builtin-sched.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779
  1. #include "builtin.h"
  2. #include "perf.h"
  3. #include "util/util.h"
  4. #include "util/evlist.h"
  5. #include "util/cache.h"
  6. #include "util/evsel.h"
  7. #include "util/symbol.h"
  8. #include "util/thread.h"
  9. #include "util/header.h"
  10. #include "util/session.h"
  11. #include "util/tool.h"
  12. #include "util/cloexec.h"
  13. #include "util/parse-options.h"
  14. #include "util/trace-event.h"
  15. #include "util/debug.h"
  16. #include <sys/prctl.h>
  17. #include <sys/resource.h>
  18. #include <semaphore.h>
  19. #include <pthread.h>
  20. #include <math.h>
  21. #define PR_SET_NAME 15 /* Set process name */
  22. #define MAX_CPUS 4096
  23. #define COMM_LEN 20
  24. #define SYM_LEN 129
  25. #define MAX_PID 65536
  26. struct sched_atom;
  27. struct task_desc {
  28. unsigned long nr;
  29. unsigned long pid;
  30. char comm[COMM_LEN];
  31. unsigned long nr_events;
  32. unsigned long curr_event;
  33. struct sched_atom **atoms;
  34. pthread_t thread;
  35. sem_t sleep_sem;
  36. sem_t ready_for_work;
  37. sem_t work_done_sem;
  38. u64 cpu_usage;
  39. };
  40. enum sched_event_type {
  41. SCHED_EVENT_RUN,
  42. SCHED_EVENT_SLEEP,
  43. SCHED_EVENT_WAKEUP,
  44. SCHED_EVENT_MIGRATION,
  45. };
  46. struct sched_atom {
  47. enum sched_event_type type;
  48. int specific_wait;
  49. u64 timestamp;
  50. u64 duration;
  51. unsigned long nr;
  52. sem_t *wait_sem;
  53. struct task_desc *wakee;
  54. };
  55. #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  56. enum thread_state {
  57. THREAD_SLEEPING = 0,
  58. THREAD_WAIT_CPU,
  59. THREAD_SCHED_IN,
  60. THREAD_IGNORE
  61. };
  62. struct work_atom {
  63. struct list_head list;
  64. enum thread_state state;
  65. u64 sched_out_time;
  66. u64 wake_up_time;
  67. u64 sched_in_time;
  68. u64 runtime;
  69. };
  70. struct work_atoms {
  71. struct list_head work_list;
  72. struct thread *thread;
  73. struct rb_node node;
  74. u64 max_lat;
  75. u64 max_lat_at;
  76. u64 total_lat;
  77. u64 nb_atoms;
  78. u64 total_runtime;
  79. };
  80. typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
  81. struct perf_sched;
  82. struct trace_sched_handler {
  83. int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
  84. struct perf_sample *sample, struct machine *machine);
  85. int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
  86. struct perf_sample *sample, struct machine *machine);
  87. int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
  88. struct perf_sample *sample, struct machine *machine);
  89. /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
  90. int (*fork_event)(struct perf_sched *sched, union perf_event *event,
  91. struct machine *machine);
  92. int (*migrate_task_event)(struct perf_sched *sched,
  93. struct perf_evsel *evsel,
  94. struct perf_sample *sample,
  95. struct machine *machine);
  96. };
  97. struct perf_sched {
  98. struct perf_tool tool;
  99. const char *sort_order;
  100. unsigned long nr_tasks;
  101. struct task_desc *pid_to_task[MAX_PID];
  102. struct task_desc **tasks;
  103. const struct trace_sched_handler *tp_handler;
  104. pthread_mutex_t start_work_mutex;
  105. pthread_mutex_t work_done_wait_mutex;
  106. int profile_cpu;
  107. /*
  108. * Track the current task - that way we can know whether there's any
  109. * weird events, such as a task being switched away that is not current.
  110. */
  111. int max_cpu;
  112. u32 curr_pid[MAX_CPUS];
  113. struct thread *curr_thread[MAX_CPUS];
  114. char next_shortname1;
  115. char next_shortname2;
  116. unsigned int replay_repeat;
  117. unsigned long nr_run_events;
  118. unsigned long nr_sleep_events;
  119. unsigned long nr_wakeup_events;
  120. unsigned long nr_sleep_corrections;
  121. unsigned long nr_run_events_optimized;
  122. unsigned long targetless_wakeups;
  123. unsigned long multitarget_wakeups;
  124. unsigned long nr_runs;
  125. unsigned long nr_timestamps;
  126. unsigned long nr_unordered_timestamps;
  127. unsigned long nr_context_switch_bugs;
  128. unsigned long nr_events;
  129. unsigned long nr_lost_chunks;
  130. unsigned long nr_lost_events;
  131. u64 run_measurement_overhead;
  132. u64 sleep_measurement_overhead;
  133. u64 start_time;
  134. u64 cpu_usage;
  135. u64 runavg_cpu_usage;
  136. u64 parent_cpu_usage;
  137. u64 runavg_parent_cpu_usage;
  138. u64 sum_runtime;
  139. u64 sum_fluct;
  140. u64 run_avg;
  141. u64 all_runtime;
  142. u64 all_count;
  143. u64 cpu_last_switched[MAX_CPUS];
  144. struct rb_root atom_root, sorted_atom_root;
  145. struct list_head sort_list, cmp_pid;
  146. };
  147. static u64 get_nsecs(void)
  148. {
  149. struct timespec ts;
  150. clock_gettime(CLOCK_MONOTONIC, &ts);
  151. return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
  152. }
  153. static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
  154. {
  155. u64 T0 = get_nsecs(), T1;
  156. do {
  157. T1 = get_nsecs();
  158. } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
  159. }
  160. static void sleep_nsecs(u64 nsecs)
  161. {
  162. struct timespec ts;
  163. ts.tv_nsec = nsecs % 999999999;
  164. ts.tv_sec = nsecs / 999999999;
  165. nanosleep(&ts, NULL);
  166. }
  167. static void calibrate_run_measurement_overhead(struct perf_sched *sched)
  168. {
  169. u64 T0, T1, delta, min_delta = 1000000000ULL;
  170. int i;
  171. for (i = 0; i < 10; i++) {
  172. T0 = get_nsecs();
  173. burn_nsecs(sched, 0);
  174. T1 = get_nsecs();
  175. delta = T1-T0;
  176. min_delta = min(min_delta, delta);
  177. }
  178. sched->run_measurement_overhead = min_delta;
  179. printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
  180. }
  181. static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
  182. {
  183. u64 T0, T1, delta, min_delta = 1000000000ULL;
  184. int i;
  185. for (i = 0; i < 10; i++) {
  186. T0 = get_nsecs();
  187. sleep_nsecs(10000);
  188. T1 = get_nsecs();
  189. delta = T1-T0;
  190. min_delta = min(min_delta, delta);
  191. }
  192. min_delta -= 10000;
  193. sched->sleep_measurement_overhead = min_delta;
  194. printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
  195. }
  196. static struct sched_atom *
  197. get_new_event(struct task_desc *task, u64 timestamp)
  198. {
  199. struct sched_atom *event = zalloc(sizeof(*event));
  200. unsigned long idx = task->nr_events;
  201. size_t size;
  202. event->timestamp = timestamp;
  203. event->nr = idx;
  204. task->nr_events++;
  205. size = sizeof(struct sched_atom *) * task->nr_events;
  206. task->atoms = realloc(task->atoms, size);
  207. BUG_ON(!task->atoms);
  208. task->atoms[idx] = event;
  209. return event;
  210. }
  211. static struct sched_atom *last_event(struct task_desc *task)
  212. {
  213. if (!task->nr_events)
  214. return NULL;
  215. return task->atoms[task->nr_events - 1];
  216. }
  217. static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
  218. u64 timestamp, u64 duration)
  219. {
  220. struct sched_atom *event, *curr_event = last_event(task);
  221. /*
  222. * optimize an existing RUN event by merging this one
  223. * to it:
  224. */
  225. if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
  226. sched->nr_run_events_optimized++;
  227. curr_event->duration += duration;
  228. return;
  229. }
  230. event = get_new_event(task, timestamp);
  231. event->type = SCHED_EVENT_RUN;
  232. event->duration = duration;
  233. sched->nr_run_events++;
  234. }
  235. static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
  236. u64 timestamp, struct task_desc *wakee)
  237. {
  238. struct sched_atom *event, *wakee_event;
  239. event = get_new_event(task, timestamp);
  240. event->type = SCHED_EVENT_WAKEUP;
  241. event->wakee = wakee;
  242. wakee_event = last_event(wakee);
  243. if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
  244. sched->targetless_wakeups++;
  245. return;
  246. }
  247. if (wakee_event->wait_sem) {
  248. sched->multitarget_wakeups++;
  249. return;
  250. }
  251. wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
  252. sem_init(wakee_event->wait_sem, 0, 0);
  253. wakee_event->specific_wait = 1;
  254. event->wait_sem = wakee_event->wait_sem;
  255. sched->nr_wakeup_events++;
  256. }
  257. static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
  258. u64 timestamp, u64 task_state __maybe_unused)
  259. {
  260. struct sched_atom *event = get_new_event(task, timestamp);
  261. event->type = SCHED_EVENT_SLEEP;
  262. sched->nr_sleep_events++;
  263. }
  264. static struct task_desc *register_pid(struct perf_sched *sched,
  265. unsigned long pid, const char *comm)
  266. {
  267. struct task_desc *task;
  268. BUG_ON(pid >= MAX_PID);
  269. task = sched->pid_to_task[pid];
  270. if (task)
  271. return task;
  272. task = zalloc(sizeof(*task));
  273. task->pid = pid;
  274. task->nr = sched->nr_tasks;
  275. strcpy(task->comm, comm);
  276. /*
  277. * every task starts in sleeping state - this gets ignored
  278. * if there's no wakeup pointing to this sleep state:
  279. */
  280. add_sched_event_sleep(sched, task, 0, 0);
  281. sched->pid_to_task[pid] = task;
  282. sched->nr_tasks++;
  283. sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
  284. BUG_ON(!sched->tasks);
  285. sched->tasks[task->nr] = task;
  286. if (verbose)
  287. printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
  288. return task;
  289. }
  290. static void print_task_traces(struct perf_sched *sched)
  291. {
  292. struct task_desc *task;
  293. unsigned long i;
  294. for (i = 0; i < sched->nr_tasks; i++) {
  295. task = sched->tasks[i];
  296. printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
  297. task->nr, task->comm, task->pid, task->nr_events);
  298. }
  299. }
  300. static void add_cross_task_wakeups(struct perf_sched *sched)
  301. {
  302. struct task_desc *task1, *task2;
  303. unsigned long i, j;
  304. for (i = 0; i < sched->nr_tasks; i++) {
  305. task1 = sched->tasks[i];
  306. j = i + 1;
  307. if (j == sched->nr_tasks)
  308. j = 0;
  309. task2 = sched->tasks[j];
  310. add_sched_event_wakeup(sched, task1, 0, task2);
  311. }
  312. }
  313. static void perf_sched__process_event(struct perf_sched *sched,
  314. struct sched_atom *atom)
  315. {
  316. int ret = 0;
  317. switch (atom->type) {
  318. case SCHED_EVENT_RUN:
  319. burn_nsecs(sched, atom->duration);
  320. break;
  321. case SCHED_EVENT_SLEEP:
  322. if (atom->wait_sem)
  323. ret = sem_wait(atom->wait_sem);
  324. BUG_ON(ret);
  325. break;
  326. case SCHED_EVENT_WAKEUP:
  327. if (atom->wait_sem)
  328. ret = sem_post(atom->wait_sem);
  329. BUG_ON(ret);
  330. break;
  331. case SCHED_EVENT_MIGRATION:
  332. break;
  333. default:
  334. BUG_ON(1);
  335. }
  336. }
  337. static u64 get_cpu_usage_nsec_parent(void)
  338. {
  339. struct rusage ru;
  340. u64 sum;
  341. int err;
  342. err = getrusage(RUSAGE_SELF, &ru);
  343. BUG_ON(err);
  344. sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
  345. sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
  346. return sum;
  347. }
  348. static int self_open_counters(void)
  349. {
  350. struct perf_event_attr attr;
  351. int fd;
  352. memset(&attr, 0, sizeof(attr));
  353. attr.type = PERF_TYPE_SOFTWARE;
  354. attr.config = PERF_COUNT_SW_TASK_CLOCK;
  355. fd = sys_perf_event_open(&attr, 0, -1, -1,
  356. perf_event_open_cloexec_flag());
  357. if (fd < 0)
  358. pr_err("Error: sys_perf_event_open() syscall returned "
  359. "with %d (%s)\n", fd, strerror(errno));
  360. return fd;
  361. }
  362. static u64 get_cpu_usage_nsec_self(int fd)
  363. {
  364. u64 runtime;
  365. int ret;
  366. ret = read(fd, &runtime, sizeof(runtime));
  367. BUG_ON(ret != sizeof(runtime));
  368. return runtime;
  369. }
  370. struct sched_thread_parms {
  371. struct task_desc *task;
  372. struct perf_sched *sched;
  373. };
  374. static void *thread_func(void *ctx)
  375. {
  376. struct sched_thread_parms *parms = ctx;
  377. struct task_desc *this_task = parms->task;
  378. struct perf_sched *sched = parms->sched;
  379. u64 cpu_usage_0, cpu_usage_1;
  380. unsigned long i, ret;
  381. char comm2[22];
  382. int fd;
  383. zfree(&parms);
  384. sprintf(comm2, ":%s", this_task->comm);
  385. prctl(PR_SET_NAME, comm2);
  386. fd = self_open_counters();
  387. if (fd < 0)
  388. return NULL;
  389. again:
  390. ret = sem_post(&this_task->ready_for_work);
  391. BUG_ON(ret);
  392. ret = pthread_mutex_lock(&sched->start_work_mutex);
  393. BUG_ON(ret);
  394. ret = pthread_mutex_unlock(&sched->start_work_mutex);
  395. BUG_ON(ret);
  396. cpu_usage_0 = get_cpu_usage_nsec_self(fd);
  397. for (i = 0; i < this_task->nr_events; i++) {
  398. this_task->curr_event = i;
  399. perf_sched__process_event(sched, this_task->atoms[i]);
  400. }
  401. cpu_usage_1 = get_cpu_usage_nsec_self(fd);
  402. this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
  403. ret = sem_post(&this_task->work_done_sem);
  404. BUG_ON(ret);
  405. ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
  406. BUG_ON(ret);
  407. ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
  408. BUG_ON(ret);
  409. goto again;
  410. }
  411. static void create_tasks(struct perf_sched *sched)
  412. {
  413. struct task_desc *task;
  414. pthread_attr_t attr;
  415. unsigned long i;
  416. int err;
  417. err = pthread_attr_init(&attr);
  418. BUG_ON(err);
  419. err = pthread_attr_setstacksize(&attr,
  420. (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
  421. BUG_ON(err);
  422. err = pthread_mutex_lock(&sched->start_work_mutex);
  423. BUG_ON(err);
  424. err = pthread_mutex_lock(&sched->work_done_wait_mutex);
  425. BUG_ON(err);
  426. for (i = 0; i < sched->nr_tasks; i++) {
  427. struct sched_thread_parms *parms = malloc(sizeof(*parms));
  428. BUG_ON(parms == NULL);
  429. parms->task = task = sched->tasks[i];
  430. parms->sched = sched;
  431. sem_init(&task->sleep_sem, 0, 0);
  432. sem_init(&task->ready_for_work, 0, 0);
  433. sem_init(&task->work_done_sem, 0, 0);
  434. task->curr_event = 0;
  435. err = pthread_create(&task->thread, &attr, thread_func, parms);
  436. BUG_ON(err);
  437. }
  438. }
  439. static void wait_for_tasks(struct perf_sched *sched)
  440. {
  441. u64 cpu_usage_0, cpu_usage_1;
  442. struct task_desc *task;
  443. unsigned long i, ret;
  444. sched->start_time = get_nsecs();
  445. sched->cpu_usage = 0;
  446. pthread_mutex_unlock(&sched->work_done_wait_mutex);
  447. for (i = 0; i < sched->nr_tasks; i++) {
  448. task = sched->tasks[i];
  449. ret = sem_wait(&task->ready_for_work);
  450. BUG_ON(ret);
  451. sem_init(&task->ready_for_work, 0, 0);
  452. }
  453. ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
  454. BUG_ON(ret);
  455. cpu_usage_0 = get_cpu_usage_nsec_parent();
  456. pthread_mutex_unlock(&sched->start_work_mutex);
  457. for (i = 0; i < sched->nr_tasks; i++) {
  458. task = sched->tasks[i];
  459. ret = sem_wait(&task->work_done_sem);
  460. BUG_ON(ret);
  461. sem_init(&task->work_done_sem, 0, 0);
  462. sched->cpu_usage += task->cpu_usage;
  463. task->cpu_usage = 0;
  464. }
  465. cpu_usage_1 = get_cpu_usage_nsec_parent();
  466. if (!sched->runavg_cpu_usage)
  467. sched->runavg_cpu_usage = sched->cpu_usage;
  468. sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
  469. sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
  470. if (!sched->runavg_parent_cpu_usage)
  471. sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
  472. sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
  473. sched->parent_cpu_usage)/10;
  474. ret = pthread_mutex_lock(&sched->start_work_mutex);
  475. BUG_ON(ret);
  476. for (i = 0; i < sched->nr_tasks; i++) {
  477. task = sched->tasks[i];
  478. sem_init(&task->sleep_sem, 0, 0);
  479. task->curr_event = 0;
  480. }
  481. }
  482. static void run_one_test(struct perf_sched *sched)
  483. {
  484. u64 T0, T1, delta, avg_delta, fluct;
  485. T0 = get_nsecs();
  486. wait_for_tasks(sched);
  487. T1 = get_nsecs();
  488. delta = T1 - T0;
  489. sched->sum_runtime += delta;
  490. sched->nr_runs++;
  491. avg_delta = sched->sum_runtime / sched->nr_runs;
  492. if (delta < avg_delta)
  493. fluct = avg_delta - delta;
  494. else
  495. fluct = delta - avg_delta;
  496. sched->sum_fluct += fluct;
  497. if (!sched->run_avg)
  498. sched->run_avg = delta;
  499. sched->run_avg = (sched->run_avg * 9 + delta) / 10;
  500. printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
  501. printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
  502. printf("cpu: %0.2f / %0.2f",
  503. (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
  504. #if 0
  505. /*
  506. * rusage statistics done by the parent, these are less
  507. * accurate than the sched->sum_exec_runtime based statistics:
  508. */
  509. printf(" [%0.2f / %0.2f]",
  510. (double)sched->parent_cpu_usage/1e6,
  511. (double)sched->runavg_parent_cpu_usage/1e6);
  512. #endif
  513. printf("\n");
  514. if (sched->nr_sleep_corrections)
  515. printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
  516. sched->nr_sleep_corrections = 0;
  517. }
  518. static void test_calibrations(struct perf_sched *sched)
  519. {
  520. u64 T0, T1;
  521. T0 = get_nsecs();
  522. burn_nsecs(sched, 1e6);
  523. T1 = get_nsecs();
  524. printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
  525. T0 = get_nsecs();
  526. sleep_nsecs(1e6);
  527. T1 = get_nsecs();
  528. printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
  529. }
  530. static int
  531. replay_wakeup_event(struct perf_sched *sched,
  532. struct perf_evsel *evsel, struct perf_sample *sample,
  533. struct machine *machine __maybe_unused)
  534. {
  535. const char *comm = perf_evsel__strval(evsel, sample, "comm");
  536. const u32 pid = perf_evsel__intval(evsel, sample, "pid");
  537. struct task_desc *waker, *wakee;
  538. if (verbose) {
  539. printf("sched_wakeup event %p\n", evsel);
  540. printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
  541. }
  542. waker = register_pid(sched, sample->tid, "<unknown>");
  543. wakee = register_pid(sched, pid, comm);
  544. add_sched_event_wakeup(sched, waker, sample->time, wakee);
  545. return 0;
  546. }
  547. static int replay_switch_event(struct perf_sched *sched,
  548. struct perf_evsel *evsel,
  549. struct perf_sample *sample,
  550. struct machine *machine __maybe_unused)
  551. {
  552. const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
  553. *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
  554. const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
  555. next_pid = perf_evsel__intval(evsel, sample, "next_pid");
  556. const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
  557. struct task_desc *prev, __maybe_unused *next;
  558. u64 timestamp0, timestamp = sample->time;
  559. int cpu = sample->cpu;
  560. s64 delta;
  561. if (verbose)
  562. printf("sched_switch event %p\n", evsel);
  563. if (cpu >= MAX_CPUS || cpu < 0)
  564. return 0;
  565. timestamp0 = sched->cpu_last_switched[cpu];
  566. if (timestamp0)
  567. delta = timestamp - timestamp0;
  568. else
  569. delta = 0;
  570. if (delta < 0) {
  571. pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
  572. return -1;
  573. }
  574. pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
  575. prev_comm, prev_pid, next_comm, next_pid, delta);
  576. prev = register_pid(sched, prev_pid, prev_comm);
  577. next = register_pid(sched, next_pid, next_comm);
  578. sched->cpu_last_switched[cpu] = timestamp;
  579. add_sched_event_run(sched, prev, timestamp, delta);
  580. add_sched_event_sleep(sched, prev, timestamp, prev_state);
  581. return 0;
  582. }
  583. static int replay_fork_event(struct perf_sched *sched,
  584. union perf_event *event,
  585. struct machine *machine)
  586. {
  587. struct thread *child, *parent;
  588. child = machine__findnew_thread(machine, event->fork.pid,
  589. event->fork.tid);
  590. parent = machine__findnew_thread(machine, event->fork.ppid,
  591. event->fork.ptid);
  592. if (child == NULL || parent == NULL) {
  593. pr_debug("thread does not exist on fork event: child %p, parent %p\n",
  594. child, parent);
  595. return 0;
  596. }
  597. if (verbose) {
  598. printf("fork event\n");
  599. printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
  600. printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
  601. }
  602. register_pid(sched, parent->tid, thread__comm_str(parent));
  603. register_pid(sched, child->tid, thread__comm_str(child));
  604. return 0;
  605. }
  606. struct sort_dimension {
  607. const char *name;
  608. sort_fn_t cmp;
  609. struct list_head list;
  610. };
  611. static int
  612. thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
  613. {
  614. struct sort_dimension *sort;
  615. int ret = 0;
  616. BUG_ON(list_empty(list));
  617. list_for_each_entry(sort, list, list) {
  618. ret = sort->cmp(l, r);
  619. if (ret)
  620. return ret;
  621. }
  622. return ret;
  623. }
  624. static struct work_atoms *
  625. thread_atoms_search(struct rb_root *root, struct thread *thread,
  626. struct list_head *sort_list)
  627. {
  628. struct rb_node *node = root->rb_node;
  629. struct work_atoms key = { .thread = thread };
  630. while (node) {
  631. struct work_atoms *atoms;
  632. int cmp;
  633. atoms = container_of(node, struct work_atoms, node);
  634. cmp = thread_lat_cmp(sort_list, &key, atoms);
  635. if (cmp > 0)
  636. node = node->rb_left;
  637. else if (cmp < 0)
  638. node = node->rb_right;
  639. else {
  640. BUG_ON(thread != atoms->thread);
  641. return atoms;
  642. }
  643. }
  644. return NULL;
  645. }
  646. static void
  647. __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
  648. struct list_head *sort_list)
  649. {
  650. struct rb_node **new = &(root->rb_node), *parent = NULL;
  651. while (*new) {
  652. struct work_atoms *this;
  653. int cmp;
  654. this = container_of(*new, struct work_atoms, node);
  655. parent = *new;
  656. cmp = thread_lat_cmp(sort_list, data, this);
  657. if (cmp > 0)
  658. new = &((*new)->rb_left);
  659. else
  660. new = &((*new)->rb_right);
  661. }
  662. rb_link_node(&data->node, parent, new);
  663. rb_insert_color(&data->node, root);
  664. }
  665. static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
  666. {
  667. struct work_atoms *atoms = zalloc(sizeof(*atoms));
  668. if (!atoms) {
  669. pr_err("No memory at %s\n", __func__);
  670. return -1;
  671. }
  672. atoms->thread = thread;
  673. INIT_LIST_HEAD(&atoms->work_list);
  674. __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
  675. return 0;
  676. }
  677. static char sched_out_state(u64 prev_state)
  678. {
  679. const char *str = TASK_STATE_TO_CHAR_STR;
  680. return str[prev_state];
  681. }
  682. static int
  683. add_sched_out_event(struct work_atoms *atoms,
  684. char run_state,
  685. u64 timestamp)
  686. {
  687. struct work_atom *atom = zalloc(sizeof(*atom));
  688. if (!atom) {
  689. pr_err("Non memory at %s", __func__);
  690. return -1;
  691. }
  692. atom->sched_out_time = timestamp;
  693. if (run_state == 'R') {
  694. atom->state = THREAD_WAIT_CPU;
  695. atom->wake_up_time = atom->sched_out_time;
  696. }
  697. list_add_tail(&atom->list, &atoms->work_list);
  698. return 0;
  699. }
  700. static void
  701. add_runtime_event(struct work_atoms *atoms, u64 delta,
  702. u64 timestamp __maybe_unused)
  703. {
  704. struct work_atom *atom;
  705. BUG_ON(list_empty(&atoms->work_list));
  706. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  707. atom->runtime += delta;
  708. atoms->total_runtime += delta;
  709. }
  710. static void
  711. add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
  712. {
  713. struct work_atom *atom;
  714. u64 delta;
  715. if (list_empty(&atoms->work_list))
  716. return;
  717. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  718. if (atom->state != THREAD_WAIT_CPU)
  719. return;
  720. if (timestamp < atom->wake_up_time) {
  721. atom->state = THREAD_IGNORE;
  722. return;
  723. }
  724. atom->state = THREAD_SCHED_IN;
  725. atom->sched_in_time = timestamp;
  726. delta = atom->sched_in_time - atom->wake_up_time;
  727. atoms->total_lat += delta;
  728. if (delta > atoms->max_lat) {
  729. atoms->max_lat = delta;
  730. atoms->max_lat_at = timestamp;
  731. }
  732. atoms->nb_atoms++;
  733. }
  734. static int latency_switch_event(struct perf_sched *sched,
  735. struct perf_evsel *evsel,
  736. struct perf_sample *sample,
  737. struct machine *machine)
  738. {
  739. const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
  740. next_pid = perf_evsel__intval(evsel, sample, "next_pid");
  741. const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
  742. struct work_atoms *out_events, *in_events;
  743. struct thread *sched_out, *sched_in;
  744. u64 timestamp0, timestamp = sample->time;
  745. int cpu = sample->cpu;
  746. s64 delta;
  747. BUG_ON(cpu >= MAX_CPUS || cpu < 0);
  748. timestamp0 = sched->cpu_last_switched[cpu];
  749. sched->cpu_last_switched[cpu] = timestamp;
  750. if (timestamp0)
  751. delta = timestamp - timestamp0;
  752. else
  753. delta = 0;
  754. if (delta < 0) {
  755. pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
  756. return -1;
  757. }
  758. sched_out = machine__findnew_thread(machine, -1, prev_pid);
  759. sched_in = machine__findnew_thread(machine, -1, next_pid);
  760. out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
  761. if (!out_events) {
  762. if (thread_atoms_insert(sched, sched_out))
  763. return -1;
  764. out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
  765. if (!out_events) {
  766. pr_err("out-event: Internal tree error");
  767. return -1;
  768. }
  769. }
  770. if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
  771. return -1;
  772. in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
  773. if (!in_events) {
  774. if (thread_atoms_insert(sched, sched_in))
  775. return -1;
  776. in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
  777. if (!in_events) {
  778. pr_err("in-event: Internal tree error");
  779. return -1;
  780. }
  781. /*
  782. * Take came in we have not heard about yet,
  783. * add in an initial atom in runnable state:
  784. */
  785. if (add_sched_out_event(in_events, 'R', timestamp))
  786. return -1;
  787. }
  788. add_sched_in_event(in_events, timestamp);
  789. return 0;
  790. }
  791. static int latency_runtime_event(struct perf_sched *sched,
  792. struct perf_evsel *evsel,
  793. struct perf_sample *sample,
  794. struct machine *machine)
  795. {
  796. const u32 pid = perf_evsel__intval(evsel, sample, "pid");
  797. const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
  798. struct thread *thread = machine__findnew_thread(machine, -1, pid);
  799. struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
  800. u64 timestamp = sample->time;
  801. int cpu = sample->cpu;
  802. BUG_ON(cpu >= MAX_CPUS || cpu < 0);
  803. if (!atoms) {
  804. if (thread_atoms_insert(sched, thread))
  805. return -1;
  806. atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
  807. if (!atoms) {
  808. pr_err("in-event: Internal tree error");
  809. return -1;
  810. }
  811. if (add_sched_out_event(atoms, 'R', timestamp))
  812. return -1;
  813. }
  814. add_runtime_event(atoms, runtime, timestamp);
  815. return 0;
  816. }
  817. static int latency_wakeup_event(struct perf_sched *sched,
  818. struct perf_evsel *evsel,
  819. struct perf_sample *sample,
  820. struct machine *machine)
  821. {
  822. const u32 pid = perf_evsel__intval(evsel, sample, "pid");
  823. struct work_atoms *atoms;
  824. struct work_atom *atom;
  825. struct thread *wakee;
  826. u64 timestamp = sample->time;
  827. wakee = machine__findnew_thread(machine, -1, pid);
  828. atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
  829. if (!atoms) {
  830. if (thread_atoms_insert(sched, wakee))
  831. return -1;
  832. atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
  833. if (!atoms) {
  834. pr_err("wakeup-event: Internal tree error");
  835. return -1;
  836. }
  837. if (add_sched_out_event(atoms, 'S', timestamp))
  838. return -1;
  839. }
  840. BUG_ON(list_empty(&atoms->work_list));
  841. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  842. /*
  843. * As we do not guarantee the wakeup event happens when
  844. * task is out of run queue, also may happen when task is
  845. * on run queue and wakeup only change ->state to TASK_RUNNING,
  846. * then we should not set the ->wake_up_time when wake up a
  847. * task which is on run queue.
  848. *
  849. * You WILL be missing events if you've recorded only
  850. * one CPU, or are only looking at only one, so don't
  851. * skip in this case.
  852. */
  853. if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
  854. return 0;
  855. sched->nr_timestamps++;
  856. if (atom->sched_out_time > timestamp) {
  857. sched->nr_unordered_timestamps++;
  858. return 0;
  859. }
  860. atom->state = THREAD_WAIT_CPU;
  861. atom->wake_up_time = timestamp;
  862. return 0;
  863. }
  864. static int latency_migrate_task_event(struct perf_sched *sched,
  865. struct perf_evsel *evsel,
  866. struct perf_sample *sample,
  867. struct machine *machine)
  868. {
  869. const u32 pid = perf_evsel__intval(evsel, sample, "pid");
  870. u64 timestamp = sample->time;
  871. struct work_atoms *atoms;
  872. struct work_atom *atom;
  873. struct thread *migrant;
  874. /*
  875. * Only need to worry about migration when profiling one CPU.
  876. */
  877. if (sched->profile_cpu == -1)
  878. return 0;
  879. migrant = machine__findnew_thread(machine, -1, pid);
  880. atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
  881. if (!atoms) {
  882. if (thread_atoms_insert(sched, migrant))
  883. return -1;
  884. register_pid(sched, migrant->tid, thread__comm_str(migrant));
  885. atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
  886. if (!atoms) {
  887. pr_err("migration-event: Internal tree error");
  888. return -1;
  889. }
  890. if (add_sched_out_event(atoms, 'R', timestamp))
  891. return -1;
  892. }
  893. BUG_ON(list_empty(&atoms->work_list));
  894. atom = list_entry(atoms->work_list.prev, struct work_atom, list);
  895. atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
  896. sched->nr_timestamps++;
  897. if (atom->sched_out_time > timestamp)
  898. sched->nr_unordered_timestamps++;
  899. return 0;
  900. }
  901. static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
  902. {
  903. int i;
  904. int ret;
  905. u64 avg;
  906. if (!work_list->nb_atoms)
  907. return;
  908. /*
  909. * Ignore idle threads:
  910. */
  911. if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
  912. return;
  913. sched->all_runtime += work_list->total_runtime;
  914. sched->all_count += work_list->nb_atoms;
  915. ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
  916. for (i = 0; i < 24 - ret; i++)
  917. printf(" ");
  918. avg = work_list->total_lat / work_list->nb_atoms;
  919. printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
  920. (double)work_list->total_runtime / 1e6,
  921. work_list->nb_atoms, (double)avg / 1e6,
  922. (double)work_list->max_lat / 1e6,
  923. (double)work_list->max_lat_at / 1e9);
  924. }
  925. static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
  926. {
  927. if (l->thread->tid < r->thread->tid)
  928. return -1;
  929. if (l->thread->tid > r->thread->tid)
  930. return 1;
  931. return 0;
  932. }
  933. static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
  934. {
  935. u64 avgl, avgr;
  936. if (!l->nb_atoms)
  937. return -1;
  938. if (!r->nb_atoms)
  939. return 1;
  940. avgl = l->total_lat / l->nb_atoms;
  941. avgr = r->total_lat / r->nb_atoms;
  942. if (avgl < avgr)
  943. return -1;
  944. if (avgl > avgr)
  945. return 1;
  946. return 0;
  947. }
  948. static int max_cmp(struct work_atoms *l, struct work_atoms *r)
  949. {
  950. if (l->max_lat < r->max_lat)
  951. return -1;
  952. if (l->max_lat > r->max_lat)
  953. return 1;
  954. return 0;
  955. }
  956. static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
  957. {
  958. if (l->nb_atoms < r->nb_atoms)
  959. return -1;
  960. if (l->nb_atoms > r->nb_atoms)
  961. return 1;
  962. return 0;
  963. }
  964. static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
  965. {
  966. if (l->total_runtime < r->total_runtime)
  967. return -1;
  968. if (l->total_runtime > r->total_runtime)
  969. return 1;
  970. return 0;
  971. }
  972. static int sort_dimension__add(const char *tok, struct list_head *list)
  973. {
  974. size_t i;
  975. static struct sort_dimension avg_sort_dimension = {
  976. .name = "avg",
  977. .cmp = avg_cmp,
  978. };
  979. static struct sort_dimension max_sort_dimension = {
  980. .name = "max",
  981. .cmp = max_cmp,
  982. };
  983. static struct sort_dimension pid_sort_dimension = {
  984. .name = "pid",
  985. .cmp = pid_cmp,
  986. };
  987. static struct sort_dimension runtime_sort_dimension = {
  988. .name = "runtime",
  989. .cmp = runtime_cmp,
  990. };
  991. static struct sort_dimension switch_sort_dimension = {
  992. .name = "switch",
  993. .cmp = switch_cmp,
  994. };
  995. struct sort_dimension *available_sorts[] = {
  996. &pid_sort_dimension,
  997. &avg_sort_dimension,
  998. &max_sort_dimension,
  999. &switch_sort_dimension,
  1000. &runtime_sort_dimension,
  1001. };
  1002. for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
  1003. if (!strcmp(available_sorts[i]->name, tok)) {
  1004. list_add_tail(&available_sorts[i]->list, list);
  1005. return 0;
  1006. }
  1007. }
  1008. return -1;
  1009. }
  1010. static void perf_sched__sort_lat(struct perf_sched *sched)
  1011. {
  1012. struct rb_node *node;
  1013. for (;;) {
  1014. struct work_atoms *data;
  1015. node = rb_first(&sched->atom_root);
  1016. if (!node)
  1017. break;
  1018. rb_erase(node, &sched->atom_root);
  1019. data = rb_entry(node, struct work_atoms, node);
  1020. __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
  1021. }
  1022. }
  1023. static int process_sched_wakeup_event(struct perf_tool *tool,
  1024. struct perf_evsel *evsel,
  1025. struct perf_sample *sample,
  1026. struct machine *machine)
  1027. {
  1028. struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
  1029. if (sched->tp_handler->wakeup_event)
  1030. return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
  1031. return 0;
  1032. }
  1033. static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
  1034. struct perf_sample *sample, struct machine *machine)
  1035. {
  1036. const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
  1037. struct thread *sched_in;
  1038. int new_shortname;
  1039. u64 timestamp0, timestamp = sample->time;
  1040. s64 delta;
  1041. int cpu, this_cpu = sample->cpu;
  1042. BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
  1043. if (this_cpu > sched->max_cpu)
  1044. sched->max_cpu = this_cpu;
  1045. timestamp0 = sched->cpu_last_switched[this_cpu];
  1046. sched->cpu_last_switched[this_cpu] = timestamp;
  1047. if (timestamp0)
  1048. delta = timestamp - timestamp0;
  1049. else
  1050. delta = 0;
  1051. if (delta < 0) {
  1052. pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
  1053. return -1;
  1054. }
  1055. sched_in = machine__findnew_thread(machine, -1, next_pid);
  1056. sched->curr_thread[this_cpu] = sched_in;
  1057. printf(" ");
  1058. new_shortname = 0;
  1059. if (!sched_in->shortname[0]) {
  1060. if (!strcmp(thread__comm_str(sched_in), "swapper")) {
  1061. /*
  1062. * Don't allocate a letter-number for swapper:0
  1063. * as a shortname. Instead, we use '.' for it.
  1064. */
  1065. sched_in->shortname[0] = '.';
  1066. sched_in->shortname[1] = ' ';
  1067. } else {
  1068. sched_in->shortname[0] = sched->next_shortname1;
  1069. sched_in->shortname[1] = sched->next_shortname2;
  1070. if (sched->next_shortname1 < 'Z') {
  1071. sched->next_shortname1++;
  1072. } else {
  1073. sched->next_shortname1 = 'A';
  1074. if (sched->next_shortname2 < '9')
  1075. sched->next_shortname2++;
  1076. else
  1077. sched->next_shortname2 = '0';
  1078. }
  1079. }
  1080. new_shortname = 1;
  1081. }
  1082. for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
  1083. if (cpu != this_cpu)
  1084. printf(" ");
  1085. else
  1086. printf("*");
  1087. if (sched->curr_thread[cpu])
  1088. printf("%2s ", sched->curr_thread[cpu]->shortname);
  1089. else
  1090. printf(" ");
  1091. }
  1092. printf(" %12.6f secs ", (double)timestamp/1e9);
  1093. if (new_shortname) {
  1094. printf("%s => %s:%d\n",
  1095. sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
  1096. } else {
  1097. printf("\n");
  1098. }
  1099. return 0;
  1100. }
  1101. static int process_sched_switch_event(struct perf_tool *tool,
  1102. struct perf_evsel *evsel,
  1103. struct perf_sample *sample,
  1104. struct machine *machine)
  1105. {
  1106. struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
  1107. int this_cpu = sample->cpu, err = 0;
  1108. u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
  1109. next_pid = perf_evsel__intval(evsel, sample, "next_pid");
  1110. if (sched->curr_pid[this_cpu] != (u32)-1) {
  1111. /*
  1112. * Are we trying to switch away a PID that is
  1113. * not current?
  1114. */
  1115. if (sched->curr_pid[this_cpu] != prev_pid)
  1116. sched->nr_context_switch_bugs++;
  1117. }
  1118. if (sched->tp_handler->switch_event)
  1119. err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
  1120. sched->curr_pid[this_cpu] = next_pid;
  1121. return err;
  1122. }
  1123. static int process_sched_runtime_event(struct perf_tool *tool,
  1124. struct perf_evsel *evsel,
  1125. struct perf_sample *sample,
  1126. struct machine *machine)
  1127. {
  1128. struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
  1129. if (sched->tp_handler->runtime_event)
  1130. return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
  1131. return 0;
  1132. }
  1133. static int perf_sched__process_fork_event(struct perf_tool *tool,
  1134. union perf_event *event,
  1135. struct perf_sample *sample,
  1136. struct machine *machine)
  1137. {
  1138. struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
  1139. /* run the fork event through the perf machineruy */
  1140. perf_event__process_fork(tool, event, sample, machine);
  1141. /* and then run additional processing needed for this command */
  1142. if (sched->tp_handler->fork_event)
  1143. return sched->tp_handler->fork_event(sched, event, machine);
  1144. return 0;
  1145. }
  1146. static int process_sched_migrate_task_event(struct perf_tool *tool,
  1147. struct perf_evsel *evsel,
  1148. struct perf_sample *sample,
  1149. struct machine *machine)
  1150. {
  1151. struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
  1152. if (sched->tp_handler->migrate_task_event)
  1153. return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
  1154. return 0;
  1155. }
  1156. typedef int (*tracepoint_handler)(struct perf_tool *tool,
  1157. struct perf_evsel *evsel,
  1158. struct perf_sample *sample,
  1159. struct machine *machine);
  1160. static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
  1161. union perf_event *event __maybe_unused,
  1162. struct perf_sample *sample,
  1163. struct perf_evsel *evsel,
  1164. struct machine *machine)
  1165. {
  1166. int err = 0;
  1167. evsel->hists.stats.total_period += sample->period;
  1168. hists__inc_nr_samples(&evsel->hists, true);
  1169. if (evsel->handler != NULL) {
  1170. tracepoint_handler f = evsel->handler;
  1171. err = f(tool, evsel, sample, machine);
  1172. }
  1173. return err;
  1174. }
  1175. static int perf_sched__read_events(struct perf_sched *sched,
  1176. struct perf_session **psession)
  1177. {
  1178. const struct perf_evsel_str_handler handlers[] = {
  1179. { "sched:sched_switch", process_sched_switch_event, },
  1180. { "sched:sched_stat_runtime", process_sched_runtime_event, },
  1181. { "sched:sched_wakeup", process_sched_wakeup_event, },
  1182. { "sched:sched_wakeup_new", process_sched_wakeup_event, },
  1183. { "sched:sched_migrate_task", process_sched_migrate_task_event, },
  1184. };
  1185. struct perf_session *session;
  1186. struct perf_data_file file = {
  1187. .path = input_name,
  1188. .mode = PERF_DATA_MODE_READ,
  1189. };
  1190. session = perf_session__new(&file, false, &sched->tool);
  1191. if (session == NULL) {
  1192. pr_debug("No Memory for session\n");
  1193. return -1;
  1194. }
  1195. if (perf_session__set_tracepoints_handlers(session, handlers))
  1196. goto out_delete;
  1197. if (perf_session__has_traces(session, "record -R")) {
  1198. int err = perf_session__process_events(session, &sched->tool);
  1199. if (err) {
  1200. pr_err("Failed to process events, error %d", err);
  1201. goto out_delete;
  1202. }
  1203. sched->nr_events = session->stats.nr_events[0];
  1204. sched->nr_lost_events = session->stats.total_lost;
  1205. sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
  1206. }
  1207. if (psession)
  1208. *psession = session;
  1209. else
  1210. perf_session__delete(session);
  1211. return 0;
  1212. out_delete:
  1213. perf_session__delete(session);
  1214. return -1;
  1215. }
  1216. static void print_bad_events(struct perf_sched *sched)
  1217. {
  1218. if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
  1219. printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
  1220. (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
  1221. sched->nr_unordered_timestamps, sched->nr_timestamps);
  1222. }
  1223. if (sched->nr_lost_events && sched->nr_events) {
  1224. printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
  1225. (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
  1226. sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
  1227. }
  1228. if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
  1229. printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
  1230. (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
  1231. sched->nr_context_switch_bugs, sched->nr_timestamps);
  1232. if (sched->nr_lost_events)
  1233. printf(" (due to lost events?)");
  1234. printf("\n");
  1235. }
  1236. }
  1237. static int perf_sched__lat(struct perf_sched *sched)
  1238. {
  1239. struct rb_node *next;
  1240. struct perf_session *session;
  1241. setup_pager();
  1242. /* save session -- references to threads are held in work_list */
  1243. if (perf_sched__read_events(sched, &session))
  1244. return -1;
  1245. perf_sched__sort_lat(sched);
  1246. printf("\n -----------------------------------------------------------------------------------------------------------------\n");
  1247. printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
  1248. printf(" -----------------------------------------------------------------------------------------------------------------\n");
  1249. next = rb_first(&sched->sorted_atom_root);
  1250. while (next) {
  1251. struct work_atoms *work_list;
  1252. work_list = rb_entry(next, struct work_atoms, node);
  1253. output_lat_thread(sched, work_list);
  1254. next = rb_next(next);
  1255. }
  1256. printf(" -----------------------------------------------------------------------------------------------------------------\n");
  1257. printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
  1258. (double)sched->all_runtime / 1e6, sched->all_count);
  1259. printf(" ---------------------------------------------------\n");
  1260. print_bad_events(sched);
  1261. printf("\n");
  1262. perf_session__delete(session);
  1263. return 0;
  1264. }
  1265. static int perf_sched__map(struct perf_sched *sched)
  1266. {
  1267. sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
  1268. setup_pager();
  1269. if (perf_sched__read_events(sched, NULL))
  1270. return -1;
  1271. print_bad_events(sched);
  1272. return 0;
  1273. }
  1274. static int perf_sched__replay(struct perf_sched *sched)
  1275. {
  1276. unsigned long i;
  1277. calibrate_run_measurement_overhead(sched);
  1278. calibrate_sleep_measurement_overhead(sched);
  1279. test_calibrations(sched);
  1280. if (perf_sched__read_events(sched, NULL))
  1281. return -1;
  1282. printf("nr_run_events: %ld\n", sched->nr_run_events);
  1283. printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
  1284. printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
  1285. if (sched->targetless_wakeups)
  1286. printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
  1287. if (sched->multitarget_wakeups)
  1288. printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
  1289. if (sched->nr_run_events_optimized)
  1290. printf("run atoms optimized: %ld\n",
  1291. sched->nr_run_events_optimized);
  1292. print_task_traces(sched);
  1293. add_cross_task_wakeups(sched);
  1294. create_tasks(sched);
  1295. printf("------------------------------------------------------------\n");
  1296. for (i = 0; i < sched->replay_repeat; i++)
  1297. run_one_test(sched);
  1298. return 0;
  1299. }
  1300. static void setup_sorting(struct perf_sched *sched, const struct option *options,
  1301. const char * const usage_msg[])
  1302. {
  1303. char *tmp, *tok, *str = strdup(sched->sort_order);
  1304. for (tok = strtok_r(str, ", ", &tmp);
  1305. tok; tok = strtok_r(NULL, ", ", &tmp)) {
  1306. if (sort_dimension__add(tok, &sched->sort_list) < 0) {
  1307. error("Unknown --sort key: `%s'", tok);
  1308. usage_with_options(usage_msg, options);
  1309. }
  1310. }
  1311. free(str);
  1312. sort_dimension__add("pid", &sched->cmp_pid);
  1313. }
  1314. static int __cmd_record(int argc, const char **argv)
  1315. {
  1316. unsigned int rec_argc, i, j;
  1317. const char **rec_argv;
  1318. const char * const record_args[] = {
  1319. "record",
  1320. "-a",
  1321. "-R",
  1322. "-m", "1024",
  1323. "-c", "1",
  1324. "-e", "sched:sched_switch",
  1325. "-e", "sched:sched_stat_wait",
  1326. "-e", "sched:sched_stat_sleep",
  1327. "-e", "sched:sched_stat_iowait",
  1328. "-e", "sched:sched_stat_runtime",
  1329. "-e", "sched:sched_process_fork",
  1330. "-e", "sched:sched_wakeup",
  1331. "-e", "sched:sched_wakeup_new",
  1332. "-e", "sched:sched_migrate_task",
  1333. };
  1334. rec_argc = ARRAY_SIZE(record_args) + argc - 1;
  1335. rec_argv = calloc(rec_argc + 1, sizeof(char *));
  1336. if (rec_argv == NULL)
  1337. return -ENOMEM;
  1338. for (i = 0; i < ARRAY_SIZE(record_args); i++)
  1339. rec_argv[i] = strdup(record_args[i]);
  1340. for (j = 1; j < (unsigned int)argc; j++, i++)
  1341. rec_argv[i] = argv[j];
  1342. BUG_ON(i != rec_argc);
  1343. return cmd_record(i, rec_argv, NULL);
  1344. }
  1345. int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
  1346. {
  1347. const char default_sort_order[] = "avg, max, switch, runtime";
  1348. struct perf_sched sched = {
  1349. .tool = {
  1350. .sample = perf_sched__process_tracepoint_sample,
  1351. .comm = perf_event__process_comm,
  1352. .lost = perf_event__process_lost,
  1353. .fork = perf_sched__process_fork_event,
  1354. .ordered_samples = true,
  1355. },
  1356. .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
  1357. .sort_list = LIST_HEAD_INIT(sched.sort_list),
  1358. .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
  1359. .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
  1360. .sort_order = default_sort_order,
  1361. .replay_repeat = 10,
  1362. .profile_cpu = -1,
  1363. .next_shortname1 = 'A',
  1364. .next_shortname2 = '0',
  1365. };
  1366. const struct option latency_options[] = {
  1367. OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
  1368. "sort by key(s): runtime, switch, avg, max"),
  1369. OPT_INCR('v', "verbose", &verbose,
  1370. "be more verbose (show symbol address, etc)"),
  1371. OPT_INTEGER('C', "CPU", &sched.profile_cpu,
  1372. "CPU to profile on"),
  1373. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1374. "dump raw trace in ASCII"),
  1375. OPT_END()
  1376. };
  1377. const struct option replay_options[] = {
  1378. OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
  1379. "repeat the workload replay N times (-1: infinite)"),
  1380. OPT_INCR('v', "verbose", &verbose,
  1381. "be more verbose (show symbol address, etc)"),
  1382. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1383. "dump raw trace in ASCII"),
  1384. OPT_END()
  1385. };
  1386. const struct option sched_options[] = {
  1387. OPT_STRING('i', "input", &input_name, "file",
  1388. "input file name"),
  1389. OPT_INCR('v', "verbose", &verbose,
  1390. "be more verbose (show symbol address, etc)"),
  1391. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1392. "dump raw trace in ASCII"),
  1393. OPT_END()
  1394. };
  1395. const char * const latency_usage[] = {
  1396. "perf sched latency [<options>]",
  1397. NULL
  1398. };
  1399. const char * const replay_usage[] = {
  1400. "perf sched replay [<options>]",
  1401. NULL
  1402. };
  1403. const char *const sched_subcommands[] = { "record", "latency", "map",
  1404. "replay", "script", NULL };
  1405. const char *sched_usage[] = {
  1406. NULL,
  1407. NULL
  1408. };
  1409. struct trace_sched_handler lat_ops = {
  1410. .wakeup_event = latency_wakeup_event,
  1411. .switch_event = latency_switch_event,
  1412. .runtime_event = latency_runtime_event,
  1413. .migrate_task_event = latency_migrate_task_event,
  1414. };
  1415. struct trace_sched_handler map_ops = {
  1416. .switch_event = map_switch_event,
  1417. };
  1418. struct trace_sched_handler replay_ops = {
  1419. .wakeup_event = replay_wakeup_event,
  1420. .switch_event = replay_switch_event,
  1421. .fork_event = replay_fork_event,
  1422. };
  1423. unsigned int i;
  1424. for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
  1425. sched.curr_pid[i] = -1;
  1426. argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
  1427. sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
  1428. if (!argc)
  1429. usage_with_options(sched_usage, sched_options);
  1430. /*
  1431. * Aliased to 'perf script' for now:
  1432. */
  1433. if (!strcmp(argv[0], "script"))
  1434. return cmd_script(argc, argv, prefix);
  1435. symbol__init();
  1436. if (!strncmp(argv[0], "rec", 3)) {
  1437. return __cmd_record(argc, argv);
  1438. } else if (!strncmp(argv[0], "lat", 3)) {
  1439. sched.tp_handler = &lat_ops;
  1440. if (argc > 1) {
  1441. argc = parse_options(argc, argv, latency_options, latency_usage, 0);
  1442. if (argc)
  1443. usage_with_options(latency_usage, latency_options);
  1444. }
  1445. setup_sorting(&sched, latency_options, latency_usage);
  1446. return perf_sched__lat(&sched);
  1447. } else if (!strcmp(argv[0], "map")) {
  1448. sched.tp_handler = &map_ops;
  1449. setup_sorting(&sched, latency_options, latency_usage);
  1450. return perf_sched__map(&sched);
  1451. } else if (!strncmp(argv[0], "rep", 3)) {
  1452. sched.tp_handler = &replay_ops;
  1453. if (argc) {
  1454. argc = parse_options(argc, argv, replay_options, replay_usage, 0);
  1455. if (argc)
  1456. usage_with_options(replay_usage, replay_options);
  1457. }
  1458. return perf_sched__replay(&sched);
  1459. } else {
  1460. usage_with_options(sched_usage, sched_options);
  1461. }
  1462. return 0;
  1463. }