workqueue.c 152 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554
  1. /*
  2. * kernel/workqueue.c - generic async execution with shared worker pool
  3. *
  4. * Copyright (C) 2002 Ingo Molnar
  5. *
  6. * Derived from the taskqueue/keventd code by:
  7. * David Woodhouse <dwmw2@infradead.org>
  8. * Andrew Morton
  9. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10. * Theodore Ts'o <tytso@mit.edu>
  11. *
  12. * Made to use alloc_percpu by Christoph Lameter.
  13. *
  14. * Copyright (C) 2010 SUSE Linux Products GmbH
  15. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  16. *
  17. * This is the generic async execution mechanism. Work items as are
  18. * executed in process context. The worker pool is shared and
  19. * automatically managed. There are two worker pools for each CPU (one for
  20. * normal work items and the other for high priority ones) and some extra
  21. * pools for workqueues which are not bound to any specific CPU - the
  22. * number of these backing pools is dynamic.
  23. *
  24. * Please read Documentation/workqueue.txt for details.
  25. */
  26. #include <linux/export.h>
  27. #include <linux/kernel.h>
  28. #include <linux/sched.h>
  29. #include <linux/init.h>
  30. #include <linux/signal.h>
  31. #include <linux/completion.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/slab.h>
  34. #include <linux/cpu.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kthread.h>
  37. #include <linux/hardirq.h>
  38. #include <linux/mempolicy.h>
  39. #include <linux/freezer.h>
  40. #include <linux/kallsyms.h>
  41. #include <linux/debug_locks.h>
  42. #include <linux/lockdep.h>
  43. #include <linux/idr.h>
  44. #include <linux/jhash.h>
  45. #include <linux/hashtable.h>
  46. #include <linux/rculist.h>
  47. #include <linux/nodemask.h>
  48. #include <linux/moduleparam.h>
  49. #include <linux/uaccess.h>
  50. #include "workqueue_internal.h"
  51. enum {
  52. /*
  53. * worker_pool flags
  54. *
  55. * A bound pool is either associated or disassociated with its CPU.
  56. * While associated (!DISASSOCIATED), all workers are bound to the
  57. * CPU and none has %WORKER_UNBOUND set and concurrency management
  58. * is in effect.
  59. *
  60. * While DISASSOCIATED, the cpu may be offline and all workers have
  61. * %WORKER_UNBOUND set and concurrency management disabled, and may
  62. * be executing on any CPU. The pool behaves as an unbound one.
  63. *
  64. * Note that DISASSOCIATED should be flipped only while holding
  65. * attach_mutex to avoid changing binding state while
  66. * worker_attach_to_pool() is in progress.
  67. */
  68. POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
  69. /* worker flags */
  70. WORKER_DIE = 1 << 1, /* die die die */
  71. WORKER_IDLE = 1 << 2, /* is idle */
  72. WORKER_PREP = 1 << 3, /* preparing to run works */
  73. WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
  74. WORKER_UNBOUND = 1 << 7, /* worker is unbound */
  75. WORKER_REBOUND = 1 << 8, /* worker was rebound */
  76. WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
  77. WORKER_UNBOUND | WORKER_REBOUND,
  78. NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
  79. UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
  80. BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
  81. MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
  82. IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
  83. MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
  84. /* call for help after 10ms
  85. (min two ticks) */
  86. MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
  87. CREATE_COOLDOWN = HZ, /* time to breath after fail */
  88. /*
  89. * Rescue workers are used only on emergencies and shared by
  90. * all cpus. Give MIN_NICE.
  91. */
  92. RESCUER_NICE_LEVEL = MIN_NICE,
  93. HIGHPRI_NICE_LEVEL = MIN_NICE,
  94. WQ_NAME_LEN = 24,
  95. };
  96. /*
  97. * Structure fields follow one of the following exclusion rules.
  98. *
  99. * I: Modifiable by initialization/destruction paths and read-only for
  100. * everyone else.
  101. *
  102. * P: Preemption protected. Disabling preemption is enough and should
  103. * only be modified and accessed from the local cpu.
  104. *
  105. * L: pool->lock protected. Access with pool->lock held.
  106. *
  107. * X: During normal operation, modification requires pool->lock and should
  108. * be done only from local cpu. Either disabling preemption on local
  109. * cpu or grabbing pool->lock is enough for read access. If
  110. * POOL_DISASSOCIATED is set, it's identical to L.
  111. *
  112. * A: pool->attach_mutex protected.
  113. *
  114. * PL: wq_pool_mutex protected.
  115. *
  116. * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
  117. *
  118. * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
  119. *
  120. * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
  121. * sched-RCU for reads.
  122. *
  123. * WQ: wq->mutex protected.
  124. *
  125. * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
  126. *
  127. * MD: wq_mayday_lock protected.
  128. */
  129. /* struct worker is defined in workqueue_internal.h */
  130. struct worker_pool {
  131. spinlock_t lock; /* the pool lock */
  132. int cpu; /* I: the associated cpu */
  133. int node; /* I: the associated node ID */
  134. int id; /* I: pool ID */
  135. unsigned int flags; /* X: flags */
  136. unsigned long watchdog_ts; /* L: watchdog timestamp */
  137. struct list_head worklist; /* L: list of pending works */
  138. int nr_workers; /* L: total number of workers */
  139. /* nr_idle includes the ones off idle_list for rebinding */
  140. int nr_idle; /* L: currently idle ones */
  141. struct list_head idle_list; /* X: list of idle workers */
  142. struct timer_list idle_timer; /* L: worker idle timeout */
  143. struct timer_list mayday_timer; /* L: SOS timer for workers */
  144. /* a workers is either on busy_hash or idle_list, or the manager */
  145. DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
  146. /* L: hash of busy workers */
  147. /* see manage_workers() for details on the two manager mutexes */
  148. struct mutex manager_arb; /* manager arbitration */
  149. struct worker *manager; /* L: purely informational */
  150. struct mutex attach_mutex; /* attach/detach exclusion */
  151. struct list_head workers; /* A: attached workers */
  152. struct completion *detach_completion; /* all workers detached */
  153. struct ida worker_ida; /* worker IDs for task name */
  154. struct workqueue_attrs *attrs; /* I: worker attributes */
  155. struct hlist_node hash_node; /* PL: unbound_pool_hash node */
  156. int refcnt; /* PL: refcnt for unbound pools */
  157. /*
  158. * The current concurrency level. As it's likely to be accessed
  159. * from other CPUs during try_to_wake_up(), put it in a separate
  160. * cacheline.
  161. */
  162. atomic_t nr_running ____cacheline_aligned_in_smp;
  163. /*
  164. * Destruction of pool is sched-RCU protected to allow dereferences
  165. * from get_work_pool().
  166. */
  167. struct rcu_head rcu;
  168. } ____cacheline_aligned_in_smp;
  169. /*
  170. * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
  171. * of work_struct->data are used for flags and the remaining high bits
  172. * point to the pwq; thus, pwqs need to be aligned at two's power of the
  173. * number of flag bits.
  174. */
  175. struct pool_workqueue {
  176. struct worker_pool *pool; /* I: the associated pool */
  177. struct workqueue_struct *wq; /* I: the owning workqueue */
  178. int work_color; /* L: current color */
  179. int flush_color; /* L: flushing color */
  180. int refcnt; /* L: reference count */
  181. int nr_in_flight[WORK_NR_COLORS];
  182. /* L: nr of in_flight works */
  183. int nr_active; /* L: nr of active works */
  184. int max_active; /* L: max active works */
  185. struct list_head delayed_works; /* L: delayed works */
  186. struct list_head pwqs_node; /* WR: node on wq->pwqs */
  187. struct list_head mayday_node; /* MD: node on wq->maydays */
  188. /*
  189. * Release of unbound pwq is punted to system_wq. See put_pwq()
  190. * and pwq_unbound_release_workfn() for details. pool_workqueue
  191. * itself is also sched-RCU protected so that the first pwq can be
  192. * determined without grabbing wq->mutex.
  193. */
  194. struct work_struct unbound_release_work;
  195. struct rcu_head rcu;
  196. } __aligned(1 << WORK_STRUCT_FLAG_BITS);
  197. /*
  198. * Structure used to wait for workqueue flush.
  199. */
  200. struct wq_flusher {
  201. struct list_head list; /* WQ: list of flushers */
  202. int flush_color; /* WQ: flush color waiting for */
  203. struct completion done; /* flush completion */
  204. };
  205. struct wq_device;
  206. /*
  207. * The externally visible workqueue. It relays the issued work items to
  208. * the appropriate worker_pool through its pool_workqueues.
  209. */
  210. struct workqueue_struct {
  211. struct list_head pwqs; /* WR: all pwqs of this wq */
  212. struct list_head list; /* PR: list of all workqueues */
  213. struct mutex mutex; /* protects this wq */
  214. int work_color; /* WQ: current work color */
  215. int flush_color; /* WQ: current flush color */
  216. atomic_t nr_pwqs_to_flush; /* flush in progress */
  217. struct wq_flusher *first_flusher; /* WQ: first flusher */
  218. struct list_head flusher_queue; /* WQ: flush waiters */
  219. struct list_head flusher_overflow; /* WQ: flush overflow list */
  220. struct list_head maydays; /* MD: pwqs requesting rescue */
  221. struct worker *rescuer; /* I: rescue worker */
  222. int nr_drainers; /* WQ: drain in progress */
  223. int saved_max_active; /* WQ: saved pwq max_active */
  224. struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
  225. struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
  226. #ifdef CONFIG_SYSFS
  227. struct wq_device *wq_dev; /* I: for sysfs interface */
  228. #endif
  229. #ifdef CONFIG_LOCKDEP
  230. struct lockdep_map lockdep_map;
  231. #endif
  232. char name[WQ_NAME_LEN]; /* I: workqueue name */
  233. /*
  234. * Destruction of workqueue_struct is sched-RCU protected to allow
  235. * walking the workqueues list without grabbing wq_pool_mutex.
  236. * This is used to dump all workqueues from sysrq.
  237. */
  238. struct rcu_head rcu;
  239. /* hot fields used during command issue, aligned to cacheline */
  240. unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
  241. struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
  242. struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
  243. };
  244. static struct kmem_cache *pwq_cache;
  245. static cpumask_var_t *wq_numa_possible_cpumask;
  246. /* possible CPUs of each node */
  247. static bool wq_disable_numa;
  248. module_param_named(disable_numa, wq_disable_numa, bool, 0444);
  249. /* see the comment above the definition of WQ_POWER_EFFICIENT */
  250. static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
  251. module_param_named(power_efficient, wq_power_efficient, bool, 0444);
  252. static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
  253. /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
  254. static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
  255. static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
  256. static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
  257. static LIST_HEAD(workqueues); /* PR: list of all workqueues */
  258. static bool workqueue_freezing; /* PL: have wqs started freezing? */
  259. /* PL: allowable cpus for unbound wqs and work items */
  260. static cpumask_var_t wq_unbound_cpumask;
  261. /* CPU where unbound work was last round robin scheduled from this CPU */
  262. static DEFINE_PER_CPU(int, wq_rr_cpu_last);
  263. /*
  264. * Local execution of unbound work items is no longer guaranteed. The
  265. * following always forces round-robin CPU selection on unbound work items
  266. * to uncover usages which depend on it.
  267. */
  268. #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
  269. static bool wq_debug_force_rr_cpu = true;
  270. #else
  271. static bool wq_debug_force_rr_cpu = false;
  272. #endif
  273. module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
  274. /* the per-cpu worker pools */
  275. static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
  276. static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
  277. /* PL: hash of all unbound pools keyed by pool->attrs */
  278. static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
  279. /* I: attributes used when instantiating standard unbound pools on demand */
  280. static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
  281. /* I: attributes used when instantiating ordered pools on demand */
  282. static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
  283. struct workqueue_struct *system_wq __read_mostly;
  284. EXPORT_SYMBOL(system_wq);
  285. struct workqueue_struct *system_highpri_wq __read_mostly;
  286. EXPORT_SYMBOL_GPL(system_highpri_wq);
  287. struct workqueue_struct *system_long_wq __read_mostly;
  288. EXPORT_SYMBOL_GPL(system_long_wq);
  289. struct workqueue_struct *system_unbound_wq __read_mostly;
  290. EXPORT_SYMBOL_GPL(system_unbound_wq);
  291. struct workqueue_struct *system_freezable_wq __read_mostly;
  292. EXPORT_SYMBOL_GPL(system_freezable_wq);
  293. struct workqueue_struct *system_power_efficient_wq __read_mostly;
  294. EXPORT_SYMBOL_GPL(system_power_efficient_wq);
  295. struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
  296. EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
  297. static int worker_thread(void *__worker);
  298. static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
  299. #define CREATE_TRACE_POINTS
  300. #include <trace/events/workqueue.h>
  301. #define assert_rcu_or_pool_mutex() \
  302. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
  303. !lockdep_is_held(&wq_pool_mutex), \
  304. "sched RCU or wq_pool_mutex should be held")
  305. #define assert_rcu_or_wq_mutex(wq) \
  306. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
  307. !lockdep_is_held(&wq->mutex), \
  308. "sched RCU or wq->mutex should be held")
  309. #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
  310. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
  311. !lockdep_is_held(&wq->mutex) && \
  312. !lockdep_is_held(&wq_pool_mutex), \
  313. "sched RCU, wq->mutex or wq_pool_mutex should be held")
  314. #define for_each_cpu_worker_pool(pool, cpu) \
  315. for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
  316. (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
  317. (pool)++)
  318. /**
  319. * for_each_pool - iterate through all worker_pools in the system
  320. * @pool: iteration cursor
  321. * @pi: integer used for iteration
  322. *
  323. * This must be called either with wq_pool_mutex held or sched RCU read
  324. * locked. If the pool needs to be used beyond the locking in effect, the
  325. * caller is responsible for guaranteeing that the pool stays online.
  326. *
  327. * The if/else clause exists only for the lockdep assertion and can be
  328. * ignored.
  329. */
  330. #define for_each_pool(pool, pi) \
  331. idr_for_each_entry(&worker_pool_idr, pool, pi) \
  332. if (({ assert_rcu_or_pool_mutex(); false; })) { } \
  333. else
  334. /**
  335. * for_each_pool_worker - iterate through all workers of a worker_pool
  336. * @worker: iteration cursor
  337. * @pool: worker_pool to iterate workers of
  338. *
  339. * This must be called with @pool->attach_mutex.
  340. *
  341. * The if/else clause exists only for the lockdep assertion and can be
  342. * ignored.
  343. */
  344. #define for_each_pool_worker(worker, pool) \
  345. list_for_each_entry((worker), &(pool)->workers, node) \
  346. if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
  347. else
  348. /**
  349. * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
  350. * @pwq: iteration cursor
  351. * @wq: the target workqueue
  352. *
  353. * This must be called either with wq->mutex held or sched RCU read locked.
  354. * If the pwq needs to be used beyond the locking in effect, the caller is
  355. * responsible for guaranteeing that the pwq stays online.
  356. *
  357. * The if/else clause exists only for the lockdep assertion and can be
  358. * ignored.
  359. */
  360. #define for_each_pwq(pwq, wq) \
  361. list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
  362. if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
  363. else
  364. #ifdef CONFIG_DEBUG_OBJECTS_WORK
  365. static struct debug_obj_descr work_debug_descr;
  366. static void *work_debug_hint(void *addr)
  367. {
  368. return ((struct work_struct *) addr)->func;
  369. }
  370. /*
  371. * fixup_init is called when:
  372. * - an active object is initialized
  373. */
  374. static int work_fixup_init(void *addr, enum debug_obj_state state)
  375. {
  376. struct work_struct *work = addr;
  377. switch (state) {
  378. case ODEBUG_STATE_ACTIVE:
  379. cancel_work_sync(work);
  380. debug_object_init(work, &work_debug_descr);
  381. return 1;
  382. default:
  383. return 0;
  384. }
  385. }
  386. /*
  387. * fixup_activate is called when:
  388. * - an active object is activated
  389. * - an unknown object is activated (might be a statically initialized object)
  390. */
  391. static int work_fixup_activate(void *addr, enum debug_obj_state state)
  392. {
  393. struct work_struct *work = addr;
  394. switch (state) {
  395. case ODEBUG_STATE_NOTAVAILABLE:
  396. /*
  397. * This is not really a fixup. The work struct was
  398. * statically initialized. We just make sure that it
  399. * is tracked in the object tracker.
  400. */
  401. if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
  402. debug_object_init(work, &work_debug_descr);
  403. debug_object_activate(work, &work_debug_descr);
  404. return 0;
  405. }
  406. WARN_ON_ONCE(1);
  407. return 0;
  408. case ODEBUG_STATE_ACTIVE:
  409. WARN_ON(1);
  410. default:
  411. return 0;
  412. }
  413. }
  414. /*
  415. * fixup_free is called when:
  416. * - an active object is freed
  417. */
  418. static int work_fixup_free(void *addr, enum debug_obj_state state)
  419. {
  420. struct work_struct *work = addr;
  421. switch (state) {
  422. case ODEBUG_STATE_ACTIVE:
  423. cancel_work_sync(work);
  424. debug_object_free(work, &work_debug_descr);
  425. return 1;
  426. default:
  427. return 0;
  428. }
  429. }
  430. static struct debug_obj_descr work_debug_descr = {
  431. .name = "work_struct",
  432. .debug_hint = work_debug_hint,
  433. .fixup_init = work_fixup_init,
  434. .fixup_activate = work_fixup_activate,
  435. .fixup_free = work_fixup_free,
  436. };
  437. static inline void debug_work_activate(struct work_struct *work)
  438. {
  439. debug_object_activate(work, &work_debug_descr);
  440. }
  441. static inline void debug_work_deactivate(struct work_struct *work)
  442. {
  443. debug_object_deactivate(work, &work_debug_descr);
  444. }
  445. void __init_work(struct work_struct *work, int onstack)
  446. {
  447. if (onstack)
  448. debug_object_init_on_stack(work, &work_debug_descr);
  449. else
  450. debug_object_init(work, &work_debug_descr);
  451. }
  452. EXPORT_SYMBOL_GPL(__init_work);
  453. void destroy_work_on_stack(struct work_struct *work)
  454. {
  455. debug_object_free(work, &work_debug_descr);
  456. }
  457. EXPORT_SYMBOL_GPL(destroy_work_on_stack);
  458. void destroy_delayed_work_on_stack(struct delayed_work *work)
  459. {
  460. destroy_timer_on_stack(&work->timer);
  461. debug_object_free(&work->work, &work_debug_descr);
  462. }
  463. EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
  464. #else
  465. static inline void debug_work_activate(struct work_struct *work) { }
  466. static inline void debug_work_deactivate(struct work_struct *work) { }
  467. #endif
  468. /**
  469. * worker_pool_assign_id - allocate ID and assing it to @pool
  470. * @pool: the pool pointer of interest
  471. *
  472. * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
  473. * successfully, -errno on failure.
  474. */
  475. static int worker_pool_assign_id(struct worker_pool *pool)
  476. {
  477. int ret;
  478. lockdep_assert_held(&wq_pool_mutex);
  479. ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
  480. GFP_KERNEL);
  481. if (ret >= 0) {
  482. pool->id = ret;
  483. return 0;
  484. }
  485. return ret;
  486. }
  487. /**
  488. * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
  489. * @wq: the target workqueue
  490. * @node: the node ID
  491. *
  492. * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
  493. * read locked.
  494. * If the pwq needs to be used beyond the locking in effect, the caller is
  495. * responsible for guaranteeing that the pwq stays online.
  496. *
  497. * Return: The unbound pool_workqueue for @node.
  498. */
  499. static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
  500. int node)
  501. {
  502. assert_rcu_or_wq_mutex_or_pool_mutex(wq);
  503. /*
  504. * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
  505. * delayed item is pending. The plan is to keep CPU -> NODE
  506. * mapping valid and stable across CPU on/offlines. Once that
  507. * happens, this workaround can be removed.
  508. */
  509. if (unlikely(node == NUMA_NO_NODE))
  510. return wq->dfl_pwq;
  511. return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
  512. }
  513. static unsigned int work_color_to_flags(int color)
  514. {
  515. return color << WORK_STRUCT_COLOR_SHIFT;
  516. }
  517. static int get_work_color(struct work_struct *work)
  518. {
  519. return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
  520. ((1 << WORK_STRUCT_COLOR_BITS) - 1);
  521. }
  522. static int work_next_color(int color)
  523. {
  524. return (color + 1) % WORK_NR_COLORS;
  525. }
  526. /*
  527. * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
  528. * contain the pointer to the queued pwq. Once execution starts, the flag
  529. * is cleared and the high bits contain OFFQ flags and pool ID.
  530. *
  531. * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
  532. * and clear_work_data() can be used to set the pwq, pool or clear
  533. * work->data. These functions should only be called while the work is
  534. * owned - ie. while the PENDING bit is set.
  535. *
  536. * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
  537. * corresponding to a work. Pool is available once the work has been
  538. * queued anywhere after initialization until it is sync canceled. pwq is
  539. * available only while the work item is queued.
  540. *
  541. * %WORK_OFFQ_CANCELING is used to mark a work item which is being
  542. * canceled. While being canceled, a work item may have its PENDING set
  543. * but stay off timer and worklist for arbitrarily long and nobody should
  544. * try to steal the PENDING bit.
  545. */
  546. static inline void set_work_data(struct work_struct *work, unsigned long data,
  547. unsigned long flags)
  548. {
  549. WARN_ON_ONCE(!work_pending(work));
  550. atomic_long_set(&work->data, data | flags | work_static(work));
  551. }
  552. static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
  553. unsigned long extra_flags)
  554. {
  555. set_work_data(work, (unsigned long)pwq,
  556. WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
  557. }
  558. static void set_work_pool_and_keep_pending(struct work_struct *work,
  559. int pool_id)
  560. {
  561. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
  562. WORK_STRUCT_PENDING);
  563. }
  564. static void set_work_pool_and_clear_pending(struct work_struct *work,
  565. int pool_id)
  566. {
  567. /*
  568. * The following wmb is paired with the implied mb in
  569. * test_and_set_bit(PENDING) and ensures all updates to @work made
  570. * here are visible to and precede any updates by the next PENDING
  571. * owner.
  572. */
  573. smp_wmb();
  574. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
  575. }
  576. static void clear_work_data(struct work_struct *work)
  577. {
  578. smp_wmb(); /* see set_work_pool_and_clear_pending() */
  579. set_work_data(work, WORK_STRUCT_NO_POOL, 0);
  580. }
  581. static struct pool_workqueue *get_work_pwq(struct work_struct *work)
  582. {
  583. unsigned long data = atomic_long_read(&work->data);
  584. if (data & WORK_STRUCT_PWQ)
  585. return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
  586. else
  587. return NULL;
  588. }
  589. /**
  590. * get_work_pool - return the worker_pool a given work was associated with
  591. * @work: the work item of interest
  592. *
  593. * Pools are created and destroyed under wq_pool_mutex, and allows read
  594. * access under sched-RCU read lock. As such, this function should be
  595. * called under wq_pool_mutex or with preemption disabled.
  596. *
  597. * All fields of the returned pool are accessible as long as the above
  598. * mentioned locking is in effect. If the returned pool needs to be used
  599. * beyond the critical section, the caller is responsible for ensuring the
  600. * returned pool is and stays online.
  601. *
  602. * Return: The worker_pool @work was last associated with. %NULL if none.
  603. */
  604. static struct worker_pool *get_work_pool(struct work_struct *work)
  605. {
  606. unsigned long data = atomic_long_read(&work->data);
  607. int pool_id;
  608. assert_rcu_or_pool_mutex();
  609. if (data & WORK_STRUCT_PWQ)
  610. return ((struct pool_workqueue *)
  611. (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
  612. pool_id = data >> WORK_OFFQ_POOL_SHIFT;
  613. if (pool_id == WORK_OFFQ_POOL_NONE)
  614. return NULL;
  615. return idr_find(&worker_pool_idr, pool_id);
  616. }
  617. /**
  618. * get_work_pool_id - return the worker pool ID a given work is associated with
  619. * @work: the work item of interest
  620. *
  621. * Return: The worker_pool ID @work was last associated with.
  622. * %WORK_OFFQ_POOL_NONE if none.
  623. */
  624. static int get_work_pool_id(struct work_struct *work)
  625. {
  626. unsigned long data = atomic_long_read(&work->data);
  627. if (data & WORK_STRUCT_PWQ)
  628. return ((struct pool_workqueue *)
  629. (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
  630. return data >> WORK_OFFQ_POOL_SHIFT;
  631. }
  632. static void mark_work_canceling(struct work_struct *work)
  633. {
  634. unsigned long pool_id = get_work_pool_id(work);
  635. pool_id <<= WORK_OFFQ_POOL_SHIFT;
  636. set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
  637. }
  638. static bool work_is_canceling(struct work_struct *work)
  639. {
  640. unsigned long data = atomic_long_read(&work->data);
  641. return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
  642. }
  643. /*
  644. * Policy functions. These define the policies on how the global worker
  645. * pools are managed. Unless noted otherwise, these functions assume that
  646. * they're being called with pool->lock held.
  647. */
  648. static bool __need_more_worker(struct worker_pool *pool)
  649. {
  650. return !atomic_read(&pool->nr_running);
  651. }
  652. /*
  653. * Need to wake up a worker? Called from anything but currently
  654. * running workers.
  655. *
  656. * Note that, because unbound workers never contribute to nr_running, this
  657. * function will always return %true for unbound pools as long as the
  658. * worklist isn't empty.
  659. */
  660. static bool need_more_worker(struct worker_pool *pool)
  661. {
  662. return !list_empty(&pool->worklist) && __need_more_worker(pool);
  663. }
  664. /* Can I start working? Called from busy but !running workers. */
  665. static bool may_start_working(struct worker_pool *pool)
  666. {
  667. return pool->nr_idle;
  668. }
  669. /* Do I need to keep working? Called from currently running workers. */
  670. static bool keep_working(struct worker_pool *pool)
  671. {
  672. return !list_empty(&pool->worklist) &&
  673. atomic_read(&pool->nr_running) <= 1;
  674. }
  675. /* Do we need a new worker? Called from manager. */
  676. static bool need_to_create_worker(struct worker_pool *pool)
  677. {
  678. return need_more_worker(pool) && !may_start_working(pool);
  679. }
  680. /* Do we have too many workers and should some go away? */
  681. static bool too_many_workers(struct worker_pool *pool)
  682. {
  683. bool managing = mutex_is_locked(&pool->manager_arb);
  684. int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
  685. int nr_busy = pool->nr_workers - nr_idle;
  686. return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
  687. }
  688. /*
  689. * Wake up functions.
  690. */
  691. /* Return the first idle worker. Safe with preemption disabled */
  692. static struct worker *first_idle_worker(struct worker_pool *pool)
  693. {
  694. if (unlikely(list_empty(&pool->idle_list)))
  695. return NULL;
  696. return list_first_entry(&pool->idle_list, struct worker, entry);
  697. }
  698. /**
  699. * wake_up_worker - wake up an idle worker
  700. * @pool: worker pool to wake worker from
  701. *
  702. * Wake up the first idle worker of @pool.
  703. *
  704. * CONTEXT:
  705. * spin_lock_irq(pool->lock).
  706. */
  707. static void wake_up_worker(struct worker_pool *pool)
  708. {
  709. struct worker *worker = first_idle_worker(pool);
  710. if (likely(worker))
  711. wake_up_process(worker->task);
  712. }
  713. /**
  714. * wq_worker_waking_up - a worker is waking up
  715. * @task: task waking up
  716. * @cpu: CPU @task is waking up to
  717. *
  718. * This function is called during try_to_wake_up() when a worker is
  719. * being awoken.
  720. *
  721. * CONTEXT:
  722. * spin_lock_irq(rq->lock)
  723. */
  724. void wq_worker_waking_up(struct task_struct *task, int cpu)
  725. {
  726. struct worker *worker = kthread_data(task);
  727. if (!(worker->flags & WORKER_NOT_RUNNING)) {
  728. WARN_ON_ONCE(worker->pool->cpu != cpu);
  729. atomic_inc(&worker->pool->nr_running);
  730. }
  731. }
  732. /**
  733. * wq_worker_sleeping - a worker is going to sleep
  734. * @task: task going to sleep
  735. * @cpu: CPU in question, must be the current CPU number
  736. *
  737. * This function is called during schedule() when a busy worker is
  738. * going to sleep. Worker on the same cpu can be woken up by
  739. * returning pointer to its task.
  740. *
  741. * CONTEXT:
  742. * spin_lock_irq(rq->lock)
  743. *
  744. * Return:
  745. * Worker task on @cpu to wake up, %NULL if none.
  746. */
  747. struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
  748. {
  749. struct worker *worker = kthread_data(task), *to_wakeup = NULL;
  750. struct worker_pool *pool;
  751. /*
  752. * Rescuers, which may not have all the fields set up like normal
  753. * workers, also reach here, let's not access anything before
  754. * checking NOT_RUNNING.
  755. */
  756. if (worker->flags & WORKER_NOT_RUNNING)
  757. return NULL;
  758. pool = worker->pool;
  759. /* this can only happen on the local cpu */
  760. if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
  761. return NULL;
  762. /*
  763. * The counterpart of the following dec_and_test, implied mb,
  764. * worklist not empty test sequence is in insert_work().
  765. * Please read comment there.
  766. *
  767. * NOT_RUNNING is clear. This means that we're bound to and
  768. * running on the local cpu w/ rq lock held and preemption
  769. * disabled, which in turn means that none else could be
  770. * manipulating idle_list, so dereferencing idle_list without pool
  771. * lock is safe.
  772. */
  773. if (atomic_dec_and_test(&pool->nr_running) &&
  774. !list_empty(&pool->worklist))
  775. to_wakeup = first_idle_worker(pool);
  776. return to_wakeup ? to_wakeup->task : NULL;
  777. }
  778. /**
  779. * worker_set_flags - set worker flags and adjust nr_running accordingly
  780. * @worker: self
  781. * @flags: flags to set
  782. *
  783. * Set @flags in @worker->flags and adjust nr_running accordingly.
  784. *
  785. * CONTEXT:
  786. * spin_lock_irq(pool->lock)
  787. */
  788. static inline void worker_set_flags(struct worker *worker, unsigned int flags)
  789. {
  790. struct worker_pool *pool = worker->pool;
  791. WARN_ON_ONCE(worker->task != current);
  792. /* If transitioning into NOT_RUNNING, adjust nr_running. */
  793. if ((flags & WORKER_NOT_RUNNING) &&
  794. !(worker->flags & WORKER_NOT_RUNNING)) {
  795. atomic_dec(&pool->nr_running);
  796. }
  797. worker->flags |= flags;
  798. }
  799. /**
  800. * worker_clr_flags - clear worker flags and adjust nr_running accordingly
  801. * @worker: self
  802. * @flags: flags to clear
  803. *
  804. * Clear @flags in @worker->flags and adjust nr_running accordingly.
  805. *
  806. * CONTEXT:
  807. * spin_lock_irq(pool->lock)
  808. */
  809. static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
  810. {
  811. struct worker_pool *pool = worker->pool;
  812. unsigned int oflags = worker->flags;
  813. WARN_ON_ONCE(worker->task != current);
  814. worker->flags &= ~flags;
  815. /*
  816. * If transitioning out of NOT_RUNNING, increment nr_running. Note
  817. * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
  818. * of multiple flags, not a single flag.
  819. */
  820. if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
  821. if (!(worker->flags & WORKER_NOT_RUNNING))
  822. atomic_inc(&pool->nr_running);
  823. }
  824. /**
  825. * find_worker_executing_work - find worker which is executing a work
  826. * @pool: pool of interest
  827. * @work: work to find worker for
  828. *
  829. * Find a worker which is executing @work on @pool by searching
  830. * @pool->busy_hash which is keyed by the address of @work. For a worker
  831. * to match, its current execution should match the address of @work and
  832. * its work function. This is to avoid unwanted dependency between
  833. * unrelated work executions through a work item being recycled while still
  834. * being executed.
  835. *
  836. * This is a bit tricky. A work item may be freed once its execution
  837. * starts and nothing prevents the freed area from being recycled for
  838. * another work item. If the same work item address ends up being reused
  839. * before the original execution finishes, workqueue will identify the
  840. * recycled work item as currently executing and make it wait until the
  841. * current execution finishes, introducing an unwanted dependency.
  842. *
  843. * This function checks the work item address and work function to avoid
  844. * false positives. Note that this isn't complete as one may construct a
  845. * work function which can introduce dependency onto itself through a
  846. * recycled work item. Well, if somebody wants to shoot oneself in the
  847. * foot that badly, there's only so much we can do, and if such deadlock
  848. * actually occurs, it should be easy to locate the culprit work function.
  849. *
  850. * CONTEXT:
  851. * spin_lock_irq(pool->lock).
  852. *
  853. * Return:
  854. * Pointer to worker which is executing @work if found, %NULL
  855. * otherwise.
  856. */
  857. static struct worker *find_worker_executing_work(struct worker_pool *pool,
  858. struct work_struct *work)
  859. {
  860. struct worker *worker;
  861. hash_for_each_possible(pool->busy_hash, worker, hentry,
  862. (unsigned long)work)
  863. if (worker->current_work == work &&
  864. worker->current_func == work->func)
  865. return worker;
  866. return NULL;
  867. }
  868. /**
  869. * move_linked_works - move linked works to a list
  870. * @work: start of series of works to be scheduled
  871. * @head: target list to append @work to
  872. * @nextp: out parameter for nested worklist walking
  873. *
  874. * Schedule linked works starting from @work to @head. Work series to
  875. * be scheduled starts at @work and includes any consecutive work with
  876. * WORK_STRUCT_LINKED set in its predecessor.
  877. *
  878. * If @nextp is not NULL, it's updated to point to the next work of
  879. * the last scheduled work. This allows move_linked_works() to be
  880. * nested inside outer list_for_each_entry_safe().
  881. *
  882. * CONTEXT:
  883. * spin_lock_irq(pool->lock).
  884. */
  885. static void move_linked_works(struct work_struct *work, struct list_head *head,
  886. struct work_struct **nextp)
  887. {
  888. struct work_struct *n;
  889. /*
  890. * Linked worklist will always end before the end of the list,
  891. * use NULL for list head.
  892. */
  893. list_for_each_entry_safe_from(work, n, NULL, entry) {
  894. list_move_tail(&work->entry, head);
  895. if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
  896. break;
  897. }
  898. /*
  899. * If we're already inside safe list traversal and have moved
  900. * multiple works to the scheduled queue, the next position
  901. * needs to be updated.
  902. */
  903. if (nextp)
  904. *nextp = n;
  905. }
  906. /**
  907. * get_pwq - get an extra reference on the specified pool_workqueue
  908. * @pwq: pool_workqueue to get
  909. *
  910. * Obtain an extra reference on @pwq. The caller should guarantee that
  911. * @pwq has positive refcnt and be holding the matching pool->lock.
  912. */
  913. static void get_pwq(struct pool_workqueue *pwq)
  914. {
  915. lockdep_assert_held(&pwq->pool->lock);
  916. WARN_ON_ONCE(pwq->refcnt <= 0);
  917. pwq->refcnt++;
  918. }
  919. /**
  920. * put_pwq - put a pool_workqueue reference
  921. * @pwq: pool_workqueue to put
  922. *
  923. * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
  924. * destruction. The caller should be holding the matching pool->lock.
  925. */
  926. static void put_pwq(struct pool_workqueue *pwq)
  927. {
  928. lockdep_assert_held(&pwq->pool->lock);
  929. if (likely(--pwq->refcnt))
  930. return;
  931. if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
  932. return;
  933. /*
  934. * @pwq can't be released under pool->lock, bounce to
  935. * pwq_unbound_release_workfn(). This never recurses on the same
  936. * pool->lock as this path is taken only for unbound workqueues and
  937. * the release work item is scheduled on a per-cpu workqueue. To
  938. * avoid lockdep warning, unbound pool->locks are given lockdep
  939. * subclass of 1 in get_unbound_pool().
  940. */
  941. schedule_work(&pwq->unbound_release_work);
  942. }
  943. /**
  944. * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
  945. * @pwq: pool_workqueue to put (can be %NULL)
  946. *
  947. * put_pwq() with locking. This function also allows %NULL @pwq.
  948. */
  949. static void put_pwq_unlocked(struct pool_workqueue *pwq)
  950. {
  951. if (pwq) {
  952. /*
  953. * As both pwqs and pools are sched-RCU protected, the
  954. * following lock operations are safe.
  955. */
  956. spin_lock_irq(&pwq->pool->lock);
  957. put_pwq(pwq);
  958. spin_unlock_irq(&pwq->pool->lock);
  959. }
  960. }
  961. static void pwq_activate_delayed_work(struct work_struct *work)
  962. {
  963. struct pool_workqueue *pwq = get_work_pwq(work);
  964. trace_workqueue_activate_work(work);
  965. if (list_empty(&pwq->pool->worklist))
  966. pwq->pool->watchdog_ts = jiffies;
  967. move_linked_works(work, &pwq->pool->worklist, NULL);
  968. __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
  969. pwq->nr_active++;
  970. }
  971. static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
  972. {
  973. struct work_struct *work = list_first_entry(&pwq->delayed_works,
  974. struct work_struct, entry);
  975. pwq_activate_delayed_work(work);
  976. }
  977. /**
  978. * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
  979. * @pwq: pwq of interest
  980. * @color: color of work which left the queue
  981. *
  982. * A work either has completed or is removed from pending queue,
  983. * decrement nr_in_flight of its pwq and handle workqueue flushing.
  984. *
  985. * CONTEXT:
  986. * spin_lock_irq(pool->lock).
  987. */
  988. static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
  989. {
  990. /* uncolored work items don't participate in flushing or nr_active */
  991. if (color == WORK_NO_COLOR)
  992. goto out_put;
  993. pwq->nr_in_flight[color]--;
  994. pwq->nr_active--;
  995. if (!list_empty(&pwq->delayed_works)) {
  996. /* one down, submit a delayed one */
  997. if (pwq->nr_active < pwq->max_active)
  998. pwq_activate_first_delayed(pwq);
  999. }
  1000. /* is flush in progress and are we at the flushing tip? */
  1001. if (likely(pwq->flush_color != color))
  1002. goto out_put;
  1003. /* are there still in-flight works? */
  1004. if (pwq->nr_in_flight[color])
  1005. goto out_put;
  1006. /* this pwq is done, clear flush_color */
  1007. pwq->flush_color = -1;
  1008. /*
  1009. * If this was the last pwq, wake up the first flusher. It
  1010. * will handle the rest.
  1011. */
  1012. if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
  1013. complete(&pwq->wq->first_flusher->done);
  1014. out_put:
  1015. put_pwq(pwq);
  1016. }
  1017. /**
  1018. * try_to_grab_pending - steal work item from worklist and disable irq
  1019. * @work: work item to steal
  1020. * @is_dwork: @work is a delayed_work
  1021. * @flags: place to store irq state
  1022. *
  1023. * Try to grab PENDING bit of @work. This function can handle @work in any
  1024. * stable state - idle, on timer or on worklist.
  1025. *
  1026. * Return:
  1027. * 1 if @work was pending and we successfully stole PENDING
  1028. * 0 if @work was idle and we claimed PENDING
  1029. * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
  1030. * -ENOENT if someone else is canceling @work, this state may persist
  1031. * for arbitrarily long
  1032. *
  1033. * Note:
  1034. * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
  1035. * interrupted while holding PENDING and @work off queue, irq must be
  1036. * disabled on entry. This, combined with delayed_work->timer being
  1037. * irqsafe, ensures that we return -EAGAIN for finite short period of time.
  1038. *
  1039. * On successful return, >= 0, irq is disabled and the caller is
  1040. * responsible for releasing it using local_irq_restore(*@flags).
  1041. *
  1042. * This function is safe to call from any context including IRQ handler.
  1043. */
  1044. static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
  1045. unsigned long *flags)
  1046. {
  1047. struct worker_pool *pool;
  1048. struct pool_workqueue *pwq;
  1049. local_irq_save(*flags);
  1050. /* try to steal the timer if it exists */
  1051. if (is_dwork) {
  1052. struct delayed_work *dwork = to_delayed_work(work);
  1053. /*
  1054. * dwork->timer is irqsafe. If del_timer() fails, it's
  1055. * guaranteed that the timer is not queued anywhere and not
  1056. * running on the local CPU.
  1057. */
  1058. if (likely(del_timer(&dwork->timer)))
  1059. return 1;
  1060. }
  1061. /* try to claim PENDING the normal way */
  1062. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
  1063. return 0;
  1064. /*
  1065. * The queueing is in progress, or it is already queued. Try to
  1066. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  1067. */
  1068. pool = get_work_pool(work);
  1069. if (!pool)
  1070. goto fail;
  1071. spin_lock(&pool->lock);
  1072. /*
  1073. * work->data is guaranteed to point to pwq only while the work
  1074. * item is queued on pwq->wq, and both updating work->data to point
  1075. * to pwq on queueing and to pool on dequeueing are done under
  1076. * pwq->pool->lock. This in turn guarantees that, if work->data
  1077. * points to pwq which is associated with a locked pool, the work
  1078. * item is currently queued on that pool.
  1079. */
  1080. pwq = get_work_pwq(work);
  1081. if (pwq && pwq->pool == pool) {
  1082. debug_work_deactivate(work);
  1083. /*
  1084. * A delayed work item cannot be grabbed directly because
  1085. * it might have linked NO_COLOR work items which, if left
  1086. * on the delayed_list, will confuse pwq->nr_active
  1087. * management later on and cause stall. Make sure the work
  1088. * item is activated before grabbing.
  1089. */
  1090. if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
  1091. pwq_activate_delayed_work(work);
  1092. list_del_init(&work->entry);
  1093. pwq_dec_nr_in_flight(pwq, get_work_color(work));
  1094. /* work->data points to pwq iff queued, point to pool */
  1095. set_work_pool_and_keep_pending(work, pool->id);
  1096. spin_unlock(&pool->lock);
  1097. return 1;
  1098. }
  1099. spin_unlock(&pool->lock);
  1100. fail:
  1101. local_irq_restore(*flags);
  1102. if (work_is_canceling(work))
  1103. return -ENOENT;
  1104. cpu_relax();
  1105. return -EAGAIN;
  1106. }
  1107. /**
  1108. * insert_work - insert a work into a pool
  1109. * @pwq: pwq @work belongs to
  1110. * @work: work to insert
  1111. * @head: insertion point
  1112. * @extra_flags: extra WORK_STRUCT_* flags to set
  1113. *
  1114. * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
  1115. * work_struct flags.
  1116. *
  1117. * CONTEXT:
  1118. * spin_lock_irq(pool->lock).
  1119. */
  1120. static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
  1121. struct list_head *head, unsigned int extra_flags)
  1122. {
  1123. struct worker_pool *pool = pwq->pool;
  1124. /* we own @work, set data and link */
  1125. set_work_pwq(work, pwq, extra_flags);
  1126. list_add_tail(&work->entry, head);
  1127. get_pwq(pwq);
  1128. /*
  1129. * Ensure either wq_worker_sleeping() sees the above
  1130. * list_add_tail() or we see zero nr_running to avoid workers lying
  1131. * around lazily while there are works to be processed.
  1132. */
  1133. smp_mb();
  1134. if (__need_more_worker(pool))
  1135. wake_up_worker(pool);
  1136. }
  1137. /*
  1138. * Test whether @work is being queued from another work executing on the
  1139. * same workqueue.
  1140. */
  1141. static bool is_chained_work(struct workqueue_struct *wq)
  1142. {
  1143. struct worker *worker;
  1144. worker = current_wq_worker();
  1145. /*
  1146. * Return %true iff I'm a worker execuing a work item on @wq. If
  1147. * I'm @worker, it's safe to dereference it without locking.
  1148. */
  1149. return worker && worker->current_pwq->wq == wq;
  1150. }
  1151. /*
  1152. * When queueing an unbound work item to a wq, prefer local CPU if allowed
  1153. * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
  1154. * avoid perturbing sensitive tasks.
  1155. */
  1156. static int wq_select_unbound_cpu(int cpu)
  1157. {
  1158. static bool printed_dbg_warning;
  1159. int new_cpu;
  1160. if (likely(!wq_debug_force_rr_cpu)) {
  1161. if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
  1162. return cpu;
  1163. } else if (!printed_dbg_warning) {
  1164. pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
  1165. printed_dbg_warning = true;
  1166. }
  1167. if (cpumask_empty(wq_unbound_cpumask))
  1168. return cpu;
  1169. new_cpu = __this_cpu_read(wq_rr_cpu_last);
  1170. new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
  1171. if (unlikely(new_cpu >= nr_cpu_ids)) {
  1172. new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
  1173. if (unlikely(new_cpu >= nr_cpu_ids))
  1174. return cpu;
  1175. }
  1176. __this_cpu_write(wq_rr_cpu_last, new_cpu);
  1177. return new_cpu;
  1178. }
  1179. static void __queue_work(int cpu, struct workqueue_struct *wq,
  1180. struct work_struct *work)
  1181. {
  1182. struct pool_workqueue *pwq;
  1183. struct worker_pool *last_pool;
  1184. struct list_head *worklist;
  1185. unsigned int work_flags;
  1186. unsigned int req_cpu = cpu;
  1187. /*
  1188. * While a work item is PENDING && off queue, a task trying to
  1189. * steal the PENDING will busy-loop waiting for it to either get
  1190. * queued or lose PENDING. Grabbing PENDING and queueing should
  1191. * happen with IRQ disabled.
  1192. */
  1193. WARN_ON_ONCE(!irqs_disabled());
  1194. debug_work_activate(work);
  1195. /* if draining, only works from the same workqueue are allowed */
  1196. if (unlikely(wq->flags & __WQ_DRAINING) &&
  1197. WARN_ON_ONCE(!is_chained_work(wq)))
  1198. return;
  1199. retry:
  1200. if (req_cpu == WORK_CPU_UNBOUND)
  1201. cpu = wq_select_unbound_cpu(raw_smp_processor_id());
  1202. /* pwq which will be used unless @work is executing elsewhere */
  1203. if (!(wq->flags & WQ_UNBOUND))
  1204. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  1205. else
  1206. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  1207. /*
  1208. * If @work was previously on a different pool, it might still be
  1209. * running there, in which case the work needs to be queued on that
  1210. * pool to guarantee non-reentrancy.
  1211. */
  1212. last_pool = get_work_pool(work);
  1213. if (last_pool && last_pool != pwq->pool) {
  1214. struct worker *worker;
  1215. spin_lock(&last_pool->lock);
  1216. worker = find_worker_executing_work(last_pool, work);
  1217. if (worker && worker->current_pwq->wq == wq) {
  1218. pwq = worker->current_pwq;
  1219. } else {
  1220. /* meh... not running there, queue here */
  1221. spin_unlock(&last_pool->lock);
  1222. spin_lock(&pwq->pool->lock);
  1223. }
  1224. } else {
  1225. spin_lock(&pwq->pool->lock);
  1226. }
  1227. /*
  1228. * pwq is determined and locked. For unbound pools, we could have
  1229. * raced with pwq release and it could already be dead. If its
  1230. * refcnt is zero, repeat pwq selection. Note that pwqs never die
  1231. * without another pwq replacing it in the numa_pwq_tbl or while
  1232. * work items are executing on it, so the retrying is guaranteed to
  1233. * make forward-progress.
  1234. */
  1235. if (unlikely(!pwq->refcnt)) {
  1236. if (wq->flags & WQ_UNBOUND) {
  1237. spin_unlock(&pwq->pool->lock);
  1238. cpu_relax();
  1239. goto retry;
  1240. }
  1241. /* oops */
  1242. WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
  1243. wq->name, cpu);
  1244. }
  1245. /* pwq determined, queue */
  1246. trace_workqueue_queue_work(req_cpu, pwq, work);
  1247. if (WARN_ON(!list_empty(&work->entry))) {
  1248. spin_unlock(&pwq->pool->lock);
  1249. return;
  1250. }
  1251. pwq->nr_in_flight[pwq->work_color]++;
  1252. work_flags = work_color_to_flags(pwq->work_color);
  1253. if (likely(pwq->nr_active < pwq->max_active)) {
  1254. trace_workqueue_activate_work(work);
  1255. pwq->nr_active++;
  1256. worklist = &pwq->pool->worklist;
  1257. if (list_empty(worklist))
  1258. pwq->pool->watchdog_ts = jiffies;
  1259. } else {
  1260. work_flags |= WORK_STRUCT_DELAYED;
  1261. worklist = &pwq->delayed_works;
  1262. }
  1263. insert_work(pwq, work, worklist, work_flags);
  1264. spin_unlock(&pwq->pool->lock);
  1265. }
  1266. /**
  1267. * queue_work_on - queue work on specific cpu
  1268. * @cpu: CPU number to execute work on
  1269. * @wq: workqueue to use
  1270. * @work: work to queue
  1271. *
  1272. * We queue the work to a specific CPU, the caller must ensure it
  1273. * can't go away.
  1274. *
  1275. * Return: %false if @work was already on a queue, %true otherwise.
  1276. */
  1277. bool queue_work_on(int cpu, struct workqueue_struct *wq,
  1278. struct work_struct *work)
  1279. {
  1280. bool ret = false;
  1281. unsigned long flags;
  1282. local_irq_save(flags);
  1283. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1284. __queue_work(cpu, wq, work);
  1285. ret = true;
  1286. }
  1287. local_irq_restore(flags);
  1288. return ret;
  1289. }
  1290. EXPORT_SYMBOL(queue_work_on);
  1291. void delayed_work_timer_fn(unsigned long __data)
  1292. {
  1293. struct delayed_work *dwork = (struct delayed_work *)__data;
  1294. /* should have been called from irqsafe timer with irq already off */
  1295. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  1296. }
  1297. EXPORT_SYMBOL(delayed_work_timer_fn);
  1298. static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
  1299. struct delayed_work *dwork, unsigned long delay)
  1300. {
  1301. struct timer_list *timer = &dwork->timer;
  1302. struct work_struct *work = &dwork->work;
  1303. WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
  1304. timer->data != (unsigned long)dwork);
  1305. WARN_ON_ONCE(timer_pending(timer));
  1306. WARN_ON_ONCE(!list_empty(&work->entry));
  1307. /*
  1308. * If @delay is 0, queue @dwork->work immediately. This is for
  1309. * both optimization and correctness. The earliest @timer can
  1310. * expire is on the closest next tick and delayed_work users depend
  1311. * on that there's no such delay when @delay is 0.
  1312. */
  1313. if (!delay) {
  1314. __queue_work(cpu, wq, &dwork->work);
  1315. return;
  1316. }
  1317. timer_stats_timer_set_start_info(&dwork->timer);
  1318. dwork->wq = wq;
  1319. dwork->cpu = cpu;
  1320. timer->expires = jiffies + delay;
  1321. if (unlikely(cpu != WORK_CPU_UNBOUND))
  1322. add_timer_on(timer, cpu);
  1323. else
  1324. add_timer(timer);
  1325. }
  1326. /**
  1327. * queue_delayed_work_on - queue work on specific CPU after delay
  1328. * @cpu: CPU number to execute work on
  1329. * @wq: workqueue to use
  1330. * @dwork: work to queue
  1331. * @delay: number of jiffies to wait before queueing
  1332. *
  1333. * Return: %false if @work was already on a queue, %true otherwise. If
  1334. * @delay is zero and @dwork is idle, it will be scheduled for immediate
  1335. * execution.
  1336. */
  1337. bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1338. struct delayed_work *dwork, unsigned long delay)
  1339. {
  1340. struct work_struct *work = &dwork->work;
  1341. bool ret = false;
  1342. unsigned long flags;
  1343. /* read the comment in __queue_work() */
  1344. local_irq_save(flags);
  1345. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1346. __queue_delayed_work(cpu, wq, dwork, delay);
  1347. ret = true;
  1348. }
  1349. local_irq_restore(flags);
  1350. return ret;
  1351. }
  1352. EXPORT_SYMBOL(queue_delayed_work_on);
  1353. /**
  1354. * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
  1355. * @cpu: CPU number to execute work on
  1356. * @wq: workqueue to use
  1357. * @dwork: work to queue
  1358. * @delay: number of jiffies to wait before queueing
  1359. *
  1360. * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
  1361. * modify @dwork's timer so that it expires after @delay. If @delay is
  1362. * zero, @work is guaranteed to be scheduled immediately regardless of its
  1363. * current state.
  1364. *
  1365. * Return: %false if @dwork was idle and queued, %true if @dwork was
  1366. * pending and its timer was modified.
  1367. *
  1368. * This function is safe to call from any context including IRQ handler.
  1369. * See try_to_grab_pending() for details.
  1370. */
  1371. bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1372. struct delayed_work *dwork, unsigned long delay)
  1373. {
  1374. unsigned long flags;
  1375. int ret;
  1376. do {
  1377. ret = try_to_grab_pending(&dwork->work, true, &flags);
  1378. } while (unlikely(ret == -EAGAIN));
  1379. if (likely(ret >= 0)) {
  1380. __queue_delayed_work(cpu, wq, dwork, delay);
  1381. local_irq_restore(flags);
  1382. }
  1383. /* -ENOENT from try_to_grab_pending() becomes %true */
  1384. return ret;
  1385. }
  1386. EXPORT_SYMBOL_GPL(mod_delayed_work_on);
  1387. /**
  1388. * worker_enter_idle - enter idle state
  1389. * @worker: worker which is entering idle state
  1390. *
  1391. * @worker is entering idle state. Update stats and idle timer if
  1392. * necessary.
  1393. *
  1394. * LOCKING:
  1395. * spin_lock_irq(pool->lock).
  1396. */
  1397. static void worker_enter_idle(struct worker *worker)
  1398. {
  1399. struct worker_pool *pool = worker->pool;
  1400. if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
  1401. WARN_ON_ONCE(!list_empty(&worker->entry) &&
  1402. (worker->hentry.next || worker->hentry.pprev)))
  1403. return;
  1404. /* can't use worker_set_flags(), also called from create_worker() */
  1405. worker->flags |= WORKER_IDLE;
  1406. pool->nr_idle++;
  1407. worker->last_active = jiffies;
  1408. /* idle_list is LIFO */
  1409. list_add(&worker->entry, &pool->idle_list);
  1410. if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
  1411. mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
  1412. /*
  1413. * Sanity check nr_running. Because wq_unbind_fn() releases
  1414. * pool->lock between setting %WORKER_UNBOUND and zapping
  1415. * nr_running, the warning may trigger spuriously. Check iff
  1416. * unbind is not in progress.
  1417. */
  1418. WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
  1419. pool->nr_workers == pool->nr_idle &&
  1420. atomic_read(&pool->nr_running));
  1421. }
  1422. /**
  1423. * worker_leave_idle - leave idle state
  1424. * @worker: worker which is leaving idle state
  1425. *
  1426. * @worker is leaving idle state. Update stats.
  1427. *
  1428. * LOCKING:
  1429. * spin_lock_irq(pool->lock).
  1430. */
  1431. static void worker_leave_idle(struct worker *worker)
  1432. {
  1433. struct worker_pool *pool = worker->pool;
  1434. if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
  1435. return;
  1436. worker_clr_flags(worker, WORKER_IDLE);
  1437. pool->nr_idle--;
  1438. list_del_init(&worker->entry);
  1439. }
  1440. static struct worker *alloc_worker(int node)
  1441. {
  1442. struct worker *worker;
  1443. worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
  1444. if (worker) {
  1445. INIT_LIST_HEAD(&worker->entry);
  1446. INIT_LIST_HEAD(&worker->scheduled);
  1447. INIT_LIST_HEAD(&worker->node);
  1448. /* on creation a worker is in !idle && prep state */
  1449. worker->flags = WORKER_PREP;
  1450. }
  1451. return worker;
  1452. }
  1453. /**
  1454. * worker_attach_to_pool() - attach a worker to a pool
  1455. * @worker: worker to be attached
  1456. * @pool: the target pool
  1457. *
  1458. * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
  1459. * cpu-binding of @worker are kept coordinated with the pool across
  1460. * cpu-[un]hotplugs.
  1461. */
  1462. static void worker_attach_to_pool(struct worker *worker,
  1463. struct worker_pool *pool)
  1464. {
  1465. mutex_lock(&pool->attach_mutex);
  1466. /*
  1467. * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
  1468. * online CPUs. It'll be re-applied when any of the CPUs come up.
  1469. */
  1470. set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
  1471. /*
  1472. * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
  1473. * stable across this function. See the comments above the
  1474. * flag definition for details.
  1475. */
  1476. if (pool->flags & POOL_DISASSOCIATED)
  1477. worker->flags |= WORKER_UNBOUND;
  1478. list_add_tail(&worker->node, &pool->workers);
  1479. mutex_unlock(&pool->attach_mutex);
  1480. }
  1481. /**
  1482. * worker_detach_from_pool() - detach a worker from its pool
  1483. * @worker: worker which is attached to its pool
  1484. * @pool: the pool @worker is attached to
  1485. *
  1486. * Undo the attaching which had been done in worker_attach_to_pool(). The
  1487. * caller worker shouldn't access to the pool after detached except it has
  1488. * other reference to the pool.
  1489. */
  1490. static void worker_detach_from_pool(struct worker *worker,
  1491. struct worker_pool *pool)
  1492. {
  1493. struct completion *detach_completion = NULL;
  1494. mutex_lock(&pool->attach_mutex);
  1495. list_del(&worker->node);
  1496. if (list_empty(&pool->workers))
  1497. detach_completion = pool->detach_completion;
  1498. mutex_unlock(&pool->attach_mutex);
  1499. /* clear leftover flags without pool->lock after it is detached */
  1500. worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
  1501. if (detach_completion)
  1502. complete(detach_completion);
  1503. }
  1504. /**
  1505. * create_worker - create a new workqueue worker
  1506. * @pool: pool the new worker will belong to
  1507. *
  1508. * Create and start a new worker which is attached to @pool.
  1509. *
  1510. * CONTEXT:
  1511. * Might sleep. Does GFP_KERNEL allocations.
  1512. *
  1513. * Return:
  1514. * Pointer to the newly created worker.
  1515. */
  1516. static struct worker *create_worker(struct worker_pool *pool)
  1517. {
  1518. struct worker *worker = NULL;
  1519. int id = -1;
  1520. char id_buf[16];
  1521. /* ID is needed to determine kthread name */
  1522. id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
  1523. if (id < 0)
  1524. goto fail;
  1525. worker = alloc_worker(pool->node);
  1526. if (!worker)
  1527. goto fail;
  1528. worker->pool = pool;
  1529. worker->id = id;
  1530. if (pool->cpu >= 0)
  1531. snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
  1532. pool->attrs->nice < 0 ? "H" : "");
  1533. else
  1534. snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
  1535. worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
  1536. "kworker/%s", id_buf);
  1537. if (IS_ERR(worker->task))
  1538. goto fail;
  1539. set_user_nice(worker->task, pool->attrs->nice);
  1540. kthread_bind_mask(worker->task, pool->attrs->cpumask);
  1541. /* successful, attach the worker to the pool */
  1542. worker_attach_to_pool(worker, pool);
  1543. /* start the newly created worker */
  1544. spin_lock_irq(&pool->lock);
  1545. worker->pool->nr_workers++;
  1546. worker_enter_idle(worker);
  1547. wake_up_process(worker->task);
  1548. spin_unlock_irq(&pool->lock);
  1549. return worker;
  1550. fail:
  1551. if (id >= 0)
  1552. ida_simple_remove(&pool->worker_ida, id);
  1553. kfree(worker);
  1554. return NULL;
  1555. }
  1556. /**
  1557. * destroy_worker - destroy a workqueue worker
  1558. * @worker: worker to be destroyed
  1559. *
  1560. * Destroy @worker and adjust @pool stats accordingly. The worker should
  1561. * be idle.
  1562. *
  1563. * CONTEXT:
  1564. * spin_lock_irq(pool->lock).
  1565. */
  1566. static void destroy_worker(struct worker *worker)
  1567. {
  1568. struct worker_pool *pool = worker->pool;
  1569. lockdep_assert_held(&pool->lock);
  1570. /* sanity check frenzy */
  1571. if (WARN_ON(worker->current_work) ||
  1572. WARN_ON(!list_empty(&worker->scheduled)) ||
  1573. WARN_ON(!(worker->flags & WORKER_IDLE)))
  1574. return;
  1575. pool->nr_workers--;
  1576. pool->nr_idle--;
  1577. list_del_init(&worker->entry);
  1578. worker->flags |= WORKER_DIE;
  1579. wake_up_process(worker->task);
  1580. }
  1581. static void idle_worker_timeout(unsigned long __pool)
  1582. {
  1583. struct worker_pool *pool = (void *)__pool;
  1584. spin_lock_irq(&pool->lock);
  1585. while (too_many_workers(pool)) {
  1586. struct worker *worker;
  1587. unsigned long expires;
  1588. /* idle_list is kept in LIFO order, check the last one */
  1589. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1590. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1591. if (time_before(jiffies, expires)) {
  1592. mod_timer(&pool->idle_timer, expires);
  1593. break;
  1594. }
  1595. destroy_worker(worker);
  1596. }
  1597. spin_unlock_irq(&pool->lock);
  1598. }
  1599. static void send_mayday(struct work_struct *work)
  1600. {
  1601. struct pool_workqueue *pwq = get_work_pwq(work);
  1602. struct workqueue_struct *wq = pwq->wq;
  1603. lockdep_assert_held(&wq_mayday_lock);
  1604. if (!wq->rescuer)
  1605. return;
  1606. /* mayday mayday mayday */
  1607. if (list_empty(&pwq->mayday_node)) {
  1608. /*
  1609. * If @pwq is for an unbound wq, its base ref may be put at
  1610. * any time due to an attribute change. Pin @pwq until the
  1611. * rescuer is done with it.
  1612. */
  1613. get_pwq(pwq);
  1614. list_add_tail(&pwq->mayday_node, &wq->maydays);
  1615. wake_up_process(wq->rescuer->task);
  1616. }
  1617. }
  1618. static void pool_mayday_timeout(unsigned long __pool)
  1619. {
  1620. struct worker_pool *pool = (void *)__pool;
  1621. struct work_struct *work;
  1622. spin_lock_irq(&pool->lock);
  1623. spin_lock(&wq_mayday_lock); /* for wq->maydays */
  1624. if (need_to_create_worker(pool)) {
  1625. /*
  1626. * We've been trying to create a new worker but
  1627. * haven't been successful. We might be hitting an
  1628. * allocation deadlock. Send distress signals to
  1629. * rescuers.
  1630. */
  1631. list_for_each_entry(work, &pool->worklist, entry)
  1632. send_mayday(work);
  1633. }
  1634. spin_unlock(&wq_mayday_lock);
  1635. spin_unlock_irq(&pool->lock);
  1636. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
  1637. }
  1638. /**
  1639. * maybe_create_worker - create a new worker if necessary
  1640. * @pool: pool to create a new worker for
  1641. *
  1642. * Create a new worker for @pool if necessary. @pool is guaranteed to
  1643. * have at least one idle worker on return from this function. If
  1644. * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
  1645. * sent to all rescuers with works scheduled on @pool to resolve
  1646. * possible allocation deadlock.
  1647. *
  1648. * On return, need_to_create_worker() is guaranteed to be %false and
  1649. * may_start_working() %true.
  1650. *
  1651. * LOCKING:
  1652. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1653. * multiple times. Does GFP_KERNEL allocations. Called only from
  1654. * manager.
  1655. */
  1656. static void maybe_create_worker(struct worker_pool *pool)
  1657. __releases(&pool->lock)
  1658. __acquires(&pool->lock)
  1659. {
  1660. restart:
  1661. spin_unlock_irq(&pool->lock);
  1662. /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
  1663. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
  1664. while (true) {
  1665. if (create_worker(pool) || !need_to_create_worker(pool))
  1666. break;
  1667. schedule_timeout_interruptible(CREATE_COOLDOWN);
  1668. if (!need_to_create_worker(pool))
  1669. break;
  1670. }
  1671. del_timer_sync(&pool->mayday_timer);
  1672. spin_lock_irq(&pool->lock);
  1673. /*
  1674. * This is necessary even after a new worker was just successfully
  1675. * created as @pool->lock was dropped and the new worker might have
  1676. * already become busy.
  1677. */
  1678. if (need_to_create_worker(pool))
  1679. goto restart;
  1680. }
  1681. /**
  1682. * manage_workers - manage worker pool
  1683. * @worker: self
  1684. *
  1685. * Assume the manager role and manage the worker pool @worker belongs
  1686. * to. At any given time, there can be only zero or one manager per
  1687. * pool. The exclusion is handled automatically by this function.
  1688. *
  1689. * The caller can safely start processing works on false return. On
  1690. * true return, it's guaranteed that need_to_create_worker() is false
  1691. * and may_start_working() is true.
  1692. *
  1693. * CONTEXT:
  1694. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1695. * multiple times. Does GFP_KERNEL allocations.
  1696. *
  1697. * Return:
  1698. * %false if the pool doesn't need management and the caller can safely
  1699. * start processing works, %true if management function was performed and
  1700. * the conditions that the caller verified before calling the function may
  1701. * no longer be true.
  1702. */
  1703. static bool manage_workers(struct worker *worker)
  1704. {
  1705. struct worker_pool *pool = worker->pool;
  1706. /*
  1707. * Anyone who successfully grabs manager_arb wins the arbitration
  1708. * and becomes the manager. mutex_trylock() on pool->manager_arb
  1709. * failure while holding pool->lock reliably indicates that someone
  1710. * else is managing the pool and the worker which failed trylock
  1711. * can proceed to executing work items. This means that anyone
  1712. * grabbing manager_arb is responsible for actually performing
  1713. * manager duties. If manager_arb is grabbed and released without
  1714. * actual management, the pool may stall indefinitely.
  1715. */
  1716. if (!mutex_trylock(&pool->manager_arb))
  1717. return false;
  1718. pool->manager = worker;
  1719. maybe_create_worker(pool);
  1720. pool->manager = NULL;
  1721. mutex_unlock(&pool->manager_arb);
  1722. return true;
  1723. }
  1724. /**
  1725. * process_one_work - process single work
  1726. * @worker: self
  1727. * @work: work to process
  1728. *
  1729. * Process @work. This function contains all the logics necessary to
  1730. * process a single work including synchronization against and
  1731. * interaction with other workers on the same cpu, queueing and
  1732. * flushing. As long as context requirement is met, any worker can
  1733. * call this function to process a work.
  1734. *
  1735. * CONTEXT:
  1736. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1737. */
  1738. static void process_one_work(struct worker *worker, struct work_struct *work)
  1739. __releases(&pool->lock)
  1740. __acquires(&pool->lock)
  1741. {
  1742. struct pool_workqueue *pwq = get_work_pwq(work);
  1743. struct worker_pool *pool = worker->pool;
  1744. bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
  1745. int work_color;
  1746. struct worker *collision;
  1747. #ifdef CONFIG_LOCKDEP
  1748. /*
  1749. * It is permissible to free the struct work_struct from
  1750. * inside the function that is called from it, this we need to
  1751. * take into account for lockdep too. To avoid bogus "held
  1752. * lock freed" warnings as well as problems when looking into
  1753. * work->lockdep_map, make a copy and use that here.
  1754. */
  1755. struct lockdep_map lockdep_map;
  1756. lockdep_copy_map(&lockdep_map, &work->lockdep_map);
  1757. #endif
  1758. /* ensure we're on the correct CPU */
  1759. WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
  1760. raw_smp_processor_id() != pool->cpu);
  1761. /*
  1762. * A single work shouldn't be executed concurrently by
  1763. * multiple workers on a single cpu. Check whether anyone is
  1764. * already processing the work. If so, defer the work to the
  1765. * currently executing one.
  1766. */
  1767. collision = find_worker_executing_work(pool, work);
  1768. if (unlikely(collision)) {
  1769. move_linked_works(work, &collision->scheduled, NULL);
  1770. return;
  1771. }
  1772. /* claim and dequeue */
  1773. debug_work_deactivate(work);
  1774. hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
  1775. worker->current_work = work;
  1776. worker->current_func = work->func;
  1777. worker->current_pwq = pwq;
  1778. work_color = get_work_color(work);
  1779. list_del_init(&work->entry);
  1780. /*
  1781. * CPU intensive works don't participate in concurrency management.
  1782. * They're the scheduler's responsibility. This takes @worker out
  1783. * of concurrency management and the next code block will chain
  1784. * execution of the pending work items.
  1785. */
  1786. if (unlikely(cpu_intensive))
  1787. worker_set_flags(worker, WORKER_CPU_INTENSIVE);
  1788. /*
  1789. * Wake up another worker if necessary. The condition is always
  1790. * false for normal per-cpu workers since nr_running would always
  1791. * be >= 1 at this point. This is used to chain execution of the
  1792. * pending work items for WORKER_NOT_RUNNING workers such as the
  1793. * UNBOUND and CPU_INTENSIVE ones.
  1794. */
  1795. if (need_more_worker(pool))
  1796. wake_up_worker(pool);
  1797. /*
  1798. * Record the last pool and clear PENDING which should be the last
  1799. * update to @work. Also, do this inside @pool->lock so that
  1800. * PENDING and queued state changes happen together while IRQ is
  1801. * disabled.
  1802. */
  1803. set_work_pool_and_clear_pending(work, pool->id);
  1804. spin_unlock_irq(&pool->lock);
  1805. lock_map_acquire_read(&pwq->wq->lockdep_map);
  1806. lock_map_acquire(&lockdep_map);
  1807. trace_workqueue_execute_start(work);
  1808. worker->current_func(work);
  1809. /*
  1810. * While we must be careful to not use "work" after this, the trace
  1811. * point will only record its address.
  1812. */
  1813. trace_workqueue_execute_end(work);
  1814. lock_map_release(&lockdep_map);
  1815. lock_map_release(&pwq->wq->lockdep_map);
  1816. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  1817. pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
  1818. " last function: %pf\n",
  1819. current->comm, preempt_count(), task_pid_nr(current),
  1820. worker->current_func);
  1821. debug_show_held_locks(current);
  1822. dump_stack();
  1823. }
  1824. /*
  1825. * The following prevents a kworker from hogging CPU on !PREEMPT
  1826. * kernels, where a requeueing work item waiting for something to
  1827. * happen could deadlock with stop_machine as such work item could
  1828. * indefinitely requeue itself while all other CPUs are trapped in
  1829. * stop_machine. At the same time, report a quiescent RCU state so
  1830. * the same condition doesn't freeze RCU.
  1831. */
  1832. cond_resched_rcu_qs();
  1833. spin_lock_irq(&pool->lock);
  1834. /* clear cpu intensive status */
  1835. if (unlikely(cpu_intensive))
  1836. worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
  1837. /* we're done with it, release */
  1838. hash_del(&worker->hentry);
  1839. worker->current_work = NULL;
  1840. worker->current_func = NULL;
  1841. worker->current_pwq = NULL;
  1842. worker->desc_valid = false;
  1843. pwq_dec_nr_in_flight(pwq, work_color);
  1844. }
  1845. /**
  1846. * process_scheduled_works - process scheduled works
  1847. * @worker: self
  1848. *
  1849. * Process all scheduled works. Please note that the scheduled list
  1850. * may change while processing a work, so this function repeatedly
  1851. * fetches a work from the top and executes it.
  1852. *
  1853. * CONTEXT:
  1854. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1855. * multiple times.
  1856. */
  1857. static void process_scheduled_works(struct worker *worker)
  1858. {
  1859. while (!list_empty(&worker->scheduled)) {
  1860. struct work_struct *work = list_first_entry(&worker->scheduled,
  1861. struct work_struct, entry);
  1862. process_one_work(worker, work);
  1863. }
  1864. }
  1865. /**
  1866. * worker_thread - the worker thread function
  1867. * @__worker: self
  1868. *
  1869. * The worker thread function. All workers belong to a worker_pool -
  1870. * either a per-cpu one or dynamic unbound one. These workers process all
  1871. * work items regardless of their specific target workqueue. The only
  1872. * exception is work items which belong to workqueues with a rescuer which
  1873. * will be explained in rescuer_thread().
  1874. *
  1875. * Return: 0
  1876. */
  1877. static int worker_thread(void *__worker)
  1878. {
  1879. struct worker *worker = __worker;
  1880. struct worker_pool *pool = worker->pool;
  1881. /* tell the scheduler that this is a workqueue worker */
  1882. worker->task->flags |= PF_WQ_WORKER;
  1883. woke_up:
  1884. spin_lock_irq(&pool->lock);
  1885. /* am I supposed to die? */
  1886. if (unlikely(worker->flags & WORKER_DIE)) {
  1887. spin_unlock_irq(&pool->lock);
  1888. WARN_ON_ONCE(!list_empty(&worker->entry));
  1889. worker->task->flags &= ~PF_WQ_WORKER;
  1890. set_task_comm(worker->task, "kworker/dying");
  1891. ida_simple_remove(&pool->worker_ida, worker->id);
  1892. worker_detach_from_pool(worker, pool);
  1893. kfree(worker);
  1894. return 0;
  1895. }
  1896. worker_leave_idle(worker);
  1897. recheck:
  1898. /* no more worker necessary? */
  1899. if (!need_more_worker(pool))
  1900. goto sleep;
  1901. /* do we need to manage? */
  1902. if (unlikely(!may_start_working(pool)) && manage_workers(worker))
  1903. goto recheck;
  1904. /*
  1905. * ->scheduled list can only be filled while a worker is
  1906. * preparing to process a work or actually processing it.
  1907. * Make sure nobody diddled with it while I was sleeping.
  1908. */
  1909. WARN_ON_ONCE(!list_empty(&worker->scheduled));
  1910. /*
  1911. * Finish PREP stage. We're guaranteed to have at least one idle
  1912. * worker or that someone else has already assumed the manager
  1913. * role. This is where @worker starts participating in concurrency
  1914. * management if applicable and concurrency management is restored
  1915. * after being rebound. See rebind_workers() for details.
  1916. */
  1917. worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
  1918. do {
  1919. struct work_struct *work =
  1920. list_first_entry(&pool->worklist,
  1921. struct work_struct, entry);
  1922. pool->watchdog_ts = jiffies;
  1923. if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
  1924. /* optimization path, not strictly necessary */
  1925. process_one_work(worker, work);
  1926. if (unlikely(!list_empty(&worker->scheduled)))
  1927. process_scheduled_works(worker);
  1928. } else {
  1929. move_linked_works(work, &worker->scheduled, NULL);
  1930. process_scheduled_works(worker);
  1931. }
  1932. } while (keep_working(pool));
  1933. worker_set_flags(worker, WORKER_PREP);
  1934. sleep:
  1935. /*
  1936. * pool->lock is held and there's no work to process and no need to
  1937. * manage, sleep. Workers are woken up only while holding
  1938. * pool->lock or from local cpu, so setting the current state
  1939. * before releasing pool->lock is enough to prevent losing any
  1940. * event.
  1941. */
  1942. worker_enter_idle(worker);
  1943. __set_current_state(TASK_INTERRUPTIBLE);
  1944. spin_unlock_irq(&pool->lock);
  1945. schedule();
  1946. goto woke_up;
  1947. }
  1948. /**
  1949. * rescuer_thread - the rescuer thread function
  1950. * @__rescuer: self
  1951. *
  1952. * Workqueue rescuer thread function. There's one rescuer for each
  1953. * workqueue which has WQ_MEM_RECLAIM set.
  1954. *
  1955. * Regular work processing on a pool may block trying to create a new
  1956. * worker which uses GFP_KERNEL allocation which has slight chance of
  1957. * developing into deadlock if some works currently on the same queue
  1958. * need to be processed to satisfy the GFP_KERNEL allocation. This is
  1959. * the problem rescuer solves.
  1960. *
  1961. * When such condition is possible, the pool summons rescuers of all
  1962. * workqueues which have works queued on the pool and let them process
  1963. * those works so that forward progress can be guaranteed.
  1964. *
  1965. * This should happen rarely.
  1966. *
  1967. * Return: 0
  1968. */
  1969. static int rescuer_thread(void *__rescuer)
  1970. {
  1971. struct worker *rescuer = __rescuer;
  1972. struct workqueue_struct *wq = rescuer->rescue_wq;
  1973. struct list_head *scheduled = &rescuer->scheduled;
  1974. bool should_stop;
  1975. set_user_nice(current, RESCUER_NICE_LEVEL);
  1976. /*
  1977. * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
  1978. * doesn't participate in concurrency management.
  1979. */
  1980. rescuer->task->flags |= PF_WQ_WORKER;
  1981. repeat:
  1982. set_current_state(TASK_INTERRUPTIBLE);
  1983. /*
  1984. * By the time the rescuer is requested to stop, the workqueue
  1985. * shouldn't have any work pending, but @wq->maydays may still have
  1986. * pwq(s) queued. This can happen by non-rescuer workers consuming
  1987. * all the work items before the rescuer got to them. Go through
  1988. * @wq->maydays processing before acting on should_stop so that the
  1989. * list is always empty on exit.
  1990. */
  1991. should_stop = kthread_should_stop();
  1992. /* see whether any pwq is asking for help */
  1993. spin_lock_irq(&wq_mayday_lock);
  1994. while (!list_empty(&wq->maydays)) {
  1995. struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
  1996. struct pool_workqueue, mayday_node);
  1997. struct worker_pool *pool = pwq->pool;
  1998. struct work_struct *work, *n;
  1999. bool first = true;
  2000. __set_current_state(TASK_RUNNING);
  2001. list_del_init(&pwq->mayday_node);
  2002. spin_unlock_irq(&wq_mayday_lock);
  2003. worker_attach_to_pool(rescuer, pool);
  2004. spin_lock_irq(&pool->lock);
  2005. rescuer->pool = pool;
  2006. /*
  2007. * Slurp in all works issued via this workqueue and
  2008. * process'em.
  2009. */
  2010. WARN_ON_ONCE(!list_empty(scheduled));
  2011. list_for_each_entry_safe(work, n, &pool->worklist, entry) {
  2012. if (get_work_pwq(work) == pwq) {
  2013. if (first)
  2014. pool->watchdog_ts = jiffies;
  2015. move_linked_works(work, scheduled, &n);
  2016. }
  2017. first = false;
  2018. }
  2019. if (!list_empty(scheduled)) {
  2020. process_scheduled_works(rescuer);
  2021. /*
  2022. * The above execution of rescued work items could
  2023. * have created more to rescue through
  2024. * pwq_activate_first_delayed() or chained
  2025. * queueing. Let's put @pwq back on mayday list so
  2026. * that such back-to-back work items, which may be
  2027. * being used to relieve memory pressure, don't
  2028. * incur MAYDAY_INTERVAL delay inbetween.
  2029. */
  2030. if (need_to_create_worker(pool)) {
  2031. spin_lock(&wq_mayday_lock);
  2032. get_pwq(pwq);
  2033. list_move_tail(&pwq->mayday_node, &wq->maydays);
  2034. spin_unlock(&wq_mayday_lock);
  2035. }
  2036. }
  2037. /*
  2038. * Put the reference grabbed by send_mayday(). @pool won't
  2039. * go away while we're still attached to it.
  2040. */
  2041. put_pwq(pwq);
  2042. /*
  2043. * Leave this pool. If need_more_worker() is %true, notify a
  2044. * regular worker; otherwise, we end up with 0 concurrency
  2045. * and stalling the execution.
  2046. */
  2047. if (need_more_worker(pool))
  2048. wake_up_worker(pool);
  2049. rescuer->pool = NULL;
  2050. spin_unlock_irq(&pool->lock);
  2051. worker_detach_from_pool(rescuer, pool);
  2052. spin_lock_irq(&wq_mayday_lock);
  2053. }
  2054. spin_unlock_irq(&wq_mayday_lock);
  2055. if (should_stop) {
  2056. __set_current_state(TASK_RUNNING);
  2057. rescuer->task->flags &= ~PF_WQ_WORKER;
  2058. return 0;
  2059. }
  2060. /* rescuers should never participate in concurrency management */
  2061. WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
  2062. schedule();
  2063. goto repeat;
  2064. }
  2065. /**
  2066. * check_flush_dependency - check for flush dependency sanity
  2067. * @target_wq: workqueue being flushed
  2068. * @target_work: work item being flushed (NULL for workqueue flushes)
  2069. *
  2070. * %current is trying to flush the whole @target_wq or @target_work on it.
  2071. * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
  2072. * reclaiming memory or running on a workqueue which doesn't have
  2073. * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
  2074. * a deadlock.
  2075. */
  2076. static void check_flush_dependency(struct workqueue_struct *target_wq,
  2077. struct work_struct *target_work)
  2078. {
  2079. work_func_t target_func = target_work ? target_work->func : NULL;
  2080. struct worker *worker;
  2081. if (target_wq->flags & WQ_MEM_RECLAIM)
  2082. return;
  2083. worker = current_wq_worker();
  2084. WARN_ONCE(current->flags & PF_MEMALLOC,
  2085. "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
  2086. current->pid, current->comm, target_wq->name, target_func);
  2087. WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
  2088. (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
  2089. "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
  2090. worker->current_pwq->wq->name, worker->current_func,
  2091. target_wq->name, target_func);
  2092. }
  2093. struct wq_barrier {
  2094. struct work_struct work;
  2095. struct completion done;
  2096. struct task_struct *task; /* purely informational */
  2097. };
  2098. static void wq_barrier_func(struct work_struct *work)
  2099. {
  2100. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  2101. complete(&barr->done);
  2102. }
  2103. /**
  2104. * insert_wq_barrier - insert a barrier work
  2105. * @pwq: pwq to insert barrier into
  2106. * @barr: wq_barrier to insert
  2107. * @target: target work to attach @barr to
  2108. * @worker: worker currently executing @target, NULL if @target is not executing
  2109. *
  2110. * @barr is linked to @target such that @barr is completed only after
  2111. * @target finishes execution. Please note that the ordering
  2112. * guarantee is observed only with respect to @target and on the local
  2113. * cpu.
  2114. *
  2115. * Currently, a queued barrier can't be canceled. This is because
  2116. * try_to_grab_pending() can't determine whether the work to be
  2117. * grabbed is at the head of the queue and thus can't clear LINKED
  2118. * flag of the previous work while there must be a valid next work
  2119. * after a work with LINKED flag set.
  2120. *
  2121. * Note that when @worker is non-NULL, @target may be modified
  2122. * underneath us, so we can't reliably determine pwq from @target.
  2123. *
  2124. * CONTEXT:
  2125. * spin_lock_irq(pool->lock).
  2126. */
  2127. static void insert_wq_barrier(struct pool_workqueue *pwq,
  2128. struct wq_barrier *barr,
  2129. struct work_struct *target, struct worker *worker)
  2130. {
  2131. struct list_head *head;
  2132. unsigned int linked = 0;
  2133. /*
  2134. * debugobject calls are safe here even with pool->lock locked
  2135. * as we know for sure that this will not trigger any of the
  2136. * checks and call back into the fixup functions where we
  2137. * might deadlock.
  2138. */
  2139. INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
  2140. __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
  2141. init_completion(&barr->done);
  2142. barr->task = current;
  2143. /*
  2144. * If @target is currently being executed, schedule the
  2145. * barrier to the worker; otherwise, put it after @target.
  2146. */
  2147. if (worker)
  2148. head = worker->scheduled.next;
  2149. else {
  2150. unsigned long *bits = work_data_bits(target);
  2151. head = target->entry.next;
  2152. /* there can already be other linked works, inherit and set */
  2153. linked = *bits & WORK_STRUCT_LINKED;
  2154. __set_bit(WORK_STRUCT_LINKED_BIT, bits);
  2155. }
  2156. debug_work_activate(&barr->work);
  2157. insert_work(pwq, &barr->work, head,
  2158. work_color_to_flags(WORK_NO_COLOR) | linked);
  2159. }
  2160. /**
  2161. * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
  2162. * @wq: workqueue being flushed
  2163. * @flush_color: new flush color, < 0 for no-op
  2164. * @work_color: new work color, < 0 for no-op
  2165. *
  2166. * Prepare pwqs for workqueue flushing.
  2167. *
  2168. * If @flush_color is non-negative, flush_color on all pwqs should be
  2169. * -1. If no pwq has in-flight commands at the specified color, all
  2170. * pwq->flush_color's stay at -1 and %false is returned. If any pwq
  2171. * has in flight commands, its pwq->flush_color is set to
  2172. * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
  2173. * wakeup logic is armed and %true is returned.
  2174. *
  2175. * The caller should have initialized @wq->first_flusher prior to
  2176. * calling this function with non-negative @flush_color. If
  2177. * @flush_color is negative, no flush color update is done and %false
  2178. * is returned.
  2179. *
  2180. * If @work_color is non-negative, all pwqs should have the same
  2181. * work_color which is previous to @work_color and all will be
  2182. * advanced to @work_color.
  2183. *
  2184. * CONTEXT:
  2185. * mutex_lock(wq->mutex).
  2186. *
  2187. * Return:
  2188. * %true if @flush_color >= 0 and there's something to flush. %false
  2189. * otherwise.
  2190. */
  2191. static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
  2192. int flush_color, int work_color)
  2193. {
  2194. bool wait = false;
  2195. struct pool_workqueue *pwq;
  2196. if (flush_color >= 0) {
  2197. WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
  2198. atomic_set(&wq->nr_pwqs_to_flush, 1);
  2199. }
  2200. for_each_pwq(pwq, wq) {
  2201. struct worker_pool *pool = pwq->pool;
  2202. spin_lock_irq(&pool->lock);
  2203. if (flush_color >= 0) {
  2204. WARN_ON_ONCE(pwq->flush_color != -1);
  2205. if (pwq->nr_in_flight[flush_color]) {
  2206. pwq->flush_color = flush_color;
  2207. atomic_inc(&wq->nr_pwqs_to_flush);
  2208. wait = true;
  2209. }
  2210. }
  2211. if (work_color >= 0) {
  2212. WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
  2213. pwq->work_color = work_color;
  2214. }
  2215. spin_unlock_irq(&pool->lock);
  2216. }
  2217. if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
  2218. complete(&wq->first_flusher->done);
  2219. return wait;
  2220. }
  2221. /**
  2222. * flush_workqueue - ensure that any scheduled work has run to completion.
  2223. * @wq: workqueue to flush
  2224. *
  2225. * This function sleeps until all work items which were queued on entry
  2226. * have finished execution, but it is not livelocked by new incoming ones.
  2227. */
  2228. void flush_workqueue(struct workqueue_struct *wq)
  2229. {
  2230. struct wq_flusher this_flusher = {
  2231. .list = LIST_HEAD_INIT(this_flusher.list),
  2232. .flush_color = -1,
  2233. .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
  2234. };
  2235. int next_color;
  2236. lock_map_acquire(&wq->lockdep_map);
  2237. lock_map_release(&wq->lockdep_map);
  2238. mutex_lock(&wq->mutex);
  2239. /*
  2240. * Start-to-wait phase
  2241. */
  2242. next_color = work_next_color(wq->work_color);
  2243. if (next_color != wq->flush_color) {
  2244. /*
  2245. * Color space is not full. The current work_color
  2246. * becomes our flush_color and work_color is advanced
  2247. * by one.
  2248. */
  2249. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
  2250. this_flusher.flush_color = wq->work_color;
  2251. wq->work_color = next_color;
  2252. if (!wq->first_flusher) {
  2253. /* no flush in progress, become the first flusher */
  2254. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2255. wq->first_flusher = &this_flusher;
  2256. if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
  2257. wq->work_color)) {
  2258. /* nothing to flush, done */
  2259. wq->flush_color = next_color;
  2260. wq->first_flusher = NULL;
  2261. goto out_unlock;
  2262. }
  2263. } else {
  2264. /* wait in queue */
  2265. WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
  2266. list_add_tail(&this_flusher.list, &wq->flusher_queue);
  2267. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2268. }
  2269. } else {
  2270. /*
  2271. * Oops, color space is full, wait on overflow queue.
  2272. * The next flush completion will assign us
  2273. * flush_color and transfer to flusher_queue.
  2274. */
  2275. list_add_tail(&this_flusher.list, &wq->flusher_overflow);
  2276. }
  2277. check_flush_dependency(wq, NULL);
  2278. mutex_unlock(&wq->mutex);
  2279. wait_for_completion(&this_flusher.done);
  2280. /*
  2281. * Wake-up-and-cascade phase
  2282. *
  2283. * First flushers are responsible for cascading flushes and
  2284. * handling overflow. Non-first flushers can simply return.
  2285. */
  2286. if (wq->first_flusher != &this_flusher)
  2287. return;
  2288. mutex_lock(&wq->mutex);
  2289. /* we might have raced, check again with mutex held */
  2290. if (wq->first_flusher != &this_flusher)
  2291. goto out_unlock;
  2292. wq->first_flusher = NULL;
  2293. WARN_ON_ONCE(!list_empty(&this_flusher.list));
  2294. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2295. while (true) {
  2296. struct wq_flusher *next, *tmp;
  2297. /* complete all the flushers sharing the current flush color */
  2298. list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
  2299. if (next->flush_color != wq->flush_color)
  2300. break;
  2301. list_del_init(&next->list);
  2302. complete(&next->done);
  2303. }
  2304. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
  2305. wq->flush_color != work_next_color(wq->work_color));
  2306. /* this flush_color is finished, advance by one */
  2307. wq->flush_color = work_next_color(wq->flush_color);
  2308. /* one color has been freed, handle overflow queue */
  2309. if (!list_empty(&wq->flusher_overflow)) {
  2310. /*
  2311. * Assign the same color to all overflowed
  2312. * flushers, advance work_color and append to
  2313. * flusher_queue. This is the start-to-wait
  2314. * phase for these overflowed flushers.
  2315. */
  2316. list_for_each_entry(tmp, &wq->flusher_overflow, list)
  2317. tmp->flush_color = wq->work_color;
  2318. wq->work_color = work_next_color(wq->work_color);
  2319. list_splice_tail_init(&wq->flusher_overflow,
  2320. &wq->flusher_queue);
  2321. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2322. }
  2323. if (list_empty(&wq->flusher_queue)) {
  2324. WARN_ON_ONCE(wq->flush_color != wq->work_color);
  2325. break;
  2326. }
  2327. /*
  2328. * Need to flush more colors. Make the next flusher
  2329. * the new first flusher and arm pwqs.
  2330. */
  2331. WARN_ON_ONCE(wq->flush_color == wq->work_color);
  2332. WARN_ON_ONCE(wq->flush_color != next->flush_color);
  2333. list_del_init(&next->list);
  2334. wq->first_flusher = next;
  2335. if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
  2336. break;
  2337. /*
  2338. * Meh... this color is already done, clear first
  2339. * flusher and repeat cascading.
  2340. */
  2341. wq->first_flusher = NULL;
  2342. }
  2343. out_unlock:
  2344. mutex_unlock(&wq->mutex);
  2345. }
  2346. EXPORT_SYMBOL(flush_workqueue);
  2347. /**
  2348. * drain_workqueue - drain a workqueue
  2349. * @wq: workqueue to drain
  2350. *
  2351. * Wait until the workqueue becomes empty. While draining is in progress,
  2352. * only chain queueing is allowed. IOW, only currently pending or running
  2353. * work items on @wq can queue further work items on it. @wq is flushed
  2354. * repeatedly until it becomes empty. The number of flushing is determined
  2355. * by the depth of chaining and should be relatively short. Whine if it
  2356. * takes too long.
  2357. */
  2358. void drain_workqueue(struct workqueue_struct *wq)
  2359. {
  2360. unsigned int flush_cnt = 0;
  2361. struct pool_workqueue *pwq;
  2362. /*
  2363. * __queue_work() needs to test whether there are drainers, is much
  2364. * hotter than drain_workqueue() and already looks at @wq->flags.
  2365. * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
  2366. */
  2367. mutex_lock(&wq->mutex);
  2368. if (!wq->nr_drainers++)
  2369. wq->flags |= __WQ_DRAINING;
  2370. mutex_unlock(&wq->mutex);
  2371. reflush:
  2372. flush_workqueue(wq);
  2373. mutex_lock(&wq->mutex);
  2374. for_each_pwq(pwq, wq) {
  2375. bool drained;
  2376. spin_lock_irq(&pwq->pool->lock);
  2377. drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
  2378. spin_unlock_irq(&pwq->pool->lock);
  2379. if (drained)
  2380. continue;
  2381. if (++flush_cnt == 10 ||
  2382. (flush_cnt % 100 == 0 && flush_cnt <= 1000))
  2383. pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
  2384. wq->name, flush_cnt);
  2385. mutex_unlock(&wq->mutex);
  2386. goto reflush;
  2387. }
  2388. if (!--wq->nr_drainers)
  2389. wq->flags &= ~__WQ_DRAINING;
  2390. mutex_unlock(&wq->mutex);
  2391. }
  2392. EXPORT_SYMBOL_GPL(drain_workqueue);
  2393. static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
  2394. {
  2395. struct worker *worker = NULL;
  2396. struct worker_pool *pool;
  2397. struct pool_workqueue *pwq;
  2398. might_sleep();
  2399. local_irq_disable();
  2400. pool = get_work_pool(work);
  2401. if (!pool) {
  2402. local_irq_enable();
  2403. return false;
  2404. }
  2405. spin_lock(&pool->lock);
  2406. /* see the comment in try_to_grab_pending() with the same code */
  2407. pwq = get_work_pwq(work);
  2408. if (pwq) {
  2409. if (unlikely(pwq->pool != pool))
  2410. goto already_gone;
  2411. } else {
  2412. worker = find_worker_executing_work(pool, work);
  2413. if (!worker)
  2414. goto already_gone;
  2415. pwq = worker->current_pwq;
  2416. }
  2417. check_flush_dependency(pwq->wq, work);
  2418. insert_wq_barrier(pwq, barr, work, worker);
  2419. spin_unlock_irq(&pool->lock);
  2420. /*
  2421. * If @max_active is 1 or rescuer is in use, flushing another work
  2422. * item on the same workqueue may lead to deadlock. Make sure the
  2423. * flusher is not running on the same workqueue by verifying write
  2424. * access.
  2425. */
  2426. if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
  2427. lock_map_acquire(&pwq->wq->lockdep_map);
  2428. else
  2429. lock_map_acquire_read(&pwq->wq->lockdep_map);
  2430. lock_map_release(&pwq->wq->lockdep_map);
  2431. return true;
  2432. already_gone:
  2433. spin_unlock_irq(&pool->lock);
  2434. return false;
  2435. }
  2436. /**
  2437. * flush_work - wait for a work to finish executing the last queueing instance
  2438. * @work: the work to flush
  2439. *
  2440. * Wait until @work has finished execution. @work is guaranteed to be idle
  2441. * on return if it hasn't been requeued since flush started.
  2442. *
  2443. * Return:
  2444. * %true if flush_work() waited for the work to finish execution,
  2445. * %false if it was already idle.
  2446. */
  2447. bool flush_work(struct work_struct *work)
  2448. {
  2449. struct wq_barrier barr;
  2450. lock_map_acquire(&work->lockdep_map);
  2451. lock_map_release(&work->lockdep_map);
  2452. if (start_flush_work(work, &barr)) {
  2453. wait_for_completion(&barr.done);
  2454. destroy_work_on_stack(&barr.work);
  2455. return true;
  2456. } else {
  2457. return false;
  2458. }
  2459. }
  2460. EXPORT_SYMBOL_GPL(flush_work);
  2461. struct cwt_wait {
  2462. wait_queue_t wait;
  2463. struct work_struct *work;
  2464. };
  2465. static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
  2466. {
  2467. struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
  2468. if (cwait->work != key)
  2469. return 0;
  2470. return autoremove_wake_function(wait, mode, sync, key);
  2471. }
  2472. static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
  2473. {
  2474. static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
  2475. unsigned long flags;
  2476. int ret;
  2477. do {
  2478. ret = try_to_grab_pending(work, is_dwork, &flags);
  2479. /*
  2480. * If someone else is already canceling, wait for it to
  2481. * finish. flush_work() doesn't work for PREEMPT_NONE
  2482. * because we may get scheduled between @work's completion
  2483. * and the other canceling task resuming and clearing
  2484. * CANCELING - flush_work() will return false immediately
  2485. * as @work is no longer busy, try_to_grab_pending() will
  2486. * return -ENOENT as @work is still being canceled and the
  2487. * other canceling task won't be able to clear CANCELING as
  2488. * we're hogging the CPU.
  2489. *
  2490. * Let's wait for completion using a waitqueue. As this
  2491. * may lead to the thundering herd problem, use a custom
  2492. * wake function which matches @work along with exclusive
  2493. * wait and wakeup.
  2494. */
  2495. if (unlikely(ret == -ENOENT)) {
  2496. struct cwt_wait cwait;
  2497. init_wait(&cwait.wait);
  2498. cwait.wait.func = cwt_wakefn;
  2499. cwait.work = work;
  2500. prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
  2501. TASK_UNINTERRUPTIBLE);
  2502. if (work_is_canceling(work))
  2503. schedule();
  2504. finish_wait(&cancel_waitq, &cwait.wait);
  2505. }
  2506. } while (unlikely(ret < 0));
  2507. /* tell other tasks trying to grab @work to back off */
  2508. mark_work_canceling(work);
  2509. local_irq_restore(flags);
  2510. flush_work(work);
  2511. clear_work_data(work);
  2512. /*
  2513. * Paired with prepare_to_wait() above so that either
  2514. * waitqueue_active() is visible here or !work_is_canceling() is
  2515. * visible there.
  2516. */
  2517. smp_mb();
  2518. if (waitqueue_active(&cancel_waitq))
  2519. __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
  2520. return ret;
  2521. }
  2522. /**
  2523. * cancel_work_sync - cancel a work and wait for it to finish
  2524. * @work: the work to cancel
  2525. *
  2526. * Cancel @work and wait for its execution to finish. This function
  2527. * can be used even if the work re-queues itself or migrates to
  2528. * another workqueue. On return from this function, @work is
  2529. * guaranteed to be not pending or executing on any CPU.
  2530. *
  2531. * cancel_work_sync(&delayed_work->work) must not be used for
  2532. * delayed_work's. Use cancel_delayed_work_sync() instead.
  2533. *
  2534. * The caller must ensure that the workqueue on which @work was last
  2535. * queued can't be destroyed before this function returns.
  2536. *
  2537. * Return:
  2538. * %true if @work was pending, %false otherwise.
  2539. */
  2540. bool cancel_work_sync(struct work_struct *work)
  2541. {
  2542. return __cancel_work_timer(work, false);
  2543. }
  2544. EXPORT_SYMBOL_GPL(cancel_work_sync);
  2545. /**
  2546. * flush_delayed_work - wait for a dwork to finish executing the last queueing
  2547. * @dwork: the delayed work to flush
  2548. *
  2549. * Delayed timer is cancelled and the pending work is queued for
  2550. * immediate execution. Like flush_work(), this function only
  2551. * considers the last queueing instance of @dwork.
  2552. *
  2553. * Return:
  2554. * %true if flush_work() waited for the work to finish execution,
  2555. * %false if it was already idle.
  2556. */
  2557. bool flush_delayed_work(struct delayed_work *dwork)
  2558. {
  2559. local_irq_disable();
  2560. if (del_timer_sync(&dwork->timer))
  2561. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  2562. local_irq_enable();
  2563. return flush_work(&dwork->work);
  2564. }
  2565. EXPORT_SYMBOL(flush_delayed_work);
  2566. /**
  2567. * cancel_delayed_work - cancel a delayed work
  2568. * @dwork: delayed_work to cancel
  2569. *
  2570. * Kill off a pending delayed_work.
  2571. *
  2572. * Return: %true if @dwork was pending and canceled; %false if it wasn't
  2573. * pending.
  2574. *
  2575. * Note:
  2576. * The work callback function may still be running on return, unless
  2577. * it returns %true and the work doesn't re-arm itself. Explicitly flush or
  2578. * use cancel_delayed_work_sync() to wait on it.
  2579. *
  2580. * This function is safe to call from any context including IRQ handler.
  2581. */
  2582. bool cancel_delayed_work(struct delayed_work *dwork)
  2583. {
  2584. unsigned long flags;
  2585. int ret;
  2586. do {
  2587. ret = try_to_grab_pending(&dwork->work, true, &flags);
  2588. } while (unlikely(ret == -EAGAIN));
  2589. if (unlikely(ret < 0))
  2590. return false;
  2591. set_work_pool_and_clear_pending(&dwork->work,
  2592. get_work_pool_id(&dwork->work));
  2593. local_irq_restore(flags);
  2594. return ret;
  2595. }
  2596. EXPORT_SYMBOL(cancel_delayed_work);
  2597. /**
  2598. * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
  2599. * @dwork: the delayed work cancel
  2600. *
  2601. * This is cancel_work_sync() for delayed works.
  2602. *
  2603. * Return:
  2604. * %true if @dwork was pending, %false otherwise.
  2605. */
  2606. bool cancel_delayed_work_sync(struct delayed_work *dwork)
  2607. {
  2608. return __cancel_work_timer(&dwork->work, true);
  2609. }
  2610. EXPORT_SYMBOL(cancel_delayed_work_sync);
  2611. /**
  2612. * schedule_on_each_cpu - execute a function synchronously on each online CPU
  2613. * @func: the function to call
  2614. *
  2615. * schedule_on_each_cpu() executes @func on each online CPU using the
  2616. * system workqueue and blocks until all CPUs have completed.
  2617. * schedule_on_each_cpu() is very slow.
  2618. *
  2619. * Return:
  2620. * 0 on success, -errno on failure.
  2621. */
  2622. int schedule_on_each_cpu(work_func_t func)
  2623. {
  2624. int cpu;
  2625. struct work_struct __percpu *works;
  2626. works = alloc_percpu(struct work_struct);
  2627. if (!works)
  2628. return -ENOMEM;
  2629. get_online_cpus();
  2630. for_each_online_cpu(cpu) {
  2631. struct work_struct *work = per_cpu_ptr(works, cpu);
  2632. INIT_WORK(work, func);
  2633. schedule_work_on(cpu, work);
  2634. }
  2635. for_each_online_cpu(cpu)
  2636. flush_work(per_cpu_ptr(works, cpu));
  2637. put_online_cpus();
  2638. free_percpu(works);
  2639. return 0;
  2640. }
  2641. /**
  2642. * execute_in_process_context - reliably execute the routine with user context
  2643. * @fn: the function to execute
  2644. * @ew: guaranteed storage for the execute work structure (must
  2645. * be available when the work executes)
  2646. *
  2647. * Executes the function immediately if process context is available,
  2648. * otherwise schedules the function for delayed execution.
  2649. *
  2650. * Return: 0 - function was executed
  2651. * 1 - function was scheduled for execution
  2652. */
  2653. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  2654. {
  2655. if (!in_interrupt()) {
  2656. fn(&ew->work);
  2657. return 0;
  2658. }
  2659. INIT_WORK(&ew->work, fn);
  2660. schedule_work(&ew->work);
  2661. return 1;
  2662. }
  2663. EXPORT_SYMBOL_GPL(execute_in_process_context);
  2664. /**
  2665. * free_workqueue_attrs - free a workqueue_attrs
  2666. * @attrs: workqueue_attrs to free
  2667. *
  2668. * Undo alloc_workqueue_attrs().
  2669. */
  2670. void free_workqueue_attrs(struct workqueue_attrs *attrs)
  2671. {
  2672. if (attrs) {
  2673. free_cpumask_var(attrs->cpumask);
  2674. kfree(attrs);
  2675. }
  2676. }
  2677. /**
  2678. * alloc_workqueue_attrs - allocate a workqueue_attrs
  2679. * @gfp_mask: allocation mask to use
  2680. *
  2681. * Allocate a new workqueue_attrs, initialize with default settings and
  2682. * return it.
  2683. *
  2684. * Return: The allocated new workqueue_attr on success. %NULL on failure.
  2685. */
  2686. struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
  2687. {
  2688. struct workqueue_attrs *attrs;
  2689. attrs = kzalloc(sizeof(*attrs), gfp_mask);
  2690. if (!attrs)
  2691. goto fail;
  2692. if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
  2693. goto fail;
  2694. cpumask_copy(attrs->cpumask, cpu_possible_mask);
  2695. return attrs;
  2696. fail:
  2697. free_workqueue_attrs(attrs);
  2698. return NULL;
  2699. }
  2700. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  2701. const struct workqueue_attrs *from)
  2702. {
  2703. to->nice = from->nice;
  2704. cpumask_copy(to->cpumask, from->cpumask);
  2705. /*
  2706. * Unlike hash and equality test, this function doesn't ignore
  2707. * ->no_numa as it is used for both pool and wq attrs. Instead,
  2708. * get_unbound_pool() explicitly clears ->no_numa after copying.
  2709. */
  2710. to->no_numa = from->no_numa;
  2711. }
  2712. /* hash value of the content of @attr */
  2713. static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
  2714. {
  2715. u32 hash = 0;
  2716. hash = jhash_1word(attrs->nice, hash);
  2717. hash = jhash(cpumask_bits(attrs->cpumask),
  2718. BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
  2719. return hash;
  2720. }
  2721. /* content equality test */
  2722. static bool wqattrs_equal(const struct workqueue_attrs *a,
  2723. const struct workqueue_attrs *b)
  2724. {
  2725. if (a->nice != b->nice)
  2726. return false;
  2727. if (!cpumask_equal(a->cpumask, b->cpumask))
  2728. return false;
  2729. return true;
  2730. }
  2731. /**
  2732. * init_worker_pool - initialize a newly zalloc'd worker_pool
  2733. * @pool: worker_pool to initialize
  2734. *
  2735. * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
  2736. *
  2737. * Return: 0 on success, -errno on failure. Even on failure, all fields
  2738. * inside @pool proper are initialized and put_unbound_pool() can be called
  2739. * on @pool safely to release it.
  2740. */
  2741. static int init_worker_pool(struct worker_pool *pool)
  2742. {
  2743. spin_lock_init(&pool->lock);
  2744. pool->id = -1;
  2745. pool->cpu = -1;
  2746. pool->node = NUMA_NO_NODE;
  2747. pool->flags |= POOL_DISASSOCIATED;
  2748. pool->watchdog_ts = jiffies;
  2749. INIT_LIST_HEAD(&pool->worklist);
  2750. INIT_LIST_HEAD(&pool->idle_list);
  2751. hash_init(pool->busy_hash);
  2752. init_timer_deferrable(&pool->idle_timer);
  2753. pool->idle_timer.function = idle_worker_timeout;
  2754. pool->idle_timer.data = (unsigned long)pool;
  2755. setup_timer(&pool->mayday_timer, pool_mayday_timeout,
  2756. (unsigned long)pool);
  2757. mutex_init(&pool->manager_arb);
  2758. mutex_init(&pool->attach_mutex);
  2759. INIT_LIST_HEAD(&pool->workers);
  2760. ida_init(&pool->worker_ida);
  2761. INIT_HLIST_NODE(&pool->hash_node);
  2762. pool->refcnt = 1;
  2763. /* shouldn't fail above this point */
  2764. pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2765. if (!pool->attrs)
  2766. return -ENOMEM;
  2767. return 0;
  2768. }
  2769. static void rcu_free_wq(struct rcu_head *rcu)
  2770. {
  2771. struct workqueue_struct *wq =
  2772. container_of(rcu, struct workqueue_struct, rcu);
  2773. if (!(wq->flags & WQ_UNBOUND))
  2774. free_percpu(wq->cpu_pwqs);
  2775. else
  2776. free_workqueue_attrs(wq->unbound_attrs);
  2777. kfree(wq->rescuer);
  2778. kfree(wq);
  2779. }
  2780. static void rcu_free_pool(struct rcu_head *rcu)
  2781. {
  2782. struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
  2783. ida_destroy(&pool->worker_ida);
  2784. free_workqueue_attrs(pool->attrs);
  2785. kfree(pool);
  2786. }
  2787. /**
  2788. * put_unbound_pool - put a worker_pool
  2789. * @pool: worker_pool to put
  2790. *
  2791. * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
  2792. * safe manner. get_unbound_pool() calls this function on its failure path
  2793. * and this function should be able to release pools which went through,
  2794. * successfully or not, init_worker_pool().
  2795. *
  2796. * Should be called with wq_pool_mutex held.
  2797. */
  2798. static void put_unbound_pool(struct worker_pool *pool)
  2799. {
  2800. DECLARE_COMPLETION_ONSTACK(detach_completion);
  2801. struct worker *worker;
  2802. lockdep_assert_held(&wq_pool_mutex);
  2803. if (--pool->refcnt)
  2804. return;
  2805. /* sanity checks */
  2806. if (WARN_ON(!(pool->cpu < 0)) ||
  2807. WARN_ON(!list_empty(&pool->worklist)))
  2808. return;
  2809. /* release id and unhash */
  2810. if (pool->id >= 0)
  2811. idr_remove(&worker_pool_idr, pool->id);
  2812. hash_del(&pool->hash_node);
  2813. /*
  2814. * Become the manager and destroy all workers. Grabbing
  2815. * manager_arb prevents @pool's workers from blocking on
  2816. * attach_mutex.
  2817. */
  2818. mutex_lock(&pool->manager_arb);
  2819. spin_lock_irq(&pool->lock);
  2820. while ((worker = first_idle_worker(pool)))
  2821. destroy_worker(worker);
  2822. WARN_ON(pool->nr_workers || pool->nr_idle);
  2823. spin_unlock_irq(&pool->lock);
  2824. mutex_lock(&pool->attach_mutex);
  2825. if (!list_empty(&pool->workers))
  2826. pool->detach_completion = &detach_completion;
  2827. mutex_unlock(&pool->attach_mutex);
  2828. if (pool->detach_completion)
  2829. wait_for_completion(pool->detach_completion);
  2830. mutex_unlock(&pool->manager_arb);
  2831. /* shut down the timers */
  2832. del_timer_sync(&pool->idle_timer);
  2833. del_timer_sync(&pool->mayday_timer);
  2834. /* sched-RCU protected to allow dereferences from get_work_pool() */
  2835. call_rcu_sched(&pool->rcu, rcu_free_pool);
  2836. }
  2837. /**
  2838. * get_unbound_pool - get a worker_pool with the specified attributes
  2839. * @attrs: the attributes of the worker_pool to get
  2840. *
  2841. * Obtain a worker_pool which has the same attributes as @attrs, bump the
  2842. * reference count and return it. If there already is a matching
  2843. * worker_pool, it will be used; otherwise, this function attempts to
  2844. * create a new one.
  2845. *
  2846. * Should be called with wq_pool_mutex held.
  2847. *
  2848. * Return: On success, a worker_pool with the same attributes as @attrs.
  2849. * On failure, %NULL.
  2850. */
  2851. static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
  2852. {
  2853. u32 hash = wqattrs_hash(attrs);
  2854. struct worker_pool *pool;
  2855. int node;
  2856. int target_node = NUMA_NO_NODE;
  2857. lockdep_assert_held(&wq_pool_mutex);
  2858. /* do we already have a matching pool? */
  2859. hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
  2860. if (wqattrs_equal(pool->attrs, attrs)) {
  2861. pool->refcnt++;
  2862. return pool;
  2863. }
  2864. }
  2865. /* if cpumask is contained inside a NUMA node, we belong to that node */
  2866. if (wq_numa_enabled) {
  2867. for_each_node(node) {
  2868. if (cpumask_subset(attrs->cpumask,
  2869. wq_numa_possible_cpumask[node])) {
  2870. target_node = node;
  2871. break;
  2872. }
  2873. }
  2874. }
  2875. /* nope, create a new one */
  2876. pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
  2877. if (!pool || init_worker_pool(pool) < 0)
  2878. goto fail;
  2879. lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
  2880. copy_workqueue_attrs(pool->attrs, attrs);
  2881. pool->node = target_node;
  2882. /*
  2883. * no_numa isn't a worker_pool attribute, always clear it. See
  2884. * 'struct workqueue_attrs' comments for detail.
  2885. */
  2886. pool->attrs->no_numa = false;
  2887. if (worker_pool_assign_id(pool) < 0)
  2888. goto fail;
  2889. /* create and start the initial worker */
  2890. if (!create_worker(pool))
  2891. goto fail;
  2892. /* install */
  2893. hash_add(unbound_pool_hash, &pool->hash_node, hash);
  2894. return pool;
  2895. fail:
  2896. if (pool)
  2897. put_unbound_pool(pool);
  2898. return NULL;
  2899. }
  2900. static void rcu_free_pwq(struct rcu_head *rcu)
  2901. {
  2902. kmem_cache_free(pwq_cache,
  2903. container_of(rcu, struct pool_workqueue, rcu));
  2904. }
  2905. /*
  2906. * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
  2907. * and needs to be destroyed.
  2908. */
  2909. static void pwq_unbound_release_workfn(struct work_struct *work)
  2910. {
  2911. struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
  2912. unbound_release_work);
  2913. struct workqueue_struct *wq = pwq->wq;
  2914. struct worker_pool *pool = pwq->pool;
  2915. bool is_last;
  2916. if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
  2917. return;
  2918. mutex_lock(&wq->mutex);
  2919. list_del_rcu(&pwq->pwqs_node);
  2920. is_last = list_empty(&wq->pwqs);
  2921. mutex_unlock(&wq->mutex);
  2922. mutex_lock(&wq_pool_mutex);
  2923. put_unbound_pool(pool);
  2924. mutex_unlock(&wq_pool_mutex);
  2925. call_rcu_sched(&pwq->rcu, rcu_free_pwq);
  2926. /*
  2927. * If we're the last pwq going away, @wq is already dead and no one
  2928. * is gonna access it anymore. Schedule RCU free.
  2929. */
  2930. if (is_last)
  2931. call_rcu_sched(&wq->rcu, rcu_free_wq);
  2932. }
  2933. /**
  2934. * pwq_adjust_max_active - update a pwq's max_active to the current setting
  2935. * @pwq: target pool_workqueue
  2936. *
  2937. * If @pwq isn't freezing, set @pwq->max_active to the associated
  2938. * workqueue's saved_max_active and activate delayed work items
  2939. * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
  2940. */
  2941. static void pwq_adjust_max_active(struct pool_workqueue *pwq)
  2942. {
  2943. struct workqueue_struct *wq = pwq->wq;
  2944. bool freezable = wq->flags & WQ_FREEZABLE;
  2945. /* for @wq->saved_max_active */
  2946. lockdep_assert_held(&wq->mutex);
  2947. /* fast exit for non-freezable wqs */
  2948. if (!freezable && pwq->max_active == wq->saved_max_active)
  2949. return;
  2950. spin_lock_irq(&pwq->pool->lock);
  2951. /*
  2952. * During [un]freezing, the caller is responsible for ensuring that
  2953. * this function is called at least once after @workqueue_freezing
  2954. * is updated and visible.
  2955. */
  2956. if (!freezable || !workqueue_freezing) {
  2957. pwq->max_active = wq->saved_max_active;
  2958. while (!list_empty(&pwq->delayed_works) &&
  2959. pwq->nr_active < pwq->max_active)
  2960. pwq_activate_first_delayed(pwq);
  2961. /*
  2962. * Need to kick a worker after thawed or an unbound wq's
  2963. * max_active is bumped. It's a slow path. Do it always.
  2964. */
  2965. wake_up_worker(pwq->pool);
  2966. } else {
  2967. pwq->max_active = 0;
  2968. }
  2969. spin_unlock_irq(&pwq->pool->lock);
  2970. }
  2971. /* initialize newly alloced @pwq which is associated with @wq and @pool */
  2972. static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
  2973. struct worker_pool *pool)
  2974. {
  2975. BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
  2976. memset(pwq, 0, sizeof(*pwq));
  2977. pwq->pool = pool;
  2978. pwq->wq = wq;
  2979. pwq->flush_color = -1;
  2980. pwq->refcnt = 1;
  2981. INIT_LIST_HEAD(&pwq->delayed_works);
  2982. INIT_LIST_HEAD(&pwq->pwqs_node);
  2983. INIT_LIST_HEAD(&pwq->mayday_node);
  2984. INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
  2985. }
  2986. /* sync @pwq with the current state of its associated wq and link it */
  2987. static void link_pwq(struct pool_workqueue *pwq)
  2988. {
  2989. struct workqueue_struct *wq = pwq->wq;
  2990. lockdep_assert_held(&wq->mutex);
  2991. /* may be called multiple times, ignore if already linked */
  2992. if (!list_empty(&pwq->pwqs_node))
  2993. return;
  2994. /* set the matching work_color */
  2995. pwq->work_color = wq->work_color;
  2996. /* sync max_active to the current setting */
  2997. pwq_adjust_max_active(pwq);
  2998. /* link in @pwq */
  2999. list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
  3000. }
  3001. /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
  3002. static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
  3003. const struct workqueue_attrs *attrs)
  3004. {
  3005. struct worker_pool *pool;
  3006. struct pool_workqueue *pwq;
  3007. lockdep_assert_held(&wq_pool_mutex);
  3008. pool = get_unbound_pool(attrs);
  3009. if (!pool)
  3010. return NULL;
  3011. pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
  3012. if (!pwq) {
  3013. put_unbound_pool(pool);
  3014. return NULL;
  3015. }
  3016. init_pwq(pwq, wq, pool);
  3017. return pwq;
  3018. }
  3019. /**
  3020. * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
  3021. * @attrs: the wq_attrs of the default pwq of the target workqueue
  3022. * @node: the target NUMA node
  3023. * @cpu_going_down: if >= 0, the CPU to consider as offline
  3024. * @cpumask: outarg, the resulting cpumask
  3025. *
  3026. * Calculate the cpumask a workqueue with @attrs should use on @node. If
  3027. * @cpu_going_down is >= 0, that cpu is considered offline during
  3028. * calculation. The result is stored in @cpumask.
  3029. *
  3030. * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
  3031. * enabled and @node has online CPUs requested by @attrs, the returned
  3032. * cpumask is the intersection of the possible CPUs of @node and
  3033. * @attrs->cpumask.
  3034. *
  3035. * The caller is responsible for ensuring that the cpumask of @node stays
  3036. * stable.
  3037. *
  3038. * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
  3039. * %false if equal.
  3040. */
  3041. static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
  3042. int cpu_going_down, cpumask_t *cpumask)
  3043. {
  3044. if (!wq_numa_enabled || attrs->no_numa)
  3045. goto use_dfl;
  3046. /* does @node have any online CPUs @attrs wants? */
  3047. cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
  3048. if (cpu_going_down >= 0)
  3049. cpumask_clear_cpu(cpu_going_down, cpumask);
  3050. if (cpumask_empty(cpumask))
  3051. goto use_dfl;
  3052. /* yeap, return possible CPUs in @node that @attrs wants */
  3053. cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
  3054. return !cpumask_equal(cpumask, attrs->cpumask);
  3055. use_dfl:
  3056. cpumask_copy(cpumask, attrs->cpumask);
  3057. return false;
  3058. }
  3059. /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
  3060. static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
  3061. int node,
  3062. struct pool_workqueue *pwq)
  3063. {
  3064. struct pool_workqueue *old_pwq;
  3065. lockdep_assert_held(&wq_pool_mutex);
  3066. lockdep_assert_held(&wq->mutex);
  3067. /* link_pwq() can handle duplicate calls */
  3068. link_pwq(pwq);
  3069. old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3070. rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
  3071. return old_pwq;
  3072. }
  3073. /* context to store the prepared attrs & pwqs before applying */
  3074. struct apply_wqattrs_ctx {
  3075. struct workqueue_struct *wq; /* target workqueue */
  3076. struct workqueue_attrs *attrs; /* attrs to apply */
  3077. struct list_head list; /* queued for batching commit */
  3078. struct pool_workqueue *dfl_pwq;
  3079. struct pool_workqueue *pwq_tbl[];
  3080. };
  3081. /* free the resources after success or abort */
  3082. static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
  3083. {
  3084. if (ctx) {
  3085. int node;
  3086. for_each_node(node)
  3087. put_pwq_unlocked(ctx->pwq_tbl[node]);
  3088. put_pwq_unlocked(ctx->dfl_pwq);
  3089. free_workqueue_attrs(ctx->attrs);
  3090. kfree(ctx);
  3091. }
  3092. }
  3093. /* allocate the attrs and pwqs for later installation */
  3094. static struct apply_wqattrs_ctx *
  3095. apply_wqattrs_prepare(struct workqueue_struct *wq,
  3096. const struct workqueue_attrs *attrs)
  3097. {
  3098. struct apply_wqattrs_ctx *ctx;
  3099. struct workqueue_attrs *new_attrs, *tmp_attrs;
  3100. int node;
  3101. lockdep_assert_held(&wq_pool_mutex);
  3102. ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
  3103. GFP_KERNEL);
  3104. new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3105. tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3106. if (!ctx || !new_attrs || !tmp_attrs)
  3107. goto out_free;
  3108. /*
  3109. * Calculate the attrs of the default pwq.
  3110. * If the user configured cpumask doesn't overlap with the
  3111. * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
  3112. */
  3113. copy_workqueue_attrs(new_attrs, attrs);
  3114. cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
  3115. if (unlikely(cpumask_empty(new_attrs->cpumask)))
  3116. cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
  3117. /*
  3118. * We may create multiple pwqs with differing cpumasks. Make a
  3119. * copy of @new_attrs which will be modified and used to obtain
  3120. * pools.
  3121. */
  3122. copy_workqueue_attrs(tmp_attrs, new_attrs);
  3123. /*
  3124. * If something goes wrong during CPU up/down, we'll fall back to
  3125. * the default pwq covering whole @attrs->cpumask. Always create
  3126. * it even if we don't use it immediately.
  3127. */
  3128. ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
  3129. if (!ctx->dfl_pwq)
  3130. goto out_free;
  3131. for_each_node(node) {
  3132. if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
  3133. ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
  3134. if (!ctx->pwq_tbl[node])
  3135. goto out_free;
  3136. } else {
  3137. ctx->dfl_pwq->refcnt++;
  3138. ctx->pwq_tbl[node] = ctx->dfl_pwq;
  3139. }
  3140. }
  3141. /* save the user configured attrs and sanitize it. */
  3142. copy_workqueue_attrs(new_attrs, attrs);
  3143. cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
  3144. ctx->attrs = new_attrs;
  3145. ctx->wq = wq;
  3146. free_workqueue_attrs(tmp_attrs);
  3147. return ctx;
  3148. out_free:
  3149. free_workqueue_attrs(tmp_attrs);
  3150. free_workqueue_attrs(new_attrs);
  3151. apply_wqattrs_cleanup(ctx);
  3152. return NULL;
  3153. }
  3154. /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
  3155. static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
  3156. {
  3157. int node;
  3158. /* all pwqs have been created successfully, let's install'em */
  3159. mutex_lock(&ctx->wq->mutex);
  3160. copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
  3161. /* save the previous pwq and install the new one */
  3162. for_each_node(node)
  3163. ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
  3164. ctx->pwq_tbl[node]);
  3165. /* @dfl_pwq might not have been used, ensure it's linked */
  3166. link_pwq(ctx->dfl_pwq);
  3167. swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
  3168. mutex_unlock(&ctx->wq->mutex);
  3169. }
  3170. static void apply_wqattrs_lock(void)
  3171. {
  3172. /* CPUs should stay stable across pwq creations and installations */
  3173. get_online_cpus();
  3174. mutex_lock(&wq_pool_mutex);
  3175. }
  3176. static void apply_wqattrs_unlock(void)
  3177. {
  3178. mutex_unlock(&wq_pool_mutex);
  3179. put_online_cpus();
  3180. }
  3181. static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
  3182. const struct workqueue_attrs *attrs)
  3183. {
  3184. struct apply_wqattrs_ctx *ctx;
  3185. /* only unbound workqueues can change attributes */
  3186. if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
  3187. return -EINVAL;
  3188. /* creating multiple pwqs breaks ordering guarantee */
  3189. if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
  3190. return -EINVAL;
  3191. ctx = apply_wqattrs_prepare(wq, attrs);
  3192. if (!ctx)
  3193. return -ENOMEM;
  3194. /* the ctx has been prepared successfully, let's commit it */
  3195. apply_wqattrs_commit(ctx);
  3196. apply_wqattrs_cleanup(ctx);
  3197. return 0;
  3198. }
  3199. /**
  3200. * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
  3201. * @wq: the target workqueue
  3202. * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
  3203. *
  3204. * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
  3205. * machines, this function maps a separate pwq to each NUMA node with
  3206. * possibles CPUs in @attrs->cpumask so that work items are affine to the
  3207. * NUMA node it was issued on. Older pwqs are released as in-flight work
  3208. * items finish. Note that a work item which repeatedly requeues itself
  3209. * back-to-back will stay on its current pwq.
  3210. *
  3211. * Performs GFP_KERNEL allocations.
  3212. *
  3213. * Return: 0 on success and -errno on failure.
  3214. */
  3215. int apply_workqueue_attrs(struct workqueue_struct *wq,
  3216. const struct workqueue_attrs *attrs)
  3217. {
  3218. int ret;
  3219. apply_wqattrs_lock();
  3220. ret = apply_workqueue_attrs_locked(wq, attrs);
  3221. apply_wqattrs_unlock();
  3222. return ret;
  3223. }
  3224. /**
  3225. * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
  3226. * @wq: the target workqueue
  3227. * @cpu: the CPU coming up or going down
  3228. * @online: whether @cpu is coming up or going down
  3229. *
  3230. * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
  3231. * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
  3232. * @wq accordingly.
  3233. *
  3234. * If NUMA affinity can't be adjusted due to memory allocation failure, it
  3235. * falls back to @wq->dfl_pwq which may not be optimal but is always
  3236. * correct.
  3237. *
  3238. * Note that when the last allowed CPU of a NUMA node goes offline for a
  3239. * workqueue with a cpumask spanning multiple nodes, the workers which were
  3240. * already executing the work items for the workqueue will lose their CPU
  3241. * affinity and may execute on any CPU. This is similar to how per-cpu
  3242. * workqueues behave on CPU_DOWN. If a workqueue user wants strict
  3243. * affinity, it's the user's responsibility to flush the work item from
  3244. * CPU_DOWN_PREPARE.
  3245. */
  3246. static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
  3247. bool online)
  3248. {
  3249. int node = cpu_to_node(cpu);
  3250. int cpu_off = online ? -1 : cpu;
  3251. struct pool_workqueue *old_pwq = NULL, *pwq;
  3252. struct workqueue_attrs *target_attrs;
  3253. cpumask_t *cpumask;
  3254. lockdep_assert_held(&wq_pool_mutex);
  3255. if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
  3256. wq->unbound_attrs->no_numa)
  3257. return;
  3258. /*
  3259. * We don't wanna alloc/free wq_attrs for each wq for each CPU.
  3260. * Let's use a preallocated one. The following buf is protected by
  3261. * CPU hotplug exclusion.
  3262. */
  3263. target_attrs = wq_update_unbound_numa_attrs_buf;
  3264. cpumask = target_attrs->cpumask;
  3265. copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
  3266. pwq = unbound_pwq_by_node(wq, node);
  3267. /*
  3268. * Let's determine what needs to be done. If the target cpumask is
  3269. * different from the default pwq's, we need to compare it to @pwq's
  3270. * and create a new one if they don't match. If the target cpumask
  3271. * equals the default pwq's, the default pwq should be used.
  3272. */
  3273. if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
  3274. if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
  3275. return;
  3276. } else {
  3277. goto use_dfl_pwq;
  3278. }
  3279. /* create a new pwq */
  3280. pwq = alloc_unbound_pwq(wq, target_attrs);
  3281. if (!pwq) {
  3282. pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
  3283. wq->name);
  3284. goto use_dfl_pwq;
  3285. }
  3286. /* Install the new pwq. */
  3287. mutex_lock(&wq->mutex);
  3288. old_pwq = numa_pwq_tbl_install(wq, node, pwq);
  3289. goto out_unlock;
  3290. use_dfl_pwq:
  3291. mutex_lock(&wq->mutex);
  3292. spin_lock_irq(&wq->dfl_pwq->pool->lock);
  3293. get_pwq(wq->dfl_pwq);
  3294. spin_unlock_irq(&wq->dfl_pwq->pool->lock);
  3295. old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
  3296. out_unlock:
  3297. mutex_unlock(&wq->mutex);
  3298. put_pwq_unlocked(old_pwq);
  3299. }
  3300. static int alloc_and_link_pwqs(struct workqueue_struct *wq)
  3301. {
  3302. bool highpri = wq->flags & WQ_HIGHPRI;
  3303. int cpu, ret;
  3304. if (!(wq->flags & WQ_UNBOUND)) {
  3305. wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
  3306. if (!wq->cpu_pwqs)
  3307. return -ENOMEM;
  3308. for_each_possible_cpu(cpu) {
  3309. struct pool_workqueue *pwq =
  3310. per_cpu_ptr(wq->cpu_pwqs, cpu);
  3311. struct worker_pool *cpu_pools =
  3312. per_cpu(cpu_worker_pools, cpu);
  3313. init_pwq(pwq, wq, &cpu_pools[highpri]);
  3314. mutex_lock(&wq->mutex);
  3315. link_pwq(pwq);
  3316. mutex_unlock(&wq->mutex);
  3317. }
  3318. return 0;
  3319. } else if (wq->flags & __WQ_ORDERED) {
  3320. ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
  3321. /* there should only be single pwq for ordering guarantee */
  3322. WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
  3323. wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
  3324. "ordering guarantee broken for workqueue %s\n", wq->name);
  3325. return ret;
  3326. } else {
  3327. return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
  3328. }
  3329. }
  3330. static int wq_clamp_max_active(int max_active, unsigned int flags,
  3331. const char *name)
  3332. {
  3333. int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
  3334. if (max_active < 1 || max_active > lim)
  3335. pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
  3336. max_active, name, 1, lim);
  3337. return clamp_val(max_active, 1, lim);
  3338. }
  3339. struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
  3340. unsigned int flags,
  3341. int max_active,
  3342. struct lock_class_key *key,
  3343. const char *lock_name, ...)
  3344. {
  3345. size_t tbl_size = 0;
  3346. va_list args;
  3347. struct workqueue_struct *wq;
  3348. struct pool_workqueue *pwq;
  3349. /* see the comment above the definition of WQ_POWER_EFFICIENT */
  3350. if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
  3351. flags |= WQ_UNBOUND;
  3352. /* allocate wq and format name */
  3353. if (flags & WQ_UNBOUND)
  3354. tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
  3355. wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
  3356. if (!wq)
  3357. return NULL;
  3358. if (flags & WQ_UNBOUND) {
  3359. wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3360. if (!wq->unbound_attrs)
  3361. goto err_free_wq;
  3362. }
  3363. va_start(args, lock_name);
  3364. vsnprintf(wq->name, sizeof(wq->name), fmt, args);
  3365. va_end(args);
  3366. max_active = max_active ?: WQ_DFL_ACTIVE;
  3367. max_active = wq_clamp_max_active(max_active, flags, wq->name);
  3368. /* init wq */
  3369. wq->flags = flags;
  3370. wq->saved_max_active = max_active;
  3371. mutex_init(&wq->mutex);
  3372. atomic_set(&wq->nr_pwqs_to_flush, 0);
  3373. INIT_LIST_HEAD(&wq->pwqs);
  3374. INIT_LIST_HEAD(&wq->flusher_queue);
  3375. INIT_LIST_HEAD(&wq->flusher_overflow);
  3376. INIT_LIST_HEAD(&wq->maydays);
  3377. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  3378. INIT_LIST_HEAD(&wq->list);
  3379. if (alloc_and_link_pwqs(wq) < 0)
  3380. goto err_free_wq;
  3381. /*
  3382. * Workqueues which may be used during memory reclaim should
  3383. * have a rescuer to guarantee forward progress.
  3384. */
  3385. if (flags & WQ_MEM_RECLAIM) {
  3386. struct worker *rescuer;
  3387. rescuer = alloc_worker(NUMA_NO_NODE);
  3388. if (!rescuer)
  3389. goto err_destroy;
  3390. rescuer->rescue_wq = wq;
  3391. rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
  3392. wq->name);
  3393. if (IS_ERR(rescuer->task)) {
  3394. kfree(rescuer);
  3395. goto err_destroy;
  3396. }
  3397. wq->rescuer = rescuer;
  3398. kthread_bind_mask(rescuer->task, cpu_possible_mask);
  3399. wake_up_process(rescuer->task);
  3400. }
  3401. if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
  3402. goto err_destroy;
  3403. /*
  3404. * wq_pool_mutex protects global freeze state and workqueues list.
  3405. * Grab it, adjust max_active and add the new @wq to workqueues
  3406. * list.
  3407. */
  3408. mutex_lock(&wq_pool_mutex);
  3409. mutex_lock(&wq->mutex);
  3410. for_each_pwq(pwq, wq)
  3411. pwq_adjust_max_active(pwq);
  3412. mutex_unlock(&wq->mutex);
  3413. list_add_tail_rcu(&wq->list, &workqueues);
  3414. mutex_unlock(&wq_pool_mutex);
  3415. return wq;
  3416. err_free_wq:
  3417. free_workqueue_attrs(wq->unbound_attrs);
  3418. kfree(wq);
  3419. return NULL;
  3420. err_destroy:
  3421. destroy_workqueue(wq);
  3422. return NULL;
  3423. }
  3424. EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
  3425. /**
  3426. * destroy_workqueue - safely terminate a workqueue
  3427. * @wq: target workqueue
  3428. *
  3429. * Safely destroy a workqueue. All work currently pending will be done first.
  3430. */
  3431. void destroy_workqueue(struct workqueue_struct *wq)
  3432. {
  3433. struct pool_workqueue *pwq;
  3434. int node;
  3435. /* drain it before proceeding with destruction */
  3436. drain_workqueue(wq);
  3437. /* sanity checks */
  3438. mutex_lock(&wq->mutex);
  3439. for_each_pwq(pwq, wq) {
  3440. int i;
  3441. for (i = 0; i < WORK_NR_COLORS; i++) {
  3442. if (WARN_ON(pwq->nr_in_flight[i])) {
  3443. mutex_unlock(&wq->mutex);
  3444. return;
  3445. }
  3446. }
  3447. if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
  3448. WARN_ON(pwq->nr_active) ||
  3449. WARN_ON(!list_empty(&pwq->delayed_works))) {
  3450. mutex_unlock(&wq->mutex);
  3451. return;
  3452. }
  3453. }
  3454. mutex_unlock(&wq->mutex);
  3455. /*
  3456. * wq list is used to freeze wq, remove from list after
  3457. * flushing is complete in case freeze races us.
  3458. */
  3459. mutex_lock(&wq_pool_mutex);
  3460. list_del_rcu(&wq->list);
  3461. mutex_unlock(&wq_pool_mutex);
  3462. workqueue_sysfs_unregister(wq);
  3463. if (wq->rescuer)
  3464. kthread_stop(wq->rescuer->task);
  3465. if (!(wq->flags & WQ_UNBOUND)) {
  3466. /*
  3467. * The base ref is never dropped on per-cpu pwqs. Directly
  3468. * schedule RCU free.
  3469. */
  3470. call_rcu_sched(&wq->rcu, rcu_free_wq);
  3471. } else {
  3472. /*
  3473. * We're the sole accessor of @wq at this point. Directly
  3474. * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
  3475. * @wq will be freed when the last pwq is released.
  3476. */
  3477. for_each_node(node) {
  3478. pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3479. RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
  3480. put_pwq_unlocked(pwq);
  3481. }
  3482. /*
  3483. * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
  3484. * put. Don't access it afterwards.
  3485. */
  3486. pwq = wq->dfl_pwq;
  3487. wq->dfl_pwq = NULL;
  3488. put_pwq_unlocked(pwq);
  3489. }
  3490. }
  3491. EXPORT_SYMBOL_GPL(destroy_workqueue);
  3492. /**
  3493. * workqueue_set_max_active - adjust max_active of a workqueue
  3494. * @wq: target workqueue
  3495. * @max_active: new max_active value.
  3496. *
  3497. * Set max_active of @wq to @max_active.
  3498. *
  3499. * CONTEXT:
  3500. * Don't call from IRQ context.
  3501. */
  3502. void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
  3503. {
  3504. struct pool_workqueue *pwq;
  3505. /* disallow meddling with max_active for ordered workqueues */
  3506. if (WARN_ON(wq->flags & __WQ_ORDERED))
  3507. return;
  3508. max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
  3509. mutex_lock(&wq->mutex);
  3510. wq->saved_max_active = max_active;
  3511. for_each_pwq(pwq, wq)
  3512. pwq_adjust_max_active(pwq);
  3513. mutex_unlock(&wq->mutex);
  3514. }
  3515. EXPORT_SYMBOL_GPL(workqueue_set_max_active);
  3516. /**
  3517. * current_is_workqueue_rescuer - is %current workqueue rescuer?
  3518. *
  3519. * Determine whether %current is a workqueue rescuer. Can be used from
  3520. * work functions to determine whether it's being run off the rescuer task.
  3521. *
  3522. * Return: %true if %current is a workqueue rescuer. %false otherwise.
  3523. */
  3524. bool current_is_workqueue_rescuer(void)
  3525. {
  3526. struct worker *worker = current_wq_worker();
  3527. return worker && worker->rescue_wq;
  3528. }
  3529. /**
  3530. * workqueue_congested - test whether a workqueue is congested
  3531. * @cpu: CPU in question
  3532. * @wq: target workqueue
  3533. *
  3534. * Test whether @wq's cpu workqueue for @cpu is congested. There is
  3535. * no synchronization around this function and the test result is
  3536. * unreliable and only useful as advisory hints or for debugging.
  3537. *
  3538. * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
  3539. * Note that both per-cpu and unbound workqueues may be associated with
  3540. * multiple pool_workqueues which have separate congested states. A
  3541. * workqueue being congested on one CPU doesn't mean the workqueue is also
  3542. * contested on other CPUs / NUMA nodes.
  3543. *
  3544. * Return:
  3545. * %true if congested, %false otherwise.
  3546. */
  3547. bool workqueue_congested(int cpu, struct workqueue_struct *wq)
  3548. {
  3549. struct pool_workqueue *pwq;
  3550. bool ret;
  3551. rcu_read_lock_sched();
  3552. if (cpu == WORK_CPU_UNBOUND)
  3553. cpu = smp_processor_id();
  3554. if (!(wq->flags & WQ_UNBOUND))
  3555. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  3556. else
  3557. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  3558. ret = !list_empty(&pwq->delayed_works);
  3559. rcu_read_unlock_sched();
  3560. return ret;
  3561. }
  3562. EXPORT_SYMBOL_GPL(workqueue_congested);
  3563. /**
  3564. * work_busy - test whether a work is currently pending or running
  3565. * @work: the work to be tested
  3566. *
  3567. * Test whether @work is currently pending or running. There is no
  3568. * synchronization around this function and the test result is
  3569. * unreliable and only useful as advisory hints or for debugging.
  3570. *
  3571. * Return:
  3572. * OR'd bitmask of WORK_BUSY_* bits.
  3573. */
  3574. unsigned int work_busy(struct work_struct *work)
  3575. {
  3576. struct worker_pool *pool;
  3577. unsigned long flags;
  3578. unsigned int ret = 0;
  3579. if (work_pending(work))
  3580. ret |= WORK_BUSY_PENDING;
  3581. local_irq_save(flags);
  3582. pool = get_work_pool(work);
  3583. if (pool) {
  3584. spin_lock(&pool->lock);
  3585. if (find_worker_executing_work(pool, work))
  3586. ret |= WORK_BUSY_RUNNING;
  3587. spin_unlock(&pool->lock);
  3588. }
  3589. local_irq_restore(flags);
  3590. return ret;
  3591. }
  3592. EXPORT_SYMBOL_GPL(work_busy);
  3593. /**
  3594. * set_worker_desc - set description for the current work item
  3595. * @fmt: printf-style format string
  3596. * @...: arguments for the format string
  3597. *
  3598. * This function can be called by a running work function to describe what
  3599. * the work item is about. If the worker task gets dumped, this
  3600. * information will be printed out together to help debugging. The
  3601. * description can be at most WORKER_DESC_LEN including the trailing '\0'.
  3602. */
  3603. void set_worker_desc(const char *fmt, ...)
  3604. {
  3605. struct worker *worker = current_wq_worker();
  3606. va_list args;
  3607. if (worker) {
  3608. va_start(args, fmt);
  3609. vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
  3610. va_end(args);
  3611. worker->desc_valid = true;
  3612. }
  3613. }
  3614. /**
  3615. * print_worker_info - print out worker information and description
  3616. * @log_lvl: the log level to use when printing
  3617. * @task: target task
  3618. *
  3619. * If @task is a worker and currently executing a work item, print out the
  3620. * name of the workqueue being serviced and worker description set with
  3621. * set_worker_desc() by the currently executing work item.
  3622. *
  3623. * This function can be safely called on any task as long as the
  3624. * task_struct itself is accessible. While safe, this function isn't
  3625. * synchronized and may print out mixups or garbages of limited length.
  3626. */
  3627. void print_worker_info(const char *log_lvl, struct task_struct *task)
  3628. {
  3629. work_func_t *fn = NULL;
  3630. char name[WQ_NAME_LEN] = { };
  3631. char desc[WORKER_DESC_LEN] = { };
  3632. struct pool_workqueue *pwq = NULL;
  3633. struct workqueue_struct *wq = NULL;
  3634. bool desc_valid = false;
  3635. struct worker *worker;
  3636. if (!(task->flags & PF_WQ_WORKER))
  3637. return;
  3638. /*
  3639. * This function is called without any synchronization and @task
  3640. * could be in any state. Be careful with dereferences.
  3641. */
  3642. worker = probe_kthread_data(task);
  3643. /*
  3644. * Carefully copy the associated workqueue's workfn and name. Keep
  3645. * the original last '\0' in case the original contains garbage.
  3646. */
  3647. probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
  3648. probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
  3649. probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
  3650. probe_kernel_read(name, wq->name, sizeof(name) - 1);
  3651. /* copy worker description */
  3652. probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
  3653. if (desc_valid)
  3654. probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
  3655. if (fn || name[0] || desc[0]) {
  3656. printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
  3657. if (desc[0])
  3658. pr_cont(" (%s)", desc);
  3659. pr_cont("\n");
  3660. }
  3661. }
  3662. static void pr_cont_pool_info(struct worker_pool *pool)
  3663. {
  3664. pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
  3665. if (pool->node != NUMA_NO_NODE)
  3666. pr_cont(" node=%d", pool->node);
  3667. pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
  3668. }
  3669. static void pr_cont_work(bool comma, struct work_struct *work)
  3670. {
  3671. if (work->func == wq_barrier_func) {
  3672. struct wq_barrier *barr;
  3673. barr = container_of(work, struct wq_barrier, work);
  3674. pr_cont("%s BAR(%d)", comma ? "," : "",
  3675. task_pid_nr(barr->task));
  3676. } else {
  3677. pr_cont("%s %pf", comma ? "," : "", work->func);
  3678. }
  3679. }
  3680. static void show_pwq(struct pool_workqueue *pwq)
  3681. {
  3682. struct worker_pool *pool = pwq->pool;
  3683. struct work_struct *work;
  3684. struct worker *worker;
  3685. bool has_in_flight = false, has_pending = false;
  3686. int bkt;
  3687. pr_info(" pwq %d:", pool->id);
  3688. pr_cont_pool_info(pool);
  3689. pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
  3690. !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
  3691. hash_for_each(pool->busy_hash, bkt, worker, hentry) {
  3692. if (worker->current_pwq == pwq) {
  3693. has_in_flight = true;
  3694. break;
  3695. }
  3696. }
  3697. if (has_in_flight) {
  3698. bool comma = false;
  3699. pr_info(" in-flight:");
  3700. hash_for_each(pool->busy_hash, bkt, worker, hentry) {
  3701. if (worker->current_pwq != pwq)
  3702. continue;
  3703. pr_cont("%s %d%s:%pf", comma ? "," : "",
  3704. task_pid_nr(worker->task),
  3705. worker == pwq->wq->rescuer ? "(RESCUER)" : "",
  3706. worker->current_func);
  3707. list_for_each_entry(work, &worker->scheduled, entry)
  3708. pr_cont_work(false, work);
  3709. comma = true;
  3710. }
  3711. pr_cont("\n");
  3712. }
  3713. list_for_each_entry(work, &pool->worklist, entry) {
  3714. if (get_work_pwq(work) == pwq) {
  3715. has_pending = true;
  3716. break;
  3717. }
  3718. }
  3719. if (has_pending) {
  3720. bool comma = false;
  3721. pr_info(" pending:");
  3722. list_for_each_entry(work, &pool->worklist, entry) {
  3723. if (get_work_pwq(work) != pwq)
  3724. continue;
  3725. pr_cont_work(comma, work);
  3726. comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
  3727. }
  3728. pr_cont("\n");
  3729. }
  3730. if (!list_empty(&pwq->delayed_works)) {
  3731. bool comma = false;
  3732. pr_info(" delayed:");
  3733. list_for_each_entry(work, &pwq->delayed_works, entry) {
  3734. pr_cont_work(comma, work);
  3735. comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
  3736. }
  3737. pr_cont("\n");
  3738. }
  3739. }
  3740. /**
  3741. * show_workqueue_state - dump workqueue state
  3742. *
  3743. * Called from a sysrq handler and prints out all busy workqueues and
  3744. * pools.
  3745. */
  3746. void show_workqueue_state(void)
  3747. {
  3748. struct workqueue_struct *wq;
  3749. struct worker_pool *pool;
  3750. unsigned long flags;
  3751. int pi;
  3752. rcu_read_lock_sched();
  3753. pr_info("Showing busy workqueues and worker pools:\n");
  3754. list_for_each_entry_rcu(wq, &workqueues, list) {
  3755. struct pool_workqueue *pwq;
  3756. bool idle = true;
  3757. for_each_pwq(pwq, wq) {
  3758. if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
  3759. idle = false;
  3760. break;
  3761. }
  3762. }
  3763. if (idle)
  3764. continue;
  3765. pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
  3766. for_each_pwq(pwq, wq) {
  3767. spin_lock_irqsave(&pwq->pool->lock, flags);
  3768. if (pwq->nr_active || !list_empty(&pwq->delayed_works))
  3769. show_pwq(pwq);
  3770. spin_unlock_irqrestore(&pwq->pool->lock, flags);
  3771. }
  3772. }
  3773. for_each_pool(pool, pi) {
  3774. struct worker *worker;
  3775. bool first = true;
  3776. spin_lock_irqsave(&pool->lock, flags);
  3777. if (pool->nr_workers == pool->nr_idle)
  3778. goto next_pool;
  3779. pr_info("pool %d:", pool->id);
  3780. pr_cont_pool_info(pool);
  3781. pr_cont(" hung=%us workers=%d",
  3782. jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
  3783. pool->nr_workers);
  3784. if (pool->manager)
  3785. pr_cont(" manager: %d",
  3786. task_pid_nr(pool->manager->task));
  3787. list_for_each_entry(worker, &pool->idle_list, entry) {
  3788. pr_cont(" %s%d", first ? "idle: " : "",
  3789. task_pid_nr(worker->task));
  3790. first = false;
  3791. }
  3792. pr_cont("\n");
  3793. next_pool:
  3794. spin_unlock_irqrestore(&pool->lock, flags);
  3795. }
  3796. rcu_read_unlock_sched();
  3797. }
  3798. /*
  3799. * CPU hotplug.
  3800. *
  3801. * There are two challenges in supporting CPU hotplug. Firstly, there
  3802. * are a lot of assumptions on strong associations among work, pwq and
  3803. * pool which make migrating pending and scheduled works very
  3804. * difficult to implement without impacting hot paths. Secondly,
  3805. * worker pools serve mix of short, long and very long running works making
  3806. * blocked draining impractical.
  3807. *
  3808. * This is solved by allowing the pools to be disassociated from the CPU
  3809. * running as an unbound one and allowing it to be reattached later if the
  3810. * cpu comes back online.
  3811. */
  3812. static void wq_unbind_fn(struct work_struct *work)
  3813. {
  3814. int cpu = smp_processor_id();
  3815. struct worker_pool *pool;
  3816. struct worker *worker;
  3817. for_each_cpu_worker_pool(pool, cpu) {
  3818. mutex_lock(&pool->attach_mutex);
  3819. spin_lock_irq(&pool->lock);
  3820. /*
  3821. * We've blocked all attach/detach operations. Make all workers
  3822. * unbound and set DISASSOCIATED. Before this, all workers
  3823. * except for the ones which are still executing works from
  3824. * before the last CPU down must be on the cpu. After
  3825. * this, they may become diasporas.
  3826. */
  3827. for_each_pool_worker(worker, pool)
  3828. worker->flags |= WORKER_UNBOUND;
  3829. pool->flags |= POOL_DISASSOCIATED;
  3830. spin_unlock_irq(&pool->lock);
  3831. mutex_unlock(&pool->attach_mutex);
  3832. /*
  3833. * Call schedule() so that we cross rq->lock and thus can
  3834. * guarantee sched callbacks see the %WORKER_UNBOUND flag.
  3835. * This is necessary as scheduler callbacks may be invoked
  3836. * from other cpus.
  3837. */
  3838. schedule();
  3839. /*
  3840. * Sched callbacks are disabled now. Zap nr_running.
  3841. * After this, nr_running stays zero and need_more_worker()
  3842. * and keep_working() are always true as long as the
  3843. * worklist is not empty. This pool now behaves as an
  3844. * unbound (in terms of concurrency management) pool which
  3845. * are served by workers tied to the pool.
  3846. */
  3847. atomic_set(&pool->nr_running, 0);
  3848. /*
  3849. * With concurrency management just turned off, a busy
  3850. * worker blocking could lead to lengthy stalls. Kick off
  3851. * unbound chain execution of currently pending work items.
  3852. */
  3853. spin_lock_irq(&pool->lock);
  3854. wake_up_worker(pool);
  3855. spin_unlock_irq(&pool->lock);
  3856. }
  3857. }
  3858. /**
  3859. * rebind_workers - rebind all workers of a pool to the associated CPU
  3860. * @pool: pool of interest
  3861. *
  3862. * @pool->cpu is coming online. Rebind all workers to the CPU.
  3863. */
  3864. static void rebind_workers(struct worker_pool *pool)
  3865. {
  3866. struct worker *worker;
  3867. lockdep_assert_held(&pool->attach_mutex);
  3868. /*
  3869. * Restore CPU affinity of all workers. As all idle workers should
  3870. * be on the run-queue of the associated CPU before any local
  3871. * wake-ups for concurrency management happen, restore CPU affinity
  3872. * of all workers first and then clear UNBOUND. As we're called
  3873. * from CPU_ONLINE, the following shouldn't fail.
  3874. */
  3875. for_each_pool_worker(worker, pool)
  3876. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3877. pool->attrs->cpumask) < 0);
  3878. spin_lock_irq(&pool->lock);
  3879. pool->flags &= ~POOL_DISASSOCIATED;
  3880. for_each_pool_worker(worker, pool) {
  3881. unsigned int worker_flags = worker->flags;
  3882. /*
  3883. * A bound idle worker should actually be on the runqueue
  3884. * of the associated CPU for local wake-ups targeting it to
  3885. * work. Kick all idle workers so that they migrate to the
  3886. * associated CPU. Doing this in the same loop as
  3887. * replacing UNBOUND with REBOUND is safe as no worker will
  3888. * be bound before @pool->lock is released.
  3889. */
  3890. if (worker_flags & WORKER_IDLE)
  3891. wake_up_process(worker->task);
  3892. /*
  3893. * We want to clear UNBOUND but can't directly call
  3894. * worker_clr_flags() or adjust nr_running. Atomically
  3895. * replace UNBOUND with another NOT_RUNNING flag REBOUND.
  3896. * @worker will clear REBOUND using worker_clr_flags() when
  3897. * it initiates the next execution cycle thus restoring
  3898. * concurrency management. Note that when or whether
  3899. * @worker clears REBOUND doesn't affect correctness.
  3900. *
  3901. * ACCESS_ONCE() is necessary because @worker->flags may be
  3902. * tested without holding any lock in
  3903. * wq_worker_waking_up(). Without it, NOT_RUNNING test may
  3904. * fail incorrectly leading to premature concurrency
  3905. * management operations.
  3906. */
  3907. WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
  3908. worker_flags |= WORKER_REBOUND;
  3909. worker_flags &= ~WORKER_UNBOUND;
  3910. ACCESS_ONCE(worker->flags) = worker_flags;
  3911. }
  3912. spin_unlock_irq(&pool->lock);
  3913. }
  3914. /**
  3915. * restore_unbound_workers_cpumask - restore cpumask of unbound workers
  3916. * @pool: unbound pool of interest
  3917. * @cpu: the CPU which is coming up
  3918. *
  3919. * An unbound pool may end up with a cpumask which doesn't have any online
  3920. * CPUs. When a worker of such pool get scheduled, the scheduler resets
  3921. * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
  3922. * online CPU before, cpus_allowed of all its workers should be restored.
  3923. */
  3924. static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
  3925. {
  3926. static cpumask_t cpumask;
  3927. struct worker *worker;
  3928. lockdep_assert_held(&pool->attach_mutex);
  3929. /* is @cpu allowed for @pool? */
  3930. if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
  3931. return;
  3932. /* is @cpu the only online CPU? */
  3933. cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
  3934. if (cpumask_weight(&cpumask) != 1)
  3935. return;
  3936. /* as we're called from CPU_ONLINE, the following shouldn't fail */
  3937. for_each_pool_worker(worker, pool)
  3938. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3939. pool->attrs->cpumask) < 0);
  3940. }
  3941. /*
  3942. * Workqueues should be brought up before normal priority CPU notifiers.
  3943. * This will be registered high priority CPU notifier.
  3944. */
  3945. static int workqueue_cpu_up_callback(struct notifier_block *nfb,
  3946. unsigned long action,
  3947. void *hcpu)
  3948. {
  3949. int cpu = (unsigned long)hcpu;
  3950. struct worker_pool *pool;
  3951. struct workqueue_struct *wq;
  3952. int pi;
  3953. switch (action & ~CPU_TASKS_FROZEN) {
  3954. case CPU_UP_PREPARE:
  3955. for_each_cpu_worker_pool(pool, cpu) {
  3956. if (pool->nr_workers)
  3957. continue;
  3958. if (!create_worker(pool))
  3959. return NOTIFY_BAD;
  3960. }
  3961. break;
  3962. case CPU_DOWN_FAILED:
  3963. case CPU_ONLINE:
  3964. mutex_lock(&wq_pool_mutex);
  3965. for_each_pool(pool, pi) {
  3966. mutex_lock(&pool->attach_mutex);
  3967. if (pool->cpu == cpu)
  3968. rebind_workers(pool);
  3969. else if (pool->cpu < 0)
  3970. restore_unbound_workers_cpumask(pool, cpu);
  3971. mutex_unlock(&pool->attach_mutex);
  3972. }
  3973. /* update NUMA affinity of unbound workqueues */
  3974. list_for_each_entry(wq, &workqueues, list)
  3975. wq_update_unbound_numa(wq, cpu, true);
  3976. mutex_unlock(&wq_pool_mutex);
  3977. break;
  3978. }
  3979. return NOTIFY_OK;
  3980. }
  3981. /*
  3982. * Workqueues should be brought down after normal priority CPU notifiers.
  3983. * This will be registered as low priority CPU notifier.
  3984. */
  3985. static int workqueue_cpu_down_callback(struct notifier_block *nfb,
  3986. unsigned long action,
  3987. void *hcpu)
  3988. {
  3989. int cpu = (unsigned long)hcpu;
  3990. struct work_struct unbind_work;
  3991. struct workqueue_struct *wq;
  3992. switch (action & ~CPU_TASKS_FROZEN) {
  3993. case CPU_DOWN_PREPARE:
  3994. /* unbinding per-cpu workers should happen on the local CPU */
  3995. INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
  3996. queue_work_on(cpu, system_highpri_wq, &unbind_work);
  3997. /* update NUMA affinity of unbound workqueues */
  3998. mutex_lock(&wq_pool_mutex);
  3999. list_for_each_entry(wq, &workqueues, list)
  4000. wq_update_unbound_numa(wq, cpu, false);
  4001. mutex_unlock(&wq_pool_mutex);
  4002. /* wait for per-cpu unbinding to finish */
  4003. flush_work(&unbind_work);
  4004. destroy_work_on_stack(&unbind_work);
  4005. break;
  4006. }
  4007. return NOTIFY_OK;
  4008. }
  4009. #ifdef CONFIG_SMP
  4010. struct work_for_cpu {
  4011. struct work_struct work;
  4012. long (*fn)(void *);
  4013. void *arg;
  4014. long ret;
  4015. };
  4016. static void work_for_cpu_fn(struct work_struct *work)
  4017. {
  4018. struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
  4019. wfc->ret = wfc->fn(wfc->arg);
  4020. }
  4021. /**
  4022. * work_on_cpu - run a function in user context on a particular cpu
  4023. * @cpu: the cpu to run on
  4024. * @fn: the function to run
  4025. * @arg: the function arg
  4026. *
  4027. * It is up to the caller to ensure that the cpu doesn't go offline.
  4028. * The caller must not hold any locks which would prevent @fn from completing.
  4029. *
  4030. * Return: The value @fn returns.
  4031. */
  4032. long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
  4033. {
  4034. struct work_for_cpu wfc = { .fn = fn, .arg = arg };
  4035. INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
  4036. schedule_work_on(cpu, &wfc.work);
  4037. flush_work(&wfc.work);
  4038. destroy_work_on_stack(&wfc.work);
  4039. return wfc.ret;
  4040. }
  4041. EXPORT_SYMBOL_GPL(work_on_cpu);
  4042. #endif /* CONFIG_SMP */
  4043. #ifdef CONFIG_FREEZER
  4044. /**
  4045. * freeze_workqueues_begin - begin freezing workqueues
  4046. *
  4047. * Start freezing workqueues. After this function returns, all freezable
  4048. * workqueues will queue new works to their delayed_works list instead of
  4049. * pool->worklist.
  4050. *
  4051. * CONTEXT:
  4052. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  4053. */
  4054. void freeze_workqueues_begin(void)
  4055. {
  4056. struct workqueue_struct *wq;
  4057. struct pool_workqueue *pwq;
  4058. mutex_lock(&wq_pool_mutex);
  4059. WARN_ON_ONCE(workqueue_freezing);
  4060. workqueue_freezing = true;
  4061. list_for_each_entry(wq, &workqueues, list) {
  4062. mutex_lock(&wq->mutex);
  4063. for_each_pwq(pwq, wq)
  4064. pwq_adjust_max_active(pwq);
  4065. mutex_unlock(&wq->mutex);
  4066. }
  4067. mutex_unlock(&wq_pool_mutex);
  4068. }
  4069. /**
  4070. * freeze_workqueues_busy - are freezable workqueues still busy?
  4071. *
  4072. * Check whether freezing is complete. This function must be called
  4073. * between freeze_workqueues_begin() and thaw_workqueues().
  4074. *
  4075. * CONTEXT:
  4076. * Grabs and releases wq_pool_mutex.
  4077. *
  4078. * Return:
  4079. * %true if some freezable workqueues are still busy. %false if freezing
  4080. * is complete.
  4081. */
  4082. bool freeze_workqueues_busy(void)
  4083. {
  4084. bool busy = false;
  4085. struct workqueue_struct *wq;
  4086. struct pool_workqueue *pwq;
  4087. mutex_lock(&wq_pool_mutex);
  4088. WARN_ON_ONCE(!workqueue_freezing);
  4089. list_for_each_entry(wq, &workqueues, list) {
  4090. if (!(wq->flags & WQ_FREEZABLE))
  4091. continue;
  4092. /*
  4093. * nr_active is monotonically decreasing. It's safe
  4094. * to peek without lock.
  4095. */
  4096. rcu_read_lock_sched();
  4097. for_each_pwq(pwq, wq) {
  4098. WARN_ON_ONCE(pwq->nr_active < 0);
  4099. if (pwq->nr_active) {
  4100. busy = true;
  4101. rcu_read_unlock_sched();
  4102. goto out_unlock;
  4103. }
  4104. }
  4105. rcu_read_unlock_sched();
  4106. }
  4107. out_unlock:
  4108. mutex_unlock(&wq_pool_mutex);
  4109. return busy;
  4110. }
  4111. /**
  4112. * thaw_workqueues - thaw workqueues
  4113. *
  4114. * Thaw workqueues. Normal queueing is restored and all collected
  4115. * frozen works are transferred to their respective pool worklists.
  4116. *
  4117. * CONTEXT:
  4118. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  4119. */
  4120. void thaw_workqueues(void)
  4121. {
  4122. struct workqueue_struct *wq;
  4123. struct pool_workqueue *pwq;
  4124. mutex_lock(&wq_pool_mutex);
  4125. if (!workqueue_freezing)
  4126. goto out_unlock;
  4127. workqueue_freezing = false;
  4128. /* restore max_active and repopulate worklist */
  4129. list_for_each_entry(wq, &workqueues, list) {
  4130. mutex_lock(&wq->mutex);
  4131. for_each_pwq(pwq, wq)
  4132. pwq_adjust_max_active(pwq);
  4133. mutex_unlock(&wq->mutex);
  4134. }
  4135. out_unlock:
  4136. mutex_unlock(&wq_pool_mutex);
  4137. }
  4138. #endif /* CONFIG_FREEZER */
  4139. static int workqueue_apply_unbound_cpumask(void)
  4140. {
  4141. LIST_HEAD(ctxs);
  4142. int ret = 0;
  4143. struct workqueue_struct *wq;
  4144. struct apply_wqattrs_ctx *ctx, *n;
  4145. lockdep_assert_held(&wq_pool_mutex);
  4146. list_for_each_entry(wq, &workqueues, list) {
  4147. if (!(wq->flags & WQ_UNBOUND))
  4148. continue;
  4149. /* creating multiple pwqs breaks ordering guarantee */
  4150. if (wq->flags & __WQ_ORDERED)
  4151. continue;
  4152. ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
  4153. if (!ctx) {
  4154. ret = -ENOMEM;
  4155. break;
  4156. }
  4157. list_add_tail(&ctx->list, &ctxs);
  4158. }
  4159. list_for_each_entry_safe(ctx, n, &ctxs, list) {
  4160. if (!ret)
  4161. apply_wqattrs_commit(ctx);
  4162. apply_wqattrs_cleanup(ctx);
  4163. }
  4164. return ret;
  4165. }
  4166. /**
  4167. * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
  4168. * @cpumask: the cpumask to set
  4169. *
  4170. * The low-level workqueues cpumask is a global cpumask that limits
  4171. * the affinity of all unbound workqueues. This function check the @cpumask
  4172. * and apply it to all unbound workqueues and updates all pwqs of them.
  4173. *
  4174. * Retun: 0 - Success
  4175. * -EINVAL - Invalid @cpumask
  4176. * -ENOMEM - Failed to allocate memory for attrs or pwqs.
  4177. */
  4178. int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
  4179. {
  4180. int ret = -EINVAL;
  4181. cpumask_var_t saved_cpumask;
  4182. if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
  4183. return -ENOMEM;
  4184. cpumask_and(cpumask, cpumask, cpu_possible_mask);
  4185. if (!cpumask_empty(cpumask)) {
  4186. apply_wqattrs_lock();
  4187. /* save the old wq_unbound_cpumask. */
  4188. cpumask_copy(saved_cpumask, wq_unbound_cpumask);
  4189. /* update wq_unbound_cpumask at first and apply it to wqs. */
  4190. cpumask_copy(wq_unbound_cpumask, cpumask);
  4191. ret = workqueue_apply_unbound_cpumask();
  4192. /* restore the wq_unbound_cpumask when failed. */
  4193. if (ret < 0)
  4194. cpumask_copy(wq_unbound_cpumask, saved_cpumask);
  4195. apply_wqattrs_unlock();
  4196. }
  4197. free_cpumask_var(saved_cpumask);
  4198. return ret;
  4199. }
  4200. #ifdef CONFIG_SYSFS
  4201. /*
  4202. * Workqueues with WQ_SYSFS flag set is visible to userland via
  4203. * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
  4204. * following attributes.
  4205. *
  4206. * per_cpu RO bool : whether the workqueue is per-cpu or unbound
  4207. * max_active RW int : maximum number of in-flight work items
  4208. *
  4209. * Unbound workqueues have the following extra attributes.
  4210. *
  4211. * id RO int : the associated pool ID
  4212. * nice RW int : nice value of the workers
  4213. * cpumask RW mask : bitmask of allowed CPUs for the workers
  4214. */
  4215. struct wq_device {
  4216. struct workqueue_struct *wq;
  4217. struct device dev;
  4218. };
  4219. static struct workqueue_struct *dev_to_wq(struct device *dev)
  4220. {
  4221. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  4222. return wq_dev->wq;
  4223. }
  4224. static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
  4225. char *buf)
  4226. {
  4227. struct workqueue_struct *wq = dev_to_wq(dev);
  4228. return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
  4229. }
  4230. static DEVICE_ATTR_RO(per_cpu);
  4231. static ssize_t max_active_show(struct device *dev,
  4232. struct device_attribute *attr, char *buf)
  4233. {
  4234. struct workqueue_struct *wq = dev_to_wq(dev);
  4235. return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
  4236. }
  4237. static ssize_t max_active_store(struct device *dev,
  4238. struct device_attribute *attr, const char *buf,
  4239. size_t count)
  4240. {
  4241. struct workqueue_struct *wq = dev_to_wq(dev);
  4242. int val;
  4243. if (sscanf(buf, "%d", &val) != 1 || val <= 0)
  4244. return -EINVAL;
  4245. workqueue_set_max_active(wq, val);
  4246. return count;
  4247. }
  4248. static DEVICE_ATTR_RW(max_active);
  4249. static struct attribute *wq_sysfs_attrs[] = {
  4250. &dev_attr_per_cpu.attr,
  4251. &dev_attr_max_active.attr,
  4252. NULL,
  4253. };
  4254. ATTRIBUTE_GROUPS(wq_sysfs);
  4255. static ssize_t wq_pool_ids_show(struct device *dev,
  4256. struct device_attribute *attr, char *buf)
  4257. {
  4258. struct workqueue_struct *wq = dev_to_wq(dev);
  4259. const char *delim = "";
  4260. int node, written = 0;
  4261. rcu_read_lock_sched();
  4262. for_each_node(node) {
  4263. written += scnprintf(buf + written, PAGE_SIZE - written,
  4264. "%s%d:%d", delim, node,
  4265. unbound_pwq_by_node(wq, node)->pool->id);
  4266. delim = " ";
  4267. }
  4268. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  4269. rcu_read_unlock_sched();
  4270. return written;
  4271. }
  4272. static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
  4273. char *buf)
  4274. {
  4275. struct workqueue_struct *wq = dev_to_wq(dev);
  4276. int written;
  4277. mutex_lock(&wq->mutex);
  4278. written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
  4279. mutex_unlock(&wq->mutex);
  4280. return written;
  4281. }
  4282. /* prepare workqueue_attrs for sysfs store operations */
  4283. static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
  4284. {
  4285. struct workqueue_attrs *attrs;
  4286. lockdep_assert_held(&wq_pool_mutex);
  4287. attrs = alloc_workqueue_attrs(GFP_KERNEL);
  4288. if (!attrs)
  4289. return NULL;
  4290. copy_workqueue_attrs(attrs, wq->unbound_attrs);
  4291. return attrs;
  4292. }
  4293. static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
  4294. const char *buf, size_t count)
  4295. {
  4296. struct workqueue_struct *wq = dev_to_wq(dev);
  4297. struct workqueue_attrs *attrs;
  4298. int ret = -ENOMEM;
  4299. apply_wqattrs_lock();
  4300. attrs = wq_sysfs_prep_attrs(wq);
  4301. if (!attrs)
  4302. goto out_unlock;
  4303. if (sscanf(buf, "%d", &attrs->nice) == 1 &&
  4304. attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
  4305. ret = apply_workqueue_attrs_locked(wq, attrs);
  4306. else
  4307. ret = -EINVAL;
  4308. out_unlock:
  4309. apply_wqattrs_unlock();
  4310. free_workqueue_attrs(attrs);
  4311. return ret ?: count;
  4312. }
  4313. static ssize_t wq_cpumask_show(struct device *dev,
  4314. struct device_attribute *attr, char *buf)
  4315. {
  4316. struct workqueue_struct *wq = dev_to_wq(dev);
  4317. int written;
  4318. mutex_lock(&wq->mutex);
  4319. written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
  4320. cpumask_pr_args(wq->unbound_attrs->cpumask));
  4321. mutex_unlock(&wq->mutex);
  4322. return written;
  4323. }
  4324. static ssize_t wq_cpumask_store(struct device *dev,
  4325. struct device_attribute *attr,
  4326. const char *buf, size_t count)
  4327. {
  4328. struct workqueue_struct *wq = dev_to_wq(dev);
  4329. struct workqueue_attrs *attrs;
  4330. int ret = -ENOMEM;
  4331. apply_wqattrs_lock();
  4332. attrs = wq_sysfs_prep_attrs(wq);
  4333. if (!attrs)
  4334. goto out_unlock;
  4335. ret = cpumask_parse(buf, attrs->cpumask);
  4336. if (!ret)
  4337. ret = apply_workqueue_attrs_locked(wq, attrs);
  4338. out_unlock:
  4339. apply_wqattrs_unlock();
  4340. free_workqueue_attrs(attrs);
  4341. return ret ?: count;
  4342. }
  4343. static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
  4344. char *buf)
  4345. {
  4346. struct workqueue_struct *wq = dev_to_wq(dev);
  4347. int written;
  4348. mutex_lock(&wq->mutex);
  4349. written = scnprintf(buf, PAGE_SIZE, "%d\n",
  4350. !wq->unbound_attrs->no_numa);
  4351. mutex_unlock(&wq->mutex);
  4352. return written;
  4353. }
  4354. static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
  4355. const char *buf, size_t count)
  4356. {
  4357. struct workqueue_struct *wq = dev_to_wq(dev);
  4358. struct workqueue_attrs *attrs;
  4359. int v, ret = -ENOMEM;
  4360. apply_wqattrs_lock();
  4361. attrs = wq_sysfs_prep_attrs(wq);
  4362. if (!attrs)
  4363. goto out_unlock;
  4364. ret = -EINVAL;
  4365. if (sscanf(buf, "%d", &v) == 1) {
  4366. attrs->no_numa = !v;
  4367. ret = apply_workqueue_attrs_locked(wq, attrs);
  4368. }
  4369. out_unlock:
  4370. apply_wqattrs_unlock();
  4371. free_workqueue_attrs(attrs);
  4372. return ret ?: count;
  4373. }
  4374. static struct device_attribute wq_sysfs_unbound_attrs[] = {
  4375. __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
  4376. __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
  4377. __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
  4378. __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
  4379. __ATTR_NULL,
  4380. };
  4381. static struct bus_type wq_subsys = {
  4382. .name = "workqueue",
  4383. .dev_groups = wq_sysfs_groups,
  4384. };
  4385. static ssize_t wq_unbound_cpumask_show(struct device *dev,
  4386. struct device_attribute *attr, char *buf)
  4387. {
  4388. int written;
  4389. mutex_lock(&wq_pool_mutex);
  4390. written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
  4391. cpumask_pr_args(wq_unbound_cpumask));
  4392. mutex_unlock(&wq_pool_mutex);
  4393. return written;
  4394. }
  4395. static ssize_t wq_unbound_cpumask_store(struct device *dev,
  4396. struct device_attribute *attr, const char *buf, size_t count)
  4397. {
  4398. cpumask_var_t cpumask;
  4399. int ret;
  4400. if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
  4401. return -ENOMEM;
  4402. ret = cpumask_parse(buf, cpumask);
  4403. if (!ret)
  4404. ret = workqueue_set_unbound_cpumask(cpumask);
  4405. free_cpumask_var(cpumask);
  4406. return ret ? ret : count;
  4407. }
  4408. static struct device_attribute wq_sysfs_cpumask_attr =
  4409. __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
  4410. wq_unbound_cpumask_store);
  4411. static int __init wq_sysfs_init(void)
  4412. {
  4413. int err;
  4414. err = subsys_virtual_register(&wq_subsys, NULL);
  4415. if (err)
  4416. return err;
  4417. return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
  4418. }
  4419. core_initcall(wq_sysfs_init);
  4420. static void wq_device_release(struct device *dev)
  4421. {
  4422. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  4423. kfree(wq_dev);
  4424. }
  4425. /**
  4426. * workqueue_sysfs_register - make a workqueue visible in sysfs
  4427. * @wq: the workqueue to register
  4428. *
  4429. * Expose @wq in sysfs under /sys/bus/workqueue/devices.
  4430. * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
  4431. * which is the preferred method.
  4432. *
  4433. * Workqueue user should use this function directly iff it wants to apply
  4434. * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
  4435. * apply_workqueue_attrs() may race against userland updating the
  4436. * attributes.
  4437. *
  4438. * Return: 0 on success, -errno on failure.
  4439. */
  4440. int workqueue_sysfs_register(struct workqueue_struct *wq)
  4441. {
  4442. struct wq_device *wq_dev;
  4443. int ret;
  4444. /*
  4445. * Adjusting max_active or creating new pwqs by applying
  4446. * attributes breaks ordering guarantee. Disallow exposing ordered
  4447. * workqueues.
  4448. */
  4449. if (WARN_ON(wq->flags & __WQ_ORDERED))
  4450. return -EINVAL;
  4451. wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
  4452. if (!wq_dev)
  4453. return -ENOMEM;
  4454. wq_dev->wq = wq;
  4455. wq_dev->dev.bus = &wq_subsys;
  4456. wq_dev->dev.init_name = wq->name;
  4457. wq_dev->dev.release = wq_device_release;
  4458. /*
  4459. * unbound_attrs are created separately. Suppress uevent until
  4460. * everything is ready.
  4461. */
  4462. dev_set_uevent_suppress(&wq_dev->dev, true);
  4463. ret = device_register(&wq_dev->dev);
  4464. if (ret) {
  4465. kfree(wq_dev);
  4466. wq->wq_dev = NULL;
  4467. return ret;
  4468. }
  4469. if (wq->flags & WQ_UNBOUND) {
  4470. struct device_attribute *attr;
  4471. for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
  4472. ret = device_create_file(&wq_dev->dev, attr);
  4473. if (ret) {
  4474. device_unregister(&wq_dev->dev);
  4475. wq->wq_dev = NULL;
  4476. return ret;
  4477. }
  4478. }
  4479. }
  4480. dev_set_uevent_suppress(&wq_dev->dev, false);
  4481. kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
  4482. return 0;
  4483. }
  4484. /**
  4485. * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
  4486. * @wq: the workqueue to unregister
  4487. *
  4488. * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
  4489. */
  4490. static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
  4491. {
  4492. struct wq_device *wq_dev = wq->wq_dev;
  4493. if (!wq->wq_dev)
  4494. return;
  4495. wq->wq_dev = NULL;
  4496. device_unregister(&wq_dev->dev);
  4497. }
  4498. #else /* CONFIG_SYSFS */
  4499. static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
  4500. #endif /* CONFIG_SYSFS */
  4501. /*
  4502. * Workqueue watchdog.
  4503. *
  4504. * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
  4505. * flush dependency, a concurrency managed work item which stays RUNNING
  4506. * indefinitely. Workqueue stalls can be very difficult to debug as the
  4507. * usual warning mechanisms don't trigger and internal workqueue state is
  4508. * largely opaque.
  4509. *
  4510. * Workqueue watchdog monitors all worker pools periodically and dumps
  4511. * state if some pools failed to make forward progress for a while where
  4512. * forward progress is defined as the first item on ->worklist changing.
  4513. *
  4514. * This mechanism is controlled through the kernel parameter
  4515. * "workqueue.watchdog_thresh" which can be updated at runtime through the
  4516. * corresponding sysfs parameter file.
  4517. */
  4518. #ifdef CONFIG_WQ_WATCHDOG
  4519. static void wq_watchdog_timer_fn(unsigned long data);
  4520. static unsigned long wq_watchdog_thresh = 30;
  4521. static struct timer_list wq_watchdog_timer =
  4522. TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
  4523. static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
  4524. static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
  4525. static void wq_watchdog_reset_touched(void)
  4526. {
  4527. int cpu;
  4528. wq_watchdog_touched = jiffies;
  4529. for_each_possible_cpu(cpu)
  4530. per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
  4531. }
  4532. static void wq_watchdog_timer_fn(unsigned long data)
  4533. {
  4534. unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
  4535. bool lockup_detected = false;
  4536. struct worker_pool *pool;
  4537. int pi;
  4538. if (!thresh)
  4539. return;
  4540. rcu_read_lock();
  4541. for_each_pool(pool, pi) {
  4542. unsigned long pool_ts, touched, ts;
  4543. if (list_empty(&pool->worklist))
  4544. continue;
  4545. /* get the latest of pool and touched timestamps */
  4546. pool_ts = READ_ONCE(pool->watchdog_ts);
  4547. touched = READ_ONCE(wq_watchdog_touched);
  4548. if (time_after(pool_ts, touched))
  4549. ts = pool_ts;
  4550. else
  4551. ts = touched;
  4552. if (pool->cpu >= 0) {
  4553. unsigned long cpu_touched =
  4554. READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
  4555. pool->cpu));
  4556. if (time_after(cpu_touched, ts))
  4557. ts = cpu_touched;
  4558. }
  4559. /* did we stall? */
  4560. if (time_after(jiffies, ts + thresh)) {
  4561. lockup_detected = true;
  4562. pr_emerg("BUG: workqueue lockup - pool");
  4563. pr_cont_pool_info(pool);
  4564. pr_cont(" stuck for %us!\n",
  4565. jiffies_to_msecs(jiffies - pool_ts) / 1000);
  4566. }
  4567. }
  4568. rcu_read_unlock();
  4569. if (lockup_detected)
  4570. show_workqueue_state();
  4571. wq_watchdog_reset_touched();
  4572. mod_timer(&wq_watchdog_timer, jiffies + thresh);
  4573. }
  4574. void wq_watchdog_touch(int cpu)
  4575. {
  4576. if (cpu >= 0)
  4577. per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
  4578. else
  4579. wq_watchdog_touched = jiffies;
  4580. }
  4581. static void wq_watchdog_set_thresh(unsigned long thresh)
  4582. {
  4583. wq_watchdog_thresh = 0;
  4584. del_timer_sync(&wq_watchdog_timer);
  4585. if (thresh) {
  4586. wq_watchdog_thresh = thresh;
  4587. wq_watchdog_reset_touched();
  4588. mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
  4589. }
  4590. }
  4591. static int wq_watchdog_param_set_thresh(const char *val,
  4592. const struct kernel_param *kp)
  4593. {
  4594. unsigned long thresh;
  4595. int ret;
  4596. ret = kstrtoul(val, 0, &thresh);
  4597. if (ret)
  4598. return ret;
  4599. if (system_wq)
  4600. wq_watchdog_set_thresh(thresh);
  4601. else
  4602. wq_watchdog_thresh = thresh;
  4603. return 0;
  4604. }
  4605. static const struct kernel_param_ops wq_watchdog_thresh_ops = {
  4606. .set = wq_watchdog_param_set_thresh,
  4607. .get = param_get_ulong,
  4608. };
  4609. module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
  4610. 0644);
  4611. static void wq_watchdog_init(void)
  4612. {
  4613. wq_watchdog_set_thresh(wq_watchdog_thresh);
  4614. }
  4615. #else /* CONFIG_WQ_WATCHDOG */
  4616. static inline void wq_watchdog_init(void) { }
  4617. #endif /* CONFIG_WQ_WATCHDOG */
  4618. static void __init wq_numa_init(void)
  4619. {
  4620. cpumask_var_t *tbl;
  4621. int node, cpu;
  4622. if (num_possible_nodes() <= 1)
  4623. return;
  4624. if (wq_disable_numa) {
  4625. pr_info("workqueue: NUMA affinity support disabled\n");
  4626. return;
  4627. }
  4628. wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
  4629. BUG_ON(!wq_update_unbound_numa_attrs_buf);
  4630. /*
  4631. * We want masks of possible CPUs of each node which isn't readily
  4632. * available. Build one from cpu_to_node() which should have been
  4633. * fully initialized by now.
  4634. */
  4635. tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
  4636. BUG_ON(!tbl);
  4637. for_each_node(node)
  4638. BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
  4639. node_online(node) ? node : NUMA_NO_NODE));
  4640. for_each_possible_cpu(cpu) {
  4641. node = cpu_to_node(cpu);
  4642. if (WARN_ON(node == NUMA_NO_NODE)) {
  4643. pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
  4644. /* happens iff arch is bonkers, let's just proceed */
  4645. return;
  4646. }
  4647. cpumask_set_cpu(cpu, tbl[node]);
  4648. }
  4649. wq_numa_possible_cpumask = tbl;
  4650. wq_numa_enabled = true;
  4651. }
  4652. static int __init init_workqueues(void)
  4653. {
  4654. int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
  4655. int i, cpu;
  4656. WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
  4657. BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
  4658. cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
  4659. pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
  4660. cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
  4661. hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
  4662. wq_numa_init();
  4663. /* initialize CPU pools */
  4664. for_each_possible_cpu(cpu) {
  4665. struct worker_pool *pool;
  4666. i = 0;
  4667. for_each_cpu_worker_pool(pool, cpu) {
  4668. BUG_ON(init_worker_pool(pool));
  4669. pool->cpu = cpu;
  4670. cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
  4671. pool->attrs->nice = std_nice[i++];
  4672. pool->node = cpu_to_node(cpu);
  4673. /* alloc pool ID */
  4674. mutex_lock(&wq_pool_mutex);
  4675. BUG_ON(worker_pool_assign_id(pool));
  4676. mutex_unlock(&wq_pool_mutex);
  4677. }
  4678. }
  4679. /* create the initial worker */
  4680. for_each_online_cpu(cpu) {
  4681. struct worker_pool *pool;
  4682. for_each_cpu_worker_pool(pool, cpu) {
  4683. pool->flags &= ~POOL_DISASSOCIATED;
  4684. BUG_ON(!create_worker(pool));
  4685. }
  4686. }
  4687. /* create default unbound and ordered wq attrs */
  4688. for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
  4689. struct workqueue_attrs *attrs;
  4690. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  4691. attrs->nice = std_nice[i];
  4692. unbound_std_wq_attrs[i] = attrs;
  4693. /*
  4694. * An ordered wq should have only one pwq as ordering is
  4695. * guaranteed by max_active which is enforced by pwqs.
  4696. * Turn off NUMA so that dfl_pwq is used for all nodes.
  4697. */
  4698. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  4699. attrs->nice = std_nice[i];
  4700. attrs->no_numa = true;
  4701. ordered_wq_attrs[i] = attrs;
  4702. }
  4703. system_wq = alloc_workqueue("events", 0, 0);
  4704. system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
  4705. system_long_wq = alloc_workqueue("events_long", 0, 0);
  4706. system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
  4707. WQ_UNBOUND_MAX_ACTIVE);
  4708. system_freezable_wq = alloc_workqueue("events_freezable",
  4709. WQ_FREEZABLE, 0);
  4710. system_power_efficient_wq = alloc_workqueue("events_power_efficient",
  4711. WQ_POWER_EFFICIENT, 0);
  4712. system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
  4713. WQ_FREEZABLE | WQ_POWER_EFFICIENT,
  4714. 0);
  4715. BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
  4716. !system_unbound_wq || !system_freezable_wq ||
  4717. !system_power_efficient_wq ||
  4718. !system_freezable_power_efficient_wq);
  4719. wq_watchdog_init();
  4720. return 0;
  4721. }
  4722. early_initcall(init_workqueues);