memory.c 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/pfn_t.h>
  49. #include <linux/writeback.h>
  50. #include <linux/memcontrol.h>
  51. #include <linux/mmu_notifier.h>
  52. #include <linux/kallsyms.h>
  53. #include <linux/swapops.h>
  54. #include <linux/elf.h>
  55. #include <linux/gfp.h>
  56. #include <linux/migrate.h>
  57. #include <linux/string.h>
  58. #include <linux/dma-debug.h>
  59. #include <linux/debugfs.h>
  60. #include <linux/userfaultfd_k.h>
  61. #include <linux/dax.h>
  62. #include <asm/io.h>
  63. #include <asm/mmu_context.h>
  64. #include <asm/pgalloc.h>
  65. #include <linux/uaccess.h>
  66. #include <asm/tlb.h>
  67. #include <asm/tlbflush.h>
  68. #include <asm/pgtable.h>
  69. #include "internal.h"
  70. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  71. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  72. #endif
  73. #ifndef CONFIG_NEED_MULTIPLE_NODES
  74. /* use the per-pgdat data instead for discontigmem - mbligh */
  75. unsigned long max_mapnr;
  76. struct page *mem_map;
  77. EXPORT_SYMBOL(max_mapnr);
  78. EXPORT_SYMBOL(mem_map);
  79. #endif
  80. /*
  81. * A number of key systems in x86 including ioremap() rely on the assumption
  82. * that high_memory defines the upper bound on direct map memory, then end
  83. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  84. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  85. * and ZONE_HIGHMEM.
  86. */
  87. void * high_memory;
  88. EXPORT_SYMBOL(high_memory);
  89. /*
  90. * Randomize the address space (stacks, mmaps, brk, etc.).
  91. *
  92. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  93. * as ancient (libc5 based) binaries can segfault. )
  94. */
  95. int randomize_va_space __read_mostly =
  96. #ifdef CONFIG_COMPAT_BRK
  97. 1;
  98. #else
  99. 2;
  100. #endif
  101. static int __init disable_randmaps(char *s)
  102. {
  103. randomize_va_space = 0;
  104. return 1;
  105. }
  106. __setup("norandmaps", disable_randmaps);
  107. unsigned long zero_pfn __read_mostly;
  108. unsigned long highest_memmap_pfn __read_mostly;
  109. EXPORT_SYMBOL(zero_pfn);
  110. /*
  111. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  112. */
  113. static int __init init_zero_pfn(void)
  114. {
  115. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  116. return 0;
  117. }
  118. core_initcall(init_zero_pfn);
  119. #if defined(SPLIT_RSS_COUNTING)
  120. void sync_mm_rss(struct mm_struct *mm)
  121. {
  122. int i;
  123. for (i = 0; i < NR_MM_COUNTERS; i++) {
  124. if (current->rss_stat.count[i]) {
  125. add_mm_counter(mm, i, current->rss_stat.count[i]);
  126. current->rss_stat.count[i] = 0;
  127. }
  128. }
  129. current->rss_stat.events = 0;
  130. }
  131. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  132. {
  133. struct task_struct *task = current;
  134. if (likely(task->mm == mm))
  135. task->rss_stat.count[member] += val;
  136. else
  137. add_mm_counter(mm, member, val);
  138. }
  139. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  140. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  141. /* sync counter once per 64 page faults */
  142. #define TASK_RSS_EVENTS_THRESH (64)
  143. static void check_sync_rss_stat(struct task_struct *task)
  144. {
  145. if (unlikely(task != current))
  146. return;
  147. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  148. sync_mm_rss(task->mm);
  149. }
  150. #else /* SPLIT_RSS_COUNTING */
  151. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  152. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  153. static void check_sync_rss_stat(struct task_struct *task)
  154. {
  155. }
  156. #endif /* SPLIT_RSS_COUNTING */
  157. #ifdef HAVE_GENERIC_MMU_GATHER
  158. static bool tlb_next_batch(struct mmu_gather *tlb)
  159. {
  160. struct mmu_gather_batch *batch;
  161. batch = tlb->active;
  162. if (batch->next) {
  163. tlb->active = batch->next;
  164. return true;
  165. }
  166. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  167. return false;
  168. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  169. if (!batch)
  170. return false;
  171. tlb->batch_count++;
  172. batch->next = NULL;
  173. batch->nr = 0;
  174. batch->max = MAX_GATHER_BATCH;
  175. tlb->active->next = batch;
  176. tlb->active = batch;
  177. return true;
  178. }
  179. /* tlb_gather_mmu
  180. * Called to initialize an (on-stack) mmu_gather structure for page-table
  181. * tear-down from @mm. The @fullmm argument is used when @mm is without
  182. * users and we're going to destroy the full address space (exit/execve).
  183. */
  184. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
  185. {
  186. tlb->mm = mm;
  187. /* Is it from 0 to ~0? */
  188. tlb->fullmm = !(start | (end+1));
  189. tlb->need_flush_all = 0;
  190. tlb->local.next = NULL;
  191. tlb->local.nr = 0;
  192. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  193. tlb->active = &tlb->local;
  194. tlb->batch_count = 0;
  195. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  196. tlb->batch = NULL;
  197. #endif
  198. tlb->page_size = 0;
  199. __tlb_reset_range(tlb);
  200. }
  201. static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
  202. {
  203. if (!tlb->end)
  204. return;
  205. tlb_flush(tlb);
  206. mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
  207. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  208. tlb_table_flush(tlb);
  209. #endif
  210. __tlb_reset_range(tlb);
  211. }
  212. static void tlb_flush_mmu_free(struct mmu_gather *tlb)
  213. {
  214. struct mmu_gather_batch *batch;
  215. for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
  216. free_pages_and_swap_cache(batch->pages, batch->nr);
  217. batch->nr = 0;
  218. }
  219. tlb->active = &tlb->local;
  220. }
  221. void tlb_flush_mmu(struct mmu_gather *tlb)
  222. {
  223. tlb_flush_mmu_tlbonly(tlb);
  224. tlb_flush_mmu_free(tlb);
  225. }
  226. /* tlb_finish_mmu
  227. * Called at the end of the shootdown operation to free up any resources
  228. * that were required.
  229. */
  230. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  231. {
  232. struct mmu_gather_batch *batch, *next;
  233. tlb_flush_mmu(tlb);
  234. /* keep the page table cache within bounds */
  235. check_pgt_cache();
  236. for (batch = tlb->local.next; batch; batch = next) {
  237. next = batch->next;
  238. free_pages((unsigned long)batch, 0);
  239. }
  240. tlb->local.next = NULL;
  241. }
  242. /* __tlb_remove_page
  243. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  244. * handling the additional races in SMP caused by other CPUs caching valid
  245. * mappings in their TLBs. Returns the number of free page slots left.
  246. * When out of page slots we must call tlb_flush_mmu().
  247. *returns true if the caller should flush.
  248. */
  249. bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
  250. {
  251. struct mmu_gather_batch *batch;
  252. VM_BUG_ON(!tlb->end);
  253. VM_WARN_ON(tlb->page_size != page_size);
  254. batch = tlb->active;
  255. /*
  256. * Add the page and check if we are full. If so
  257. * force a flush.
  258. */
  259. batch->pages[batch->nr++] = page;
  260. if (batch->nr == batch->max) {
  261. if (!tlb_next_batch(tlb))
  262. return true;
  263. batch = tlb->active;
  264. }
  265. VM_BUG_ON_PAGE(batch->nr > batch->max, page);
  266. return false;
  267. }
  268. #endif /* HAVE_GENERIC_MMU_GATHER */
  269. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  270. /*
  271. * See the comment near struct mmu_table_batch.
  272. */
  273. static void tlb_remove_table_smp_sync(void *arg)
  274. {
  275. /* Simply deliver the interrupt */
  276. }
  277. static void tlb_remove_table_one(void *table)
  278. {
  279. /*
  280. * This isn't an RCU grace period and hence the page-tables cannot be
  281. * assumed to be actually RCU-freed.
  282. *
  283. * It is however sufficient for software page-table walkers that rely on
  284. * IRQ disabling. See the comment near struct mmu_table_batch.
  285. */
  286. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  287. __tlb_remove_table(table);
  288. }
  289. static void tlb_remove_table_rcu(struct rcu_head *head)
  290. {
  291. struct mmu_table_batch *batch;
  292. int i;
  293. batch = container_of(head, struct mmu_table_batch, rcu);
  294. for (i = 0; i < batch->nr; i++)
  295. __tlb_remove_table(batch->tables[i]);
  296. free_page((unsigned long)batch);
  297. }
  298. void tlb_table_flush(struct mmu_gather *tlb)
  299. {
  300. struct mmu_table_batch **batch = &tlb->batch;
  301. if (*batch) {
  302. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  303. *batch = NULL;
  304. }
  305. }
  306. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  307. {
  308. struct mmu_table_batch **batch = &tlb->batch;
  309. /*
  310. * When there's less then two users of this mm there cannot be a
  311. * concurrent page-table walk.
  312. */
  313. if (atomic_read(&tlb->mm->mm_users) < 2) {
  314. __tlb_remove_table(table);
  315. return;
  316. }
  317. if (*batch == NULL) {
  318. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  319. if (*batch == NULL) {
  320. tlb_remove_table_one(table);
  321. return;
  322. }
  323. (*batch)->nr = 0;
  324. }
  325. (*batch)->tables[(*batch)->nr++] = table;
  326. if ((*batch)->nr == MAX_TABLE_BATCH)
  327. tlb_table_flush(tlb);
  328. }
  329. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  330. /*
  331. * Note: this doesn't free the actual pages themselves. That
  332. * has been handled earlier when unmapping all the memory regions.
  333. */
  334. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  335. unsigned long addr)
  336. {
  337. pgtable_t token = pmd_pgtable(*pmd);
  338. pmd_clear(pmd);
  339. pte_free_tlb(tlb, token, addr);
  340. atomic_long_dec(&tlb->mm->nr_ptes);
  341. }
  342. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  343. unsigned long addr, unsigned long end,
  344. unsigned long floor, unsigned long ceiling)
  345. {
  346. pmd_t *pmd;
  347. unsigned long next;
  348. unsigned long start;
  349. start = addr;
  350. pmd = pmd_offset(pud, addr);
  351. do {
  352. next = pmd_addr_end(addr, end);
  353. if (pmd_none_or_clear_bad(pmd))
  354. continue;
  355. free_pte_range(tlb, pmd, addr);
  356. } while (pmd++, addr = next, addr != end);
  357. start &= PUD_MASK;
  358. if (start < floor)
  359. return;
  360. if (ceiling) {
  361. ceiling &= PUD_MASK;
  362. if (!ceiling)
  363. return;
  364. }
  365. if (end - 1 > ceiling - 1)
  366. return;
  367. pmd = pmd_offset(pud, start);
  368. pud_clear(pud);
  369. pmd_free_tlb(tlb, pmd, start);
  370. mm_dec_nr_pmds(tlb->mm);
  371. }
  372. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  373. unsigned long addr, unsigned long end,
  374. unsigned long floor, unsigned long ceiling)
  375. {
  376. pud_t *pud;
  377. unsigned long next;
  378. unsigned long start;
  379. start = addr;
  380. pud = pud_offset(pgd, addr);
  381. do {
  382. next = pud_addr_end(addr, end);
  383. if (pud_none_or_clear_bad(pud))
  384. continue;
  385. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  386. } while (pud++, addr = next, addr != end);
  387. start &= PGDIR_MASK;
  388. if (start < floor)
  389. return;
  390. if (ceiling) {
  391. ceiling &= PGDIR_MASK;
  392. if (!ceiling)
  393. return;
  394. }
  395. if (end - 1 > ceiling - 1)
  396. return;
  397. pud = pud_offset(pgd, start);
  398. pgd_clear(pgd);
  399. pud_free_tlb(tlb, pud, start);
  400. }
  401. /*
  402. * This function frees user-level page tables of a process.
  403. */
  404. void free_pgd_range(struct mmu_gather *tlb,
  405. unsigned long addr, unsigned long end,
  406. unsigned long floor, unsigned long ceiling)
  407. {
  408. pgd_t *pgd;
  409. unsigned long next;
  410. /*
  411. * The next few lines have given us lots of grief...
  412. *
  413. * Why are we testing PMD* at this top level? Because often
  414. * there will be no work to do at all, and we'd prefer not to
  415. * go all the way down to the bottom just to discover that.
  416. *
  417. * Why all these "- 1"s? Because 0 represents both the bottom
  418. * of the address space and the top of it (using -1 for the
  419. * top wouldn't help much: the masks would do the wrong thing).
  420. * The rule is that addr 0 and floor 0 refer to the bottom of
  421. * the address space, but end 0 and ceiling 0 refer to the top
  422. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  423. * that end 0 case should be mythical).
  424. *
  425. * Wherever addr is brought up or ceiling brought down, we must
  426. * be careful to reject "the opposite 0" before it confuses the
  427. * subsequent tests. But what about where end is brought down
  428. * by PMD_SIZE below? no, end can't go down to 0 there.
  429. *
  430. * Whereas we round start (addr) and ceiling down, by different
  431. * masks at different levels, in order to test whether a table
  432. * now has no other vmas using it, so can be freed, we don't
  433. * bother to round floor or end up - the tests don't need that.
  434. */
  435. addr &= PMD_MASK;
  436. if (addr < floor) {
  437. addr += PMD_SIZE;
  438. if (!addr)
  439. return;
  440. }
  441. if (ceiling) {
  442. ceiling &= PMD_MASK;
  443. if (!ceiling)
  444. return;
  445. }
  446. if (end - 1 > ceiling - 1)
  447. end -= PMD_SIZE;
  448. if (addr > end - 1)
  449. return;
  450. /*
  451. * We add page table cache pages with PAGE_SIZE,
  452. * (see pte_free_tlb()), flush the tlb if we need
  453. */
  454. tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
  455. pgd = pgd_offset(tlb->mm, addr);
  456. do {
  457. next = pgd_addr_end(addr, end);
  458. if (pgd_none_or_clear_bad(pgd))
  459. continue;
  460. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  461. } while (pgd++, addr = next, addr != end);
  462. }
  463. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  464. unsigned long floor, unsigned long ceiling)
  465. {
  466. while (vma) {
  467. struct vm_area_struct *next = vma->vm_next;
  468. unsigned long addr = vma->vm_start;
  469. /*
  470. * Hide vma from rmap and truncate_pagecache before freeing
  471. * pgtables
  472. */
  473. unlink_anon_vmas(vma);
  474. unlink_file_vma(vma);
  475. if (is_vm_hugetlb_page(vma)) {
  476. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  477. floor, next? next->vm_start: ceiling);
  478. } else {
  479. /*
  480. * Optimization: gather nearby vmas into one call down
  481. */
  482. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  483. && !is_vm_hugetlb_page(next)) {
  484. vma = next;
  485. next = vma->vm_next;
  486. unlink_anon_vmas(vma);
  487. unlink_file_vma(vma);
  488. }
  489. free_pgd_range(tlb, addr, vma->vm_end,
  490. floor, next? next->vm_start: ceiling);
  491. }
  492. vma = next;
  493. }
  494. }
  495. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  496. {
  497. spinlock_t *ptl;
  498. pgtable_t new = pte_alloc_one(mm, address);
  499. if (!new)
  500. return -ENOMEM;
  501. /*
  502. * Ensure all pte setup (eg. pte page lock and page clearing) are
  503. * visible before the pte is made visible to other CPUs by being
  504. * put into page tables.
  505. *
  506. * The other side of the story is the pointer chasing in the page
  507. * table walking code (when walking the page table without locking;
  508. * ie. most of the time). Fortunately, these data accesses consist
  509. * of a chain of data-dependent loads, meaning most CPUs (alpha
  510. * being the notable exception) will already guarantee loads are
  511. * seen in-order. See the alpha page table accessors for the
  512. * smp_read_barrier_depends() barriers in page table walking code.
  513. */
  514. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  515. ptl = pmd_lock(mm, pmd);
  516. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  517. atomic_long_inc(&mm->nr_ptes);
  518. pmd_populate(mm, pmd, new);
  519. new = NULL;
  520. }
  521. spin_unlock(ptl);
  522. if (new)
  523. pte_free(mm, new);
  524. return 0;
  525. }
  526. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  527. {
  528. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  529. if (!new)
  530. return -ENOMEM;
  531. smp_wmb(); /* See comment in __pte_alloc */
  532. spin_lock(&init_mm.page_table_lock);
  533. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  534. pmd_populate_kernel(&init_mm, pmd, new);
  535. new = NULL;
  536. }
  537. spin_unlock(&init_mm.page_table_lock);
  538. if (new)
  539. pte_free_kernel(&init_mm, new);
  540. return 0;
  541. }
  542. static inline void init_rss_vec(int *rss)
  543. {
  544. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  545. }
  546. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  547. {
  548. int i;
  549. if (current->mm == mm)
  550. sync_mm_rss(mm);
  551. for (i = 0; i < NR_MM_COUNTERS; i++)
  552. if (rss[i])
  553. add_mm_counter(mm, i, rss[i]);
  554. }
  555. /*
  556. * This function is called to print an error when a bad pte
  557. * is found. For example, we might have a PFN-mapped pte in
  558. * a region that doesn't allow it.
  559. *
  560. * The calling function must still handle the error.
  561. */
  562. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  563. pte_t pte, struct page *page)
  564. {
  565. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  566. pud_t *pud = pud_offset(pgd, addr);
  567. pmd_t *pmd = pmd_offset(pud, addr);
  568. struct address_space *mapping;
  569. pgoff_t index;
  570. static unsigned long resume;
  571. static unsigned long nr_shown;
  572. static unsigned long nr_unshown;
  573. /*
  574. * Allow a burst of 60 reports, then keep quiet for that minute;
  575. * or allow a steady drip of one report per second.
  576. */
  577. if (nr_shown == 60) {
  578. if (time_before(jiffies, resume)) {
  579. nr_unshown++;
  580. return;
  581. }
  582. if (nr_unshown) {
  583. pr_alert("BUG: Bad page map: %lu messages suppressed\n",
  584. nr_unshown);
  585. nr_unshown = 0;
  586. }
  587. nr_shown = 0;
  588. }
  589. if (nr_shown++ == 0)
  590. resume = jiffies + 60 * HZ;
  591. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  592. index = linear_page_index(vma, addr);
  593. pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  594. current->comm,
  595. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  596. if (page)
  597. dump_page(page, "bad pte");
  598. pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  599. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  600. /*
  601. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  602. */
  603. pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
  604. vma->vm_file,
  605. vma->vm_ops ? vma->vm_ops->fault : NULL,
  606. vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
  607. mapping ? mapping->a_ops->readpage : NULL);
  608. dump_stack();
  609. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  610. }
  611. /*
  612. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  613. *
  614. * "Special" mappings do not wish to be associated with a "struct page" (either
  615. * it doesn't exist, or it exists but they don't want to touch it). In this
  616. * case, NULL is returned here. "Normal" mappings do have a struct page.
  617. *
  618. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  619. * pte bit, in which case this function is trivial. Secondly, an architecture
  620. * may not have a spare pte bit, which requires a more complicated scheme,
  621. * described below.
  622. *
  623. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  624. * special mapping (even if there are underlying and valid "struct pages").
  625. * COWed pages of a VM_PFNMAP are always normal.
  626. *
  627. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  628. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  629. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  630. * mapping will always honor the rule
  631. *
  632. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  633. *
  634. * And for normal mappings this is false.
  635. *
  636. * This restricts such mappings to be a linear translation from virtual address
  637. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  638. * as the vma is not a COW mapping; in that case, we know that all ptes are
  639. * special (because none can have been COWed).
  640. *
  641. *
  642. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  643. *
  644. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  645. * page" backing, however the difference is that _all_ pages with a struct
  646. * page (that is, those where pfn_valid is true) are refcounted and considered
  647. * normal pages by the VM. The disadvantage is that pages are refcounted
  648. * (which can be slower and simply not an option for some PFNMAP users). The
  649. * advantage is that we don't have to follow the strict linearity rule of
  650. * PFNMAP mappings in order to support COWable mappings.
  651. *
  652. */
  653. #ifdef __HAVE_ARCH_PTE_SPECIAL
  654. # define HAVE_PTE_SPECIAL 1
  655. #else
  656. # define HAVE_PTE_SPECIAL 0
  657. #endif
  658. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  659. pte_t pte)
  660. {
  661. unsigned long pfn = pte_pfn(pte);
  662. if (HAVE_PTE_SPECIAL) {
  663. if (likely(!pte_special(pte)))
  664. goto check_pfn;
  665. if (vma->vm_ops && vma->vm_ops->find_special_page)
  666. return vma->vm_ops->find_special_page(vma, addr);
  667. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  668. return NULL;
  669. if (!is_zero_pfn(pfn))
  670. print_bad_pte(vma, addr, pte, NULL);
  671. return NULL;
  672. }
  673. /* !HAVE_PTE_SPECIAL case follows: */
  674. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  675. if (vma->vm_flags & VM_MIXEDMAP) {
  676. if (!pfn_valid(pfn))
  677. return NULL;
  678. goto out;
  679. } else {
  680. unsigned long off;
  681. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  682. if (pfn == vma->vm_pgoff + off)
  683. return NULL;
  684. if (!is_cow_mapping(vma->vm_flags))
  685. return NULL;
  686. }
  687. }
  688. if (is_zero_pfn(pfn))
  689. return NULL;
  690. check_pfn:
  691. if (unlikely(pfn > highest_memmap_pfn)) {
  692. print_bad_pte(vma, addr, pte, NULL);
  693. return NULL;
  694. }
  695. /*
  696. * NOTE! We still have PageReserved() pages in the page tables.
  697. * eg. VDSO mappings can cause them to exist.
  698. */
  699. out:
  700. return pfn_to_page(pfn);
  701. }
  702. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  703. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  704. pmd_t pmd)
  705. {
  706. unsigned long pfn = pmd_pfn(pmd);
  707. /*
  708. * There is no pmd_special() but there may be special pmds, e.g.
  709. * in a direct-access (dax) mapping, so let's just replicate the
  710. * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
  711. */
  712. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  713. if (vma->vm_flags & VM_MIXEDMAP) {
  714. if (!pfn_valid(pfn))
  715. return NULL;
  716. goto out;
  717. } else {
  718. unsigned long off;
  719. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  720. if (pfn == vma->vm_pgoff + off)
  721. return NULL;
  722. if (!is_cow_mapping(vma->vm_flags))
  723. return NULL;
  724. }
  725. }
  726. if (is_zero_pfn(pfn))
  727. return NULL;
  728. if (unlikely(pfn > highest_memmap_pfn))
  729. return NULL;
  730. /*
  731. * NOTE! We still have PageReserved() pages in the page tables.
  732. * eg. VDSO mappings can cause them to exist.
  733. */
  734. out:
  735. return pfn_to_page(pfn);
  736. }
  737. #endif
  738. /*
  739. * copy one vm_area from one task to the other. Assumes the page tables
  740. * already present in the new task to be cleared in the whole range
  741. * covered by this vma.
  742. */
  743. static inline unsigned long
  744. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  745. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  746. unsigned long addr, int *rss)
  747. {
  748. unsigned long vm_flags = vma->vm_flags;
  749. pte_t pte = *src_pte;
  750. struct page *page;
  751. /* pte contains position in swap or file, so copy. */
  752. if (unlikely(!pte_present(pte))) {
  753. swp_entry_t entry = pte_to_swp_entry(pte);
  754. if (likely(!non_swap_entry(entry))) {
  755. if (swap_duplicate(entry) < 0)
  756. return entry.val;
  757. /* make sure dst_mm is on swapoff's mmlist. */
  758. if (unlikely(list_empty(&dst_mm->mmlist))) {
  759. spin_lock(&mmlist_lock);
  760. if (list_empty(&dst_mm->mmlist))
  761. list_add(&dst_mm->mmlist,
  762. &src_mm->mmlist);
  763. spin_unlock(&mmlist_lock);
  764. }
  765. rss[MM_SWAPENTS]++;
  766. } else if (is_migration_entry(entry)) {
  767. page = migration_entry_to_page(entry);
  768. rss[mm_counter(page)]++;
  769. if (is_write_migration_entry(entry) &&
  770. is_cow_mapping(vm_flags)) {
  771. /*
  772. * COW mappings require pages in both
  773. * parent and child to be set to read.
  774. */
  775. make_migration_entry_read(&entry);
  776. pte = swp_entry_to_pte(entry);
  777. if (pte_swp_soft_dirty(*src_pte))
  778. pte = pte_swp_mksoft_dirty(pte);
  779. set_pte_at(src_mm, addr, src_pte, pte);
  780. }
  781. }
  782. goto out_set_pte;
  783. }
  784. /*
  785. * If it's a COW mapping, write protect it both
  786. * in the parent and the child
  787. */
  788. if (is_cow_mapping(vm_flags)) {
  789. ptep_set_wrprotect(src_mm, addr, src_pte);
  790. pte = pte_wrprotect(pte);
  791. }
  792. /*
  793. * If it's a shared mapping, mark it clean in
  794. * the child
  795. */
  796. if (vm_flags & VM_SHARED)
  797. pte = pte_mkclean(pte);
  798. pte = pte_mkold(pte);
  799. page = vm_normal_page(vma, addr, pte);
  800. if (page) {
  801. get_page(page);
  802. page_dup_rmap(page, false);
  803. rss[mm_counter(page)]++;
  804. }
  805. out_set_pte:
  806. set_pte_at(dst_mm, addr, dst_pte, pte);
  807. return 0;
  808. }
  809. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  810. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  811. unsigned long addr, unsigned long end)
  812. {
  813. pte_t *orig_src_pte, *orig_dst_pte;
  814. pte_t *src_pte, *dst_pte;
  815. spinlock_t *src_ptl, *dst_ptl;
  816. int progress = 0;
  817. int rss[NR_MM_COUNTERS];
  818. swp_entry_t entry = (swp_entry_t){0};
  819. again:
  820. init_rss_vec(rss);
  821. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  822. if (!dst_pte)
  823. return -ENOMEM;
  824. src_pte = pte_offset_map(src_pmd, addr);
  825. src_ptl = pte_lockptr(src_mm, src_pmd);
  826. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  827. orig_src_pte = src_pte;
  828. orig_dst_pte = dst_pte;
  829. arch_enter_lazy_mmu_mode();
  830. do {
  831. /*
  832. * We are holding two locks at this point - either of them
  833. * could generate latencies in another task on another CPU.
  834. */
  835. if (progress >= 32) {
  836. progress = 0;
  837. if (need_resched() ||
  838. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  839. break;
  840. }
  841. if (pte_none(*src_pte)) {
  842. progress++;
  843. continue;
  844. }
  845. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  846. vma, addr, rss);
  847. if (entry.val)
  848. break;
  849. progress += 8;
  850. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  851. arch_leave_lazy_mmu_mode();
  852. spin_unlock(src_ptl);
  853. pte_unmap(orig_src_pte);
  854. add_mm_rss_vec(dst_mm, rss);
  855. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  856. cond_resched();
  857. if (entry.val) {
  858. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  859. return -ENOMEM;
  860. progress = 0;
  861. }
  862. if (addr != end)
  863. goto again;
  864. return 0;
  865. }
  866. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  867. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  868. unsigned long addr, unsigned long end)
  869. {
  870. pmd_t *src_pmd, *dst_pmd;
  871. unsigned long next;
  872. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  873. if (!dst_pmd)
  874. return -ENOMEM;
  875. src_pmd = pmd_offset(src_pud, addr);
  876. do {
  877. next = pmd_addr_end(addr, end);
  878. if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
  879. int err;
  880. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  881. err = copy_huge_pmd(dst_mm, src_mm,
  882. dst_pmd, src_pmd, addr, vma);
  883. if (err == -ENOMEM)
  884. return -ENOMEM;
  885. if (!err)
  886. continue;
  887. /* fall through */
  888. }
  889. if (pmd_none_or_clear_bad(src_pmd))
  890. continue;
  891. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  892. vma, addr, next))
  893. return -ENOMEM;
  894. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  895. return 0;
  896. }
  897. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  898. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  899. unsigned long addr, unsigned long end)
  900. {
  901. pud_t *src_pud, *dst_pud;
  902. unsigned long next;
  903. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  904. if (!dst_pud)
  905. return -ENOMEM;
  906. src_pud = pud_offset(src_pgd, addr);
  907. do {
  908. next = pud_addr_end(addr, end);
  909. if (pud_none_or_clear_bad(src_pud))
  910. continue;
  911. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  912. vma, addr, next))
  913. return -ENOMEM;
  914. } while (dst_pud++, src_pud++, addr = next, addr != end);
  915. return 0;
  916. }
  917. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  918. struct vm_area_struct *vma)
  919. {
  920. pgd_t *src_pgd, *dst_pgd;
  921. unsigned long next;
  922. unsigned long addr = vma->vm_start;
  923. unsigned long end = vma->vm_end;
  924. unsigned long mmun_start; /* For mmu_notifiers */
  925. unsigned long mmun_end; /* For mmu_notifiers */
  926. bool is_cow;
  927. int ret;
  928. /*
  929. * Don't copy ptes where a page fault will fill them correctly.
  930. * Fork becomes much lighter when there are big shared or private
  931. * readonly mappings. The tradeoff is that copy_page_range is more
  932. * efficient than faulting.
  933. */
  934. if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
  935. !vma->anon_vma)
  936. return 0;
  937. if (is_vm_hugetlb_page(vma))
  938. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  939. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  940. /*
  941. * We do not free on error cases below as remove_vma
  942. * gets called on error from higher level routine
  943. */
  944. ret = track_pfn_copy(vma);
  945. if (ret)
  946. return ret;
  947. }
  948. /*
  949. * We need to invalidate the secondary MMU mappings only when
  950. * there could be a permission downgrade on the ptes of the
  951. * parent mm. And a permission downgrade will only happen if
  952. * is_cow_mapping() returns true.
  953. */
  954. is_cow = is_cow_mapping(vma->vm_flags);
  955. mmun_start = addr;
  956. mmun_end = end;
  957. if (is_cow)
  958. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  959. mmun_end);
  960. ret = 0;
  961. dst_pgd = pgd_offset(dst_mm, addr);
  962. src_pgd = pgd_offset(src_mm, addr);
  963. do {
  964. next = pgd_addr_end(addr, end);
  965. if (pgd_none_or_clear_bad(src_pgd))
  966. continue;
  967. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  968. vma, addr, next))) {
  969. ret = -ENOMEM;
  970. break;
  971. }
  972. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  973. if (is_cow)
  974. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  975. return ret;
  976. }
  977. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  978. struct vm_area_struct *vma, pmd_t *pmd,
  979. unsigned long addr, unsigned long end,
  980. struct zap_details *details)
  981. {
  982. struct mm_struct *mm = tlb->mm;
  983. int force_flush = 0;
  984. int rss[NR_MM_COUNTERS];
  985. spinlock_t *ptl;
  986. pte_t *start_pte;
  987. pte_t *pte;
  988. swp_entry_t entry;
  989. tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
  990. again:
  991. init_rss_vec(rss);
  992. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  993. pte = start_pte;
  994. arch_enter_lazy_mmu_mode();
  995. do {
  996. pte_t ptent = *pte;
  997. if (pte_none(ptent)) {
  998. continue;
  999. }
  1000. if (pte_present(ptent)) {
  1001. struct page *page;
  1002. page = vm_normal_page(vma, addr, ptent);
  1003. if (unlikely(details) && page) {
  1004. /*
  1005. * unmap_shared_mapping_pages() wants to
  1006. * invalidate cache without truncating:
  1007. * unmap shared but keep private pages.
  1008. */
  1009. if (details->check_mapping &&
  1010. details->check_mapping != page_rmapping(page))
  1011. continue;
  1012. }
  1013. ptent = ptep_get_and_clear_full(mm, addr, pte,
  1014. tlb->fullmm);
  1015. tlb_remove_tlb_entry(tlb, pte, addr);
  1016. if (unlikely(!page))
  1017. continue;
  1018. if (!PageAnon(page)) {
  1019. if (pte_dirty(ptent)) {
  1020. force_flush = 1;
  1021. set_page_dirty(page);
  1022. }
  1023. if (pte_young(ptent) &&
  1024. likely(!(vma->vm_flags & VM_SEQ_READ)))
  1025. mark_page_accessed(page);
  1026. }
  1027. rss[mm_counter(page)]--;
  1028. page_remove_rmap(page, false);
  1029. if (unlikely(page_mapcount(page) < 0))
  1030. print_bad_pte(vma, addr, ptent, page);
  1031. if (unlikely(__tlb_remove_page(tlb, page))) {
  1032. force_flush = 1;
  1033. addr += PAGE_SIZE;
  1034. break;
  1035. }
  1036. continue;
  1037. }
  1038. /* If details->check_mapping, we leave swap entries. */
  1039. if (unlikely(details))
  1040. continue;
  1041. entry = pte_to_swp_entry(ptent);
  1042. if (!non_swap_entry(entry))
  1043. rss[MM_SWAPENTS]--;
  1044. else if (is_migration_entry(entry)) {
  1045. struct page *page;
  1046. page = migration_entry_to_page(entry);
  1047. rss[mm_counter(page)]--;
  1048. }
  1049. if (unlikely(!free_swap_and_cache(entry)))
  1050. print_bad_pte(vma, addr, ptent, NULL);
  1051. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1052. } while (pte++, addr += PAGE_SIZE, addr != end);
  1053. add_mm_rss_vec(mm, rss);
  1054. arch_leave_lazy_mmu_mode();
  1055. /* Do the actual TLB flush before dropping ptl */
  1056. if (force_flush)
  1057. tlb_flush_mmu_tlbonly(tlb);
  1058. pte_unmap_unlock(start_pte, ptl);
  1059. /*
  1060. * If we forced a TLB flush (either due to running out of
  1061. * batch buffers or because we needed to flush dirty TLB
  1062. * entries before releasing the ptl), free the batched
  1063. * memory too. Restart if we didn't do everything.
  1064. */
  1065. if (force_flush) {
  1066. force_flush = 0;
  1067. tlb_flush_mmu_free(tlb);
  1068. if (addr != end)
  1069. goto again;
  1070. }
  1071. return addr;
  1072. }
  1073. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1074. struct vm_area_struct *vma, pud_t *pud,
  1075. unsigned long addr, unsigned long end,
  1076. struct zap_details *details)
  1077. {
  1078. pmd_t *pmd;
  1079. unsigned long next;
  1080. pmd = pmd_offset(pud, addr);
  1081. do {
  1082. next = pmd_addr_end(addr, end);
  1083. if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
  1084. if (next - addr != HPAGE_PMD_SIZE) {
  1085. VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
  1086. !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
  1087. __split_huge_pmd(vma, pmd, addr, false, NULL);
  1088. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1089. goto next;
  1090. /* fall through */
  1091. }
  1092. /*
  1093. * Here there can be other concurrent MADV_DONTNEED or
  1094. * trans huge page faults running, and if the pmd is
  1095. * none or trans huge it can change under us. This is
  1096. * because MADV_DONTNEED holds the mmap_sem in read
  1097. * mode.
  1098. */
  1099. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1100. goto next;
  1101. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1102. next:
  1103. cond_resched();
  1104. } while (pmd++, addr = next, addr != end);
  1105. return addr;
  1106. }
  1107. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1108. struct vm_area_struct *vma, pgd_t *pgd,
  1109. unsigned long addr, unsigned long end,
  1110. struct zap_details *details)
  1111. {
  1112. pud_t *pud;
  1113. unsigned long next;
  1114. pud = pud_offset(pgd, addr);
  1115. do {
  1116. next = pud_addr_end(addr, end);
  1117. if (pud_none_or_clear_bad(pud))
  1118. continue;
  1119. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1120. } while (pud++, addr = next, addr != end);
  1121. return addr;
  1122. }
  1123. void unmap_page_range(struct mmu_gather *tlb,
  1124. struct vm_area_struct *vma,
  1125. unsigned long addr, unsigned long end,
  1126. struct zap_details *details)
  1127. {
  1128. pgd_t *pgd;
  1129. unsigned long next;
  1130. BUG_ON(addr >= end);
  1131. tlb_start_vma(tlb, vma);
  1132. pgd = pgd_offset(vma->vm_mm, addr);
  1133. do {
  1134. next = pgd_addr_end(addr, end);
  1135. if (pgd_none_or_clear_bad(pgd))
  1136. continue;
  1137. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1138. } while (pgd++, addr = next, addr != end);
  1139. tlb_end_vma(tlb, vma);
  1140. }
  1141. static void unmap_single_vma(struct mmu_gather *tlb,
  1142. struct vm_area_struct *vma, unsigned long start_addr,
  1143. unsigned long end_addr,
  1144. struct zap_details *details)
  1145. {
  1146. unsigned long start = max(vma->vm_start, start_addr);
  1147. unsigned long end;
  1148. if (start >= vma->vm_end)
  1149. return;
  1150. end = min(vma->vm_end, end_addr);
  1151. if (end <= vma->vm_start)
  1152. return;
  1153. if (vma->vm_file)
  1154. uprobe_munmap(vma, start, end);
  1155. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1156. untrack_pfn(vma, 0, 0);
  1157. if (start != end) {
  1158. if (unlikely(is_vm_hugetlb_page(vma))) {
  1159. /*
  1160. * It is undesirable to test vma->vm_file as it
  1161. * should be non-null for valid hugetlb area.
  1162. * However, vm_file will be NULL in the error
  1163. * cleanup path of mmap_region. When
  1164. * hugetlbfs ->mmap method fails,
  1165. * mmap_region() nullifies vma->vm_file
  1166. * before calling this function to clean up.
  1167. * Since no pte has actually been setup, it is
  1168. * safe to do nothing in this case.
  1169. */
  1170. if (vma->vm_file) {
  1171. i_mmap_lock_write(vma->vm_file->f_mapping);
  1172. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1173. i_mmap_unlock_write(vma->vm_file->f_mapping);
  1174. }
  1175. } else
  1176. unmap_page_range(tlb, vma, start, end, details);
  1177. }
  1178. }
  1179. /**
  1180. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1181. * @tlb: address of the caller's struct mmu_gather
  1182. * @vma: the starting vma
  1183. * @start_addr: virtual address at which to start unmapping
  1184. * @end_addr: virtual address at which to end unmapping
  1185. *
  1186. * Unmap all pages in the vma list.
  1187. *
  1188. * Only addresses between `start' and `end' will be unmapped.
  1189. *
  1190. * The VMA list must be sorted in ascending virtual address order.
  1191. *
  1192. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1193. * range after unmap_vmas() returns. So the only responsibility here is to
  1194. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1195. * drops the lock and schedules.
  1196. */
  1197. void unmap_vmas(struct mmu_gather *tlb,
  1198. struct vm_area_struct *vma, unsigned long start_addr,
  1199. unsigned long end_addr)
  1200. {
  1201. struct mm_struct *mm = vma->vm_mm;
  1202. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1203. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1204. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1205. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1206. }
  1207. /**
  1208. * zap_page_range - remove user pages in a given range
  1209. * @vma: vm_area_struct holding the applicable pages
  1210. * @start: starting address of pages to zap
  1211. * @size: number of bytes to zap
  1212. *
  1213. * Caller must protect the VMA list
  1214. */
  1215. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1216. unsigned long size)
  1217. {
  1218. struct mm_struct *mm = vma->vm_mm;
  1219. struct mmu_gather tlb;
  1220. unsigned long end = start + size;
  1221. lru_add_drain();
  1222. tlb_gather_mmu(&tlb, mm, start, end);
  1223. update_hiwater_rss(mm);
  1224. mmu_notifier_invalidate_range_start(mm, start, end);
  1225. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1226. unmap_single_vma(&tlb, vma, start, end, NULL);
  1227. mmu_notifier_invalidate_range_end(mm, start, end);
  1228. tlb_finish_mmu(&tlb, start, end);
  1229. }
  1230. /**
  1231. * zap_page_range_single - remove user pages in a given range
  1232. * @vma: vm_area_struct holding the applicable pages
  1233. * @address: starting address of pages to zap
  1234. * @size: number of bytes to zap
  1235. * @details: details of shared cache invalidation
  1236. *
  1237. * The range must fit into one VMA.
  1238. */
  1239. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1240. unsigned long size, struct zap_details *details)
  1241. {
  1242. struct mm_struct *mm = vma->vm_mm;
  1243. struct mmu_gather tlb;
  1244. unsigned long end = address + size;
  1245. lru_add_drain();
  1246. tlb_gather_mmu(&tlb, mm, address, end);
  1247. update_hiwater_rss(mm);
  1248. mmu_notifier_invalidate_range_start(mm, address, end);
  1249. unmap_single_vma(&tlb, vma, address, end, details);
  1250. mmu_notifier_invalidate_range_end(mm, address, end);
  1251. tlb_finish_mmu(&tlb, address, end);
  1252. }
  1253. /**
  1254. * zap_vma_ptes - remove ptes mapping the vma
  1255. * @vma: vm_area_struct holding ptes to be zapped
  1256. * @address: starting address of pages to zap
  1257. * @size: number of bytes to zap
  1258. *
  1259. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1260. *
  1261. * The entire address range must be fully contained within the vma.
  1262. *
  1263. * Returns 0 if successful.
  1264. */
  1265. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1266. unsigned long size)
  1267. {
  1268. if (address < vma->vm_start || address + size > vma->vm_end ||
  1269. !(vma->vm_flags & VM_PFNMAP))
  1270. return -1;
  1271. zap_page_range_single(vma, address, size, NULL);
  1272. return 0;
  1273. }
  1274. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1275. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1276. spinlock_t **ptl)
  1277. {
  1278. pgd_t * pgd = pgd_offset(mm, addr);
  1279. pud_t * pud = pud_alloc(mm, pgd, addr);
  1280. if (pud) {
  1281. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1282. if (pmd) {
  1283. VM_BUG_ON(pmd_trans_huge(*pmd));
  1284. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1285. }
  1286. }
  1287. return NULL;
  1288. }
  1289. /*
  1290. * This is the old fallback for page remapping.
  1291. *
  1292. * For historical reasons, it only allows reserved pages. Only
  1293. * old drivers should use this, and they needed to mark their
  1294. * pages reserved for the old functions anyway.
  1295. */
  1296. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1297. struct page *page, pgprot_t prot)
  1298. {
  1299. struct mm_struct *mm = vma->vm_mm;
  1300. int retval;
  1301. pte_t *pte;
  1302. spinlock_t *ptl;
  1303. retval = -EINVAL;
  1304. if (PageAnon(page))
  1305. goto out;
  1306. retval = -ENOMEM;
  1307. flush_dcache_page(page);
  1308. pte = get_locked_pte(mm, addr, &ptl);
  1309. if (!pte)
  1310. goto out;
  1311. retval = -EBUSY;
  1312. if (!pte_none(*pte))
  1313. goto out_unlock;
  1314. /* Ok, finally just insert the thing.. */
  1315. get_page(page);
  1316. inc_mm_counter_fast(mm, mm_counter_file(page));
  1317. page_add_file_rmap(page, false);
  1318. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1319. retval = 0;
  1320. pte_unmap_unlock(pte, ptl);
  1321. return retval;
  1322. out_unlock:
  1323. pte_unmap_unlock(pte, ptl);
  1324. out:
  1325. return retval;
  1326. }
  1327. /**
  1328. * vm_insert_page - insert single page into user vma
  1329. * @vma: user vma to map to
  1330. * @addr: target user address of this page
  1331. * @page: source kernel page
  1332. *
  1333. * This allows drivers to insert individual pages they've allocated
  1334. * into a user vma.
  1335. *
  1336. * The page has to be a nice clean _individual_ kernel allocation.
  1337. * If you allocate a compound page, you need to have marked it as
  1338. * such (__GFP_COMP), or manually just split the page up yourself
  1339. * (see split_page()).
  1340. *
  1341. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1342. * took an arbitrary page protection parameter. This doesn't allow
  1343. * that. Your vma protection will have to be set up correctly, which
  1344. * means that if you want a shared writable mapping, you'd better
  1345. * ask for a shared writable mapping!
  1346. *
  1347. * The page does not need to be reserved.
  1348. *
  1349. * Usually this function is called from f_op->mmap() handler
  1350. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1351. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1352. * function from other places, for example from page-fault handler.
  1353. */
  1354. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1355. struct page *page)
  1356. {
  1357. if (addr < vma->vm_start || addr >= vma->vm_end)
  1358. return -EFAULT;
  1359. if (!page_count(page))
  1360. return -EINVAL;
  1361. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1362. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1363. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1364. vma->vm_flags |= VM_MIXEDMAP;
  1365. }
  1366. return insert_page(vma, addr, page, vma->vm_page_prot);
  1367. }
  1368. EXPORT_SYMBOL(vm_insert_page);
  1369. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1370. pfn_t pfn, pgprot_t prot)
  1371. {
  1372. struct mm_struct *mm = vma->vm_mm;
  1373. int retval;
  1374. pte_t *pte, entry;
  1375. spinlock_t *ptl;
  1376. retval = -ENOMEM;
  1377. pte = get_locked_pte(mm, addr, &ptl);
  1378. if (!pte)
  1379. goto out;
  1380. retval = -EBUSY;
  1381. if (!pte_none(*pte))
  1382. goto out_unlock;
  1383. /* Ok, finally just insert the thing.. */
  1384. if (pfn_t_devmap(pfn))
  1385. entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
  1386. else
  1387. entry = pte_mkspecial(pfn_t_pte(pfn, prot));
  1388. set_pte_at(mm, addr, pte, entry);
  1389. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1390. retval = 0;
  1391. out_unlock:
  1392. pte_unmap_unlock(pte, ptl);
  1393. out:
  1394. return retval;
  1395. }
  1396. /**
  1397. * vm_insert_pfn - insert single pfn into user vma
  1398. * @vma: user vma to map to
  1399. * @addr: target user address of this page
  1400. * @pfn: source kernel pfn
  1401. *
  1402. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1403. * they've allocated into a user vma. Same comments apply.
  1404. *
  1405. * This function should only be called from a vm_ops->fault handler, and
  1406. * in that case the handler should return NULL.
  1407. *
  1408. * vma cannot be a COW mapping.
  1409. *
  1410. * As this is called only for pages that do not currently exist, we
  1411. * do not need to flush old virtual caches or the TLB.
  1412. */
  1413. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1414. unsigned long pfn)
  1415. {
  1416. return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
  1417. }
  1418. EXPORT_SYMBOL(vm_insert_pfn);
  1419. /**
  1420. * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
  1421. * @vma: user vma to map to
  1422. * @addr: target user address of this page
  1423. * @pfn: source kernel pfn
  1424. * @pgprot: pgprot flags for the inserted page
  1425. *
  1426. * This is exactly like vm_insert_pfn, except that it allows drivers to
  1427. * to override pgprot on a per-page basis.
  1428. *
  1429. * This only makes sense for IO mappings, and it makes no sense for
  1430. * cow mappings. In general, using multiple vmas is preferable;
  1431. * vm_insert_pfn_prot should only be used if using multiple VMAs is
  1432. * impractical.
  1433. */
  1434. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  1435. unsigned long pfn, pgprot_t pgprot)
  1436. {
  1437. int ret;
  1438. /*
  1439. * Technically, architectures with pte_special can avoid all these
  1440. * restrictions (same for remap_pfn_range). However we would like
  1441. * consistency in testing and feature parity among all, so we should
  1442. * try to keep these invariants in place for everybody.
  1443. */
  1444. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1445. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1446. (VM_PFNMAP|VM_MIXEDMAP));
  1447. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1448. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1449. if (addr < vma->vm_start || addr >= vma->vm_end)
  1450. return -EFAULT;
  1451. track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
  1452. ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
  1453. return ret;
  1454. }
  1455. EXPORT_SYMBOL(vm_insert_pfn_prot);
  1456. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1457. pfn_t pfn)
  1458. {
  1459. pgprot_t pgprot = vma->vm_page_prot;
  1460. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1461. if (addr < vma->vm_start || addr >= vma->vm_end)
  1462. return -EFAULT;
  1463. track_pfn_insert(vma, &pgprot, pfn);
  1464. /*
  1465. * If we don't have pte special, then we have to use the pfn_valid()
  1466. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1467. * refcount the page if pfn_valid is true (hence insert_page rather
  1468. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1469. * without pte special, it would there be refcounted as a normal page.
  1470. */
  1471. if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
  1472. struct page *page;
  1473. /*
  1474. * At this point we are committed to insert_page()
  1475. * regardless of whether the caller specified flags that
  1476. * result in pfn_t_has_page() == false.
  1477. */
  1478. page = pfn_to_page(pfn_t_to_pfn(pfn));
  1479. return insert_page(vma, addr, page, pgprot);
  1480. }
  1481. return insert_pfn(vma, addr, pfn, pgprot);
  1482. }
  1483. EXPORT_SYMBOL(vm_insert_mixed);
  1484. /*
  1485. * maps a range of physical memory into the requested pages. the old
  1486. * mappings are removed. any references to nonexistent pages results
  1487. * in null mappings (currently treated as "copy-on-access")
  1488. */
  1489. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1490. unsigned long addr, unsigned long end,
  1491. unsigned long pfn, pgprot_t prot)
  1492. {
  1493. pte_t *pte;
  1494. spinlock_t *ptl;
  1495. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1496. if (!pte)
  1497. return -ENOMEM;
  1498. arch_enter_lazy_mmu_mode();
  1499. do {
  1500. BUG_ON(!pte_none(*pte));
  1501. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1502. pfn++;
  1503. } while (pte++, addr += PAGE_SIZE, addr != end);
  1504. arch_leave_lazy_mmu_mode();
  1505. pte_unmap_unlock(pte - 1, ptl);
  1506. return 0;
  1507. }
  1508. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1509. unsigned long addr, unsigned long end,
  1510. unsigned long pfn, pgprot_t prot)
  1511. {
  1512. pmd_t *pmd;
  1513. unsigned long next;
  1514. pfn -= addr >> PAGE_SHIFT;
  1515. pmd = pmd_alloc(mm, pud, addr);
  1516. if (!pmd)
  1517. return -ENOMEM;
  1518. VM_BUG_ON(pmd_trans_huge(*pmd));
  1519. do {
  1520. next = pmd_addr_end(addr, end);
  1521. if (remap_pte_range(mm, pmd, addr, next,
  1522. pfn + (addr >> PAGE_SHIFT), prot))
  1523. return -ENOMEM;
  1524. } while (pmd++, addr = next, addr != end);
  1525. return 0;
  1526. }
  1527. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1528. unsigned long addr, unsigned long end,
  1529. unsigned long pfn, pgprot_t prot)
  1530. {
  1531. pud_t *pud;
  1532. unsigned long next;
  1533. pfn -= addr >> PAGE_SHIFT;
  1534. pud = pud_alloc(mm, pgd, addr);
  1535. if (!pud)
  1536. return -ENOMEM;
  1537. do {
  1538. next = pud_addr_end(addr, end);
  1539. if (remap_pmd_range(mm, pud, addr, next,
  1540. pfn + (addr >> PAGE_SHIFT), prot))
  1541. return -ENOMEM;
  1542. } while (pud++, addr = next, addr != end);
  1543. return 0;
  1544. }
  1545. /**
  1546. * remap_pfn_range - remap kernel memory to userspace
  1547. * @vma: user vma to map to
  1548. * @addr: target user address to start at
  1549. * @pfn: physical address of kernel memory
  1550. * @size: size of map area
  1551. * @prot: page protection flags for this mapping
  1552. *
  1553. * Note: this is only safe if the mm semaphore is held when called.
  1554. */
  1555. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1556. unsigned long pfn, unsigned long size, pgprot_t prot)
  1557. {
  1558. pgd_t *pgd;
  1559. unsigned long next;
  1560. unsigned long end = addr + PAGE_ALIGN(size);
  1561. struct mm_struct *mm = vma->vm_mm;
  1562. unsigned long remap_pfn = pfn;
  1563. int err;
  1564. /*
  1565. * Physically remapped pages are special. Tell the
  1566. * rest of the world about it:
  1567. * VM_IO tells people not to look at these pages
  1568. * (accesses can have side effects).
  1569. * VM_PFNMAP tells the core MM that the base pages are just
  1570. * raw PFN mappings, and do not have a "struct page" associated
  1571. * with them.
  1572. * VM_DONTEXPAND
  1573. * Disable vma merging and expanding with mremap().
  1574. * VM_DONTDUMP
  1575. * Omit vma from core dump, even when VM_IO turned off.
  1576. *
  1577. * There's a horrible special case to handle copy-on-write
  1578. * behaviour that some programs depend on. We mark the "original"
  1579. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1580. * See vm_normal_page() for details.
  1581. */
  1582. if (is_cow_mapping(vma->vm_flags)) {
  1583. if (addr != vma->vm_start || end != vma->vm_end)
  1584. return -EINVAL;
  1585. vma->vm_pgoff = pfn;
  1586. }
  1587. err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
  1588. if (err)
  1589. return -EINVAL;
  1590. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  1591. BUG_ON(addr >= end);
  1592. pfn -= addr >> PAGE_SHIFT;
  1593. pgd = pgd_offset(mm, addr);
  1594. flush_cache_range(vma, addr, end);
  1595. do {
  1596. next = pgd_addr_end(addr, end);
  1597. err = remap_pud_range(mm, pgd, addr, next,
  1598. pfn + (addr >> PAGE_SHIFT), prot);
  1599. if (err)
  1600. break;
  1601. } while (pgd++, addr = next, addr != end);
  1602. if (err)
  1603. untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
  1604. return err;
  1605. }
  1606. EXPORT_SYMBOL(remap_pfn_range);
  1607. /**
  1608. * vm_iomap_memory - remap memory to userspace
  1609. * @vma: user vma to map to
  1610. * @start: start of area
  1611. * @len: size of area
  1612. *
  1613. * This is a simplified io_remap_pfn_range() for common driver use. The
  1614. * driver just needs to give us the physical memory range to be mapped,
  1615. * we'll figure out the rest from the vma information.
  1616. *
  1617. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  1618. * whatever write-combining details or similar.
  1619. */
  1620. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  1621. {
  1622. unsigned long vm_len, pfn, pages;
  1623. /* Check that the physical memory area passed in looks valid */
  1624. if (start + len < start)
  1625. return -EINVAL;
  1626. /*
  1627. * You *really* shouldn't map things that aren't page-aligned,
  1628. * but we've historically allowed it because IO memory might
  1629. * just have smaller alignment.
  1630. */
  1631. len += start & ~PAGE_MASK;
  1632. pfn = start >> PAGE_SHIFT;
  1633. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  1634. if (pfn + pages < pfn)
  1635. return -EINVAL;
  1636. /* We start the mapping 'vm_pgoff' pages into the area */
  1637. if (vma->vm_pgoff > pages)
  1638. return -EINVAL;
  1639. pfn += vma->vm_pgoff;
  1640. pages -= vma->vm_pgoff;
  1641. /* Can we fit all of the mapping? */
  1642. vm_len = vma->vm_end - vma->vm_start;
  1643. if (vm_len >> PAGE_SHIFT > pages)
  1644. return -EINVAL;
  1645. /* Ok, let it rip */
  1646. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  1647. }
  1648. EXPORT_SYMBOL(vm_iomap_memory);
  1649. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1650. unsigned long addr, unsigned long end,
  1651. pte_fn_t fn, void *data)
  1652. {
  1653. pte_t *pte;
  1654. int err;
  1655. pgtable_t token;
  1656. spinlock_t *uninitialized_var(ptl);
  1657. pte = (mm == &init_mm) ?
  1658. pte_alloc_kernel(pmd, addr) :
  1659. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1660. if (!pte)
  1661. return -ENOMEM;
  1662. BUG_ON(pmd_huge(*pmd));
  1663. arch_enter_lazy_mmu_mode();
  1664. token = pmd_pgtable(*pmd);
  1665. do {
  1666. err = fn(pte++, token, addr, data);
  1667. if (err)
  1668. break;
  1669. } while (addr += PAGE_SIZE, addr != end);
  1670. arch_leave_lazy_mmu_mode();
  1671. if (mm != &init_mm)
  1672. pte_unmap_unlock(pte-1, ptl);
  1673. return err;
  1674. }
  1675. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1676. unsigned long addr, unsigned long end,
  1677. pte_fn_t fn, void *data)
  1678. {
  1679. pmd_t *pmd;
  1680. unsigned long next;
  1681. int err;
  1682. BUG_ON(pud_huge(*pud));
  1683. pmd = pmd_alloc(mm, pud, addr);
  1684. if (!pmd)
  1685. return -ENOMEM;
  1686. do {
  1687. next = pmd_addr_end(addr, end);
  1688. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1689. if (err)
  1690. break;
  1691. } while (pmd++, addr = next, addr != end);
  1692. return err;
  1693. }
  1694. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1695. unsigned long addr, unsigned long end,
  1696. pte_fn_t fn, void *data)
  1697. {
  1698. pud_t *pud;
  1699. unsigned long next;
  1700. int err;
  1701. pud = pud_alloc(mm, pgd, addr);
  1702. if (!pud)
  1703. return -ENOMEM;
  1704. do {
  1705. next = pud_addr_end(addr, end);
  1706. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1707. if (err)
  1708. break;
  1709. } while (pud++, addr = next, addr != end);
  1710. return err;
  1711. }
  1712. /*
  1713. * Scan a region of virtual memory, filling in page tables as necessary
  1714. * and calling a provided function on each leaf page table.
  1715. */
  1716. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1717. unsigned long size, pte_fn_t fn, void *data)
  1718. {
  1719. pgd_t *pgd;
  1720. unsigned long next;
  1721. unsigned long end = addr + size;
  1722. int err;
  1723. if (WARN_ON(addr >= end))
  1724. return -EINVAL;
  1725. pgd = pgd_offset(mm, addr);
  1726. do {
  1727. next = pgd_addr_end(addr, end);
  1728. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1729. if (err)
  1730. break;
  1731. } while (pgd++, addr = next, addr != end);
  1732. return err;
  1733. }
  1734. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1735. /*
  1736. * handle_pte_fault chooses page fault handler according to an entry which was
  1737. * read non-atomically. Before making any commitment, on those architectures
  1738. * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
  1739. * parts, do_swap_page must check under lock before unmapping the pte and
  1740. * proceeding (but do_wp_page is only called after already making such a check;
  1741. * and do_anonymous_page can safely check later on).
  1742. */
  1743. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1744. pte_t *page_table, pte_t orig_pte)
  1745. {
  1746. int same = 1;
  1747. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1748. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1749. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1750. spin_lock(ptl);
  1751. same = pte_same(*page_table, orig_pte);
  1752. spin_unlock(ptl);
  1753. }
  1754. #endif
  1755. pte_unmap(page_table);
  1756. return same;
  1757. }
  1758. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1759. {
  1760. debug_dma_assert_idle(src);
  1761. /*
  1762. * If the source page was a PFN mapping, we don't have
  1763. * a "struct page" for it. We do a best-effort copy by
  1764. * just copying from the original user address. If that
  1765. * fails, we just zero-fill it. Live with it.
  1766. */
  1767. if (unlikely(!src)) {
  1768. void *kaddr = kmap_atomic(dst);
  1769. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1770. /*
  1771. * This really shouldn't fail, because the page is there
  1772. * in the page tables. But it might just be unreadable,
  1773. * in which case we just give up and fill the result with
  1774. * zeroes.
  1775. */
  1776. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1777. clear_page(kaddr);
  1778. kunmap_atomic(kaddr);
  1779. flush_dcache_page(dst);
  1780. } else
  1781. copy_user_highpage(dst, src, va, vma);
  1782. }
  1783. static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
  1784. {
  1785. struct file *vm_file = vma->vm_file;
  1786. if (vm_file)
  1787. return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
  1788. /*
  1789. * Special mappings (e.g. VDSO) do not have any file so fake
  1790. * a default GFP_KERNEL for them.
  1791. */
  1792. return GFP_KERNEL;
  1793. }
  1794. /*
  1795. * Notify the address space that the page is about to become writable so that
  1796. * it can prohibit this or wait for the page to get into an appropriate state.
  1797. *
  1798. * We do this without the lock held, so that it can sleep if it needs to.
  1799. */
  1800. static int do_page_mkwrite(struct vm_fault *vmf)
  1801. {
  1802. int ret;
  1803. struct page *page = vmf->page;
  1804. unsigned int old_flags = vmf->flags;
  1805. vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1806. ret = vmf->vma->vm_ops->page_mkwrite(vmf);
  1807. /* Restore original flags so that caller is not surprised */
  1808. vmf->flags = old_flags;
  1809. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1810. return ret;
  1811. if (unlikely(!(ret & VM_FAULT_LOCKED))) {
  1812. lock_page(page);
  1813. if (!page->mapping) {
  1814. unlock_page(page);
  1815. return 0; /* retry */
  1816. }
  1817. ret |= VM_FAULT_LOCKED;
  1818. } else
  1819. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1820. return ret;
  1821. }
  1822. /*
  1823. * Handle dirtying of a page in shared file mapping on a write fault.
  1824. *
  1825. * The function expects the page to be locked and unlocks it.
  1826. */
  1827. static void fault_dirty_shared_page(struct vm_area_struct *vma,
  1828. struct page *page)
  1829. {
  1830. struct address_space *mapping;
  1831. bool dirtied;
  1832. bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
  1833. dirtied = set_page_dirty(page);
  1834. VM_BUG_ON_PAGE(PageAnon(page), page);
  1835. /*
  1836. * Take a local copy of the address_space - page.mapping may be zeroed
  1837. * by truncate after unlock_page(). The address_space itself remains
  1838. * pinned by vma->vm_file's reference. We rely on unlock_page()'s
  1839. * release semantics to prevent the compiler from undoing this copying.
  1840. */
  1841. mapping = page_rmapping(page);
  1842. unlock_page(page);
  1843. if ((dirtied || page_mkwrite) && mapping) {
  1844. /*
  1845. * Some device drivers do not set page.mapping
  1846. * but still dirty their pages
  1847. */
  1848. balance_dirty_pages_ratelimited(mapping);
  1849. }
  1850. if (!page_mkwrite)
  1851. file_update_time(vma->vm_file);
  1852. }
  1853. /*
  1854. * Handle write page faults for pages that can be reused in the current vma
  1855. *
  1856. * This can happen either due to the mapping being with the VM_SHARED flag,
  1857. * or due to us being the last reference standing to the page. In either
  1858. * case, all we need to do here is to mark the page as writable and update
  1859. * any related book-keeping.
  1860. */
  1861. static inline void wp_page_reuse(struct vm_fault *vmf)
  1862. __releases(vmf->ptl)
  1863. {
  1864. struct vm_area_struct *vma = vmf->vma;
  1865. struct page *page = vmf->page;
  1866. pte_t entry;
  1867. /*
  1868. * Clear the pages cpupid information as the existing
  1869. * information potentially belongs to a now completely
  1870. * unrelated process.
  1871. */
  1872. if (page)
  1873. page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
  1874. flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
  1875. entry = pte_mkyoung(vmf->orig_pte);
  1876. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1877. if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
  1878. update_mmu_cache(vma, vmf->address, vmf->pte);
  1879. pte_unmap_unlock(vmf->pte, vmf->ptl);
  1880. }
  1881. /*
  1882. * Handle the case of a page which we actually need to copy to a new page.
  1883. *
  1884. * Called with mmap_sem locked and the old page referenced, but
  1885. * without the ptl held.
  1886. *
  1887. * High level logic flow:
  1888. *
  1889. * - Allocate a page, copy the content of the old page to the new one.
  1890. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
  1891. * - Take the PTL. If the pte changed, bail out and release the allocated page
  1892. * - If the pte is still the way we remember it, update the page table and all
  1893. * relevant references. This includes dropping the reference the page-table
  1894. * held to the old page, as well as updating the rmap.
  1895. * - In any case, unlock the PTL and drop the reference we took to the old page.
  1896. */
  1897. static int wp_page_copy(struct vm_fault *vmf)
  1898. {
  1899. struct vm_area_struct *vma = vmf->vma;
  1900. struct mm_struct *mm = vma->vm_mm;
  1901. struct page *old_page = vmf->page;
  1902. struct page *new_page = NULL;
  1903. pte_t entry;
  1904. int page_copied = 0;
  1905. const unsigned long mmun_start = vmf->address & PAGE_MASK;
  1906. const unsigned long mmun_end = mmun_start + PAGE_SIZE;
  1907. struct mem_cgroup *memcg;
  1908. if (unlikely(anon_vma_prepare(vma)))
  1909. goto oom;
  1910. if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
  1911. new_page = alloc_zeroed_user_highpage_movable(vma,
  1912. vmf->address);
  1913. if (!new_page)
  1914. goto oom;
  1915. } else {
  1916. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
  1917. vmf->address);
  1918. if (!new_page)
  1919. goto oom;
  1920. cow_user_page(new_page, old_page, vmf->address, vma);
  1921. }
  1922. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
  1923. goto oom_free_new;
  1924. __SetPageUptodate(new_page);
  1925. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1926. /*
  1927. * Re-check the pte - we dropped the lock
  1928. */
  1929. vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
  1930. if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
  1931. if (old_page) {
  1932. if (!PageAnon(old_page)) {
  1933. dec_mm_counter_fast(mm,
  1934. mm_counter_file(old_page));
  1935. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1936. }
  1937. } else {
  1938. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1939. }
  1940. flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
  1941. entry = mk_pte(new_page, vma->vm_page_prot);
  1942. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1943. /*
  1944. * Clear the pte entry and flush it first, before updating the
  1945. * pte with the new entry. This will avoid a race condition
  1946. * seen in the presence of one thread doing SMC and another
  1947. * thread doing COW.
  1948. */
  1949. ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
  1950. page_add_new_anon_rmap(new_page, vma, vmf->address, false);
  1951. mem_cgroup_commit_charge(new_page, memcg, false, false);
  1952. lru_cache_add_active_or_unevictable(new_page, vma);
  1953. /*
  1954. * We call the notify macro here because, when using secondary
  1955. * mmu page tables (such as kvm shadow page tables), we want the
  1956. * new page to be mapped directly into the secondary page table.
  1957. */
  1958. set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
  1959. update_mmu_cache(vma, vmf->address, vmf->pte);
  1960. if (old_page) {
  1961. /*
  1962. * Only after switching the pte to the new page may
  1963. * we remove the mapcount here. Otherwise another
  1964. * process may come and find the rmap count decremented
  1965. * before the pte is switched to the new page, and
  1966. * "reuse" the old page writing into it while our pte
  1967. * here still points into it and can be read by other
  1968. * threads.
  1969. *
  1970. * The critical issue is to order this
  1971. * page_remove_rmap with the ptp_clear_flush above.
  1972. * Those stores are ordered by (if nothing else,)
  1973. * the barrier present in the atomic_add_negative
  1974. * in page_remove_rmap.
  1975. *
  1976. * Then the TLB flush in ptep_clear_flush ensures that
  1977. * no process can access the old page before the
  1978. * decremented mapcount is visible. And the old page
  1979. * cannot be reused until after the decremented
  1980. * mapcount is visible. So transitively, TLBs to
  1981. * old page will be flushed before it can be reused.
  1982. */
  1983. page_remove_rmap(old_page, false);
  1984. }
  1985. /* Free the old page.. */
  1986. new_page = old_page;
  1987. page_copied = 1;
  1988. } else {
  1989. mem_cgroup_cancel_charge(new_page, memcg, false);
  1990. }
  1991. if (new_page)
  1992. put_page(new_page);
  1993. pte_unmap_unlock(vmf->pte, vmf->ptl);
  1994. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1995. if (old_page) {
  1996. /*
  1997. * Don't let another task, with possibly unlocked vma,
  1998. * keep the mlocked page.
  1999. */
  2000. if (page_copied && (vma->vm_flags & VM_LOCKED)) {
  2001. lock_page(old_page); /* LRU manipulation */
  2002. if (PageMlocked(old_page))
  2003. munlock_vma_page(old_page);
  2004. unlock_page(old_page);
  2005. }
  2006. put_page(old_page);
  2007. }
  2008. return page_copied ? VM_FAULT_WRITE : 0;
  2009. oom_free_new:
  2010. put_page(new_page);
  2011. oom:
  2012. if (old_page)
  2013. put_page(old_page);
  2014. return VM_FAULT_OOM;
  2015. }
  2016. /**
  2017. * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
  2018. * writeable once the page is prepared
  2019. *
  2020. * @vmf: structure describing the fault
  2021. *
  2022. * This function handles all that is needed to finish a write page fault in a
  2023. * shared mapping due to PTE being read-only once the mapped page is prepared.
  2024. * It handles locking of PTE and modifying it. The function returns
  2025. * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
  2026. * lock.
  2027. *
  2028. * The function expects the page to be locked or other protection against
  2029. * concurrent faults / writeback (such as DAX radix tree locks).
  2030. */
  2031. int finish_mkwrite_fault(struct vm_fault *vmf)
  2032. {
  2033. WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
  2034. vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
  2035. &vmf->ptl);
  2036. /*
  2037. * We might have raced with another page fault while we released the
  2038. * pte_offset_map_lock.
  2039. */
  2040. if (!pte_same(*vmf->pte, vmf->orig_pte)) {
  2041. pte_unmap_unlock(vmf->pte, vmf->ptl);
  2042. return VM_FAULT_NOPAGE;
  2043. }
  2044. wp_page_reuse(vmf);
  2045. return 0;
  2046. }
  2047. /*
  2048. * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
  2049. * mapping
  2050. */
  2051. static int wp_pfn_shared(struct vm_fault *vmf)
  2052. {
  2053. struct vm_area_struct *vma = vmf->vma;
  2054. if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
  2055. int ret;
  2056. pte_unmap_unlock(vmf->pte, vmf->ptl);
  2057. vmf->flags |= FAULT_FLAG_MKWRITE;
  2058. ret = vma->vm_ops->pfn_mkwrite(vmf);
  2059. if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
  2060. return ret;
  2061. return finish_mkwrite_fault(vmf);
  2062. }
  2063. wp_page_reuse(vmf);
  2064. return VM_FAULT_WRITE;
  2065. }
  2066. static int wp_page_shared(struct vm_fault *vmf)
  2067. __releases(vmf->ptl)
  2068. {
  2069. struct vm_area_struct *vma = vmf->vma;
  2070. get_page(vmf->page);
  2071. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2072. int tmp;
  2073. pte_unmap_unlock(vmf->pte, vmf->ptl);
  2074. tmp = do_page_mkwrite(vmf);
  2075. if (unlikely(!tmp || (tmp &
  2076. (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2077. put_page(vmf->page);
  2078. return tmp;
  2079. }
  2080. tmp = finish_mkwrite_fault(vmf);
  2081. if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2082. unlock_page(vmf->page);
  2083. put_page(vmf->page);
  2084. return tmp;
  2085. }
  2086. } else {
  2087. wp_page_reuse(vmf);
  2088. lock_page(vmf->page);
  2089. }
  2090. fault_dirty_shared_page(vma, vmf->page);
  2091. put_page(vmf->page);
  2092. return VM_FAULT_WRITE;
  2093. }
  2094. /*
  2095. * This routine handles present pages, when users try to write
  2096. * to a shared page. It is done by copying the page to a new address
  2097. * and decrementing the shared-page counter for the old page.
  2098. *
  2099. * Note that this routine assumes that the protection checks have been
  2100. * done by the caller (the low-level page fault routine in most cases).
  2101. * Thus we can safely just mark it writable once we've done any necessary
  2102. * COW.
  2103. *
  2104. * We also mark the page dirty at this point even though the page will
  2105. * change only once the write actually happens. This avoids a few races,
  2106. * and potentially makes it more efficient.
  2107. *
  2108. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2109. * but allow concurrent faults), with pte both mapped and locked.
  2110. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2111. */
  2112. static int do_wp_page(struct vm_fault *vmf)
  2113. __releases(vmf->ptl)
  2114. {
  2115. struct vm_area_struct *vma = vmf->vma;
  2116. vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
  2117. if (!vmf->page) {
  2118. /*
  2119. * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
  2120. * VM_PFNMAP VMA.
  2121. *
  2122. * We should not cow pages in a shared writeable mapping.
  2123. * Just mark the pages writable and/or call ops->pfn_mkwrite.
  2124. */
  2125. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2126. (VM_WRITE|VM_SHARED))
  2127. return wp_pfn_shared(vmf);
  2128. pte_unmap_unlock(vmf->pte, vmf->ptl);
  2129. return wp_page_copy(vmf);
  2130. }
  2131. /*
  2132. * Take out anonymous pages first, anonymous shared vmas are
  2133. * not dirty accountable.
  2134. */
  2135. if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
  2136. int total_mapcount;
  2137. if (!trylock_page(vmf->page)) {
  2138. get_page(vmf->page);
  2139. pte_unmap_unlock(vmf->pte, vmf->ptl);
  2140. lock_page(vmf->page);
  2141. vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
  2142. vmf->address, &vmf->ptl);
  2143. if (!pte_same(*vmf->pte, vmf->orig_pte)) {
  2144. unlock_page(vmf->page);
  2145. pte_unmap_unlock(vmf->pte, vmf->ptl);
  2146. put_page(vmf->page);
  2147. return 0;
  2148. }
  2149. put_page(vmf->page);
  2150. }
  2151. if (reuse_swap_page(vmf->page, &total_mapcount)) {
  2152. if (total_mapcount == 1) {
  2153. /*
  2154. * The page is all ours. Move it to
  2155. * our anon_vma so the rmap code will
  2156. * not search our parent or siblings.
  2157. * Protected against the rmap code by
  2158. * the page lock.
  2159. */
  2160. page_move_anon_rmap(vmf->page, vma);
  2161. }
  2162. unlock_page(vmf->page);
  2163. wp_page_reuse(vmf);
  2164. return VM_FAULT_WRITE;
  2165. }
  2166. unlock_page(vmf->page);
  2167. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2168. (VM_WRITE|VM_SHARED))) {
  2169. return wp_page_shared(vmf);
  2170. }
  2171. /*
  2172. * Ok, we need to copy. Oh, well..
  2173. */
  2174. get_page(vmf->page);
  2175. pte_unmap_unlock(vmf->pte, vmf->ptl);
  2176. return wp_page_copy(vmf);
  2177. }
  2178. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2179. unsigned long start_addr, unsigned long end_addr,
  2180. struct zap_details *details)
  2181. {
  2182. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2183. }
  2184. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2185. struct zap_details *details)
  2186. {
  2187. struct vm_area_struct *vma;
  2188. pgoff_t vba, vea, zba, zea;
  2189. vma_interval_tree_foreach(vma, root,
  2190. details->first_index, details->last_index) {
  2191. vba = vma->vm_pgoff;
  2192. vea = vba + vma_pages(vma) - 1;
  2193. zba = details->first_index;
  2194. if (zba < vba)
  2195. zba = vba;
  2196. zea = details->last_index;
  2197. if (zea > vea)
  2198. zea = vea;
  2199. unmap_mapping_range_vma(vma,
  2200. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2201. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2202. details);
  2203. }
  2204. }
  2205. /**
  2206. * unmap_mapping_range - unmap the portion of all mmaps in the specified
  2207. * address_space corresponding to the specified page range in the underlying
  2208. * file.
  2209. *
  2210. * @mapping: the address space containing mmaps to be unmapped.
  2211. * @holebegin: byte in first page to unmap, relative to the start of
  2212. * the underlying file. This will be rounded down to a PAGE_SIZE
  2213. * boundary. Note that this is different from truncate_pagecache(), which
  2214. * must keep the partial page. In contrast, we must get rid of
  2215. * partial pages.
  2216. * @holelen: size of prospective hole in bytes. This will be rounded
  2217. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2218. * end of the file.
  2219. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2220. * but 0 when invalidating pagecache, don't throw away private data.
  2221. */
  2222. void unmap_mapping_range(struct address_space *mapping,
  2223. loff_t const holebegin, loff_t const holelen, int even_cows)
  2224. {
  2225. struct zap_details details = { };
  2226. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2227. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2228. /* Check for overflow. */
  2229. if (sizeof(holelen) > sizeof(hlen)) {
  2230. long long holeend =
  2231. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2232. if (holeend & ~(long long)ULONG_MAX)
  2233. hlen = ULONG_MAX - hba + 1;
  2234. }
  2235. details.check_mapping = even_cows? NULL: mapping;
  2236. details.first_index = hba;
  2237. details.last_index = hba + hlen - 1;
  2238. if (details.last_index < details.first_index)
  2239. details.last_index = ULONG_MAX;
  2240. i_mmap_lock_write(mapping);
  2241. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2242. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2243. i_mmap_unlock_write(mapping);
  2244. }
  2245. EXPORT_SYMBOL(unmap_mapping_range);
  2246. /*
  2247. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2248. * but allow concurrent faults), and pte mapped but not yet locked.
  2249. * We return with pte unmapped and unlocked.
  2250. *
  2251. * We return with the mmap_sem locked or unlocked in the same cases
  2252. * as does filemap_fault().
  2253. */
  2254. int do_swap_page(struct vm_fault *vmf)
  2255. {
  2256. struct vm_area_struct *vma = vmf->vma;
  2257. struct page *page, *swapcache;
  2258. struct mem_cgroup *memcg;
  2259. swp_entry_t entry;
  2260. pte_t pte;
  2261. int locked;
  2262. int exclusive = 0;
  2263. int ret = 0;
  2264. if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
  2265. goto out;
  2266. entry = pte_to_swp_entry(vmf->orig_pte);
  2267. if (unlikely(non_swap_entry(entry))) {
  2268. if (is_migration_entry(entry)) {
  2269. migration_entry_wait(vma->vm_mm, vmf->pmd,
  2270. vmf->address);
  2271. } else if (is_hwpoison_entry(entry)) {
  2272. ret = VM_FAULT_HWPOISON;
  2273. } else {
  2274. print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
  2275. ret = VM_FAULT_SIGBUS;
  2276. }
  2277. goto out;
  2278. }
  2279. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2280. page = lookup_swap_cache(entry);
  2281. if (!page) {
  2282. page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
  2283. vmf->address);
  2284. if (!page) {
  2285. /*
  2286. * Back out if somebody else faulted in this pte
  2287. * while we released the pte lock.
  2288. */
  2289. vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
  2290. vmf->address, &vmf->ptl);
  2291. if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
  2292. ret = VM_FAULT_OOM;
  2293. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2294. goto unlock;
  2295. }
  2296. /* Had to read the page from swap area: Major fault */
  2297. ret = VM_FAULT_MAJOR;
  2298. count_vm_event(PGMAJFAULT);
  2299. mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
  2300. } else if (PageHWPoison(page)) {
  2301. /*
  2302. * hwpoisoned dirty swapcache pages are kept for killing
  2303. * owner processes (which may be unknown at hwpoison time)
  2304. */
  2305. ret = VM_FAULT_HWPOISON;
  2306. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2307. swapcache = page;
  2308. goto out_release;
  2309. }
  2310. swapcache = page;
  2311. locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
  2312. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2313. if (!locked) {
  2314. ret |= VM_FAULT_RETRY;
  2315. goto out_release;
  2316. }
  2317. /*
  2318. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2319. * release the swapcache from under us. The page pin, and pte_same
  2320. * test below, are not enough to exclude that. Even if it is still
  2321. * swapcache, we need to check that the page's swap has not changed.
  2322. */
  2323. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2324. goto out_page;
  2325. page = ksm_might_need_to_copy(page, vma, vmf->address);
  2326. if (unlikely(!page)) {
  2327. ret = VM_FAULT_OOM;
  2328. page = swapcache;
  2329. goto out_page;
  2330. }
  2331. if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
  2332. &memcg, false)) {
  2333. ret = VM_FAULT_OOM;
  2334. goto out_page;
  2335. }
  2336. /*
  2337. * Back out if somebody else already faulted in this pte.
  2338. */
  2339. vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
  2340. &vmf->ptl);
  2341. if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
  2342. goto out_nomap;
  2343. if (unlikely(!PageUptodate(page))) {
  2344. ret = VM_FAULT_SIGBUS;
  2345. goto out_nomap;
  2346. }
  2347. /*
  2348. * The page isn't present yet, go ahead with the fault.
  2349. *
  2350. * Be careful about the sequence of operations here.
  2351. * To get its accounting right, reuse_swap_page() must be called
  2352. * while the page is counted on swap but not yet in mapcount i.e.
  2353. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2354. * must be called after the swap_free(), or it will never succeed.
  2355. */
  2356. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2357. dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
  2358. pte = mk_pte(page, vma->vm_page_prot);
  2359. if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
  2360. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2361. vmf->flags &= ~FAULT_FLAG_WRITE;
  2362. ret |= VM_FAULT_WRITE;
  2363. exclusive = RMAP_EXCLUSIVE;
  2364. }
  2365. flush_icache_page(vma, page);
  2366. if (pte_swp_soft_dirty(vmf->orig_pte))
  2367. pte = pte_mksoft_dirty(pte);
  2368. set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
  2369. vmf->orig_pte = pte;
  2370. if (page == swapcache) {
  2371. do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
  2372. mem_cgroup_commit_charge(page, memcg, true, false);
  2373. activate_page(page);
  2374. } else { /* ksm created a completely new copy */
  2375. page_add_new_anon_rmap(page, vma, vmf->address, false);
  2376. mem_cgroup_commit_charge(page, memcg, false, false);
  2377. lru_cache_add_active_or_unevictable(page, vma);
  2378. }
  2379. swap_free(entry);
  2380. if (mem_cgroup_swap_full(page) ||
  2381. (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2382. try_to_free_swap(page);
  2383. unlock_page(page);
  2384. if (page != swapcache) {
  2385. /*
  2386. * Hold the lock to avoid the swap entry to be reused
  2387. * until we take the PT lock for the pte_same() check
  2388. * (to avoid false positives from pte_same). For
  2389. * further safety release the lock after the swap_free
  2390. * so that the swap count won't change under a
  2391. * parallel locked swapcache.
  2392. */
  2393. unlock_page(swapcache);
  2394. put_page(swapcache);
  2395. }
  2396. if (vmf->flags & FAULT_FLAG_WRITE) {
  2397. ret |= do_wp_page(vmf);
  2398. if (ret & VM_FAULT_ERROR)
  2399. ret &= VM_FAULT_ERROR;
  2400. goto out;
  2401. }
  2402. /* No need to invalidate - it was non-present before */
  2403. update_mmu_cache(vma, vmf->address, vmf->pte);
  2404. unlock:
  2405. pte_unmap_unlock(vmf->pte, vmf->ptl);
  2406. out:
  2407. return ret;
  2408. out_nomap:
  2409. mem_cgroup_cancel_charge(page, memcg, false);
  2410. pte_unmap_unlock(vmf->pte, vmf->ptl);
  2411. out_page:
  2412. unlock_page(page);
  2413. out_release:
  2414. put_page(page);
  2415. if (page != swapcache) {
  2416. unlock_page(swapcache);
  2417. put_page(swapcache);
  2418. }
  2419. return ret;
  2420. }
  2421. /*
  2422. * This is like a special single-page "expand_{down|up}wards()",
  2423. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2424. * doesn't hit another vma.
  2425. */
  2426. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2427. {
  2428. address &= PAGE_MASK;
  2429. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2430. struct vm_area_struct *prev = vma->vm_prev;
  2431. /*
  2432. * Is there a mapping abutting this one below?
  2433. *
  2434. * That's only ok if it's the same stack mapping
  2435. * that has gotten split..
  2436. */
  2437. if (prev && prev->vm_end == address)
  2438. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2439. return expand_downwards(vma, address - PAGE_SIZE);
  2440. }
  2441. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2442. struct vm_area_struct *next = vma->vm_next;
  2443. /* As VM_GROWSDOWN but s/below/above/ */
  2444. if (next && next->vm_start == address + PAGE_SIZE)
  2445. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2446. return expand_upwards(vma, address + PAGE_SIZE);
  2447. }
  2448. return 0;
  2449. }
  2450. /*
  2451. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2452. * but allow concurrent faults), and pte mapped but not yet locked.
  2453. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2454. */
  2455. static int do_anonymous_page(struct vm_fault *vmf)
  2456. {
  2457. struct vm_area_struct *vma = vmf->vma;
  2458. struct mem_cgroup *memcg;
  2459. struct page *page;
  2460. pte_t entry;
  2461. /* File mapping without ->vm_ops ? */
  2462. if (vma->vm_flags & VM_SHARED)
  2463. return VM_FAULT_SIGBUS;
  2464. /* Check if we need to add a guard page to the stack */
  2465. if (check_stack_guard_page(vma, vmf->address) < 0)
  2466. return VM_FAULT_SIGSEGV;
  2467. /*
  2468. * Use pte_alloc() instead of pte_alloc_map(). We can't run
  2469. * pte_offset_map() on pmds where a huge pmd might be created
  2470. * from a different thread.
  2471. *
  2472. * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
  2473. * parallel threads are excluded by other means.
  2474. *
  2475. * Here we only have down_read(mmap_sem).
  2476. */
  2477. if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
  2478. return VM_FAULT_OOM;
  2479. /* See the comment in pte_alloc_one_map() */
  2480. if (unlikely(pmd_trans_unstable(vmf->pmd)))
  2481. return 0;
  2482. /* Use the zero-page for reads */
  2483. if (!(vmf->flags & FAULT_FLAG_WRITE) &&
  2484. !mm_forbids_zeropage(vma->vm_mm)) {
  2485. entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
  2486. vma->vm_page_prot));
  2487. vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
  2488. vmf->address, &vmf->ptl);
  2489. if (!pte_none(*vmf->pte))
  2490. goto unlock;
  2491. /* Deliver the page fault to userland, check inside PT lock */
  2492. if (userfaultfd_missing(vma)) {
  2493. pte_unmap_unlock(vmf->pte, vmf->ptl);
  2494. return handle_userfault(vmf, VM_UFFD_MISSING);
  2495. }
  2496. goto setpte;
  2497. }
  2498. /* Allocate our own private page. */
  2499. if (unlikely(anon_vma_prepare(vma)))
  2500. goto oom;
  2501. page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
  2502. if (!page)
  2503. goto oom;
  2504. if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
  2505. goto oom_free_page;
  2506. /*
  2507. * The memory barrier inside __SetPageUptodate makes sure that
  2508. * preceeding stores to the page contents become visible before
  2509. * the set_pte_at() write.
  2510. */
  2511. __SetPageUptodate(page);
  2512. entry = mk_pte(page, vma->vm_page_prot);
  2513. if (vma->vm_flags & VM_WRITE)
  2514. entry = pte_mkwrite(pte_mkdirty(entry));
  2515. vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
  2516. &vmf->ptl);
  2517. if (!pte_none(*vmf->pte))
  2518. goto release;
  2519. /* Deliver the page fault to userland, check inside PT lock */
  2520. if (userfaultfd_missing(vma)) {
  2521. pte_unmap_unlock(vmf->pte, vmf->ptl);
  2522. mem_cgroup_cancel_charge(page, memcg, false);
  2523. put_page(page);
  2524. return handle_userfault(vmf, VM_UFFD_MISSING);
  2525. }
  2526. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2527. page_add_new_anon_rmap(page, vma, vmf->address, false);
  2528. mem_cgroup_commit_charge(page, memcg, false, false);
  2529. lru_cache_add_active_or_unevictable(page, vma);
  2530. setpte:
  2531. set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
  2532. /* No need to invalidate - it was non-present before */
  2533. update_mmu_cache(vma, vmf->address, vmf->pte);
  2534. unlock:
  2535. pte_unmap_unlock(vmf->pte, vmf->ptl);
  2536. return 0;
  2537. release:
  2538. mem_cgroup_cancel_charge(page, memcg, false);
  2539. put_page(page);
  2540. goto unlock;
  2541. oom_free_page:
  2542. put_page(page);
  2543. oom:
  2544. return VM_FAULT_OOM;
  2545. }
  2546. /*
  2547. * The mmap_sem must have been held on entry, and may have been
  2548. * released depending on flags and vma->vm_ops->fault() return value.
  2549. * See filemap_fault() and __lock_page_retry().
  2550. */
  2551. static int __do_fault(struct vm_fault *vmf)
  2552. {
  2553. struct vm_area_struct *vma = vmf->vma;
  2554. int ret;
  2555. ret = vma->vm_ops->fault(vmf);
  2556. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
  2557. VM_FAULT_DONE_COW)))
  2558. return ret;
  2559. if (unlikely(PageHWPoison(vmf->page))) {
  2560. if (ret & VM_FAULT_LOCKED)
  2561. unlock_page(vmf->page);
  2562. put_page(vmf->page);
  2563. vmf->page = NULL;
  2564. return VM_FAULT_HWPOISON;
  2565. }
  2566. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2567. lock_page(vmf->page);
  2568. else
  2569. VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
  2570. return ret;
  2571. }
  2572. static int pte_alloc_one_map(struct vm_fault *vmf)
  2573. {
  2574. struct vm_area_struct *vma = vmf->vma;
  2575. if (!pmd_none(*vmf->pmd))
  2576. goto map_pte;
  2577. if (vmf->prealloc_pte) {
  2578. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  2579. if (unlikely(!pmd_none(*vmf->pmd))) {
  2580. spin_unlock(vmf->ptl);
  2581. goto map_pte;
  2582. }
  2583. atomic_long_inc(&vma->vm_mm->nr_ptes);
  2584. pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
  2585. spin_unlock(vmf->ptl);
  2586. vmf->prealloc_pte = 0;
  2587. } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
  2588. return VM_FAULT_OOM;
  2589. }
  2590. map_pte:
  2591. /*
  2592. * If a huge pmd materialized under us just retry later. Use
  2593. * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
  2594. * didn't become pmd_trans_huge under us and then back to pmd_none, as
  2595. * a result of MADV_DONTNEED running immediately after a huge pmd fault
  2596. * in a different thread of this mm, in turn leading to a misleading
  2597. * pmd_trans_huge() retval. All we have to ensure is that it is a
  2598. * regular pmd that we can walk with pte_offset_map() and we can do that
  2599. * through an atomic read in C, which is what pmd_trans_unstable()
  2600. * provides.
  2601. */
  2602. if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
  2603. return VM_FAULT_NOPAGE;
  2604. vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
  2605. &vmf->ptl);
  2606. return 0;
  2607. }
  2608. #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
  2609. #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
  2610. static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
  2611. unsigned long haddr)
  2612. {
  2613. if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
  2614. (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
  2615. return false;
  2616. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  2617. return false;
  2618. return true;
  2619. }
  2620. static void deposit_prealloc_pte(struct vm_fault *vmf)
  2621. {
  2622. struct vm_area_struct *vma = vmf->vma;
  2623. pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
  2624. /*
  2625. * We are going to consume the prealloc table,
  2626. * count that as nr_ptes.
  2627. */
  2628. atomic_long_inc(&vma->vm_mm->nr_ptes);
  2629. vmf->prealloc_pte = 0;
  2630. }
  2631. static int do_set_pmd(struct vm_fault *vmf, struct page *page)
  2632. {
  2633. struct vm_area_struct *vma = vmf->vma;
  2634. bool write = vmf->flags & FAULT_FLAG_WRITE;
  2635. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  2636. pmd_t entry;
  2637. int i, ret;
  2638. if (!transhuge_vma_suitable(vma, haddr))
  2639. return VM_FAULT_FALLBACK;
  2640. ret = VM_FAULT_FALLBACK;
  2641. page = compound_head(page);
  2642. /*
  2643. * Archs like ppc64 need additonal space to store information
  2644. * related to pte entry. Use the preallocated table for that.
  2645. */
  2646. if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
  2647. vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
  2648. if (!vmf->prealloc_pte)
  2649. return VM_FAULT_OOM;
  2650. smp_wmb(); /* See comment in __pte_alloc() */
  2651. }
  2652. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  2653. if (unlikely(!pmd_none(*vmf->pmd)))
  2654. goto out;
  2655. for (i = 0; i < HPAGE_PMD_NR; i++)
  2656. flush_icache_page(vma, page + i);
  2657. entry = mk_huge_pmd(page, vma->vm_page_prot);
  2658. if (write)
  2659. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  2660. add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
  2661. page_add_file_rmap(page, true);
  2662. /*
  2663. * deposit and withdraw with pmd lock held
  2664. */
  2665. if (arch_needs_pgtable_deposit())
  2666. deposit_prealloc_pte(vmf);
  2667. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  2668. update_mmu_cache_pmd(vma, haddr, vmf->pmd);
  2669. /* fault is handled */
  2670. ret = 0;
  2671. count_vm_event(THP_FILE_MAPPED);
  2672. out:
  2673. spin_unlock(vmf->ptl);
  2674. return ret;
  2675. }
  2676. #else
  2677. static int do_set_pmd(struct vm_fault *vmf, struct page *page)
  2678. {
  2679. BUILD_BUG();
  2680. return 0;
  2681. }
  2682. #endif
  2683. /**
  2684. * alloc_set_pte - setup new PTE entry for given page and add reverse page
  2685. * mapping. If needed, the fucntion allocates page table or use pre-allocated.
  2686. *
  2687. * @vmf: fault environment
  2688. * @memcg: memcg to charge page (only for private mappings)
  2689. * @page: page to map
  2690. *
  2691. * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
  2692. * return.
  2693. *
  2694. * Target users are page handler itself and implementations of
  2695. * vm_ops->map_pages.
  2696. */
  2697. int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
  2698. struct page *page)
  2699. {
  2700. struct vm_area_struct *vma = vmf->vma;
  2701. bool write = vmf->flags & FAULT_FLAG_WRITE;
  2702. pte_t entry;
  2703. int ret;
  2704. if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
  2705. IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
  2706. /* THP on COW? */
  2707. VM_BUG_ON_PAGE(memcg, page);
  2708. ret = do_set_pmd(vmf, page);
  2709. if (ret != VM_FAULT_FALLBACK)
  2710. return ret;
  2711. }
  2712. if (!vmf->pte) {
  2713. ret = pte_alloc_one_map(vmf);
  2714. if (ret)
  2715. return ret;
  2716. }
  2717. /* Re-check under ptl */
  2718. if (unlikely(!pte_none(*vmf->pte)))
  2719. return VM_FAULT_NOPAGE;
  2720. flush_icache_page(vma, page);
  2721. entry = mk_pte(page, vma->vm_page_prot);
  2722. if (write)
  2723. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2724. /* copy-on-write page */
  2725. if (write && !(vma->vm_flags & VM_SHARED)) {
  2726. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2727. page_add_new_anon_rmap(page, vma, vmf->address, false);
  2728. mem_cgroup_commit_charge(page, memcg, false, false);
  2729. lru_cache_add_active_or_unevictable(page, vma);
  2730. } else {
  2731. inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
  2732. page_add_file_rmap(page, false);
  2733. }
  2734. set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
  2735. /* no need to invalidate: a not-present page won't be cached */
  2736. update_mmu_cache(vma, vmf->address, vmf->pte);
  2737. return 0;
  2738. }
  2739. /**
  2740. * finish_fault - finish page fault once we have prepared the page to fault
  2741. *
  2742. * @vmf: structure describing the fault
  2743. *
  2744. * This function handles all that is needed to finish a page fault once the
  2745. * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
  2746. * given page, adds reverse page mapping, handles memcg charges and LRU
  2747. * addition. The function returns 0 on success, VM_FAULT_ code in case of
  2748. * error.
  2749. *
  2750. * The function expects the page to be locked and on success it consumes a
  2751. * reference of a page being mapped (for the PTE which maps it).
  2752. */
  2753. int finish_fault(struct vm_fault *vmf)
  2754. {
  2755. struct page *page;
  2756. int ret;
  2757. /* Did we COW the page? */
  2758. if ((vmf->flags & FAULT_FLAG_WRITE) &&
  2759. !(vmf->vma->vm_flags & VM_SHARED))
  2760. page = vmf->cow_page;
  2761. else
  2762. page = vmf->page;
  2763. ret = alloc_set_pte(vmf, vmf->memcg, page);
  2764. if (vmf->pte)
  2765. pte_unmap_unlock(vmf->pte, vmf->ptl);
  2766. return ret;
  2767. }
  2768. static unsigned long fault_around_bytes __read_mostly =
  2769. rounddown_pow_of_two(65536);
  2770. #ifdef CONFIG_DEBUG_FS
  2771. static int fault_around_bytes_get(void *data, u64 *val)
  2772. {
  2773. *val = fault_around_bytes;
  2774. return 0;
  2775. }
  2776. /*
  2777. * fault_around_pages() and fault_around_mask() expects fault_around_bytes
  2778. * rounded down to nearest page order. It's what do_fault_around() expects to
  2779. * see.
  2780. */
  2781. static int fault_around_bytes_set(void *data, u64 val)
  2782. {
  2783. if (val / PAGE_SIZE > PTRS_PER_PTE)
  2784. return -EINVAL;
  2785. if (val > PAGE_SIZE)
  2786. fault_around_bytes = rounddown_pow_of_two(val);
  2787. else
  2788. fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
  2789. return 0;
  2790. }
  2791. DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
  2792. fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
  2793. static int __init fault_around_debugfs(void)
  2794. {
  2795. void *ret;
  2796. ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
  2797. &fault_around_bytes_fops);
  2798. if (!ret)
  2799. pr_warn("Failed to create fault_around_bytes in debugfs");
  2800. return 0;
  2801. }
  2802. late_initcall(fault_around_debugfs);
  2803. #endif
  2804. /*
  2805. * do_fault_around() tries to map few pages around the fault address. The hope
  2806. * is that the pages will be needed soon and this will lower the number of
  2807. * faults to handle.
  2808. *
  2809. * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
  2810. * not ready to be mapped: not up-to-date, locked, etc.
  2811. *
  2812. * This function is called with the page table lock taken. In the split ptlock
  2813. * case the page table lock only protects only those entries which belong to
  2814. * the page table corresponding to the fault address.
  2815. *
  2816. * This function doesn't cross the VMA boundaries, in order to call map_pages()
  2817. * only once.
  2818. *
  2819. * fault_around_pages() defines how many pages we'll try to map.
  2820. * do_fault_around() expects it to return a power of two less than or equal to
  2821. * PTRS_PER_PTE.
  2822. *
  2823. * The virtual address of the area that we map is naturally aligned to the
  2824. * fault_around_pages() value (and therefore to page order). This way it's
  2825. * easier to guarantee that we don't cross page table boundaries.
  2826. */
  2827. static int do_fault_around(struct vm_fault *vmf)
  2828. {
  2829. unsigned long address = vmf->address, nr_pages, mask;
  2830. pgoff_t start_pgoff = vmf->pgoff;
  2831. pgoff_t end_pgoff;
  2832. int off, ret = 0;
  2833. nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
  2834. mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
  2835. vmf->address = max(address & mask, vmf->vma->vm_start);
  2836. off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  2837. start_pgoff -= off;
  2838. /*
  2839. * end_pgoff is either end of page table or end of vma
  2840. * or fault_around_pages() from start_pgoff, depending what is nearest.
  2841. */
  2842. end_pgoff = start_pgoff -
  2843. ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
  2844. PTRS_PER_PTE - 1;
  2845. end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
  2846. start_pgoff + nr_pages - 1);
  2847. if (pmd_none(*vmf->pmd)) {
  2848. vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
  2849. vmf->address);
  2850. if (!vmf->prealloc_pte)
  2851. goto out;
  2852. smp_wmb(); /* See comment in __pte_alloc() */
  2853. }
  2854. vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
  2855. /* Huge page is mapped? Page fault is solved */
  2856. if (pmd_trans_huge(*vmf->pmd)) {
  2857. ret = VM_FAULT_NOPAGE;
  2858. goto out;
  2859. }
  2860. /* ->map_pages() haven't done anything useful. Cold page cache? */
  2861. if (!vmf->pte)
  2862. goto out;
  2863. /* check if the page fault is solved */
  2864. vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
  2865. if (!pte_none(*vmf->pte))
  2866. ret = VM_FAULT_NOPAGE;
  2867. pte_unmap_unlock(vmf->pte, vmf->ptl);
  2868. out:
  2869. vmf->address = address;
  2870. vmf->pte = NULL;
  2871. return ret;
  2872. }
  2873. static int do_read_fault(struct vm_fault *vmf)
  2874. {
  2875. struct vm_area_struct *vma = vmf->vma;
  2876. int ret = 0;
  2877. /*
  2878. * Let's call ->map_pages() first and use ->fault() as fallback
  2879. * if page by the offset is not ready to be mapped (cold cache or
  2880. * something).
  2881. */
  2882. if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
  2883. ret = do_fault_around(vmf);
  2884. if (ret)
  2885. return ret;
  2886. }
  2887. ret = __do_fault(vmf);
  2888. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2889. return ret;
  2890. ret |= finish_fault(vmf);
  2891. unlock_page(vmf->page);
  2892. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2893. put_page(vmf->page);
  2894. return ret;
  2895. }
  2896. static int do_cow_fault(struct vm_fault *vmf)
  2897. {
  2898. struct vm_area_struct *vma = vmf->vma;
  2899. int ret;
  2900. if (unlikely(anon_vma_prepare(vma)))
  2901. return VM_FAULT_OOM;
  2902. vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
  2903. if (!vmf->cow_page)
  2904. return VM_FAULT_OOM;
  2905. if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
  2906. &vmf->memcg, false)) {
  2907. put_page(vmf->cow_page);
  2908. return VM_FAULT_OOM;
  2909. }
  2910. ret = __do_fault(vmf);
  2911. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2912. goto uncharge_out;
  2913. if (ret & VM_FAULT_DONE_COW)
  2914. return ret;
  2915. copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
  2916. __SetPageUptodate(vmf->cow_page);
  2917. ret |= finish_fault(vmf);
  2918. unlock_page(vmf->page);
  2919. put_page(vmf->page);
  2920. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2921. goto uncharge_out;
  2922. return ret;
  2923. uncharge_out:
  2924. mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
  2925. put_page(vmf->cow_page);
  2926. return ret;
  2927. }
  2928. static int do_shared_fault(struct vm_fault *vmf)
  2929. {
  2930. struct vm_area_struct *vma = vmf->vma;
  2931. int ret, tmp;
  2932. ret = __do_fault(vmf);
  2933. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2934. return ret;
  2935. /*
  2936. * Check if the backing address space wants to know that the page is
  2937. * about to become writable
  2938. */
  2939. if (vma->vm_ops->page_mkwrite) {
  2940. unlock_page(vmf->page);
  2941. tmp = do_page_mkwrite(vmf);
  2942. if (unlikely(!tmp ||
  2943. (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2944. put_page(vmf->page);
  2945. return tmp;
  2946. }
  2947. }
  2948. ret |= finish_fault(vmf);
  2949. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2950. VM_FAULT_RETRY))) {
  2951. unlock_page(vmf->page);
  2952. put_page(vmf->page);
  2953. return ret;
  2954. }
  2955. fault_dirty_shared_page(vma, vmf->page);
  2956. return ret;
  2957. }
  2958. /*
  2959. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2960. * but allow concurrent faults).
  2961. * The mmap_sem may have been released depending on flags and our
  2962. * return value. See filemap_fault() and __lock_page_or_retry().
  2963. */
  2964. static int do_fault(struct vm_fault *vmf)
  2965. {
  2966. struct vm_area_struct *vma = vmf->vma;
  2967. int ret;
  2968. /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
  2969. if (!vma->vm_ops->fault)
  2970. ret = VM_FAULT_SIGBUS;
  2971. else if (!(vmf->flags & FAULT_FLAG_WRITE))
  2972. ret = do_read_fault(vmf);
  2973. else if (!(vma->vm_flags & VM_SHARED))
  2974. ret = do_cow_fault(vmf);
  2975. else
  2976. ret = do_shared_fault(vmf);
  2977. /* preallocated pagetable is unused: free it */
  2978. if (vmf->prealloc_pte) {
  2979. pte_free(vma->vm_mm, vmf->prealloc_pte);
  2980. vmf->prealloc_pte = 0;
  2981. }
  2982. return ret;
  2983. }
  2984. static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  2985. unsigned long addr, int page_nid,
  2986. int *flags)
  2987. {
  2988. get_page(page);
  2989. count_vm_numa_event(NUMA_HINT_FAULTS);
  2990. if (page_nid == numa_node_id()) {
  2991. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  2992. *flags |= TNF_FAULT_LOCAL;
  2993. }
  2994. return mpol_misplaced(page, vma, addr);
  2995. }
  2996. static int do_numa_page(struct vm_fault *vmf)
  2997. {
  2998. struct vm_area_struct *vma = vmf->vma;
  2999. struct page *page = NULL;
  3000. int page_nid = -1;
  3001. int last_cpupid;
  3002. int target_nid;
  3003. bool migrated = false;
  3004. pte_t pte = vmf->orig_pte;
  3005. bool was_writable = pte_write(pte);
  3006. int flags = 0;
  3007. /*
  3008. * The "pte" at this point cannot be used safely without
  3009. * validation through pte_unmap_same(). It's of NUMA type but
  3010. * the pfn may be screwed if the read is non atomic.
  3011. *
  3012. * We can safely just do a "set_pte_at()", because the old
  3013. * page table entry is not accessible, so there would be no
  3014. * concurrent hardware modifications to the PTE.
  3015. */
  3016. vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
  3017. spin_lock(vmf->ptl);
  3018. if (unlikely(!pte_same(*vmf->pte, pte))) {
  3019. pte_unmap_unlock(vmf->pte, vmf->ptl);
  3020. goto out;
  3021. }
  3022. /* Make it present again */
  3023. pte = pte_modify(pte, vma->vm_page_prot);
  3024. pte = pte_mkyoung(pte);
  3025. if (was_writable)
  3026. pte = pte_mkwrite(pte);
  3027. set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
  3028. update_mmu_cache(vma, vmf->address, vmf->pte);
  3029. page = vm_normal_page(vma, vmf->address, pte);
  3030. if (!page) {
  3031. pte_unmap_unlock(vmf->pte, vmf->ptl);
  3032. return 0;
  3033. }
  3034. /* TODO: handle PTE-mapped THP */
  3035. if (PageCompound(page)) {
  3036. pte_unmap_unlock(vmf->pte, vmf->ptl);
  3037. return 0;
  3038. }
  3039. /*
  3040. * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
  3041. * much anyway since they can be in shared cache state. This misses
  3042. * the case where a mapping is writable but the process never writes
  3043. * to it but pte_write gets cleared during protection updates and
  3044. * pte_dirty has unpredictable behaviour between PTE scan updates,
  3045. * background writeback, dirty balancing and application behaviour.
  3046. */
  3047. if (!pte_write(pte))
  3048. flags |= TNF_NO_GROUP;
  3049. /*
  3050. * Flag if the page is shared between multiple address spaces. This
  3051. * is later used when determining whether to group tasks together
  3052. */
  3053. if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
  3054. flags |= TNF_SHARED;
  3055. last_cpupid = page_cpupid_last(page);
  3056. page_nid = page_to_nid(page);
  3057. target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
  3058. &flags);
  3059. pte_unmap_unlock(vmf->pte, vmf->ptl);
  3060. if (target_nid == -1) {
  3061. put_page(page);
  3062. goto out;
  3063. }
  3064. /* Migrate to the requested node */
  3065. migrated = migrate_misplaced_page(page, vma, target_nid);
  3066. if (migrated) {
  3067. page_nid = target_nid;
  3068. flags |= TNF_MIGRATED;
  3069. } else
  3070. flags |= TNF_MIGRATE_FAIL;
  3071. out:
  3072. if (page_nid != -1)
  3073. task_numa_fault(last_cpupid, page_nid, 1, flags);
  3074. return 0;
  3075. }
  3076. static int create_huge_pmd(struct vm_fault *vmf)
  3077. {
  3078. if (vma_is_anonymous(vmf->vma))
  3079. return do_huge_pmd_anonymous_page(vmf);
  3080. if (vmf->vma->vm_ops->pmd_fault)
  3081. return vmf->vma->vm_ops->pmd_fault(vmf);
  3082. return VM_FAULT_FALLBACK;
  3083. }
  3084. static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
  3085. {
  3086. if (vma_is_anonymous(vmf->vma))
  3087. return do_huge_pmd_wp_page(vmf, orig_pmd);
  3088. if (vmf->vma->vm_ops->pmd_fault)
  3089. return vmf->vma->vm_ops->pmd_fault(vmf);
  3090. /* COW handled on pte level: split pmd */
  3091. VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
  3092. __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
  3093. return VM_FAULT_FALLBACK;
  3094. }
  3095. static inline bool vma_is_accessible(struct vm_area_struct *vma)
  3096. {
  3097. return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
  3098. }
  3099. /*
  3100. * These routines also need to handle stuff like marking pages dirty
  3101. * and/or accessed for architectures that don't do it in hardware (most
  3102. * RISC architectures). The early dirtying is also good on the i386.
  3103. *
  3104. * There is also a hook called "update_mmu_cache()" that architectures
  3105. * with external mmu caches can use to update those (ie the Sparc or
  3106. * PowerPC hashed page tables that act as extended TLBs).
  3107. *
  3108. * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
  3109. * concurrent faults).
  3110. *
  3111. * The mmap_sem may have been released depending on flags and our return value.
  3112. * See filemap_fault() and __lock_page_or_retry().
  3113. */
  3114. static int handle_pte_fault(struct vm_fault *vmf)
  3115. {
  3116. pte_t entry;
  3117. if (unlikely(pmd_none(*vmf->pmd))) {
  3118. /*
  3119. * Leave __pte_alloc() until later: because vm_ops->fault may
  3120. * want to allocate huge page, and if we expose page table
  3121. * for an instant, it will be difficult to retract from
  3122. * concurrent faults and from rmap lookups.
  3123. */
  3124. vmf->pte = NULL;
  3125. } else {
  3126. /* See comment in pte_alloc_one_map() */
  3127. if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
  3128. return 0;
  3129. /*
  3130. * A regular pmd is established and it can't morph into a huge
  3131. * pmd from under us anymore at this point because we hold the
  3132. * mmap_sem read mode and khugepaged takes it in write mode.
  3133. * So now it's safe to run pte_offset_map().
  3134. */
  3135. vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
  3136. vmf->orig_pte = *vmf->pte;
  3137. /*
  3138. * some architectures can have larger ptes than wordsize,
  3139. * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
  3140. * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
  3141. * atomic accesses. The code below just needs a consistent
  3142. * view for the ifs and we later double check anyway with the
  3143. * ptl lock held. So here a barrier will do.
  3144. */
  3145. barrier();
  3146. if (pte_none(vmf->orig_pte)) {
  3147. pte_unmap(vmf->pte);
  3148. vmf->pte = NULL;
  3149. }
  3150. }
  3151. if (!vmf->pte) {
  3152. if (vma_is_anonymous(vmf->vma))
  3153. return do_anonymous_page(vmf);
  3154. else
  3155. return do_fault(vmf);
  3156. }
  3157. if (!pte_present(vmf->orig_pte))
  3158. return do_swap_page(vmf);
  3159. if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
  3160. return do_numa_page(vmf);
  3161. vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
  3162. spin_lock(vmf->ptl);
  3163. entry = vmf->orig_pte;
  3164. if (unlikely(!pte_same(*vmf->pte, entry)))
  3165. goto unlock;
  3166. if (vmf->flags & FAULT_FLAG_WRITE) {
  3167. if (!pte_write(entry))
  3168. return do_wp_page(vmf);
  3169. entry = pte_mkdirty(entry);
  3170. }
  3171. entry = pte_mkyoung(entry);
  3172. if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
  3173. vmf->flags & FAULT_FLAG_WRITE)) {
  3174. update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
  3175. } else {
  3176. /*
  3177. * This is needed only for protection faults but the arch code
  3178. * is not yet telling us if this is a protection fault or not.
  3179. * This still avoids useless tlb flushes for .text page faults
  3180. * with threads.
  3181. */
  3182. if (vmf->flags & FAULT_FLAG_WRITE)
  3183. flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
  3184. }
  3185. unlock:
  3186. pte_unmap_unlock(vmf->pte, vmf->ptl);
  3187. return 0;
  3188. }
  3189. /*
  3190. * By the time we get here, we already hold the mm semaphore
  3191. *
  3192. * The mmap_sem may have been released depending on flags and our
  3193. * return value. See filemap_fault() and __lock_page_or_retry().
  3194. */
  3195. static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  3196. unsigned int flags)
  3197. {
  3198. struct vm_fault vmf = {
  3199. .vma = vma,
  3200. .address = address & PAGE_MASK,
  3201. .flags = flags,
  3202. .pgoff = linear_page_index(vma, address),
  3203. .gfp_mask = __get_fault_gfp_mask(vma),
  3204. };
  3205. struct mm_struct *mm = vma->vm_mm;
  3206. pgd_t *pgd;
  3207. pud_t *pud;
  3208. pgd = pgd_offset(mm, address);
  3209. pud = pud_alloc(mm, pgd, address);
  3210. if (!pud)
  3211. return VM_FAULT_OOM;
  3212. vmf.pmd = pmd_alloc(mm, pud, address);
  3213. if (!vmf.pmd)
  3214. return VM_FAULT_OOM;
  3215. if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
  3216. int ret = create_huge_pmd(&vmf);
  3217. if (!(ret & VM_FAULT_FALLBACK))
  3218. return ret;
  3219. } else {
  3220. pmd_t orig_pmd = *vmf.pmd;
  3221. int ret;
  3222. barrier();
  3223. if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
  3224. if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
  3225. return do_huge_pmd_numa_page(&vmf, orig_pmd);
  3226. if ((vmf.flags & FAULT_FLAG_WRITE) &&
  3227. !pmd_write(orig_pmd)) {
  3228. ret = wp_huge_pmd(&vmf, orig_pmd);
  3229. if (!(ret & VM_FAULT_FALLBACK))
  3230. return ret;
  3231. } else {
  3232. huge_pmd_set_accessed(&vmf, orig_pmd);
  3233. return 0;
  3234. }
  3235. }
  3236. }
  3237. return handle_pte_fault(&vmf);
  3238. }
  3239. /*
  3240. * By the time we get here, we already hold the mm semaphore
  3241. *
  3242. * The mmap_sem may have been released depending on flags and our
  3243. * return value. See filemap_fault() and __lock_page_or_retry().
  3244. */
  3245. int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  3246. unsigned int flags)
  3247. {
  3248. int ret;
  3249. __set_current_state(TASK_RUNNING);
  3250. count_vm_event(PGFAULT);
  3251. mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
  3252. /* do counter updates before entering really critical section. */
  3253. check_sync_rss_stat(current);
  3254. /*
  3255. * Enable the memcg OOM handling for faults triggered in user
  3256. * space. Kernel faults are handled more gracefully.
  3257. */
  3258. if (flags & FAULT_FLAG_USER)
  3259. mem_cgroup_oom_enable();
  3260. if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
  3261. flags & FAULT_FLAG_INSTRUCTION,
  3262. flags & FAULT_FLAG_REMOTE))
  3263. return VM_FAULT_SIGSEGV;
  3264. if (unlikely(is_vm_hugetlb_page(vma)))
  3265. ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
  3266. else
  3267. ret = __handle_mm_fault(vma, address, flags);
  3268. if (flags & FAULT_FLAG_USER) {
  3269. mem_cgroup_oom_disable();
  3270. /*
  3271. * The task may have entered a memcg OOM situation but
  3272. * if the allocation error was handled gracefully (no
  3273. * VM_FAULT_OOM), there is no need to kill anything.
  3274. * Just clean up the OOM state peacefully.
  3275. */
  3276. if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
  3277. mem_cgroup_oom_synchronize(false);
  3278. }
  3279. /*
  3280. * This mm has been already reaped by the oom reaper and so the
  3281. * refault cannot be trusted in general. Anonymous refaults would
  3282. * lose data and give a zero page instead e.g. This is especially
  3283. * problem for use_mm() because regular tasks will just die and
  3284. * the corrupted data will not be visible anywhere while kthread
  3285. * will outlive the oom victim and potentially propagate the date
  3286. * further.
  3287. */
  3288. if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
  3289. && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
  3290. ret = VM_FAULT_SIGBUS;
  3291. return ret;
  3292. }
  3293. EXPORT_SYMBOL_GPL(handle_mm_fault);
  3294. #ifndef __PAGETABLE_PUD_FOLDED
  3295. /*
  3296. * Allocate page upper directory.
  3297. * We've already handled the fast-path in-line.
  3298. */
  3299. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3300. {
  3301. pud_t *new = pud_alloc_one(mm, address);
  3302. if (!new)
  3303. return -ENOMEM;
  3304. smp_wmb(); /* See comment in __pte_alloc */
  3305. spin_lock(&mm->page_table_lock);
  3306. if (pgd_present(*pgd)) /* Another has populated it */
  3307. pud_free(mm, new);
  3308. else
  3309. pgd_populate(mm, pgd, new);
  3310. spin_unlock(&mm->page_table_lock);
  3311. return 0;
  3312. }
  3313. #endif /* __PAGETABLE_PUD_FOLDED */
  3314. #ifndef __PAGETABLE_PMD_FOLDED
  3315. /*
  3316. * Allocate page middle directory.
  3317. * We've already handled the fast-path in-line.
  3318. */
  3319. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3320. {
  3321. pmd_t *new = pmd_alloc_one(mm, address);
  3322. if (!new)
  3323. return -ENOMEM;
  3324. smp_wmb(); /* See comment in __pte_alloc */
  3325. spin_lock(&mm->page_table_lock);
  3326. #ifndef __ARCH_HAS_4LEVEL_HACK
  3327. if (!pud_present(*pud)) {
  3328. mm_inc_nr_pmds(mm);
  3329. pud_populate(mm, pud, new);
  3330. } else /* Another has populated it */
  3331. pmd_free(mm, new);
  3332. #else
  3333. if (!pgd_present(*pud)) {
  3334. mm_inc_nr_pmds(mm);
  3335. pgd_populate(mm, pud, new);
  3336. } else /* Another has populated it */
  3337. pmd_free(mm, new);
  3338. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3339. spin_unlock(&mm->page_table_lock);
  3340. return 0;
  3341. }
  3342. #endif /* __PAGETABLE_PMD_FOLDED */
  3343. static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
  3344. pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
  3345. {
  3346. pgd_t *pgd;
  3347. pud_t *pud;
  3348. pmd_t *pmd;
  3349. pte_t *ptep;
  3350. pgd = pgd_offset(mm, address);
  3351. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3352. goto out;
  3353. pud = pud_offset(pgd, address);
  3354. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3355. goto out;
  3356. pmd = pmd_offset(pud, address);
  3357. VM_BUG_ON(pmd_trans_huge(*pmd));
  3358. if (pmd_huge(*pmd)) {
  3359. if (!pmdpp)
  3360. goto out;
  3361. *ptlp = pmd_lock(mm, pmd);
  3362. if (pmd_huge(*pmd)) {
  3363. *pmdpp = pmd;
  3364. return 0;
  3365. }
  3366. spin_unlock(*ptlp);
  3367. }
  3368. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3369. goto out;
  3370. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3371. if (!ptep)
  3372. goto out;
  3373. if (!pte_present(*ptep))
  3374. goto unlock;
  3375. *ptepp = ptep;
  3376. return 0;
  3377. unlock:
  3378. pte_unmap_unlock(ptep, *ptlp);
  3379. out:
  3380. return -EINVAL;
  3381. }
  3382. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3383. pte_t **ptepp, spinlock_t **ptlp)
  3384. {
  3385. int res;
  3386. /* (void) is needed to make gcc happy */
  3387. (void) __cond_lock(*ptlp,
  3388. !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
  3389. ptlp)));
  3390. return res;
  3391. }
  3392. int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
  3393. pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
  3394. {
  3395. int res;
  3396. /* (void) is needed to make gcc happy */
  3397. (void) __cond_lock(*ptlp,
  3398. !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
  3399. ptlp)));
  3400. return res;
  3401. }
  3402. EXPORT_SYMBOL(follow_pte_pmd);
  3403. /**
  3404. * follow_pfn - look up PFN at a user virtual address
  3405. * @vma: memory mapping
  3406. * @address: user virtual address
  3407. * @pfn: location to store found PFN
  3408. *
  3409. * Only IO mappings and raw PFN mappings are allowed.
  3410. *
  3411. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3412. */
  3413. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3414. unsigned long *pfn)
  3415. {
  3416. int ret = -EINVAL;
  3417. spinlock_t *ptl;
  3418. pte_t *ptep;
  3419. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3420. return ret;
  3421. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3422. if (ret)
  3423. return ret;
  3424. *pfn = pte_pfn(*ptep);
  3425. pte_unmap_unlock(ptep, ptl);
  3426. return 0;
  3427. }
  3428. EXPORT_SYMBOL(follow_pfn);
  3429. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3430. int follow_phys(struct vm_area_struct *vma,
  3431. unsigned long address, unsigned int flags,
  3432. unsigned long *prot, resource_size_t *phys)
  3433. {
  3434. int ret = -EINVAL;
  3435. pte_t *ptep, pte;
  3436. spinlock_t *ptl;
  3437. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3438. goto out;
  3439. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3440. goto out;
  3441. pte = *ptep;
  3442. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3443. goto unlock;
  3444. *prot = pgprot_val(pte_pgprot(pte));
  3445. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3446. ret = 0;
  3447. unlock:
  3448. pte_unmap_unlock(ptep, ptl);
  3449. out:
  3450. return ret;
  3451. }
  3452. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3453. void *buf, int len, int write)
  3454. {
  3455. resource_size_t phys_addr;
  3456. unsigned long prot = 0;
  3457. void __iomem *maddr;
  3458. int offset = addr & (PAGE_SIZE-1);
  3459. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3460. return -EINVAL;
  3461. maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
  3462. if (write)
  3463. memcpy_toio(maddr + offset, buf, len);
  3464. else
  3465. memcpy_fromio(buf, maddr + offset, len);
  3466. iounmap(maddr);
  3467. return len;
  3468. }
  3469. EXPORT_SYMBOL_GPL(generic_access_phys);
  3470. #endif
  3471. /*
  3472. * Access another process' address space as given in mm. If non-NULL, use the
  3473. * given task for page fault accounting.
  3474. */
  3475. int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3476. unsigned long addr, void *buf, int len, unsigned int gup_flags)
  3477. {
  3478. struct vm_area_struct *vma;
  3479. void *old_buf = buf;
  3480. int write = gup_flags & FOLL_WRITE;
  3481. down_read(&mm->mmap_sem);
  3482. /* ignore errors, just check how much was successfully transferred */
  3483. while (len) {
  3484. int bytes, ret, offset;
  3485. void *maddr;
  3486. struct page *page = NULL;
  3487. ret = get_user_pages_remote(tsk, mm, addr, 1,
  3488. gup_flags, &page, &vma, NULL);
  3489. if (ret <= 0) {
  3490. #ifndef CONFIG_HAVE_IOREMAP_PROT
  3491. break;
  3492. #else
  3493. /*
  3494. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3495. * we can access using slightly different code.
  3496. */
  3497. vma = find_vma(mm, addr);
  3498. if (!vma || vma->vm_start > addr)
  3499. break;
  3500. if (vma->vm_ops && vma->vm_ops->access)
  3501. ret = vma->vm_ops->access(vma, addr, buf,
  3502. len, write);
  3503. if (ret <= 0)
  3504. break;
  3505. bytes = ret;
  3506. #endif
  3507. } else {
  3508. bytes = len;
  3509. offset = addr & (PAGE_SIZE-1);
  3510. if (bytes > PAGE_SIZE-offset)
  3511. bytes = PAGE_SIZE-offset;
  3512. maddr = kmap(page);
  3513. if (write) {
  3514. copy_to_user_page(vma, page, addr,
  3515. maddr + offset, buf, bytes);
  3516. set_page_dirty_lock(page);
  3517. } else {
  3518. copy_from_user_page(vma, page, addr,
  3519. buf, maddr + offset, bytes);
  3520. }
  3521. kunmap(page);
  3522. put_page(page);
  3523. }
  3524. len -= bytes;
  3525. buf += bytes;
  3526. addr += bytes;
  3527. }
  3528. up_read(&mm->mmap_sem);
  3529. return buf - old_buf;
  3530. }
  3531. /**
  3532. * access_remote_vm - access another process' address space
  3533. * @mm: the mm_struct of the target address space
  3534. * @addr: start address to access
  3535. * @buf: source or destination buffer
  3536. * @len: number of bytes to transfer
  3537. * @gup_flags: flags modifying lookup behaviour
  3538. *
  3539. * The caller must hold a reference on @mm.
  3540. */
  3541. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3542. void *buf, int len, unsigned int gup_flags)
  3543. {
  3544. return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
  3545. }
  3546. /*
  3547. * Access another process' address space.
  3548. * Source/target buffer must be kernel space,
  3549. * Do not walk the page table directly, use get_user_pages
  3550. */
  3551. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3552. void *buf, int len, unsigned int gup_flags)
  3553. {
  3554. struct mm_struct *mm;
  3555. int ret;
  3556. mm = get_task_mm(tsk);
  3557. if (!mm)
  3558. return 0;
  3559. ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
  3560. mmput(mm);
  3561. return ret;
  3562. }
  3563. EXPORT_SYMBOL_GPL(access_process_vm);
  3564. /*
  3565. * Print the name of a VMA.
  3566. */
  3567. void print_vma_addr(char *prefix, unsigned long ip)
  3568. {
  3569. struct mm_struct *mm = current->mm;
  3570. struct vm_area_struct *vma;
  3571. /*
  3572. * Do not print if we are in atomic
  3573. * contexts (in exception stacks, etc.):
  3574. */
  3575. if (preempt_count())
  3576. return;
  3577. down_read(&mm->mmap_sem);
  3578. vma = find_vma(mm, ip);
  3579. if (vma && vma->vm_file) {
  3580. struct file *f = vma->vm_file;
  3581. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3582. if (buf) {
  3583. char *p;
  3584. p = file_path(f, buf, PAGE_SIZE);
  3585. if (IS_ERR(p))
  3586. p = "?";
  3587. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3588. vma->vm_start,
  3589. vma->vm_end - vma->vm_start);
  3590. free_page((unsigned long)buf);
  3591. }
  3592. }
  3593. up_read(&mm->mmap_sem);
  3594. }
  3595. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3596. void __might_fault(const char *file, int line)
  3597. {
  3598. /*
  3599. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3600. * holding the mmap_sem, this is safe because kernel memory doesn't
  3601. * get paged out, therefore we'll never actually fault, and the
  3602. * below annotations will generate false positives.
  3603. */
  3604. if (segment_eq(get_fs(), KERNEL_DS))
  3605. return;
  3606. if (pagefault_disabled())
  3607. return;
  3608. __might_sleep(file, line, 0);
  3609. #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3610. if (current->mm)
  3611. might_lock_read(&current->mm->mmap_sem);
  3612. #endif
  3613. }
  3614. EXPORT_SYMBOL(__might_fault);
  3615. #endif
  3616. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3617. static void clear_gigantic_page(struct page *page,
  3618. unsigned long addr,
  3619. unsigned int pages_per_huge_page)
  3620. {
  3621. int i;
  3622. struct page *p = page;
  3623. might_sleep();
  3624. for (i = 0; i < pages_per_huge_page;
  3625. i++, p = mem_map_next(p, page, i)) {
  3626. cond_resched();
  3627. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3628. }
  3629. }
  3630. void clear_huge_page(struct page *page,
  3631. unsigned long addr, unsigned int pages_per_huge_page)
  3632. {
  3633. int i;
  3634. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3635. clear_gigantic_page(page, addr, pages_per_huge_page);
  3636. return;
  3637. }
  3638. might_sleep();
  3639. for (i = 0; i < pages_per_huge_page; i++) {
  3640. cond_resched();
  3641. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3642. }
  3643. }
  3644. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3645. unsigned long addr,
  3646. struct vm_area_struct *vma,
  3647. unsigned int pages_per_huge_page)
  3648. {
  3649. int i;
  3650. struct page *dst_base = dst;
  3651. struct page *src_base = src;
  3652. for (i = 0; i < pages_per_huge_page; ) {
  3653. cond_resched();
  3654. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3655. i++;
  3656. dst = mem_map_next(dst, dst_base, i);
  3657. src = mem_map_next(src, src_base, i);
  3658. }
  3659. }
  3660. void copy_user_huge_page(struct page *dst, struct page *src,
  3661. unsigned long addr, struct vm_area_struct *vma,
  3662. unsigned int pages_per_huge_page)
  3663. {
  3664. int i;
  3665. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3666. copy_user_gigantic_page(dst, src, addr, vma,
  3667. pages_per_huge_page);
  3668. return;
  3669. }
  3670. might_sleep();
  3671. for (i = 0; i < pages_per_huge_page; i++) {
  3672. cond_resched();
  3673. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3674. }
  3675. }
  3676. long copy_huge_page_from_user(struct page *dst_page,
  3677. const void __user *usr_src,
  3678. unsigned int pages_per_huge_page,
  3679. bool allow_pagefault)
  3680. {
  3681. void *src = (void *)usr_src;
  3682. void *page_kaddr;
  3683. unsigned long i, rc = 0;
  3684. unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
  3685. for (i = 0; i < pages_per_huge_page; i++) {
  3686. if (allow_pagefault)
  3687. page_kaddr = kmap(dst_page + i);
  3688. else
  3689. page_kaddr = kmap_atomic(dst_page + i);
  3690. rc = copy_from_user(page_kaddr,
  3691. (const void __user *)(src + i * PAGE_SIZE),
  3692. PAGE_SIZE);
  3693. if (allow_pagefault)
  3694. kunmap(dst_page + i);
  3695. else
  3696. kunmap_atomic(page_kaddr);
  3697. ret_val -= (PAGE_SIZE - rc);
  3698. if (rc)
  3699. break;
  3700. cond_resched();
  3701. }
  3702. return ret_val;
  3703. }
  3704. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  3705. #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
  3706. static struct kmem_cache *page_ptl_cachep;
  3707. void __init ptlock_cache_init(void)
  3708. {
  3709. page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
  3710. SLAB_PANIC, NULL);
  3711. }
  3712. bool ptlock_alloc(struct page *page)
  3713. {
  3714. spinlock_t *ptl;
  3715. ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
  3716. if (!ptl)
  3717. return false;
  3718. page->ptl = ptl;
  3719. return true;
  3720. }
  3721. void ptlock_free(struct page *page)
  3722. {
  3723. kmem_cache_free(page_ptl_cachep, page->ptl);
  3724. }
  3725. #endif