udp.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The User Datagram Protocol (UDP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  11. * Alan Cox, <alan@lxorguk.ukuu.org.uk>
  12. * Hirokazu Takahashi, <taka@valinux.co.jp>
  13. *
  14. * Fixes:
  15. * Alan Cox : verify_area() calls
  16. * Alan Cox : stopped close while in use off icmp
  17. * messages. Not a fix but a botch that
  18. * for udp at least is 'valid'.
  19. * Alan Cox : Fixed icmp handling properly
  20. * Alan Cox : Correct error for oversized datagrams
  21. * Alan Cox : Tidied select() semantics.
  22. * Alan Cox : udp_err() fixed properly, also now
  23. * select and read wake correctly on errors
  24. * Alan Cox : udp_send verify_area moved to avoid mem leak
  25. * Alan Cox : UDP can count its memory
  26. * Alan Cox : send to an unknown connection causes
  27. * an ECONNREFUSED off the icmp, but
  28. * does NOT close.
  29. * Alan Cox : Switched to new sk_buff handlers. No more backlog!
  30. * Alan Cox : Using generic datagram code. Even smaller and the PEEK
  31. * bug no longer crashes it.
  32. * Fred Van Kempen : Net2e support for sk->broadcast.
  33. * Alan Cox : Uses skb_free_datagram
  34. * Alan Cox : Added get/set sockopt support.
  35. * Alan Cox : Broadcasting without option set returns EACCES.
  36. * Alan Cox : No wakeup calls. Instead we now use the callbacks.
  37. * Alan Cox : Use ip_tos and ip_ttl
  38. * Alan Cox : SNMP Mibs
  39. * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
  40. * Matt Dillon : UDP length checks.
  41. * Alan Cox : Smarter af_inet used properly.
  42. * Alan Cox : Use new kernel side addressing.
  43. * Alan Cox : Incorrect return on truncated datagram receive.
  44. * Arnt Gulbrandsen : New udp_send and stuff
  45. * Alan Cox : Cache last socket
  46. * Alan Cox : Route cache
  47. * Jon Peatfield : Minor efficiency fix to sendto().
  48. * Mike Shaver : RFC1122 checks.
  49. * Alan Cox : Nonblocking error fix.
  50. * Willy Konynenberg : Transparent proxying support.
  51. * Mike McLagan : Routing by source
  52. * David S. Miller : New socket lookup architecture.
  53. * Last socket cache retained as it
  54. * does have a high hit rate.
  55. * Olaf Kirch : Don't linearise iovec on sendmsg.
  56. * Andi Kleen : Some cleanups, cache destination entry
  57. * for connect.
  58. * Vitaly E. Lavrov : Transparent proxy revived after year coma.
  59. * Melvin Smith : Check msg_name not msg_namelen in sendto(),
  60. * return ENOTCONN for unconnected sockets (POSIX)
  61. * Janos Farkas : don't deliver multi/broadcasts to a different
  62. * bound-to-device socket
  63. * Hirokazu Takahashi : HW checksumming for outgoing UDP
  64. * datagrams.
  65. * Hirokazu Takahashi : sendfile() on UDP works now.
  66. * Arnaldo C. Melo : convert /proc/net/udp to seq_file
  67. * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
  68. * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
  69. * a single port at the same time.
  70. * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  71. * James Chapman : Add L2TP encapsulation type.
  72. *
  73. *
  74. * This program is free software; you can redistribute it and/or
  75. * modify it under the terms of the GNU General Public License
  76. * as published by the Free Software Foundation; either version
  77. * 2 of the License, or (at your option) any later version.
  78. */
  79. #define pr_fmt(fmt) "UDP: " fmt
  80. #include <asm/uaccess.h>
  81. #include <asm/ioctls.h>
  82. #include <linux/bootmem.h>
  83. #include <linux/highmem.h>
  84. #include <linux/swap.h>
  85. #include <linux/types.h>
  86. #include <linux/fcntl.h>
  87. #include <linux/module.h>
  88. #include <linux/socket.h>
  89. #include <linux/sockios.h>
  90. #include <linux/igmp.h>
  91. #include <linux/in.h>
  92. #include <linux/errno.h>
  93. #include <linux/timer.h>
  94. #include <linux/mm.h>
  95. #include <linux/inet.h>
  96. #include <linux/netdevice.h>
  97. #include <linux/slab.h>
  98. #include <net/tcp_states.h>
  99. #include <linux/skbuff.h>
  100. #include <linux/proc_fs.h>
  101. #include <linux/seq_file.h>
  102. #include <net/net_namespace.h>
  103. #include <net/icmp.h>
  104. #include <net/inet_hashtables.h>
  105. #include <net/route.h>
  106. #include <net/checksum.h>
  107. #include <net/xfrm.h>
  108. #include <trace/events/udp.h>
  109. #include <linux/static_key.h>
  110. #include <trace/events/skb.h>
  111. #include <net/busy_poll.h>
  112. #include "udp_impl.h"
  113. struct udp_table udp_table __read_mostly;
  114. EXPORT_SYMBOL(udp_table);
  115. long sysctl_udp_mem[3] __read_mostly;
  116. EXPORT_SYMBOL(sysctl_udp_mem);
  117. int sysctl_udp_rmem_min __read_mostly;
  118. EXPORT_SYMBOL(sysctl_udp_rmem_min);
  119. int sysctl_udp_wmem_min __read_mostly;
  120. EXPORT_SYMBOL(sysctl_udp_wmem_min);
  121. atomic_long_t udp_memory_allocated;
  122. EXPORT_SYMBOL(udp_memory_allocated);
  123. #define MAX_UDP_PORTS 65536
  124. #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
  125. static int udp_lib_lport_inuse(struct net *net, __u16 num,
  126. const struct udp_hslot *hslot,
  127. unsigned long *bitmap,
  128. struct sock *sk,
  129. int (*saddr_comp)(const struct sock *sk1,
  130. const struct sock *sk2),
  131. unsigned int log)
  132. {
  133. struct sock *sk2;
  134. struct hlist_nulls_node *node;
  135. kuid_t uid = sock_i_uid(sk);
  136. sk_nulls_for_each(sk2, node, &hslot->head)
  137. if (net_eq(sock_net(sk2), net) &&
  138. sk2 != sk &&
  139. (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
  140. (!sk2->sk_reuse || !sk->sk_reuse) &&
  141. (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
  142. sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  143. (!sk2->sk_reuseport || !sk->sk_reuseport ||
  144. !uid_eq(uid, sock_i_uid(sk2))) &&
  145. (*saddr_comp)(sk, sk2)) {
  146. if (bitmap)
  147. __set_bit(udp_sk(sk2)->udp_port_hash >> log,
  148. bitmap);
  149. else
  150. return 1;
  151. }
  152. return 0;
  153. }
  154. /*
  155. * Note: we still hold spinlock of primary hash chain, so no other writer
  156. * can insert/delete a socket with local_port == num
  157. */
  158. static int udp_lib_lport_inuse2(struct net *net, __u16 num,
  159. struct udp_hslot *hslot2,
  160. struct sock *sk,
  161. int (*saddr_comp)(const struct sock *sk1,
  162. const struct sock *sk2))
  163. {
  164. struct sock *sk2;
  165. struct hlist_nulls_node *node;
  166. kuid_t uid = sock_i_uid(sk);
  167. int res = 0;
  168. spin_lock(&hslot2->lock);
  169. udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
  170. if (net_eq(sock_net(sk2), net) &&
  171. sk2 != sk &&
  172. (udp_sk(sk2)->udp_port_hash == num) &&
  173. (!sk2->sk_reuse || !sk->sk_reuse) &&
  174. (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
  175. sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  176. (!sk2->sk_reuseport || !sk->sk_reuseport ||
  177. !uid_eq(uid, sock_i_uid(sk2))) &&
  178. (*saddr_comp)(sk, sk2)) {
  179. res = 1;
  180. break;
  181. }
  182. spin_unlock(&hslot2->lock);
  183. return res;
  184. }
  185. /**
  186. * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
  187. *
  188. * @sk: socket struct in question
  189. * @snum: port number to look up
  190. * @saddr_comp: AF-dependent comparison of bound local IP addresses
  191. * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
  192. * with NULL address
  193. */
  194. int udp_lib_get_port(struct sock *sk, unsigned short snum,
  195. int (*saddr_comp)(const struct sock *sk1,
  196. const struct sock *sk2),
  197. unsigned int hash2_nulladdr)
  198. {
  199. struct udp_hslot *hslot, *hslot2;
  200. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  201. int error = 1;
  202. struct net *net = sock_net(sk);
  203. if (!snum) {
  204. int low, high, remaining;
  205. unsigned int rand;
  206. unsigned short first, last;
  207. DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
  208. inet_get_local_port_range(net, &low, &high);
  209. remaining = (high - low) + 1;
  210. rand = prandom_u32();
  211. first = (((u64)rand * remaining) >> 32) + low;
  212. /*
  213. * force rand to be an odd multiple of UDP_HTABLE_SIZE
  214. */
  215. rand = (rand | 1) * (udptable->mask + 1);
  216. last = first + udptable->mask + 1;
  217. do {
  218. hslot = udp_hashslot(udptable, net, first);
  219. bitmap_zero(bitmap, PORTS_PER_CHAIN);
  220. spin_lock_bh(&hslot->lock);
  221. udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
  222. saddr_comp, udptable->log);
  223. snum = first;
  224. /*
  225. * Iterate on all possible values of snum for this hash.
  226. * Using steps of an odd multiple of UDP_HTABLE_SIZE
  227. * give us randomization and full range coverage.
  228. */
  229. do {
  230. if (low <= snum && snum <= high &&
  231. !test_bit(snum >> udptable->log, bitmap) &&
  232. !inet_is_local_reserved_port(net, snum))
  233. goto found;
  234. snum += rand;
  235. } while (snum != first);
  236. spin_unlock_bh(&hslot->lock);
  237. } while (++first != last);
  238. goto fail;
  239. } else {
  240. hslot = udp_hashslot(udptable, net, snum);
  241. spin_lock_bh(&hslot->lock);
  242. if (hslot->count > 10) {
  243. int exist;
  244. unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
  245. slot2 &= udptable->mask;
  246. hash2_nulladdr &= udptable->mask;
  247. hslot2 = udp_hashslot2(udptable, slot2);
  248. if (hslot->count < hslot2->count)
  249. goto scan_primary_hash;
  250. exist = udp_lib_lport_inuse2(net, snum, hslot2,
  251. sk, saddr_comp);
  252. if (!exist && (hash2_nulladdr != slot2)) {
  253. hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
  254. exist = udp_lib_lport_inuse2(net, snum, hslot2,
  255. sk, saddr_comp);
  256. }
  257. if (exist)
  258. goto fail_unlock;
  259. else
  260. goto found;
  261. }
  262. scan_primary_hash:
  263. if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
  264. saddr_comp, 0))
  265. goto fail_unlock;
  266. }
  267. found:
  268. inet_sk(sk)->inet_num = snum;
  269. udp_sk(sk)->udp_port_hash = snum;
  270. udp_sk(sk)->udp_portaddr_hash ^= snum;
  271. if (sk_unhashed(sk)) {
  272. sk_nulls_add_node_rcu(sk, &hslot->head);
  273. hslot->count++;
  274. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
  275. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  276. spin_lock(&hslot2->lock);
  277. hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
  278. &hslot2->head);
  279. hslot2->count++;
  280. spin_unlock(&hslot2->lock);
  281. }
  282. error = 0;
  283. fail_unlock:
  284. spin_unlock_bh(&hslot->lock);
  285. fail:
  286. return error;
  287. }
  288. EXPORT_SYMBOL(udp_lib_get_port);
  289. static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
  290. {
  291. struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
  292. return (!ipv6_only_sock(sk2) &&
  293. (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
  294. inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
  295. }
  296. static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
  297. unsigned int port)
  298. {
  299. return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
  300. }
  301. int udp_v4_get_port(struct sock *sk, unsigned short snum)
  302. {
  303. unsigned int hash2_nulladdr =
  304. udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
  305. unsigned int hash2_partial =
  306. udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
  307. /* precompute partial secondary hash */
  308. udp_sk(sk)->udp_portaddr_hash = hash2_partial;
  309. return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
  310. }
  311. static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
  312. unsigned short hnum,
  313. __be16 sport, __be32 daddr, __be16 dport, int dif)
  314. {
  315. int score = -1;
  316. if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
  317. !ipv6_only_sock(sk)) {
  318. struct inet_sock *inet = inet_sk(sk);
  319. score = (sk->sk_family == PF_INET ? 2 : 1);
  320. if (inet->inet_rcv_saddr) {
  321. if (inet->inet_rcv_saddr != daddr)
  322. return -1;
  323. score += 4;
  324. }
  325. if (inet->inet_daddr) {
  326. if (inet->inet_daddr != saddr)
  327. return -1;
  328. score += 4;
  329. }
  330. if (inet->inet_dport) {
  331. if (inet->inet_dport != sport)
  332. return -1;
  333. score += 4;
  334. }
  335. if (sk->sk_bound_dev_if) {
  336. if (sk->sk_bound_dev_if != dif)
  337. return -1;
  338. score += 4;
  339. }
  340. }
  341. return score;
  342. }
  343. /*
  344. * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
  345. */
  346. static inline int compute_score2(struct sock *sk, struct net *net,
  347. __be32 saddr, __be16 sport,
  348. __be32 daddr, unsigned int hnum, int dif)
  349. {
  350. int score = -1;
  351. if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
  352. struct inet_sock *inet = inet_sk(sk);
  353. if (inet->inet_rcv_saddr != daddr)
  354. return -1;
  355. if (inet->inet_num != hnum)
  356. return -1;
  357. score = (sk->sk_family == PF_INET ? 2 : 1);
  358. if (inet->inet_daddr) {
  359. if (inet->inet_daddr != saddr)
  360. return -1;
  361. score += 4;
  362. }
  363. if (inet->inet_dport) {
  364. if (inet->inet_dport != sport)
  365. return -1;
  366. score += 4;
  367. }
  368. if (sk->sk_bound_dev_if) {
  369. if (sk->sk_bound_dev_if != dif)
  370. return -1;
  371. score += 4;
  372. }
  373. }
  374. return score;
  375. }
  376. static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
  377. const __u16 lport, const __be32 faddr,
  378. const __be16 fport)
  379. {
  380. static u32 udp_ehash_secret __read_mostly;
  381. net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
  382. return __inet_ehashfn(laddr, lport, faddr, fport,
  383. udp_ehash_secret + net_hash_mix(net));
  384. }
  385. /* called with read_rcu_lock() */
  386. static struct sock *udp4_lib_lookup2(struct net *net,
  387. __be32 saddr, __be16 sport,
  388. __be32 daddr, unsigned int hnum, int dif,
  389. struct udp_hslot *hslot2, unsigned int slot2)
  390. {
  391. struct sock *sk, *result;
  392. struct hlist_nulls_node *node;
  393. int score, badness, matches = 0, reuseport = 0;
  394. u32 hash = 0;
  395. begin:
  396. result = NULL;
  397. badness = 0;
  398. udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
  399. score = compute_score2(sk, net, saddr, sport,
  400. daddr, hnum, dif);
  401. if (score > badness) {
  402. result = sk;
  403. badness = score;
  404. reuseport = sk->sk_reuseport;
  405. if (reuseport) {
  406. hash = udp_ehashfn(net, daddr, hnum,
  407. saddr, sport);
  408. matches = 1;
  409. }
  410. } else if (score == badness && reuseport) {
  411. matches++;
  412. if (((u64)hash * matches) >> 32 == 0)
  413. result = sk;
  414. hash = next_pseudo_random32(hash);
  415. }
  416. }
  417. /*
  418. * if the nulls value we got at the end of this lookup is
  419. * not the expected one, we must restart lookup.
  420. * We probably met an item that was moved to another chain.
  421. */
  422. if (get_nulls_value(node) != slot2)
  423. goto begin;
  424. if (result) {
  425. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  426. result = NULL;
  427. else if (unlikely(compute_score2(result, net, saddr, sport,
  428. daddr, hnum, dif) < badness)) {
  429. sock_put(result);
  430. goto begin;
  431. }
  432. }
  433. return result;
  434. }
  435. /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
  436. * harder than this. -DaveM
  437. */
  438. struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
  439. __be16 sport, __be32 daddr, __be16 dport,
  440. int dif, struct udp_table *udptable)
  441. {
  442. struct sock *sk, *result;
  443. struct hlist_nulls_node *node;
  444. unsigned short hnum = ntohs(dport);
  445. unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
  446. struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
  447. int score, badness, matches = 0, reuseport = 0;
  448. u32 hash = 0;
  449. rcu_read_lock();
  450. if (hslot->count > 10) {
  451. hash2 = udp4_portaddr_hash(net, daddr, hnum);
  452. slot2 = hash2 & udptable->mask;
  453. hslot2 = &udptable->hash2[slot2];
  454. if (hslot->count < hslot2->count)
  455. goto begin;
  456. result = udp4_lib_lookup2(net, saddr, sport,
  457. daddr, hnum, dif,
  458. hslot2, slot2);
  459. if (!result) {
  460. hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
  461. slot2 = hash2 & udptable->mask;
  462. hslot2 = &udptable->hash2[slot2];
  463. if (hslot->count < hslot2->count)
  464. goto begin;
  465. result = udp4_lib_lookup2(net, saddr, sport,
  466. htonl(INADDR_ANY), hnum, dif,
  467. hslot2, slot2);
  468. }
  469. rcu_read_unlock();
  470. return result;
  471. }
  472. begin:
  473. result = NULL;
  474. badness = 0;
  475. sk_nulls_for_each_rcu(sk, node, &hslot->head) {
  476. score = compute_score(sk, net, saddr, hnum, sport,
  477. daddr, dport, dif);
  478. if (score > badness) {
  479. result = sk;
  480. badness = score;
  481. reuseport = sk->sk_reuseport;
  482. if (reuseport) {
  483. hash = udp_ehashfn(net, daddr, hnum,
  484. saddr, sport);
  485. matches = 1;
  486. }
  487. } else if (score == badness && reuseport) {
  488. matches++;
  489. if (((u64)hash * matches) >> 32 == 0)
  490. result = sk;
  491. hash = next_pseudo_random32(hash);
  492. }
  493. }
  494. /*
  495. * if the nulls value we got at the end of this lookup is
  496. * not the expected one, we must restart lookup.
  497. * We probably met an item that was moved to another chain.
  498. */
  499. if (get_nulls_value(node) != slot)
  500. goto begin;
  501. if (result) {
  502. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  503. result = NULL;
  504. else if (unlikely(compute_score(result, net, saddr, hnum, sport,
  505. daddr, dport, dif) < badness)) {
  506. sock_put(result);
  507. goto begin;
  508. }
  509. }
  510. rcu_read_unlock();
  511. return result;
  512. }
  513. EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
  514. static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
  515. __be16 sport, __be16 dport,
  516. struct udp_table *udptable)
  517. {
  518. const struct iphdr *iph = ip_hdr(skb);
  519. return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
  520. iph->daddr, dport, inet_iif(skb),
  521. udptable);
  522. }
  523. struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
  524. __be32 daddr, __be16 dport, int dif)
  525. {
  526. return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
  527. }
  528. EXPORT_SYMBOL_GPL(udp4_lib_lookup);
  529. static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
  530. __be16 loc_port, __be32 loc_addr,
  531. __be16 rmt_port, __be32 rmt_addr,
  532. int dif, unsigned short hnum)
  533. {
  534. struct inet_sock *inet = inet_sk(sk);
  535. if (!net_eq(sock_net(sk), net) ||
  536. udp_sk(sk)->udp_port_hash != hnum ||
  537. (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
  538. (inet->inet_dport != rmt_port && inet->inet_dport) ||
  539. (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
  540. ipv6_only_sock(sk) ||
  541. (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
  542. return false;
  543. if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
  544. return false;
  545. return true;
  546. }
  547. /*
  548. * This routine is called by the ICMP module when it gets some
  549. * sort of error condition. If err < 0 then the socket should
  550. * be closed and the error returned to the user. If err > 0
  551. * it's just the icmp type << 8 | icmp code.
  552. * Header points to the ip header of the error packet. We move
  553. * on past this. Then (as it used to claim before adjustment)
  554. * header points to the first 8 bytes of the udp header. We need
  555. * to find the appropriate port.
  556. */
  557. void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
  558. {
  559. struct inet_sock *inet;
  560. const struct iphdr *iph = (const struct iphdr *)skb->data;
  561. struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
  562. const int type = icmp_hdr(skb)->type;
  563. const int code = icmp_hdr(skb)->code;
  564. struct sock *sk;
  565. int harderr;
  566. int err;
  567. struct net *net = dev_net(skb->dev);
  568. sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
  569. iph->saddr, uh->source, skb->dev->ifindex, udptable);
  570. if (sk == NULL) {
  571. ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
  572. return; /* No socket for error */
  573. }
  574. err = 0;
  575. harderr = 0;
  576. inet = inet_sk(sk);
  577. switch (type) {
  578. default:
  579. case ICMP_TIME_EXCEEDED:
  580. err = EHOSTUNREACH;
  581. break;
  582. case ICMP_SOURCE_QUENCH:
  583. goto out;
  584. case ICMP_PARAMETERPROB:
  585. err = EPROTO;
  586. harderr = 1;
  587. break;
  588. case ICMP_DEST_UNREACH:
  589. if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
  590. ipv4_sk_update_pmtu(skb, sk, info);
  591. if (inet->pmtudisc != IP_PMTUDISC_DONT) {
  592. err = EMSGSIZE;
  593. harderr = 1;
  594. break;
  595. }
  596. goto out;
  597. }
  598. err = EHOSTUNREACH;
  599. if (code <= NR_ICMP_UNREACH) {
  600. harderr = icmp_err_convert[code].fatal;
  601. err = icmp_err_convert[code].errno;
  602. }
  603. break;
  604. case ICMP_REDIRECT:
  605. ipv4_sk_redirect(skb, sk);
  606. goto out;
  607. }
  608. /*
  609. * RFC1122: OK. Passes ICMP errors back to application, as per
  610. * 4.1.3.3.
  611. */
  612. if (!inet->recverr) {
  613. if (!harderr || sk->sk_state != TCP_ESTABLISHED)
  614. goto out;
  615. } else
  616. ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
  617. sk->sk_err = err;
  618. sk->sk_error_report(sk);
  619. out:
  620. sock_put(sk);
  621. }
  622. void udp_err(struct sk_buff *skb, u32 info)
  623. {
  624. __udp4_lib_err(skb, info, &udp_table);
  625. }
  626. /*
  627. * Throw away all pending data and cancel the corking. Socket is locked.
  628. */
  629. void udp_flush_pending_frames(struct sock *sk)
  630. {
  631. struct udp_sock *up = udp_sk(sk);
  632. if (up->pending) {
  633. up->len = 0;
  634. up->pending = 0;
  635. ip_flush_pending_frames(sk);
  636. }
  637. }
  638. EXPORT_SYMBOL(udp_flush_pending_frames);
  639. /**
  640. * udp4_hwcsum - handle outgoing HW checksumming
  641. * @skb: sk_buff containing the filled-in UDP header
  642. * (checksum field must be zeroed out)
  643. * @src: source IP address
  644. * @dst: destination IP address
  645. */
  646. void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
  647. {
  648. struct udphdr *uh = udp_hdr(skb);
  649. int offset = skb_transport_offset(skb);
  650. int len = skb->len - offset;
  651. int hlen = len;
  652. __wsum csum = 0;
  653. if (!skb_has_frag_list(skb)) {
  654. /*
  655. * Only one fragment on the socket.
  656. */
  657. skb->csum_start = skb_transport_header(skb) - skb->head;
  658. skb->csum_offset = offsetof(struct udphdr, check);
  659. uh->check = ~csum_tcpudp_magic(src, dst, len,
  660. IPPROTO_UDP, 0);
  661. } else {
  662. struct sk_buff *frags;
  663. /*
  664. * HW-checksum won't work as there are two or more
  665. * fragments on the socket so that all csums of sk_buffs
  666. * should be together
  667. */
  668. skb_walk_frags(skb, frags) {
  669. csum = csum_add(csum, frags->csum);
  670. hlen -= frags->len;
  671. }
  672. csum = skb_checksum(skb, offset, hlen, csum);
  673. skb->ip_summed = CHECKSUM_NONE;
  674. uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
  675. if (uh->check == 0)
  676. uh->check = CSUM_MANGLED_0;
  677. }
  678. }
  679. EXPORT_SYMBOL_GPL(udp4_hwcsum);
  680. /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
  681. * for the simple case like when setting the checksum for a UDP tunnel.
  682. */
  683. void udp_set_csum(bool nocheck, struct sk_buff *skb,
  684. __be32 saddr, __be32 daddr, int len)
  685. {
  686. struct udphdr *uh = udp_hdr(skb);
  687. if (nocheck)
  688. uh->check = 0;
  689. else if (skb_is_gso(skb))
  690. uh->check = ~udp_v4_check(len, saddr, daddr, 0);
  691. else if (skb_dst(skb) && skb_dst(skb)->dev &&
  692. (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
  693. BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
  694. skb->ip_summed = CHECKSUM_PARTIAL;
  695. skb->csum_start = skb_transport_header(skb) - skb->head;
  696. skb->csum_offset = offsetof(struct udphdr, check);
  697. uh->check = ~udp_v4_check(len, saddr, daddr, 0);
  698. } else {
  699. __wsum csum;
  700. BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
  701. uh->check = 0;
  702. csum = skb_checksum(skb, 0, len, 0);
  703. uh->check = udp_v4_check(len, saddr, daddr, csum);
  704. if (uh->check == 0)
  705. uh->check = CSUM_MANGLED_0;
  706. skb->ip_summed = CHECKSUM_UNNECESSARY;
  707. }
  708. }
  709. EXPORT_SYMBOL(udp_set_csum);
  710. static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
  711. {
  712. struct sock *sk = skb->sk;
  713. struct inet_sock *inet = inet_sk(sk);
  714. struct udphdr *uh;
  715. int err = 0;
  716. int is_udplite = IS_UDPLITE(sk);
  717. int offset = skb_transport_offset(skb);
  718. int len = skb->len - offset;
  719. __wsum csum = 0;
  720. /*
  721. * Create a UDP header
  722. */
  723. uh = udp_hdr(skb);
  724. uh->source = inet->inet_sport;
  725. uh->dest = fl4->fl4_dport;
  726. uh->len = htons(len);
  727. uh->check = 0;
  728. if (is_udplite) /* UDP-Lite */
  729. csum = udplite_csum(skb);
  730. else if (sk->sk_no_check_tx) { /* UDP csum disabled */
  731. skb->ip_summed = CHECKSUM_NONE;
  732. goto send;
  733. } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
  734. udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
  735. goto send;
  736. } else
  737. csum = udp_csum(skb);
  738. /* add protocol-dependent pseudo-header */
  739. uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
  740. sk->sk_protocol, csum);
  741. if (uh->check == 0)
  742. uh->check = CSUM_MANGLED_0;
  743. send:
  744. err = ip_send_skb(sock_net(sk), skb);
  745. if (err) {
  746. if (err == -ENOBUFS && !inet->recverr) {
  747. UDP_INC_STATS_USER(sock_net(sk),
  748. UDP_MIB_SNDBUFERRORS, is_udplite);
  749. err = 0;
  750. }
  751. } else
  752. UDP_INC_STATS_USER(sock_net(sk),
  753. UDP_MIB_OUTDATAGRAMS, is_udplite);
  754. return err;
  755. }
  756. /*
  757. * Push out all pending data as one UDP datagram. Socket is locked.
  758. */
  759. int udp_push_pending_frames(struct sock *sk)
  760. {
  761. struct udp_sock *up = udp_sk(sk);
  762. struct inet_sock *inet = inet_sk(sk);
  763. struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
  764. struct sk_buff *skb;
  765. int err = 0;
  766. skb = ip_finish_skb(sk, fl4);
  767. if (!skb)
  768. goto out;
  769. err = udp_send_skb(skb, fl4);
  770. out:
  771. up->len = 0;
  772. up->pending = 0;
  773. return err;
  774. }
  775. EXPORT_SYMBOL(udp_push_pending_frames);
  776. int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
  777. size_t len)
  778. {
  779. struct inet_sock *inet = inet_sk(sk);
  780. struct udp_sock *up = udp_sk(sk);
  781. struct flowi4 fl4_stack;
  782. struct flowi4 *fl4;
  783. int ulen = len;
  784. struct ipcm_cookie ipc;
  785. struct rtable *rt = NULL;
  786. int free = 0;
  787. int connected = 0;
  788. __be32 daddr, faddr, saddr;
  789. __be16 dport;
  790. u8 tos;
  791. int err, is_udplite = IS_UDPLITE(sk);
  792. int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
  793. int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
  794. struct sk_buff *skb;
  795. struct ip_options_data opt_copy;
  796. if (len > 0xFFFF)
  797. return -EMSGSIZE;
  798. /*
  799. * Check the flags.
  800. */
  801. if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
  802. return -EOPNOTSUPP;
  803. ipc.opt = NULL;
  804. ipc.tx_flags = 0;
  805. ipc.ttl = 0;
  806. ipc.tos = -1;
  807. getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
  808. fl4 = &inet->cork.fl.u.ip4;
  809. if (up->pending) {
  810. /*
  811. * There are pending frames.
  812. * The socket lock must be held while it's corked.
  813. */
  814. lock_sock(sk);
  815. if (likely(up->pending)) {
  816. if (unlikely(up->pending != AF_INET)) {
  817. release_sock(sk);
  818. return -EINVAL;
  819. }
  820. goto do_append_data;
  821. }
  822. release_sock(sk);
  823. }
  824. ulen += sizeof(struct udphdr);
  825. /*
  826. * Get and verify the address.
  827. */
  828. if (msg->msg_name) {
  829. DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
  830. if (msg->msg_namelen < sizeof(*usin))
  831. return -EINVAL;
  832. if (usin->sin_family != AF_INET) {
  833. if (usin->sin_family != AF_UNSPEC)
  834. return -EAFNOSUPPORT;
  835. }
  836. daddr = usin->sin_addr.s_addr;
  837. dport = usin->sin_port;
  838. if (dport == 0)
  839. return -EINVAL;
  840. } else {
  841. if (sk->sk_state != TCP_ESTABLISHED)
  842. return -EDESTADDRREQ;
  843. daddr = inet->inet_daddr;
  844. dport = inet->inet_dport;
  845. /* Open fast path for connected socket.
  846. Route will not be used, if at least one option is set.
  847. */
  848. connected = 1;
  849. }
  850. ipc.addr = inet->inet_saddr;
  851. ipc.oif = sk->sk_bound_dev_if;
  852. sock_tx_timestamp(sk, &ipc.tx_flags);
  853. if (msg->msg_controllen) {
  854. err = ip_cmsg_send(sock_net(sk), msg, &ipc,
  855. sk->sk_family == AF_INET6);
  856. if (err)
  857. return err;
  858. if (ipc.opt)
  859. free = 1;
  860. connected = 0;
  861. }
  862. if (!ipc.opt) {
  863. struct ip_options_rcu *inet_opt;
  864. rcu_read_lock();
  865. inet_opt = rcu_dereference(inet->inet_opt);
  866. if (inet_opt) {
  867. memcpy(&opt_copy, inet_opt,
  868. sizeof(*inet_opt) + inet_opt->opt.optlen);
  869. ipc.opt = &opt_copy.opt;
  870. }
  871. rcu_read_unlock();
  872. }
  873. saddr = ipc.addr;
  874. ipc.addr = faddr = daddr;
  875. if (ipc.opt && ipc.opt->opt.srr) {
  876. if (!daddr)
  877. return -EINVAL;
  878. faddr = ipc.opt->opt.faddr;
  879. connected = 0;
  880. }
  881. tos = get_rttos(&ipc, inet);
  882. if (sock_flag(sk, SOCK_LOCALROUTE) ||
  883. (msg->msg_flags & MSG_DONTROUTE) ||
  884. (ipc.opt && ipc.opt->opt.is_strictroute)) {
  885. tos |= RTO_ONLINK;
  886. connected = 0;
  887. }
  888. if (ipv4_is_multicast(daddr)) {
  889. if (!ipc.oif)
  890. ipc.oif = inet->mc_index;
  891. if (!saddr)
  892. saddr = inet->mc_addr;
  893. connected = 0;
  894. } else if (!ipc.oif)
  895. ipc.oif = inet->uc_index;
  896. if (connected)
  897. rt = (struct rtable *)sk_dst_check(sk, 0);
  898. if (rt == NULL) {
  899. struct net *net = sock_net(sk);
  900. fl4 = &fl4_stack;
  901. flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
  902. RT_SCOPE_UNIVERSE, sk->sk_protocol,
  903. inet_sk_flowi_flags(sk),
  904. faddr, saddr, dport, inet->inet_sport);
  905. security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
  906. rt = ip_route_output_flow(net, fl4, sk);
  907. if (IS_ERR(rt)) {
  908. err = PTR_ERR(rt);
  909. rt = NULL;
  910. if (err == -ENETUNREACH)
  911. IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
  912. goto out;
  913. }
  914. err = -EACCES;
  915. if ((rt->rt_flags & RTCF_BROADCAST) &&
  916. !sock_flag(sk, SOCK_BROADCAST))
  917. goto out;
  918. if (connected)
  919. sk_dst_set(sk, dst_clone(&rt->dst));
  920. }
  921. if (msg->msg_flags&MSG_CONFIRM)
  922. goto do_confirm;
  923. back_from_confirm:
  924. saddr = fl4->saddr;
  925. if (!ipc.addr)
  926. daddr = ipc.addr = fl4->daddr;
  927. /* Lockless fast path for the non-corking case. */
  928. if (!corkreq) {
  929. skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
  930. sizeof(struct udphdr), &ipc, &rt,
  931. msg->msg_flags);
  932. err = PTR_ERR(skb);
  933. if (!IS_ERR_OR_NULL(skb))
  934. err = udp_send_skb(skb, fl4);
  935. goto out;
  936. }
  937. lock_sock(sk);
  938. if (unlikely(up->pending)) {
  939. /* The socket is already corked while preparing it. */
  940. /* ... which is an evident application bug. --ANK */
  941. release_sock(sk);
  942. LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
  943. err = -EINVAL;
  944. goto out;
  945. }
  946. /*
  947. * Now cork the socket to pend data.
  948. */
  949. fl4 = &inet->cork.fl.u.ip4;
  950. fl4->daddr = daddr;
  951. fl4->saddr = saddr;
  952. fl4->fl4_dport = dport;
  953. fl4->fl4_sport = inet->inet_sport;
  954. up->pending = AF_INET;
  955. do_append_data:
  956. up->len += ulen;
  957. err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
  958. sizeof(struct udphdr), &ipc, &rt,
  959. corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
  960. if (err)
  961. udp_flush_pending_frames(sk);
  962. else if (!corkreq)
  963. err = udp_push_pending_frames(sk);
  964. else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
  965. up->pending = 0;
  966. release_sock(sk);
  967. out:
  968. ip_rt_put(rt);
  969. if (free)
  970. kfree(ipc.opt);
  971. if (!err)
  972. return len;
  973. /*
  974. * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
  975. * ENOBUFS might not be good (it's not tunable per se), but otherwise
  976. * we don't have a good statistic (IpOutDiscards but it can be too many
  977. * things). We could add another new stat but at least for now that
  978. * seems like overkill.
  979. */
  980. if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  981. UDP_INC_STATS_USER(sock_net(sk),
  982. UDP_MIB_SNDBUFERRORS, is_udplite);
  983. }
  984. return err;
  985. do_confirm:
  986. dst_confirm(&rt->dst);
  987. if (!(msg->msg_flags&MSG_PROBE) || len)
  988. goto back_from_confirm;
  989. err = 0;
  990. goto out;
  991. }
  992. EXPORT_SYMBOL(udp_sendmsg);
  993. int udp_sendpage(struct sock *sk, struct page *page, int offset,
  994. size_t size, int flags)
  995. {
  996. struct inet_sock *inet = inet_sk(sk);
  997. struct udp_sock *up = udp_sk(sk);
  998. int ret;
  999. if (flags & MSG_SENDPAGE_NOTLAST)
  1000. flags |= MSG_MORE;
  1001. if (!up->pending) {
  1002. struct msghdr msg = { .msg_flags = flags|MSG_MORE };
  1003. /* Call udp_sendmsg to specify destination address which
  1004. * sendpage interface can't pass.
  1005. * This will succeed only when the socket is connected.
  1006. */
  1007. ret = udp_sendmsg(NULL, sk, &msg, 0);
  1008. if (ret < 0)
  1009. return ret;
  1010. }
  1011. lock_sock(sk);
  1012. if (unlikely(!up->pending)) {
  1013. release_sock(sk);
  1014. LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
  1015. return -EINVAL;
  1016. }
  1017. ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
  1018. page, offset, size, flags);
  1019. if (ret == -EOPNOTSUPP) {
  1020. release_sock(sk);
  1021. return sock_no_sendpage(sk->sk_socket, page, offset,
  1022. size, flags);
  1023. }
  1024. if (ret < 0) {
  1025. udp_flush_pending_frames(sk);
  1026. goto out;
  1027. }
  1028. up->len += size;
  1029. if (!(up->corkflag || (flags&MSG_MORE)))
  1030. ret = udp_push_pending_frames(sk);
  1031. if (!ret)
  1032. ret = size;
  1033. out:
  1034. release_sock(sk);
  1035. return ret;
  1036. }
  1037. /**
  1038. * first_packet_length - return length of first packet in receive queue
  1039. * @sk: socket
  1040. *
  1041. * Drops all bad checksum frames, until a valid one is found.
  1042. * Returns the length of found skb, or 0 if none is found.
  1043. */
  1044. static unsigned int first_packet_length(struct sock *sk)
  1045. {
  1046. struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
  1047. struct sk_buff *skb;
  1048. unsigned int res;
  1049. __skb_queue_head_init(&list_kill);
  1050. spin_lock_bh(&rcvq->lock);
  1051. while ((skb = skb_peek(rcvq)) != NULL &&
  1052. udp_lib_checksum_complete(skb)) {
  1053. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
  1054. IS_UDPLITE(sk));
  1055. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
  1056. IS_UDPLITE(sk));
  1057. atomic_inc(&sk->sk_drops);
  1058. __skb_unlink(skb, rcvq);
  1059. __skb_queue_tail(&list_kill, skb);
  1060. }
  1061. res = skb ? skb->len : 0;
  1062. spin_unlock_bh(&rcvq->lock);
  1063. if (!skb_queue_empty(&list_kill)) {
  1064. bool slow = lock_sock_fast(sk);
  1065. __skb_queue_purge(&list_kill);
  1066. sk_mem_reclaim_partial(sk);
  1067. unlock_sock_fast(sk, slow);
  1068. }
  1069. return res;
  1070. }
  1071. /*
  1072. * IOCTL requests applicable to the UDP protocol
  1073. */
  1074. int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
  1075. {
  1076. switch (cmd) {
  1077. case SIOCOUTQ:
  1078. {
  1079. int amount = sk_wmem_alloc_get(sk);
  1080. return put_user(amount, (int __user *)arg);
  1081. }
  1082. case SIOCINQ:
  1083. {
  1084. unsigned int amount = first_packet_length(sk);
  1085. if (amount)
  1086. /*
  1087. * We will only return the amount
  1088. * of this packet since that is all
  1089. * that will be read.
  1090. */
  1091. amount -= sizeof(struct udphdr);
  1092. return put_user(amount, (int __user *)arg);
  1093. }
  1094. default:
  1095. return -ENOIOCTLCMD;
  1096. }
  1097. return 0;
  1098. }
  1099. EXPORT_SYMBOL(udp_ioctl);
  1100. /*
  1101. * This should be easy, if there is something there we
  1102. * return it, otherwise we block.
  1103. */
  1104. int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
  1105. size_t len, int noblock, int flags, int *addr_len)
  1106. {
  1107. struct inet_sock *inet = inet_sk(sk);
  1108. DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
  1109. struct sk_buff *skb;
  1110. unsigned int ulen, copied;
  1111. int peeked, off = 0;
  1112. int err;
  1113. int is_udplite = IS_UDPLITE(sk);
  1114. bool slow;
  1115. if (flags & MSG_ERRQUEUE)
  1116. return ip_recv_error(sk, msg, len, addr_len);
  1117. try_again:
  1118. skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
  1119. &peeked, &off, &err);
  1120. if (!skb)
  1121. goto out;
  1122. ulen = skb->len - sizeof(struct udphdr);
  1123. copied = len;
  1124. if (copied > ulen)
  1125. copied = ulen;
  1126. else if (copied < ulen)
  1127. msg->msg_flags |= MSG_TRUNC;
  1128. /*
  1129. * If checksum is needed at all, try to do it while copying the
  1130. * data. If the data is truncated, or if we only want a partial
  1131. * coverage checksum (UDP-Lite), do it before the copy.
  1132. */
  1133. if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
  1134. if (udp_lib_checksum_complete(skb))
  1135. goto csum_copy_err;
  1136. }
  1137. if (skb_csum_unnecessary(skb))
  1138. err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
  1139. msg->msg_iov, copied);
  1140. else {
  1141. err = skb_copy_and_csum_datagram_iovec(skb,
  1142. sizeof(struct udphdr),
  1143. msg->msg_iov);
  1144. if (err == -EINVAL)
  1145. goto csum_copy_err;
  1146. }
  1147. if (unlikely(err)) {
  1148. trace_kfree_skb(skb, udp_recvmsg);
  1149. if (!peeked) {
  1150. atomic_inc(&sk->sk_drops);
  1151. UDP_INC_STATS_USER(sock_net(sk),
  1152. UDP_MIB_INERRORS, is_udplite);
  1153. }
  1154. goto out_free;
  1155. }
  1156. if (!peeked)
  1157. UDP_INC_STATS_USER(sock_net(sk),
  1158. UDP_MIB_INDATAGRAMS, is_udplite);
  1159. sock_recv_ts_and_drops(msg, sk, skb);
  1160. /* Copy the address. */
  1161. if (sin) {
  1162. sin->sin_family = AF_INET;
  1163. sin->sin_port = udp_hdr(skb)->source;
  1164. sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
  1165. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1166. *addr_len = sizeof(*sin);
  1167. }
  1168. if (inet->cmsg_flags)
  1169. ip_cmsg_recv(msg, skb);
  1170. err = copied;
  1171. if (flags & MSG_TRUNC)
  1172. err = ulen;
  1173. out_free:
  1174. skb_free_datagram_locked(sk, skb);
  1175. out:
  1176. return err;
  1177. csum_copy_err:
  1178. slow = lock_sock_fast(sk);
  1179. if (!skb_kill_datagram(sk, skb, flags)) {
  1180. UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
  1181. UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1182. }
  1183. unlock_sock_fast(sk, slow);
  1184. if (noblock)
  1185. return -EAGAIN;
  1186. /* starting over for a new packet */
  1187. msg->msg_flags &= ~MSG_TRUNC;
  1188. goto try_again;
  1189. }
  1190. int udp_disconnect(struct sock *sk, int flags)
  1191. {
  1192. struct inet_sock *inet = inet_sk(sk);
  1193. /*
  1194. * 1003.1g - break association.
  1195. */
  1196. sk->sk_state = TCP_CLOSE;
  1197. inet->inet_daddr = 0;
  1198. inet->inet_dport = 0;
  1199. sock_rps_reset_rxhash(sk);
  1200. sk->sk_bound_dev_if = 0;
  1201. if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
  1202. inet_reset_saddr(sk);
  1203. if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
  1204. sk->sk_prot->unhash(sk);
  1205. inet->inet_sport = 0;
  1206. }
  1207. sk_dst_reset(sk);
  1208. return 0;
  1209. }
  1210. EXPORT_SYMBOL(udp_disconnect);
  1211. void udp_lib_unhash(struct sock *sk)
  1212. {
  1213. if (sk_hashed(sk)) {
  1214. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  1215. struct udp_hslot *hslot, *hslot2;
  1216. hslot = udp_hashslot(udptable, sock_net(sk),
  1217. udp_sk(sk)->udp_port_hash);
  1218. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  1219. spin_lock_bh(&hslot->lock);
  1220. if (sk_nulls_del_node_init_rcu(sk)) {
  1221. hslot->count--;
  1222. inet_sk(sk)->inet_num = 0;
  1223. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
  1224. spin_lock(&hslot2->lock);
  1225. hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
  1226. hslot2->count--;
  1227. spin_unlock(&hslot2->lock);
  1228. }
  1229. spin_unlock_bh(&hslot->lock);
  1230. }
  1231. }
  1232. EXPORT_SYMBOL(udp_lib_unhash);
  1233. /*
  1234. * inet_rcv_saddr was changed, we must rehash secondary hash
  1235. */
  1236. void udp_lib_rehash(struct sock *sk, u16 newhash)
  1237. {
  1238. if (sk_hashed(sk)) {
  1239. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  1240. struct udp_hslot *hslot, *hslot2, *nhslot2;
  1241. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  1242. nhslot2 = udp_hashslot2(udptable, newhash);
  1243. udp_sk(sk)->udp_portaddr_hash = newhash;
  1244. if (hslot2 != nhslot2) {
  1245. hslot = udp_hashslot(udptable, sock_net(sk),
  1246. udp_sk(sk)->udp_port_hash);
  1247. /* we must lock primary chain too */
  1248. spin_lock_bh(&hslot->lock);
  1249. spin_lock(&hslot2->lock);
  1250. hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
  1251. hslot2->count--;
  1252. spin_unlock(&hslot2->lock);
  1253. spin_lock(&nhslot2->lock);
  1254. hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
  1255. &nhslot2->head);
  1256. nhslot2->count++;
  1257. spin_unlock(&nhslot2->lock);
  1258. spin_unlock_bh(&hslot->lock);
  1259. }
  1260. }
  1261. }
  1262. EXPORT_SYMBOL(udp_lib_rehash);
  1263. static void udp_v4_rehash(struct sock *sk)
  1264. {
  1265. u16 new_hash = udp4_portaddr_hash(sock_net(sk),
  1266. inet_sk(sk)->inet_rcv_saddr,
  1267. inet_sk(sk)->inet_num);
  1268. udp_lib_rehash(sk, new_hash);
  1269. }
  1270. static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1271. {
  1272. int rc;
  1273. if (inet_sk(sk)->inet_daddr) {
  1274. sock_rps_save_rxhash(sk, skb);
  1275. sk_mark_napi_id(sk, skb);
  1276. }
  1277. rc = sock_queue_rcv_skb(sk, skb);
  1278. if (rc < 0) {
  1279. int is_udplite = IS_UDPLITE(sk);
  1280. /* Note that an ENOMEM error is charged twice */
  1281. if (rc == -ENOMEM)
  1282. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1283. is_udplite);
  1284. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1285. kfree_skb(skb);
  1286. trace_udp_fail_queue_rcv_skb(rc, sk);
  1287. return -1;
  1288. }
  1289. return 0;
  1290. }
  1291. static struct static_key udp_encap_needed __read_mostly;
  1292. void udp_encap_enable(void)
  1293. {
  1294. if (!static_key_enabled(&udp_encap_needed))
  1295. static_key_slow_inc(&udp_encap_needed);
  1296. }
  1297. EXPORT_SYMBOL(udp_encap_enable);
  1298. /* returns:
  1299. * -1: error
  1300. * 0: success
  1301. * >0: "udp encap" protocol resubmission
  1302. *
  1303. * Note that in the success and error cases, the skb is assumed to
  1304. * have either been requeued or freed.
  1305. */
  1306. int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1307. {
  1308. struct udp_sock *up = udp_sk(sk);
  1309. int rc;
  1310. int is_udplite = IS_UDPLITE(sk);
  1311. /*
  1312. * Charge it to the socket, dropping if the queue is full.
  1313. */
  1314. if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
  1315. goto drop;
  1316. nf_reset(skb);
  1317. if (static_key_false(&udp_encap_needed) && up->encap_type) {
  1318. int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
  1319. /*
  1320. * This is an encapsulation socket so pass the skb to
  1321. * the socket's udp_encap_rcv() hook. Otherwise, just
  1322. * fall through and pass this up the UDP socket.
  1323. * up->encap_rcv() returns the following value:
  1324. * =0 if skb was successfully passed to the encap
  1325. * handler or was discarded by it.
  1326. * >0 if skb should be passed on to UDP.
  1327. * <0 if skb should be resubmitted as proto -N
  1328. */
  1329. /* if we're overly short, let UDP handle it */
  1330. encap_rcv = ACCESS_ONCE(up->encap_rcv);
  1331. if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
  1332. int ret;
  1333. /* Verify checksum before giving to encap */
  1334. if (udp_lib_checksum_complete(skb))
  1335. goto csum_error;
  1336. ret = encap_rcv(sk, skb);
  1337. if (ret <= 0) {
  1338. UDP_INC_STATS_BH(sock_net(sk),
  1339. UDP_MIB_INDATAGRAMS,
  1340. is_udplite);
  1341. return -ret;
  1342. }
  1343. }
  1344. /* FALLTHROUGH -- it's a UDP Packet */
  1345. }
  1346. /*
  1347. * UDP-Lite specific tests, ignored on UDP sockets
  1348. */
  1349. if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
  1350. /*
  1351. * MIB statistics other than incrementing the error count are
  1352. * disabled for the following two types of errors: these depend
  1353. * on the application settings, not on the functioning of the
  1354. * protocol stack as such.
  1355. *
  1356. * RFC 3828 here recommends (sec 3.3): "There should also be a
  1357. * way ... to ... at least let the receiving application block
  1358. * delivery of packets with coverage values less than a value
  1359. * provided by the application."
  1360. */
  1361. if (up->pcrlen == 0) { /* full coverage was set */
  1362. LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
  1363. UDP_SKB_CB(skb)->cscov, skb->len);
  1364. goto drop;
  1365. }
  1366. /* The next case involves violating the min. coverage requested
  1367. * by the receiver. This is subtle: if receiver wants x and x is
  1368. * greater than the buffersize/MTU then receiver will complain
  1369. * that it wants x while sender emits packets of smaller size y.
  1370. * Therefore the above ...()->partial_cov statement is essential.
  1371. */
  1372. if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
  1373. LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
  1374. UDP_SKB_CB(skb)->cscov, up->pcrlen);
  1375. goto drop;
  1376. }
  1377. }
  1378. if (rcu_access_pointer(sk->sk_filter) &&
  1379. udp_lib_checksum_complete(skb))
  1380. goto csum_error;
  1381. if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
  1382. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1383. is_udplite);
  1384. goto drop;
  1385. }
  1386. rc = 0;
  1387. ipv4_pktinfo_prepare(sk, skb);
  1388. bh_lock_sock(sk);
  1389. if (!sock_owned_by_user(sk))
  1390. rc = __udp_queue_rcv_skb(sk, skb);
  1391. else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  1392. bh_unlock_sock(sk);
  1393. goto drop;
  1394. }
  1395. bh_unlock_sock(sk);
  1396. return rc;
  1397. csum_error:
  1398. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
  1399. drop:
  1400. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1401. atomic_inc(&sk->sk_drops);
  1402. kfree_skb(skb);
  1403. return -1;
  1404. }
  1405. static void flush_stack(struct sock **stack, unsigned int count,
  1406. struct sk_buff *skb, unsigned int final)
  1407. {
  1408. unsigned int i;
  1409. struct sk_buff *skb1 = NULL;
  1410. struct sock *sk;
  1411. for (i = 0; i < count; i++) {
  1412. sk = stack[i];
  1413. if (likely(skb1 == NULL))
  1414. skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
  1415. if (!skb1) {
  1416. atomic_inc(&sk->sk_drops);
  1417. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1418. IS_UDPLITE(sk));
  1419. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
  1420. IS_UDPLITE(sk));
  1421. }
  1422. if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
  1423. skb1 = NULL;
  1424. sock_put(sk);
  1425. }
  1426. if (unlikely(skb1))
  1427. kfree_skb(skb1);
  1428. }
  1429. /* For TCP sockets, sk_rx_dst is protected by socket lock
  1430. * For UDP, we use xchg() to guard against concurrent changes.
  1431. */
  1432. static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
  1433. {
  1434. struct dst_entry *old;
  1435. dst_hold(dst);
  1436. old = xchg(&sk->sk_rx_dst, dst);
  1437. dst_release(old);
  1438. }
  1439. /*
  1440. * Multicasts and broadcasts go to each listener.
  1441. *
  1442. * Note: called only from the BH handler context.
  1443. */
  1444. static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
  1445. struct udphdr *uh,
  1446. __be32 saddr, __be32 daddr,
  1447. struct udp_table *udptable)
  1448. {
  1449. struct sock *sk, *stack[256 / sizeof(struct sock *)];
  1450. struct hlist_nulls_node *node;
  1451. unsigned short hnum = ntohs(uh->dest);
  1452. struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
  1453. int dif = skb->dev->ifindex;
  1454. unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
  1455. unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
  1456. if (use_hash2) {
  1457. hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
  1458. udp_table.mask;
  1459. hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
  1460. start_lookup:
  1461. hslot = &udp_table.hash2[hash2];
  1462. offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
  1463. }
  1464. spin_lock(&hslot->lock);
  1465. sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
  1466. if (__udp_is_mcast_sock(net, sk,
  1467. uh->dest, daddr,
  1468. uh->source, saddr,
  1469. dif, hnum)) {
  1470. if (unlikely(count == ARRAY_SIZE(stack))) {
  1471. flush_stack(stack, count, skb, ~0);
  1472. count = 0;
  1473. }
  1474. stack[count++] = sk;
  1475. sock_hold(sk);
  1476. }
  1477. }
  1478. spin_unlock(&hslot->lock);
  1479. /* Also lookup *:port if we are using hash2 and haven't done so yet. */
  1480. if (use_hash2 && hash2 != hash2_any) {
  1481. hash2 = hash2_any;
  1482. goto start_lookup;
  1483. }
  1484. /*
  1485. * do the slow work with no lock held
  1486. */
  1487. if (count) {
  1488. flush_stack(stack, count, skb, count - 1);
  1489. } else {
  1490. kfree_skb(skb);
  1491. }
  1492. return 0;
  1493. }
  1494. /* Initialize UDP checksum. If exited with zero value (success),
  1495. * CHECKSUM_UNNECESSARY means, that no more checks are required.
  1496. * Otherwise, csum completion requires chacksumming packet body,
  1497. * including udp header and folding it to skb->csum.
  1498. */
  1499. static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
  1500. int proto)
  1501. {
  1502. int err;
  1503. UDP_SKB_CB(skb)->partial_cov = 0;
  1504. UDP_SKB_CB(skb)->cscov = skb->len;
  1505. if (proto == IPPROTO_UDPLITE) {
  1506. err = udplite_checksum_init(skb, uh);
  1507. if (err)
  1508. return err;
  1509. }
  1510. return skb_checksum_init_zero_check(skb, proto, uh->check,
  1511. inet_compute_pseudo);
  1512. }
  1513. /*
  1514. * All we need to do is get the socket, and then do a checksum.
  1515. */
  1516. int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
  1517. int proto)
  1518. {
  1519. struct sock *sk;
  1520. struct udphdr *uh;
  1521. unsigned short ulen;
  1522. struct rtable *rt = skb_rtable(skb);
  1523. __be32 saddr, daddr;
  1524. struct net *net = dev_net(skb->dev);
  1525. /*
  1526. * Validate the packet.
  1527. */
  1528. if (!pskb_may_pull(skb, sizeof(struct udphdr)))
  1529. goto drop; /* No space for header. */
  1530. uh = udp_hdr(skb);
  1531. ulen = ntohs(uh->len);
  1532. saddr = ip_hdr(skb)->saddr;
  1533. daddr = ip_hdr(skb)->daddr;
  1534. if (ulen > skb->len)
  1535. goto short_packet;
  1536. if (proto == IPPROTO_UDP) {
  1537. /* UDP validates ulen. */
  1538. if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
  1539. goto short_packet;
  1540. uh = udp_hdr(skb);
  1541. }
  1542. if (udp4_csum_init(skb, uh, proto))
  1543. goto csum_error;
  1544. sk = skb_steal_sock(skb);
  1545. if (sk) {
  1546. struct dst_entry *dst = skb_dst(skb);
  1547. int ret;
  1548. if (unlikely(sk->sk_rx_dst != dst))
  1549. udp_sk_rx_dst_set(sk, dst);
  1550. ret = udp_queue_rcv_skb(sk, skb);
  1551. sock_put(sk);
  1552. /* a return value > 0 means to resubmit the input, but
  1553. * it wants the return to be -protocol, or 0
  1554. */
  1555. if (ret > 0)
  1556. return -ret;
  1557. return 0;
  1558. } else {
  1559. if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
  1560. return __udp4_lib_mcast_deliver(net, skb, uh,
  1561. saddr, daddr, udptable);
  1562. sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
  1563. }
  1564. if (sk != NULL) {
  1565. int ret;
  1566. ret = udp_queue_rcv_skb(sk, skb);
  1567. sock_put(sk);
  1568. /* a return value > 0 means to resubmit the input, but
  1569. * it wants the return to be -protocol, or 0
  1570. */
  1571. if (ret > 0)
  1572. return -ret;
  1573. return 0;
  1574. }
  1575. if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
  1576. goto drop;
  1577. nf_reset(skb);
  1578. /* No socket. Drop packet silently, if checksum is wrong */
  1579. if (udp_lib_checksum_complete(skb))
  1580. goto csum_error;
  1581. UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
  1582. icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
  1583. /*
  1584. * Hmm. We got an UDP packet to a port to which we
  1585. * don't wanna listen. Ignore it.
  1586. */
  1587. kfree_skb(skb);
  1588. return 0;
  1589. short_packet:
  1590. LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
  1591. proto == IPPROTO_UDPLITE ? "Lite" : "",
  1592. &saddr, ntohs(uh->source),
  1593. ulen, skb->len,
  1594. &daddr, ntohs(uh->dest));
  1595. goto drop;
  1596. csum_error:
  1597. /*
  1598. * RFC1122: OK. Discards the bad packet silently (as far as
  1599. * the network is concerned, anyway) as per 4.1.3.4 (MUST).
  1600. */
  1601. LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
  1602. proto == IPPROTO_UDPLITE ? "Lite" : "",
  1603. &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
  1604. ulen);
  1605. UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
  1606. drop:
  1607. UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
  1608. kfree_skb(skb);
  1609. return 0;
  1610. }
  1611. /* We can only early demux multicast if there is a single matching socket.
  1612. * If more than one socket found returns NULL
  1613. */
  1614. static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
  1615. __be16 loc_port, __be32 loc_addr,
  1616. __be16 rmt_port, __be32 rmt_addr,
  1617. int dif)
  1618. {
  1619. struct sock *sk, *result;
  1620. struct hlist_nulls_node *node;
  1621. unsigned short hnum = ntohs(loc_port);
  1622. unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
  1623. struct udp_hslot *hslot = &udp_table.hash[slot];
  1624. /* Do not bother scanning a too big list */
  1625. if (hslot->count > 10)
  1626. return NULL;
  1627. rcu_read_lock();
  1628. begin:
  1629. count = 0;
  1630. result = NULL;
  1631. sk_nulls_for_each_rcu(sk, node, &hslot->head) {
  1632. if (__udp_is_mcast_sock(net, sk,
  1633. loc_port, loc_addr,
  1634. rmt_port, rmt_addr,
  1635. dif, hnum)) {
  1636. result = sk;
  1637. ++count;
  1638. }
  1639. }
  1640. /*
  1641. * if the nulls value we got at the end of this lookup is
  1642. * not the expected one, we must restart lookup.
  1643. * We probably met an item that was moved to another chain.
  1644. */
  1645. if (get_nulls_value(node) != slot)
  1646. goto begin;
  1647. if (result) {
  1648. if (count != 1 ||
  1649. unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  1650. result = NULL;
  1651. else if (unlikely(!__udp_is_mcast_sock(net, result,
  1652. loc_port, loc_addr,
  1653. rmt_port, rmt_addr,
  1654. dif, hnum))) {
  1655. sock_put(result);
  1656. result = NULL;
  1657. }
  1658. }
  1659. rcu_read_unlock();
  1660. return result;
  1661. }
  1662. /* For unicast we should only early demux connected sockets or we can
  1663. * break forwarding setups. The chains here can be long so only check
  1664. * if the first socket is an exact match and if not move on.
  1665. */
  1666. static struct sock *__udp4_lib_demux_lookup(struct net *net,
  1667. __be16 loc_port, __be32 loc_addr,
  1668. __be16 rmt_port, __be32 rmt_addr,
  1669. int dif)
  1670. {
  1671. struct sock *sk, *result;
  1672. struct hlist_nulls_node *node;
  1673. unsigned short hnum = ntohs(loc_port);
  1674. unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
  1675. unsigned int slot2 = hash2 & udp_table.mask;
  1676. struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
  1677. INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
  1678. const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
  1679. rcu_read_lock();
  1680. result = NULL;
  1681. udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
  1682. if (INET_MATCH(sk, net, acookie,
  1683. rmt_addr, loc_addr, ports, dif))
  1684. result = sk;
  1685. /* Only check first socket in chain */
  1686. break;
  1687. }
  1688. if (result) {
  1689. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  1690. result = NULL;
  1691. else if (unlikely(!INET_MATCH(sk, net, acookie,
  1692. rmt_addr, loc_addr,
  1693. ports, dif))) {
  1694. sock_put(result);
  1695. result = NULL;
  1696. }
  1697. }
  1698. rcu_read_unlock();
  1699. return result;
  1700. }
  1701. void udp_v4_early_demux(struct sk_buff *skb)
  1702. {
  1703. struct net *net = dev_net(skb->dev);
  1704. const struct iphdr *iph;
  1705. const struct udphdr *uh;
  1706. struct sock *sk;
  1707. struct dst_entry *dst;
  1708. int dif = skb->dev->ifindex;
  1709. /* validate the packet */
  1710. if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
  1711. return;
  1712. iph = ip_hdr(skb);
  1713. uh = udp_hdr(skb);
  1714. if (skb->pkt_type == PACKET_BROADCAST ||
  1715. skb->pkt_type == PACKET_MULTICAST)
  1716. sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
  1717. uh->source, iph->saddr, dif);
  1718. else if (skb->pkt_type == PACKET_HOST)
  1719. sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
  1720. uh->source, iph->saddr, dif);
  1721. else
  1722. return;
  1723. if (!sk)
  1724. return;
  1725. skb->sk = sk;
  1726. skb->destructor = sock_edemux;
  1727. dst = sk->sk_rx_dst;
  1728. if (dst)
  1729. dst = dst_check(dst, 0);
  1730. if (dst)
  1731. skb_dst_set_noref(skb, dst);
  1732. }
  1733. int udp_rcv(struct sk_buff *skb)
  1734. {
  1735. return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
  1736. }
  1737. void udp_destroy_sock(struct sock *sk)
  1738. {
  1739. struct udp_sock *up = udp_sk(sk);
  1740. bool slow = lock_sock_fast(sk);
  1741. udp_flush_pending_frames(sk);
  1742. unlock_sock_fast(sk, slow);
  1743. if (static_key_false(&udp_encap_needed) && up->encap_type) {
  1744. void (*encap_destroy)(struct sock *sk);
  1745. encap_destroy = ACCESS_ONCE(up->encap_destroy);
  1746. if (encap_destroy)
  1747. encap_destroy(sk);
  1748. }
  1749. }
  1750. /*
  1751. * Socket option code for UDP
  1752. */
  1753. int udp_lib_setsockopt(struct sock *sk, int level, int optname,
  1754. char __user *optval, unsigned int optlen,
  1755. int (*push_pending_frames)(struct sock *))
  1756. {
  1757. struct udp_sock *up = udp_sk(sk);
  1758. int val, valbool;
  1759. int err = 0;
  1760. int is_udplite = IS_UDPLITE(sk);
  1761. if (optlen < sizeof(int))
  1762. return -EINVAL;
  1763. if (get_user(val, (int __user *)optval))
  1764. return -EFAULT;
  1765. valbool = val ? 1 : 0;
  1766. switch (optname) {
  1767. case UDP_CORK:
  1768. if (val != 0) {
  1769. up->corkflag = 1;
  1770. } else {
  1771. up->corkflag = 0;
  1772. lock_sock(sk);
  1773. (*push_pending_frames)(sk);
  1774. release_sock(sk);
  1775. }
  1776. break;
  1777. case UDP_ENCAP:
  1778. switch (val) {
  1779. case 0:
  1780. case UDP_ENCAP_ESPINUDP:
  1781. case UDP_ENCAP_ESPINUDP_NON_IKE:
  1782. up->encap_rcv = xfrm4_udp_encap_rcv;
  1783. /* FALLTHROUGH */
  1784. case UDP_ENCAP_L2TPINUDP:
  1785. up->encap_type = val;
  1786. udp_encap_enable();
  1787. break;
  1788. default:
  1789. err = -ENOPROTOOPT;
  1790. break;
  1791. }
  1792. break;
  1793. case UDP_NO_CHECK6_TX:
  1794. up->no_check6_tx = valbool;
  1795. break;
  1796. case UDP_NO_CHECK6_RX:
  1797. up->no_check6_rx = valbool;
  1798. break;
  1799. /*
  1800. * UDP-Lite's partial checksum coverage (RFC 3828).
  1801. */
  1802. /* The sender sets actual checksum coverage length via this option.
  1803. * The case coverage > packet length is handled by send module. */
  1804. case UDPLITE_SEND_CSCOV:
  1805. if (!is_udplite) /* Disable the option on UDP sockets */
  1806. return -ENOPROTOOPT;
  1807. if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
  1808. val = 8;
  1809. else if (val > USHRT_MAX)
  1810. val = USHRT_MAX;
  1811. up->pcslen = val;
  1812. up->pcflag |= UDPLITE_SEND_CC;
  1813. break;
  1814. /* The receiver specifies a minimum checksum coverage value. To make
  1815. * sense, this should be set to at least 8 (as done below). If zero is
  1816. * used, this again means full checksum coverage. */
  1817. case UDPLITE_RECV_CSCOV:
  1818. if (!is_udplite) /* Disable the option on UDP sockets */
  1819. return -ENOPROTOOPT;
  1820. if (val != 0 && val < 8) /* Avoid silly minimal values. */
  1821. val = 8;
  1822. else if (val > USHRT_MAX)
  1823. val = USHRT_MAX;
  1824. up->pcrlen = val;
  1825. up->pcflag |= UDPLITE_RECV_CC;
  1826. break;
  1827. default:
  1828. err = -ENOPROTOOPT;
  1829. break;
  1830. }
  1831. return err;
  1832. }
  1833. EXPORT_SYMBOL(udp_lib_setsockopt);
  1834. int udp_setsockopt(struct sock *sk, int level, int optname,
  1835. char __user *optval, unsigned int optlen)
  1836. {
  1837. if (level == SOL_UDP || level == SOL_UDPLITE)
  1838. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1839. udp_push_pending_frames);
  1840. return ip_setsockopt(sk, level, optname, optval, optlen);
  1841. }
  1842. #ifdef CONFIG_COMPAT
  1843. int compat_udp_setsockopt(struct sock *sk, int level, int optname,
  1844. char __user *optval, unsigned int optlen)
  1845. {
  1846. if (level == SOL_UDP || level == SOL_UDPLITE)
  1847. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1848. udp_push_pending_frames);
  1849. return compat_ip_setsockopt(sk, level, optname, optval, optlen);
  1850. }
  1851. #endif
  1852. int udp_lib_getsockopt(struct sock *sk, int level, int optname,
  1853. char __user *optval, int __user *optlen)
  1854. {
  1855. struct udp_sock *up = udp_sk(sk);
  1856. int val, len;
  1857. if (get_user(len, optlen))
  1858. return -EFAULT;
  1859. len = min_t(unsigned int, len, sizeof(int));
  1860. if (len < 0)
  1861. return -EINVAL;
  1862. switch (optname) {
  1863. case UDP_CORK:
  1864. val = up->corkflag;
  1865. break;
  1866. case UDP_ENCAP:
  1867. val = up->encap_type;
  1868. break;
  1869. case UDP_NO_CHECK6_TX:
  1870. val = up->no_check6_tx;
  1871. break;
  1872. case UDP_NO_CHECK6_RX:
  1873. val = up->no_check6_rx;
  1874. break;
  1875. /* The following two cannot be changed on UDP sockets, the return is
  1876. * always 0 (which corresponds to the full checksum coverage of UDP). */
  1877. case UDPLITE_SEND_CSCOV:
  1878. val = up->pcslen;
  1879. break;
  1880. case UDPLITE_RECV_CSCOV:
  1881. val = up->pcrlen;
  1882. break;
  1883. default:
  1884. return -ENOPROTOOPT;
  1885. }
  1886. if (put_user(len, optlen))
  1887. return -EFAULT;
  1888. if (copy_to_user(optval, &val, len))
  1889. return -EFAULT;
  1890. return 0;
  1891. }
  1892. EXPORT_SYMBOL(udp_lib_getsockopt);
  1893. int udp_getsockopt(struct sock *sk, int level, int optname,
  1894. char __user *optval, int __user *optlen)
  1895. {
  1896. if (level == SOL_UDP || level == SOL_UDPLITE)
  1897. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  1898. return ip_getsockopt(sk, level, optname, optval, optlen);
  1899. }
  1900. #ifdef CONFIG_COMPAT
  1901. int compat_udp_getsockopt(struct sock *sk, int level, int optname,
  1902. char __user *optval, int __user *optlen)
  1903. {
  1904. if (level == SOL_UDP || level == SOL_UDPLITE)
  1905. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  1906. return compat_ip_getsockopt(sk, level, optname, optval, optlen);
  1907. }
  1908. #endif
  1909. /**
  1910. * udp_poll - wait for a UDP event.
  1911. * @file - file struct
  1912. * @sock - socket
  1913. * @wait - poll table
  1914. *
  1915. * This is same as datagram poll, except for the special case of
  1916. * blocking sockets. If application is using a blocking fd
  1917. * and a packet with checksum error is in the queue;
  1918. * then it could get return from select indicating data available
  1919. * but then block when reading it. Add special case code
  1920. * to work around these arguably broken applications.
  1921. */
  1922. unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
  1923. {
  1924. unsigned int mask = datagram_poll(file, sock, wait);
  1925. struct sock *sk = sock->sk;
  1926. sock_rps_record_flow(sk);
  1927. /* Check for false positives due to checksum errors */
  1928. if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
  1929. !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
  1930. mask &= ~(POLLIN | POLLRDNORM);
  1931. return mask;
  1932. }
  1933. EXPORT_SYMBOL(udp_poll);
  1934. struct proto udp_prot = {
  1935. .name = "UDP",
  1936. .owner = THIS_MODULE,
  1937. .close = udp_lib_close,
  1938. .connect = ip4_datagram_connect,
  1939. .disconnect = udp_disconnect,
  1940. .ioctl = udp_ioctl,
  1941. .destroy = udp_destroy_sock,
  1942. .setsockopt = udp_setsockopt,
  1943. .getsockopt = udp_getsockopt,
  1944. .sendmsg = udp_sendmsg,
  1945. .recvmsg = udp_recvmsg,
  1946. .sendpage = udp_sendpage,
  1947. .backlog_rcv = __udp_queue_rcv_skb,
  1948. .release_cb = ip4_datagram_release_cb,
  1949. .hash = udp_lib_hash,
  1950. .unhash = udp_lib_unhash,
  1951. .rehash = udp_v4_rehash,
  1952. .get_port = udp_v4_get_port,
  1953. .memory_allocated = &udp_memory_allocated,
  1954. .sysctl_mem = sysctl_udp_mem,
  1955. .sysctl_wmem = &sysctl_udp_wmem_min,
  1956. .sysctl_rmem = &sysctl_udp_rmem_min,
  1957. .obj_size = sizeof(struct udp_sock),
  1958. .slab_flags = SLAB_DESTROY_BY_RCU,
  1959. .h.udp_table = &udp_table,
  1960. #ifdef CONFIG_COMPAT
  1961. .compat_setsockopt = compat_udp_setsockopt,
  1962. .compat_getsockopt = compat_udp_getsockopt,
  1963. #endif
  1964. .clear_sk = sk_prot_clear_portaddr_nulls,
  1965. };
  1966. EXPORT_SYMBOL(udp_prot);
  1967. /* ------------------------------------------------------------------------ */
  1968. #ifdef CONFIG_PROC_FS
  1969. static struct sock *udp_get_first(struct seq_file *seq, int start)
  1970. {
  1971. struct sock *sk;
  1972. struct udp_iter_state *state = seq->private;
  1973. struct net *net = seq_file_net(seq);
  1974. for (state->bucket = start; state->bucket <= state->udp_table->mask;
  1975. ++state->bucket) {
  1976. struct hlist_nulls_node *node;
  1977. struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
  1978. if (hlist_nulls_empty(&hslot->head))
  1979. continue;
  1980. spin_lock_bh(&hslot->lock);
  1981. sk_nulls_for_each(sk, node, &hslot->head) {
  1982. if (!net_eq(sock_net(sk), net))
  1983. continue;
  1984. if (sk->sk_family == state->family)
  1985. goto found;
  1986. }
  1987. spin_unlock_bh(&hslot->lock);
  1988. }
  1989. sk = NULL;
  1990. found:
  1991. return sk;
  1992. }
  1993. static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
  1994. {
  1995. struct udp_iter_state *state = seq->private;
  1996. struct net *net = seq_file_net(seq);
  1997. do {
  1998. sk = sk_nulls_next(sk);
  1999. } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
  2000. if (!sk) {
  2001. if (state->bucket <= state->udp_table->mask)
  2002. spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
  2003. return udp_get_first(seq, state->bucket + 1);
  2004. }
  2005. return sk;
  2006. }
  2007. static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
  2008. {
  2009. struct sock *sk = udp_get_first(seq, 0);
  2010. if (sk)
  2011. while (pos && (sk = udp_get_next(seq, sk)) != NULL)
  2012. --pos;
  2013. return pos ? NULL : sk;
  2014. }
  2015. static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
  2016. {
  2017. struct udp_iter_state *state = seq->private;
  2018. state->bucket = MAX_UDP_PORTS;
  2019. return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
  2020. }
  2021. static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2022. {
  2023. struct sock *sk;
  2024. if (v == SEQ_START_TOKEN)
  2025. sk = udp_get_idx(seq, 0);
  2026. else
  2027. sk = udp_get_next(seq, v);
  2028. ++*pos;
  2029. return sk;
  2030. }
  2031. static void udp_seq_stop(struct seq_file *seq, void *v)
  2032. {
  2033. struct udp_iter_state *state = seq->private;
  2034. if (state->bucket <= state->udp_table->mask)
  2035. spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
  2036. }
  2037. int udp_seq_open(struct inode *inode, struct file *file)
  2038. {
  2039. struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
  2040. struct udp_iter_state *s;
  2041. int err;
  2042. err = seq_open_net(inode, file, &afinfo->seq_ops,
  2043. sizeof(struct udp_iter_state));
  2044. if (err < 0)
  2045. return err;
  2046. s = ((struct seq_file *)file->private_data)->private;
  2047. s->family = afinfo->family;
  2048. s->udp_table = afinfo->udp_table;
  2049. return err;
  2050. }
  2051. EXPORT_SYMBOL(udp_seq_open);
  2052. /* ------------------------------------------------------------------------ */
  2053. int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
  2054. {
  2055. struct proc_dir_entry *p;
  2056. int rc = 0;
  2057. afinfo->seq_ops.start = udp_seq_start;
  2058. afinfo->seq_ops.next = udp_seq_next;
  2059. afinfo->seq_ops.stop = udp_seq_stop;
  2060. p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
  2061. afinfo->seq_fops, afinfo);
  2062. if (!p)
  2063. rc = -ENOMEM;
  2064. return rc;
  2065. }
  2066. EXPORT_SYMBOL(udp_proc_register);
  2067. void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
  2068. {
  2069. remove_proc_entry(afinfo->name, net->proc_net);
  2070. }
  2071. EXPORT_SYMBOL(udp_proc_unregister);
  2072. /* ------------------------------------------------------------------------ */
  2073. static void udp4_format_sock(struct sock *sp, struct seq_file *f,
  2074. int bucket)
  2075. {
  2076. struct inet_sock *inet = inet_sk(sp);
  2077. __be32 dest = inet->inet_daddr;
  2078. __be32 src = inet->inet_rcv_saddr;
  2079. __u16 destp = ntohs(inet->inet_dport);
  2080. __u16 srcp = ntohs(inet->inet_sport);
  2081. seq_printf(f, "%5d: %08X:%04X %08X:%04X"
  2082. " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
  2083. bucket, src, srcp, dest, destp, sp->sk_state,
  2084. sk_wmem_alloc_get(sp),
  2085. sk_rmem_alloc_get(sp),
  2086. 0, 0L, 0,
  2087. from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
  2088. 0, sock_i_ino(sp),
  2089. atomic_read(&sp->sk_refcnt), sp,
  2090. atomic_read(&sp->sk_drops));
  2091. }
  2092. int udp4_seq_show(struct seq_file *seq, void *v)
  2093. {
  2094. seq_setwidth(seq, 127);
  2095. if (v == SEQ_START_TOKEN)
  2096. seq_puts(seq, " sl local_address rem_address st tx_queue "
  2097. "rx_queue tr tm->when retrnsmt uid timeout "
  2098. "inode ref pointer drops");
  2099. else {
  2100. struct udp_iter_state *state = seq->private;
  2101. udp4_format_sock(v, seq, state->bucket);
  2102. }
  2103. seq_pad(seq, '\n');
  2104. return 0;
  2105. }
  2106. static const struct file_operations udp_afinfo_seq_fops = {
  2107. .owner = THIS_MODULE,
  2108. .open = udp_seq_open,
  2109. .read = seq_read,
  2110. .llseek = seq_lseek,
  2111. .release = seq_release_net
  2112. };
  2113. /* ------------------------------------------------------------------------ */
  2114. static struct udp_seq_afinfo udp4_seq_afinfo = {
  2115. .name = "udp",
  2116. .family = AF_INET,
  2117. .udp_table = &udp_table,
  2118. .seq_fops = &udp_afinfo_seq_fops,
  2119. .seq_ops = {
  2120. .show = udp4_seq_show,
  2121. },
  2122. };
  2123. static int __net_init udp4_proc_init_net(struct net *net)
  2124. {
  2125. return udp_proc_register(net, &udp4_seq_afinfo);
  2126. }
  2127. static void __net_exit udp4_proc_exit_net(struct net *net)
  2128. {
  2129. udp_proc_unregister(net, &udp4_seq_afinfo);
  2130. }
  2131. static struct pernet_operations udp4_net_ops = {
  2132. .init = udp4_proc_init_net,
  2133. .exit = udp4_proc_exit_net,
  2134. };
  2135. int __init udp4_proc_init(void)
  2136. {
  2137. return register_pernet_subsys(&udp4_net_ops);
  2138. }
  2139. void udp4_proc_exit(void)
  2140. {
  2141. unregister_pernet_subsys(&udp4_net_ops);
  2142. }
  2143. #endif /* CONFIG_PROC_FS */
  2144. static __initdata unsigned long uhash_entries;
  2145. static int __init set_uhash_entries(char *str)
  2146. {
  2147. ssize_t ret;
  2148. if (!str)
  2149. return 0;
  2150. ret = kstrtoul(str, 0, &uhash_entries);
  2151. if (ret)
  2152. return 0;
  2153. if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
  2154. uhash_entries = UDP_HTABLE_SIZE_MIN;
  2155. return 1;
  2156. }
  2157. __setup("uhash_entries=", set_uhash_entries);
  2158. void __init udp_table_init(struct udp_table *table, const char *name)
  2159. {
  2160. unsigned int i;
  2161. table->hash = alloc_large_system_hash(name,
  2162. 2 * sizeof(struct udp_hslot),
  2163. uhash_entries,
  2164. 21, /* one slot per 2 MB */
  2165. 0,
  2166. &table->log,
  2167. &table->mask,
  2168. UDP_HTABLE_SIZE_MIN,
  2169. 64 * 1024);
  2170. table->hash2 = table->hash + (table->mask + 1);
  2171. for (i = 0; i <= table->mask; i++) {
  2172. INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
  2173. table->hash[i].count = 0;
  2174. spin_lock_init(&table->hash[i].lock);
  2175. }
  2176. for (i = 0; i <= table->mask; i++) {
  2177. INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
  2178. table->hash2[i].count = 0;
  2179. spin_lock_init(&table->hash2[i].lock);
  2180. }
  2181. }
  2182. void __init udp_init(void)
  2183. {
  2184. unsigned long limit;
  2185. udp_table_init(&udp_table, "UDP");
  2186. limit = nr_free_buffer_pages() / 8;
  2187. limit = max(limit, 128UL);
  2188. sysctl_udp_mem[0] = limit / 4 * 3;
  2189. sysctl_udp_mem[1] = limit;
  2190. sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
  2191. sysctl_udp_rmem_min = SK_MEM_QUANTUM;
  2192. sysctl_udp_wmem_min = SK_MEM_QUANTUM;
  2193. }