  784. if (unlikely(atomic_read(&page->_mapcount) != -1))
  785. bad_reason = "nonzero mapcount";
  786. if (unlikely(page->mapping != NULL))
  787. bad_reason = "non-NULL mapping";
  788. if (unlikely(page_ref_count(page) != 0))
  789. bad_reason = "nonzero _refcount";
  790. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  791. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  792. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  793. }
  794. #ifdef CONFIG_MEMCG
  795. if (unlikely(page->mem_cgroup))
  796. bad_reason = "page still charged to cgroup";
  797. #endif
  798. bad_page(page, bad_reason, bad_flags);
  799. }
  800. static inline int free_pages_check(struct page *page)
  801. {
  802. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  803. return 0;
  804. /* Something has gone sideways, find it */
  805. free_pages_check_bad(page);
  806. return 1;
  807. }
  808. static int free_tail_pages_check(struct page *head_page, struct page *page)
  809. {
  810. int ret = 1;
  811. /*
  812. * We rely page->lru.next never has bit 0 set, unless the page
  813. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  814. */
  815. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  816. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  817. ret = 0;
  818. goto out;
  819. }
  820. switch (page - head_page) {
  821. case 1:
  822. /* the first tail page: ->mapping is compound_mapcount() */
  823. if (unlikely(compound_mapcount(page))) {
  824. bad_page(page, "nonzero compound_mapcount", 0);
  825. goto out;
  826. }
  827. break;
  828. case 2:
  829. /*
  830. * the second tail page: ->mapping is
  831. * page_deferred_list().next -- ignore value.
  832. */
  833. break;
  834. default:
  835. if (page->mapping != TAIL_MAPPING) {
  836. bad_page(page, "corrupted mapping in tail page", 0);
  837. goto out;
  838. }
  839. break;
  840. }
  841. if (unlikely(!PageTail(page))) {
  842. bad_page(page, "PageTail not set", 0);
  843. goto out;
  844. }
  845. if (unlikely(compound_head(page) != head_page)) {
  846. bad_page(page, "compound_head not consistent", 0);
  847. goto out;
  848. }
  849. ret = 0;
  850. out:
  851. page->mapping = NULL;
  852. clear_compound_head(page);
  853. return ret;
  854. }
  855. static __always_inline bool free_pages_prepare(struct page *page,
  856. unsigned int order, bool check_free)
  857. {
  858. int bad = 0;
  859. VM_BUG_ON_PAGE(PageTail(page), page);
  860. trace_mm_page_free(page, order);
  861. kmemcheck_free_shadow(page, order);
  862. /*
  863. * Check tail pages before head page information is cleared to
  864. * avoid checking PageCompound for order-0 pages.
  865. */
  866. if (unlikely(order)) {
  867. bool compound = PageCompound(page);
  868. int i;
  869. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  870. if (compound)
  871. ClearPageDoubleMap(page);
  872. for (i = 1; i < (1 << order); i++) {
  873. if (compound)
  874. bad += free_tail_pages_check(page, page + i);
  875. if (unlikely(free_pages_check(page + i))) {
  876. bad++;
  877. continue;
  878. }
  879. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  880. }
  881. }
  882. if (PageMappingFlags(page))
  883. page->mapping = NULL;
  884. if (memcg_kmem_enabled() && PageKmemcg(page)) {
  885. memcg_kmem_uncharge(page, order);
  886. __ClearPageKmemcg(page);
  887. }
  888. if (check_free)
  889. bad += free_pages_check(page);
  890. if (bad)
  891. return false;
  892. page_cpupid_reset_last(page);
  893. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  894. reset_page_owner(page, order);
  895. if (!PageHighMem(page)) {
  896. debug_check_no_locks_freed(page_address(page),
  897. PAGE_SIZE << order);
  898. debug_check_no_obj_freed(page_address(page),
  899. PAGE_SIZE << order);
  900. }
  901. arch_free_page(page, order);
  902. kernel_poison_pages(page, 1 << order, 0);
  903. kernel_map_pages(page, 1 << order, 0);
  904. kasan_free_pages(page, order);
  905. return true;
  906. }
  907. #ifdef CONFIG_DEBUG_VM
  908. static inline bool free_pcp_prepare(struct page *page)
  909. {
  910. return free_pages_prepare(page, 0, true);
  911. }
  912. static inline bool bulkfree_pcp_prepare(struct page *page)
  913. {
  914. return false;
  915. }
  916. #else
  917. static bool free_pcp_prepare(struct page *page)
  918. {
  919. return free_pages_prepare(page, 0, false);
  920. }
  921. static bool bulkfree_pcp_prepare(struct page *page)
  922. {
  923. return free_pages_check(page);
  924. }
  925. #endif /* CONFIG_DEBUG_VM */
  926. /*
  927. * Frees a number of pages from the PCP lists
  928. * Assumes all pages on list are in same zone, and of same order.
  929. * count is the number of pages to free.
  930. *
  931. * If the zone was previously in an "all pages pinned" state then look to
  932. * see if this freeing clears that state.
  933. *
  934. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  935. * pinned" detection logic.
  936. */
  937. static void free_pcppages_bulk(struct zone *zone, int count,
  938. struct per_cpu_pages *pcp)
  939. {
  940. int migratetype = 0;
  941. int batch_free = 0;
  942. unsigned long nr_scanned;
  943. bool isolated_pageblocks;
  944. spin_lock(&zone->lock);
  945. isolated_pageblocks = has_isolate_pageblock(zone);
  946. nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
  947. if (nr_scanned)
  948. __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
  949. while (count) {
  950. struct page *page;
  951. struct list_head *list;
  952. /*
  953. * Remove pages from lists in a round-robin fashion. A
  954. * batch_free count is maintained that is incremented when an
  955. * empty list is encountered. This is so more pages are freed
  956. * off fuller lists instead of spinning excessively around empty
  957. * lists
  958. */
  959. do {
  960. batch_free++;
  961. if (++migratetype == MIGRATE_PCPTYPES)
  962. migratetype = 0;
  963. list = &pcp->lists[migratetype];
  964. } while (list_empty(list));
  965. /* This is the only non-empty list. Free them all. */
  966. if (batch_free == MIGRATE_PCPTYPES)
  967. batch_free = count;
  968. do {
  969. int mt; /* migratetype of the to-be-freed page */
  970. page = list_last_entry(list, struct page, lru);
  971. /* must delete as __free_one_page list manipulates */
  972. list_del(&page->lru);
  973. mt = get_pcppage_migratetype(page);
  974. /* MIGRATE_ISOLATE page should not go to pcplists */
  975. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  976. /* Pageblock could have been isolated meanwhile */
  977. if (unlikely(isolated_pageblocks))
  978. mt = get_pageblock_migratetype(page);
  979. if (bulkfree_pcp_prepare(page))
  980. continue;
  981. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  982. trace_mm_page_pcpu_drain(page, 0, mt);
  983. } while (--count && --batch_free && !list_empty(list));
  984. }
  985. spin_unlock(&zone->lock);
  986. }
  987. static void free_one_page(struct zone *zone,
  988. struct page *page, unsigned long pfn,
  989. unsigned int order,
  990. int migratetype)
  991. {
  992. unsigned long nr_scanned;
  993. spin_lock(&zone->lock);
  994. nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
  995. if (nr_scanned)
  996. __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
  997. if (unlikely(has_isolate_pageblock(zone) ||
  998. is_migrate_isolate(migratetype))) {
  999. migratetype = get_pfnblock_migratetype(page, pfn);
  1000. }
  1001. __free_one_page(page, pfn, zone, order, migratetype);
  1002. spin_unlock(&zone->lock);
  1003. }
  1004. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1005. unsigned long zone, int nid)
  1006. {
  1007. set_page_links(page, zone, nid, pfn);
  1008. init_page_count(page);
  1009. page_mapcount_reset(page);
  1010. page_cpupid_reset_last(page);
  1011. INIT_LIST_HEAD(&page->lru);
  1012. #ifdef WANT_PAGE_VIRTUAL
  1013. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1014. if (!is_highmem_idx(zone))
  1015. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1016. #endif
  1017. }
  1018. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  1019. int nid)
  1020. {
  1021. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  1022. }
  1023. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1024. static void init_reserved_page(unsigned long pfn)
  1025. {
  1026. pg_data_t *pgdat;
  1027. int nid, zid;
  1028. if (!early_page_uninitialised(pfn))
  1029. return;
  1030. nid = early_pfn_to_nid(pfn);
  1031. pgdat = NODE_DATA(nid);
  1032. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1033. struct zone *zone = &pgdat->node_zones[zid];
  1034. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1035. break;
  1036. }
  1037. __init_single_pfn(pfn, zid, nid);
  1038. }
  1039. #else
  1040. static inline void init_reserved_page(unsigned long pfn)
  1041. {
  1042. }
  1043. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1044. /*
  1045. * Initialised pages do not have PageReserved set. This function is
  1046. * called for each range allocated by the bootmem allocator and
  1047. * marks the pages PageReserved. The remaining valid pages are later
  1048. * sent to the buddy page allocator.
  1049. */
  1050. void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
  1051. {
  1052. unsigned long start_pfn = PFN_DOWN(start);
  1053. unsigned long end_pfn = PFN_UP(end);
  1054. for (; start_pfn < end_pfn; start_pfn++) {
  1055. if (pfn_valid(start_pfn)) {
  1056. struct page *page = pfn_to_page(start_pfn);
  1057. init_reserved_page(start_pfn);
  1058. /* Avoid false-positive PageTail() */
  1059. INIT_LIST_HEAD(&page->lru);
  1060. SetPageReserved(page);
  1061. }
  1062. }
  1063. }
  1064. static void __free_pages_ok(struct page *page, unsigned int order)
  1065. {
  1066. unsigned long flags;
  1067. int migratetype;
  1068. unsigned long pfn = page_to_pfn(page);
  1069. if (!free_pages_prepare(page, order, true))
  1070. return;
  1071. migratetype = get_pfnblock_migratetype(page, pfn);
  1072. local_irq_save(flags);
  1073. __count_vm_events(PGFREE, 1 << order);
  1074. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1075. local_irq_restore(flags);
  1076. }
  1077. static void __init __free_pages_boot_core(struct page *page, unsigned int order)
  1078. {
  1079. unsigned int nr_pages = 1 << order;
  1080. struct page *p = page;
  1081. unsigned int loop;
  1082. prefetchw(p);
  1083. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1084. prefetchw(p + 1);
  1085. __ClearPageReserved(p);
  1086. set_page_count(p, 0);
  1087. }
  1088. __ClearPageReserved(p);
  1089. set_page_count(p, 0);
  1090. page_zone(page)->managed_pages += nr_pages;
  1091. set_page_refcounted(page);
  1092. __free_pages(page, order);
  1093. }
  1094. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1095. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1096. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1097. int __meminit early_pfn_to_nid(unsigned long pfn)
  1098. {
  1099. static DEFINE_SPINLOCK(early_pfn_lock);
  1100. int nid;
  1101. spin_lock(&early_pfn_lock);
  1102. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1103. if (nid < 0)
  1104. nid = first_online_node;
  1105. spin_unlock(&early_pfn_lock);
  1106. return nid;
  1107. }
  1108. #endif
  1109. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1110. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1111. struct mminit_pfnnid_cache *state)
  1112. {
  1113. int nid;
  1114. nid = __early_pfn_to_nid(pfn, state);
  1115. if (nid >= 0 && nid != node)
  1116. return false;
  1117. return true;
  1118. }
  1119. /* Only safe to use early in boot when initialisation is single-threaded */
  1120. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1121. {
  1122. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1123. }
  1124. #else
  1125. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1126. {
  1127. return true;
  1128. }
  1129. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1130. struct mminit_pfnnid_cache *state)
  1131. {
  1132. return true;
  1133. }
  1134. #endif
  1135. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  1136. unsigned int order)
  1137. {
  1138. if (early_page_uninitialised(pfn))
  1139. return;
  1140. return __free_pages_boot_core(page, order);
  1141. }
  1142. /*
  1143. * Check that the whole (or subset of) a pageblock given by the interval of
  1144. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1145. * with the migration of free compaction scanner. The scanners then need to
  1146. * use only pfn_valid_within() check for arches that allow holes within
  1147. * pageblocks.
  1148. *
  1149. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1150. *
  1151. * It's possible on some configurations to have a setup like node0 node1 node0
  1152. * i.e. it's possible that all pages within a zones range of pages do not
  1153. * belong to a single zone. We assume that a border between node0 and node1
  1154. * can occur within a single pageblock, but not a node0 node1 node0
  1155. * interleaving within a single pageblock. It is therefore sufficient to check
  1156. * the first and last page of a pageblock and avoid checking each individual
  1157. * page in a pageblock.
  1158. */
  1159. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1160. unsigned long end_pfn, struct zone *zone)
  1161. {
  1162. struct page *start_page;
  1163. struct page *end_page;
  1164. /* end_pfn is one past the range we are checking */
  1165. end_pfn--;
  1166. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1167. return NULL;
  1168. start_page = pfn_to_page(start_pfn);
  1169. if (page_zone(start_page) != zone)
  1170. return NULL;
  1171. end_page = pfn_to_page(end_pfn);
  1172. /* This gives a shorter code than deriving page_zone(end_page) */
  1173. if (page_zone_id(start_page) != page_zone_id(end_page))
  1174. return NULL;
  1175. return start_page;
  1176. }
  1177. void set_zone_contiguous(struct zone *zone)
  1178. {
  1179. unsigned long block_start_pfn = zone->zone_start_pfn;
  1180. unsigned long block_end_pfn;
  1181. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1182. for (; block_start_pfn < zone_end_pfn(zone);
  1183. block_start_pfn = block_end_pfn,
  1184. block_end_pfn += pageblock_nr_pages) {
  1185. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1186. if (!__pageblock_pfn_to_page(block_start_pfn,
  1187. block_end_pfn, zone))
  1188. return;
  1189. }
  1190. /* We confirm that there is no hole */
  1191. zone->contiguous = true;
  1192. }
  1193. void clear_zone_contiguous(struct zone *zone)
  1194. {
  1195. zone->contiguous = false;
  1196. }
  1197. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1198. static void __init deferred_free_range(struct page *page,
  1199. unsigned long pfn, int nr_pages)
  1200. {
  1201. int i;
  1202. if (!page)
  1203. return;
  1204. /* Free a large naturally-aligned chunk if possible */
  1205. if (nr_pages == MAX_ORDER_NR_PAGES &&
  1206. (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
  1207. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1208. __free_pages_boot_core(page, MAX_ORDER-1);
  1209. return;
  1210. }
  1211. for (i = 0; i < nr_pages; i++, page++)
  1212. __free_pages_boot_core(page, 0);
  1213. }
  1214. /* Completion tracking for deferred_init_memmap() threads */
  1215. static atomic_t pgdat_init_n_undone __initdata;
  1216. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1217. static inline void __init pgdat_init_report_one_done(void)
  1218. {
  1219. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1220. complete(&pgdat_init_all_done_comp);
  1221. }
  1222. /* Initialise remaining memory on a node */
  1223. static int __init deferred_init_memmap(void *data)
  1224. {
  1225. pg_data_t *pgdat = data;
  1226. int nid = pgdat->node_id;
  1227. struct mminit_pfnnid_cache nid_init_state = { };
  1228. unsigned long start = jiffies;
  1229. unsigned long nr_pages = 0;
  1230. unsigned long walk_start, walk_end;
  1231. int i, zid;
  1232. struct zone *zone;
  1233. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1234. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1235. if (first_init_pfn == ULONG_MAX) {
  1236. pgdat_init_report_one_done();
  1237. return 0;
  1238. }
  1239. /* Bind memory initialisation thread to a local node if possible */
  1240. if (!cpumask_empty(cpumask))
  1241. set_cpus_allowed_ptr(current, cpumask);
  1242. /* Sanity check boundaries */
  1243. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1244. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1245. pgdat->first_deferred_pfn = ULONG_MAX;
  1246. /* Only the highest zone is deferred so find it */
  1247. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1248. zone = pgdat->node_zones + zid;
  1249. if (first_init_pfn < zone_end_pfn(zone))
  1250. break;
  1251. }
  1252. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  1253. unsigned long pfn, end_pfn;
  1254. struct page *page = NULL;
  1255. struct page *free_base_page = NULL;
  1256. unsigned long free_base_pfn = 0;
  1257. int nr_to_free = 0;
  1258. end_pfn = min(walk_end, zone_end_pfn(zone));
  1259. pfn = first_init_pfn;
  1260. if (pfn < walk_start)
  1261. pfn = walk_start;
  1262. if (pfn < zone->zone_start_pfn)
  1263. pfn = zone->zone_start_pfn;
  1264. for (; pfn < end_pfn; pfn++) {
  1265. if (!pfn_valid_within(pfn))
  1266. goto free_range;
  1267. /*
  1268. * Ensure pfn_valid is checked every
  1269. * MAX_ORDER_NR_PAGES for memory holes
  1270. */
  1271. if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
  1272. if (!pfn_valid(pfn)) {
  1273. page = NULL;
  1274. goto free_range;
  1275. }
  1276. }
  1277. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1278. page = NULL;
  1279. goto free_range;
  1280. }
  1281. /* Minimise pfn page lookups and scheduler checks */
  1282. if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
  1283. page++;
  1284. } else {
  1285. nr_pages += nr_to_free;
  1286. deferred_free_range(free_base_page,
  1287. free_base_pfn, nr_to_free);
  1288. free_base_page = NULL;
  1289. free_base_pfn = nr_to_free = 0;
  1290. page = pfn_to_page(pfn);
  1291. cond_resched();
  1292. }
  1293. if (page->flags) {
  1294. VM_BUG_ON(page_zone(page) != zone);
  1295. goto free_range;
  1296. }
  1297. __init_single_page(page, pfn, zid, nid);
  1298. if (!free_base_page) {
  1299. free_base_page = page;
  1300. free_base_pfn = pfn;
  1301. nr_to_free = 0;
  1302. }
  1303. nr_to_free++;
  1304. /* Where possible, batch up pages for a single free */
  1305. continue;
  1306. free_range:
  1307. /* Free the current block of pages to allocator */
  1308. nr_pages += nr_to_free;
  1309. deferred_free_range(free_base_page, free_base_pfn,
  1310. nr_to_free);
  1311. free_base_page = NULL;
  1312. free_base_pfn = nr_to_free = 0;
  1313. }
  1314. first_init_pfn = max(end_pfn, first_init_pfn);
  1315. }
  1316. /* Sanity check that the next zone really is unpopulated */
  1317. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1318. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1319. jiffies_to_msecs(jiffies - start));
  1320. pgdat_init_report_one_done();
  1321. return 0;
  1322. }
  1323. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1324. void __init page_alloc_init_late(void)
  1325. {
  1326. struct zone *zone;
  1327. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1328. int nid;
  1329. /* There will be num_node_state(N_MEMORY) threads */
  1330. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1331. for_each_node_state(nid, N_MEMORY) {
  1332. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1333. }
  1334. /* Block until all are initialised */
  1335. wait_for_completion(&pgdat_init_all_done_comp);
  1336. /* Reinit limits that are based on free pages after the kernel is up */
  1337. files_maxfiles_init();
  1338. #endif
  1339. for_each_populated_zone(zone)
  1340. set_zone_contiguous(zone);
  1341. }
  1342. #ifdef CONFIG_CMA
  1343. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1344. void __init init_cma_reserved_pageblock(struct page *page)
  1345. {
  1346. unsigned i = pageblock_nr_pages;
  1347. struct page *p = page;
  1348. do {
  1349. __ClearPageReserved(p);
  1350. set_page_count(p, 0);
  1351. } while (++p, --i);
  1352. set_pageblock_migratetype(page, MIGRATE_CMA);
  1353. if (pageblock_order >= MAX_ORDER) {
  1354. i = pageblock_nr_pages;
  1355. p = page;
  1356. do {
  1357. set_page_refcounted(p);
  1358. __free_pages(p, MAX_ORDER - 1);
  1359. p += MAX_ORDER_NR_PAGES;
  1360. } while (i -= MAX_ORDER_NR_PAGES);
  1361. } else {
  1362. set_page_refcounted(page);
  1363. __free_pages(page, pageblock_order);
  1364. }
  1365. adjust_managed_page_count(page, pageblock_nr_pages);
  1366. }
  1367. #endif
  1368. /*
  1369. * The order of subdivision here is critical for the IO subsystem.
  1370. * Please do not alter this order without good reasons and regression
  1371. * testing. Specifically, as large blocks of memory are subdivided,
  1372. * the order in which smaller blocks are delivered depends on the order
  1373. * they're subdivided in this function. This is the primary factor
  1374. * influencing the order in which pages are delivered to the IO
  1375. * subsystem according to empirical testing, and this is also justified
  1376. * by considering the behavior of a buddy system containing a single
  1377. * large block of memory acted on by a series of small allocations.
  1378. * This behavior is a critical factor in sglist merging's success.
  1379. *
  1380. * -- nyc
  1381. */
  1382. static inline void expand(struct zone *zone, struct page *page,
  1383. int low, int high, struct free_area *area,
  1384. int migratetype)
  1385. {
  1386. unsigned long size = 1 << high;
  1387. while (high > low) {
  1388. area--;
  1389. high--;
  1390. size >>= 1;
  1391. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1392. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  1393. debug_guardpage_enabled() &&
  1394. high < debug_guardpage_minorder()) {
  1395. /*
  1396. * Mark as guard pages (or page), that will allow to
  1397. * merge back to allocator when buddy will be freed.
  1398. * Corresponding page table entries will not be touched,
  1399. * pages will stay not present in virtual address space
  1400. */
  1401. set_page_guard(zone, &page[size], high, migratetype);
  1402. continue;
  1403. }
  1404. list_add(&page[size].lru, &area->free_list[migratetype]);
  1405. area->nr_free++;
  1406. set_page_order(&page[size], high);
  1407. }
  1408. }
  1409. static void check_new_page_bad(struct page *page)
  1410. {
  1411. const char *bad_reason = NULL;
  1412. unsigned long bad_flags = 0;
  1413. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1414. bad_reason = "nonzero mapcount";
  1415. if (unlikely(page->mapping != NULL))
  1416. bad_reason = "non-NULL mapping";
  1417. if (unlikely(page_ref_count(page) != 0))
  1418. bad_reason = "nonzero _count";
  1419. if (unlikely(page->flags & __PG_HWPOISON)) {
  1420. bad_reason = "HWPoisoned (hardware-corrupted)";
  1421. bad_flags = __PG_HWPOISON;
  1422. /* Don't complain about hwpoisoned pages */
  1423. page_mapcount_reset(page); /* remove PageBuddy */
  1424. return;
  1425. }
  1426. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1427. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1428. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1429. }
  1430. #ifdef CONFIG_MEMCG
  1431. if (unlikely(page->mem_cgroup))
  1432. bad_reason = "page still charged to cgroup";
  1433. #endif
  1434. bad_page(page, bad_reason, bad_flags);
  1435. }
  1436. /*
  1437. * This page is about to be returned from the page allocator
  1438. */
  1439. static inline int check_new_page(struct page *page)
  1440. {
  1441. if (likely(page_expected_state(page,
  1442. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1443. return 0;
  1444. check_new_page_bad(page);
  1445. return 1;
  1446. }
  1447. static inline bool free_pages_prezeroed(bool poisoned)
  1448. {
  1449. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1450. page_poisoning_enabled() && poisoned;
  1451. }
  1452. #ifdef CONFIG_DEBUG_VM
  1453. static bool check_pcp_refill(struct page *page)
  1454. {
  1455. return false;
  1456. }
  1457. static bool check_new_pcp(struct page *page)
  1458. {
  1459. return check_new_page(page);
  1460. }
  1461. #else
  1462. static bool check_pcp_refill(struct page *page)
  1463. {
  1464. return check_new_page(page);
  1465. }
  1466. static bool check_new_pcp(struct page *page)
  1467. {
  1468. return false;
  1469. }
  1470. #endif /* CONFIG_DEBUG_VM */
  1471. static bool check_new_pages(struct page *page, unsigned int order)
  1472. {
  1473. int i;
  1474. for (i = 0; i < (1 << order); i++) {
  1475. struct page *p = page + i;
  1476. if (unlikely(check_new_page(p)))
  1477. return true;
  1478. }
  1479. return false;
  1480. }
  1481. inline void post_alloc_hook(struct page *page, unsigned int order,
  1482. gfp_t gfp_flags)
  1483. {
  1484. set_page_private(page, 0);
  1485. set_page_refcounted(page);
  1486. arch_alloc_page(page, order);
  1487. kernel_map_pages(page, 1 << order, 1);
  1488. kernel_poison_pages(page, 1 << order, 1);
  1489. kasan_alloc_pages(page, order);
  1490. set_page_owner(page, order, gfp_flags);
  1491. }
  1492. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1493. unsigned int alloc_flags)
  1494. {
  1495. int i;
  1496. bool poisoned = true;
  1497. for (i = 0; i < (1 << order); i++) {
  1498. struct page *p = page + i;
  1499. if (poisoned)
  1500. poisoned &= page_is_poisoned(p);
  1501. }
  1502. post_alloc_hook(page, order, gfp_flags);
  1503. if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
  1504. for (i = 0; i < (1 << order); i++)
  1505. clear_highpage(page + i);
  1506. if (order && (gfp_flags & __GFP_COMP))
  1507. prep_compound_page(page, order);
  1508. /*
  1509. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1510. * allocate the page. The expectation is that the caller is taking
  1511. * steps that will free more memory. The caller should avoid the page
  1512. * being used for !PFMEMALLOC purposes.
  1513. */
  1514. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1515. set_page_pfmemalloc(page);
  1516. else
  1517. clear_page_pfmemalloc(page);
  1518. }
  1519. /*
  1520. * Go through the free lists for the given migratetype and remove
  1521. * the smallest available page from the freelists
  1522. */
  1523. static inline
  1524. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1525. int migratetype)
  1526. {
  1527. unsigned int current_order;
  1528. struct free_area *area;
  1529. struct page *page;
  1530. /* Find a page of the appropriate size in the preferred list */
  1531. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1532. area = &(zone->free_area[current_order]);
  1533. page = list_first_entry_or_null(&area->free_list[migratetype],
  1534. struct page, lru);
  1535. if (!page)
  1536. continue;
  1537. list_del(&page->lru);
  1538. rmv_page_order(page);
  1539. area->nr_free--;
  1540. expand(zone, page, order, current_order, area, migratetype);
  1541. set_pcppage_migratetype(page, migratetype);
  1542. return page;
  1543. }
  1544. return NULL;
  1545. }
  1546. /*
  1547. * This array describes the order lists are fallen back to when
  1548. * the free lists for the desirable migrate type are depleted
  1549. */
  1550. static int fallbacks[MIGRATE_TYPES][4] = {
  1551. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1552. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1553. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1554. #ifdef CONFIG_CMA
  1555. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1556. #endif
  1557. #ifdef CONFIG_MEMORY_ISOLATION
  1558. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1559. #endif
  1560. };
  1561. #ifdef CONFIG_CMA
  1562. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1563. unsigned int order)
  1564. {
  1565. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1566. }
  1567. #else
  1568. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1569. unsigned int order) { return NULL; }
  1570. #endif
  1571. /*
  1572. * Move the free pages in a range to the free lists of the requested type.
  1573. * Note that start_page and end_pages are not aligned on a pageblock
  1574. * boundary. If alignment is required, use move_freepages_block()
  1575. */
  1576. int move_freepages(struct zone *zone,
  1577. struct page *start_page, struct page *end_page,
  1578. int migratetype)
  1579. {
  1580. struct page *page;
  1581. unsigned int order;
  1582. int pages_moved = 0;
  1583. #ifndef CONFIG_HOLES_IN_ZONE
  1584. /*
  1585. * page_zone is not safe to call in this context when
  1586. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1587. * anyway as we check zone boundaries in move_freepages_block().
  1588. * Remove at a later date when no bug reports exist related to
  1589. * grouping pages by mobility
  1590. */
  1591. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1592. #endif
  1593. for (page = start_page; page <= end_page;) {
  1594. /* Make sure we are not inadvertently changing nodes */
  1595. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1596. if (!pfn_valid_within(page_to_pfn(page))) {
  1597. page++;
  1598. continue;
  1599. }
  1600. if (!PageBuddy(page)) {
  1601. page++;
  1602. continue;
  1603. }
  1604. order = page_order(page);
  1605. list_move(&page->lru,
  1606. &zone->free_area[order].free_list[migratetype]);
  1607. page += 1 << order;
  1608. pages_moved += 1 << order;
  1609. }
  1610. return pages_moved;
  1611. }
  1612. int move_freepages_block(struct zone *zone, struct page *page,
  1613. int migratetype)
  1614. {
  1615. unsigned long start_pfn, end_pfn;
  1616. struct page *start_page, *end_page;
  1617. start_pfn = page_to_pfn(page);
  1618. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1619. start_page = pfn_to_page(start_pfn);
  1620. end_page = start_page + pageblock_nr_pages - 1;
  1621. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1622. /* Do not cross zone boundaries */
  1623. if (!zone_spans_pfn(zone, start_pfn))
  1624. start_page = page;
  1625. if (!zone_spans_pfn(zone, end_pfn))
  1626. return 0;
  1627. return move_freepages(zone, start_page, end_page, migratetype);
  1628. }
  1629. static void change_pageblock_range(struct page *pageblock_page,
  1630. int start_order, int migratetype)
  1631. {
  1632. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1633. while (nr_pageblocks--) {
  1634. set_pageblock_migratetype(pageblock_page, migratetype);
  1635. pageblock_page += pageblock_nr_pages;
  1636. }
  1637. }
  1638. /*
  1639. * When we are falling back to another migratetype during allocation, try to
  1640. * steal extra free pages from the same pageblocks to satisfy further
  1641. * allocations, instead of polluting multiple pageblocks.
  1642. *
  1643. * If we are stealing a relatively large buddy page, it is likely there will
  1644. * be more free pages in the pageblock, so try to steal them all. For
  1645. * reclaimable and unmovable allocations, we steal regardless of page size,
  1646. * as fragmentation caused by those allocations polluting movable pageblocks
  1647. * is worse than movable allocations stealing from unmovable and reclaimable
  1648. * pageblocks.
  1649. */
  1650. static bool can_steal_fallback(unsigned int order, int start_mt)
  1651. {
  1652. /*
  1653. * Leaving this order check is intended, although there is
  1654. * relaxed order check in next check. The reason is that
  1655. * we can actually steal whole pageblock if this condition met,
  1656. * but, below check doesn't guarantee it and that is just heuristic
  1657. * so could be changed anytime.
  1658. */
  1659. if (order >= pageblock_order)
  1660. return true;
  1661. if (order >= pageblock_order / 2 ||
  1662. start_mt == MIGRATE_RECLAIMABLE ||
  1663. start_mt == MIGRATE_UNMOVABLE ||
  1664. page_group_by_mobility_disabled)
  1665. return true;
  1666. return false;
  1667. }
  1668. /*
  1669. * This function implements actual steal behaviour. If order is large enough,
  1670. * we can steal whole pageblock. If not, we first move freepages in this
  1671. * pageblock and check whether half of pages are moved or not. If half of
  1672. * pages are moved, we can change migratetype of pageblock and permanently
  1673. * use it's pages as requested migratetype in the future.
  1674. */
  1675. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1676. int start_type)
  1677. {
  1678. unsigned int current_order = page_order(page);
  1679. int pages;
  1680. /* Take ownership for orders >= pageblock_order */
  1681. if (current_order >= pageblock_order) {
  1682. change_pageblock_range(page, current_order, start_type);
  1683. return;
  1684. }
  1685. pages = move_freepages_block(zone, page, start_type);
  1686. /* Claim the whole block if over half of it is free */
  1687. if (pages >= (1 << (pageblock_order-1)) ||
  1688. page_group_by_mobility_disabled)
  1689. set_pageblock_migratetype(page, start_type);
  1690. }
  1691. /*
  1692. * Check whether there is a suitable fallback freepage with requested order.
  1693. * If only_stealable is true, this function returns fallback_mt only if
  1694. * we can steal other freepages all together. This would help to reduce
  1695. * fragmentation due to mixed migratetype pages in one pageblock.
  1696. */
  1697. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1698. int migratetype, bool only_stealable, bool *can_steal)
  1699. {
  1700. int i;
  1701. int fallback_mt;
  1702. if (area->nr_free == 0)
  1703. return -1;
  1704. *can_steal = false;
  1705. for (i = 0;; i++) {
  1706. fallback_mt = fallbacks[migratetype][i];
  1707. if (fallback_mt == MIGRATE_TYPES)
  1708. break;
  1709. if (list_empty(&area->free_list[fallback_mt]))
  1710. continue;
  1711. if (can_steal_fallback(order, migratetype))
  1712. *can_steal = true;
  1713. if (!only_stealable)
  1714. return fallback_mt;
  1715. if (*can_steal)
  1716. return fallback_mt;
  1717. }
  1718. return -1;
  1719. }
  1720. /*
  1721. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1722. * there are no empty page blocks that contain a page with a suitable order
  1723. */
  1724. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1725. unsigned int alloc_order)
  1726. {
  1727. int mt;
  1728. unsigned long max_managed, flags;
  1729. /*
  1730. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1731. * Check is race-prone but harmless.
  1732. */
  1733. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1734. if (zone->nr_reserved_highatomic >= max_managed)
  1735. return;
  1736. spin_lock_irqsave(&zone->lock, flags);
  1737. /* Recheck the nr_reserved_highatomic limit under the lock */
  1738. if (zone->nr_reserved_highatomic >= max_managed)
  1739. goto out_unlock;
  1740. /* Yoink! */
  1741. mt = get_pageblock_migratetype(page);
  1742. if (mt != MIGRATE_HIGHATOMIC &&
  1743. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1744. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1745. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1746. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1747. }
  1748. out_unlock:
  1749. spin_unlock_irqrestore(&zone->lock, flags);
  1750. }
  1751. /*
  1752. * Used when an allocation is about to fail under memory pressure. This
  1753. * potentially hurts the reliability of high-order allocations when under
  1754. * intense memory pressure but failed atomic allocations should be easier
  1755. * to recover from than an OOM.
  1756. */
  1757. static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
  1758. {
  1759. struct zonelist *zonelist = ac->zonelist;
  1760. unsigned long flags;
  1761. struct zoneref *z;
  1762. struct zone *zone;
  1763. struct page *page;
  1764. int order;
  1765. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1766. ac->nodemask) {
  1767. /* Preserve at least one pageblock */
  1768. if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
  1769. continue;
  1770. spin_lock_irqsave(&zone->lock, flags);
  1771. for (order = 0; order < MAX_ORDER; order++) {
  1772. struct free_area *area = &(zone->free_area[order]);
  1773. page = list_first_entry_or_null(
  1774. &area->free_list[MIGRATE_HIGHATOMIC],
  1775. struct page, lru);
  1776. if (!page)
  1777. continue;
  1778. /*
  1779. * It should never happen but changes to locking could
  1780. * inadvertently allow a per-cpu drain to add pages
  1781. * to MIGRATE_HIGHATOMIC while unreserving so be safe
  1782. * and watch for underflows.
  1783. */
  1784. zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
  1785. zone->nr_reserved_highatomic);
  1786. /*
  1787. * Convert to ac->migratetype and avoid the normal
  1788. * pageblock stealing heuristics. Minimally, the caller
  1789. * is doing the work and needs the pages. More
  1790. * importantly, if the block was always converted to
  1791. * MIGRATE_UNMOVABLE or another type then the number
  1792. * of pageblocks that cannot be completely freed
  1793. * may increase.
  1794. */
  1795. set_pageblock_migratetype(page, ac->migratetype);
  1796. move_freepages_block(zone, page, ac->migratetype);
  1797. spin_unlock_irqrestore(&zone->lock, flags);
  1798. return;
  1799. }
  1800. spin_unlock_irqrestore(&zone->lock, flags);
  1801. }
  1802. }
  1803. /* Remove an element from the buddy allocator from the fallback list */
  1804. static inline struct page *
  1805. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1806. {
  1807. struct free_area *area;
  1808. unsigned int current_order;
  1809. struct page *page;
  1810. int fallback_mt;
  1811. bool can_steal;
  1812. /* Find the largest possible block of pages in the other list */
  1813. for (current_order = MAX_ORDER-1;
  1814. current_order >= order && current_order <= MAX_ORDER-1;
  1815. --current_order) {
  1816. area = &(zone->free_area[current_order]);
  1817. fallback_mt = find_suitable_fallback(area, current_order,
  1818. start_migratetype, false, &can_steal);
  1819. if (fallback_mt == -1)
  1820. continue;
  1821. page = list_first_entry(&area->free_list[fallback_mt],
  1822. struct page, lru);
  1823. if (can_steal)
  1824. steal_suitable_fallback(zone, page, start_migratetype);
  1825. /* Remove the page from the freelists */
  1826. area->nr_free--;
  1827. list_del(&page->lru);
  1828. rmv_page_order(page);
  1829. expand(zone, page, order, current_order, area,
  1830. start_migratetype);
  1831. /*
  1832. * The pcppage_migratetype may differ from pageblock's
  1833. * migratetype depending on the decisions in
  1834. * find_suitable_fallback(). This is OK as long as it does not
  1835. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1836. * fallback only via special __rmqueue_cma_fallback() function
  1837. */
  1838. set_pcppage_migratetype(page, start_migratetype);
  1839. trace_mm_page_alloc_extfrag(page, order, current_order,
  1840. start_migratetype, fallback_mt);
  1841. return page;
  1842. }
  1843. return NULL;
  1844. }
  1845. /*
  1846. * Do the hard work of removing an element from the buddy allocator.
  1847. * Call me with the zone->lock already held.
  1848. */
  1849. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1850. int migratetype)
  1851. {
  1852. struct page *page;
  1853. page = __rmqueue_smallest(zone, order, migratetype);
  1854. if (unlikely(!page)) {
  1855. if (migratetype == MIGRATE_MOVABLE)
  1856. page = __rmqueue_cma_fallback(zone, order);
  1857. if (!page)
  1858. page = __rmqueue_fallback(zone, order, migratetype);
  1859. }
  1860. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1861. return page;
  1862. }
  1863. /*
  1864. * Obtain a specified number of elements from the buddy allocator, all under
  1865. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1866. * Returns the number of new pages which were placed at *list.
  1867. */
  1868. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1869. unsigned long count, struct list_head *list,
  1870. int migratetype, bool cold)
  1871. {
  1872. int i;
  1873. spin_lock(&zone->lock);
  1874. for (i = 0; i < count; ++i) {
  1875. struct page *page = __rmqueue(zone, order, migratetype);
  1876. if (unlikely(page == NULL))
  1877. break;
  1878. if (unlikely(check_pcp_refill(page)))
  1879. continue;
  1880. /*
  1881. * Split buddy pages returned by expand() are received here
  1882. * in physical page order. The page is added to the callers and
  1883. * list and the list head then moves forward. From the callers
  1884. * perspective, the linked list is ordered by page number in
  1885. * some conditions. This is useful for IO devices that can
  1886. * merge IO requests if the physical pages are ordered
  1887. * properly.
  1888. */
  1889. if (likely(!cold))
  1890. list_add(&page->lru, list);
  1891. else
  1892. list_add_tail(&page->lru, list);
  1893. list = &page->lru;
  1894. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1895. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1896. -(1 << order));
  1897. }
  1898. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1899. spin_unlock(&zone->lock);
  1900. return i;
  1901. }
  1902. #ifdef CONFIG_NUMA
  1903. /*
  1904. * Called from the vmstat counter updater to drain pagesets of this
  1905. * currently executing processor on remote nodes after they have
  1906. * expired.
  1907. *
  1908. * Note that this function must be called with the thread pinned to
  1909. * a single processor.
  1910. */
  1911. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1912. {
  1913. unsigned long flags;
  1914. int to_drain, batch;
  1915. local_irq_save(flags);
  1916. batch = READ_ONCE(pcp->batch);
  1917. to_drain = min(pcp->count, batch);
  1918. if (to_drain > 0) {
  1919. free_pcppages_bulk(zone, to_drain, pcp);
  1920. pcp->count -= to_drain;
  1921. }
  1922. local_irq_restore(flags);
  1923. }
  1924. #endif
  1925. /*
  1926. * Drain pcplists of the indicated processor and zone.
  1927. *
  1928. * The processor must either be the current processor and the
  1929. * thread pinned to the current processor or a processor that
  1930. * is not online.
  1931. */
  1932. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1933. {
  1934. unsigned long flags;
  1935. struct per_cpu_pageset *pset;
  1936. struct per_cpu_pages *pcp;
  1937. local_irq_save(flags);
  1938. pset = per_cpu_ptr(zone->pageset, cpu);
  1939. pcp = &pset->pcp;
  1940. if (pcp->count) {
  1941. free_pcppages_bulk(zone, pcp->count, pcp);
  1942. pcp->count = 0;
  1943. }
  1944. local_irq_restore(flags);
  1945. }
  1946. /*
  1947. * Drain pcplists of all zones on the indicated processor.
  1948. *
  1949. * The processor must either be the current processor and the
  1950. * thread pinned to the current processor or a processor that
  1951. * is not online.
  1952. */
  1953. static void drain_pages(unsigned int cpu)
  1954. {
  1955. struct zone *zone;
  1956. for_each_populated_zone(zone) {
  1957. drain_pages_zone(cpu, zone);
  1958. }
  1959. }
  1960. /*
  1961. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1962. *
  1963. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1964. * the single zone's pages.
  1965. */
  1966. void drain_local_pages(struct zone *zone)
  1967. {
  1968. int cpu = smp_processor_id();
  1969. if (zone)
  1970. drain_pages_zone(cpu, zone);
  1971. else
  1972. drain_pages(cpu);
  1973. }
  1974. /*
  1975. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1976. *
  1977. * When zone parameter is non-NULL, spill just the single zone's pages.
  1978. *
  1979. * Note that this code is protected against sending an IPI to an offline
  1980. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1981. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1982. * nothing keeps CPUs from showing up after we populated the cpumask and
  1983. * before the call to on_each_cpu_mask().
  1984. */
  1985. void drain_all_pages(struct zone *zone)
  1986. {
  1987. int cpu;
  1988. /*
  1989. * Allocate in the BSS so we wont require allocation in
  1990. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1991. */
  1992. static cpumask_t cpus_with_pcps;
  1993. /*
  1994. * We don't care about racing with CPU hotplug event
  1995. * as offline notification will cause the notified
  1996. * cpu to drain that CPU pcps and on_each_cpu_mask
  1997. * disables preemption as part of its processing
  1998. */
  1999. for_each_online_cpu(cpu) {
  2000. struct per_cpu_pageset *pcp;
  2001. struct zone *z;
  2002. bool has_pcps = false;
  2003. if (zone) {
  2004. pcp = per_cpu_ptr(zone->pageset, cpu);
  2005. if (pcp->pcp.count)
  2006. has_pcps = true;
  2007. } else {
  2008. for_each_populated_zone(z) {
  2009. pcp = per_cpu_ptr(z->pageset, cpu);
  2010. if (pcp->pcp.count) {
  2011. has_pcps = true;
  2012. break;
  2013. }
  2014. }
  2015. }
  2016. if (has_pcps)
  2017. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2018. else
  2019. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2020. }
  2021. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  2022. zone, 1);
  2023. }
  2024. #ifdef CONFIG_HIBERNATION
  2025. void mark_free_pages(struct zone *zone)
  2026. {
  2027. unsigned long pfn, max_zone_pfn;
  2028. unsigned long flags;
  2029. unsigned int order, t;
  2030. struct page *page;
  2031. if (zone_is_empty(zone))
  2032. return;
  2033. spin_lock_irqsave(&zone->lock, flags);
  2034. max_zone_pfn = zone_end_pfn(zone);
  2035. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2036. if (pfn_valid(pfn)) {
  2037. page = pfn_to_page(pfn);
  2038. if (page_zone(page) != zone)
  2039. continue;
  2040. if (!swsusp_page_is_forbidden(page))
  2041. swsusp_unset_page_free(page);
  2042. }
  2043. for_each_migratetype_order(order, t) {
  2044. list_for_each_entry(page,
  2045. &zone->free_area[order].free_list[t], lru) {
  2046. unsigned long i;
  2047. pfn = page_to_pfn(page);
  2048. for (i = 0; i < (1UL << order); i++)
  2049. swsusp_set_page_free(pfn_to_page(pfn + i));
  2050. }
  2051. }
  2052. spin_unlock_irqrestore(&zone->lock, flags);
  2053. }
  2054. #endif /* CONFIG_PM */
  2055. /*
  2056. * Free a 0-order page
  2057. * cold == true ? free a cold page : free a hot page
  2058. */
  2059. void free_hot_cold_page(struct page *page, bool cold)
  2060. {
  2061. struct zone *zone = page_zone(page);
  2062. struct per_cpu_pages *pcp;
  2063. unsigned long flags;
  2064. unsigned long pfn = page_to_pfn(page);
  2065. int migratetype;
  2066. if (!free_pcp_prepare(page))
  2067. return;
  2068. migratetype = get_pfnblock_migratetype(page, pfn);
  2069. set_pcppage_migratetype(page, migratetype);
  2070. local_irq_save(flags);
  2071. __count_vm_event(PGFREE);
  2072. /*
  2073. * We only track unmovable, reclaimable and movable on pcp lists.
  2074. * Free ISOLATE pages back to the allocator because they are being
  2075. * offlined but treat RESERVE as movable pages so we can get those
  2076. * areas back if necessary. Otherwise, we may have to free
  2077. * excessively into the page allocator
  2078. */
  2079. if (migratetype >= MIGRATE_PCPTYPES) {
  2080. if (unlikely(is_migrate_isolate(migratetype))) {
  2081. free_one_page(zone, page, pfn, 0, migratetype);
  2082. goto out;
  2083. }
  2084. migratetype = MIGRATE_MOVABLE;
  2085. }
  2086. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2087. if (!cold)
  2088. list_add(&page->lru, &pcp->lists[migratetype]);
  2089. else
  2090. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  2091. pcp->count++;
  2092. if (pcp->count >= pcp->high) {
  2093. unsigned long batch = READ_ONCE(pcp->batch);
  2094. free_pcppages_bulk(zone, batch, pcp);
  2095. pcp->count -= batch;
  2096. }
  2097. out:
  2098. local_irq_restore(flags);
  2099. }
  2100. /*
  2101. * Free a list of 0-order pages
  2102. */
  2103. void free_hot_cold_page_list(struct list_head *list, bool cold)
  2104. {
  2105. struct page *page, *next;
  2106. list_for_each_entry_safe(page, next, list, lru) {
  2107. trace_mm_page_free_batched(page, cold);
  2108. free_hot_cold_page(page, cold);
  2109. }
  2110. }
  2111. /*
  2112. * split_page takes a non-compound higher-order page, and splits it into
  2113. * n (1<<order) sub-pages: page[0..n]
  2114. * Each sub-page must be freed individually.
  2115. *
  2116. * Note: this is probably too low level an operation for use in drivers.
  2117. * Please consult with lkml before using this in your driver.
  2118. */
  2119. void split_page(struct page *page, unsigned int order)
  2120. {
  2121. int i;
  2122. VM_BUG_ON_PAGE(PageCompound(page), page);
  2123. VM_BUG_ON_PAGE(!page_count(page), page);
  2124. #ifdef CONFIG_KMEMCHECK
  2125. /*
  2126. * Split shadow pages too, because free(page[0]) would
  2127. * otherwise free the whole shadow.
  2128. */
  2129. if (kmemcheck_page_is_tracked(page))
  2130. split_page(virt_to_page(page[0].shadow), order);
  2131. #endif
  2132. for (i = 1; i < (1 << order); i++)
  2133. set_page_refcounted(page + i);
  2134. split_page_owner(page, order);
  2135. }
  2136. EXPORT_SYMBOL_GPL(split_page);
  2137. int __isolate_free_page(struct page *page, unsigned int order)
  2138. {
  2139. unsigned long watermark;
  2140. struct zone *zone;
  2141. int mt;
  2142. BUG_ON(!PageBuddy(page));
  2143. zone = page_zone(page);
  2144. mt = get_pageblock_migratetype(page);
  2145. if (!is_migrate_isolate(mt)) {
  2146. /* Obey watermarks as if the page was being allocated */
  2147. watermark = low_wmark_pages(zone) + (1 << order);
  2148. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  2149. return 0;
  2150. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2151. }
  2152. /* Remove page from free list */
  2153. list_del(&page->lru);
  2154. zone->free_area[order].nr_free--;
  2155. rmv_page_order(page);
  2156. /*
  2157. * Set the pageblock if the isolated page is at least half of a
  2158. * pageblock
  2159. */
  2160. if (order >= pageblock_order - 1) {
  2161. struct page *endpage = page + (1 << order) - 1;
  2162. for (; page < endpage; page += pageblock_nr_pages) {
  2163. int mt = get_pageblock_migratetype(page);
  2164. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  2165. set_pageblock_migratetype(page,
  2166. MIGRATE_MOVABLE);
  2167. }
  2168. }
  2169. return 1UL << order;
  2170. }
  2171. /*
  2172. * Update NUMA hit/miss statistics
  2173. *
  2174. * Must be called with interrupts disabled.
  2175. *
  2176. * When __GFP_OTHER_NODE is set assume the node of the preferred
  2177. * zone is the local node. This is useful for daemons who allocate
  2178. * memory on behalf of other processes.
  2179. */
  2180. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
  2181. gfp_t flags)
  2182. {
  2183. #ifdef CONFIG_NUMA
  2184. int local_nid = numa_node_id();
  2185. enum zone_stat_item local_stat = NUMA_LOCAL;
  2186. if (unlikely(flags & __GFP_OTHER_NODE)) {
  2187. local_stat = NUMA_OTHER;
  2188. local_nid = preferred_zone->node;
  2189. }
  2190. if (z->node == local_nid) {
  2191. __inc_zone_state(z, NUMA_HIT);
  2192. __inc_zone_state(z, local_stat);
  2193. } else {
  2194. __inc_zone_state(z, NUMA_MISS);
  2195. __inc_zone_state(preferred_zone, NUMA_FOREIGN);
  2196. }
  2197. #endif
  2198. }
  2199. /*
  2200. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2201. */
  2202. static inline
  2203. struct page *buffered_rmqueue(struct zone *preferred_zone,
  2204. struct zone *zone, unsigned int order,
  2205. gfp_t gfp_flags, unsigned int alloc_flags,
  2206. int migratetype)
  2207. {
  2208. unsigned long flags;
  2209. struct page *page;
  2210. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  2211. if (likely(order == 0)) {
  2212. struct per_cpu_pages *pcp;
  2213. struct list_head *list;
  2214. local_irq_save(flags);
  2215. do {
  2216. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2217. list = &pcp->lists[migratetype];
  2218. if (list_empty(list)) {
  2219. pcp->count += rmqueue_bulk(zone, 0,
  2220. pcp->batch, list,
  2221. migratetype, cold);
  2222. if (unlikely(list_empty(list)))
  2223. goto failed;
  2224. }
  2225. if (cold)
  2226. page = list_last_entry(list, struct page, lru);
  2227. else
  2228. page = list_first_entry(list, struct page, lru);
  2229. __dec_zone_state(zone, NR_ALLOC_BATCH);
  2230. list_del(&page->lru);
  2231. pcp->count--;
  2232. } while (check_new_pcp(page));
  2233. } else {
  2234. /*
  2235. * We most definitely don't want callers attempting to
  2236. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2237. */
  2238. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2239. spin_lock_irqsave(&zone->lock, flags);
  2240. do {
  2241. page = NULL;
  2242. if (alloc_flags & ALLOC_HARDER) {
  2243. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2244. if (page)
  2245. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2246. }
  2247. if (!page)
  2248. page = __rmqueue(zone, order, migratetype);
  2249. } while (page && check_new_pages(page, order));
  2250. spin_unlock(&zone->lock);
  2251. if (!page)
  2252. goto failed;
  2253. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  2254. __mod_zone_freepage_state(zone, -(1 << order),
  2255. get_pcppage_migratetype(page));
  2256. }
  2257. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  2258. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  2259. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2260. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  2261. zone_statistics(preferred_zone, zone, gfp_flags);
  2262. local_irq_restore(flags);
  2263. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  2264. return page;
  2265. failed:
  2266. local_irq_restore(flags);
  2267. return NULL;
  2268. }
  2269. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2270. static struct {
  2271. struct fault_attr attr;
  2272. bool ignore_gfp_highmem;
  2273. bool ignore_gfp_reclaim;
  2274. u32 min_order;
  2275. } fail_page_alloc = {
  2276. .attr = FAULT_ATTR_INITIALIZER,
  2277. .ignore_gfp_reclaim = true,
  2278. .ignore_gfp_highmem = true,
  2279. .min_order = 1,
  2280. };
  2281. static int __init setup_fail_page_alloc(char *str)
  2282. {
  2283. return setup_fault_attr(&fail_page_alloc.attr, str);
  2284. }
  2285. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2286. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2287. {
  2288. if (order < fail_page_alloc.min_order)
  2289. return false;
  2290. if (gfp_mask & __GFP_NOFAIL)
  2291. return false;
  2292. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2293. return false;
  2294. if (fail_page_alloc.ignore_gfp_reclaim &&
  2295. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2296. return false;
  2297. return should_fail(&fail_page_alloc.attr, 1 << order);
  2298. }
  2299. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2300. static int __init fail_page_alloc_debugfs(void)
  2301. {
  2302. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2303. struct dentry *dir;
  2304. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2305. &fail_page_alloc.attr);
  2306. if (IS_ERR(dir))
  2307. return PTR_ERR(dir);
  2308. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2309. &fail_page_alloc.ignore_gfp_reclaim))
  2310. goto fail;
  2311. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2312. &fail_page_alloc.ignore_gfp_highmem))
  2313. goto fail;
  2314. if (!debugfs_create_u32("min-order", mode, dir,
  2315. &fail_page_alloc.min_order))
  2316. goto fail;
  2317. return 0;
  2318. fail:
  2319. debugfs_remove_recursive(dir);
  2320. return -ENOMEM;
  2321. }
  2322. late_initcall(fail_page_alloc_debugfs);
  2323. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2324. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2325. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2326. {
  2327. return false;
  2328. }
  2329. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2330. /*
  2331. * Return true if free base pages are above 'mark'. For high-order checks it
  2332. * will return true of the order-0 watermark is reached and there is at least
  2333. * one free page of a suitable size. Checking now avoids taking the zone lock
  2334. * to check in the allocation paths if no pages are free.
  2335. */
  2336. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2337. int classzone_idx, unsigned int alloc_flags,
  2338. long free_pages)
  2339. {
  2340. long min = mark;
  2341. int o;
  2342. const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
  2343. /* free_pages may go negative - that's OK */
  2344. free_pages -= (1 << order) - 1;
  2345. if (alloc_flags & ALLOC_HIGH)
  2346. min -= min / 2;
  2347. /*
  2348. * If the caller does not have rights to ALLOC_HARDER then subtract
  2349. * the high-atomic reserves. This will over-estimate the size of the
  2350. * atomic reserve but it avoids a search.
  2351. */
  2352. if (likely(!alloc_harder))
  2353. free_pages -= z->nr_reserved_highatomic;
  2354. else
  2355. min -= min / 4;
  2356. #ifdef CONFIG_CMA
  2357. /* If allocation can't use CMA areas don't use free CMA pages */
  2358. if (!(alloc_flags & ALLOC_CMA))
  2359. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2360. #endif
  2361. /*
  2362. * Check watermarks for an order-0 allocation request. If these
  2363. * are not met, then a high-order request also cannot go ahead
  2364. * even if a suitable page happened to be free.
  2365. */
  2366. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2367. return false;
  2368. /* If this is an order-0 request then the watermark is fine */
  2369. if (!order)
  2370. return true;
  2371. /* For a high-order request, check at least one suitable page is free */
  2372. for (o = order; o < MAX_ORDER; o++) {
  2373. struct free_area *area = &z->free_area[o];
  2374. int mt;
  2375. if (!area->nr_free)
  2376. continue;
  2377. if (alloc_harder)
  2378. return true;
  2379. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2380. if (!list_empty(&area->free_list[mt]))
  2381. return true;
  2382. }
  2383. #ifdef CONFIG_CMA
  2384. if ((alloc_flags & ALLOC_CMA) &&
  2385. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2386. return true;
  2387. }
  2388. #endif
  2389. }
  2390. return false;
  2391. }
  2392. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2393. int classzone_idx, unsigned int alloc_flags)
  2394. {
  2395. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2396. zone_page_state(z, NR_FREE_PAGES));
  2397. }
  2398. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2399. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2400. {
  2401. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2402. long cma_pages = 0;
  2403. #ifdef CONFIG_CMA
  2404. /* If allocation can't use CMA areas don't use free CMA pages */
  2405. if (!(alloc_flags & ALLOC_CMA))
  2406. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2407. #endif
  2408. /*
  2409. * Fast check for order-0 only. If this fails then the reserves
  2410. * need to be calculated. There is a corner case where the check
  2411. * passes but only the high-order atomic reserve are free. If
  2412. * the caller is !atomic then it'll uselessly search the free
  2413. * list. That corner case is then slower but it is harmless.
  2414. */
  2415. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2416. return true;
  2417. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2418. free_pages);
  2419. }
  2420. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2421. unsigned long mark, int classzone_idx)
  2422. {
  2423. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2424. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2425. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2426. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2427. free_pages);
  2428. }
  2429. #ifdef CONFIG_NUMA
  2430. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2431. {
  2432. return local_zone->node == zone->node;
  2433. }
  2434. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2435. {
  2436. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  2437. RECLAIM_DISTANCE;
  2438. }
  2439. #else /* CONFIG_NUMA */
  2440. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2441. {
  2442. return true;
  2443. }
  2444. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2445. {
  2446. return true;
  2447. }
  2448. #endif /* CONFIG_NUMA */
  2449. static void reset_alloc_batches(struct zone *preferred_zone)
  2450. {
  2451. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  2452. do {
  2453. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  2454. high_wmark_pages(zone) - low_wmark_pages(zone) -
  2455. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  2456. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2457. } while (zone++ != preferred_zone);
  2458. }
  2459. /*
  2460. * get_page_from_freelist goes through the zonelist trying to allocate
  2461. * a page.
  2462. */
  2463. static struct page *
  2464. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2465. const struct alloc_context *ac)
  2466. {
  2467. struct zoneref *z = ac->preferred_zoneref;
  2468. struct zone *zone;
  2469. bool fair_skipped = false;
  2470. bool apply_fair = (alloc_flags & ALLOC_FAIR);
  2471. zonelist_scan:
  2472. /*
  2473. * Scan zonelist, looking for a zone with enough free.
  2474. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2475. */
  2476. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2477. ac->nodemask) {
  2478. struct page *page;
  2479. unsigned long mark;
  2480. if (cpusets_enabled() &&
  2481. (alloc_flags & ALLOC_CPUSET) &&
  2482. !__cpuset_zone_allowed(zone, gfp_mask))
  2483. continue;
  2484. /*
  2485. * Distribute pages in proportion to the individual
  2486. * zone size to ensure fair page aging. The zone a
  2487. * page was allocated in should have no effect on the
  2488. * time the page has in memory before being reclaimed.
  2489. */
  2490. if (apply_fair) {
  2491. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  2492. fair_skipped = true;
  2493. continue;
  2494. }
  2495. if (!zone_local(ac->preferred_zoneref->zone, zone)) {
  2496. if (fair_skipped)
  2497. goto reset_fair;
  2498. apply_fair = false;
  2499. }
  2500. }
  2501. /*
  2502. * When allocating a page cache page for writing, we
  2503. * want to get it from a node that is within its dirty
  2504. * limit, such that no single node holds more than its
  2505. * proportional share of globally allowed dirty pages.
  2506. * The dirty limits take into account the node's
  2507. * lowmem reserves and high watermark so that kswapd
  2508. * should be able to balance it without having to
  2509. * write pages from its LRU list.
  2510. *
  2511. * XXX: For now, allow allocations to potentially
  2512. * exceed the per-node dirty limit in the slowpath
  2513. * (spread_dirty_pages unset) before going into reclaim,
  2514. * which is important when on a NUMA setup the allowed
  2515. * nodes are together not big enough to reach the
  2516. * global limit. The proper fix for these situations
  2517. * will require awareness of nodes in the
  2518. * dirty-throttling and the flusher threads.
  2519. */
  2520. if (ac->spread_dirty_pages && !node_dirty_ok(zone->zone_pgdat))
  2521. continue;
  2522. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2523. if (!zone_watermark_fast(zone, order, mark,
  2524. ac_classzone_idx(ac), alloc_flags)) {
  2525. int ret;
  2526. /* Checked here to keep the fast path fast */
  2527. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2528. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2529. goto try_this_zone;
  2530. if (zone_reclaim_mode == 0 ||
  2531. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2532. continue;
  2533. ret = zone_reclaim(zone, gfp_mask, order);
  2534. switch (ret) {
  2535. case ZONE_RECLAIM_NOSCAN:
  2536. /* did not scan */
  2537. continue;
  2538. case ZONE_RECLAIM_FULL:
  2539. /* scanned but unreclaimable */
  2540. continue;
  2541. default:
  2542. /* did we reclaim enough */
  2543. if (zone_watermark_ok(zone, order, mark,
  2544. ac_classzone_idx(ac), alloc_flags))
  2545. goto try_this_zone;
  2546. continue;
  2547. }
  2548. }
  2549. try_this_zone:
  2550. page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
  2551. gfp_mask, alloc_flags, ac->migratetype);
  2552. if (page) {
  2553. prep_new_page(page, order, gfp_mask, alloc_flags);
  2554. /*
  2555. * If this is a high-order atomic allocation then check
  2556. * if the pageblock should be reserved for the future
  2557. */
  2558. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2559. reserve_highatomic_pageblock(page, zone, order);
  2560. return page;
  2561. }
  2562. }
  2563. /*
  2564. * The first pass makes sure allocations are spread fairly within the
  2565. * local node. However, the local node might have free pages left
  2566. * after the fairness batches are exhausted, and remote zones haven't
  2567. * even been considered yet. Try once more without fairness, and
  2568. * include remote zones now, before entering the slowpath and waking
  2569. * kswapd: prefer spilling to a remote zone over swapping locally.
  2570. */
  2571. if (fair_skipped) {
  2572. reset_fair:
  2573. apply_fair = false;
  2574. fair_skipped = false;
  2575. reset_alloc_batches(ac->preferred_zoneref->zone);
  2576. z = ac->preferred_zoneref;
  2577. goto zonelist_scan;
  2578. }
  2579. return NULL;
  2580. }
  2581. /*
  2582. * Large machines with many possible nodes should not always dump per-node
  2583. * meminfo in irq context.
  2584. */
  2585. static inline bool should_suppress_show_mem(void)
  2586. {
  2587. bool ret = false;
  2588. #if NODES_SHIFT > 8
  2589. ret = in_interrupt();
  2590. #endif
  2591. return ret;
  2592. }
  2593. static DEFINE_RATELIMIT_STATE(nopage_rs,
  2594. DEFAULT_RATELIMIT_INTERVAL,
  2595. DEFAULT_RATELIMIT_BURST);
  2596. void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
  2597. {
  2598. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2599. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2600. debug_guardpage_minorder() > 0)
  2601. return;
  2602. /*
  2603. * This documents exceptions given to allocations in certain
  2604. * contexts that are allowed to allocate outside current's set
  2605. * of allowed nodes.
  2606. */
  2607. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2608. if (test_thread_flag(TIF_MEMDIE) ||
  2609. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2610. filter &= ~SHOW_MEM_FILTER_NODES;
  2611. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2612. filter &= ~SHOW_MEM_FILTER_NODES;
  2613. if (fmt) {
  2614. struct va_format vaf;
  2615. va_list args;
  2616. va_start(args, fmt);
  2617. vaf.fmt = fmt;
  2618. vaf.va = &args;
  2619. pr_warn("%pV", &vaf);
  2620. va_end(args);
  2621. }
  2622. pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
  2623. current->comm, order, gfp_mask, &gfp_mask);
  2624. dump_stack();
  2625. if (!should_suppress_show_mem())
  2626. show_mem(filter);
  2627. }
  2628. static inline struct page *
  2629. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2630. const struct alloc_context *ac, unsigned long *did_some_progress)
  2631. {
  2632. struct oom_control oc = {
  2633. .zonelist = ac->zonelist,
  2634. .nodemask = ac->nodemask,
  2635. .memcg = NULL,
  2636. .gfp_mask = gfp_mask,
  2637. .order = order,
  2638. };
  2639. struct page *page;
  2640. *did_some_progress = 0;
  2641. /*
  2642. * Acquire the oom lock. If that fails, somebody else is
  2643. * making progress for us.
  2644. */
  2645. if (!mutex_trylock(&oom_lock)) {
  2646. *did_some_progress = 1;
  2647. schedule_timeout_uninterruptible(1);
  2648. return NULL;
  2649. }
  2650. /*
  2651. * Go through the zonelist yet one more time, keep very high watermark
  2652. * here, this is only to catch a parallel oom killing, we must fail if
  2653. * we're still under heavy pressure.
  2654. */
  2655. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2656. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2657. if (page)
  2658. goto out;
  2659. if (!(gfp_mask & __GFP_NOFAIL)) {
  2660. /* Coredumps can quickly deplete all memory reserves */
  2661. if (current->flags & PF_DUMPCORE)
  2662. goto out;
  2663. /* The OOM killer will not help higher order allocs */
  2664. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2665. goto out;
  2666. /* The OOM killer does not needlessly kill tasks for lowmem */
  2667. if (ac->high_zoneidx < ZONE_NORMAL)
  2668. goto out;
  2669. if (pm_suspended_storage())
  2670. goto out;
  2671. /*
  2672. * XXX: GFP_NOFS allocations should rather fail than rely on
  2673. * other request to make a forward progress.
  2674. * We are in an unfortunate situation where out_of_memory cannot
  2675. * do much for this context but let's try it to at least get
  2676. * access to memory reserved if the current task is killed (see
  2677. * out_of_memory). Once filesystems are ready to handle allocation
  2678. * failures more gracefully we should just bail out here.
  2679. */
  2680. /* The OOM killer may not free memory on a specific node */
  2681. if (gfp_mask & __GFP_THISNODE)
  2682. goto out;
  2683. }
  2684. /* Exhausted what can be done so it's blamo time */
  2685. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2686. *did_some_progress = 1;
  2687. if (gfp_mask & __GFP_NOFAIL) {
  2688. page = get_page_from_freelist(gfp_mask, order,
  2689. ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
  2690. /*
  2691. * fallback to ignore cpuset restriction if our nodes
  2692. * are depleted
  2693. */
  2694. if (!page)
  2695. page = get_page_from_freelist(gfp_mask, order,
  2696. ALLOC_NO_WATERMARKS, ac);
  2697. }
  2698. }
  2699. out:
  2700. mutex_unlock(&oom_lock);
  2701. return page;
  2702. }
  2703. /*
  2704. * Maximum number of compaction retries wit a progress before OOM
  2705. * killer is consider as the only way to move forward.
  2706. */
  2707. #define MAX_COMPACT_RETRIES 16
  2708. #ifdef CONFIG_COMPACTION
  2709. /* Try memory compaction for high-order allocations before reclaim */
  2710. static struct page *
  2711. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2712. unsigned int alloc_flags, const struct alloc_context *ac,
  2713. enum migrate_mode mode, enum compact_result *compact_result)
  2714. {
  2715. struct page *page;
  2716. int contended_compaction;
  2717. if (!order)
  2718. return NULL;
  2719. current->flags |= PF_MEMALLOC;
  2720. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2721. mode, &contended_compaction);
  2722. current->flags &= ~PF_MEMALLOC;
  2723. if (*compact_result <= COMPACT_INACTIVE)
  2724. return NULL;
  2725. /*
  2726. * At least in one zone compaction wasn't deferred or skipped, so let's
  2727. * count a compaction stall
  2728. */
  2729. count_vm_event(COMPACTSTALL);
  2730. page = get_page_from_freelist(gfp_mask, order,
  2731. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2732. if (page) {
  2733. struct zone *zone = page_zone(page);
  2734. zone->compact_blockskip_flush = false;
  2735. compaction_defer_reset(zone, order, true);
  2736. count_vm_event(COMPACTSUCCESS);
  2737. return page;
  2738. }
  2739. /*
  2740. * It's bad if compaction run occurs and fails. The most likely reason
  2741. * is that pages exist, but not enough to satisfy watermarks.
  2742. */
  2743. count_vm_event(COMPACTFAIL);
  2744. /*
  2745. * In all zones where compaction was attempted (and not
  2746. * deferred or skipped), lock contention has been detected.
  2747. * For THP allocation we do not want to disrupt the others
  2748. * so we fallback to base pages instead.
  2749. */
  2750. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2751. *compact_result = COMPACT_CONTENDED;
  2752. /*
  2753. * If compaction was aborted due to need_resched(), we do not
  2754. * want to further increase allocation latency, unless it is
  2755. * khugepaged trying to collapse.
  2756. */
  2757. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2758. && !(current->flags & PF_KTHREAD))
  2759. *compact_result = COMPACT_CONTENDED;
  2760. cond_resched();
  2761. return NULL;
  2762. }
  2763. static inline bool
  2764. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  2765. enum compact_result compact_result, enum migrate_mode *migrate_mode,
  2766. int compaction_retries)
  2767. {
  2768. int max_retries = MAX_COMPACT_RETRIES;
  2769. if (!order)
  2770. return false;
  2771. /*
  2772. * compaction considers all the zone as desperately out of memory
  2773. * so it doesn't really make much sense to retry except when the
  2774. * failure could be caused by weak migration mode.
  2775. */
  2776. if (compaction_failed(compact_result)) {
  2777. if (*migrate_mode == MIGRATE_ASYNC) {
  2778. *migrate_mode = MIGRATE_SYNC_LIGHT;
  2779. return true;
  2780. }
  2781. return false;
  2782. }
  2783. /*
  2784. * make sure the compaction wasn't deferred or didn't bail out early
  2785. * due to locks contention before we declare that we should give up.
  2786. * But do not retry if the given zonelist is not suitable for
  2787. * compaction.
  2788. */
  2789. if (compaction_withdrawn(compact_result))
  2790. return compaction_zonelist_suitable(ac, order, alloc_flags);
  2791. /*
  2792. * !costly requests are much more important than __GFP_REPEAT
  2793. * costly ones because they are de facto nofail and invoke OOM
  2794. * killer to move on while costly can fail and users are ready
  2795. * to cope with that. 1/4 retries is rather arbitrary but we
  2796. * would need much more detailed feedback from compaction to
  2797. * make a better decision.
  2798. */
  2799. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2800. max_retries /= 4;
  2801. if (compaction_retries <= max_retries)
  2802. return true;
  2803. return false;
  2804. }
  2805. #else
  2806. static inline struct page *
  2807. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2808. unsigned int alloc_flags, const struct alloc_context *ac,
  2809. enum migrate_mode mode, enum compact_result *compact_result)
  2810. {
  2811. *compact_result = COMPACT_SKIPPED;
  2812. return NULL;
  2813. }
  2814. static inline bool
  2815. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  2816. enum compact_result compact_result,
  2817. enum migrate_mode *migrate_mode,
  2818. int compaction_retries)
  2819. {
  2820. struct zone *zone;
  2821. struct zoneref *z;
  2822. if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
  2823. return false;
  2824. /*
  2825. * There are setups with compaction disabled which would prefer to loop
  2826. * inside the allocator rather than hit the oom killer prematurely.
  2827. * Let's give them a good hope and keep retrying while the order-0
  2828. * watermarks are OK.
  2829. */
  2830. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2831. ac->nodemask) {
  2832. if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  2833. ac_classzone_idx(ac), alloc_flags))
  2834. return true;
  2835. }
  2836. return false;
  2837. }
  2838. #endif /* CONFIG_COMPACTION */
  2839. /* Perform direct synchronous page reclaim */
  2840. static int
  2841. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2842. const struct alloc_context *ac)
  2843. {
  2844. struct reclaim_state reclaim_state;
  2845. int progress;
  2846. cond_resched();
  2847. /* We now go into synchronous reclaim */
  2848. cpuset_memory_pressure_bump();
  2849. current->flags |= PF_MEMALLOC;
  2850. lockdep_set_current_reclaim_state(gfp_mask);
  2851. reclaim_state.reclaimed_slab = 0;
  2852. current->reclaim_state = &reclaim_state;
  2853. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2854. ac->nodemask);
  2855. current->reclaim_state = NULL;
  2856. lockdep_clear_current_reclaim_state();
  2857. current->flags &= ~PF_MEMALLOC;
  2858. cond_resched();
  2859. return progress;
  2860. }
  2861. /* The really slow allocator path where we enter direct reclaim */
  2862. static inline struct page *
  2863. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2864. unsigned int alloc_flags, const struct alloc_context *ac,
  2865. unsigned long *did_some_progress)
  2866. {
  2867. struct page *page = NULL;
  2868. bool drained = false;
  2869. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2870. if (unlikely(!(*did_some_progress)))
  2871. return NULL;
  2872. retry:
  2873. page = get_page_from_freelist(gfp_mask, order,
  2874. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2875. /*
  2876. * If an allocation failed after direct reclaim, it could be because
  2877. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2878. * Shrink them them and try again
  2879. */
  2880. if (!page && !drained) {
  2881. unreserve_highatomic_pageblock(ac);
  2882. drain_all_pages(NULL);
  2883. drained = true;
  2884. goto retry;
  2885. }
  2886. return page;
  2887. }
  2888. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2889. {
  2890. struct zoneref *z;
  2891. struct zone *zone;
  2892. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2893. ac->high_zoneidx, ac->nodemask)
  2894. wakeup_kswapd(zone, order, ac_classzone_idx(ac));
  2895. }
  2896. static inline unsigned int
  2897. gfp_to_alloc_flags(gfp_t gfp_mask)
  2898. {
  2899. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2900. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2901. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2902. /*
  2903. * The caller may dip into page reserves a bit more if the caller
  2904. * cannot run direct reclaim, or if the caller has realtime scheduling
  2905. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2906. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2907. */
  2908. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2909. if (gfp_mask & __GFP_ATOMIC) {
  2910. /*
  2911. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2912. * if it can't schedule.
  2913. */
  2914. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2915. alloc_flags |= ALLOC_HARDER;
  2916. /*
  2917. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2918. * comment for __cpuset_node_allowed().
  2919. */
  2920. alloc_flags &= ~ALLOC_CPUSET;
  2921. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2922. alloc_flags |= ALLOC_HARDER;
  2923. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2924. if (gfp_mask & __GFP_MEMALLOC)
  2925. alloc_flags |= ALLOC_NO_WATERMARKS;
  2926. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2927. alloc_flags |= ALLOC_NO_WATERMARKS;
  2928. else if (!in_interrupt() &&
  2929. ((current->flags & PF_MEMALLOC) ||
  2930. unlikely(test_thread_flag(TIF_MEMDIE))))
  2931. alloc_flags |= ALLOC_NO_WATERMARKS;
  2932. }
  2933. #ifdef CONFIG_CMA
  2934. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2935. alloc_flags |= ALLOC_CMA;
  2936. #endif
  2937. return alloc_flags;
  2938. }
  2939. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2940. {
  2941. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2942. }
  2943. static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
  2944. {
  2945. return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
  2946. }
  2947. /*
  2948. * Maximum number of reclaim retries without any progress before OOM killer
  2949. * is consider as the only way to move forward.
  2950. */
  2951. #define MAX_RECLAIM_RETRIES 16
  2952. /*
  2953. * Checks whether it makes sense to retry the reclaim to make a forward progress
  2954. * for the given allocation request.
  2955. * The reclaim feedback represented by did_some_progress (any progress during
  2956. * the last reclaim round) and no_progress_loops (number of reclaim rounds without
  2957. * any progress in a row) is considered as well as the reclaimable pages on the
  2958. * applicable zone list (with a backoff mechanism which is a function of
  2959. * no_progress_loops).
  2960. *
  2961. * Returns true if a retry is viable or false to enter the oom path.
  2962. */
  2963. static inline bool
  2964. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  2965. struct alloc_context *ac, int alloc_flags,
  2966. bool did_some_progress, int no_progress_loops)
  2967. {
  2968. struct zone *zone;
  2969. struct zoneref *z;
  2970. /*
  2971. * Make sure we converge to OOM if we cannot make any progress
  2972. * several times in the row.
  2973. */
  2974. if (no_progress_loops > MAX_RECLAIM_RETRIES)
  2975. return false;
  2976. /*
  2977. * Keep reclaiming pages while there is a chance this will lead somewhere.
  2978. * If none of the target zones can satisfy our allocation request even
  2979. * if all reclaimable pages are considered then we are screwed and have
  2980. * to go OOM.
  2981. */
  2982. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2983. ac->nodemask) {
  2984. unsigned long available;
  2985. unsigned long reclaimable;
  2986. available = reclaimable = zone_reclaimable_pages(zone);
  2987. available -= DIV_ROUND_UP(no_progress_loops * available,
  2988. MAX_RECLAIM_RETRIES);
  2989. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  2990. /*
  2991. * Would the allocation succeed if we reclaimed the whole
  2992. * available?
  2993. */
  2994. if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
  2995. ac_classzone_idx(ac), alloc_flags, available)) {
  2996. /*
  2997. * If we didn't make any progress and have a lot of
  2998. * dirty + writeback pages then we should wait for
  2999. * an IO to complete to slow down the reclaim and
  3000. * prevent from pre mature OOM
  3001. */
  3002. if (!did_some_progress) {
  3003. unsigned long write_pending;
  3004. write_pending = zone_page_state_snapshot(zone,
  3005. NR_ZONE_WRITE_PENDING);
  3006. if (2 * write_pending > reclaimable) {
  3007. congestion_wait(BLK_RW_ASYNC, HZ/10);
  3008. return true;
  3009. }
  3010. }
  3011. /*
  3012. * Memory allocation/reclaim might be called from a WQ
  3013. * context and the current implementation of the WQ
  3014. * concurrency control doesn't recognize that
  3015. * a particular WQ is congested if the worker thread is
  3016. * looping without ever sleeping. Therefore we have to
  3017. * do a short sleep here rather than calling
  3018. * cond_resched().
  3019. */
  3020. if (current->flags & PF_WQ_WORKER)
  3021. schedule_timeout_uninterruptible(1);
  3022. else
  3023. cond_resched();
  3024. return true;
  3025. }
  3026. }
  3027. return false;
  3028. }
  3029. static inline struct page *
  3030. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  3031. struct alloc_context *ac)
  3032. {
  3033. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  3034. struct page *page = NULL;
  3035. unsigned int alloc_flags;
  3036. unsigned long did_some_progress;
  3037. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  3038. enum compact_result compact_result;
  3039. int compaction_retries = 0;
  3040. int no_progress_loops = 0;
  3041. /*
  3042. * In the slowpath, we sanity check order to avoid ever trying to
  3043. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  3044. * be using allocators in order of preference for an area that is
  3045. * too large.
  3046. */
  3047. if (order >= MAX_ORDER) {
  3048. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3049. return NULL;
  3050. }
  3051. /*
  3052. * We also sanity check to catch abuse of atomic reserves being used by
  3053. * callers that are not in atomic context.
  3054. */
  3055. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3056. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3057. gfp_mask &= ~__GFP_ATOMIC;
  3058. retry:
  3059. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3060. wake_all_kswapds(order, ac);
  3061. /*
  3062. * OK, we're below the kswapd watermark and have kicked background
  3063. * reclaim. Now things get more complex, so set up alloc_flags according
  3064. * to how we want to proceed.
  3065. */
  3066. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3067. /*
  3068. * Reset the zonelist iterators if memory policies can be ignored.
  3069. * These allocations are high priority and system rather than user
  3070. * orientated.
  3071. */
  3072. if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
  3073. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  3074. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3075. ac->high_zoneidx, ac->nodemask);
  3076. }
  3077. /* This is the last chance, in general, before the goto nopage. */
  3078. page = get_page_from_freelist(gfp_mask, order,
  3079. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  3080. if (page)
  3081. goto got_pg;
  3082. /* Allocate without watermarks if the context allows */
  3083. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  3084. page = get_page_from_freelist(gfp_mask, order,
  3085. ALLOC_NO_WATERMARKS, ac);
  3086. if (page)
  3087. goto got_pg;
  3088. }
  3089. /* Caller is not willing to reclaim, we can't balance anything */
  3090. if (!can_direct_reclaim) {
  3091. /*
  3092. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3093. * of any new users that actually allow this type of allocation
  3094. * to fail.
  3095. */
  3096. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  3097. goto nopage;
  3098. }
  3099. /* Avoid recursion of direct reclaim */
  3100. if (current->flags & PF_MEMALLOC) {
  3101. /*
  3102. * __GFP_NOFAIL request from this context is rather bizarre
  3103. * because we cannot reclaim anything and only can loop waiting
  3104. * for somebody to do a work for us.
  3105. */
  3106. if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  3107. cond_resched();
  3108. goto retry;
  3109. }
  3110. goto nopage;
  3111. }
  3112. /* Avoid allocations with no watermarks from looping endlessly */
  3113. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  3114. goto nopage;
  3115. /*
  3116. * Try direct compaction. The first pass is asynchronous. Subsequent
  3117. * attempts after direct reclaim are synchronous
  3118. */
  3119. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3120. migration_mode,
  3121. &compact_result);
  3122. if (page)
  3123. goto got_pg;
  3124. /* Checks for THP-specific high-order allocations */
  3125. if (is_thp_gfp_mask(gfp_mask)) {
  3126. /*
  3127. * If compaction is deferred for high-order allocations, it is
  3128. * because sync compaction recently failed. If this is the case
  3129. * and the caller requested a THP allocation, we do not want
  3130. * to heavily disrupt the system, so we fail the allocation
  3131. * instead of entering direct reclaim.
  3132. */
  3133. if (compact_result == COMPACT_DEFERRED)
  3134. goto nopage;
  3135. /*
  3136. * Compaction is contended so rather back off than cause
  3137. * excessive stalls.
  3138. */
  3139. if(compact_result == COMPACT_CONTENDED)
  3140. goto nopage;
  3141. }
  3142. if (order && compaction_made_progress(compact_result))
  3143. compaction_retries++;
  3144. /* Try direct reclaim and then allocating */
  3145. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3146. &did_some_progress);
  3147. if (page)
  3148. goto got_pg;
  3149. /* Do not loop if specifically requested */
  3150. if (gfp_mask & __GFP_NORETRY)
  3151. goto noretry;
  3152. /*
  3153. * Do not retry costly high order allocations unless they are
  3154. * __GFP_REPEAT
  3155. */
  3156. if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
  3157. goto noretry;
  3158. /*
  3159. * Costly allocations might have made a progress but this doesn't mean
  3160. * their order will become available due to high fragmentation so
  3161. * always increment the no progress counter for them
  3162. */
  3163. if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
  3164. no_progress_loops = 0;
  3165. else
  3166. no_progress_loops++;
  3167. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3168. did_some_progress > 0, no_progress_loops))
  3169. goto retry;
  3170. /*
  3171. * It doesn't make any sense to retry for the compaction if the order-0
  3172. * reclaim is not able to make any progress because the current
  3173. * implementation of the compaction depends on the sufficient amount
  3174. * of free memory (see __compaction_suitable)
  3175. */
  3176. if (did_some_progress > 0 &&
  3177. should_compact_retry(ac, order, alloc_flags,
  3178. compact_result, &migration_mode,
  3179. compaction_retries))
  3180. goto retry;
  3181. /* Reclaim has failed us, start killing things */
  3182. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3183. if (page)
  3184. goto got_pg;
  3185. /* Retry as long as the OOM killer is making progress */
  3186. if (did_some_progress) {
  3187. no_progress_loops = 0;
  3188. goto retry;
  3189. }
  3190. noretry:
  3191. /*
  3192. * High-order allocations do not necessarily loop after direct reclaim
  3193. * and reclaim/compaction depends on compaction being called after
  3194. * reclaim so call directly if necessary.
  3195. * It can become very expensive to allocate transparent hugepages at
  3196. * fault, so use asynchronous memory compaction for THP unless it is
  3197. * khugepaged trying to collapse. All other requests should tolerate
  3198. * at least light sync migration.
  3199. */
  3200. if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
  3201. migration_mode = MIGRATE_ASYNC;
  3202. else
  3203. migration_mode = MIGRATE_SYNC_LIGHT;
  3204. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
  3205. ac, migration_mode,
  3206. &compact_result);
  3207. if (page)
  3208. goto got_pg;
  3209. nopage:
  3210. warn_alloc_failed(gfp_mask, order, NULL);
  3211. got_pg:
  3212. return page;
  3213. }
  3214. /*
  3215. * This is the 'heart' of the zoned buddy allocator.
  3216. */
  3217. struct page *
  3218. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  3219. struct zonelist *zonelist, nodemask_t *nodemask)
  3220. {
  3221. struct page *page;
  3222. unsigned int cpuset_mems_cookie;
  3223. unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
  3224. gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
  3225. struct alloc_context ac = {
  3226. .high_zoneidx = gfp_zone(gfp_mask),
  3227. .zonelist = zonelist,
  3228. .nodemask = nodemask,
  3229. .migratetype = gfpflags_to_migratetype(gfp_mask),
  3230. };
  3231. if (cpusets_enabled()) {
  3232. alloc_mask |= __GFP_HARDWALL;
  3233. alloc_flags |= ALLOC_CPUSET;
  3234. if (!ac.nodemask)
  3235. ac.nodemask = &cpuset_current_mems_allowed;
  3236. }
  3237. gfp_mask &= gfp_allowed_mask;
  3238. lockdep_trace_alloc(gfp_mask);
  3239. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3240. if (should_fail_alloc_page(gfp_mask, order))
  3241. return NULL;
  3242. /*
  3243. * Check the zones suitable for the gfp_mask contain at least one
  3244. * valid zone. It's possible to have an empty zonelist as a result
  3245. * of __GFP_THISNODE and a memoryless node
  3246. */
  3247. if (unlikely(!zonelist->_zonerefs->zone))
  3248. return NULL;
  3249. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  3250. alloc_flags |= ALLOC_CMA;
  3251. retry_cpuset:
  3252. cpuset_mems_cookie = read_mems_allowed_begin();
  3253. /* Dirty zone balancing only done in the fast path */
  3254. ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3255. /*
  3256. * The preferred zone is used for statistics but crucially it is
  3257. * also used as the starting point for the zonelist iterator. It
  3258. * may get reset for allocations that ignore memory policies.
  3259. */
  3260. ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
  3261. ac.high_zoneidx, ac.nodemask);
  3262. if (!ac.preferred_zoneref) {
  3263. page = NULL;
  3264. goto no_zone;
  3265. }
  3266. /* First allocation attempt */
  3267. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3268. if (likely(page))
  3269. goto out;
  3270. /*
  3271. * Runtime PM, block IO and its error handling path can deadlock
  3272. * because I/O on the device might not complete.
  3273. */
  3274. alloc_mask = memalloc_noio_flags(gfp_mask);
  3275. ac.spread_dirty_pages = false;
  3276. /*
  3277. * Restore the original nodemask if it was potentially replaced with
  3278. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3279. */
  3280. if (cpusets_enabled())
  3281. ac.nodemask = nodemask;
  3282. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3283. no_zone:
  3284. /*
  3285. * When updating a task's mems_allowed, it is possible to race with
  3286. * parallel threads in such a way that an allocation can fail while
  3287. * the mask is being updated. If a page allocation is about to fail,
  3288. * check if the cpuset changed during allocation and if so, retry.
  3289. */
  3290. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
  3291. alloc_mask = gfp_mask;
  3292. goto retry_cpuset;
  3293. }
  3294. out:
  3295. if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page) {
  3296. if (unlikely(memcg_kmem_charge(page, gfp_mask, order))) {
  3297. __free_pages(page, order);
  3298. page = NULL;
  3299. } else
  3300. __SetPageKmemcg(page);
  3301. }
  3302. if (kmemcheck_enabled && page)
  3303. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  3304. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3305. return page;
  3306. }
  3307. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3308. /*
  3309. * Common helper functions.
  3310. */
  3311. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3312. {
  3313. struct page *page;
  3314. /*
  3315. * __get_free_pages() returns a 32-bit address, which cannot represent
  3316. * a highmem page
  3317. */
  3318. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  3319. page = alloc_pages(gfp_mask, order);
  3320. if (!page)
  3321. return 0;
  3322. return (unsigned long) page_address(page);
  3323. }
  3324. EXPORT_SYMBOL(__get_free_pages);
  3325. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3326. {
  3327. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3328. }
  3329. EXPORT_SYMBOL(get_zeroed_page);
  3330. void __free_pages(struct page *page, unsigned int order)
  3331. {
  3332. if (put_page_testzero(page)) {
  3333. if (order == 0)
  3334. free_hot_cold_page(page, false);
  3335. else
  3336. __free_pages_ok(page, order);
  3337. }
  3338. }
  3339. EXPORT_SYMBOL(__free_pages);
  3340. void free_pages(unsigned long addr, unsigned int order)
  3341. {
  3342. if (addr != 0) {
  3343. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3344. __free_pages(virt_to_page((void *)addr), order);
  3345. }
  3346. }
  3347. EXPORT_SYMBOL(free_pages);
  3348. /*
  3349. * Page Fragment:
  3350. * An arbitrary-length arbitrary-offset area of memory which resides
  3351. * within a 0 or higher order page. Multiple fragments within that page
  3352. * are individually refcounted, in the page's reference counter.
  3353. *
  3354. * The page_frag functions below provide a simple allocation framework for
  3355. * page fragments. This is used by the network stack and network device
  3356. * drivers to provide a backing region of memory for use as either an
  3357. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3358. */
  3359. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  3360. gfp_t gfp_mask)
  3361. {
  3362. struct page *page = NULL;
  3363. gfp_t gfp = gfp_mask;
  3364. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3365. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3366. __GFP_NOMEMALLOC;
  3367. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3368. PAGE_FRAG_CACHE_MAX_ORDER);
  3369. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3370. #endif
  3371. if (unlikely(!page))
  3372. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3373. nc->va = page ? page_address(page) : NULL;
  3374. return page;
  3375. }
  3376. void *__alloc_page_frag(struct page_frag_cache *nc,
  3377. unsigned int fragsz, gfp_t gfp_mask)
  3378. {
  3379. unsigned int size = PAGE_SIZE;
  3380. struct page *page;
  3381. int offset;
  3382. if (unlikely(!nc->va)) {
  3383. refill:
  3384. page = __page_frag_refill(nc, gfp_mask);
  3385. if (!page)
  3386. return NULL;
  3387. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3388. /* if size can vary use size else just use PAGE_SIZE */
  3389. size = nc->size;
  3390. #endif
  3391. /* Even if we own the page, we do not use atomic_set().
  3392. * This would break get_page_unless_zero() users.
  3393. */
  3394. page_ref_add(page, size - 1);
  3395. /* reset page count bias and offset to start of new frag */
  3396. nc->pfmemalloc = page_is_pfmemalloc(page);
  3397. nc->pagecnt_bias = size;
  3398. nc->offset = size;
  3399. }
  3400. offset = nc->offset - fragsz;
  3401. if (unlikely(offset < 0)) {
  3402. page = virt_to_page(nc->va);
  3403. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3404. goto refill;
  3405. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3406. /* if size can vary use size else just use PAGE_SIZE */
  3407. size = nc->size;
  3408. #endif
  3409. /* OK, page count is 0, we can safely set it */
  3410. set_page_count(page, size);
  3411. /* reset page count bias and offset to start of new frag */
  3412. nc->pagecnt_bias = size;
  3413. offset = size - fragsz;
  3414. }
  3415. nc->pagecnt_bias--;
  3416. nc->offset = offset;
  3417. return nc->va + offset;
  3418. }
  3419. EXPORT_SYMBOL(__alloc_page_frag);
  3420. /*
  3421. * Frees a page fragment allocated out of either a compound or order 0 page.
  3422. */
  3423. void __free_page_frag(void *addr)
  3424. {
  3425. struct page *page = virt_to_head_page(addr);
  3426. if (unlikely(put_page_testzero(page)))
  3427. __free_pages_ok(page, compound_order(page));
  3428. }
  3429. EXPORT_SYMBOL(__free_page_frag);
  3430. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3431. size_t size)
  3432. {
  3433. if (addr) {
  3434. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3435. unsigned long used = addr + PAGE_ALIGN(size);
  3436. split_page(virt_to_page((void *)addr), order);
  3437. while (used < alloc_end) {
  3438. free_page(used);
  3439. used += PAGE_SIZE;
  3440. }
  3441. }
  3442. return (void *)addr;
  3443. }
  3444. /**
  3445. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3446. * @size: the number of bytes to allocate
  3447. * @gfp_mask: GFP flags for the allocation
  3448. *
  3449. * This function is similar to alloc_pages(), except that it allocates the
  3450. * minimum number of pages to satisfy the request. alloc_pages() can only
  3451. * allocate memory in power-of-two pages.
  3452. *
  3453. * This function is also limited by MAX_ORDER.
  3454. *
  3455. * Memory allocated by this function must be released by free_pages_exact().
  3456. */
  3457. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3458. {
  3459. unsigned int order = get_order(size);
  3460. unsigned long addr;
  3461. addr = __get_free_pages(gfp_mask, order);
  3462. return make_alloc_exact(addr, order, size);
  3463. }
  3464. EXPORT_SYMBOL(alloc_pages_exact);
  3465. /**
  3466. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3467. * pages on a node.
  3468. * @nid: the preferred node ID where memory should be allocated
  3469. * @size: the number of bytes to allocate
  3470. * @gfp_mask: GFP flags for the allocation
  3471. *
  3472. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3473. * back.
  3474. */
  3475. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3476. {
  3477. unsigned int order = get_order(size);
  3478. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3479. if (!p)
  3480. return NULL;
  3481. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3482. }
  3483. /**
  3484. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3485. * @virt: the value returned by alloc_pages_exact.
  3486. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3487. *
  3488. * Release the memory allocated by a previous call to alloc_pages_exact.
  3489. */
  3490. void free_pages_exact(void *virt, size_t size)
  3491. {
  3492. unsigned long addr = (unsigned long)virt;
  3493. unsigned long end = addr + PAGE_ALIGN(size);
  3494. while (addr < end) {
  3495. free_page(addr);
  3496. addr += PAGE_SIZE;
  3497. }
  3498. }
  3499. EXPORT_SYMBOL(free_pages_exact);
  3500. /**
  3501. * nr_free_zone_pages - count number of pages beyond high watermark
  3502. * @offset: The zone index of the highest zone
  3503. *
  3504. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3505. * high watermark within all zones at or below a given zone index. For each
  3506. * zone, the number of pages is calculated as:
  3507. * managed_pages - high_pages
  3508. */
  3509. static unsigned long nr_free_zone_pages(int offset)
  3510. {
  3511. struct zoneref *z;
  3512. struct zone *zone;
  3513. /* Just pick one node, since fallback list is circular */
  3514. unsigned long sum = 0;
  3515. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3516. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3517. unsigned long size = zone->managed_pages;
  3518. unsigned long high = high_wmark_pages(zone);
  3519. if (size > high)
  3520. sum += size - high;
  3521. }
  3522. return sum;
  3523. }
  3524. /**
  3525. * nr_free_buffer_pages - count number of pages beyond high watermark
  3526. *
  3527. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3528. * watermark within ZONE_DMA and ZONE_NORMAL.
  3529. */
  3530. unsigned long nr_free_buffer_pages(void)
  3531. {
  3532. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3533. }
  3534. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3535. /**
  3536. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3537. *
  3538. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3539. * high watermark within all zones.
  3540. */
  3541. unsigned long nr_free_pagecache_pages(void)
  3542. {
  3543. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3544. }
  3545. static inline void show_node(struct zone *zone)
  3546. {
  3547. if (IS_ENABLED(CONFIG_NUMA))
  3548. printk("Node %d ", zone_to_nid(zone));
  3549. }
  3550. long si_mem_available(void)
  3551. {
  3552. long available;
  3553. unsigned long pagecache;
  3554. unsigned long wmark_low = 0;
  3555. unsigned long pages[NR_LRU_LISTS];
  3556. struct zone *zone;
  3557. int lru;
  3558. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  3559. pages[lru] = global_page_state(NR_LRU_BASE + lru);
  3560. for_each_zone(zone)
  3561. wmark_low += zone->watermark[WMARK_LOW];
  3562. /*
  3563. * Estimate the amount of memory available for userspace allocations,
  3564. * without causing swapping.
  3565. */
  3566. available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
  3567. /*
  3568. * Not all the page cache can be freed, otherwise the system will
  3569. * start swapping. Assume at least half of the page cache, or the
  3570. * low watermark worth of cache, needs to stay.
  3571. */
  3572. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  3573. pagecache -= min(pagecache / 2, wmark_low);
  3574. available += pagecache;
  3575. /*
  3576. * Part of the reclaimable slab consists of items that are in use,
  3577. * and cannot be freed. Cap this estimate at the low watermark.
  3578. */
  3579. available += global_page_state(NR_SLAB_RECLAIMABLE) -
  3580. min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
  3581. if (available < 0)
  3582. available = 0;
  3583. return available;
  3584. }
  3585. EXPORT_SYMBOL_GPL(si_mem_available);
  3586. void si_meminfo(struct sysinfo *val)
  3587. {
  3588. val->totalram = totalram_pages;
  3589. val->sharedram = global_node_page_state(NR_SHMEM);
  3590. val->freeram = global_page_state(NR_FREE_PAGES);
  3591. val->bufferram = nr_blockdev_pages();
  3592. val->totalhigh = totalhigh_pages;
  3593. val->freehigh = nr_free_highpages();
  3594. val->mem_unit = PAGE_SIZE;
  3595. }
  3596. EXPORT_SYMBOL(si_meminfo);
  3597. #ifdef CONFIG_NUMA
  3598. void si_meminfo_node(struct sysinfo *val, int nid)
  3599. {
  3600. int zone_type; /* needs to be signed */
  3601. unsigned long managed_pages = 0;
  3602. unsigned long managed_highpages = 0;
  3603. unsigned long free_highpages = 0;
  3604. pg_data_t *pgdat = NODE_DATA(nid);
  3605. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3606. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3607. val->totalram = managed_pages;
  3608. val->sharedram = node_page_state(pgdat, NR_SHMEM);
  3609. val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
  3610. #ifdef CONFIG_HIGHMEM
  3611. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3612. struct zone *zone = &pgdat->node_zones[zone_type];
  3613. if (is_highmem(zone)) {
  3614. managed_highpages += zone->managed_pages;
  3615. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  3616. }
  3617. }
  3618. val->totalhigh = managed_highpages;
  3619. val->freehigh = free_highpages;
  3620. #else
  3621. val->totalhigh = managed_highpages;
  3622. val->freehigh = free_highpages;
  3623. #endif
  3624. val->mem_unit = PAGE_SIZE;
  3625. }
  3626. #endif
  3627. /*
  3628. * Determine whether the node should be displayed or not, depending on whether
  3629. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3630. */
  3631. bool skip_free_areas_node(unsigned int flags, int nid)
  3632. {
  3633. bool ret = false;
  3634. unsigned int cpuset_mems_cookie;
  3635. if (!(flags & SHOW_MEM_FILTER_NODES))
  3636. goto out;
  3637. do {
  3638. cpuset_mems_cookie = read_mems_allowed_begin();
  3639. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3640. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3641. out:
  3642. return ret;
  3643. }
  3644. #define K(x) ((x) << (PAGE_SHIFT-10))
  3645. static void show_migration_types(unsigned char type)
  3646. {
  3647. static const char types[MIGRATE_TYPES] = {
  3648. [MIGRATE_UNMOVABLE] = 'U',
  3649. [MIGRATE_MOVABLE] = 'M',
  3650. [MIGRATE_RECLAIMABLE] = 'E',
  3651. [MIGRATE_HIGHATOMIC] = 'H',
  3652. #ifdef CONFIG_CMA
  3653. [MIGRATE_CMA] = 'C',
  3654. #endif
  3655. #ifdef CONFIG_MEMORY_ISOLATION
  3656. [MIGRATE_ISOLATE] = 'I',
  3657. #endif
  3658. };
  3659. char tmp[MIGRATE_TYPES + 1];
  3660. char *p = tmp;
  3661. int i;
  3662. for (i = 0; i < MIGRATE_TYPES; i++) {
  3663. if (type & (1 << i))
  3664. *p++ = types[i];
  3665. }
  3666. *p = '\0';
  3667. printk("(%s) ", tmp);
  3668. }
  3669. /*
  3670. * Show free area list (used inside shift_scroll-lock stuff)
  3671. * We also calculate the percentage fragmentation. We do this by counting the
  3672. * memory on each free list with the exception of the first item on the list.
  3673. *
  3674. * Bits in @filter:
  3675. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3676. * cpuset.
  3677. */
  3678. void show_free_areas(unsigned int filter)
  3679. {
  3680. unsigned long free_pcp = 0;
  3681. int cpu;
  3682. struct zone *zone;
  3683. pg_data_t *pgdat;
  3684. for_each_populated_zone(zone) {
  3685. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3686. continue;
  3687. for_each_online_cpu(cpu)
  3688. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3689. }
  3690. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3691. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3692. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3693. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3694. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3695. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3696. global_node_page_state(NR_ACTIVE_ANON),
  3697. global_node_page_state(NR_INACTIVE_ANON),
  3698. global_node_page_state(NR_ISOLATED_ANON),
  3699. global_node_page_state(NR_ACTIVE_FILE),
  3700. global_node_page_state(NR_INACTIVE_FILE),
  3701. global_node_page_state(NR_ISOLATED_FILE),
  3702. global_node_page_state(NR_UNEVICTABLE),
  3703. global_node_page_state(NR_FILE_DIRTY),
  3704. global_node_page_state(NR_WRITEBACK),
  3705. global_node_page_state(NR_UNSTABLE_NFS),
  3706. global_page_state(NR_SLAB_RECLAIMABLE),
  3707. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3708. global_node_page_state(NR_FILE_MAPPED),
  3709. global_node_page_state(NR_SHMEM),
  3710. global_page_state(NR_PAGETABLE),
  3711. global_page_state(NR_BOUNCE),
  3712. global_page_state(NR_FREE_PAGES),
  3713. free_pcp,
  3714. global_page_state(NR_FREE_CMA_PAGES));
  3715. for_each_online_pgdat(pgdat) {
  3716. printk("Node %d"
  3717. " active_anon:%lukB"
  3718. " inactive_anon:%lukB"
  3719. " active_file:%lukB"
  3720. " inactive_file:%lukB"
  3721. " unevictable:%lukB"
  3722. " isolated(anon):%lukB"
  3723. " isolated(file):%lukB"
  3724. " mapped:%lukB"
  3725. " dirty:%lukB"
  3726. " writeback:%lukB"
  3727. " shmem:%lukB"
  3728. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3729. " shmem_thp: %lukB"
  3730. " shmem_pmdmapped: %lukB"
  3731. " anon_thp: %lukB"
  3732. #endif
  3733. " writeback_tmp:%lukB"
  3734. " unstable:%lukB"
  3735. " all_unreclaimable? %s"
  3736. "\n",
  3737. pgdat->node_id,
  3738. K(node_page_state(pgdat, NR_ACTIVE_ANON)),
  3739. K(node_page_state(pgdat, NR_INACTIVE_ANON)),
  3740. K(node_page_state(pgdat, NR_ACTIVE_FILE)),
  3741. K(node_page_state(pgdat, NR_INACTIVE_FILE)),
  3742. K(node_page_state(pgdat, NR_UNEVICTABLE)),
  3743. K(node_page_state(pgdat, NR_ISOLATED_ANON)),
  3744. K(node_page_state(pgdat, NR_ISOLATED_FILE)),
  3745. K(node_page_state(pgdat, NR_FILE_MAPPED)),
  3746. K(node_page_state(pgdat, NR_FILE_DIRTY)),
  3747. K(node_page_state(pgdat, NR_WRITEBACK)),
  3748. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3749. K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
  3750. K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
  3751. * HPAGE_PMD_NR),
  3752. K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
  3753. #endif
  3754. K(node_page_state(pgdat, NR_SHMEM)),
  3755. K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
  3756. K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
  3757. !pgdat_reclaimable(pgdat) ? "yes" : "no");
  3758. }
  3759. for_each_populated_zone(zone) {
  3760. int i;
  3761. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3762. continue;
  3763. free_pcp = 0;
  3764. for_each_online_cpu(cpu)
  3765. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3766. show_node(zone);
  3767. printk("%s"
  3768. " free:%lukB"
  3769. " min:%lukB"
  3770. " low:%lukB"
  3771. " high:%lukB"
  3772. " present:%lukB"
  3773. " managed:%lukB"
  3774. " mlocked:%lukB"
  3775. " slab_reclaimable:%lukB"
  3776. " slab_unreclaimable:%lukB"
  3777. " kernel_stack:%lukB"
  3778. " pagetables:%lukB"
  3779. " bounce:%lukB"
  3780. " free_pcp:%lukB"
  3781. " local_pcp:%ukB"
  3782. " free_cma:%lukB"
  3783. " node_pages_scanned:%lu"
  3784. "\n",
  3785. zone->name,
  3786. K(zone_page_state(zone, NR_FREE_PAGES)),
  3787. K(min_wmark_pages(zone)),
  3788. K(low_wmark_pages(zone)),
  3789. K(high_wmark_pages(zone)),
  3790. K(zone->present_pages),
  3791. K(zone->managed_pages),
  3792. K(zone_page_state(zone, NR_MLOCK)),
  3793. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3794. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3795. zone_page_state(zone, NR_KERNEL_STACK) *
  3796. THREAD_SIZE / 1024,
  3797. K(zone_page_state(zone, NR_PAGETABLE)),
  3798. K(zone_page_state(zone, NR_BOUNCE)),
  3799. K(free_pcp),
  3800. K(this_cpu_read(zone->pageset->pcp.count)),
  3801. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  3802. K(node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED)));
  3803. printk("lowmem_reserve[]:");
  3804. for (i = 0; i < MAX_NR_ZONES; i++)
  3805. printk(" %ld", zone->lowmem_reserve[i]);
  3806. printk("\n");
  3807. }
  3808. for_each_populated_zone(zone) {
  3809. unsigned int order;
  3810. unsigned long nr[MAX_ORDER], flags, total = 0;
  3811. unsigned char types[MAX_ORDER];
  3812. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3813. continue;
  3814. show_node(zone);
  3815. printk("%s: ", zone->name);
  3816. spin_lock_irqsave(&zone->lock, flags);
  3817. for (order = 0; order < MAX_ORDER; order++) {
  3818. struct free_area *area = &zone->free_area[order];
  3819. int type;
  3820. nr[order] = area->nr_free;
  3821. total += nr[order] << order;
  3822. types[order] = 0;
  3823. for (type = 0; type < MIGRATE_TYPES; type++) {
  3824. if (!list_empty(&area->free_list[type]))
  3825. types[order] |= 1 << type;
  3826. }
  3827. }
  3828. spin_unlock_irqrestore(&zone->lock, flags);
  3829. for (order = 0; order < MAX_ORDER; order++) {
  3830. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  3831. if (nr[order])
  3832. show_migration_types(types[order]);
  3833. }
  3834. printk("= %lukB\n", K(total));
  3835. }
  3836. hugetlb_show_meminfo();
  3837. printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
  3838. show_swap_cache_info();
  3839. }
  3840. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3841. {
  3842. zoneref->zone = zone;
  3843. zoneref->zone_idx = zone_idx(zone);
  3844. }
  3845. /*
  3846. * Builds allocation fallback zone lists.
  3847. *
  3848. * Add all populated zones of a node to the zonelist.
  3849. */
  3850. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  3851. int nr_zones)
  3852. {
  3853. struct zone *zone;
  3854. enum zone_type zone_type = MAX_NR_ZONES;
  3855. do {
  3856. zone_type--;
  3857. zone = pgdat->node_zones + zone_type;
  3858. if (populated_zone(zone)) {
  3859. zoneref_set_zone(zone,
  3860. &zonelist->_zonerefs[nr_zones++]);
  3861. check_highest_zone(zone_type);
  3862. }
  3863. } while (zone_type);
  3864. return nr_zones;
  3865. }
  3866. /*
  3867. * zonelist_order:
  3868. * 0 = automatic detection of better ordering.
  3869. * 1 = order by ([node] distance, -zonetype)
  3870. * 2 = order by (-zonetype, [node] distance)
  3871. *
  3872. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  3873. * the same zonelist. So only NUMA can configure this param.
  3874. */
  3875. #define ZONELIST_ORDER_DEFAULT 0
  3876. #define ZONELIST_ORDER_NODE 1
  3877. #define ZONELIST_ORDER_ZONE 2
  3878. /* zonelist order in the kernel.
  3879. * set_zonelist_order() will set this to NODE or ZONE.
  3880. */
  3881. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3882. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  3883. #ifdef CONFIG_NUMA
  3884. /* The value user specified ....changed by config */
  3885. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3886. /* string for sysctl */
  3887. #define NUMA_ZONELIST_ORDER_LEN 16
  3888. char numa_zonelist_order[16] = "default";
  3889. /*
  3890. * interface for configure zonelist ordering.
  3891. * command line option "numa_zonelist_order"
  3892. * = "[dD]efault - default, automatic configuration.
  3893. * = "[nN]ode - order by node locality, then by zone within node
  3894. * = "[zZ]one - order by zone, then by locality within zone
  3895. */
  3896. static int __parse_numa_zonelist_order(char *s)
  3897. {
  3898. if (*s == 'd' || *s == 'D') {
  3899. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3900. } else if (*s == 'n' || *s == 'N') {
  3901. user_zonelist_order = ZONELIST_ORDER_NODE;
  3902. } else if (*s == 'z' || *s == 'Z') {
  3903. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3904. } else {
  3905. pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
  3906. return -EINVAL;
  3907. }
  3908. return 0;
  3909. }
  3910. static __init int setup_numa_zonelist_order(char *s)
  3911. {
  3912. int ret;
  3913. if (!s)
  3914. return 0;
  3915. ret = __parse_numa_zonelist_order(s);
  3916. if (ret == 0)
  3917. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3918. return ret;
  3919. }
  3920. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3921. /*
  3922. * sysctl handler for numa_zonelist_order
  3923. */
  3924. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3925. void __user *buffer, size_t *length,
  3926. loff_t *ppos)
  3927. {
  3928. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3929. int ret;
  3930. static DEFINE_MUTEX(zl_order_mutex);
  3931. mutex_lock(&zl_order_mutex);
  3932. if (write) {
  3933. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3934. ret = -EINVAL;
  3935. goto out;
  3936. }
  3937. strcpy(saved_string, (char *)table->data);
  3938. }
  3939. ret = proc_dostring(table, write, buffer, length, ppos);
  3940. if (ret)
  3941. goto out;
  3942. if (write) {
  3943. int oldval = user_zonelist_order;
  3944. ret = __parse_numa_zonelist_order((char *)table->data);
  3945. if (ret) {
  3946. /*
  3947. * bogus value. restore saved string
  3948. */
  3949. strncpy((char *)table->data, saved_string,
  3950. NUMA_ZONELIST_ORDER_LEN);
  3951. user_zonelist_order = oldval;
  3952. } else if (oldval != user_zonelist_order) {
  3953. mutex_lock(&zonelists_mutex);
  3954. build_all_zonelists(NULL, NULL);
  3955. mutex_unlock(&zonelists_mutex);
  3956. }
  3957. }
  3958. out:
  3959. mutex_unlock(&zl_order_mutex);
  3960. return ret;
  3961. }
  3962. #define MAX_NODE_LOAD (nr_online_nodes)
  3963. static int node_load[MAX_NUMNODES];
  3964. /**
  3965. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3966. * @node: node whose fallback list we're appending
  3967. * @used_node_mask: nodemask_t of already used nodes
  3968. *
  3969. * We use a number of factors to determine which is the next node that should
  3970. * appear on a given node's fallback list. The node should not have appeared
  3971. * already in @node's fallback list, and it should be the next closest node
  3972. * according to the distance array (which contains arbitrary distance values
  3973. * from each node to each node in the system), and should also prefer nodes
  3974. * with no CPUs, since presumably they'll have very little allocation pressure
  3975. * on them otherwise.
  3976. * It returns -1 if no node is found.
  3977. */
  3978. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3979. {
  3980. int n, val;
  3981. int min_val = INT_MAX;
  3982. int best_node = NUMA_NO_NODE;
  3983. const struct cpumask *tmp = cpumask_of_node(0);
  3984. /* Use the local node if we haven't already */
  3985. if (!node_isset(node, *used_node_mask)) {
  3986. node_set(node, *used_node_mask);
  3987. return node;
  3988. }
  3989. for_each_node_state(n, N_MEMORY) {
  3990. /* Don't want a node to appear more than once */
  3991. if (node_isset(n, *used_node_mask))
  3992. continue;
  3993. /* Use the distance array to find the distance */
  3994. val = node_distance(node, n);
  3995. /* Penalize nodes under us ("prefer the next node") */
  3996. val += (n < node);
  3997. /* Give preference to headless and unused nodes */
  3998. tmp = cpumask_of_node(n);
  3999. if (!cpumask_empty(tmp))
  4000. val += PENALTY_FOR_NODE_WITH_CPUS;
  4001. /* Slight preference for less loaded node */
  4002. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  4003. val += node_load[n];
  4004. if (val < min_val) {
  4005. min_val = val;
  4006. best_node = n;
  4007. }
  4008. }
  4009. if (best_node >= 0)
  4010. node_set(best_node, *used_node_mask);
  4011. return best_node;
  4012. }
  4013. /*
  4014. * Build zonelists ordered by node and zones within node.
  4015. * This results in maximum locality--normal zone overflows into local
  4016. * DMA zone, if any--but risks exhausting DMA zone.
  4017. */
  4018. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  4019. {
  4020. int j;
  4021. struct zonelist *zonelist;
  4022. zonelist = &pgdat->node_zonelists[0];
  4023. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  4024. ;
  4025. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4026. zonelist->_zonerefs[j].zone = NULL;
  4027. zonelist->_zonerefs[j].zone_idx = 0;
  4028. }
  4029. /*
  4030. * Build gfp_thisnode zonelists
  4031. */
  4032. static void build_thisnode_zonelists(pg_data_t *pgdat)
  4033. {
  4034. int j;
  4035. struct zonelist *zonelist;
  4036. zonelist = &pgdat->node_zonelists[1];
  4037. j = build_zonelists_node(pgdat, zonelist, 0);
  4038. zonelist->_zonerefs[j].zone = NULL;
  4039. zonelist->_zonerefs[j].zone_idx = 0;
  4040. }
  4041. /*
  4042. * Build zonelists ordered by zone and nodes within zones.
  4043. * This results in conserving DMA zone[s] until all Normal memory is
  4044. * exhausted, but results in overflowing to remote node while memory
  4045. * may still exist in local DMA zone.
  4046. */
  4047. static int node_order[MAX_NUMNODES];
  4048. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  4049. {
  4050. int pos, j, node;
  4051. int zone_type; /* needs to be signed */
  4052. struct zone *z;
  4053. struct zonelist *zonelist;
  4054. zonelist = &pgdat->node_zonelists[0];
  4055. pos = 0;
  4056. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  4057. for (j = 0; j < nr_nodes; j++) {
  4058. node = node_order[j];
  4059. z = &NODE_DATA(node)->node_zones[zone_type];
  4060. if (populated_zone(z)) {
  4061. zoneref_set_zone(z,
  4062. &zonelist->_zonerefs[pos++]);
  4063. check_highest_zone(zone_type);
  4064. }
  4065. }
  4066. }
  4067. zonelist->_zonerefs[pos].zone = NULL;
  4068. zonelist->_zonerefs[pos].zone_idx = 0;
  4069. }
  4070. #if defined(CONFIG_64BIT)
  4071. /*
  4072. * Devices that require DMA32/DMA are relatively rare and do not justify a
  4073. * penalty to every machine in case the specialised case applies. Default
  4074. * to Node-ordering on 64-bit NUMA machines
  4075. */
  4076. static int default_zonelist_order(void)
  4077. {
  4078. return ZONELIST_ORDER_NODE;
  4079. }
  4080. #else
  4081. /*
  4082. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  4083. * by the kernel. If processes running on node 0 deplete the low memory zone
  4084. * then reclaim will occur more frequency increasing stalls and potentially
  4085. * be easier to OOM if a large percentage of the zone is under writeback or
  4086. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  4087. * Hence, default to zone ordering on 32-bit.
  4088. */
  4089. static int default_zonelist_order(void)
  4090. {
  4091. return ZONELIST_ORDER_ZONE;
  4092. }
  4093. #endif /* CONFIG_64BIT */
  4094. static void set_zonelist_order(void)
  4095. {
  4096. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  4097. current_zonelist_order = default_zonelist_order();
  4098. else
  4099. current_zonelist_order = user_zonelist_order;
  4100. }
  4101. static void build_zonelists(pg_data_t *pgdat)
  4102. {
  4103. int i, node, load;
  4104. nodemask_t used_mask;
  4105. int local_node, prev_node;
  4106. struct zonelist *zonelist;
  4107. unsigned int order = current_zonelist_order;
  4108. /* initialize zonelists */
  4109. for (i = 0; i < MAX_ZONELISTS; i++) {
  4110. zonelist = pgdat->node_zonelists + i;
  4111. zonelist->_zonerefs[0].zone = NULL;
  4112. zonelist->_zonerefs[0].zone_idx = 0;
  4113. }
  4114. /* NUMA-aware ordering of nodes */
  4115. local_node = pgdat->node_id;
  4116. load = nr_online_nodes;
  4117. prev_node = local_node;
  4118. nodes_clear(used_mask);
  4119. memset(node_order, 0, sizeof(node_order));
  4120. i = 0;
  4121. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4122. /*
  4123. * We don't want to pressure a particular node.
  4124. * So adding penalty to the first node in same
  4125. * distance group to make it round-robin.
  4126. */
  4127. if (node_distance(local_node, node) !=
  4128. node_distance(local_node, prev_node))
  4129. node_load[node] = load;
  4130. prev_node = node;
  4131. load--;
  4132. if (order == ZONELIST_ORDER_NODE)
  4133. build_zonelists_in_node_order(pgdat, node);
  4134. else
  4135. node_order[i++] = node; /* remember order */
  4136. }
  4137. if (order == ZONELIST_ORDER_ZONE) {
  4138. /* calculate node order -- i.e., DMA last! */
  4139. build_zonelists_in_zone_order(pgdat, i);
  4140. }
  4141. build_thisnode_zonelists(pgdat);
  4142. }
  4143. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4144. /*
  4145. * Return node id of node used for "local" allocations.
  4146. * I.e., first node id of first zone in arg node's generic zonelist.
  4147. * Used for initializing percpu 'numa_mem', which is used primarily
  4148. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4149. */
  4150. int local_memory_node(int node)
  4151. {
  4152. struct zoneref *z;
  4153. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4154. gfp_zone(GFP_KERNEL),
  4155. NULL);
  4156. return z->zone->node;
  4157. }
  4158. #endif
  4159. #else /* CONFIG_NUMA */
  4160. static void set_zonelist_order(void)
  4161. {
  4162. current_zonelist_order = ZONELIST_ORDER_ZONE;
  4163. }
  4164. static void build_zonelists(pg_data_t *pgdat)
  4165. {
  4166. int node, local_node;
  4167. enum zone_type j;
  4168. struct zonelist *zonelist;
  4169. local_node = pgdat->node_id;
  4170. zonelist = &pgdat->node_zonelists[0];
  4171. j = build_zonelists_node(pgdat, zonelist, 0);
  4172. /*
  4173. * Now we build the zonelist so that it contains the zones
  4174. * of all the other nodes.
  4175. * We don't want to pressure a particular node, so when
  4176. * building the zones for node N, we make sure that the
  4177. * zones coming right after the local ones are those from
  4178. * node N+1 (modulo N)
  4179. */
  4180. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4181. if (!node_online(node))
  4182. continue;
  4183. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4184. }
  4185. for (node = 0; node < local_node; node++) {
  4186. if (!node_online(node))
  4187. continue;
  4188. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4189. }
  4190. zonelist->_zonerefs[j].zone = NULL;
  4191. zonelist->_zonerefs[j].zone_idx = 0;
  4192. }
  4193. #endif /* CONFIG_NUMA */
  4194. /*
  4195. * Boot pageset table. One per cpu which is going to be used for all
  4196. * zones and all nodes. The parameters will be set in such a way
  4197. * that an item put on a list will immediately be handed over to
  4198. * the buddy list. This is safe since pageset manipulation is done
  4199. * with interrupts disabled.
  4200. *
  4201. * The boot_pagesets must be kept even after bootup is complete for
  4202. * unused processors and/or zones. They do play a role for bootstrapping
  4203. * hotplugged processors.
  4204. *
  4205. * zoneinfo_show() and maybe other functions do
  4206. * not check if the processor is online before following the pageset pointer.
  4207. * Other parts of the kernel may not check if the zone is available.
  4208. */
  4209. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4210. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4211. static void setup_zone_pageset(struct zone *zone);
  4212. /*
  4213. * Global mutex to protect against size modification of zonelists
  4214. * as well as to serialize pageset setup for the new populated zone.
  4215. */
  4216. DEFINE_MUTEX(zonelists_mutex);
  4217. /* return values int ....just for stop_machine() */
  4218. static int __build_all_zonelists(void *data)
  4219. {
  4220. int nid;
  4221. int cpu;
  4222. pg_data_t *self = data;
  4223. #ifdef CONFIG_NUMA
  4224. memset(node_load, 0, sizeof(node_load));
  4225. #endif
  4226. if (self && !node_online(self->node_id)) {
  4227. build_zonelists(self);
  4228. }
  4229. for_each_online_node(nid) {
  4230. pg_data_t *pgdat = NODE_DATA(nid);
  4231. build_zonelists(pgdat);
  4232. }
  4233. /*
  4234. * Initialize the boot_pagesets that are going to be used
  4235. * for bootstrapping processors. The real pagesets for
  4236. * each zone will be allocated later when the per cpu
  4237. * allocator is available.
  4238. *
  4239. * boot_pagesets are used also for bootstrapping offline
  4240. * cpus if the system is already booted because the pagesets
  4241. * are needed to initialize allocators on a specific cpu too.
  4242. * F.e. the percpu allocator needs the page allocator which
  4243. * needs the percpu allocator in order to allocate its pagesets
  4244. * (a chicken-egg dilemma).
  4245. */
  4246. for_each_possible_cpu(cpu) {
  4247. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4248. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4249. /*
  4250. * We now know the "local memory node" for each node--
  4251. * i.e., the node of the first zone in the generic zonelist.
  4252. * Set up numa_mem percpu variable for on-line cpus. During
  4253. * boot, only the boot cpu should be on-line; we'll init the
  4254. * secondary cpus' numa_mem as they come on-line. During
  4255. * node/memory hotplug, we'll fixup all on-line cpus.
  4256. */
  4257. if (cpu_online(cpu))
  4258. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4259. #endif
  4260. }
  4261. return 0;
  4262. }
  4263. static noinline void __init
  4264. build_all_zonelists_init(void)
  4265. {
  4266. __build_all_zonelists(NULL);
  4267. mminit_verify_zonelist();
  4268. cpuset_init_current_mems_allowed();
  4269. }
  4270. /*
  4271. * Called with zonelists_mutex held always
  4272. * unless system_state == SYSTEM_BOOTING.
  4273. *
  4274. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  4275. * [we're only called with non-NULL zone through __meminit paths] and
  4276. * (2) call of __init annotated helper build_all_zonelists_init
  4277. * [protected by SYSTEM_BOOTING].
  4278. */
  4279. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  4280. {
  4281. set_zonelist_order();
  4282. if (system_state == SYSTEM_BOOTING) {
  4283. build_all_zonelists_init();
  4284. } else {
  4285. #ifdef CONFIG_MEMORY_HOTPLUG
  4286. if (zone)
  4287. setup_zone_pageset(zone);
  4288. #endif
  4289. /* we have to stop all cpus to guarantee there is no user
  4290. of zonelist */
  4291. stop_machine(__build_all_zonelists, pgdat, NULL);
  4292. /* cpuset refresh routine should be here */
  4293. }
  4294. vm_total_pages = nr_free_pagecache_pages();
  4295. /*
  4296. * Disable grouping by mobility if the number of pages in the
  4297. * system is too low to allow the mechanism to work. It would be
  4298. * more accurate, but expensive to check per-zone. This check is
  4299. * made on memory-hotadd so a system can start with mobility
  4300. * disabled and enable it later
  4301. */
  4302. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4303. page_group_by_mobility_disabled = 1;
  4304. else
  4305. page_group_by_mobility_disabled = 0;
  4306. pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
  4307. nr_online_nodes,
  4308. zonelist_order_name[current_zonelist_order],
  4309. page_group_by_mobility_disabled ? "off" : "on",
  4310. vm_total_pages);
  4311. #ifdef CONFIG_NUMA
  4312. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4313. #endif
  4314. }
  4315. /*
  4316. * Helper functions to size the waitqueue hash table.
  4317. * Essentially these want to choose hash table sizes sufficiently
  4318. * large so that collisions trying to wait on pages are rare.
  4319. * But in fact, the number of active page waitqueues on typical
  4320. * systems is ridiculously low, less than 200. So this is even
  4321. * conservative, even though it seems large.
  4322. *
  4323. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  4324. * waitqueues, i.e. the size of the waitq table given the number of pages.
  4325. */
  4326. #define PAGES_PER_WAITQUEUE 256
  4327. #ifndef CONFIG_MEMORY_HOTPLUG
  4328. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  4329. {
  4330. unsigned long size = 1;
  4331. pages /= PAGES_PER_WAITQUEUE;
  4332. while (size < pages)
  4333. size <<= 1;
  4334. /*
  4335. * Once we have dozens or even hundreds of threads sleeping
  4336. * on IO we've got bigger problems than wait queue collision.
  4337. * Limit the size of the wait table to a reasonable size.
  4338. */
  4339. size = min(size, 4096UL);
  4340. return max(size, 4UL);
  4341. }
  4342. #else
  4343. /*
  4344. * A zone's size might be changed by hot-add, so it is not possible to determine
  4345. * a suitable size for its wait_table. So we use the maximum size now.
  4346. *
  4347. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  4348. *
  4349. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  4350. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  4351. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  4352. *
  4353. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  4354. * or more by the traditional way. (See above). It equals:
  4355. *
  4356. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  4357. * ia64(16K page size) : = ( 8G + 4M)byte.
  4358. * powerpc (64K page size) : = (32G +16M)byte.
  4359. */
  4360. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  4361. {
  4362. return 4096UL;
  4363. }
  4364. #endif
  4365. /*
  4366. * This is an integer logarithm so that shifts can be used later
  4367. * to extract the more random high bits from the multiplicative
  4368. * hash function before the remainder is taken.
  4369. */
  4370. static inline unsigned long wait_table_bits(unsigned long size)
  4371. {
  4372. return ffz(~size);
  4373. }
  4374. /*
  4375. * Initially all pages are reserved - free ones are freed
  4376. * up by free_all_bootmem() once the early boot process is
  4377. * done. Non-atomic initialization, single-pass.
  4378. */
  4379. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4380. unsigned long start_pfn, enum memmap_context context)
  4381. {
  4382. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  4383. unsigned long end_pfn = start_pfn + size;
  4384. pg_data_t *pgdat = NODE_DATA(nid);
  4385. unsigned long pfn;
  4386. unsigned long nr_initialised = 0;
  4387. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4388. struct memblock_region *r = NULL, *tmp;
  4389. #endif
  4390. if (highest_memmap_pfn < end_pfn - 1)
  4391. highest_memmap_pfn = end_pfn - 1;
  4392. /*
  4393. * Honor reservation requested by the driver for this ZONE_DEVICE
  4394. * memory
  4395. */
  4396. if (altmap && start_pfn == altmap->base_pfn)
  4397. start_pfn += altmap->reserve;
  4398. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4399. /*
  4400. * There can be holes in boot-time mem_map[]s handed to this
  4401. * function. They do not exist on hotplugged memory.
  4402. */
  4403. if (context != MEMMAP_EARLY)
  4404. goto not_early;
  4405. if (!early_pfn_valid(pfn))
  4406. continue;
  4407. if (!early_pfn_in_nid(pfn, nid))
  4408. continue;
  4409. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4410. break;
  4411. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4412. /*
  4413. * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
  4414. * from zone_movable_pfn[nid] to end of each node should be
  4415. * ZONE_MOVABLE not ZONE_NORMAL. skip it.
  4416. */
  4417. if (!mirrored_kernelcore && zone_movable_pfn[nid])
  4418. if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
  4419. continue;
  4420. /*
  4421. * Check given memblock attribute by firmware which can affect
  4422. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4423. * mirrored, it's an overlapped memmap init. skip it.
  4424. */
  4425. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4426. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4427. for_each_memblock(memory, tmp)
  4428. if (pfn < memblock_region_memory_end_pfn(tmp))
  4429. break;
  4430. r = tmp;
  4431. }
  4432. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4433. memblock_is_mirror(r)) {
  4434. /* already initialized as NORMAL */
  4435. pfn = memblock_region_memory_end_pfn(r);
  4436. continue;
  4437. }
  4438. }
  4439. #endif
  4440. not_early:
  4441. /*
  4442. * Mark the block movable so that blocks are reserved for
  4443. * movable at startup. This will force kernel allocations
  4444. * to reserve their blocks rather than leaking throughout
  4445. * the address space during boot when many long-lived
  4446. * kernel allocations are made.
  4447. *
  4448. * bitmap is created for zone's valid pfn range. but memmap
  4449. * can be created for invalid pages (for alignment)
  4450. * check here not to call set_pageblock_migratetype() against
  4451. * pfn out of zone.
  4452. */
  4453. if (!(pfn & (pageblock_nr_pages - 1))) {
  4454. struct page *page = pfn_to_page(pfn);
  4455. __init_single_page(page, pfn, zone, nid);
  4456. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4457. } else {
  4458. __init_single_pfn(pfn, zone, nid);
  4459. }
  4460. }
  4461. }
  4462. static void __meminit zone_init_free_lists(struct zone *zone)
  4463. {
  4464. unsigned int order, t;
  4465. for_each_migratetype_order(order, t) {
  4466. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4467. zone->free_area[order].nr_free = 0;
  4468. }
  4469. }
  4470. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4471. #define memmap_init(size, nid, zone, start_pfn) \
  4472. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4473. #endif
  4474. static int zone_batchsize(struct zone *zone)
  4475. {
  4476. #ifdef CONFIG_MMU
  4477. int batch;
  4478. /*
  4479. * The per-cpu-pages pools are set to around 1000th of the
  4480. * size of the zone. But no more than 1/2 of a meg.
  4481. *
  4482. * OK, so we don't know how big the cache is. So guess.
  4483. */
  4484. batch = zone->managed_pages / 1024;
  4485. if (batch * PAGE_SIZE > 512 * 1024)
  4486. batch = (512 * 1024) / PAGE_SIZE;
  4487. batch /= 4; /* We effectively *= 4 below */
  4488. if (batch < 1)
  4489. batch = 1;
  4490. /*
  4491. * Clamp the batch to a 2^n - 1 value. Having a power
  4492. * of 2 value was found to be more likely to have
  4493. * suboptimal cache aliasing properties in some cases.
  4494. *
  4495. * For example if 2 tasks are alternately allocating
  4496. * batches of pages, one task can end up with a lot
  4497. * of pages of one half of the possible page colors
  4498. * and the other with pages of the other colors.
  4499. */
  4500. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4501. return batch;
  4502. #else
  4503. /* The deferral and batching of frees should be suppressed under NOMMU
  4504. * conditions.
  4505. *
  4506. * The problem is that NOMMU needs to be able to allocate large chunks
  4507. * of contiguous memory as there's no hardware page translation to
  4508. * assemble apparent contiguous memory from discontiguous pages.
  4509. *
  4510. * Queueing large contiguous runs of pages for batching, however,
  4511. * causes the pages to actually be freed in smaller chunks. As there
  4512. * can be a significant delay between the individual batches being
  4513. * recycled, this leads to the once large chunks of space being
  4514. * fragmented and becoming unavailable for high-order allocations.
  4515. */
  4516. return 0;
  4517. #endif
  4518. }
  4519. /*
  4520. * pcp->high and pcp->batch values are related and dependent on one another:
  4521. * ->batch must never be higher then ->high.
  4522. * The following function updates them in a safe manner without read side
  4523. * locking.
  4524. *
  4525. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4526. * those fields changing asynchronously (acording the the above rule).
  4527. *
  4528. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4529. * outside of boot time (or some other assurance that no concurrent updaters
  4530. * exist).
  4531. */
  4532. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4533. unsigned long batch)
  4534. {
  4535. /* start with a fail safe value for batch */
  4536. pcp->batch = 1;
  4537. smp_wmb();
  4538. /* Update high, then batch, in order */
  4539. pcp->high = high;
  4540. smp_wmb();
  4541. pcp->batch = batch;
  4542. }
  4543. /* a companion to pageset_set_high() */
  4544. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4545. {
  4546. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4547. }
  4548. static void pageset_init(struct per_cpu_pageset *p)
  4549. {
  4550. struct per_cpu_pages *pcp;
  4551. int migratetype;
  4552. memset(p, 0, sizeof(*p));
  4553. pcp = &p->pcp;
  4554. pcp->count = 0;
  4555. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4556. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4557. }
  4558. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4559. {
  4560. pageset_init(p);
  4561. pageset_set_batch(p, batch);
  4562. }
  4563. /*
  4564. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4565. * to the value high for the pageset p.
  4566. */
  4567. static void pageset_set_high(struct per_cpu_pageset *p,
  4568. unsigned long high)
  4569. {
  4570. unsigned long batch = max(1UL, high / 4);
  4571. if ((high / 4) > (PAGE_SHIFT * 8))
  4572. batch = PAGE_SHIFT * 8;
  4573. pageset_update(&p->pcp, high, batch);
  4574. }
  4575. static void pageset_set_high_and_batch(struct zone *zone,
  4576. struct per_cpu_pageset *pcp)
  4577. {
  4578. if (percpu_pagelist_fraction)
  4579. pageset_set_high(pcp,
  4580. (zone->managed_pages /
  4581. percpu_pagelist_fraction));
  4582. else
  4583. pageset_set_batch(pcp, zone_batchsize(zone));
  4584. }
  4585. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4586. {
  4587. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4588. pageset_init(pcp);
  4589. pageset_set_high_and_batch(zone, pcp);
  4590. }
  4591. static void __meminit setup_zone_pageset(struct zone *zone)
  4592. {
  4593. int cpu;
  4594. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4595. for_each_possible_cpu(cpu)
  4596. zone_pageset_init(zone, cpu);
  4597. if (!zone->zone_pgdat->per_cpu_nodestats) {
  4598. zone->zone_pgdat->per_cpu_nodestats =
  4599. alloc_percpu(struct per_cpu_nodestat);
  4600. }
  4601. }
  4602. /*
  4603. * Allocate per cpu pagesets and initialize them.
  4604. * Before this call only boot pagesets were available.
  4605. */
  4606. void __init setup_per_cpu_pageset(void)
  4607. {
  4608. struct zone *zone;
  4609. for_each_populated_zone(zone)
  4610. setup_zone_pageset(zone);
  4611. }
  4612. static noinline __init_refok
  4613. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  4614. {
  4615. int i;
  4616. size_t alloc_size;
  4617. /*
  4618. * The per-page waitqueue mechanism uses hashed waitqueues
  4619. * per zone.
  4620. */
  4621. zone->wait_table_hash_nr_entries =
  4622. wait_table_hash_nr_entries(zone_size_pages);
  4623. zone->wait_table_bits =
  4624. wait_table_bits(zone->wait_table_hash_nr_entries);
  4625. alloc_size = zone->wait_table_hash_nr_entries
  4626. * sizeof(wait_queue_head_t);
  4627. if (!slab_is_available()) {
  4628. zone->wait_table = (wait_queue_head_t *)
  4629. memblock_virt_alloc_node_nopanic(
  4630. alloc_size, zone->zone_pgdat->node_id);
  4631. } else {
  4632. /*
  4633. * This case means that a zone whose size was 0 gets new memory
  4634. * via memory hot-add.
  4635. * But it may be the case that a new node was hot-added. In
  4636. * this case vmalloc() will not be able to use this new node's
  4637. * memory - this wait_table must be initialized to use this new
  4638. * node itself as well.
  4639. * To use this new node's memory, further consideration will be
  4640. * necessary.
  4641. */
  4642. zone->wait_table = vmalloc(alloc_size);
  4643. }
  4644. if (!zone->wait_table)
  4645. return -ENOMEM;
  4646. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  4647. init_waitqueue_head(zone->wait_table + i);
  4648. return 0;
  4649. }
  4650. static __meminit void zone_pcp_init(struct zone *zone)
  4651. {
  4652. /*
  4653. * per cpu subsystem is not up at this point. The following code
  4654. * relies on the ability of the linker to provide the
  4655. * offset of a (static) per cpu variable into the per cpu area.
  4656. */
  4657. zone->pageset = &boot_pageset;
  4658. if (populated_zone(zone))
  4659. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4660. zone->name, zone->present_pages,
  4661. zone_batchsize(zone));
  4662. }
  4663. int __meminit init_currently_empty_zone(struct zone *zone,
  4664. unsigned long zone_start_pfn,
  4665. unsigned long size)
  4666. {
  4667. struct pglist_data *pgdat = zone->zone_pgdat;
  4668. int ret;
  4669. ret = zone_wait_table_init(zone, size);
  4670. if (ret)
  4671. return ret;
  4672. pgdat->nr_zones = zone_idx(zone) + 1;
  4673. zone->zone_start_pfn = zone_start_pfn;
  4674. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4675. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4676. pgdat->node_id,
  4677. (unsigned long)zone_idx(zone),
  4678. zone_start_pfn, (zone_start_pfn + size));
  4679. zone_init_free_lists(zone);
  4680. return 0;
  4681. }
  4682. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4683. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4684. /*
  4685. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4686. */
  4687. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4688. struct mminit_pfnnid_cache *state)
  4689. {
  4690. unsigned long start_pfn, end_pfn;
  4691. int nid;
  4692. if (state->last_start <= pfn && pfn < state->last_end)
  4693. return state->last_nid;
  4694. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4695. if (nid != -1) {
  4696. state->last_start = start_pfn;
  4697. state->last_end = end_pfn;
  4698. state->last_nid = nid;
  4699. }
  4700. return nid;
  4701. }
  4702. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4703. /**
  4704. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4705. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4706. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4707. *
  4708. * If an architecture guarantees that all ranges registered contain no holes
  4709. * and may be freed, this this function may be used instead of calling
  4710. * memblock_free_early_nid() manually.
  4711. */
  4712. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4713. {
  4714. unsigned long start_pfn, end_pfn;
  4715. int i, this_nid;
  4716. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4717. start_pfn = min(start_pfn, max_low_pfn);
  4718. end_pfn = min(end_pfn, max_low_pfn);
  4719. if (start_pfn < end_pfn)
  4720. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4721. (end_pfn - start_pfn) << PAGE_SHIFT,
  4722. this_nid);
  4723. }
  4724. }
  4725. /**
  4726. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4727. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4728. *
  4729. * If an architecture guarantees that all ranges registered contain no holes and may
  4730. * be freed, this function may be used instead of calling memory_present() manually.
  4731. */
  4732. void __init sparse_memory_present_with_active_regions(int nid)
  4733. {
  4734. unsigned long start_pfn, end_pfn;
  4735. int i, this_nid;
  4736. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4737. memory_present(this_nid, start_pfn, end_pfn);
  4738. }
  4739. /**
  4740. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4741. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4742. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4743. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4744. *
  4745. * It returns the start and end page frame of a node based on information
  4746. * provided by memblock_set_node(). If called for a node
  4747. * with no available memory, a warning is printed and the start and end
  4748. * PFNs will be 0.
  4749. */
  4750. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4751. unsigned long *start_pfn, unsigned long *end_pfn)
  4752. {
  4753. unsigned long this_start_pfn, this_end_pfn;
  4754. int i;
  4755. *start_pfn = -1UL;
  4756. *end_pfn = 0;
  4757. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4758. *start_pfn = min(*start_pfn, this_start_pfn);
  4759. *end_pfn = max(*end_pfn, this_end_pfn);
  4760. }
  4761. if (*start_pfn == -1UL)
  4762. *start_pfn = 0;
  4763. }
  4764. /*
  4765. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4766. * assumption is made that zones within a node are ordered in monotonic
  4767. * increasing memory addresses so that the "highest" populated zone is used
  4768. */
  4769. static void __init find_usable_zone_for_movable(void)
  4770. {
  4771. int zone_index;
  4772. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4773. if (zone_index == ZONE_MOVABLE)
  4774. continue;
  4775. if (arch_zone_highest_possible_pfn[zone_index] >
  4776. arch_zone_lowest_possible_pfn[zone_index])
  4777. break;
  4778. }
  4779. VM_BUG_ON(zone_index == -1);
  4780. movable_zone = zone_index;
  4781. }
  4782. /*
  4783. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4784. * because it is sized independent of architecture. Unlike the other zones,
  4785. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4786. * in each node depending on the size of each node and how evenly kernelcore
  4787. * is distributed. This helper function adjusts the zone ranges
  4788. * provided by the architecture for a given node by using the end of the
  4789. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4790. * zones within a node are in order of monotonic increases memory addresses
  4791. */
  4792. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4793. unsigned long zone_type,
  4794. unsigned long node_start_pfn,
  4795. unsigned long node_end_pfn,
  4796. unsigned long *zone_start_pfn,
  4797. unsigned long *zone_end_pfn)
  4798. {
  4799. /* Only adjust if ZONE_MOVABLE is on this node */
  4800. if (zone_movable_pfn[nid]) {
  4801. /* Size ZONE_MOVABLE */
  4802. if (zone_type == ZONE_MOVABLE) {
  4803. *zone_start_pfn = zone_movable_pfn[nid];
  4804. *zone_end_pfn = min(node_end_pfn,
  4805. arch_zone_highest_possible_pfn[movable_zone]);
  4806. /* Check if this whole range is within ZONE_MOVABLE */
  4807. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4808. *zone_start_pfn = *zone_end_pfn;
  4809. }
  4810. }
  4811. /*
  4812. * Return the number of pages a zone spans in a node, including holes
  4813. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4814. */
  4815. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4816. unsigned long zone_type,
  4817. unsigned long node_start_pfn,
  4818. unsigned long node_end_pfn,
  4819. unsigned long *zone_start_pfn,
  4820. unsigned long *zone_end_pfn,
  4821. unsigned long *ignored)
  4822. {
  4823. /* When hotadd a new node from cpu_up(), the node should be empty */
  4824. if (!node_start_pfn && !node_end_pfn)
  4825. return 0;
  4826. /* Get the start and end of the zone */
  4827. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4828. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4829. adjust_zone_range_for_zone_movable(nid, zone_type,
  4830. node_start_pfn, node_end_pfn,
  4831. zone_start_pfn, zone_end_pfn);
  4832. /* Check that this node has pages within the zone's required range */
  4833. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  4834. return 0;
  4835. /* Move the zone boundaries inside the node if necessary */
  4836. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  4837. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  4838. /* Return the spanned pages */
  4839. return *zone_end_pfn - *zone_start_pfn;
  4840. }
  4841. /*
  4842. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4843. * then all holes in the requested range will be accounted for.
  4844. */
  4845. unsigned long __meminit __absent_pages_in_range(int nid,
  4846. unsigned long range_start_pfn,
  4847. unsigned long range_end_pfn)
  4848. {
  4849. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4850. unsigned long start_pfn, end_pfn;
  4851. int i;
  4852. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4853. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4854. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4855. nr_absent -= end_pfn - start_pfn;
  4856. }
  4857. return nr_absent;
  4858. }
  4859. /**
  4860. * absent_pages_in_range - Return number of page frames in holes within a range
  4861. * @start_pfn: The start PFN to start searching for holes
  4862. * @end_pfn: The end PFN to stop searching for holes
  4863. *
  4864. * It returns the number of pages frames in memory holes within a range.
  4865. */
  4866. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4867. unsigned long end_pfn)
  4868. {
  4869. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4870. }
  4871. /* Return the number of page frames in holes in a zone on a node */
  4872. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4873. unsigned long zone_type,
  4874. unsigned long node_start_pfn,
  4875. unsigned long node_end_pfn,
  4876. unsigned long *ignored)
  4877. {
  4878. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4879. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4880. unsigned long zone_start_pfn, zone_end_pfn;
  4881. unsigned long nr_absent;
  4882. /* When hotadd a new node from cpu_up(), the node should be empty */
  4883. if (!node_start_pfn && !node_end_pfn)
  4884. return 0;
  4885. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4886. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4887. adjust_zone_range_for_zone_movable(nid, zone_type,
  4888. node_start_pfn, node_end_pfn,
  4889. &zone_start_pfn, &zone_end_pfn);
  4890. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4891. /*
  4892. * ZONE_MOVABLE handling.
  4893. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  4894. * and vice versa.
  4895. */
  4896. if (zone_movable_pfn[nid]) {
  4897. if (mirrored_kernelcore) {
  4898. unsigned long start_pfn, end_pfn;
  4899. struct memblock_region *r;
  4900. for_each_memblock(memory, r) {
  4901. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  4902. zone_start_pfn, zone_end_pfn);
  4903. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  4904. zone_start_pfn, zone_end_pfn);
  4905. if (zone_type == ZONE_MOVABLE &&
  4906. memblock_is_mirror(r))
  4907. nr_absent += end_pfn - start_pfn;
  4908. if (zone_type == ZONE_NORMAL &&
  4909. !memblock_is_mirror(r))
  4910. nr_absent += end_pfn - start_pfn;
  4911. }
  4912. } else {
  4913. if (zone_type == ZONE_NORMAL)
  4914. nr_absent += node_end_pfn - zone_movable_pfn[nid];
  4915. }
  4916. }
  4917. return nr_absent;
  4918. }
  4919. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4920. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4921. unsigned long zone_type,
  4922. unsigned long node_start_pfn,
  4923. unsigned long node_end_pfn,
  4924. unsigned long *zone_start_pfn,
  4925. unsigned long *zone_end_pfn,
  4926. unsigned long *zones_size)
  4927. {
  4928. unsigned int zone;
  4929. *zone_start_pfn = node_start_pfn;
  4930. for (zone = 0; zone < zone_type; zone++)
  4931. *zone_start_pfn += zones_size[zone];
  4932. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  4933. return zones_size[zone_type];
  4934. }
  4935. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4936. unsigned long zone_type,
  4937. unsigned long node_start_pfn,
  4938. unsigned long node_end_pfn,
  4939. unsigned long *zholes_size)
  4940. {
  4941. if (!zholes_size)
  4942. return 0;
  4943. return zholes_size[zone_type];
  4944. }
  4945. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4946. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4947. unsigned long node_start_pfn,
  4948. unsigned long node_end_pfn,
  4949. unsigned long *zones_size,
  4950. unsigned long *zholes_size)
  4951. {
  4952. unsigned long realtotalpages = 0, totalpages = 0;
  4953. enum zone_type i;
  4954. for (i = 0; i < MAX_NR_ZONES; i++) {
  4955. struct zone *zone = pgdat->node_zones + i;
  4956. unsigned long zone_start_pfn, zone_end_pfn;
  4957. unsigned long size, real_size;
  4958. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  4959. node_start_pfn,
  4960. node_end_pfn,
  4961. &zone_start_pfn,
  4962. &zone_end_pfn,
  4963. zones_size);
  4964. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  4965. node_start_pfn, node_end_pfn,
  4966. zholes_size);
  4967. if (size)
  4968. zone->zone_start_pfn = zone_start_pfn;
  4969. else
  4970. zone->zone_start_pfn = 0;
  4971. zone->spanned_pages = size;
  4972. zone->present_pages = real_size;
  4973. totalpages += size;
  4974. realtotalpages += real_size;
  4975. }
  4976. pgdat->node_spanned_pages = totalpages;
  4977. pgdat->node_present_pages = realtotalpages;
  4978. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4979. realtotalpages);
  4980. }
  4981. #ifndef CONFIG_SPARSEMEM
  4982. /*
  4983. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4984. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4985. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4986. * round what is now in bits to nearest long in bits, then return it in
  4987. * bytes.
  4988. */
  4989. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4990. {
  4991. unsigned long usemapsize;
  4992. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4993. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4994. usemapsize = usemapsize >> pageblock_order;
  4995. usemapsize *= NR_PAGEBLOCK_BITS;
  4996. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4997. return usemapsize / 8;
  4998. }
  4999. static void __init setup_usemap(struct pglist_data *pgdat,
  5000. struct zone *zone,
  5001. unsigned long zone_start_pfn,
  5002. unsigned long zonesize)
  5003. {
  5004. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  5005. zone->pageblock_flags = NULL;
  5006. if (usemapsize)
  5007. zone->pageblock_flags =
  5008. memblock_virt_alloc_node_nopanic(usemapsize,
  5009. pgdat->node_id);
  5010. }
  5011. #else
  5012. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  5013. unsigned long zone_start_pfn, unsigned long zonesize) {}
  5014. #endif /* CONFIG_SPARSEMEM */
  5015. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  5016. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  5017. void __paginginit set_pageblock_order(void)
  5018. {
  5019. unsigned int order;
  5020. /* Check that pageblock_nr_pages has not already been setup */
  5021. if (pageblock_order)
  5022. return;
  5023. if (HPAGE_SHIFT > PAGE_SHIFT)
  5024. order = HUGETLB_PAGE_ORDER;
  5025. else
  5026. order = MAX_ORDER - 1;
  5027. /*
  5028. * Assume the largest contiguous order of interest is a huge page.
  5029. * This value may be variable depending on boot parameters on IA64 and
  5030. * powerpc.
  5031. */
  5032. pageblock_order = order;
  5033. }
  5034. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5035. /*
  5036. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  5037. * is unused as pageblock_order is set at compile-time. See
  5038. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  5039. * the kernel config
  5040. */
  5041. void __paginginit set_pageblock_order(void)
  5042. {
  5043. }
  5044. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5045. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  5046. unsigned long present_pages)
  5047. {
  5048. unsigned long pages = spanned_pages;
  5049. /*
  5050. * Provide a more accurate estimation if there are holes within
  5051. * the zone and SPARSEMEM is in use. If there are holes within the
  5052. * zone, each populated memory region may cost us one or two extra
  5053. * memmap pages due to alignment because memmap pages for each
  5054. * populated regions may not naturally algined on page boundary.
  5055. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  5056. */
  5057. if (spanned_pages > present_pages + (present_pages >> 4) &&
  5058. IS_ENABLED(CONFIG_SPARSEMEM))
  5059. pages = present_pages;
  5060. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  5061. }
  5062. /*
  5063. * Set up the zone data structures:
  5064. * - mark all pages reserved
  5065. * - mark all memory queues empty
  5066. * - clear the memory bitmaps
  5067. *
  5068. * NOTE: pgdat should get zeroed by caller.
  5069. */
  5070. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  5071. {
  5072. enum zone_type j;
  5073. int nid = pgdat->node_id;
  5074. int ret;
  5075. pgdat_resize_init(pgdat);
  5076. #ifdef CONFIG_NUMA_BALANCING
  5077. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  5078. pgdat->numabalancing_migrate_nr_pages = 0;
  5079. pgdat->numabalancing_migrate_next_window = jiffies;
  5080. #endif
  5081. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5082. spin_lock_init(&pgdat->split_queue_lock);
  5083. INIT_LIST_HEAD(&pgdat->split_queue);
  5084. pgdat->split_queue_len = 0;
  5085. #endif
  5086. init_waitqueue_head(&pgdat->kswapd_wait);
  5087. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  5088. #ifdef CONFIG_COMPACTION
  5089. init_waitqueue_head(&pgdat->kcompactd_wait);
  5090. #endif
  5091. pgdat_page_ext_init(pgdat);
  5092. spin_lock_init(&pgdat->lru_lock);
  5093. lruvec_init(node_lruvec(pgdat));
  5094. for (j = 0; j < MAX_NR_ZONES; j++) {
  5095. struct zone *zone = pgdat->node_zones + j;
  5096. unsigned long size, realsize, freesize, memmap_pages;
  5097. unsigned long zone_start_pfn = zone->zone_start_pfn;
  5098. size = zone->spanned_pages;
  5099. realsize = freesize = zone->present_pages;
  5100. /*
  5101. * Adjust freesize so that it accounts for how much memory
  5102. * is used by this zone for memmap. This affects the watermark
  5103. * and per-cpu initialisations
  5104. */
  5105. memmap_pages = calc_memmap_size(size, realsize);
  5106. if (!is_highmem_idx(j)) {
  5107. if (freesize >= memmap_pages) {
  5108. freesize -= memmap_pages;
  5109. if (memmap_pages)
  5110. printk(KERN_DEBUG
  5111. " %s zone: %lu pages used for memmap\n",
  5112. zone_names[j], memmap_pages);
  5113. } else
  5114. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  5115. zone_names[j], memmap_pages, freesize);
  5116. }
  5117. /* Account for reserved pages */
  5118. if (j == 0 && freesize > dma_reserve) {
  5119. freesize -= dma_reserve;
  5120. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  5121. zone_names[0], dma_reserve);
  5122. }
  5123. if (!is_highmem_idx(j))
  5124. nr_kernel_pages += freesize;
  5125. /* Charge for highmem memmap if there are enough kernel pages */
  5126. else if (nr_kernel_pages > memmap_pages * 2)
  5127. nr_kernel_pages -= memmap_pages;
  5128. nr_all_pages += freesize;
  5129. /*
  5130. * Set an approximate value for lowmem here, it will be adjusted
  5131. * when the bootmem allocator frees pages into the buddy system.
  5132. * And all highmem pages will be managed by the buddy system.
  5133. */
  5134. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  5135. #ifdef CONFIG_NUMA
  5136. zone->node = nid;
  5137. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  5138. / 100;
  5139. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  5140. #endif
  5141. zone->name = zone_names[j];
  5142. zone->zone_pgdat = pgdat;
  5143. spin_lock_init(&zone->lock);
  5144. zone_seqlock_init(zone);
  5145. zone_pcp_init(zone);
  5146. /* For bootup, initialized properly in watermark setup */
  5147. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  5148. if (!size)
  5149. continue;
  5150. set_pageblock_order();
  5151. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5152. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  5153. BUG_ON(ret);
  5154. memmap_init(size, nid, j, zone_start_pfn);
  5155. }
  5156. }
  5157. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  5158. {
  5159. unsigned long __maybe_unused start = 0;
  5160. unsigned long __maybe_unused offset = 0;
  5161. /* Skip empty nodes */
  5162. if (!pgdat->node_spanned_pages)
  5163. return;
  5164. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5165. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5166. offset = pgdat->node_start_pfn - start;
  5167. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5168. if (!pgdat->node_mem_map) {
  5169. unsigned long size, end;
  5170. struct page *map;
  5171. /*
  5172. * The zone's endpoints aren't required to be MAX_ORDER
  5173. * aligned but the node_mem_map endpoints must be in order
  5174. * for the buddy allocator to function correctly.
  5175. */
  5176. end = pgdat_end_pfn(pgdat);
  5177. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5178. size = (end - start) * sizeof(struct page);
  5179. map = alloc_remap(pgdat->node_id, size);
  5180. if (!map)
  5181. map = memblock_virt_alloc_node_nopanic(size,
  5182. pgdat->node_id);
  5183. pgdat->node_mem_map = map + offset;
  5184. }
  5185. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5186. /*
  5187. * With no DISCONTIG, the global mem_map is just set as node 0's
  5188. */
  5189. if (pgdat == NODE_DATA(0)) {
  5190. mem_map = NODE_DATA(0)->node_mem_map;
  5191. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5192. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5193. mem_map -= offset;
  5194. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5195. }
  5196. #endif
  5197. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5198. }
  5199. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  5200. unsigned long node_start_pfn, unsigned long *zholes_size)
  5201. {
  5202. pg_data_t *pgdat = NODE_DATA(nid);
  5203. unsigned long start_pfn = 0;
  5204. unsigned long end_pfn = 0;
  5205. /* pg_data_t should be reset to zero when it's allocated */
  5206. WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
  5207. reset_deferred_meminit(pgdat);
  5208. pgdat->node_id = nid;
  5209. pgdat->node_start_pfn = node_start_pfn;
  5210. pgdat->per_cpu_nodestats = NULL;
  5211. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5212. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5213. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5214. (u64)start_pfn << PAGE_SHIFT,
  5215. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5216. #else
  5217. start_pfn = node_start_pfn;
  5218. #endif
  5219. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5220. zones_size, zholes_size);
  5221. alloc_node_mem_map(pgdat);
  5222. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5223. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5224. nid, (unsigned long)pgdat,
  5225. (unsigned long)pgdat->node_mem_map);
  5226. #endif
  5227. free_area_init_core(pgdat);
  5228. }
  5229. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5230. #if MAX_NUMNODES > 1
  5231. /*
  5232. * Figure out the number of possible node ids.
  5233. */
  5234. void __init setup_nr_node_ids(void)
  5235. {
  5236. unsigned int highest;
  5237. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5238. nr_node_ids = highest + 1;
  5239. }
  5240. #endif
  5241. /**
  5242. * node_map_pfn_alignment - determine the maximum internode alignment
  5243. *
  5244. * This function should be called after node map is populated and sorted.
  5245. * It calculates the maximum power of two alignment which can distinguish
  5246. * all the nodes.
  5247. *
  5248. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5249. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5250. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5251. * shifted, 1GiB is enough and this function will indicate so.
  5252. *
  5253. * This is used to test whether pfn -> nid mapping of the chosen memory
  5254. * model has fine enough granularity to avoid incorrect mapping for the
  5255. * populated node map.
  5256. *
  5257. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5258. * requirement (single node).
  5259. */
  5260. unsigned long __init node_map_pfn_alignment(void)
  5261. {
  5262. unsigned long accl_mask = 0, last_end = 0;
  5263. unsigned long start, end, mask;
  5264. int last_nid = -1;
  5265. int i, nid;
  5266. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5267. if (!start || last_nid < 0 || last_nid == nid) {
  5268. last_nid = nid;
  5269. last_end = end;
  5270. continue;
  5271. }
  5272. /*
  5273. * Start with a mask granular enough to pin-point to the
  5274. * start pfn and tick off bits one-by-one until it becomes
  5275. * too coarse to separate the current node from the last.
  5276. */
  5277. mask = ~((1 << __ffs(start)) - 1);
  5278. while (mask && last_end <= (start & (mask << 1)))
  5279. mask <<= 1;
  5280. /* accumulate all internode masks */
  5281. accl_mask |= mask;
  5282. }
  5283. /* convert mask to number of pages */
  5284. return ~accl_mask + 1;
  5285. }
  5286. /* Find the lowest pfn for a node */
  5287. static unsigned long __init find_min_pfn_for_node(int nid)
  5288. {
  5289. unsigned long min_pfn = ULONG_MAX;
  5290. unsigned long start_pfn;
  5291. int i;
  5292. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5293. min_pfn = min(min_pfn, start_pfn);
  5294. if (min_pfn == ULONG_MAX) {
  5295. pr_warn("Could not find start_pfn for node %d\n", nid);
  5296. return 0;
  5297. }
  5298. return min_pfn;
  5299. }
  5300. /**
  5301. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5302. *
  5303. * It returns the minimum PFN based on information provided via
  5304. * memblock_set_node().
  5305. */
  5306. unsigned long __init find_min_pfn_with_active_regions(void)
  5307. {
  5308. return find_min_pfn_for_node(MAX_NUMNODES);
  5309. }
  5310. /*
  5311. * early_calculate_totalpages()
  5312. * Sum pages in active regions for movable zone.
  5313. * Populate N_MEMORY for calculating usable_nodes.
  5314. */
  5315. static unsigned long __init early_calculate_totalpages(void)
  5316. {
  5317. unsigned long totalpages = 0;
  5318. unsigned long start_pfn, end_pfn;
  5319. int i, nid;
  5320. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5321. unsigned long pages = end_pfn - start_pfn;
  5322. totalpages += pages;
  5323. if (pages)
  5324. node_set_state(nid, N_MEMORY);
  5325. }
  5326. return totalpages;
  5327. }
  5328. /*
  5329. * Find the PFN the Movable zone begins in each node. Kernel memory
  5330. * is spread evenly between nodes as long as the nodes have enough
  5331. * memory. When they don't, some nodes will have more kernelcore than
  5332. * others
  5333. */
  5334. static void __init find_zone_movable_pfns_for_nodes(void)
  5335. {
  5336. int i, nid;
  5337. unsigned long usable_startpfn;
  5338. unsigned long kernelcore_node, kernelcore_remaining;
  5339. /* save the state before borrow the nodemask */
  5340. nodemask_t saved_node_state = node_states[N_MEMORY];
  5341. unsigned long totalpages = early_calculate_totalpages();
  5342. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5343. struct memblock_region *r;
  5344. /* Need to find movable_zone earlier when movable_node is specified. */
  5345. find_usable_zone_for_movable();
  5346. /*
  5347. * If movable_node is specified, ignore kernelcore and movablecore
  5348. * options.
  5349. */
  5350. if (movable_node_is_enabled()) {
  5351. for_each_memblock(memory, r) {
  5352. if (!memblock_is_hotpluggable(r))
  5353. continue;
  5354. nid = r->nid;
  5355. usable_startpfn = PFN_DOWN(r->base);
  5356. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5357. min(usable_startpfn, zone_movable_pfn[nid]) :
  5358. usable_startpfn;
  5359. }
  5360. goto out2;
  5361. }
  5362. /*
  5363. * If kernelcore=mirror is specified, ignore movablecore option
  5364. */
  5365. if (mirrored_kernelcore) {
  5366. bool mem_below_4gb_not_mirrored = false;
  5367. for_each_memblock(memory, r) {
  5368. if (memblock_is_mirror(r))
  5369. continue;
  5370. nid = r->nid;
  5371. usable_startpfn = memblock_region_memory_base_pfn(r);
  5372. if (usable_startpfn < 0x100000) {
  5373. mem_below_4gb_not_mirrored = true;
  5374. continue;
  5375. }
  5376. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5377. min(usable_startpfn, zone_movable_pfn[nid]) :
  5378. usable_startpfn;
  5379. }
  5380. if (mem_below_4gb_not_mirrored)
  5381. pr_warn("This configuration results in unmirrored kernel memory.");
  5382. goto out2;
  5383. }
  5384. /*
  5385. * If movablecore=nn[KMG] was specified, calculate what size of
  5386. * kernelcore that corresponds so that memory usable for
  5387. * any allocation type is evenly spread. If both kernelcore
  5388. * and movablecore are specified, then the value of kernelcore
  5389. * will be used for required_kernelcore if it's greater than
  5390. * what movablecore would have allowed.
  5391. */
  5392. if (required_movablecore) {
  5393. unsigned long corepages;
  5394. /*
  5395. * Round-up so that ZONE_MOVABLE is at least as large as what
  5396. * was requested by the user
  5397. */
  5398. required_movablecore =
  5399. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5400. required_movablecore = min(totalpages, required_movablecore);
  5401. corepages = totalpages - required_movablecore;
  5402. required_kernelcore = max(required_kernelcore, corepages);
  5403. }
  5404. /*
  5405. * If kernelcore was not specified or kernelcore size is larger
  5406. * than totalpages, there is no ZONE_MOVABLE.
  5407. */
  5408. if (!required_kernelcore || required_kernelcore >= totalpages)
  5409. goto out;
  5410. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5411. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5412. restart:
  5413. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5414. kernelcore_node = required_kernelcore / usable_nodes;
  5415. for_each_node_state(nid, N_MEMORY) {
  5416. unsigned long start_pfn, end_pfn;
  5417. /*
  5418. * Recalculate kernelcore_node if the division per node
  5419. * now exceeds what is necessary to satisfy the requested
  5420. * amount of memory for the kernel
  5421. */
  5422. if (required_kernelcore < kernelcore_node)
  5423. kernelcore_node = required_kernelcore / usable_nodes;
  5424. /*
  5425. * As the map is walked, we track how much memory is usable
  5426. * by the kernel using kernelcore_remaining. When it is
  5427. * 0, the rest of the node is usable by ZONE_MOVABLE
  5428. */
  5429. kernelcore_remaining = kernelcore_node;
  5430. /* Go through each range of PFNs within this node */
  5431. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5432. unsigned long size_pages;
  5433. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5434. if (start_pfn >= end_pfn)
  5435. continue;
  5436. /* Account for what is only usable for kernelcore */
  5437. if (start_pfn < usable_startpfn) {
  5438. unsigned long kernel_pages;
  5439. kernel_pages = min(end_pfn, usable_startpfn)
  5440. - start_pfn;
  5441. kernelcore_remaining -= min(kernel_pages,
  5442. kernelcore_remaining);
  5443. required_kernelcore -= min(kernel_pages,
  5444. required_kernelcore);
  5445. /* Continue if range is now fully accounted */
  5446. if (end_pfn <= usable_startpfn) {
  5447. /*
  5448. * Push zone_movable_pfn to the end so
  5449. * that if we have to rebalance
  5450. * kernelcore across nodes, we will
  5451. * not double account here
  5452. */
  5453. zone_movable_pfn[nid] = end_pfn;
  5454. continue;
  5455. }
  5456. start_pfn = usable_startpfn;
  5457. }
  5458. /*
  5459. * The usable PFN range for ZONE_MOVABLE is from
  5460. * start_pfn->end_pfn. Calculate size_pages as the
  5461. * number of pages used as kernelcore
  5462. */
  5463. size_pages = end_pfn - start_pfn;
  5464. if (size_pages > kernelcore_remaining)
  5465. size_pages = kernelcore_remaining;
  5466. zone_movable_pfn[nid] = start_pfn + size_pages;
  5467. /*
  5468. * Some kernelcore has been met, update counts and
  5469. * break if the kernelcore for this node has been
  5470. * satisfied
  5471. */
  5472. required_kernelcore -= min(required_kernelcore,
  5473. size_pages);
  5474. kernelcore_remaining -= size_pages;
  5475. if (!kernelcore_remaining)
  5476. break;
  5477. }
  5478. }
  5479. /*
  5480. * If there is still required_kernelcore, we do another pass with one
  5481. * less node in the count. This will push zone_movable_pfn[nid] further
  5482. * along on the nodes that still have memory until kernelcore is
  5483. * satisfied
  5484. */
  5485. usable_nodes--;
  5486. if (usable_nodes && required_kernelcore > usable_nodes)
  5487. goto restart;
  5488. out2:
  5489. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5490. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5491. zone_movable_pfn[nid] =
  5492. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5493. out:
  5494. /* restore the node_state */
  5495. node_states[N_MEMORY] = saved_node_state;
  5496. }
  5497. /* Any regular or high memory on that node ? */
  5498. static void check_for_memory(pg_data_t *pgdat, int nid)
  5499. {
  5500. enum zone_type zone_type;
  5501. if (N_MEMORY == N_NORMAL_MEMORY)
  5502. return;
  5503. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5504. struct zone *zone = &pgdat->node_zones[zone_type];
  5505. if (populated_zone(zone)) {
  5506. node_set_state(nid, N_HIGH_MEMORY);
  5507. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5508. zone_type <= ZONE_NORMAL)
  5509. node_set_state(nid, N_NORMAL_MEMORY);
  5510. break;
  5511. }
  5512. }
  5513. }
  5514. /**
  5515. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5516. * @max_zone_pfn: an array of max PFNs for each zone
  5517. *
  5518. * This will call free_area_init_node() for each active node in the system.
  5519. * Using the page ranges provided by memblock_set_node(), the size of each
  5520. * zone in each node and their holes is calculated. If the maximum PFN
  5521. * between two adjacent zones match, it is assumed that the zone is empty.
  5522. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5523. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5524. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5525. * at arch_max_dma_pfn.
  5526. */
  5527. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5528. {
  5529. unsigned long start_pfn, end_pfn;
  5530. int i, nid;
  5531. /* Record where the zone boundaries are */
  5532. memset(arch_zone_lowest_possible_pfn, 0,
  5533. sizeof(arch_zone_lowest_possible_pfn));
  5534. memset(arch_zone_highest_possible_pfn, 0,
  5535. sizeof(arch_zone_highest_possible_pfn));
  5536. start_pfn = find_min_pfn_with_active_regions();
  5537. for (i = 0; i < MAX_NR_ZONES; i++) {
  5538. if (i == ZONE_MOVABLE)
  5539. continue;
  5540. end_pfn = max(max_zone_pfn[i], start_pfn);
  5541. arch_zone_lowest_possible_pfn[i] = start_pfn;
  5542. arch_zone_highest_possible_pfn[i] = end_pfn;
  5543. start_pfn = end_pfn;
  5544. }
  5545. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  5546. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  5547. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5548. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5549. find_zone_movable_pfns_for_nodes();
  5550. /* Print out the zone ranges */
  5551. pr_info("Zone ranges:\n");
  5552. for (i = 0; i < MAX_NR_ZONES; i++) {
  5553. if (i == ZONE_MOVABLE)
  5554. continue;
  5555. pr_info(" %-8s ", zone_names[i]);
  5556. if (arch_zone_lowest_possible_pfn[i] ==
  5557. arch_zone_highest_possible_pfn[i])
  5558. pr_cont("empty\n");
  5559. else
  5560. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5561. (u64)arch_zone_lowest_possible_pfn[i]
  5562. << PAGE_SHIFT,
  5563. ((u64)arch_zone_highest_possible_pfn[i]
  5564. << PAGE_SHIFT) - 1);
  5565. }
  5566. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5567. pr_info("Movable zone start for each node\n");
  5568. for (i = 0; i < MAX_NUMNODES; i++) {
  5569. if (zone_movable_pfn[i])
  5570. pr_info(" Node %d: %#018Lx\n", i,
  5571. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5572. }
  5573. /* Print out the early node map */
  5574. pr_info("Early memory node ranges\n");
  5575. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5576. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5577. (u64)start_pfn << PAGE_SHIFT,
  5578. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5579. /* Initialise every node */
  5580. mminit_verify_pageflags_layout();
  5581. setup_nr_node_ids();
  5582. for_each_online_node(nid) {
  5583. pg_data_t *pgdat = NODE_DATA(nid);
  5584. free_area_init_node(nid, NULL,
  5585. find_min_pfn_for_node(nid), NULL);
  5586. /* Any memory on that node */
  5587. if (pgdat->node_present_pages)
  5588. node_set_state(nid, N_MEMORY);
  5589. check_for_memory(pgdat, nid);
  5590. }
  5591. }
  5592. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5593. {
  5594. unsigned long long coremem;
  5595. if (!p)
  5596. return -EINVAL;
  5597. coremem = memparse(p, &p);
  5598. *core = coremem >> PAGE_SHIFT;
  5599. /* Paranoid check that UL is enough for the coremem value */
  5600. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5601. return 0;
  5602. }
  5603. /*
  5604. * kernelcore=size sets the amount of memory for use for allocations that
  5605. * cannot be reclaimed or migrated.
  5606. */
  5607. static int __init cmdline_parse_kernelcore(char *p)
  5608. {
  5609. /* parse kernelcore=mirror */
  5610. if (parse_option_str(p, "mirror")) {
  5611. mirrored_kernelcore = true;
  5612. return 0;
  5613. }
  5614. return cmdline_parse_core(p, &required_kernelcore);
  5615. }
  5616. /*
  5617. * movablecore=size sets the amount of memory for use for allocations that
  5618. * can be reclaimed or migrated.
  5619. */
  5620. static int __init cmdline_parse_movablecore(char *p)
  5621. {
  5622. return cmdline_parse_core(p, &required_movablecore);
  5623. }
  5624. early_param("kernelcore", cmdline_parse_kernelcore);
  5625. early_param("movablecore", cmdline_parse_movablecore);
  5626. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5627. void adjust_managed_page_count(struct page *page, long count)
  5628. {
  5629. spin_lock(&managed_page_count_lock);
  5630. page_zone(page)->managed_pages += count;
  5631. totalram_pages += count;
  5632. #ifdef CONFIG_HIGHMEM
  5633. if (PageHighMem(page))
  5634. totalhigh_pages += count;
  5635. #endif
  5636. spin_unlock(&managed_page_count_lock);
  5637. }
  5638. EXPORT_SYMBOL(adjust_managed_page_count);
  5639. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5640. {
  5641. void *pos;
  5642. unsigned long pages = 0;
  5643. start = (void *)PAGE_ALIGN((unsigned long)start);
  5644. end = (void *)((unsigned long)end & PAGE_MASK);
  5645. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5646. if ((unsigned int)poison <= 0xFF)
  5647. memset(pos, poison, PAGE_SIZE);
  5648. free_reserved_page(virt_to_page(pos));
  5649. }
  5650. if (pages && s)
  5651. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  5652. s, pages << (PAGE_SHIFT - 10), start, end);
  5653. return pages;
  5654. }
  5655. EXPORT_SYMBOL(free_reserved_area);
  5656. #ifdef CONFIG_HIGHMEM
  5657. void free_highmem_page(struct page *page)
  5658. {
  5659. __free_reserved_page(page);
  5660. totalram_pages++;
  5661. page_zone(page)->managed_pages++;
  5662. totalhigh_pages++;
  5663. }
  5664. #endif
  5665. void __init mem_init_print_info(const char *str)
  5666. {
  5667. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5668. unsigned long init_code_size, init_data_size;
  5669. physpages = get_num_physpages();
  5670. codesize = _etext - _stext;
  5671. datasize = _edata - _sdata;
  5672. rosize = __end_rodata - __start_rodata;
  5673. bss_size = __bss_stop - __bss_start;
  5674. init_data_size = __init_end - __init_begin;
  5675. init_code_size = _einittext - _sinittext;
  5676. /*
  5677. * Detect special cases and adjust section sizes accordingly:
  5678. * 1) .init.* may be embedded into .data sections
  5679. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5680. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5681. * 3) .rodata.* may be embedded into .text or .data sections.
  5682. */
  5683. #define adj_init_size(start, end, size, pos, adj) \
  5684. do { \
  5685. if (start <= pos && pos < end && size > adj) \
  5686. size -= adj; \
  5687. } while (0)
  5688. adj_init_size(__init_begin, __init_end, init_data_size,
  5689. _sinittext, init_code_size);
  5690. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5691. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5692. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5693. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5694. #undef adj_init_size
  5695. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5696. #ifdef CONFIG_HIGHMEM
  5697. ", %luK highmem"
  5698. #endif
  5699. "%s%s)\n",
  5700. nr_free_pages() << (PAGE_SHIFT - 10),
  5701. physpages << (PAGE_SHIFT - 10),
  5702. codesize >> 10, datasize >> 10, rosize >> 10,
  5703. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5704. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  5705. totalcma_pages << (PAGE_SHIFT - 10),
  5706. #ifdef CONFIG_HIGHMEM
  5707. totalhigh_pages << (PAGE_SHIFT - 10),
  5708. #endif
  5709. str ? ", " : "", str ? str : "");
  5710. }
  5711. /**
  5712. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5713. * @new_dma_reserve: The number of pages to mark reserved
  5714. *
  5715. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5716. * In the DMA zone, a significant percentage may be consumed by kernel image
  5717. * and other unfreeable allocations which can skew the watermarks badly. This
  5718. * function may optionally be used to account for unfreeable pages in the
  5719. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5720. * smaller per-cpu batchsize.
  5721. */
  5722. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5723. {
  5724. dma_reserve = new_dma_reserve;
  5725. }
  5726. void __init free_area_init(unsigned long *zones_size)
  5727. {
  5728. free_area_init_node(0, zones_size,
  5729. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5730. }
  5731. static int page_alloc_cpu_notify(struct notifier_block *self,
  5732. unsigned long action, void *hcpu)
  5733. {
  5734. int cpu = (unsigned long)hcpu;
  5735. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  5736. lru_add_drain_cpu(cpu);
  5737. drain_pages(cpu);
  5738. /*
  5739. * Spill the event counters of the dead processor
  5740. * into the current processors event counters.
  5741. * This artificially elevates the count of the current
  5742. * processor.
  5743. */
  5744. vm_events_fold_cpu(cpu);
  5745. /*
  5746. * Zero the differential counters of the dead processor
  5747. * so that the vm statistics are consistent.
  5748. *
  5749. * This is only okay since the processor is dead and cannot
  5750. * race with what we are doing.
  5751. */
  5752. cpu_vm_stats_fold(cpu);
  5753. }
  5754. return NOTIFY_OK;
  5755. }
  5756. void __init page_alloc_init(void)
  5757. {
  5758. hotcpu_notifier(page_alloc_cpu_notify, 0);
  5759. }
  5760. /*
  5761. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5762. * or min_free_kbytes changes.
  5763. */
  5764. static void calculate_totalreserve_pages(void)
  5765. {
  5766. struct pglist_data *pgdat;
  5767. unsigned long reserve_pages = 0;
  5768. enum zone_type i, j;
  5769. for_each_online_pgdat(pgdat) {
  5770. pgdat->totalreserve_pages = 0;
  5771. for (i = 0; i < MAX_NR_ZONES; i++) {
  5772. struct zone *zone = pgdat->node_zones + i;
  5773. long max = 0;
  5774. /* Find valid and maximum lowmem_reserve in the zone */
  5775. for (j = i; j < MAX_NR_ZONES; j++) {
  5776. if (zone->lowmem_reserve[j] > max)
  5777. max = zone->lowmem_reserve[j];
  5778. }
  5779. /* we treat the high watermark as reserved pages. */
  5780. max += high_wmark_pages(zone);
  5781. if (max > zone->managed_pages)
  5782. max = zone->managed_pages;
  5783. pgdat->totalreserve_pages += max;
  5784. reserve_pages += max;
  5785. }
  5786. }
  5787. totalreserve_pages = reserve_pages;
  5788. }
  5789. /*
  5790. * setup_per_zone_lowmem_reserve - called whenever
  5791. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5792. * has a correct pages reserved value, so an adequate number of
  5793. * pages are left in the zone after a successful __alloc_pages().
  5794. */
  5795. static void setup_per_zone_lowmem_reserve(void)
  5796. {
  5797. struct pglist_data *pgdat;
  5798. enum zone_type j, idx;
  5799. for_each_online_pgdat(pgdat) {
  5800. for (j = 0; j < MAX_NR_ZONES; j++) {
  5801. struct zone *zone = pgdat->node_zones + j;
  5802. unsigned long managed_pages = zone->managed_pages;
  5803. zone->lowmem_reserve[j] = 0;
  5804. idx = j;
  5805. while (idx) {
  5806. struct zone *lower_zone;
  5807. idx--;
  5808. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5809. sysctl_lowmem_reserve_ratio[idx] = 1;
  5810. lower_zone = pgdat->node_zones + idx;
  5811. lower_zone->lowmem_reserve[j] = managed_pages /
  5812. sysctl_lowmem_reserve_ratio[idx];
  5813. managed_pages += lower_zone->managed_pages;
  5814. }
  5815. }
  5816. }
  5817. /* update totalreserve_pages */
  5818. calculate_totalreserve_pages();
  5819. }
  5820. static void __setup_per_zone_wmarks(void)
  5821. {
  5822. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5823. unsigned long lowmem_pages = 0;
  5824. struct zone *zone;
  5825. unsigned long flags;
  5826. /* Calculate total number of !ZONE_HIGHMEM pages */
  5827. for_each_zone(zone) {
  5828. if (!is_highmem(zone))
  5829. lowmem_pages += zone->managed_pages;
  5830. }
  5831. for_each_zone(zone) {
  5832. u64 tmp;
  5833. spin_lock_irqsave(&zone->lock, flags);
  5834. tmp = (u64)pages_min * zone->managed_pages;
  5835. do_div(tmp, lowmem_pages);
  5836. if (is_highmem(zone)) {
  5837. /*
  5838. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5839. * need highmem pages, so cap pages_min to a small
  5840. * value here.
  5841. *
  5842. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5843. * deltas control asynch page reclaim, and so should
  5844. * not be capped for highmem.
  5845. */
  5846. unsigned long min_pages;
  5847. min_pages = zone->managed_pages / 1024;
  5848. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5849. zone->watermark[WMARK_MIN] = min_pages;
  5850. } else {
  5851. /*
  5852. * If it's a lowmem zone, reserve a number of pages
  5853. * proportionate to the zone's size.
  5854. */
  5855. zone->watermark[WMARK_MIN] = tmp;
  5856. }
  5857. /*
  5858. * Set the kswapd watermarks distance according to the
  5859. * scale factor in proportion to available memory, but
  5860. * ensure a minimum size on small systems.
  5861. */
  5862. tmp = max_t(u64, tmp >> 2,
  5863. mult_frac(zone->managed_pages,
  5864. watermark_scale_factor, 10000));
  5865. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  5866. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  5867. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  5868. high_wmark_pages(zone) - low_wmark_pages(zone) -
  5869. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  5870. spin_unlock_irqrestore(&zone->lock, flags);
  5871. }
  5872. /* update totalreserve_pages */
  5873. calculate_totalreserve_pages();
  5874. }
  5875. /**
  5876. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5877. * or when memory is hot-{added|removed}
  5878. *
  5879. * Ensures that the watermark[min,low,high] values for each zone are set
  5880. * correctly with respect to min_free_kbytes.
  5881. */
  5882. void setup_per_zone_wmarks(void)
  5883. {
  5884. mutex_lock(&zonelists_mutex);
  5885. __setup_per_zone_wmarks();
  5886. mutex_unlock(&zonelists_mutex);
  5887. }
  5888. /*
  5889. * Initialise min_free_kbytes.
  5890. *
  5891. * For small machines we want it small (128k min). For large machines
  5892. * we want it large (64MB max). But it is not linear, because network
  5893. * bandwidth does not increase linearly with machine size. We use
  5894. *
  5895. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5896. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5897. *
  5898. * which yields
  5899. *
  5900. * 16MB: 512k
  5901. * 32MB: 724k
  5902. * 64MB: 1024k
  5903. * 128MB: 1448k
  5904. * 256MB: 2048k
  5905. * 512MB: 2896k
  5906. * 1024MB: 4096k
  5907. * 2048MB: 5792k
  5908. * 4096MB: 8192k
  5909. * 8192MB: 11584k
  5910. * 16384MB: 16384k
  5911. */
  5912. int __meminit init_per_zone_wmark_min(void)
  5913. {
  5914. unsigned long lowmem_kbytes;
  5915. int new_min_free_kbytes;
  5916. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5917. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5918. if (new_min_free_kbytes > user_min_free_kbytes) {
  5919. min_free_kbytes = new_min_free_kbytes;
  5920. if (min_free_kbytes < 128)
  5921. min_free_kbytes = 128;
  5922. if (min_free_kbytes > 65536)
  5923. min_free_kbytes = 65536;
  5924. } else {
  5925. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5926. new_min_free_kbytes, user_min_free_kbytes);
  5927. }
  5928. setup_per_zone_wmarks();
  5929. refresh_zone_stat_thresholds();
  5930. setup_per_zone_lowmem_reserve();
  5931. return 0;
  5932. }
  5933. core_initcall(init_per_zone_wmark_min)
  5934. /*
  5935. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5936. * that we can call two helper functions whenever min_free_kbytes
  5937. * changes.
  5938. */
  5939. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5940. void __user *buffer, size_t *length, loff_t *ppos)
  5941. {
  5942. int rc;
  5943. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5944. if (rc)
  5945. return rc;
  5946. if (write) {
  5947. user_min_free_kbytes = min_free_kbytes;
  5948. setup_per_zone_wmarks();
  5949. }
  5950. return 0;
  5951. }
  5952. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  5953. void __user *buffer, size_t *length, loff_t *ppos)
  5954. {
  5955. int rc;
  5956. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5957. if (rc)
  5958. return rc;
  5959. if (write)
  5960. setup_per_zone_wmarks();
  5961. return 0;
  5962. }
  5963. #ifdef CONFIG_NUMA
  5964. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5965. void __user *buffer, size_t *length, loff_t *ppos)
  5966. {
  5967. struct zone *zone;
  5968. int rc;
  5969. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5970. if (rc)
  5971. return rc;
  5972. for_each_zone(zone)
  5973. zone->min_unmapped_pages = (zone->managed_pages *
  5974. sysctl_min_unmapped_ratio) / 100;
  5975. return 0;
  5976. }
  5977. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5978. void __user *buffer, size_t *length, loff_t *ppos)
  5979. {
  5980. struct zone *zone;
  5981. int rc;
  5982. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5983. if (rc)
  5984. return rc;
  5985. for_each_zone(zone)
  5986. zone->min_slab_pages = (zone->managed_pages *
  5987. sysctl_min_slab_ratio) / 100;
  5988. return 0;
  5989. }
  5990. #endif
  5991. /*
  5992. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5993. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5994. * whenever sysctl_lowmem_reserve_ratio changes.
  5995. *
  5996. * The reserve ratio obviously has absolutely no relation with the
  5997. * minimum watermarks. The lowmem reserve ratio can only make sense
  5998. * if in function of the boot time zone sizes.
  5999. */
  6000. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  6001. void __user *buffer, size_t *length, loff_t *ppos)
  6002. {
  6003. proc_dointvec_minmax(table, write, buffer, length, ppos);
  6004. setup_per_zone_lowmem_reserve();
  6005. return 0;
  6006. }
  6007. /*
  6008. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  6009. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  6010. * pagelist can have before it gets flushed back to buddy allocator.
  6011. */
  6012. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  6013. void __user *buffer, size_t *length, loff_t *ppos)
  6014. {
  6015. struct zone *zone;
  6016. int old_percpu_pagelist_fraction;
  6017. int ret;
  6018. mutex_lock(&pcp_batch_high_lock);
  6019. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  6020. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6021. if (!write || ret < 0)
  6022. goto out;
  6023. /* Sanity checking to avoid pcp imbalance */
  6024. if (percpu_pagelist_fraction &&
  6025. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  6026. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  6027. ret = -EINVAL;
  6028. goto out;
  6029. }
  6030. /* No change? */
  6031. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  6032. goto out;
  6033. for_each_populated_zone(zone) {
  6034. unsigned int cpu;
  6035. for_each_possible_cpu(cpu)
  6036. pageset_set_high_and_batch(zone,
  6037. per_cpu_ptr(zone->pageset, cpu));
  6038. }
  6039. out:
  6040. mutex_unlock(&pcp_batch_high_lock);
  6041. return ret;
  6042. }
  6043. #ifdef CONFIG_NUMA
  6044. int hashdist = HASHDIST_DEFAULT;
  6045. static int __init set_hashdist(char *str)
  6046. {
  6047. if (!str)
  6048. return 0;
  6049. hashdist = simple_strtoul(str, &str, 0);
  6050. return 1;
  6051. }
  6052. __setup("hashdist=", set_hashdist);
  6053. #endif
  6054. /*
  6055. * allocate a large system hash table from bootmem
  6056. * - it is assumed that the hash table must contain an exact power-of-2
  6057. * quantity of entries
  6058. * - limit is the number of hash buckets, not the total allocation size
  6059. */
  6060. void *__init alloc_large_system_hash(const char *tablename,
  6061. unsigned long bucketsize,
  6062. unsigned long numentries,
  6063. int scale,
  6064. int flags,
  6065. unsigned int *_hash_shift,
  6066. unsigned int *_hash_mask,
  6067. unsigned long low_limit,
  6068. unsigned long high_limit)
  6069. {
  6070. unsigned long long max = high_limit;
  6071. unsigned long log2qty, size;
  6072. void *table = NULL;
  6073. /* allow the kernel cmdline to have a say */
  6074. if (!numentries) {
  6075. /* round applicable memory size up to nearest megabyte */
  6076. numentries = nr_kernel_pages;
  6077. /* It isn't necessary when PAGE_SIZE >= 1MB */
  6078. if (PAGE_SHIFT < 20)
  6079. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  6080. /* limit to 1 bucket per 2^scale bytes of low memory */
  6081. if (scale > PAGE_SHIFT)
  6082. numentries >>= (scale - PAGE_SHIFT);
  6083. else
  6084. numentries <<= (PAGE_SHIFT - scale);
  6085. /* Make sure we've got at least a 0-order allocation.. */
  6086. if (unlikely(flags & HASH_SMALL)) {
  6087. /* Makes no sense without HASH_EARLY */
  6088. WARN_ON(!(flags & HASH_EARLY));
  6089. if (!(numentries >> *_hash_shift)) {
  6090. numentries = 1UL << *_hash_shift;
  6091. BUG_ON(!numentries);
  6092. }
  6093. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  6094. numentries = PAGE_SIZE / bucketsize;
  6095. }
  6096. numentries = roundup_pow_of_two(numentries);
  6097. /* limit allocation size to 1/16 total memory by default */
  6098. if (max == 0) {
  6099. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  6100. do_div(max, bucketsize);
  6101. }
  6102. max = min(max, 0x80000000ULL);
  6103. if (numentries < low_limit)
  6104. numentries = low_limit;
  6105. if (numentries > max)
  6106. numentries = max;
  6107. log2qty = ilog2(numentries);
  6108. do {
  6109. size = bucketsize << log2qty;
  6110. if (flags & HASH_EARLY)
  6111. table = memblock_virt_alloc_nopanic(size, 0);
  6112. else if (hashdist)
  6113. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  6114. else {
  6115. /*
  6116. * If bucketsize is not a power-of-two, we may free
  6117. * some pages at the end of hash table which
  6118. * alloc_pages_exact() automatically does
  6119. */
  6120. if (get_order(size) < MAX_ORDER) {
  6121. table = alloc_pages_exact(size, GFP_ATOMIC);
  6122. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  6123. }
  6124. }
  6125. } while (!table && size > PAGE_SIZE && --log2qty);
  6126. if (!table)
  6127. panic("Failed to allocate %s hash table\n", tablename);
  6128. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6129. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6130. if (_hash_shift)
  6131. *_hash_shift = log2qty;
  6132. if (_hash_mask)
  6133. *_hash_mask = (1 << log2qty) - 1;
  6134. return table;
  6135. }
  6136. /*
  6137. * This function checks whether pageblock includes unmovable pages or not.
  6138. * If @count is not zero, it is okay to include less @count unmovable pages
  6139. *
  6140. * PageLRU check without isolation or lru_lock could race so that
  6141. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  6142. * expect this function should be exact.
  6143. */
  6144. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6145. bool skip_hwpoisoned_pages)
  6146. {
  6147. unsigned long pfn, iter, found;
  6148. int mt;
  6149. /*
  6150. * For avoiding noise data, lru_add_drain_all() should be called
  6151. * If ZONE_MOVABLE, the zone never contains unmovable pages
  6152. */
  6153. if (zone_idx(zone) == ZONE_MOVABLE)
  6154. return false;
  6155. mt = get_pageblock_migratetype(page);
  6156. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  6157. return false;
  6158. pfn = page_to_pfn(page);
  6159. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6160. unsigned long check = pfn + iter;
  6161. if (!pfn_valid_within(check))
  6162. continue;
  6163. page = pfn_to_page(check);
  6164. /*
  6165. * Hugepages are not in LRU lists, but they're movable.
  6166. * We need not scan over tail pages bacause we don't
  6167. * handle each tail page individually in migration.
  6168. */
  6169. if (PageHuge(page)) {
  6170. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6171. continue;
  6172. }
  6173. /*
  6174. * We can't use page_count without pin a page
  6175. * because another CPU can free compound page.
  6176. * This check already skips compound tails of THP
  6177. * because their page->_refcount is zero at all time.
  6178. */
  6179. if (!page_ref_count(page)) {
  6180. if (PageBuddy(page))
  6181. iter += (1 << page_order(page)) - 1;
  6182. continue;
  6183. }
  6184. /*
  6185. * The HWPoisoned page may be not in buddy system, and
  6186. * page_count() is not 0.
  6187. */
  6188. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6189. continue;
  6190. if (!PageLRU(page))
  6191. found++;
  6192. /*
  6193. * If there are RECLAIMABLE pages, we need to check
  6194. * it. But now, memory offline itself doesn't call
  6195. * shrink_node_slabs() and it still to be fixed.
  6196. */
  6197. /*
  6198. * If the page is not RAM, page_count()should be 0.
  6199. * we don't need more check. This is an _used_ not-movable page.
  6200. *
  6201. * The problematic thing here is PG_reserved pages. PG_reserved
  6202. * is set to both of a memory hole page and a _used_ kernel
  6203. * page at boot.
  6204. */
  6205. if (found > count)
  6206. return true;
  6207. }
  6208. return false;
  6209. }
  6210. bool is_pageblock_removable_nolock(struct page *page)
  6211. {
  6212. struct zone *zone;
  6213. unsigned long pfn;
  6214. /*
  6215. * We have to be careful here because we are iterating over memory
  6216. * sections which are not zone aware so we might end up outside of
  6217. * the zone but still within the section.
  6218. * We have to take care about the node as well. If the node is offline
  6219. * its NODE_DATA will be NULL - see page_zone.
  6220. */
  6221. if (!node_online(page_to_nid(page)))
  6222. return false;
  6223. zone = page_zone(page);
  6224. pfn = page_to_pfn(page);
  6225. if (!zone_spans_pfn(zone, pfn))
  6226. return false;
  6227. return !has_unmovable_pages(zone, page, 0, true);
  6228. }
  6229. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6230. static unsigned long pfn_max_align_down(unsigned long pfn)
  6231. {
  6232. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6233. pageblock_nr_pages) - 1);
  6234. }
  6235. static unsigned long pfn_max_align_up(unsigned long pfn)
  6236. {
  6237. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6238. pageblock_nr_pages));
  6239. }
  6240. /* [start, end) must belong to a single zone. */
  6241. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6242. unsigned long start, unsigned long end)
  6243. {
  6244. /* This function is based on compact_zone() from compaction.c. */
  6245. unsigned long nr_reclaimed;
  6246. unsigned long pfn = start;
  6247. unsigned int tries = 0;
  6248. int ret = 0;
  6249. migrate_prep();
  6250. while (pfn < end || !list_empty(&cc->migratepages)) {
  6251. if (fatal_signal_pending(current)) {
  6252. ret = -EINTR;
  6253. break;
  6254. }
  6255. if (list_empty(&cc->migratepages)) {
  6256. cc->nr_migratepages = 0;
  6257. pfn = isolate_migratepages_range(cc, pfn, end);
  6258. if (!pfn) {
  6259. ret = -EINTR;
  6260. break;
  6261. }
  6262. tries = 0;
  6263. } else if (++tries == 5) {
  6264. ret = ret < 0 ? ret : -EBUSY;
  6265. break;
  6266. }
  6267. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6268. &cc->migratepages);
  6269. cc->nr_migratepages -= nr_reclaimed;
  6270. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6271. NULL, 0, cc->mode, MR_CMA);
  6272. }
  6273. if (ret < 0) {
  6274. putback_movable_pages(&cc->migratepages);
  6275. return ret;
  6276. }
  6277. return 0;
  6278. }
  6279. /**
  6280. * alloc_contig_range() -- tries to allocate given range of pages
  6281. * @start: start PFN to allocate
  6282. * @end: one-past-the-last PFN to allocate
  6283. * @migratetype: migratetype of the underlaying pageblocks (either
  6284. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6285. * in range must have the same migratetype and it must
  6286. * be either of the two.
  6287. *
  6288. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6289. * aligned, however it's the caller's responsibility to guarantee that
  6290. * we are the only thread that changes migrate type of pageblocks the
  6291. * pages fall in.
  6292. *
  6293. * The PFN range must belong to a single zone.
  6294. *
  6295. * Returns zero on success or negative error code. On success all
  6296. * pages which PFN is in [start, end) are allocated for the caller and
  6297. * need to be freed with free_contig_range().
  6298. */
  6299. int alloc_contig_range(unsigned long start, unsigned long end,
  6300. unsigned migratetype)
  6301. {
  6302. unsigned long outer_start, outer_end;
  6303. unsigned int order;
  6304. int ret = 0;
  6305. struct compact_control cc = {
  6306. .nr_migratepages = 0,
  6307. .order = -1,
  6308. .zone = page_zone(pfn_to_page(start)),
  6309. .mode = MIGRATE_SYNC,
  6310. .ignore_skip_hint = true,
  6311. };
  6312. INIT_LIST_HEAD(&cc.migratepages);
  6313. /*
  6314. * What we do here is we mark all pageblocks in range as
  6315. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6316. * have different sizes, and due to the way page allocator
  6317. * work, we align the range to biggest of the two pages so
  6318. * that page allocator won't try to merge buddies from
  6319. * different pageblocks and change MIGRATE_ISOLATE to some
  6320. * other migration type.
  6321. *
  6322. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6323. * migrate the pages from an unaligned range (ie. pages that
  6324. * we are interested in). This will put all the pages in
  6325. * range back to page allocator as MIGRATE_ISOLATE.
  6326. *
  6327. * When this is done, we take the pages in range from page
  6328. * allocator removing them from the buddy system. This way
  6329. * page allocator will never consider using them.
  6330. *
  6331. * This lets us mark the pageblocks back as
  6332. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6333. * aligned range but not in the unaligned, original range are
  6334. * put back to page allocator so that buddy can use them.
  6335. */
  6336. ret = start_isolate_page_range(pfn_max_align_down(start),
  6337. pfn_max_align_up(end), migratetype,
  6338. false);
  6339. if (ret)
  6340. return ret;
  6341. /*
  6342. * In case of -EBUSY, we'd like to know which page causes problem.
  6343. * So, just fall through. We will check it in test_pages_isolated().
  6344. */
  6345. ret = __alloc_contig_migrate_range(&cc, start, end);
  6346. if (ret && ret != -EBUSY)
  6347. goto done;
  6348. /*
  6349. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6350. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6351. * more, all pages in [start, end) are free in page allocator.
  6352. * What we are going to do is to allocate all pages from
  6353. * [start, end) (that is remove them from page allocator).
  6354. *
  6355. * The only problem is that pages at the beginning and at the
  6356. * end of interesting range may be not aligned with pages that
  6357. * page allocator holds, ie. they can be part of higher order
  6358. * pages. Because of this, we reserve the bigger range and
  6359. * once this is done free the pages we are not interested in.
  6360. *
  6361. * We don't have to hold zone->lock here because the pages are
  6362. * isolated thus they won't get removed from buddy.
  6363. */
  6364. lru_add_drain_all();
  6365. drain_all_pages(cc.zone);
  6366. order = 0;
  6367. outer_start = start;
  6368. while (!PageBuddy(pfn_to_page(outer_start))) {
  6369. if (++order >= MAX_ORDER) {
  6370. outer_start = start;
  6371. break;
  6372. }
  6373. outer_start &= ~0UL << order;
  6374. }
  6375. if (outer_start != start) {
  6376. order = page_order(pfn_to_page(outer_start));
  6377. /*
  6378. * outer_start page could be small order buddy page and
  6379. * it doesn't include start page. Adjust outer_start
  6380. * in this case to report failed page properly
  6381. * on tracepoint in test_pages_isolated()
  6382. */
  6383. if (outer_start + (1UL << order) <= start)
  6384. outer_start = start;
  6385. }
  6386. /* Make sure the range is really isolated. */
  6387. if (test_pages_isolated(outer_start, end, false)) {
  6388. pr_info("%s: [%lx, %lx) PFNs busy\n",
  6389. __func__, outer_start, end);
  6390. ret = -EBUSY;
  6391. goto done;
  6392. }
  6393. /* Grab isolated pages from freelists. */
  6394. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6395. if (!outer_end) {
  6396. ret = -EBUSY;
  6397. goto done;
  6398. }
  6399. /* Free head and tail (if any) */
  6400. if (start != outer_start)
  6401. free_contig_range(outer_start, start - outer_start);
  6402. if (end != outer_end)
  6403. free_contig_range(end, outer_end - end);
  6404. done:
  6405. undo_isolate_page_range(pfn_max_align_down(start),
  6406. pfn_max_align_up(end), migratetype);
  6407. return ret;
  6408. }
  6409. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6410. {
  6411. unsigned int count = 0;
  6412. for (; nr_pages--; pfn++) {
  6413. struct page *page = pfn_to_page(pfn);
  6414. count += page_count(page) != 1;
  6415. __free_page(page);
  6416. }
  6417. WARN(count != 0, "%d pages are still in use!\n", count);
  6418. }
  6419. #endif
  6420. #ifdef CONFIG_MEMORY_HOTPLUG
  6421. /*
  6422. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6423. * page high values need to be recalulated.
  6424. */
  6425. void __meminit zone_pcp_update(struct zone *zone)
  6426. {
  6427. unsigned cpu;
  6428. mutex_lock(&pcp_batch_high_lock);
  6429. for_each_possible_cpu(cpu)
  6430. pageset_set_high_and_batch(zone,
  6431. per_cpu_ptr(zone->pageset, cpu));
  6432. mutex_unlock(&pcp_batch_high_lock);
  6433. }
  6434. #endif
  6435. void zone_pcp_reset(struct zone *zone)
  6436. {
  6437. unsigned long flags;
  6438. int cpu;
  6439. struct per_cpu_pageset *pset;
  6440. /* avoid races with drain_pages() */
  6441. local_irq_save(flags);
  6442. if (zone->pageset != &boot_pageset) {
  6443. for_each_online_cpu(cpu) {
  6444. pset = per_cpu_ptr(zone->pageset, cpu);
  6445. drain_zonestat(zone, pset);
  6446. }
  6447. free_percpu(zone->pageset);
  6448. zone->pageset = &boot_pageset;
  6449. }
  6450. local_irq_restore(flags);
  6451. }
  6452. #ifdef CONFIG_MEMORY_HOTREMOVE
  6453. /*
  6454. * All pages in the range must be in a single zone and isolated
  6455. * before calling this.
  6456. */
  6457. void
  6458. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6459. {
  6460. struct page *page;
  6461. struct zone *zone;
  6462. unsigned int order, i;
  6463. unsigned long pfn;
  6464. unsigned long flags;
  6465. /* find the first valid pfn */
  6466. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6467. if (pfn_valid(pfn))
  6468. break;
  6469. if (pfn == end_pfn)
  6470. return;
  6471. zone = page_zone(pfn_to_page(pfn));
  6472. spin_lock_irqsave(&zone->lock, flags);
  6473. pfn = start_pfn;
  6474. while (pfn < end_pfn) {
  6475. if (!pfn_valid(pfn)) {
  6476. pfn++;
  6477. continue;
  6478. }
  6479. page = pfn_to_page(pfn);
  6480. /*
  6481. * The HWPoisoned page may be not in buddy system, and
  6482. * page_count() is not 0.
  6483. */
  6484. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6485. pfn++;
  6486. SetPageReserved(page);
  6487. continue;
  6488. }
  6489. BUG_ON(page_count(page));
  6490. BUG_ON(!PageBuddy(page));
  6491. order = page_order(page);
  6492. #ifdef CONFIG_DEBUG_VM
  6493. pr_info("remove from free list %lx %d %lx\n",
  6494. pfn, 1 << order, end_pfn);
  6495. #endif
  6496. list_del(&page->lru);
  6497. rmv_page_order(page);
  6498. zone->free_area[order].nr_free--;
  6499. for (i = 0; i < (1 << order); i++)
  6500. SetPageReserved((page+i));
  6501. pfn += (1 << order);
  6502. }
  6503. spin_unlock_irqrestore(&zone->lock, flags);
  6504. }
  6505. #endif
  6506. bool is_free_buddy_page(struct page *page)
  6507. {
  6508. struct zone *zone = page_zone(page);
  6509. unsigned long pfn = page_to_pfn(page);
  6510. unsigned long flags;
  6511. unsigned int order;
  6512. spin_lock_irqsave(&zone->lock, flags);
  6513. for (order = 0; order < MAX_ORDER; order++) {
  6514. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6515. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6516. break;
  6517. }
  6518. spin_unlock_irqrestore(&zone->lock, flags);
  6519. return order < MAX_ORDER;
  6520. }