file.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/uuid.h>
  24. #include <linux/file.h>
  25. #include "f2fs.h"
  26. #include "node.h"
  27. #include "segment.h"
  28. #include "xattr.h"
  29. #include "acl.h"
  30. #include "gc.h"
  31. #include "trace.h"
  32. #include <trace/events/f2fs.h>
  33. static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  34. {
  35. struct page *page = vmf->page;
  36. struct inode *inode = file_inode(vmf->vma->vm_file);
  37. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  38. struct dnode_of_data dn;
  39. int err;
  40. sb_start_pagefault(inode->i_sb);
  41. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  42. /* block allocation */
  43. f2fs_lock_op(sbi);
  44. set_new_dnode(&dn, inode, NULL, NULL, 0);
  45. err = f2fs_reserve_block(&dn, page->index);
  46. if (err) {
  47. f2fs_unlock_op(sbi);
  48. goto out;
  49. }
  50. f2fs_put_dnode(&dn);
  51. f2fs_unlock_op(sbi);
  52. f2fs_balance_fs(sbi, dn.node_changed);
  53. file_update_time(vmf->vma->vm_file);
  54. lock_page(page);
  55. if (unlikely(page->mapping != inode->i_mapping ||
  56. page_offset(page) > i_size_read(inode) ||
  57. !PageUptodate(page))) {
  58. unlock_page(page);
  59. err = -EFAULT;
  60. goto out;
  61. }
  62. /*
  63. * check to see if the page is mapped already (no holes)
  64. */
  65. if (PageMappedToDisk(page))
  66. goto mapped;
  67. /* page is wholly or partially inside EOF */
  68. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  69. i_size_read(inode)) {
  70. unsigned offset;
  71. offset = i_size_read(inode) & ~PAGE_MASK;
  72. zero_user_segment(page, offset, PAGE_SIZE);
  73. }
  74. set_page_dirty(page);
  75. if (!PageUptodate(page))
  76. SetPageUptodate(page);
  77. trace_f2fs_vm_page_mkwrite(page, DATA);
  78. mapped:
  79. /* fill the page */
  80. f2fs_wait_on_page_writeback(page, DATA, false);
  81. /* wait for GCed encrypted page writeback */
  82. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  83. f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
  84. out:
  85. sb_end_pagefault(inode->i_sb);
  86. f2fs_update_time(sbi, REQ_TIME);
  87. return block_page_mkwrite_return(err);
  88. }
  89. static const struct vm_operations_struct f2fs_file_vm_ops = {
  90. .fault = filemap_fault,
  91. .map_pages = filemap_map_pages,
  92. .page_mkwrite = f2fs_vm_page_mkwrite,
  93. };
  94. static int get_parent_ino(struct inode *inode, nid_t *pino)
  95. {
  96. struct dentry *dentry;
  97. inode = igrab(inode);
  98. dentry = d_find_any_alias(inode);
  99. iput(inode);
  100. if (!dentry)
  101. return 0;
  102. if (update_dent_inode(inode, inode, &dentry->d_name)) {
  103. dput(dentry);
  104. return 0;
  105. }
  106. *pino = parent_ino(dentry);
  107. dput(dentry);
  108. return 1;
  109. }
  110. static inline bool need_do_checkpoint(struct inode *inode)
  111. {
  112. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  113. bool need_cp = false;
  114. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  115. need_cp = true;
  116. else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
  117. need_cp = true;
  118. else if (file_wrong_pino(inode))
  119. need_cp = true;
  120. else if (!space_for_roll_forward(sbi))
  121. need_cp = true;
  122. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  123. need_cp = true;
  124. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  125. need_cp = true;
  126. else if (test_opt(sbi, FASTBOOT))
  127. need_cp = true;
  128. else if (sbi->active_logs == 2)
  129. need_cp = true;
  130. return need_cp;
  131. }
  132. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  133. {
  134. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  135. bool ret = false;
  136. /* But we need to avoid that there are some inode updates */
  137. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  138. ret = true;
  139. f2fs_put_page(i, 0);
  140. return ret;
  141. }
  142. static void try_to_fix_pino(struct inode *inode)
  143. {
  144. struct f2fs_inode_info *fi = F2FS_I(inode);
  145. nid_t pino;
  146. down_write(&fi->i_sem);
  147. fi->xattr_ver = 0;
  148. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  149. get_parent_ino(inode, &pino)) {
  150. f2fs_i_pino_write(inode, pino);
  151. file_got_pino(inode);
  152. }
  153. up_write(&fi->i_sem);
  154. }
  155. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  156. int datasync, bool atomic)
  157. {
  158. struct inode *inode = file->f_mapping->host;
  159. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  160. nid_t ino = inode->i_ino;
  161. int ret = 0;
  162. bool need_cp = false;
  163. struct writeback_control wbc = {
  164. .sync_mode = WB_SYNC_ALL,
  165. .nr_to_write = LONG_MAX,
  166. .for_reclaim = 0,
  167. };
  168. if (unlikely(f2fs_readonly(inode->i_sb)))
  169. return 0;
  170. trace_f2fs_sync_file_enter(inode);
  171. /* if fdatasync is triggered, let's do in-place-update */
  172. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  173. set_inode_flag(inode, FI_NEED_IPU);
  174. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  175. clear_inode_flag(inode, FI_NEED_IPU);
  176. if (ret) {
  177. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  178. return ret;
  179. }
  180. /* if the inode is dirty, let's recover all the time */
  181. if (!f2fs_skip_inode_update(inode, datasync)) {
  182. f2fs_write_inode(inode, NULL);
  183. goto go_write;
  184. }
  185. /*
  186. * if there is no written data, don't waste time to write recovery info.
  187. */
  188. if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
  189. !exist_written_data(sbi, ino, APPEND_INO)) {
  190. /* it may call write_inode just prior to fsync */
  191. if (need_inode_page_update(sbi, ino))
  192. goto go_write;
  193. if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
  194. exist_written_data(sbi, ino, UPDATE_INO))
  195. goto flush_out;
  196. goto out;
  197. }
  198. go_write:
  199. /*
  200. * Both of fdatasync() and fsync() are able to be recovered from
  201. * sudden-power-off.
  202. */
  203. down_read(&F2FS_I(inode)->i_sem);
  204. need_cp = need_do_checkpoint(inode);
  205. up_read(&F2FS_I(inode)->i_sem);
  206. if (need_cp) {
  207. /* all the dirty node pages should be flushed for POR */
  208. ret = f2fs_sync_fs(inode->i_sb, 1);
  209. /*
  210. * We've secured consistency through sync_fs. Following pino
  211. * will be used only for fsynced inodes after checkpoint.
  212. */
  213. try_to_fix_pino(inode);
  214. clear_inode_flag(inode, FI_APPEND_WRITE);
  215. clear_inode_flag(inode, FI_UPDATE_WRITE);
  216. goto out;
  217. }
  218. sync_nodes:
  219. ret = fsync_node_pages(sbi, inode, &wbc, atomic);
  220. if (ret)
  221. goto out;
  222. /* if cp_error was enabled, we should avoid infinite loop */
  223. if (unlikely(f2fs_cp_error(sbi))) {
  224. ret = -EIO;
  225. goto out;
  226. }
  227. if (need_inode_block_update(sbi, ino)) {
  228. f2fs_mark_inode_dirty_sync(inode, true);
  229. f2fs_write_inode(inode, NULL);
  230. goto sync_nodes;
  231. }
  232. ret = wait_on_node_pages_writeback(sbi, ino);
  233. if (ret)
  234. goto out;
  235. /* once recovery info is written, don't need to tack this */
  236. remove_ino_entry(sbi, ino, APPEND_INO);
  237. clear_inode_flag(inode, FI_APPEND_WRITE);
  238. flush_out:
  239. remove_ino_entry(sbi, ino, UPDATE_INO);
  240. clear_inode_flag(inode, FI_UPDATE_WRITE);
  241. ret = f2fs_issue_flush(sbi);
  242. f2fs_update_time(sbi, REQ_TIME);
  243. out:
  244. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  245. f2fs_trace_ios(NULL, 1);
  246. return ret;
  247. }
  248. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  249. {
  250. return f2fs_do_sync_file(file, start, end, datasync, false);
  251. }
  252. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  253. pgoff_t pgofs, int whence)
  254. {
  255. struct pagevec pvec;
  256. int nr_pages;
  257. if (whence != SEEK_DATA)
  258. return 0;
  259. /* find first dirty page index */
  260. pagevec_init(&pvec, 0);
  261. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  262. PAGECACHE_TAG_DIRTY, 1);
  263. pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
  264. pagevec_release(&pvec);
  265. return pgofs;
  266. }
  267. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  268. int whence)
  269. {
  270. switch (whence) {
  271. case SEEK_DATA:
  272. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  273. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  274. return true;
  275. break;
  276. case SEEK_HOLE:
  277. if (blkaddr == NULL_ADDR)
  278. return true;
  279. break;
  280. }
  281. return false;
  282. }
  283. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  284. {
  285. struct inode *inode = file->f_mapping->host;
  286. loff_t maxbytes = inode->i_sb->s_maxbytes;
  287. struct dnode_of_data dn;
  288. pgoff_t pgofs, end_offset, dirty;
  289. loff_t data_ofs = offset;
  290. loff_t isize;
  291. int err = 0;
  292. inode_lock(inode);
  293. isize = i_size_read(inode);
  294. if (offset >= isize)
  295. goto fail;
  296. /* handle inline data case */
  297. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  298. if (whence == SEEK_HOLE)
  299. data_ofs = isize;
  300. goto found;
  301. }
  302. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  303. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  304. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  305. set_new_dnode(&dn, inode, NULL, NULL, 0);
  306. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
  307. if (err && err != -ENOENT) {
  308. goto fail;
  309. } else if (err == -ENOENT) {
  310. /* direct node does not exists */
  311. if (whence == SEEK_DATA) {
  312. pgofs = get_next_page_offset(&dn, pgofs);
  313. continue;
  314. } else {
  315. goto found;
  316. }
  317. }
  318. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  319. /* find data/hole in dnode block */
  320. for (; dn.ofs_in_node < end_offset;
  321. dn.ofs_in_node++, pgofs++,
  322. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  323. block_t blkaddr;
  324. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  325. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  326. f2fs_put_dnode(&dn);
  327. goto found;
  328. }
  329. }
  330. f2fs_put_dnode(&dn);
  331. }
  332. if (whence == SEEK_DATA)
  333. goto fail;
  334. found:
  335. if (whence == SEEK_HOLE && data_ofs > isize)
  336. data_ofs = isize;
  337. inode_unlock(inode);
  338. return vfs_setpos(file, data_ofs, maxbytes);
  339. fail:
  340. inode_unlock(inode);
  341. return -ENXIO;
  342. }
  343. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  344. {
  345. struct inode *inode = file->f_mapping->host;
  346. loff_t maxbytes = inode->i_sb->s_maxbytes;
  347. switch (whence) {
  348. case SEEK_SET:
  349. case SEEK_CUR:
  350. case SEEK_END:
  351. return generic_file_llseek_size(file, offset, whence,
  352. maxbytes, i_size_read(inode));
  353. case SEEK_DATA:
  354. case SEEK_HOLE:
  355. if (offset < 0)
  356. return -ENXIO;
  357. return f2fs_seek_block(file, offset, whence);
  358. }
  359. return -EINVAL;
  360. }
  361. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  362. {
  363. struct inode *inode = file_inode(file);
  364. int err;
  365. if (f2fs_encrypted_inode(inode)) {
  366. err = fscrypt_get_encryption_info(inode);
  367. if (err)
  368. return 0;
  369. if (!f2fs_encrypted_inode(inode))
  370. return -ENOKEY;
  371. }
  372. /* we don't need to use inline_data strictly */
  373. err = f2fs_convert_inline_inode(inode);
  374. if (err)
  375. return err;
  376. file_accessed(file);
  377. vma->vm_ops = &f2fs_file_vm_ops;
  378. return 0;
  379. }
  380. static int f2fs_file_open(struct inode *inode, struct file *filp)
  381. {
  382. int ret = generic_file_open(inode, filp);
  383. struct dentry *dir;
  384. if (!ret && f2fs_encrypted_inode(inode)) {
  385. ret = fscrypt_get_encryption_info(inode);
  386. if (ret)
  387. return -EACCES;
  388. if (!fscrypt_has_encryption_key(inode))
  389. return -ENOKEY;
  390. }
  391. dir = dget_parent(file_dentry(filp));
  392. if (f2fs_encrypted_inode(d_inode(dir)) &&
  393. !fscrypt_has_permitted_context(d_inode(dir), inode)) {
  394. dput(dir);
  395. return -EPERM;
  396. }
  397. dput(dir);
  398. return ret;
  399. }
  400. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  401. {
  402. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  403. struct f2fs_node *raw_node;
  404. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  405. __le32 *addr;
  406. raw_node = F2FS_NODE(dn->node_page);
  407. addr = blkaddr_in_node(raw_node) + ofs;
  408. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  409. block_t blkaddr = le32_to_cpu(*addr);
  410. if (blkaddr == NULL_ADDR)
  411. continue;
  412. dn->data_blkaddr = NULL_ADDR;
  413. set_data_blkaddr(dn);
  414. invalidate_blocks(sbi, blkaddr);
  415. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  416. clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
  417. nr_free++;
  418. }
  419. if (nr_free) {
  420. pgoff_t fofs;
  421. /*
  422. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  423. * we will invalidate all blkaddr in the whole range.
  424. */
  425. fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
  426. dn->inode) + ofs;
  427. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  428. dec_valid_block_count(sbi, dn->inode, nr_free);
  429. }
  430. dn->ofs_in_node = ofs;
  431. f2fs_update_time(sbi, REQ_TIME);
  432. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  433. dn->ofs_in_node, nr_free);
  434. return nr_free;
  435. }
  436. void truncate_data_blocks(struct dnode_of_data *dn)
  437. {
  438. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  439. }
  440. static int truncate_partial_data_page(struct inode *inode, u64 from,
  441. bool cache_only)
  442. {
  443. unsigned offset = from & (PAGE_SIZE - 1);
  444. pgoff_t index = from >> PAGE_SHIFT;
  445. struct address_space *mapping = inode->i_mapping;
  446. struct page *page;
  447. if (!offset && !cache_only)
  448. return 0;
  449. if (cache_only) {
  450. page = find_lock_page(mapping, index);
  451. if (page && PageUptodate(page))
  452. goto truncate_out;
  453. f2fs_put_page(page, 1);
  454. return 0;
  455. }
  456. page = get_lock_data_page(inode, index, true);
  457. if (IS_ERR(page))
  458. return 0;
  459. truncate_out:
  460. f2fs_wait_on_page_writeback(page, DATA, true);
  461. zero_user(page, offset, PAGE_SIZE - offset);
  462. if (!cache_only || !f2fs_encrypted_inode(inode) ||
  463. !S_ISREG(inode->i_mode))
  464. set_page_dirty(page);
  465. f2fs_put_page(page, 1);
  466. return 0;
  467. }
  468. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  469. {
  470. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  471. unsigned int blocksize = inode->i_sb->s_blocksize;
  472. struct dnode_of_data dn;
  473. pgoff_t free_from;
  474. int count = 0, err = 0;
  475. struct page *ipage;
  476. bool truncate_page = false;
  477. trace_f2fs_truncate_blocks_enter(inode, from);
  478. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  479. if (free_from >= sbi->max_file_blocks)
  480. goto free_partial;
  481. if (lock)
  482. f2fs_lock_op(sbi);
  483. ipage = get_node_page(sbi, inode->i_ino);
  484. if (IS_ERR(ipage)) {
  485. err = PTR_ERR(ipage);
  486. goto out;
  487. }
  488. if (f2fs_has_inline_data(inode)) {
  489. if (truncate_inline_inode(ipage, from))
  490. set_page_dirty(ipage);
  491. f2fs_put_page(ipage, 1);
  492. truncate_page = true;
  493. goto out;
  494. }
  495. set_new_dnode(&dn, inode, ipage, NULL, 0);
  496. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  497. if (err) {
  498. if (err == -ENOENT)
  499. goto free_next;
  500. goto out;
  501. }
  502. count = ADDRS_PER_PAGE(dn.node_page, inode);
  503. count -= dn.ofs_in_node;
  504. f2fs_bug_on(sbi, count < 0);
  505. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  506. truncate_data_blocks_range(&dn, count);
  507. free_from += count;
  508. }
  509. f2fs_put_dnode(&dn);
  510. free_next:
  511. err = truncate_inode_blocks(inode, free_from);
  512. out:
  513. if (lock)
  514. f2fs_unlock_op(sbi);
  515. free_partial:
  516. /* lastly zero out the first data page */
  517. if (!err)
  518. err = truncate_partial_data_page(inode, from, truncate_page);
  519. trace_f2fs_truncate_blocks_exit(inode, err);
  520. return err;
  521. }
  522. int f2fs_truncate(struct inode *inode)
  523. {
  524. int err;
  525. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  526. S_ISLNK(inode->i_mode)))
  527. return 0;
  528. trace_f2fs_truncate(inode);
  529. /* we should check inline_data size */
  530. if (!f2fs_may_inline_data(inode)) {
  531. err = f2fs_convert_inline_inode(inode);
  532. if (err)
  533. return err;
  534. }
  535. err = truncate_blocks(inode, i_size_read(inode), true);
  536. if (err)
  537. return err;
  538. inode->i_mtime = inode->i_ctime = current_time(inode);
  539. f2fs_mark_inode_dirty_sync(inode, false);
  540. return 0;
  541. }
  542. int f2fs_getattr(struct vfsmount *mnt,
  543. struct dentry *dentry, struct kstat *stat)
  544. {
  545. struct inode *inode = d_inode(dentry);
  546. generic_fillattr(inode, stat);
  547. stat->blocks <<= 3;
  548. return 0;
  549. }
  550. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  551. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  552. {
  553. unsigned int ia_valid = attr->ia_valid;
  554. if (ia_valid & ATTR_UID)
  555. inode->i_uid = attr->ia_uid;
  556. if (ia_valid & ATTR_GID)
  557. inode->i_gid = attr->ia_gid;
  558. if (ia_valid & ATTR_ATIME)
  559. inode->i_atime = timespec_trunc(attr->ia_atime,
  560. inode->i_sb->s_time_gran);
  561. if (ia_valid & ATTR_MTIME)
  562. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  563. inode->i_sb->s_time_gran);
  564. if (ia_valid & ATTR_CTIME)
  565. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  566. inode->i_sb->s_time_gran);
  567. if (ia_valid & ATTR_MODE) {
  568. umode_t mode = attr->ia_mode;
  569. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  570. mode &= ~S_ISGID;
  571. set_acl_inode(inode, mode);
  572. }
  573. }
  574. #else
  575. #define __setattr_copy setattr_copy
  576. #endif
  577. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  578. {
  579. struct inode *inode = d_inode(dentry);
  580. int err;
  581. bool size_changed = false;
  582. err = setattr_prepare(dentry, attr);
  583. if (err)
  584. return err;
  585. if (attr->ia_valid & ATTR_SIZE) {
  586. if (f2fs_encrypted_inode(inode) &&
  587. fscrypt_get_encryption_info(inode))
  588. return -EACCES;
  589. if (attr->ia_size <= i_size_read(inode)) {
  590. truncate_setsize(inode, attr->ia_size);
  591. err = f2fs_truncate(inode);
  592. if (err)
  593. return err;
  594. } else {
  595. /*
  596. * do not trim all blocks after i_size if target size is
  597. * larger than i_size.
  598. */
  599. truncate_setsize(inode, attr->ia_size);
  600. /* should convert inline inode here */
  601. if (!f2fs_may_inline_data(inode)) {
  602. err = f2fs_convert_inline_inode(inode);
  603. if (err)
  604. return err;
  605. }
  606. inode->i_mtime = inode->i_ctime = current_time(inode);
  607. }
  608. size_changed = true;
  609. }
  610. __setattr_copy(inode, attr);
  611. if (attr->ia_valid & ATTR_MODE) {
  612. err = posix_acl_chmod(inode, get_inode_mode(inode));
  613. if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
  614. inode->i_mode = F2FS_I(inode)->i_acl_mode;
  615. clear_inode_flag(inode, FI_ACL_MODE);
  616. }
  617. }
  618. /* file size may changed here */
  619. f2fs_mark_inode_dirty_sync(inode, size_changed);
  620. /* inode change will produce dirty node pages flushed by checkpoint */
  621. f2fs_balance_fs(F2FS_I_SB(inode), true);
  622. return err;
  623. }
  624. const struct inode_operations f2fs_file_inode_operations = {
  625. .getattr = f2fs_getattr,
  626. .setattr = f2fs_setattr,
  627. .get_acl = f2fs_get_acl,
  628. .set_acl = f2fs_set_acl,
  629. #ifdef CONFIG_F2FS_FS_XATTR
  630. .listxattr = f2fs_listxattr,
  631. #endif
  632. .fiemap = f2fs_fiemap,
  633. };
  634. static int fill_zero(struct inode *inode, pgoff_t index,
  635. loff_t start, loff_t len)
  636. {
  637. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  638. struct page *page;
  639. if (!len)
  640. return 0;
  641. f2fs_balance_fs(sbi, true);
  642. f2fs_lock_op(sbi);
  643. page = get_new_data_page(inode, NULL, index, false);
  644. f2fs_unlock_op(sbi);
  645. if (IS_ERR(page))
  646. return PTR_ERR(page);
  647. f2fs_wait_on_page_writeback(page, DATA, true);
  648. zero_user(page, start, len);
  649. set_page_dirty(page);
  650. f2fs_put_page(page, 1);
  651. return 0;
  652. }
  653. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  654. {
  655. int err;
  656. while (pg_start < pg_end) {
  657. struct dnode_of_data dn;
  658. pgoff_t end_offset, count;
  659. set_new_dnode(&dn, inode, NULL, NULL, 0);
  660. err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  661. if (err) {
  662. if (err == -ENOENT) {
  663. pg_start++;
  664. continue;
  665. }
  666. return err;
  667. }
  668. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  669. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  670. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  671. truncate_data_blocks_range(&dn, count);
  672. f2fs_put_dnode(&dn);
  673. pg_start += count;
  674. }
  675. return 0;
  676. }
  677. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  678. {
  679. pgoff_t pg_start, pg_end;
  680. loff_t off_start, off_end;
  681. int ret;
  682. ret = f2fs_convert_inline_inode(inode);
  683. if (ret)
  684. return ret;
  685. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  686. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  687. off_start = offset & (PAGE_SIZE - 1);
  688. off_end = (offset + len) & (PAGE_SIZE - 1);
  689. if (pg_start == pg_end) {
  690. ret = fill_zero(inode, pg_start, off_start,
  691. off_end - off_start);
  692. if (ret)
  693. return ret;
  694. } else {
  695. if (off_start) {
  696. ret = fill_zero(inode, pg_start++, off_start,
  697. PAGE_SIZE - off_start);
  698. if (ret)
  699. return ret;
  700. }
  701. if (off_end) {
  702. ret = fill_zero(inode, pg_end, 0, off_end);
  703. if (ret)
  704. return ret;
  705. }
  706. if (pg_start < pg_end) {
  707. struct address_space *mapping = inode->i_mapping;
  708. loff_t blk_start, blk_end;
  709. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  710. f2fs_balance_fs(sbi, true);
  711. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  712. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  713. truncate_inode_pages_range(mapping, blk_start,
  714. blk_end - 1);
  715. f2fs_lock_op(sbi);
  716. ret = truncate_hole(inode, pg_start, pg_end);
  717. f2fs_unlock_op(sbi);
  718. }
  719. }
  720. return ret;
  721. }
  722. static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
  723. int *do_replace, pgoff_t off, pgoff_t len)
  724. {
  725. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  726. struct dnode_of_data dn;
  727. int ret, done, i;
  728. next_dnode:
  729. set_new_dnode(&dn, inode, NULL, NULL, 0);
  730. ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
  731. if (ret && ret != -ENOENT) {
  732. return ret;
  733. } else if (ret == -ENOENT) {
  734. if (dn.max_level == 0)
  735. return -ENOENT;
  736. done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
  737. blkaddr += done;
  738. do_replace += done;
  739. goto next;
  740. }
  741. done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
  742. dn.ofs_in_node, len);
  743. for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
  744. *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  745. if (!is_checkpointed_data(sbi, *blkaddr)) {
  746. if (test_opt(sbi, LFS)) {
  747. f2fs_put_dnode(&dn);
  748. return -ENOTSUPP;
  749. }
  750. /* do not invalidate this block address */
  751. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  752. *do_replace = 1;
  753. }
  754. }
  755. f2fs_put_dnode(&dn);
  756. next:
  757. len -= done;
  758. off += done;
  759. if (len)
  760. goto next_dnode;
  761. return 0;
  762. }
  763. static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
  764. int *do_replace, pgoff_t off, int len)
  765. {
  766. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  767. struct dnode_of_data dn;
  768. int ret, i;
  769. for (i = 0; i < len; i++, do_replace++, blkaddr++) {
  770. if (*do_replace == 0)
  771. continue;
  772. set_new_dnode(&dn, inode, NULL, NULL, 0);
  773. ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
  774. if (ret) {
  775. dec_valid_block_count(sbi, inode, 1);
  776. invalidate_blocks(sbi, *blkaddr);
  777. } else {
  778. f2fs_update_data_blkaddr(&dn, *blkaddr);
  779. }
  780. f2fs_put_dnode(&dn);
  781. }
  782. return 0;
  783. }
  784. static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
  785. block_t *blkaddr, int *do_replace,
  786. pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
  787. {
  788. struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
  789. pgoff_t i = 0;
  790. int ret;
  791. while (i < len) {
  792. if (blkaddr[i] == NULL_ADDR && !full) {
  793. i++;
  794. continue;
  795. }
  796. if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
  797. struct dnode_of_data dn;
  798. struct node_info ni;
  799. size_t new_size;
  800. pgoff_t ilen;
  801. set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
  802. ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
  803. if (ret)
  804. return ret;
  805. get_node_info(sbi, dn.nid, &ni);
  806. ilen = min((pgoff_t)
  807. ADDRS_PER_PAGE(dn.node_page, dst_inode) -
  808. dn.ofs_in_node, len - i);
  809. do {
  810. dn.data_blkaddr = datablock_addr(dn.node_page,
  811. dn.ofs_in_node);
  812. truncate_data_blocks_range(&dn, 1);
  813. if (do_replace[i]) {
  814. f2fs_i_blocks_write(src_inode,
  815. 1, false);
  816. f2fs_i_blocks_write(dst_inode,
  817. 1, true);
  818. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  819. blkaddr[i], ni.version, true, false);
  820. do_replace[i] = 0;
  821. }
  822. dn.ofs_in_node++;
  823. i++;
  824. new_size = (dst + i) << PAGE_SHIFT;
  825. if (dst_inode->i_size < new_size)
  826. f2fs_i_size_write(dst_inode, new_size);
  827. } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
  828. f2fs_put_dnode(&dn);
  829. } else {
  830. struct page *psrc, *pdst;
  831. psrc = get_lock_data_page(src_inode, src + i, true);
  832. if (IS_ERR(psrc))
  833. return PTR_ERR(psrc);
  834. pdst = get_new_data_page(dst_inode, NULL, dst + i,
  835. true);
  836. if (IS_ERR(pdst)) {
  837. f2fs_put_page(psrc, 1);
  838. return PTR_ERR(pdst);
  839. }
  840. f2fs_copy_page(psrc, pdst);
  841. set_page_dirty(pdst);
  842. f2fs_put_page(pdst, 1);
  843. f2fs_put_page(psrc, 1);
  844. ret = truncate_hole(src_inode, src + i, src + i + 1);
  845. if (ret)
  846. return ret;
  847. i++;
  848. }
  849. }
  850. return 0;
  851. }
  852. static int __exchange_data_block(struct inode *src_inode,
  853. struct inode *dst_inode, pgoff_t src, pgoff_t dst,
  854. pgoff_t len, bool full)
  855. {
  856. block_t *src_blkaddr;
  857. int *do_replace;
  858. pgoff_t olen;
  859. int ret;
  860. while (len) {
  861. olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
  862. src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
  863. if (!src_blkaddr)
  864. return -ENOMEM;
  865. do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
  866. if (!do_replace) {
  867. kvfree(src_blkaddr);
  868. return -ENOMEM;
  869. }
  870. ret = __read_out_blkaddrs(src_inode, src_blkaddr,
  871. do_replace, src, olen);
  872. if (ret)
  873. goto roll_back;
  874. ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
  875. do_replace, src, dst, olen, full);
  876. if (ret)
  877. goto roll_back;
  878. src += olen;
  879. dst += olen;
  880. len -= olen;
  881. kvfree(src_blkaddr);
  882. kvfree(do_replace);
  883. }
  884. return 0;
  885. roll_back:
  886. __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
  887. kvfree(src_blkaddr);
  888. kvfree(do_replace);
  889. return ret;
  890. }
  891. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  892. {
  893. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  894. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  895. int ret;
  896. f2fs_balance_fs(sbi, true);
  897. f2fs_lock_op(sbi);
  898. f2fs_drop_extent_tree(inode);
  899. ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
  900. f2fs_unlock_op(sbi);
  901. return ret;
  902. }
  903. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  904. {
  905. pgoff_t pg_start, pg_end;
  906. loff_t new_size;
  907. int ret;
  908. if (offset + len >= i_size_read(inode))
  909. return -EINVAL;
  910. /* collapse range should be aligned to block size of f2fs. */
  911. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  912. return -EINVAL;
  913. ret = f2fs_convert_inline_inode(inode);
  914. if (ret)
  915. return ret;
  916. pg_start = offset >> PAGE_SHIFT;
  917. pg_end = (offset + len) >> PAGE_SHIFT;
  918. /* write out all dirty pages from offset */
  919. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  920. if (ret)
  921. return ret;
  922. truncate_pagecache(inode, offset);
  923. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  924. if (ret)
  925. return ret;
  926. /* write out all moved pages, if possible */
  927. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  928. truncate_pagecache(inode, offset);
  929. new_size = i_size_read(inode) - len;
  930. truncate_pagecache(inode, new_size);
  931. ret = truncate_blocks(inode, new_size, true);
  932. if (!ret)
  933. f2fs_i_size_write(inode, new_size);
  934. return ret;
  935. }
  936. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  937. pgoff_t end)
  938. {
  939. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  940. pgoff_t index = start;
  941. unsigned int ofs_in_node = dn->ofs_in_node;
  942. blkcnt_t count = 0;
  943. int ret;
  944. for (; index < end; index++, dn->ofs_in_node++) {
  945. if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
  946. count++;
  947. }
  948. dn->ofs_in_node = ofs_in_node;
  949. ret = reserve_new_blocks(dn, count);
  950. if (ret)
  951. return ret;
  952. dn->ofs_in_node = ofs_in_node;
  953. for (index = start; index < end; index++, dn->ofs_in_node++) {
  954. dn->data_blkaddr =
  955. datablock_addr(dn->node_page, dn->ofs_in_node);
  956. /*
  957. * reserve_new_blocks will not guarantee entire block
  958. * allocation.
  959. */
  960. if (dn->data_blkaddr == NULL_ADDR) {
  961. ret = -ENOSPC;
  962. break;
  963. }
  964. if (dn->data_blkaddr != NEW_ADDR) {
  965. invalidate_blocks(sbi, dn->data_blkaddr);
  966. dn->data_blkaddr = NEW_ADDR;
  967. set_data_blkaddr(dn);
  968. }
  969. }
  970. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  971. return ret;
  972. }
  973. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  974. int mode)
  975. {
  976. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  977. struct address_space *mapping = inode->i_mapping;
  978. pgoff_t index, pg_start, pg_end;
  979. loff_t new_size = i_size_read(inode);
  980. loff_t off_start, off_end;
  981. int ret = 0;
  982. ret = inode_newsize_ok(inode, (len + offset));
  983. if (ret)
  984. return ret;
  985. ret = f2fs_convert_inline_inode(inode);
  986. if (ret)
  987. return ret;
  988. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  989. if (ret)
  990. return ret;
  991. truncate_pagecache_range(inode, offset, offset + len - 1);
  992. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  993. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  994. off_start = offset & (PAGE_SIZE - 1);
  995. off_end = (offset + len) & (PAGE_SIZE - 1);
  996. if (pg_start == pg_end) {
  997. ret = fill_zero(inode, pg_start, off_start,
  998. off_end - off_start);
  999. if (ret)
  1000. return ret;
  1001. if (offset + len > new_size)
  1002. new_size = offset + len;
  1003. new_size = max_t(loff_t, new_size, offset + len);
  1004. } else {
  1005. if (off_start) {
  1006. ret = fill_zero(inode, pg_start++, off_start,
  1007. PAGE_SIZE - off_start);
  1008. if (ret)
  1009. return ret;
  1010. new_size = max_t(loff_t, new_size,
  1011. (loff_t)pg_start << PAGE_SHIFT);
  1012. }
  1013. for (index = pg_start; index < pg_end;) {
  1014. struct dnode_of_data dn;
  1015. unsigned int end_offset;
  1016. pgoff_t end;
  1017. f2fs_lock_op(sbi);
  1018. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1019. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  1020. if (ret) {
  1021. f2fs_unlock_op(sbi);
  1022. goto out;
  1023. }
  1024. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  1025. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  1026. ret = f2fs_do_zero_range(&dn, index, end);
  1027. f2fs_put_dnode(&dn);
  1028. f2fs_unlock_op(sbi);
  1029. f2fs_balance_fs(sbi, dn.node_changed);
  1030. if (ret)
  1031. goto out;
  1032. index = end;
  1033. new_size = max_t(loff_t, new_size,
  1034. (loff_t)index << PAGE_SHIFT);
  1035. }
  1036. if (off_end) {
  1037. ret = fill_zero(inode, pg_end, 0, off_end);
  1038. if (ret)
  1039. goto out;
  1040. new_size = max_t(loff_t, new_size, offset + len);
  1041. }
  1042. }
  1043. out:
  1044. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1045. f2fs_i_size_write(inode, new_size);
  1046. return ret;
  1047. }
  1048. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  1049. {
  1050. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1051. pgoff_t nr, pg_start, pg_end, delta, idx;
  1052. loff_t new_size;
  1053. int ret = 0;
  1054. new_size = i_size_read(inode) + len;
  1055. if (new_size > inode->i_sb->s_maxbytes)
  1056. return -EFBIG;
  1057. if (offset >= i_size_read(inode))
  1058. return -EINVAL;
  1059. /* insert range should be aligned to block size of f2fs. */
  1060. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1061. return -EINVAL;
  1062. ret = f2fs_convert_inline_inode(inode);
  1063. if (ret)
  1064. return ret;
  1065. f2fs_balance_fs(sbi, true);
  1066. ret = truncate_blocks(inode, i_size_read(inode), true);
  1067. if (ret)
  1068. return ret;
  1069. /* write out all dirty pages from offset */
  1070. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1071. if (ret)
  1072. return ret;
  1073. truncate_pagecache(inode, offset);
  1074. pg_start = offset >> PAGE_SHIFT;
  1075. pg_end = (offset + len) >> PAGE_SHIFT;
  1076. delta = pg_end - pg_start;
  1077. idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  1078. while (!ret && idx > pg_start) {
  1079. nr = idx - pg_start;
  1080. if (nr > delta)
  1081. nr = delta;
  1082. idx -= nr;
  1083. f2fs_lock_op(sbi);
  1084. f2fs_drop_extent_tree(inode);
  1085. ret = __exchange_data_block(inode, inode, idx,
  1086. idx + delta, nr, false);
  1087. f2fs_unlock_op(sbi);
  1088. }
  1089. /* write out all moved pages, if possible */
  1090. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1091. truncate_pagecache(inode, offset);
  1092. if (!ret)
  1093. f2fs_i_size_write(inode, new_size);
  1094. return ret;
  1095. }
  1096. static int expand_inode_data(struct inode *inode, loff_t offset,
  1097. loff_t len, int mode)
  1098. {
  1099. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1100. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1101. pgoff_t pg_end;
  1102. loff_t new_size = i_size_read(inode);
  1103. loff_t off_end;
  1104. int err;
  1105. err = inode_newsize_ok(inode, (len + offset));
  1106. if (err)
  1107. return err;
  1108. err = f2fs_convert_inline_inode(inode);
  1109. if (err)
  1110. return err;
  1111. f2fs_balance_fs(sbi, true);
  1112. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1113. off_end = (offset + len) & (PAGE_SIZE - 1);
  1114. map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
  1115. map.m_len = pg_end - map.m_lblk;
  1116. if (off_end)
  1117. map.m_len++;
  1118. err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1119. if (err) {
  1120. pgoff_t last_off;
  1121. if (!map.m_len)
  1122. return err;
  1123. last_off = map.m_lblk + map.m_len - 1;
  1124. /* update new size to the failed position */
  1125. new_size = (last_off == pg_end) ? offset + len:
  1126. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1127. } else {
  1128. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1129. }
  1130. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1131. f2fs_i_size_write(inode, new_size);
  1132. return err;
  1133. }
  1134. static long f2fs_fallocate(struct file *file, int mode,
  1135. loff_t offset, loff_t len)
  1136. {
  1137. struct inode *inode = file_inode(file);
  1138. long ret = 0;
  1139. /* f2fs only support ->fallocate for regular file */
  1140. if (!S_ISREG(inode->i_mode))
  1141. return -EINVAL;
  1142. if (f2fs_encrypted_inode(inode) &&
  1143. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1144. return -EOPNOTSUPP;
  1145. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1146. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1147. FALLOC_FL_INSERT_RANGE))
  1148. return -EOPNOTSUPP;
  1149. inode_lock(inode);
  1150. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1151. if (offset >= inode->i_size)
  1152. goto out;
  1153. ret = punch_hole(inode, offset, len);
  1154. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1155. ret = f2fs_collapse_range(inode, offset, len);
  1156. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1157. ret = f2fs_zero_range(inode, offset, len, mode);
  1158. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1159. ret = f2fs_insert_range(inode, offset, len);
  1160. } else {
  1161. ret = expand_inode_data(inode, offset, len, mode);
  1162. }
  1163. if (!ret) {
  1164. inode->i_mtime = inode->i_ctime = current_time(inode);
  1165. f2fs_mark_inode_dirty_sync(inode, false);
  1166. if (mode & FALLOC_FL_KEEP_SIZE)
  1167. file_set_keep_isize(inode);
  1168. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1169. }
  1170. out:
  1171. inode_unlock(inode);
  1172. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1173. return ret;
  1174. }
  1175. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1176. {
  1177. /*
  1178. * f2fs_relase_file is called at every close calls. So we should
  1179. * not drop any inmemory pages by close called by other process.
  1180. */
  1181. if (!(filp->f_mode & FMODE_WRITE) ||
  1182. atomic_read(&inode->i_writecount) != 1)
  1183. return 0;
  1184. /* some remained atomic pages should discarded */
  1185. if (f2fs_is_atomic_file(inode))
  1186. drop_inmem_pages(inode);
  1187. if (f2fs_is_volatile_file(inode)) {
  1188. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1189. set_inode_flag(inode, FI_DROP_CACHE);
  1190. filemap_fdatawrite(inode->i_mapping);
  1191. clear_inode_flag(inode, FI_DROP_CACHE);
  1192. }
  1193. return 0;
  1194. }
  1195. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  1196. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  1197. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  1198. {
  1199. if (S_ISDIR(mode))
  1200. return flags;
  1201. else if (S_ISREG(mode))
  1202. return flags & F2FS_REG_FLMASK;
  1203. else
  1204. return flags & F2FS_OTHER_FLMASK;
  1205. }
  1206. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1207. {
  1208. struct inode *inode = file_inode(filp);
  1209. struct f2fs_inode_info *fi = F2FS_I(inode);
  1210. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1211. return put_user(flags, (int __user *)arg);
  1212. }
  1213. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1214. {
  1215. struct inode *inode = file_inode(filp);
  1216. struct f2fs_inode_info *fi = F2FS_I(inode);
  1217. unsigned int flags;
  1218. unsigned int oldflags;
  1219. int ret;
  1220. if (!inode_owner_or_capable(inode))
  1221. return -EACCES;
  1222. if (get_user(flags, (int __user *)arg))
  1223. return -EFAULT;
  1224. ret = mnt_want_write_file(filp);
  1225. if (ret)
  1226. return ret;
  1227. flags = f2fs_mask_flags(inode->i_mode, flags);
  1228. inode_lock(inode);
  1229. oldflags = fi->i_flags;
  1230. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  1231. if (!capable(CAP_LINUX_IMMUTABLE)) {
  1232. inode_unlock(inode);
  1233. ret = -EPERM;
  1234. goto out;
  1235. }
  1236. }
  1237. flags = flags & FS_FL_USER_MODIFIABLE;
  1238. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  1239. fi->i_flags = flags;
  1240. inode_unlock(inode);
  1241. inode->i_ctime = current_time(inode);
  1242. f2fs_set_inode_flags(inode);
  1243. out:
  1244. mnt_drop_write_file(filp);
  1245. return ret;
  1246. }
  1247. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1248. {
  1249. struct inode *inode = file_inode(filp);
  1250. return put_user(inode->i_generation, (int __user *)arg);
  1251. }
  1252. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1253. {
  1254. struct inode *inode = file_inode(filp);
  1255. int ret;
  1256. if (!inode_owner_or_capable(inode))
  1257. return -EACCES;
  1258. ret = mnt_want_write_file(filp);
  1259. if (ret)
  1260. return ret;
  1261. inode_lock(inode);
  1262. if (f2fs_is_atomic_file(inode))
  1263. goto out;
  1264. ret = f2fs_convert_inline_inode(inode);
  1265. if (ret)
  1266. goto out;
  1267. set_inode_flag(inode, FI_ATOMIC_FILE);
  1268. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1269. if (!get_dirty_pages(inode))
  1270. goto out;
  1271. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1272. "Unexpected flush for atomic writes: ino=%lu, npages=%u",
  1273. inode->i_ino, get_dirty_pages(inode));
  1274. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1275. if (ret)
  1276. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1277. out:
  1278. inode_unlock(inode);
  1279. mnt_drop_write_file(filp);
  1280. return ret;
  1281. }
  1282. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1283. {
  1284. struct inode *inode = file_inode(filp);
  1285. int ret;
  1286. if (!inode_owner_or_capable(inode))
  1287. return -EACCES;
  1288. ret = mnt_want_write_file(filp);
  1289. if (ret)
  1290. return ret;
  1291. inode_lock(inode);
  1292. if (f2fs_is_volatile_file(inode))
  1293. goto err_out;
  1294. if (f2fs_is_atomic_file(inode)) {
  1295. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1296. ret = commit_inmem_pages(inode);
  1297. if (ret) {
  1298. set_inode_flag(inode, FI_ATOMIC_FILE);
  1299. goto err_out;
  1300. }
  1301. }
  1302. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1303. err_out:
  1304. inode_unlock(inode);
  1305. mnt_drop_write_file(filp);
  1306. return ret;
  1307. }
  1308. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1309. {
  1310. struct inode *inode = file_inode(filp);
  1311. int ret;
  1312. if (!inode_owner_or_capable(inode))
  1313. return -EACCES;
  1314. ret = mnt_want_write_file(filp);
  1315. if (ret)
  1316. return ret;
  1317. inode_lock(inode);
  1318. if (f2fs_is_volatile_file(inode))
  1319. goto out;
  1320. ret = f2fs_convert_inline_inode(inode);
  1321. if (ret)
  1322. goto out;
  1323. set_inode_flag(inode, FI_VOLATILE_FILE);
  1324. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1325. out:
  1326. inode_unlock(inode);
  1327. mnt_drop_write_file(filp);
  1328. return ret;
  1329. }
  1330. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1331. {
  1332. struct inode *inode = file_inode(filp);
  1333. int ret;
  1334. if (!inode_owner_or_capable(inode))
  1335. return -EACCES;
  1336. ret = mnt_want_write_file(filp);
  1337. if (ret)
  1338. return ret;
  1339. inode_lock(inode);
  1340. if (!f2fs_is_volatile_file(inode))
  1341. goto out;
  1342. if (!f2fs_is_first_block_written(inode)) {
  1343. ret = truncate_partial_data_page(inode, 0, true);
  1344. goto out;
  1345. }
  1346. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1347. out:
  1348. inode_unlock(inode);
  1349. mnt_drop_write_file(filp);
  1350. return ret;
  1351. }
  1352. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1353. {
  1354. struct inode *inode = file_inode(filp);
  1355. int ret;
  1356. if (!inode_owner_or_capable(inode))
  1357. return -EACCES;
  1358. ret = mnt_want_write_file(filp);
  1359. if (ret)
  1360. return ret;
  1361. inode_lock(inode);
  1362. if (f2fs_is_atomic_file(inode))
  1363. drop_inmem_pages(inode);
  1364. if (f2fs_is_volatile_file(inode)) {
  1365. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1366. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1367. }
  1368. inode_unlock(inode);
  1369. mnt_drop_write_file(filp);
  1370. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1371. return ret;
  1372. }
  1373. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1374. {
  1375. struct inode *inode = file_inode(filp);
  1376. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1377. struct super_block *sb = sbi->sb;
  1378. __u32 in;
  1379. int ret;
  1380. if (!capable(CAP_SYS_ADMIN))
  1381. return -EPERM;
  1382. if (get_user(in, (__u32 __user *)arg))
  1383. return -EFAULT;
  1384. ret = mnt_want_write_file(filp);
  1385. if (ret)
  1386. return ret;
  1387. switch (in) {
  1388. case F2FS_GOING_DOWN_FULLSYNC:
  1389. sb = freeze_bdev(sb->s_bdev);
  1390. if (sb && !IS_ERR(sb)) {
  1391. f2fs_stop_checkpoint(sbi, false);
  1392. thaw_bdev(sb->s_bdev, sb);
  1393. }
  1394. break;
  1395. case F2FS_GOING_DOWN_METASYNC:
  1396. /* do checkpoint only */
  1397. f2fs_sync_fs(sb, 1);
  1398. f2fs_stop_checkpoint(sbi, false);
  1399. break;
  1400. case F2FS_GOING_DOWN_NOSYNC:
  1401. f2fs_stop_checkpoint(sbi, false);
  1402. break;
  1403. case F2FS_GOING_DOWN_METAFLUSH:
  1404. sync_meta_pages(sbi, META, LONG_MAX);
  1405. f2fs_stop_checkpoint(sbi, false);
  1406. break;
  1407. default:
  1408. ret = -EINVAL;
  1409. goto out;
  1410. }
  1411. f2fs_update_time(sbi, REQ_TIME);
  1412. out:
  1413. mnt_drop_write_file(filp);
  1414. return ret;
  1415. }
  1416. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1417. {
  1418. struct inode *inode = file_inode(filp);
  1419. struct super_block *sb = inode->i_sb;
  1420. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1421. struct fstrim_range range;
  1422. int ret;
  1423. if (!capable(CAP_SYS_ADMIN))
  1424. return -EPERM;
  1425. if (!blk_queue_discard(q))
  1426. return -EOPNOTSUPP;
  1427. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1428. sizeof(range)))
  1429. return -EFAULT;
  1430. ret = mnt_want_write_file(filp);
  1431. if (ret)
  1432. return ret;
  1433. range.minlen = max((unsigned int)range.minlen,
  1434. q->limits.discard_granularity);
  1435. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1436. mnt_drop_write_file(filp);
  1437. if (ret < 0)
  1438. return ret;
  1439. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1440. sizeof(range)))
  1441. return -EFAULT;
  1442. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1443. return 0;
  1444. }
  1445. static bool uuid_is_nonzero(__u8 u[16])
  1446. {
  1447. int i;
  1448. for (i = 0; i < 16; i++)
  1449. if (u[i])
  1450. return true;
  1451. return false;
  1452. }
  1453. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1454. {
  1455. struct inode *inode = file_inode(filp);
  1456. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1457. return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
  1458. }
  1459. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1460. {
  1461. return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
  1462. }
  1463. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1464. {
  1465. struct inode *inode = file_inode(filp);
  1466. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1467. int err;
  1468. if (!f2fs_sb_has_crypto(inode->i_sb))
  1469. return -EOPNOTSUPP;
  1470. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1471. goto got_it;
  1472. err = mnt_want_write_file(filp);
  1473. if (err)
  1474. return err;
  1475. /* update superblock with uuid */
  1476. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1477. err = f2fs_commit_super(sbi, false);
  1478. if (err) {
  1479. /* undo new data */
  1480. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1481. mnt_drop_write_file(filp);
  1482. return err;
  1483. }
  1484. mnt_drop_write_file(filp);
  1485. got_it:
  1486. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1487. 16))
  1488. return -EFAULT;
  1489. return 0;
  1490. }
  1491. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1492. {
  1493. struct inode *inode = file_inode(filp);
  1494. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1495. __u32 sync;
  1496. int ret;
  1497. if (!capable(CAP_SYS_ADMIN))
  1498. return -EPERM;
  1499. if (get_user(sync, (__u32 __user *)arg))
  1500. return -EFAULT;
  1501. if (f2fs_readonly(sbi->sb))
  1502. return -EROFS;
  1503. ret = mnt_want_write_file(filp);
  1504. if (ret)
  1505. return ret;
  1506. if (!sync) {
  1507. if (!mutex_trylock(&sbi->gc_mutex)) {
  1508. ret = -EBUSY;
  1509. goto out;
  1510. }
  1511. } else {
  1512. mutex_lock(&sbi->gc_mutex);
  1513. }
  1514. ret = f2fs_gc(sbi, sync, true);
  1515. out:
  1516. mnt_drop_write_file(filp);
  1517. return ret;
  1518. }
  1519. static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
  1520. {
  1521. struct inode *inode = file_inode(filp);
  1522. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1523. int ret;
  1524. if (!capable(CAP_SYS_ADMIN))
  1525. return -EPERM;
  1526. if (f2fs_readonly(sbi->sb))
  1527. return -EROFS;
  1528. ret = mnt_want_write_file(filp);
  1529. if (ret)
  1530. return ret;
  1531. ret = f2fs_sync_fs(sbi->sb, 1);
  1532. mnt_drop_write_file(filp);
  1533. return ret;
  1534. }
  1535. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1536. struct file *filp,
  1537. struct f2fs_defragment *range)
  1538. {
  1539. struct inode *inode = file_inode(filp);
  1540. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1541. struct extent_info ei;
  1542. pgoff_t pg_start, pg_end;
  1543. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1544. unsigned int total = 0, sec_num;
  1545. unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
  1546. block_t blk_end = 0;
  1547. bool fragmented = false;
  1548. int err;
  1549. /* if in-place-update policy is enabled, don't waste time here */
  1550. if (need_inplace_update(inode))
  1551. return -EINVAL;
  1552. pg_start = range->start >> PAGE_SHIFT;
  1553. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  1554. f2fs_balance_fs(sbi, true);
  1555. inode_lock(inode);
  1556. /* writeback all dirty pages in the range */
  1557. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1558. range->start + range->len - 1);
  1559. if (err)
  1560. goto out;
  1561. /*
  1562. * lookup mapping info in extent cache, skip defragmenting if physical
  1563. * block addresses are continuous.
  1564. */
  1565. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1566. if (ei.fofs + ei.len >= pg_end)
  1567. goto out;
  1568. }
  1569. map.m_lblk = pg_start;
  1570. /*
  1571. * lookup mapping info in dnode page cache, skip defragmenting if all
  1572. * physical block addresses are continuous even if there are hole(s)
  1573. * in logical blocks.
  1574. */
  1575. while (map.m_lblk < pg_end) {
  1576. map.m_len = pg_end - map.m_lblk;
  1577. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1578. if (err)
  1579. goto out;
  1580. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1581. map.m_lblk++;
  1582. continue;
  1583. }
  1584. if (blk_end && blk_end != map.m_pblk) {
  1585. fragmented = true;
  1586. break;
  1587. }
  1588. blk_end = map.m_pblk + map.m_len;
  1589. map.m_lblk += map.m_len;
  1590. }
  1591. if (!fragmented)
  1592. goto out;
  1593. map.m_lblk = pg_start;
  1594. map.m_len = pg_end - pg_start;
  1595. sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
  1596. /*
  1597. * make sure there are enough free section for LFS allocation, this can
  1598. * avoid defragment running in SSR mode when free section are allocated
  1599. * intensively
  1600. */
  1601. if (has_not_enough_free_secs(sbi, 0, sec_num)) {
  1602. err = -EAGAIN;
  1603. goto out;
  1604. }
  1605. while (map.m_lblk < pg_end) {
  1606. pgoff_t idx;
  1607. int cnt = 0;
  1608. do_map:
  1609. map.m_len = pg_end - map.m_lblk;
  1610. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1611. if (err)
  1612. goto clear_out;
  1613. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1614. map.m_lblk++;
  1615. continue;
  1616. }
  1617. set_inode_flag(inode, FI_DO_DEFRAG);
  1618. idx = map.m_lblk;
  1619. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1620. struct page *page;
  1621. page = get_lock_data_page(inode, idx, true);
  1622. if (IS_ERR(page)) {
  1623. err = PTR_ERR(page);
  1624. goto clear_out;
  1625. }
  1626. set_page_dirty(page);
  1627. f2fs_put_page(page, 1);
  1628. idx++;
  1629. cnt++;
  1630. total++;
  1631. }
  1632. map.m_lblk = idx;
  1633. if (idx < pg_end && cnt < blk_per_seg)
  1634. goto do_map;
  1635. clear_inode_flag(inode, FI_DO_DEFRAG);
  1636. err = filemap_fdatawrite(inode->i_mapping);
  1637. if (err)
  1638. goto out;
  1639. }
  1640. clear_out:
  1641. clear_inode_flag(inode, FI_DO_DEFRAG);
  1642. out:
  1643. inode_unlock(inode);
  1644. if (!err)
  1645. range->len = (u64)total << PAGE_SHIFT;
  1646. return err;
  1647. }
  1648. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1649. {
  1650. struct inode *inode = file_inode(filp);
  1651. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1652. struct f2fs_defragment range;
  1653. int err;
  1654. if (!capable(CAP_SYS_ADMIN))
  1655. return -EPERM;
  1656. if (!S_ISREG(inode->i_mode))
  1657. return -EINVAL;
  1658. err = mnt_want_write_file(filp);
  1659. if (err)
  1660. return err;
  1661. if (f2fs_readonly(sbi->sb)) {
  1662. err = -EROFS;
  1663. goto out;
  1664. }
  1665. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1666. sizeof(range))) {
  1667. err = -EFAULT;
  1668. goto out;
  1669. }
  1670. /* verify alignment of offset & size */
  1671. if (range.start & (F2FS_BLKSIZE - 1) ||
  1672. range.len & (F2FS_BLKSIZE - 1)) {
  1673. err = -EINVAL;
  1674. goto out;
  1675. }
  1676. err = f2fs_defragment_range(sbi, filp, &range);
  1677. f2fs_update_time(sbi, REQ_TIME);
  1678. if (err < 0)
  1679. goto out;
  1680. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1681. sizeof(range)))
  1682. err = -EFAULT;
  1683. out:
  1684. mnt_drop_write_file(filp);
  1685. return err;
  1686. }
  1687. static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
  1688. struct file *file_out, loff_t pos_out, size_t len)
  1689. {
  1690. struct inode *src = file_inode(file_in);
  1691. struct inode *dst = file_inode(file_out);
  1692. struct f2fs_sb_info *sbi = F2FS_I_SB(src);
  1693. size_t olen = len, dst_max_i_size = 0;
  1694. size_t dst_osize;
  1695. int ret;
  1696. if (file_in->f_path.mnt != file_out->f_path.mnt ||
  1697. src->i_sb != dst->i_sb)
  1698. return -EXDEV;
  1699. if (unlikely(f2fs_readonly(src->i_sb)))
  1700. return -EROFS;
  1701. if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
  1702. return -EINVAL;
  1703. if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
  1704. return -EOPNOTSUPP;
  1705. if (src == dst) {
  1706. if (pos_in == pos_out)
  1707. return 0;
  1708. if (pos_out > pos_in && pos_out < pos_in + len)
  1709. return -EINVAL;
  1710. }
  1711. inode_lock(src);
  1712. if (src != dst) {
  1713. if (!inode_trylock(dst)) {
  1714. ret = -EBUSY;
  1715. goto out;
  1716. }
  1717. }
  1718. ret = -EINVAL;
  1719. if (pos_in + len > src->i_size || pos_in + len < pos_in)
  1720. goto out_unlock;
  1721. if (len == 0)
  1722. olen = len = src->i_size - pos_in;
  1723. if (pos_in + len == src->i_size)
  1724. len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
  1725. if (len == 0) {
  1726. ret = 0;
  1727. goto out_unlock;
  1728. }
  1729. dst_osize = dst->i_size;
  1730. if (pos_out + olen > dst->i_size)
  1731. dst_max_i_size = pos_out + olen;
  1732. /* verify the end result is block aligned */
  1733. if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
  1734. !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
  1735. !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
  1736. goto out_unlock;
  1737. ret = f2fs_convert_inline_inode(src);
  1738. if (ret)
  1739. goto out_unlock;
  1740. ret = f2fs_convert_inline_inode(dst);
  1741. if (ret)
  1742. goto out_unlock;
  1743. /* write out all dirty pages from offset */
  1744. ret = filemap_write_and_wait_range(src->i_mapping,
  1745. pos_in, pos_in + len);
  1746. if (ret)
  1747. goto out_unlock;
  1748. ret = filemap_write_and_wait_range(dst->i_mapping,
  1749. pos_out, pos_out + len);
  1750. if (ret)
  1751. goto out_unlock;
  1752. f2fs_balance_fs(sbi, true);
  1753. f2fs_lock_op(sbi);
  1754. ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
  1755. pos_out >> F2FS_BLKSIZE_BITS,
  1756. len >> F2FS_BLKSIZE_BITS, false);
  1757. if (!ret) {
  1758. if (dst_max_i_size)
  1759. f2fs_i_size_write(dst, dst_max_i_size);
  1760. else if (dst_osize != dst->i_size)
  1761. f2fs_i_size_write(dst, dst_osize);
  1762. }
  1763. f2fs_unlock_op(sbi);
  1764. out_unlock:
  1765. if (src != dst)
  1766. inode_unlock(dst);
  1767. out:
  1768. inode_unlock(src);
  1769. return ret;
  1770. }
  1771. static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
  1772. {
  1773. struct f2fs_move_range range;
  1774. struct fd dst;
  1775. int err;
  1776. if (!(filp->f_mode & FMODE_READ) ||
  1777. !(filp->f_mode & FMODE_WRITE))
  1778. return -EBADF;
  1779. if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
  1780. sizeof(range)))
  1781. return -EFAULT;
  1782. dst = fdget(range.dst_fd);
  1783. if (!dst.file)
  1784. return -EBADF;
  1785. if (!(dst.file->f_mode & FMODE_WRITE)) {
  1786. err = -EBADF;
  1787. goto err_out;
  1788. }
  1789. err = mnt_want_write_file(filp);
  1790. if (err)
  1791. goto err_out;
  1792. err = f2fs_move_file_range(filp, range.pos_in, dst.file,
  1793. range.pos_out, range.len);
  1794. mnt_drop_write_file(filp);
  1795. if (copy_to_user((struct f2fs_move_range __user *)arg,
  1796. &range, sizeof(range)))
  1797. err = -EFAULT;
  1798. err_out:
  1799. fdput(dst);
  1800. return err;
  1801. }
  1802. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  1803. {
  1804. switch (cmd) {
  1805. case F2FS_IOC_GETFLAGS:
  1806. return f2fs_ioc_getflags(filp, arg);
  1807. case F2FS_IOC_SETFLAGS:
  1808. return f2fs_ioc_setflags(filp, arg);
  1809. case F2FS_IOC_GETVERSION:
  1810. return f2fs_ioc_getversion(filp, arg);
  1811. case F2FS_IOC_START_ATOMIC_WRITE:
  1812. return f2fs_ioc_start_atomic_write(filp);
  1813. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1814. return f2fs_ioc_commit_atomic_write(filp);
  1815. case F2FS_IOC_START_VOLATILE_WRITE:
  1816. return f2fs_ioc_start_volatile_write(filp);
  1817. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1818. return f2fs_ioc_release_volatile_write(filp);
  1819. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1820. return f2fs_ioc_abort_volatile_write(filp);
  1821. case F2FS_IOC_SHUTDOWN:
  1822. return f2fs_ioc_shutdown(filp, arg);
  1823. case FITRIM:
  1824. return f2fs_ioc_fitrim(filp, arg);
  1825. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1826. return f2fs_ioc_set_encryption_policy(filp, arg);
  1827. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1828. return f2fs_ioc_get_encryption_policy(filp, arg);
  1829. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1830. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  1831. case F2FS_IOC_GARBAGE_COLLECT:
  1832. return f2fs_ioc_gc(filp, arg);
  1833. case F2FS_IOC_WRITE_CHECKPOINT:
  1834. return f2fs_ioc_write_checkpoint(filp, arg);
  1835. case F2FS_IOC_DEFRAGMENT:
  1836. return f2fs_ioc_defragment(filp, arg);
  1837. case F2FS_IOC_MOVE_RANGE:
  1838. return f2fs_ioc_move_range(filp, arg);
  1839. default:
  1840. return -ENOTTY;
  1841. }
  1842. }
  1843. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  1844. {
  1845. struct file *file = iocb->ki_filp;
  1846. struct inode *inode = file_inode(file);
  1847. struct blk_plug plug;
  1848. ssize_t ret;
  1849. if (f2fs_encrypted_inode(inode) &&
  1850. !fscrypt_has_encryption_key(inode) &&
  1851. fscrypt_get_encryption_info(inode))
  1852. return -EACCES;
  1853. inode_lock(inode);
  1854. ret = generic_write_checks(iocb, from);
  1855. if (ret > 0) {
  1856. int err = f2fs_preallocate_blocks(iocb, from);
  1857. if (err) {
  1858. inode_unlock(inode);
  1859. return err;
  1860. }
  1861. blk_start_plug(&plug);
  1862. ret = __generic_file_write_iter(iocb, from);
  1863. blk_finish_plug(&plug);
  1864. }
  1865. inode_unlock(inode);
  1866. if (ret > 0)
  1867. ret = generic_write_sync(iocb, ret);
  1868. return ret;
  1869. }
  1870. #ifdef CONFIG_COMPAT
  1871. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1872. {
  1873. switch (cmd) {
  1874. case F2FS_IOC32_GETFLAGS:
  1875. cmd = F2FS_IOC_GETFLAGS;
  1876. break;
  1877. case F2FS_IOC32_SETFLAGS:
  1878. cmd = F2FS_IOC_SETFLAGS;
  1879. break;
  1880. case F2FS_IOC32_GETVERSION:
  1881. cmd = F2FS_IOC_GETVERSION;
  1882. break;
  1883. case F2FS_IOC_START_ATOMIC_WRITE:
  1884. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1885. case F2FS_IOC_START_VOLATILE_WRITE:
  1886. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1887. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1888. case F2FS_IOC_SHUTDOWN:
  1889. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1890. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1891. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1892. case F2FS_IOC_GARBAGE_COLLECT:
  1893. case F2FS_IOC_WRITE_CHECKPOINT:
  1894. case F2FS_IOC_DEFRAGMENT:
  1895. break;
  1896. case F2FS_IOC_MOVE_RANGE:
  1897. break;
  1898. default:
  1899. return -ENOIOCTLCMD;
  1900. }
  1901. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  1902. }
  1903. #endif
  1904. const struct file_operations f2fs_file_operations = {
  1905. .llseek = f2fs_llseek,
  1906. .read_iter = generic_file_read_iter,
  1907. .write_iter = f2fs_file_write_iter,
  1908. .open = f2fs_file_open,
  1909. .release = f2fs_release_file,
  1910. .mmap = f2fs_file_mmap,
  1911. .fsync = f2fs_sync_file,
  1912. .fallocate = f2fs_fallocate,
  1913. .unlocked_ioctl = f2fs_ioctl,
  1914. #ifdef CONFIG_COMPAT
  1915. .compat_ioctl = f2fs_compat_ioctl,
  1916. #endif
  1917. .splice_read = generic_file_splice_read,
  1918. .splice_write = iter_file_splice_write,
  1919. };