vmscan.c 110 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856
  1. /*
  2. * linux/mm/vmscan.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95, Stephen Tweedie.
  7. * kswapd added: 7.1.96 sct
  8. * Removed kswapd_ctl limits, and swap out as many pages as needed
  9. * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11. * Multiqueue VM started 5.8.00, Rik van Riel.
  12. */
  13. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14. #include <linux/mm.h>
  15. #include <linux/module.h>
  16. #include <linux/gfp.h>
  17. #include <linux/kernel_stat.h>
  18. #include <linux/swap.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/init.h>
  21. #include <linux/highmem.h>
  22. #include <linux/vmpressure.h>
  23. #include <linux/vmstat.h>
  24. #include <linux/file.h>
  25. #include <linux/writeback.h>
  26. #include <linux/blkdev.h>
  27. #include <linux/buffer_head.h> /* for try_to_release_page(),
  28. buffer_heads_over_limit */
  29. #include <linux/mm_inline.h>
  30. #include <linux/backing-dev.h>
  31. #include <linux/rmap.h>
  32. #include <linux/topology.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cpuset.h>
  35. #include <linux/compaction.h>
  36. #include <linux/notifier.h>
  37. #include <linux/rwsem.h>
  38. #include <linux/delay.h>
  39. #include <linux/kthread.h>
  40. #include <linux/freezer.h>
  41. #include <linux/memcontrol.h>
  42. #include <linux/delayacct.h>
  43. #include <linux/sysctl.h>
  44. #include <linux/oom.h>
  45. #include <linux/prefetch.h>
  46. #include <linux/printk.h>
  47. #include <asm/tlbflush.h>
  48. #include <asm/div64.h>
  49. #include <linux/swapops.h>
  50. #include <linux/balloon_compaction.h>
  51. #include "internal.h"
  52. #define CREATE_TRACE_POINTS
  53. #include <trace/events/vmscan.h>
  54. struct scan_control {
  55. /* How many pages shrink_list() should reclaim */
  56. unsigned long nr_to_reclaim;
  57. /* This context's GFP mask */
  58. gfp_t gfp_mask;
  59. /* Allocation order */
  60. int order;
  61. /*
  62. * Nodemask of nodes allowed by the caller. If NULL, all nodes
  63. * are scanned.
  64. */
  65. nodemask_t *nodemask;
  66. /*
  67. * The memory cgroup that hit its limit and as a result is the
  68. * primary target of this reclaim invocation.
  69. */
  70. struct mem_cgroup *target_mem_cgroup;
  71. /* Scan (total_size >> priority) pages at once */
  72. int priority;
  73. unsigned int may_writepage:1;
  74. /* Can mapped pages be reclaimed? */
  75. unsigned int may_unmap:1;
  76. /* Can pages be swapped as part of reclaim? */
  77. unsigned int may_swap:1;
  78. unsigned int hibernation_mode:1;
  79. /* One of the zones is ready for compaction */
  80. unsigned int compaction_ready:1;
  81. /* Incremented by the number of inactive pages that were scanned */
  82. unsigned long nr_scanned;
  83. /* Number of pages freed so far during a call to shrink_zones() */
  84. unsigned long nr_reclaimed;
  85. };
  86. #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  87. #ifdef ARCH_HAS_PREFETCH
  88. #define prefetch_prev_lru_page(_page, _base, _field) \
  89. do { \
  90. if ((_page)->lru.prev != _base) { \
  91. struct page *prev; \
  92. \
  93. prev = lru_to_page(&(_page->lru)); \
  94. prefetch(&prev->_field); \
  95. } \
  96. } while (0)
  97. #else
  98. #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
  99. #endif
  100. #ifdef ARCH_HAS_PREFETCHW
  101. #define prefetchw_prev_lru_page(_page, _base, _field) \
  102. do { \
  103. if ((_page)->lru.prev != _base) { \
  104. struct page *prev; \
  105. \
  106. prev = lru_to_page(&(_page->lru)); \
  107. prefetchw(&prev->_field); \
  108. } \
  109. } while (0)
  110. #else
  111. #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
  112. #endif
  113. /*
  114. * From 0 .. 100. Higher means more swappy.
  115. */
  116. int vm_swappiness = 60;
  117. /*
  118. * The total number of pages which are beyond the high watermark within all
  119. * zones.
  120. */
  121. unsigned long vm_total_pages;
  122. static LIST_HEAD(shrinker_list);
  123. static DECLARE_RWSEM(shrinker_rwsem);
  124. #ifdef CONFIG_MEMCG
  125. static bool global_reclaim(struct scan_control *sc)
  126. {
  127. return !sc->target_mem_cgroup;
  128. }
  129. #else
  130. static bool global_reclaim(struct scan_control *sc)
  131. {
  132. return true;
  133. }
  134. #endif
  135. static unsigned long zone_reclaimable_pages(struct zone *zone)
  136. {
  137. int nr;
  138. nr = zone_page_state(zone, NR_ACTIVE_FILE) +
  139. zone_page_state(zone, NR_INACTIVE_FILE);
  140. if (get_nr_swap_pages() > 0)
  141. nr += zone_page_state(zone, NR_ACTIVE_ANON) +
  142. zone_page_state(zone, NR_INACTIVE_ANON);
  143. return nr;
  144. }
  145. bool zone_reclaimable(struct zone *zone)
  146. {
  147. return zone_page_state(zone, NR_PAGES_SCANNED) <
  148. zone_reclaimable_pages(zone) * 6;
  149. }
  150. static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
  151. {
  152. if (!mem_cgroup_disabled())
  153. return mem_cgroup_get_lru_size(lruvec, lru);
  154. return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
  155. }
  156. /*
  157. * Add a shrinker callback to be called from the vm.
  158. */
  159. int register_shrinker(struct shrinker *shrinker)
  160. {
  161. size_t size = sizeof(*shrinker->nr_deferred);
  162. /*
  163. * If we only have one possible node in the system anyway, save
  164. * ourselves the trouble and disable NUMA aware behavior. This way we
  165. * will save memory and some small loop time later.
  166. */
  167. if (nr_node_ids == 1)
  168. shrinker->flags &= ~SHRINKER_NUMA_AWARE;
  169. if (shrinker->flags & SHRINKER_NUMA_AWARE)
  170. size *= nr_node_ids;
  171. shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
  172. if (!shrinker->nr_deferred)
  173. return -ENOMEM;
  174. down_write(&shrinker_rwsem);
  175. list_add_tail(&shrinker->list, &shrinker_list);
  176. up_write(&shrinker_rwsem);
  177. return 0;
  178. }
  179. EXPORT_SYMBOL(register_shrinker);
  180. /*
  181. * Remove one
  182. */
  183. void unregister_shrinker(struct shrinker *shrinker)
  184. {
  185. down_write(&shrinker_rwsem);
  186. list_del(&shrinker->list);
  187. up_write(&shrinker_rwsem);
  188. kfree(shrinker->nr_deferred);
  189. }
  190. EXPORT_SYMBOL(unregister_shrinker);
  191. #define SHRINK_BATCH 128
  192. static unsigned long
  193. shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
  194. unsigned long nr_pages_scanned, unsigned long lru_pages)
  195. {
  196. unsigned long freed = 0;
  197. unsigned long long delta;
  198. long total_scan;
  199. long freeable;
  200. long nr;
  201. long new_nr;
  202. int nid = shrinkctl->nid;
  203. long batch_size = shrinker->batch ? shrinker->batch
  204. : SHRINK_BATCH;
  205. freeable = shrinker->count_objects(shrinker, shrinkctl);
  206. if (freeable == 0)
  207. return 0;
  208. /*
  209. * copy the current shrinker scan count into a local variable
  210. * and zero it so that other concurrent shrinker invocations
  211. * don't also do this scanning work.
  212. */
  213. nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
  214. total_scan = nr;
  215. delta = (4 * nr_pages_scanned) / shrinker->seeks;
  216. delta *= freeable;
  217. do_div(delta, lru_pages + 1);
  218. total_scan += delta;
  219. if (total_scan < 0) {
  220. printk(KERN_ERR
  221. "shrink_slab: %pF negative objects to delete nr=%ld\n",
  222. shrinker->scan_objects, total_scan);
  223. total_scan = freeable;
  224. }
  225. /*
  226. * We need to avoid excessive windup on filesystem shrinkers
  227. * due to large numbers of GFP_NOFS allocations causing the
  228. * shrinkers to return -1 all the time. This results in a large
  229. * nr being built up so when a shrink that can do some work
  230. * comes along it empties the entire cache due to nr >>>
  231. * freeable. This is bad for sustaining a working set in
  232. * memory.
  233. *
  234. * Hence only allow the shrinker to scan the entire cache when
  235. * a large delta change is calculated directly.
  236. */
  237. if (delta < freeable / 4)
  238. total_scan = min(total_scan, freeable / 2);
  239. /*
  240. * Avoid risking looping forever due to too large nr value:
  241. * never try to free more than twice the estimate number of
  242. * freeable entries.
  243. */
  244. if (total_scan > freeable * 2)
  245. total_scan = freeable * 2;
  246. trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
  247. nr_pages_scanned, lru_pages,
  248. freeable, delta, total_scan);
  249. /*
  250. * Normally, we should not scan less than batch_size objects in one
  251. * pass to avoid too frequent shrinker calls, but if the slab has less
  252. * than batch_size objects in total and we are really tight on memory,
  253. * we will try to reclaim all available objects, otherwise we can end
  254. * up failing allocations although there are plenty of reclaimable
  255. * objects spread over several slabs with usage less than the
  256. * batch_size.
  257. *
  258. * We detect the "tight on memory" situations by looking at the total
  259. * number of objects we want to scan (total_scan). If it is greater
  260. * than the total number of objects on slab (freeable), we must be
  261. * scanning at high prio and therefore should try to reclaim as much as
  262. * possible.
  263. */
  264. while (total_scan >= batch_size ||
  265. total_scan >= freeable) {
  266. unsigned long ret;
  267. unsigned long nr_to_scan = min(batch_size, total_scan);
  268. shrinkctl->nr_to_scan = nr_to_scan;
  269. ret = shrinker->scan_objects(shrinker, shrinkctl);
  270. if (ret == SHRINK_STOP)
  271. break;
  272. freed += ret;
  273. count_vm_events(SLABS_SCANNED, nr_to_scan);
  274. total_scan -= nr_to_scan;
  275. cond_resched();
  276. }
  277. /*
  278. * move the unused scan count back into the shrinker in a
  279. * manner that handles concurrent updates. If we exhausted the
  280. * scan, there is no need to do an update.
  281. */
  282. if (total_scan > 0)
  283. new_nr = atomic_long_add_return(total_scan,
  284. &shrinker->nr_deferred[nid]);
  285. else
  286. new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
  287. trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
  288. return freed;
  289. }
  290. /*
  291. * Call the shrink functions to age shrinkable caches
  292. *
  293. * Here we assume it costs one seek to replace a lru page and that it also
  294. * takes a seek to recreate a cache object. With this in mind we age equal
  295. * percentages of the lru and ageable caches. This should balance the seeks
  296. * generated by these structures.
  297. *
  298. * If the vm encountered mapped pages on the LRU it increase the pressure on
  299. * slab to avoid swapping.
  300. *
  301. * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
  302. *
  303. * `lru_pages' represents the number of on-LRU pages in all the zones which
  304. * are eligible for the caller's allocation attempt. It is used for balancing
  305. * slab reclaim versus page reclaim.
  306. *
  307. * Returns the number of slab objects which we shrunk.
  308. */
  309. unsigned long shrink_slab(struct shrink_control *shrinkctl,
  310. unsigned long nr_pages_scanned,
  311. unsigned long lru_pages)
  312. {
  313. struct shrinker *shrinker;
  314. unsigned long freed = 0;
  315. if (nr_pages_scanned == 0)
  316. nr_pages_scanned = SWAP_CLUSTER_MAX;
  317. if (!down_read_trylock(&shrinker_rwsem)) {
  318. /*
  319. * If we would return 0, our callers would understand that we
  320. * have nothing else to shrink and give up trying. By returning
  321. * 1 we keep it going and assume we'll be able to shrink next
  322. * time.
  323. */
  324. freed = 1;
  325. goto out;
  326. }
  327. list_for_each_entry(shrinker, &shrinker_list, list) {
  328. if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
  329. shrinkctl->nid = 0;
  330. freed += shrink_slab_node(shrinkctl, shrinker,
  331. nr_pages_scanned, lru_pages);
  332. continue;
  333. }
  334. for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
  335. if (node_online(shrinkctl->nid))
  336. freed += shrink_slab_node(shrinkctl, shrinker,
  337. nr_pages_scanned, lru_pages);
  338. }
  339. }
  340. up_read(&shrinker_rwsem);
  341. out:
  342. cond_resched();
  343. return freed;
  344. }
  345. static inline int is_page_cache_freeable(struct page *page)
  346. {
  347. /*
  348. * A freeable page cache page is referenced only by the caller
  349. * that isolated the page, the page cache radix tree and
  350. * optional buffer heads at page->private.
  351. */
  352. return page_count(page) - page_has_private(page) == 2;
  353. }
  354. static int may_write_to_queue(struct backing_dev_info *bdi,
  355. struct scan_control *sc)
  356. {
  357. if (current->flags & PF_SWAPWRITE)
  358. return 1;
  359. if (!bdi_write_congested(bdi))
  360. return 1;
  361. if (bdi == current->backing_dev_info)
  362. return 1;
  363. return 0;
  364. }
  365. /*
  366. * We detected a synchronous write error writing a page out. Probably
  367. * -ENOSPC. We need to propagate that into the address_space for a subsequent
  368. * fsync(), msync() or close().
  369. *
  370. * The tricky part is that after writepage we cannot touch the mapping: nothing
  371. * prevents it from being freed up. But we have a ref on the page and once
  372. * that page is locked, the mapping is pinned.
  373. *
  374. * We're allowed to run sleeping lock_page() here because we know the caller has
  375. * __GFP_FS.
  376. */
  377. static void handle_write_error(struct address_space *mapping,
  378. struct page *page, int error)
  379. {
  380. lock_page(page);
  381. if (page_mapping(page) == mapping)
  382. mapping_set_error(mapping, error);
  383. unlock_page(page);
  384. }
  385. /* possible outcome of pageout() */
  386. typedef enum {
  387. /* failed to write page out, page is locked */
  388. PAGE_KEEP,
  389. /* move page to the active list, page is locked */
  390. PAGE_ACTIVATE,
  391. /* page has been sent to the disk successfully, page is unlocked */
  392. PAGE_SUCCESS,
  393. /* page is clean and locked */
  394. PAGE_CLEAN,
  395. } pageout_t;
  396. /*
  397. * pageout is called by shrink_page_list() for each dirty page.
  398. * Calls ->writepage().
  399. */
  400. static pageout_t pageout(struct page *page, struct address_space *mapping,
  401. struct scan_control *sc)
  402. {
  403. /*
  404. * If the page is dirty, only perform writeback if that write
  405. * will be non-blocking. To prevent this allocation from being
  406. * stalled by pagecache activity. But note that there may be
  407. * stalls if we need to run get_block(). We could test
  408. * PagePrivate for that.
  409. *
  410. * If this process is currently in __generic_file_write_iter() against
  411. * this page's queue, we can perform writeback even if that
  412. * will block.
  413. *
  414. * If the page is swapcache, write it back even if that would
  415. * block, for some throttling. This happens by accident, because
  416. * swap_backing_dev_info is bust: it doesn't reflect the
  417. * congestion state of the swapdevs. Easy to fix, if needed.
  418. */
  419. if (!is_page_cache_freeable(page))
  420. return PAGE_KEEP;
  421. if (!mapping) {
  422. /*
  423. * Some data journaling orphaned pages can have
  424. * page->mapping == NULL while being dirty with clean buffers.
  425. */
  426. if (page_has_private(page)) {
  427. if (try_to_free_buffers(page)) {
  428. ClearPageDirty(page);
  429. pr_info("%s: orphaned page\n", __func__);
  430. return PAGE_CLEAN;
  431. }
  432. }
  433. return PAGE_KEEP;
  434. }
  435. if (mapping->a_ops->writepage == NULL)
  436. return PAGE_ACTIVATE;
  437. if (!may_write_to_queue(mapping->backing_dev_info, sc))
  438. return PAGE_KEEP;
  439. if (clear_page_dirty_for_io(page)) {
  440. int res;
  441. struct writeback_control wbc = {
  442. .sync_mode = WB_SYNC_NONE,
  443. .nr_to_write = SWAP_CLUSTER_MAX,
  444. .range_start = 0,
  445. .range_end = LLONG_MAX,
  446. .for_reclaim = 1,
  447. };
  448. SetPageReclaim(page);
  449. res = mapping->a_ops->writepage(page, &wbc);
  450. if (res < 0)
  451. handle_write_error(mapping, page, res);
  452. if (res == AOP_WRITEPAGE_ACTIVATE) {
  453. ClearPageReclaim(page);
  454. return PAGE_ACTIVATE;
  455. }
  456. if (!PageWriteback(page)) {
  457. /* synchronous write or broken a_ops? */
  458. ClearPageReclaim(page);
  459. }
  460. trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
  461. inc_zone_page_state(page, NR_VMSCAN_WRITE);
  462. return PAGE_SUCCESS;
  463. }
  464. return PAGE_CLEAN;
  465. }
  466. /*
  467. * Same as remove_mapping, but if the page is removed from the mapping, it
  468. * gets returned with a refcount of 0.
  469. */
  470. static int __remove_mapping(struct address_space *mapping, struct page *page,
  471. bool reclaimed)
  472. {
  473. BUG_ON(!PageLocked(page));
  474. BUG_ON(mapping != page_mapping(page));
  475. spin_lock_irq(&mapping->tree_lock);
  476. /*
  477. * The non racy check for a busy page.
  478. *
  479. * Must be careful with the order of the tests. When someone has
  480. * a ref to the page, it may be possible that they dirty it then
  481. * drop the reference. So if PageDirty is tested before page_count
  482. * here, then the following race may occur:
  483. *
  484. * get_user_pages(&page);
  485. * [user mapping goes away]
  486. * write_to(page);
  487. * !PageDirty(page) [good]
  488. * SetPageDirty(page);
  489. * put_page(page);
  490. * !page_count(page) [good, discard it]
  491. *
  492. * [oops, our write_to data is lost]
  493. *
  494. * Reversing the order of the tests ensures such a situation cannot
  495. * escape unnoticed. The smp_rmb is needed to ensure the page->flags
  496. * load is not satisfied before that of page->_count.
  497. *
  498. * Note that if SetPageDirty is always performed via set_page_dirty,
  499. * and thus under tree_lock, then this ordering is not required.
  500. */
  501. if (!page_freeze_refs(page, 2))
  502. goto cannot_free;
  503. /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
  504. if (unlikely(PageDirty(page))) {
  505. page_unfreeze_refs(page, 2);
  506. goto cannot_free;
  507. }
  508. if (PageSwapCache(page)) {
  509. swp_entry_t swap = { .val = page_private(page) };
  510. mem_cgroup_swapout(page, swap);
  511. __delete_from_swap_cache(page);
  512. spin_unlock_irq(&mapping->tree_lock);
  513. swapcache_free(swap);
  514. } else {
  515. void (*freepage)(struct page *);
  516. void *shadow = NULL;
  517. freepage = mapping->a_ops->freepage;
  518. /*
  519. * Remember a shadow entry for reclaimed file cache in
  520. * order to detect refaults, thus thrashing, later on.
  521. *
  522. * But don't store shadows in an address space that is
  523. * already exiting. This is not just an optizimation,
  524. * inode reclaim needs to empty out the radix tree or
  525. * the nodes are lost. Don't plant shadows behind its
  526. * back.
  527. */
  528. if (reclaimed && page_is_file_cache(page) &&
  529. !mapping_exiting(mapping))
  530. shadow = workingset_eviction(mapping, page);
  531. __delete_from_page_cache(page, shadow);
  532. spin_unlock_irq(&mapping->tree_lock);
  533. if (freepage != NULL)
  534. freepage(page);
  535. }
  536. return 1;
  537. cannot_free:
  538. spin_unlock_irq(&mapping->tree_lock);
  539. return 0;
  540. }
  541. /*
  542. * Attempt to detach a locked page from its ->mapping. If it is dirty or if
  543. * someone else has a ref on the page, abort and return 0. If it was
  544. * successfully detached, return 1. Assumes the caller has a single ref on
  545. * this page.
  546. */
  547. int remove_mapping(struct address_space *mapping, struct page *page)
  548. {
  549. if (__remove_mapping(mapping, page, false)) {
  550. /*
  551. * Unfreezing the refcount with 1 rather than 2 effectively
  552. * drops the pagecache ref for us without requiring another
  553. * atomic operation.
  554. */
  555. page_unfreeze_refs(page, 1);
  556. return 1;
  557. }
  558. return 0;
  559. }
  560. /**
  561. * putback_lru_page - put previously isolated page onto appropriate LRU list
  562. * @page: page to be put back to appropriate lru list
  563. *
  564. * Add previously isolated @page to appropriate LRU list.
  565. * Page may still be unevictable for other reasons.
  566. *
  567. * lru_lock must not be held, interrupts must be enabled.
  568. */
  569. void putback_lru_page(struct page *page)
  570. {
  571. bool is_unevictable;
  572. int was_unevictable = PageUnevictable(page);
  573. VM_BUG_ON_PAGE(PageLRU(page), page);
  574. redo:
  575. ClearPageUnevictable(page);
  576. if (page_evictable(page)) {
  577. /*
  578. * For evictable pages, we can use the cache.
  579. * In event of a race, worst case is we end up with an
  580. * unevictable page on [in]active list.
  581. * We know how to handle that.
  582. */
  583. is_unevictable = false;
  584. lru_cache_add(page);
  585. } else {
  586. /*
  587. * Put unevictable pages directly on zone's unevictable
  588. * list.
  589. */
  590. is_unevictable = true;
  591. add_page_to_unevictable_list(page);
  592. /*
  593. * When racing with an mlock or AS_UNEVICTABLE clearing
  594. * (page is unlocked) make sure that if the other thread
  595. * does not observe our setting of PG_lru and fails
  596. * isolation/check_move_unevictable_pages,
  597. * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
  598. * the page back to the evictable list.
  599. *
  600. * The other side is TestClearPageMlocked() or shmem_lock().
  601. */
  602. smp_mb();
  603. }
  604. /*
  605. * page's status can change while we move it among lru. If an evictable
  606. * page is on unevictable list, it never be freed. To avoid that,
  607. * check after we added it to the list, again.
  608. */
  609. if (is_unevictable && page_evictable(page)) {
  610. if (!isolate_lru_page(page)) {
  611. put_page(page);
  612. goto redo;
  613. }
  614. /* This means someone else dropped this page from LRU
  615. * So, it will be freed or putback to LRU again. There is
  616. * nothing to do here.
  617. */
  618. }
  619. if (was_unevictable && !is_unevictable)
  620. count_vm_event(UNEVICTABLE_PGRESCUED);
  621. else if (!was_unevictable && is_unevictable)
  622. count_vm_event(UNEVICTABLE_PGCULLED);
  623. put_page(page); /* drop ref from isolate */
  624. }
  625. enum page_references {
  626. PAGEREF_RECLAIM,
  627. PAGEREF_RECLAIM_CLEAN,
  628. PAGEREF_KEEP,
  629. PAGEREF_ACTIVATE,
  630. };
  631. static enum page_references page_check_references(struct page *page,
  632. struct scan_control *sc)
  633. {
  634. int referenced_ptes, referenced_page;
  635. unsigned long vm_flags;
  636. referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
  637. &vm_flags);
  638. referenced_page = TestClearPageReferenced(page);
  639. /*
  640. * Mlock lost the isolation race with us. Let try_to_unmap()
  641. * move the page to the unevictable list.
  642. */
  643. if (vm_flags & VM_LOCKED)
  644. return PAGEREF_RECLAIM;
  645. if (referenced_ptes) {
  646. if (PageSwapBacked(page))
  647. return PAGEREF_ACTIVATE;
  648. /*
  649. * All mapped pages start out with page table
  650. * references from the instantiating fault, so we need
  651. * to look twice if a mapped file page is used more
  652. * than once.
  653. *
  654. * Mark it and spare it for another trip around the
  655. * inactive list. Another page table reference will
  656. * lead to its activation.
  657. *
  658. * Note: the mark is set for activated pages as well
  659. * so that recently deactivated but used pages are
  660. * quickly recovered.
  661. */
  662. SetPageReferenced(page);
  663. if (referenced_page || referenced_ptes > 1)
  664. return PAGEREF_ACTIVATE;
  665. /*
  666. * Activate file-backed executable pages after first usage.
  667. */
  668. if (vm_flags & VM_EXEC)
  669. return PAGEREF_ACTIVATE;
  670. return PAGEREF_KEEP;
  671. }
  672. /* Reclaim if clean, defer dirty pages to writeback */
  673. if (referenced_page && !PageSwapBacked(page))
  674. return PAGEREF_RECLAIM_CLEAN;
  675. return PAGEREF_RECLAIM;
  676. }
  677. /* Check if a page is dirty or under writeback */
  678. static void page_check_dirty_writeback(struct page *page,
  679. bool *dirty, bool *writeback)
  680. {
  681. struct address_space *mapping;
  682. /*
  683. * Anonymous pages are not handled by flushers and must be written
  684. * from reclaim context. Do not stall reclaim based on them
  685. */
  686. if (!page_is_file_cache(page)) {
  687. *dirty = false;
  688. *writeback = false;
  689. return;
  690. }
  691. /* By default assume that the page flags are accurate */
  692. *dirty = PageDirty(page);
  693. *writeback = PageWriteback(page);
  694. /* Verify dirty/writeback state if the filesystem supports it */
  695. if (!page_has_private(page))
  696. return;
  697. mapping = page_mapping(page);
  698. if (mapping && mapping->a_ops->is_dirty_writeback)
  699. mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
  700. }
  701. /*
  702. * shrink_page_list() returns the number of reclaimed pages
  703. */
  704. static unsigned long shrink_page_list(struct list_head *page_list,
  705. struct zone *zone,
  706. struct scan_control *sc,
  707. enum ttu_flags ttu_flags,
  708. unsigned long *ret_nr_dirty,
  709. unsigned long *ret_nr_unqueued_dirty,
  710. unsigned long *ret_nr_congested,
  711. unsigned long *ret_nr_writeback,
  712. unsigned long *ret_nr_immediate,
  713. bool force_reclaim)
  714. {
  715. LIST_HEAD(ret_pages);
  716. LIST_HEAD(free_pages);
  717. int pgactivate = 0;
  718. unsigned long nr_unqueued_dirty = 0;
  719. unsigned long nr_dirty = 0;
  720. unsigned long nr_congested = 0;
  721. unsigned long nr_reclaimed = 0;
  722. unsigned long nr_writeback = 0;
  723. unsigned long nr_immediate = 0;
  724. cond_resched();
  725. while (!list_empty(page_list)) {
  726. struct address_space *mapping;
  727. struct page *page;
  728. int may_enter_fs;
  729. enum page_references references = PAGEREF_RECLAIM_CLEAN;
  730. bool dirty, writeback;
  731. cond_resched();
  732. page = lru_to_page(page_list);
  733. list_del(&page->lru);
  734. if (!trylock_page(page))
  735. goto keep;
  736. VM_BUG_ON_PAGE(PageActive(page), page);
  737. VM_BUG_ON_PAGE(page_zone(page) != zone, page);
  738. sc->nr_scanned++;
  739. if (unlikely(!page_evictable(page)))
  740. goto cull_mlocked;
  741. if (!sc->may_unmap && page_mapped(page))
  742. goto keep_locked;
  743. /* Double the slab pressure for mapped and swapcache pages */
  744. if (page_mapped(page) || PageSwapCache(page))
  745. sc->nr_scanned++;
  746. may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
  747. (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
  748. /*
  749. * The number of dirty pages determines if a zone is marked
  750. * reclaim_congested which affects wait_iff_congested. kswapd
  751. * will stall and start writing pages if the tail of the LRU
  752. * is all dirty unqueued pages.
  753. */
  754. page_check_dirty_writeback(page, &dirty, &writeback);
  755. if (dirty || writeback)
  756. nr_dirty++;
  757. if (dirty && !writeback)
  758. nr_unqueued_dirty++;
  759. /*
  760. * Treat this page as congested if the underlying BDI is or if
  761. * pages are cycling through the LRU so quickly that the
  762. * pages marked for immediate reclaim are making it to the
  763. * end of the LRU a second time.
  764. */
  765. mapping = page_mapping(page);
  766. if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
  767. (writeback && PageReclaim(page)))
  768. nr_congested++;
  769. /*
  770. * If a page at the tail of the LRU is under writeback, there
  771. * are three cases to consider.
  772. *
  773. * 1) If reclaim is encountering an excessive number of pages
  774. * under writeback and this page is both under writeback and
  775. * PageReclaim then it indicates that pages are being queued
  776. * for IO but are being recycled through the LRU before the
  777. * IO can complete. Waiting on the page itself risks an
  778. * indefinite stall if it is impossible to writeback the
  779. * page due to IO error or disconnected storage so instead
  780. * note that the LRU is being scanned too quickly and the
  781. * caller can stall after page list has been processed.
  782. *
  783. * 2) Global reclaim encounters a page, memcg encounters a
  784. * page that is not marked for immediate reclaim or
  785. * the caller does not have __GFP_IO. In this case mark
  786. * the page for immediate reclaim and continue scanning.
  787. *
  788. * __GFP_IO is checked because a loop driver thread might
  789. * enter reclaim, and deadlock if it waits on a page for
  790. * which it is needed to do the write (loop masks off
  791. * __GFP_IO|__GFP_FS for this reason); but more thought
  792. * would probably show more reasons.
  793. *
  794. * Don't require __GFP_FS, since we're not going into the
  795. * FS, just waiting on its writeback completion. Worryingly,
  796. * ext4 gfs2 and xfs allocate pages with
  797. * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
  798. * may_enter_fs here is liable to OOM on them.
  799. *
  800. * 3) memcg encounters a page that is not already marked
  801. * PageReclaim. memcg does not have any dirty pages
  802. * throttling so we could easily OOM just because too many
  803. * pages are in writeback and there is nothing else to
  804. * reclaim. Wait for the writeback to complete.
  805. */
  806. if (PageWriteback(page)) {
  807. /* Case 1 above */
  808. if (current_is_kswapd() &&
  809. PageReclaim(page) &&
  810. zone_is_reclaim_writeback(zone)) {
  811. nr_immediate++;
  812. goto keep_locked;
  813. /* Case 2 above */
  814. } else if (global_reclaim(sc) ||
  815. !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
  816. /*
  817. * This is slightly racy - end_page_writeback()
  818. * might have just cleared PageReclaim, then
  819. * setting PageReclaim here end up interpreted
  820. * as PageReadahead - but that does not matter
  821. * enough to care. What we do want is for this
  822. * page to have PageReclaim set next time memcg
  823. * reclaim reaches the tests above, so it will
  824. * then wait_on_page_writeback() to avoid OOM;
  825. * and it's also appropriate in global reclaim.
  826. */
  827. SetPageReclaim(page);
  828. nr_writeback++;
  829. goto keep_locked;
  830. /* Case 3 above */
  831. } else {
  832. wait_on_page_writeback(page);
  833. }
  834. }
  835. if (!force_reclaim)
  836. references = page_check_references(page, sc);
  837. switch (references) {
  838. case PAGEREF_ACTIVATE:
  839. goto activate_locked;
  840. case PAGEREF_KEEP:
  841. goto keep_locked;
  842. case PAGEREF_RECLAIM:
  843. case PAGEREF_RECLAIM_CLEAN:
  844. ; /* try to reclaim the page below */
  845. }
  846. /*
  847. * Anonymous process memory has backing store?
  848. * Try to allocate it some swap space here.
  849. */
  850. if (PageAnon(page) && !PageSwapCache(page)) {
  851. if (!(sc->gfp_mask & __GFP_IO))
  852. goto keep_locked;
  853. if (!add_to_swap(page, page_list))
  854. goto activate_locked;
  855. may_enter_fs = 1;
  856. /* Adding to swap updated mapping */
  857. mapping = page_mapping(page);
  858. }
  859. /*
  860. * The page is mapped into the page tables of one or more
  861. * processes. Try to unmap it here.
  862. */
  863. if (page_mapped(page) && mapping) {
  864. switch (try_to_unmap(page, ttu_flags)) {
  865. case SWAP_FAIL:
  866. goto activate_locked;
  867. case SWAP_AGAIN:
  868. goto keep_locked;
  869. case SWAP_MLOCK:
  870. goto cull_mlocked;
  871. case SWAP_SUCCESS:
  872. ; /* try to free the page below */
  873. }
  874. }
  875. if (PageDirty(page)) {
  876. /*
  877. * Only kswapd can writeback filesystem pages to
  878. * avoid risk of stack overflow but only writeback
  879. * if many dirty pages have been encountered.
  880. */
  881. if (page_is_file_cache(page) &&
  882. (!current_is_kswapd() ||
  883. !zone_is_reclaim_dirty(zone))) {
  884. /*
  885. * Immediately reclaim when written back.
  886. * Similar in principal to deactivate_page()
  887. * except we already have the page isolated
  888. * and know it's dirty
  889. */
  890. inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
  891. SetPageReclaim(page);
  892. goto keep_locked;
  893. }
  894. if (references == PAGEREF_RECLAIM_CLEAN)
  895. goto keep_locked;
  896. if (!may_enter_fs)
  897. goto keep_locked;
  898. if (!sc->may_writepage)
  899. goto keep_locked;
  900. /* Page is dirty, try to write it out here */
  901. switch (pageout(page, mapping, sc)) {
  902. case PAGE_KEEP:
  903. goto keep_locked;
  904. case PAGE_ACTIVATE:
  905. goto activate_locked;
  906. case PAGE_SUCCESS:
  907. if (PageWriteback(page))
  908. goto keep;
  909. if (PageDirty(page))
  910. goto keep;
  911. /*
  912. * A synchronous write - probably a ramdisk. Go
  913. * ahead and try to reclaim the page.
  914. */
  915. if (!trylock_page(page))
  916. goto keep;
  917. if (PageDirty(page) || PageWriteback(page))
  918. goto keep_locked;
  919. mapping = page_mapping(page);
  920. case PAGE_CLEAN:
  921. ; /* try to free the page below */
  922. }
  923. }
  924. /*
  925. * If the page has buffers, try to free the buffer mappings
  926. * associated with this page. If we succeed we try to free
  927. * the page as well.
  928. *
  929. * We do this even if the page is PageDirty().
  930. * try_to_release_page() does not perform I/O, but it is
  931. * possible for a page to have PageDirty set, but it is actually
  932. * clean (all its buffers are clean). This happens if the
  933. * buffers were written out directly, with submit_bh(). ext3
  934. * will do this, as well as the blockdev mapping.
  935. * try_to_release_page() will discover that cleanness and will
  936. * drop the buffers and mark the page clean - it can be freed.
  937. *
  938. * Rarely, pages can have buffers and no ->mapping. These are
  939. * the pages which were not successfully invalidated in
  940. * truncate_complete_page(). We try to drop those buffers here
  941. * and if that worked, and the page is no longer mapped into
  942. * process address space (page_count == 1) it can be freed.
  943. * Otherwise, leave the page on the LRU so it is swappable.
  944. */
  945. if (page_has_private(page)) {
  946. if (!try_to_release_page(page, sc->gfp_mask))
  947. goto activate_locked;
  948. if (!mapping && page_count(page) == 1) {
  949. unlock_page(page);
  950. if (put_page_testzero(page))
  951. goto free_it;
  952. else {
  953. /*
  954. * rare race with speculative reference.
  955. * the speculative reference will free
  956. * this page shortly, so we may
  957. * increment nr_reclaimed here (and
  958. * leave it off the LRU).
  959. */
  960. nr_reclaimed++;
  961. continue;
  962. }
  963. }
  964. }
  965. if (!mapping || !__remove_mapping(mapping, page, true))
  966. goto keep_locked;
  967. /*
  968. * At this point, we have no other references and there is
  969. * no way to pick any more up (removed from LRU, removed
  970. * from pagecache). Can use non-atomic bitops now (and
  971. * we obviously don't have to worry about waking up a process
  972. * waiting on the page lock, because there are no references.
  973. */
  974. __clear_page_locked(page);
  975. free_it:
  976. nr_reclaimed++;
  977. /*
  978. * Is there need to periodically free_page_list? It would
  979. * appear not as the counts should be low
  980. */
  981. list_add(&page->lru, &free_pages);
  982. continue;
  983. cull_mlocked:
  984. if (PageSwapCache(page))
  985. try_to_free_swap(page);
  986. unlock_page(page);
  987. putback_lru_page(page);
  988. continue;
  989. activate_locked:
  990. /* Not a candidate for swapping, so reclaim swap space. */
  991. if (PageSwapCache(page) && vm_swap_full())
  992. try_to_free_swap(page);
  993. VM_BUG_ON_PAGE(PageActive(page), page);
  994. SetPageActive(page);
  995. pgactivate++;
  996. keep_locked:
  997. unlock_page(page);
  998. keep:
  999. list_add(&page->lru, &ret_pages);
  1000. VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
  1001. }
  1002. mem_cgroup_uncharge_list(&free_pages);
  1003. free_hot_cold_page_list(&free_pages, true);
  1004. list_splice(&ret_pages, page_list);
  1005. count_vm_events(PGACTIVATE, pgactivate);
  1006. *ret_nr_dirty += nr_dirty;
  1007. *ret_nr_congested += nr_congested;
  1008. *ret_nr_unqueued_dirty += nr_unqueued_dirty;
  1009. *ret_nr_writeback += nr_writeback;
  1010. *ret_nr_immediate += nr_immediate;
  1011. return nr_reclaimed;
  1012. }
  1013. unsigned long reclaim_clean_pages_from_list(struct zone *zone,
  1014. struct list_head *page_list)
  1015. {
  1016. struct scan_control sc = {
  1017. .gfp_mask = GFP_KERNEL,
  1018. .priority = DEF_PRIORITY,
  1019. .may_unmap = 1,
  1020. };
  1021. unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
  1022. struct page *page, *next;
  1023. LIST_HEAD(clean_pages);
  1024. list_for_each_entry_safe(page, next, page_list, lru) {
  1025. if (page_is_file_cache(page) && !PageDirty(page) &&
  1026. !isolated_balloon_page(page)) {
  1027. ClearPageActive(page);
  1028. list_move(&page->lru, &clean_pages);
  1029. }
  1030. }
  1031. ret = shrink_page_list(&clean_pages, zone, &sc,
  1032. TTU_UNMAP|TTU_IGNORE_ACCESS,
  1033. &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
  1034. list_splice(&clean_pages, page_list);
  1035. mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
  1036. return ret;
  1037. }
  1038. /*
  1039. * Attempt to remove the specified page from its LRU. Only take this page
  1040. * if it is of the appropriate PageActive status. Pages which are being
  1041. * freed elsewhere are also ignored.
  1042. *
  1043. * page: page to consider
  1044. * mode: one of the LRU isolation modes defined above
  1045. *
  1046. * returns 0 on success, -ve errno on failure.
  1047. */
  1048. int __isolate_lru_page(struct page *page, isolate_mode_t mode)
  1049. {
  1050. int ret = -EINVAL;
  1051. /* Only take pages on the LRU. */
  1052. if (!PageLRU(page))
  1053. return ret;
  1054. /* Compaction should not handle unevictable pages but CMA can do so */
  1055. if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
  1056. return ret;
  1057. ret = -EBUSY;
  1058. /*
  1059. * To minimise LRU disruption, the caller can indicate that it only
  1060. * wants to isolate pages it will be able to operate on without
  1061. * blocking - clean pages for the most part.
  1062. *
  1063. * ISOLATE_CLEAN means that only clean pages should be isolated. This
  1064. * is used by reclaim when it is cannot write to backing storage
  1065. *
  1066. * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
  1067. * that it is possible to migrate without blocking
  1068. */
  1069. if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
  1070. /* All the caller can do on PageWriteback is block */
  1071. if (PageWriteback(page))
  1072. return ret;
  1073. if (PageDirty(page)) {
  1074. struct address_space *mapping;
  1075. /* ISOLATE_CLEAN means only clean pages */
  1076. if (mode & ISOLATE_CLEAN)
  1077. return ret;
  1078. /*
  1079. * Only pages without mappings or that have a
  1080. * ->migratepage callback are possible to migrate
  1081. * without blocking
  1082. */
  1083. mapping = page_mapping(page);
  1084. if (mapping && !mapping->a_ops->migratepage)
  1085. return ret;
  1086. }
  1087. }
  1088. if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
  1089. return ret;
  1090. if (likely(get_page_unless_zero(page))) {
  1091. /*
  1092. * Be careful not to clear PageLRU until after we're
  1093. * sure the page is not being freed elsewhere -- the
  1094. * page release code relies on it.
  1095. */
  1096. ClearPageLRU(page);
  1097. ret = 0;
  1098. }
  1099. return ret;
  1100. }
  1101. /*
  1102. * zone->lru_lock is heavily contended. Some of the functions that
  1103. * shrink the lists perform better by taking out a batch of pages
  1104. * and working on them outside the LRU lock.
  1105. *
  1106. * For pagecache intensive workloads, this function is the hottest
  1107. * spot in the kernel (apart from copy_*_user functions).
  1108. *
  1109. * Appropriate locks must be held before calling this function.
  1110. *
  1111. * @nr_to_scan: The number of pages to look through on the list.
  1112. * @lruvec: The LRU vector to pull pages from.
  1113. * @dst: The temp list to put pages on to.
  1114. * @nr_scanned: The number of pages that were scanned.
  1115. * @sc: The scan_control struct for this reclaim session
  1116. * @mode: One of the LRU isolation modes
  1117. * @lru: LRU list id for isolating
  1118. *
  1119. * returns how many pages were moved onto *@dst.
  1120. */
  1121. static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
  1122. struct lruvec *lruvec, struct list_head *dst,
  1123. unsigned long *nr_scanned, struct scan_control *sc,
  1124. isolate_mode_t mode, enum lru_list lru)
  1125. {
  1126. struct list_head *src = &lruvec->lists[lru];
  1127. unsigned long nr_taken = 0;
  1128. unsigned long scan;
  1129. for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
  1130. struct page *page;
  1131. int nr_pages;
  1132. page = lru_to_page(src);
  1133. prefetchw_prev_lru_page(page, src, flags);
  1134. VM_BUG_ON_PAGE(!PageLRU(page), page);
  1135. switch (__isolate_lru_page(page, mode)) {
  1136. case 0:
  1137. nr_pages = hpage_nr_pages(page);
  1138. mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
  1139. list_move(&page->lru, dst);
  1140. nr_taken += nr_pages;
  1141. break;
  1142. case -EBUSY:
  1143. /* else it is being freed elsewhere */
  1144. list_move(&page->lru, src);
  1145. continue;
  1146. default:
  1147. BUG();
  1148. }
  1149. }
  1150. *nr_scanned = scan;
  1151. trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
  1152. nr_taken, mode, is_file_lru(lru));
  1153. return nr_taken;
  1154. }
  1155. /**
  1156. * isolate_lru_page - tries to isolate a page from its LRU list
  1157. * @page: page to isolate from its LRU list
  1158. *
  1159. * Isolates a @page from an LRU list, clears PageLRU and adjusts the
  1160. * vmstat statistic corresponding to whatever LRU list the page was on.
  1161. *
  1162. * Returns 0 if the page was removed from an LRU list.
  1163. * Returns -EBUSY if the page was not on an LRU list.
  1164. *
  1165. * The returned page will have PageLRU() cleared. If it was found on
  1166. * the active list, it will have PageActive set. If it was found on
  1167. * the unevictable list, it will have the PageUnevictable bit set. That flag
  1168. * may need to be cleared by the caller before letting the page go.
  1169. *
  1170. * The vmstat statistic corresponding to the list on which the page was
  1171. * found will be decremented.
  1172. *
  1173. * Restrictions:
  1174. * (1) Must be called with an elevated refcount on the page. This is a
  1175. * fundamentnal difference from isolate_lru_pages (which is called
  1176. * without a stable reference).
  1177. * (2) the lru_lock must not be held.
  1178. * (3) interrupts must be enabled.
  1179. */
  1180. int isolate_lru_page(struct page *page)
  1181. {
  1182. int ret = -EBUSY;
  1183. VM_BUG_ON_PAGE(!page_count(page), page);
  1184. if (PageLRU(page)) {
  1185. struct zone *zone = page_zone(page);
  1186. struct lruvec *lruvec;
  1187. spin_lock_irq(&zone->lru_lock);
  1188. lruvec = mem_cgroup_page_lruvec(page, zone);
  1189. if (PageLRU(page)) {
  1190. int lru = page_lru(page);
  1191. get_page(page);
  1192. ClearPageLRU(page);
  1193. del_page_from_lru_list(page, lruvec, lru);
  1194. ret = 0;
  1195. }
  1196. spin_unlock_irq(&zone->lru_lock);
  1197. }
  1198. return ret;
  1199. }
  1200. /*
  1201. * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
  1202. * then get resheduled. When there are massive number of tasks doing page
  1203. * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
  1204. * the LRU list will go small and be scanned faster than necessary, leading to
  1205. * unnecessary swapping, thrashing and OOM.
  1206. */
  1207. static int too_many_isolated(struct zone *zone, int file,
  1208. struct scan_control *sc)
  1209. {
  1210. unsigned long inactive, isolated;
  1211. if (current_is_kswapd())
  1212. return 0;
  1213. if (!global_reclaim(sc))
  1214. return 0;
  1215. if (file) {
  1216. inactive = zone_page_state(zone, NR_INACTIVE_FILE);
  1217. isolated = zone_page_state(zone, NR_ISOLATED_FILE);
  1218. } else {
  1219. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1220. isolated = zone_page_state(zone, NR_ISOLATED_ANON);
  1221. }
  1222. /*
  1223. * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
  1224. * won't get blocked by normal direct-reclaimers, forming a circular
  1225. * deadlock.
  1226. */
  1227. if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
  1228. inactive >>= 3;
  1229. return isolated > inactive;
  1230. }
  1231. static noinline_for_stack void
  1232. putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
  1233. {
  1234. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1235. struct zone *zone = lruvec_zone(lruvec);
  1236. LIST_HEAD(pages_to_free);
  1237. /*
  1238. * Put back any unfreeable pages.
  1239. */
  1240. while (!list_empty(page_list)) {
  1241. struct page *page = lru_to_page(page_list);
  1242. int lru;
  1243. VM_BUG_ON_PAGE(PageLRU(page), page);
  1244. list_del(&page->lru);
  1245. if (unlikely(!page_evictable(page))) {
  1246. spin_unlock_irq(&zone->lru_lock);
  1247. putback_lru_page(page);
  1248. spin_lock_irq(&zone->lru_lock);
  1249. continue;
  1250. }
  1251. lruvec = mem_cgroup_page_lruvec(page, zone);
  1252. SetPageLRU(page);
  1253. lru = page_lru(page);
  1254. add_page_to_lru_list(page, lruvec, lru);
  1255. if (is_active_lru(lru)) {
  1256. int file = is_file_lru(lru);
  1257. int numpages = hpage_nr_pages(page);
  1258. reclaim_stat->recent_rotated[file] += numpages;
  1259. }
  1260. if (put_page_testzero(page)) {
  1261. __ClearPageLRU(page);
  1262. __ClearPageActive(page);
  1263. del_page_from_lru_list(page, lruvec, lru);
  1264. if (unlikely(PageCompound(page))) {
  1265. spin_unlock_irq(&zone->lru_lock);
  1266. mem_cgroup_uncharge(page);
  1267. (*get_compound_page_dtor(page))(page);
  1268. spin_lock_irq(&zone->lru_lock);
  1269. } else
  1270. list_add(&page->lru, &pages_to_free);
  1271. }
  1272. }
  1273. /*
  1274. * To save our caller's stack, now use input list for pages to free.
  1275. */
  1276. list_splice(&pages_to_free, page_list);
  1277. }
  1278. /*
  1279. * If a kernel thread (such as nfsd for loop-back mounts) services
  1280. * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
  1281. * In that case we should only throttle if the backing device it is
  1282. * writing to is congested. In other cases it is safe to throttle.
  1283. */
  1284. static int current_may_throttle(void)
  1285. {
  1286. return !(current->flags & PF_LESS_THROTTLE) ||
  1287. current->backing_dev_info == NULL ||
  1288. bdi_write_congested(current->backing_dev_info);
  1289. }
  1290. /*
  1291. * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
  1292. * of reclaimed pages
  1293. */
  1294. static noinline_for_stack unsigned long
  1295. shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
  1296. struct scan_control *sc, enum lru_list lru)
  1297. {
  1298. LIST_HEAD(page_list);
  1299. unsigned long nr_scanned;
  1300. unsigned long nr_reclaimed = 0;
  1301. unsigned long nr_taken;
  1302. unsigned long nr_dirty = 0;
  1303. unsigned long nr_congested = 0;
  1304. unsigned long nr_unqueued_dirty = 0;
  1305. unsigned long nr_writeback = 0;
  1306. unsigned long nr_immediate = 0;
  1307. isolate_mode_t isolate_mode = 0;
  1308. int file = is_file_lru(lru);
  1309. struct zone *zone = lruvec_zone(lruvec);
  1310. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1311. while (unlikely(too_many_isolated(zone, file, sc))) {
  1312. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1313. /* We are about to die and free our memory. Return now. */
  1314. if (fatal_signal_pending(current))
  1315. return SWAP_CLUSTER_MAX;
  1316. }
  1317. lru_add_drain();
  1318. if (!sc->may_unmap)
  1319. isolate_mode |= ISOLATE_UNMAPPED;
  1320. if (!sc->may_writepage)
  1321. isolate_mode |= ISOLATE_CLEAN;
  1322. spin_lock_irq(&zone->lru_lock);
  1323. nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
  1324. &nr_scanned, sc, isolate_mode, lru);
  1325. __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
  1326. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
  1327. if (global_reclaim(sc)) {
  1328. __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
  1329. if (current_is_kswapd())
  1330. __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
  1331. else
  1332. __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
  1333. }
  1334. spin_unlock_irq(&zone->lru_lock);
  1335. if (nr_taken == 0)
  1336. return 0;
  1337. nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
  1338. &nr_dirty, &nr_unqueued_dirty, &nr_congested,
  1339. &nr_writeback, &nr_immediate,
  1340. false);
  1341. spin_lock_irq(&zone->lru_lock);
  1342. reclaim_stat->recent_scanned[file] += nr_taken;
  1343. if (global_reclaim(sc)) {
  1344. if (current_is_kswapd())
  1345. __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
  1346. nr_reclaimed);
  1347. else
  1348. __count_zone_vm_events(PGSTEAL_DIRECT, zone,
  1349. nr_reclaimed);
  1350. }
  1351. putback_inactive_pages(lruvec, &page_list);
  1352. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
  1353. spin_unlock_irq(&zone->lru_lock);
  1354. mem_cgroup_uncharge_list(&page_list);
  1355. free_hot_cold_page_list(&page_list, true);
  1356. /*
  1357. * If reclaim is isolating dirty pages under writeback, it implies
  1358. * that the long-lived page allocation rate is exceeding the page
  1359. * laundering rate. Either the global limits are not being effective
  1360. * at throttling processes due to the page distribution throughout
  1361. * zones or there is heavy usage of a slow backing device. The
  1362. * only option is to throttle from reclaim context which is not ideal
  1363. * as there is no guarantee the dirtying process is throttled in the
  1364. * same way balance_dirty_pages() manages.
  1365. *
  1366. * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
  1367. * of pages under pages flagged for immediate reclaim and stall if any
  1368. * are encountered in the nr_immediate check below.
  1369. */
  1370. if (nr_writeback && nr_writeback == nr_taken)
  1371. zone_set_flag(zone, ZONE_WRITEBACK);
  1372. /*
  1373. * memcg will stall in page writeback so only consider forcibly
  1374. * stalling for global reclaim
  1375. */
  1376. if (global_reclaim(sc)) {
  1377. /*
  1378. * Tag a zone as congested if all the dirty pages scanned were
  1379. * backed by a congested BDI and wait_iff_congested will stall.
  1380. */
  1381. if (nr_dirty && nr_dirty == nr_congested)
  1382. zone_set_flag(zone, ZONE_CONGESTED);
  1383. /*
  1384. * If dirty pages are scanned that are not queued for IO, it
  1385. * implies that flushers are not keeping up. In this case, flag
  1386. * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
  1387. * pages from reclaim context.
  1388. */
  1389. if (nr_unqueued_dirty == nr_taken)
  1390. zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
  1391. /*
  1392. * If kswapd scans pages marked marked for immediate
  1393. * reclaim and under writeback (nr_immediate), it implies
  1394. * that pages are cycling through the LRU faster than
  1395. * they are written so also forcibly stall.
  1396. */
  1397. if (nr_immediate && current_may_throttle())
  1398. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1399. }
  1400. /*
  1401. * Stall direct reclaim for IO completions if underlying BDIs or zone
  1402. * is congested. Allow kswapd to continue until it starts encountering
  1403. * unqueued dirty pages or cycling through the LRU too quickly.
  1404. */
  1405. if (!sc->hibernation_mode && !current_is_kswapd() &&
  1406. current_may_throttle())
  1407. wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
  1408. trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
  1409. zone_idx(zone),
  1410. nr_scanned, nr_reclaimed,
  1411. sc->priority,
  1412. trace_shrink_flags(file));
  1413. return nr_reclaimed;
  1414. }
  1415. /*
  1416. * This moves pages from the active list to the inactive list.
  1417. *
  1418. * We move them the other way if the page is referenced by one or more
  1419. * processes, from rmap.
  1420. *
  1421. * If the pages are mostly unmapped, the processing is fast and it is
  1422. * appropriate to hold zone->lru_lock across the whole operation. But if
  1423. * the pages are mapped, the processing is slow (page_referenced()) so we
  1424. * should drop zone->lru_lock around each page. It's impossible to balance
  1425. * this, so instead we remove the pages from the LRU while processing them.
  1426. * It is safe to rely on PG_active against the non-LRU pages in here because
  1427. * nobody will play with that bit on a non-LRU page.
  1428. *
  1429. * The downside is that we have to touch page->_count against each page.
  1430. * But we had to alter page->flags anyway.
  1431. */
  1432. static void move_active_pages_to_lru(struct lruvec *lruvec,
  1433. struct list_head *list,
  1434. struct list_head *pages_to_free,
  1435. enum lru_list lru)
  1436. {
  1437. struct zone *zone = lruvec_zone(lruvec);
  1438. unsigned long pgmoved = 0;
  1439. struct page *page;
  1440. int nr_pages;
  1441. while (!list_empty(list)) {
  1442. page = lru_to_page(list);
  1443. lruvec = mem_cgroup_page_lruvec(page, zone);
  1444. VM_BUG_ON_PAGE(PageLRU(page), page);
  1445. SetPageLRU(page);
  1446. nr_pages = hpage_nr_pages(page);
  1447. mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
  1448. list_move(&page->lru, &lruvec->lists[lru]);
  1449. pgmoved += nr_pages;
  1450. if (put_page_testzero(page)) {
  1451. __ClearPageLRU(page);
  1452. __ClearPageActive(page);
  1453. del_page_from_lru_list(page, lruvec, lru);
  1454. if (unlikely(PageCompound(page))) {
  1455. spin_unlock_irq(&zone->lru_lock);
  1456. mem_cgroup_uncharge(page);
  1457. (*get_compound_page_dtor(page))(page);
  1458. spin_lock_irq(&zone->lru_lock);
  1459. } else
  1460. list_add(&page->lru, pages_to_free);
  1461. }
  1462. }
  1463. __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
  1464. if (!is_active_lru(lru))
  1465. __count_vm_events(PGDEACTIVATE, pgmoved);
  1466. }
  1467. static void shrink_active_list(unsigned long nr_to_scan,
  1468. struct lruvec *lruvec,
  1469. struct scan_control *sc,
  1470. enum lru_list lru)
  1471. {
  1472. unsigned long nr_taken;
  1473. unsigned long nr_scanned;
  1474. unsigned long vm_flags;
  1475. LIST_HEAD(l_hold); /* The pages which were snipped off */
  1476. LIST_HEAD(l_active);
  1477. LIST_HEAD(l_inactive);
  1478. struct page *page;
  1479. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1480. unsigned long nr_rotated = 0;
  1481. isolate_mode_t isolate_mode = 0;
  1482. int file = is_file_lru(lru);
  1483. struct zone *zone = lruvec_zone(lruvec);
  1484. lru_add_drain();
  1485. if (!sc->may_unmap)
  1486. isolate_mode |= ISOLATE_UNMAPPED;
  1487. if (!sc->may_writepage)
  1488. isolate_mode |= ISOLATE_CLEAN;
  1489. spin_lock_irq(&zone->lru_lock);
  1490. nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
  1491. &nr_scanned, sc, isolate_mode, lru);
  1492. if (global_reclaim(sc))
  1493. __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
  1494. reclaim_stat->recent_scanned[file] += nr_taken;
  1495. __count_zone_vm_events(PGREFILL, zone, nr_scanned);
  1496. __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
  1497. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
  1498. spin_unlock_irq(&zone->lru_lock);
  1499. while (!list_empty(&l_hold)) {
  1500. cond_resched();
  1501. page = lru_to_page(&l_hold);
  1502. list_del(&page->lru);
  1503. if (unlikely(!page_evictable(page))) {
  1504. putback_lru_page(page);
  1505. continue;
  1506. }
  1507. if (unlikely(buffer_heads_over_limit)) {
  1508. if (page_has_private(page) && trylock_page(page)) {
  1509. if (page_has_private(page))
  1510. try_to_release_page(page, 0);
  1511. unlock_page(page);
  1512. }
  1513. }
  1514. if (page_referenced(page, 0, sc->target_mem_cgroup,
  1515. &vm_flags)) {
  1516. nr_rotated += hpage_nr_pages(page);
  1517. /*
  1518. * Identify referenced, file-backed active pages and
  1519. * give them one more trip around the active list. So
  1520. * that executable code get better chances to stay in
  1521. * memory under moderate memory pressure. Anon pages
  1522. * are not likely to be evicted by use-once streaming
  1523. * IO, plus JVM can create lots of anon VM_EXEC pages,
  1524. * so we ignore them here.
  1525. */
  1526. if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
  1527. list_add(&page->lru, &l_active);
  1528. continue;
  1529. }
  1530. }
  1531. ClearPageActive(page); /* we are de-activating */
  1532. list_add(&page->lru, &l_inactive);
  1533. }
  1534. /*
  1535. * Move pages back to the lru list.
  1536. */
  1537. spin_lock_irq(&zone->lru_lock);
  1538. /*
  1539. * Count referenced pages from currently used mappings as rotated,
  1540. * even though only some of them are actually re-activated. This
  1541. * helps balance scan pressure between file and anonymous pages in
  1542. * get_scan_count.
  1543. */
  1544. reclaim_stat->recent_rotated[file] += nr_rotated;
  1545. move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
  1546. move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
  1547. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
  1548. spin_unlock_irq(&zone->lru_lock);
  1549. mem_cgroup_uncharge_list(&l_hold);
  1550. free_hot_cold_page_list(&l_hold, true);
  1551. }
  1552. #ifdef CONFIG_SWAP
  1553. static int inactive_anon_is_low_global(struct zone *zone)
  1554. {
  1555. unsigned long active, inactive;
  1556. active = zone_page_state(zone, NR_ACTIVE_ANON);
  1557. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1558. if (inactive * zone->inactive_ratio < active)
  1559. return 1;
  1560. return 0;
  1561. }
  1562. /**
  1563. * inactive_anon_is_low - check if anonymous pages need to be deactivated
  1564. * @lruvec: LRU vector to check
  1565. *
  1566. * Returns true if the zone does not have enough inactive anon pages,
  1567. * meaning some active anon pages need to be deactivated.
  1568. */
  1569. static int inactive_anon_is_low(struct lruvec *lruvec)
  1570. {
  1571. /*
  1572. * If we don't have swap space, anonymous page deactivation
  1573. * is pointless.
  1574. */
  1575. if (!total_swap_pages)
  1576. return 0;
  1577. if (!mem_cgroup_disabled())
  1578. return mem_cgroup_inactive_anon_is_low(lruvec);
  1579. return inactive_anon_is_low_global(lruvec_zone(lruvec));
  1580. }
  1581. #else
  1582. static inline int inactive_anon_is_low(struct lruvec *lruvec)
  1583. {
  1584. return 0;
  1585. }
  1586. #endif
  1587. /**
  1588. * inactive_file_is_low - check if file pages need to be deactivated
  1589. * @lruvec: LRU vector to check
  1590. *
  1591. * When the system is doing streaming IO, memory pressure here
  1592. * ensures that active file pages get deactivated, until more
  1593. * than half of the file pages are on the inactive list.
  1594. *
  1595. * Once we get to that situation, protect the system's working
  1596. * set from being evicted by disabling active file page aging.
  1597. *
  1598. * This uses a different ratio than the anonymous pages, because
  1599. * the page cache uses a use-once replacement algorithm.
  1600. */
  1601. static int inactive_file_is_low(struct lruvec *lruvec)
  1602. {
  1603. unsigned long inactive;
  1604. unsigned long active;
  1605. inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
  1606. active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
  1607. return active > inactive;
  1608. }
  1609. static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
  1610. {
  1611. if (is_file_lru(lru))
  1612. return inactive_file_is_low(lruvec);
  1613. else
  1614. return inactive_anon_is_low(lruvec);
  1615. }
  1616. static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
  1617. struct lruvec *lruvec, struct scan_control *sc)
  1618. {
  1619. if (is_active_lru(lru)) {
  1620. if (inactive_list_is_low(lruvec, lru))
  1621. shrink_active_list(nr_to_scan, lruvec, sc, lru);
  1622. return 0;
  1623. }
  1624. return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
  1625. }
  1626. enum scan_balance {
  1627. SCAN_EQUAL,
  1628. SCAN_FRACT,
  1629. SCAN_ANON,
  1630. SCAN_FILE,
  1631. };
  1632. /*
  1633. * Determine how aggressively the anon and file LRU lists should be
  1634. * scanned. The relative value of each set of LRU lists is determined
  1635. * by looking at the fraction of the pages scanned we did rotate back
  1636. * onto the active list instead of evict.
  1637. *
  1638. * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
  1639. * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
  1640. */
  1641. static void get_scan_count(struct lruvec *lruvec, int swappiness,
  1642. struct scan_control *sc, unsigned long *nr)
  1643. {
  1644. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1645. u64 fraction[2];
  1646. u64 denominator = 0; /* gcc */
  1647. struct zone *zone = lruvec_zone(lruvec);
  1648. unsigned long anon_prio, file_prio;
  1649. enum scan_balance scan_balance;
  1650. unsigned long anon, file;
  1651. bool force_scan = false;
  1652. unsigned long ap, fp;
  1653. enum lru_list lru;
  1654. bool some_scanned;
  1655. int pass;
  1656. /*
  1657. * If the zone or memcg is small, nr[l] can be 0. This
  1658. * results in no scanning on this priority and a potential
  1659. * priority drop. Global direct reclaim can go to the next
  1660. * zone and tends to have no problems. Global kswapd is for
  1661. * zone balancing and it needs to scan a minimum amount. When
  1662. * reclaiming for a memcg, a priority drop can cause high
  1663. * latencies, so it's better to scan a minimum amount there as
  1664. * well.
  1665. */
  1666. if (current_is_kswapd() && !zone_reclaimable(zone))
  1667. force_scan = true;
  1668. if (!global_reclaim(sc))
  1669. force_scan = true;
  1670. /* If we have no swap space, do not bother scanning anon pages. */
  1671. if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
  1672. scan_balance = SCAN_FILE;
  1673. goto out;
  1674. }
  1675. /*
  1676. * Global reclaim will swap to prevent OOM even with no
  1677. * swappiness, but memcg users want to use this knob to
  1678. * disable swapping for individual groups completely when
  1679. * using the memory controller's swap limit feature would be
  1680. * too expensive.
  1681. */
  1682. if (!global_reclaim(sc) && !swappiness) {
  1683. scan_balance = SCAN_FILE;
  1684. goto out;
  1685. }
  1686. /*
  1687. * Do not apply any pressure balancing cleverness when the
  1688. * system is close to OOM, scan both anon and file equally
  1689. * (unless the swappiness setting disagrees with swapping).
  1690. */
  1691. if (!sc->priority && swappiness) {
  1692. scan_balance = SCAN_EQUAL;
  1693. goto out;
  1694. }
  1695. /*
  1696. * Prevent the reclaimer from falling into the cache trap: as
  1697. * cache pages start out inactive, every cache fault will tip
  1698. * the scan balance towards the file LRU. And as the file LRU
  1699. * shrinks, so does the window for rotation from references.
  1700. * This means we have a runaway feedback loop where a tiny
  1701. * thrashing file LRU becomes infinitely more attractive than
  1702. * anon pages. Try to detect this based on file LRU size.
  1703. */
  1704. if (global_reclaim(sc)) {
  1705. unsigned long zonefile;
  1706. unsigned long zonefree;
  1707. zonefree = zone_page_state(zone, NR_FREE_PAGES);
  1708. zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
  1709. zone_page_state(zone, NR_INACTIVE_FILE);
  1710. if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
  1711. scan_balance = SCAN_ANON;
  1712. goto out;
  1713. }
  1714. }
  1715. /*
  1716. * There is enough inactive page cache, do not reclaim
  1717. * anything from the anonymous working set right now.
  1718. */
  1719. if (!inactive_file_is_low(lruvec)) {
  1720. scan_balance = SCAN_FILE;
  1721. goto out;
  1722. }
  1723. scan_balance = SCAN_FRACT;
  1724. /*
  1725. * With swappiness at 100, anonymous and file have the same priority.
  1726. * This scanning priority is essentially the inverse of IO cost.
  1727. */
  1728. anon_prio = swappiness;
  1729. file_prio = 200 - anon_prio;
  1730. /*
  1731. * OK, so we have swap space and a fair amount of page cache
  1732. * pages. We use the recently rotated / recently scanned
  1733. * ratios to determine how valuable each cache is.
  1734. *
  1735. * Because workloads change over time (and to avoid overflow)
  1736. * we keep these statistics as a floating average, which ends
  1737. * up weighing recent references more than old ones.
  1738. *
  1739. * anon in [0], file in [1]
  1740. */
  1741. anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
  1742. get_lru_size(lruvec, LRU_INACTIVE_ANON);
  1743. file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
  1744. get_lru_size(lruvec, LRU_INACTIVE_FILE);
  1745. spin_lock_irq(&zone->lru_lock);
  1746. if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
  1747. reclaim_stat->recent_scanned[0] /= 2;
  1748. reclaim_stat->recent_rotated[0] /= 2;
  1749. }
  1750. if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
  1751. reclaim_stat->recent_scanned[1] /= 2;
  1752. reclaim_stat->recent_rotated[1] /= 2;
  1753. }
  1754. /*
  1755. * The amount of pressure on anon vs file pages is inversely
  1756. * proportional to the fraction of recently scanned pages on
  1757. * each list that were recently referenced and in active use.
  1758. */
  1759. ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
  1760. ap /= reclaim_stat->recent_rotated[0] + 1;
  1761. fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
  1762. fp /= reclaim_stat->recent_rotated[1] + 1;
  1763. spin_unlock_irq(&zone->lru_lock);
  1764. fraction[0] = ap;
  1765. fraction[1] = fp;
  1766. denominator = ap + fp + 1;
  1767. out:
  1768. some_scanned = false;
  1769. /* Only use force_scan on second pass. */
  1770. for (pass = 0; !some_scanned && pass < 2; pass++) {
  1771. for_each_evictable_lru(lru) {
  1772. int file = is_file_lru(lru);
  1773. unsigned long size;
  1774. unsigned long scan;
  1775. size = get_lru_size(lruvec, lru);
  1776. scan = size >> sc->priority;
  1777. if (!scan && pass && force_scan)
  1778. scan = min(size, SWAP_CLUSTER_MAX);
  1779. switch (scan_balance) {
  1780. case SCAN_EQUAL:
  1781. /* Scan lists relative to size */
  1782. break;
  1783. case SCAN_FRACT:
  1784. /*
  1785. * Scan types proportional to swappiness and
  1786. * their relative recent reclaim efficiency.
  1787. */
  1788. scan = div64_u64(scan * fraction[file],
  1789. denominator);
  1790. break;
  1791. case SCAN_FILE:
  1792. case SCAN_ANON:
  1793. /* Scan one type exclusively */
  1794. if ((scan_balance == SCAN_FILE) != file)
  1795. scan = 0;
  1796. break;
  1797. default:
  1798. /* Look ma, no brain */
  1799. BUG();
  1800. }
  1801. nr[lru] = scan;
  1802. /*
  1803. * Skip the second pass and don't force_scan,
  1804. * if we found something to scan.
  1805. */
  1806. some_scanned |= !!scan;
  1807. }
  1808. }
  1809. }
  1810. /*
  1811. * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
  1812. */
  1813. static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
  1814. struct scan_control *sc)
  1815. {
  1816. unsigned long nr[NR_LRU_LISTS];
  1817. unsigned long targets[NR_LRU_LISTS];
  1818. unsigned long nr_to_scan;
  1819. enum lru_list lru;
  1820. unsigned long nr_reclaimed = 0;
  1821. unsigned long nr_to_reclaim = sc->nr_to_reclaim;
  1822. struct blk_plug plug;
  1823. bool scan_adjusted;
  1824. get_scan_count(lruvec, swappiness, sc, nr);
  1825. /* Record the original scan target for proportional adjustments later */
  1826. memcpy(targets, nr, sizeof(nr));
  1827. /*
  1828. * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
  1829. * event that can occur when there is little memory pressure e.g.
  1830. * multiple streaming readers/writers. Hence, we do not abort scanning
  1831. * when the requested number of pages are reclaimed when scanning at
  1832. * DEF_PRIORITY on the assumption that the fact we are direct
  1833. * reclaiming implies that kswapd is not keeping up and it is best to
  1834. * do a batch of work at once. For memcg reclaim one check is made to
  1835. * abort proportional reclaim if either the file or anon lru has already
  1836. * dropped to zero at the first pass.
  1837. */
  1838. scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
  1839. sc->priority == DEF_PRIORITY);
  1840. blk_start_plug(&plug);
  1841. while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
  1842. nr[LRU_INACTIVE_FILE]) {
  1843. unsigned long nr_anon, nr_file, percentage;
  1844. unsigned long nr_scanned;
  1845. for_each_evictable_lru(lru) {
  1846. if (nr[lru]) {
  1847. nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
  1848. nr[lru] -= nr_to_scan;
  1849. nr_reclaimed += shrink_list(lru, nr_to_scan,
  1850. lruvec, sc);
  1851. }
  1852. }
  1853. if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
  1854. continue;
  1855. /*
  1856. * For kswapd and memcg, reclaim at least the number of pages
  1857. * requested. Ensure that the anon and file LRUs are scanned
  1858. * proportionally what was requested by get_scan_count(). We
  1859. * stop reclaiming one LRU and reduce the amount scanning
  1860. * proportional to the original scan target.
  1861. */
  1862. nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
  1863. nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
  1864. /*
  1865. * It's just vindictive to attack the larger once the smaller
  1866. * has gone to zero. And given the way we stop scanning the
  1867. * smaller below, this makes sure that we only make one nudge
  1868. * towards proportionality once we've got nr_to_reclaim.
  1869. */
  1870. if (!nr_file || !nr_anon)
  1871. break;
  1872. if (nr_file > nr_anon) {
  1873. unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
  1874. targets[LRU_ACTIVE_ANON] + 1;
  1875. lru = LRU_BASE;
  1876. percentage = nr_anon * 100 / scan_target;
  1877. } else {
  1878. unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
  1879. targets[LRU_ACTIVE_FILE] + 1;
  1880. lru = LRU_FILE;
  1881. percentage = nr_file * 100 / scan_target;
  1882. }
  1883. /* Stop scanning the smaller of the LRU */
  1884. nr[lru] = 0;
  1885. nr[lru + LRU_ACTIVE] = 0;
  1886. /*
  1887. * Recalculate the other LRU scan count based on its original
  1888. * scan target and the percentage scanning already complete
  1889. */
  1890. lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
  1891. nr_scanned = targets[lru] - nr[lru];
  1892. nr[lru] = targets[lru] * (100 - percentage) / 100;
  1893. nr[lru] -= min(nr[lru], nr_scanned);
  1894. lru += LRU_ACTIVE;
  1895. nr_scanned = targets[lru] - nr[lru];
  1896. nr[lru] = targets[lru] * (100 - percentage) / 100;
  1897. nr[lru] -= min(nr[lru], nr_scanned);
  1898. scan_adjusted = true;
  1899. }
  1900. blk_finish_plug(&plug);
  1901. sc->nr_reclaimed += nr_reclaimed;
  1902. /*
  1903. * Even if we did not try to evict anon pages at all, we want to
  1904. * rebalance the anon lru active/inactive ratio.
  1905. */
  1906. if (inactive_anon_is_low(lruvec))
  1907. shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
  1908. sc, LRU_ACTIVE_ANON);
  1909. throttle_vm_writeout(sc->gfp_mask);
  1910. }
  1911. /* Use reclaim/compaction for costly allocs or under memory pressure */
  1912. static bool in_reclaim_compaction(struct scan_control *sc)
  1913. {
  1914. if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
  1915. (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
  1916. sc->priority < DEF_PRIORITY - 2))
  1917. return true;
  1918. return false;
  1919. }
  1920. /*
  1921. * Reclaim/compaction is used for high-order allocation requests. It reclaims
  1922. * order-0 pages before compacting the zone. should_continue_reclaim() returns
  1923. * true if more pages should be reclaimed such that when the page allocator
  1924. * calls try_to_compact_zone() that it will have enough free pages to succeed.
  1925. * It will give up earlier than that if there is difficulty reclaiming pages.
  1926. */
  1927. static inline bool should_continue_reclaim(struct zone *zone,
  1928. unsigned long nr_reclaimed,
  1929. unsigned long nr_scanned,
  1930. struct scan_control *sc)
  1931. {
  1932. unsigned long pages_for_compaction;
  1933. unsigned long inactive_lru_pages;
  1934. /* If not in reclaim/compaction mode, stop */
  1935. if (!in_reclaim_compaction(sc))
  1936. return false;
  1937. /* Consider stopping depending on scan and reclaim activity */
  1938. if (sc->gfp_mask & __GFP_REPEAT) {
  1939. /*
  1940. * For __GFP_REPEAT allocations, stop reclaiming if the
  1941. * full LRU list has been scanned and we are still failing
  1942. * to reclaim pages. This full LRU scan is potentially
  1943. * expensive but a __GFP_REPEAT caller really wants to succeed
  1944. */
  1945. if (!nr_reclaimed && !nr_scanned)
  1946. return false;
  1947. } else {
  1948. /*
  1949. * For non-__GFP_REPEAT allocations which can presumably
  1950. * fail without consequence, stop if we failed to reclaim
  1951. * any pages from the last SWAP_CLUSTER_MAX number of
  1952. * pages that were scanned. This will return to the
  1953. * caller faster at the risk reclaim/compaction and
  1954. * the resulting allocation attempt fails
  1955. */
  1956. if (!nr_reclaimed)
  1957. return false;
  1958. }
  1959. /*
  1960. * If we have not reclaimed enough pages for compaction and the
  1961. * inactive lists are large enough, continue reclaiming
  1962. */
  1963. pages_for_compaction = (2UL << sc->order);
  1964. inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
  1965. if (get_nr_swap_pages() > 0)
  1966. inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
  1967. if (sc->nr_reclaimed < pages_for_compaction &&
  1968. inactive_lru_pages > pages_for_compaction)
  1969. return true;
  1970. /* If compaction would go ahead or the allocation would succeed, stop */
  1971. switch (compaction_suitable(zone, sc->order)) {
  1972. case COMPACT_PARTIAL:
  1973. case COMPACT_CONTINUE:
  1974. return false;
  1975. default:
  1976. return true;
  1977. }
  1978. }
  1979. static bool shrink_zone(struct zone *zone, struct scan_control *sc)
  1980. {
  1981. unsigned long nr_reclaimed, nr_scanned;
  1982. bool reclaimable = false;
  1983. do {
  1984. struct mem_cgroup *root = sc->target_mem_cgroup;
  1985. struct mem_cgroup_reclaim_cookie reclaim = {
  1986. .zone = zone,
  1987. .priority = sc->priority,
  1988. };
  1989. struct mem_cgroup *memcg;
  1990. nr_reclaimed = sc->nr_reclaimed;
  1991. nr_scanned = sc->nr_scanned;
  1992. memcg = mem_cgroup_iter(root, NULL, &reclaim);
  1993. do {
  1994. struct lruvec *lruvec;
  1995. int swappiness;
  1996. lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  1997. swappiness = mem_cgroup_swappiness(memcg);
  1998. shrink_lruvec(lruvec, swappiness, sc);
  1999. /*
  2000. * Direct reclaim and kswapd have to scan all memory
  2001. * cgroups to fulfill the overall scan target for the
  2002. * zone.
  2003. *
  2004. * Limit reclaim, on the other hand, only cares about
  2005. * nr_to_reclaim pages to be reclaimed and it will
  2006. * retry with decreasing priority if one round over the
  2007. * whole hierarchy is not sufficient.
  2008. */
  2009. if (!global_reclaim(sc) &&
  2010. sc->nr_reclaimed >= sc->nr_to_reclaim) {
  2011. mem_cgroup_iter_break(root, memcg);
  2012. break;
  2013. }
  2014. memcg = mem_cgroup_iter(root, memcg, &reclaim);
  2015. } while (memcg);
  2016. vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
  2017. sc->nr_scanned - nr_scanned,
  2018. sc->nr_reclaimed - nr_reclaimed);
  2019. if (sc->nr_reclaimed - nr_reclaimed)
  2020. reclaimable = true;
  2021. } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
  2022. sc->nr_scanned - nr_scanned, sc));
  2023. return reclaimable;
  2024. }
  2025. /* Returns true if compaction should go ahead for a high-order request */
  2026. static inline bool compaction_ready(struct zone *zone, int order)
  2027. {
  2028. unsigned long balance_gap, watermark;
  2029. bool watermark_ok;
  2030. /*
  2031. * Compaction takes time to run and there are potentially other
  2032. * callers using the pages just freed. Continue reclaiming until
  2033. * there is a buffer of free pages available to give compaction
  2034. * a reasonable chance of completing and allocating the page
  2035. */
  2036. balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
  2037. zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
  2038. watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
  2039. watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
  2040. /*
  2041. * If compaction is deferred, reclaim up to a point where
  2042. * compaction will have a chance of success when re-enabled
  2043. */
  2044. if (compaction_deferred(zone, order))
  2045. return watermark_ok;
  2046. /* If compaction is not ready to start, keep reclaiming */
  2047. if (!compaction_suitable(zone, order))
  2048. return false;
  2049. return watermark_ok;
  2050. }
  2051. /*
  2052. * This is the direct reclaim path, for page-allocating processes. We only
  2053. * try to reclaim pages from zones which will satisfy the caller's allocation
  2054. * request.
  2055. *
  2056. * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
  2057. * Because:
  2058. * a) The caller may be trying to free *extra* pages to satisfy a higher-order
  2059. * allocation or
  2060. * b) The target zone may be at high_wmark_pages(zone) but the lower zones
  2061. * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
  2062. * zone defense algorithm.
  2063. *
  2064. * If a zone is deemed to be full of pinned pages then just give it a light
  2065. * scan then give up on it.
  2066. *
  2067. * Returns true if a zone was reclaimable.
  2068. */
  2069. static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
  2070. {
  2071. struct zoneref *z;
  2072. struct zone *zone;
  2073. unsigned long nr_soft_reclaimed;
  2074. unsigned long nr_soft_scanned;
  2075. unsigned long lru_pages = 0;
  2076. struct reclaim_state *reclaim_state = current->reclaim_state;
  2077. gfp_t orig_mask;
  2078. struct shrink_control shrink = {
  2079. .gfp_mask = sc->gfp_mask,
  2080. };
  2081. enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
  2082. bool reclaimable = false;
  2083. /*
  2084. * If the number of buffer_heads in the machine exceeds the maximum
  2085. * allowed level, force direct reclaim to scan the highmem zone as
  2086. * highmem pages could be pinning lowmem pages storing buffer_heads
  2087. */
  2088. orig_mask = sc->gfp_mask;
  2089. if (buffer_heads_over_limit)
  2090. sc->gfp_mask |= __GFP_HIGHMEM;
  2091. nodes_clear(shrink.nodes_to_scan);
  2092. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  2093. gfp_zone(sc->gfp_mask), sc->nodemask) {
  2094. if (!populated_zone(zone))
  2095. continue;
  2096. /*
  2097. * Take care memory controller reclaiming has small influence
  2098. * to global LRU.
  2099. */
  2100. if (global_reclaim(sc)) {
  2101. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2102. continue;
  2103. lru_pages += zone_reclaimable_pages(zone);
  2104. node_set(zone_to_nid(zone), shrink.nodes_to_scan);
  2105. if (sc->priority != DEF_PRIORITY &&
  2106. !zone_reclaimable(zone))
  2107. continue; /* Let kswapd poll it */
  2108. /*
  2109. * If we already have plenty of memory free for
  2110. * compaction in this zone, don't free any more.
  2111. * Even though compaction is invoked for any
  2112. * non-zero order, only frequent costly order
  2113. * reclamation is disruptive enough to become a
  2114. * noticeable problem, like transparent huge
  2115. * page allocations.
  2116. */
  2117. if (IS_ENABLED(CONFIG_COMPACTION) &&
  2118. sc->order > PAGE_ALLOC_COSTLY_ORDER &&
  2119. zonelist_zone_idx(z) <= requested_highidx &&
  2120. compaction_ready(zone, sc->order)) {
  2121. sc->compaction_ready = true;
  2122. continue;
  2123. }
  2124. /*
  2125. * This steals pages from memory cgroups over softlimit
  2126. * and returns the number of reclaimed pages and
  2127. * scanned pages. This works for global memory pressure
  2128. * and balancing, not for a memcg's limit.
  2129. */
  2130. nr_soft_scanned = 0;
  2131. nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
  2132. sc->order, sc->gfp_mask,
  2133. &nr_soft_scanned);
  2134. sc->nr_reclaimed += nr_soft_reclaimed;
  2135. sc->nr_scanned += nr_soft_scanned;
  2136. if (nr_soft_reclaimed)
  2137. reclaimable = true;
  2138. /* need some check for avoid more shrink_zone() */
  2139. }
  2140. if (shrink_zone(zone, sc))
  2141. reclaimable = true;
  2142. if (global_reclaim(sc) &&
  2143. !reclaimable && zone_reclaimable(zone))
  2144. reclaimable = true;
  2145. }
  2146. /*
  2147. * Don't shrink slabs when reclaiming memory from over limit cgroups
  2148. * but do shrink slab at least once when aborting reclaim for
  2149. * compaction to avoid unevenly scanning file/anon LRU pages over slab
  2150. * pages.
  2151. */
  2152. if (global_reclaim(sc)) {
  2153. shrink_slab(&shrink, sc->nr_scanned, lru_pages);
  2154. if (reclaim_state) {
  2155. sc->nr_reclaimed += reclaim_state->reclaimed_slab;
  2156. reclaim_state->reclaimed_slab = 0;
  2157. }
  2158. }
  2159. /*
  2160. * Restore to original mask to avoid the impact on the caller if we
  2161. * promoted it to __GFP_HIGHMEM.
  2162. */
  2163. sc->gfp_mask = orig_mask;
  2164. return reclaimable;
  2165. }
  2166. /*
  2167. * This is the main entry point to direct page reclaim.
  2168. *
  2169. * If a full scan of the inactive list fails to free enough memory then we
  2170. * are "out of memory" and something needs to be killed.
  2171. *
  2172. * If the caller is !__GFP_FS then the probability of a failure is reasonably
  2173. * high - the zone may be full of dirty or under-writeback pages, which this
  2174. * caller can't do much about. We kick the writeback threads and take explicit
  2175. * naps in the hope that some of these pages can be written. But if the
  2176. * allocating task holds filesystem locks which prevent writeout this might not
  2177. * work, and the allocation attempt will fail.
  2178. *
  2179. * returns: 0, if no pages reclaimed
  2180. * else, the number of pages reclaimed
  2181. */
  2182. static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
  2183. struct scan_control *sc)
  2184. {
  2185. unsigned long total_scanned = 0;
  2186. unsigned long writeback_threshold;
  2187. bool zones_reclaimable;
  2188. delayacct_freepages_start();
  2189. if (global_reclaim(sc))
  2190. count_vm_event(ALLOCSTALL);
  2191. do {
  2192. vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
  2193. sc->priority);
  2194. sc->nr_scanned = 0;
  2195. zones_reclaimable = shrink_zones(zonelist, sc);
  2196. total_scanned += sc->nr_scanned;
  2197. if (sc->nr_reclaimed >= sc->nr_to_reclaim)
  2198. break;
  2199. if (sc->compaction_ready)
  2200. break;
  2201. /*
  2202. * If we're getting trouble reclaiming, start doing
  2203. * writepage even in laptop mode.
  2204. */
  2205. if (sc->priority < DEF_PRIORITY - 2)
  2206. sc->may_writepage = 1;
  2207. /*
  2208. * Try to write back as many pages as we just scanned. This
  2209. * tends to cause slow streaming writers to write data to the
  2210. * disk smoothly, at the dirtying rate, which is nice. But
  2211. * that's undesirable in laptop mode, where we *want* lumpy
  2212. * writeout. So in laptop mode, write out the whole world.
  2213. */
  2214. writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
  2215. if (total_scanned > writeback_threshold) {
  2216. wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
  2217. WB_REASON_TRY_TO_FREE_PAGES);
  2218. sc->may_writepage = 1;
  2219. }
  2220. } while (--sc->priority >= 0);
  2221. delayacct_freepages_end();
  2222. if (sc->nr_reclaimed)
  2223. return sc->nr_reclaimed;
  2224. /* Aborted reclaim to try compaction? don't OOM, then */
  2225. if (sc->compaction_ready)
  2226. return 1;
  2227. /* Any of the zones still reclaimable? Don't OOM. */
  2228. if (zones_reclaimable)
  2229. return 1;
  2230. return 0;
  2231. }
  2232. static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
  2233. {
  2234. struct zone *zone;
  2235. unsigned long pfmemalloc_reserve = 0;
  2236. unsigned long free_pages = 0;
  2237. int i;
  2238. bool wmark_ok;
  2239. for (i = 0; i <= ZONE_NORMAL; i++) {
  2240. zone = &pgdat->node_zones[i];
  2241. if (!populated_zone(zone))
  2242. continue;
  2243. pfmemalloc_reserve += min_wmark_pages(zone);
  2244. free_pages += zone_page_state(zone, NR_FREE_PAGES);
  2245. }
  2246. /* If there are no reserves (unexpected config) then do not throttle */
  2247. if (!pfmemalloc_reserve)
  2248. return true;
  2249. wmark_ok = free_pages > pfmemalloc_reserve / 2;
  2250. /* kswapd must be awake if processes are being throttled */
  2251. if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
  2252. pgdat->classzone_idx = min(pgdat->classzone_idx,
  2253. (enum zone_type)ZONE_NORMAL);
  2254. wake_up_interruptible(&pgdat->kswapd_wait);
  2255. }
  2256. return wmark_ok;
  2257. }
  2258. /*
  2259. * Throttle direct reclaimers if backing storage is backed by the network
  2260. * and the PFMEMALLOC reserve for the preferred node is getting dangerously
  2261. * depleted. kswapd will continue to make progress and wake the processes
  2262. * when the low watermark is reached.
  2263. *
  2264. * Returns true if a fatal signal was delivered during throttling. If this
  2265. * happens, the page allocator should not consider triggering the OOM killer.
  2266. */
  2267. static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
  2268. nodemask_t *nodemask)
  2269. {
  2270. struct zoneref *z;
  2271. struct zone *zone;
  2272. pg_data_t *pgdat = NULL;
  2273. /*
  2274. * Kernel threads should not be throttled as they may be indirectly
  2275. * responsible for cleaning pages necessary for reclaim to make forward
  2276. * progress. kjournald for example may enter direct reclaim while
  2277. * committing a transaction where throttling it could forcing other
  2278. * processes to block on log_wait_commit().
  2279. */
  2280. if (current->flags & PF_KTHREAD)
  2281. goto out;
  2282. /*
  2283. * If a fatal signal is pending, this process should not throttle.
  2284. * It should return quickly so it can exit and free its memory
  2285. */
  2286. if (fatal_signal_pending(current))
  2287. goto out;
  2288. /*
  2289. * Check if the pfmemalloc reserves are ok by finding the first node
  2290. * with a usable ZONE_NORMAL or lower zone. The expectation is that
  2291. * GFP_KERNEL will be required for allocating network buffers when
  2292. * swapping over the network so ZONE_HIGHMEM is unusable.
  2293. *
  2294. * Throttling is based on the first usable node and throttled processes
  2295. * wait on a queue until kswapd makes progress and wakes them. There
  2296. * is an affinity then between processes waking up and where reclaim
  2297. * progress has been made assuming the process wakes on the same node.
  2298. * More importantly, processes running on remote nodes will not compete
  2299. * for remote pfmemalloc reserves and processes on different nodes
  2300. * should make reasonable progress.
  2301. */
  2302. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  2303. gfp_mask, nodemask) {
  2304. if (zone_idx(zone) > ZONE_NORMAL)
  2305. continue;
  2306. /* Throttle based on the first usable node */
  2307. pgdat = zone->zone_pgdat;
  2308. if (pfmemalloc_watermark_ok(pgdat))
  2309. goto out;
  2310. break;
  2311. }
  2312. /* If no zone was usable by the allocation flags then do not throttle */
  2313. if (!pgdat)
  2314. goto out;
  2315. /* Account for the throttling */
  2316. count_vm_event(PGSCAN_DIRECT_THROTTLE);
  2317. /*
  2318. * If the caller cannot enter the filesystem, it's possible that it
  2319. * is due to the caller holding an FS lock or performing a journal
  2320. * transaction in the case of a filesystem like ext[3|4]. In this case,
  2321. * it is not safe to block on pfmemalloc_wait as kswapd could be
  2322. * blocked waiting on the same lock. Instead, throttle for up to a
  2323. * second before continuing.
  2324. */
  2325. if (!(gfp_mask & __GFP_FS)) {
  2326. wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
  2327. pfmemalloc_watermark_ok(pgdat), HZ);
  2328. goto check_pending;
  2329. }
  2330. /* Throttle until kswapd wakes the process */
  2331. wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
  2332. pfmemalloc_watermark_ok(pgdat));
  2333. check_pending:
  2334. if (fatal_signal_pending(current))
  2335. return true;
  2336. out:
  2337. return false;
  2338. }
  2339. unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
  2340. gfp_t gfp_mask, nodemask_t *nodemask)
  2341. {
  2342. unsigned long nr_reclaimed;
  2343. struct scan_control sc = {
  2344. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2345. .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
  2346. .order = order,
  2347. .nodemask = nodemask,
  2348. .priority = DEF_PRIORITY,
  2349. .may_writepage = !laptop_mode,
  2350. .may_unmap = 1,
  2351. .may_swap = 1,
  2352. };
  2353. /*
  2354. * Do not enter reclaim if fatal signal was delivered while throttled.
  2355. * 1 is returned so that the page allocator does not OOM kill at this
  2356. * point.
  2357. */
  2358. if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
  2359. return 1;
  2360. trace_mm_vmscan_direct_reclaim_begin(order,
  2361. sc.may_writepage,
  2362. gfp_mask);
  2363. nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
  2364. trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
  2365. return nr_reclaimed;
  2366. }
  2367. #ifdef CONFIG_MEMCG
  2368. unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
  2369. gfp_t gfp_mask, bool noswap,
  2370. struct zone *zone,
  2371. unsigned long *nr_scanned)
  2372. {
  2373. struct scan_control sc = {
  2374. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2375. .target_mem_cgroup = memcg,
  2376. .may_writepage = !laptop_mode,
  2377. .may_unmap = 1,
  2378. .may_swap = !noswap,
  2379. };
  2380. struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  2381. int swappiness = mem_cgroup_swappiness(memcg);
  2382. sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2383. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
  2384. trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
  2385. sc.may_writepage,
  2386. sc.gfp_mask);
  2387. /*
  2388. * NOTE: Although we can get the priority field, using it
  2389. * here is not a good idea, since it limits the pages we can scan.
  2390. * if we don't reclaim here, the shrink_zone from balance_pgdat
  2391. * will pick up pages from other mem cgroup's as well. We hack
  2392. * the priority and make it zero.
  2393. */
  2394. shrink_lruvec(lruvec, swappiness, &sc);
  2395. trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
  2396. *nr_scanned = sc.nr_scanned;
  2397. return sc.nr_reclaimed;
  2398. }
  2399. unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
  2400. gfp_t gfp_mask,
  2401. bool noswap)
  2402. {
  2403. struct zonelist *zonelist;
  2404. unsigned long nr_reclaimed;
  2405. int nid;
  2406. struct scan_control sc = {
  2407. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2408. .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2409. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
  2410. .target_mem_cgroup = memcg,
  2411. .priority = DEF_PRIORITY,
  2412. .may_writepage = !laptop_mode,
  2413. .may_unmap = 1,
  2414. .may_swap = !noswap,
  2415. };
  2416. /*
  2417. * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
  2418. * take care of from where we get pages. So the node where we start the
  2419. * scan does not need to be the current node.
  2420. */
  2421. nid = mem_cgroup_select_victim_node(memcg);
  2422. zonelist = NODE_DATA(nid)->node_zonelists;
  2423. trace_mm_vmscan_memcg_reclaim_begin(0,
  2424. sc.may_writepage,
  2425. sc.gfp_mask);
  2426. nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
  2427. trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
  2428. return nr_reclaimed;
  2429. }
  2430. #endif
  2431. static void age_active_anon(struct zone *zone, struct scan_control *sc)
  2432. {
  2433. struct mem_cgroup *memcg;
  2434. if (!total_swap_pages)
  2435. return;
  2436. memcg = mem_cgroup_iter(NULL, NULL, NULL);
  2437. do {
  2438. struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  2439. if (inactive_anon_is_low(lruvec))
  2440. shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
  2441. sc, LRU_ACTIVE_ANON);
  2442. memcg = mem_cgroup_iter(NULL, memcg, NULL);
  2443. } while (memcg);
  2444. }
  2445. static bool zone_balanced(struct zone *zone, int order,
  2446. unsigned long balance_gap, int classzone_idx)
  2447. {
  2448. if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
  2449. balance_gap, classzone_idx, 0))
  2450. return false;
  2451. if (IS_ENABLED(CONFIG_COMPACTION) && order &&
  2452. !compaction_suitable(zone, order))
  2453. return false;
  2454. return true;
  2455. }
  2456. /*
  2457. * pgdat_balanced() is used when checking if a node is balanced.
  2458. *
  2459. * For order-0, all zones must be balanced!
  2460. *
  2461. * For high-order allocations only zones that meet watermarks and are in a
  2462. * zone allowed by the callers classzone_idx are added to balanced_pages. The
  2463. * total of balanced pages must be at least 25% of the zones allowed by
  2464. * classzone_idx for the node to be considered balanced. Forcing all zones to
  2465. * be balanced for high orders can cause excessive reclaim when there are
  2466. * imbalanced zones.
  2467. * The choice of 25% is due to
  2468. * o a 16M DMA zone that is balanced will not balance a zone on any
  2469. * reasonable sized machine
  2470. * o On all other machines, the top zone must be at least a reasonable
  2471. * percentage of the middle zones. For example, on 32-bit x86, highmem
  2472. * would need to be at least 256M for it to be balance a whole node.
  2473. * Similarly, on x86-64 the Normal zone would need to be at least 1G
  2474. * to balance a node on its own. These seemed like reasonable ratios.
  2475. */
  2476. static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
  2477. {
  2478. unsigned long managed_pages = 0;
  2479. unsigned long balanced_pages = 0;
  2480. int i;
  2481. /* Check the watermark levels */
  2482. for (i = 0; i <= classzone_idx; i++) {
  2483. struct zone *zone = pgdat->node_zones + i;
  2484. if (!populated_zone(zone))
  2485. continue;
  2486. managed_pages += zone->managed_pages;
  2487. /*
  2488. * A special case here:
  2489. *
  2490. * balance_pgdat() skips over all_unreclaimable after
  2491. * DEF_PRIORITY. Effectively, it considers them balanced so
  2492. * they must be considered balanced here as well!
  2493. */
  2494. if (!zone_reclaimable(zone)) {
  2495. balanced_pages += zone->managed_pages;
  2496. continue;
  2497. }
  2498. if (zone_balanced(zone, order, 0, i))
  2499. balanced_pages += zone->managed_pages;
  2500. else if (!order)
  2501. return false;
  2502. }
  2503. if (order)
  2504. return balanced_pages >= (managed_pages >> 2);
  2505. else
  2506. return true;
  2507. }
  2508. /*
  2509. * Prepare kswapd for sleeping. This verifies that there are no processes
  2510. * waiting in throttle_direct_reclaim() and that watermarks have been met.
  2511. *
  2512. * Returns true if kswapd is ready to sleep
  2513. */
  2514. static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
  2515. int classzone_idx)
  2516. {
  2517. /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
  2518. if (remaining)
  2519. return false;
  2520. /*
  2521. * There is a potential race between when kswapd checks its watermarks
  2522. * and a process gets throttled. There is also a potential race if
  2523. * processes get throttled, kswapd wakes, a large process exits therby
  2524. * balancing the zones that causes kswapd to miss a wakeup. If kswapd
  2525. * is going to sleep, no process should be sleeping on pfmemalloc_wait
  2526. * so wake them now if necessary. If necessary, processes will wake
  2527. * kswapd and get throttled again
  2528. */
  2529. if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
  2530. wake_up(&pgdat->pfmemalloc_wait);
  2531. return false;
  2532. }
  2533. return pgdat_balanced(pgdat, order, classzone_idx);
  2534. }
  2535. /*
  2536. * kswapd shrinks the zone by the number of pages required to reach
  2537. * the high watermark.
  2538. *
  2539. * Returns true if kswapd scanned at least the requested number of pages to
  2540. * reclaim or if the lack of progress was due to pages under writeback.
  2541. * This is used to determine if the scanning priority needs to be raised.
  2542. */
  2543. static bool kswapd_shrink_zone(struct zone *zone,
  2544. int classzone_idx,
  2545. struct scan_control *sc,
  2546. unsigned long lru_pages,
  2547. unsigned long *nr_attempted)
  2548. {
  2549. int testorder = sc->order;
  2550. unsigned long balance_gap;
  2551. struct reclaim_state *reclaim_state = current->reclaim_state;
  2552. struct shrink_control shrink = {
  2553. .gfp_mask = sc->gfp_mask,
  2554. };
  2555. bool lowmem_pressure;
  2556. /* Reclaim above the high watermark. */
  2557. sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
  2558. /*
  2559. * Kswapd reclaims only single pages with compaction enabled. Trying
  2560. * too hard to reclaim until contiguous free pages have become
  2561. * available can hurt performance by evicting too much useful data
  2562. * from memory. Do not reclaim more than needed for compaction.
  2563. */
  2564. if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
  2565. compaction_suitable(zone, sc->order) !=
  2566. COMPACT_SKIPPED)
  2567. testorder = 0;
  2568. /*
  2569. * We put equal pressure on every zone, unless one zone has way too
  2570. * many pages free already. The "too many pages" is defined as the
  2571. * high wmark plus a "gap" where the gap is either the low
  2572. * watermark or 1% of the zone, whichever is smaller.
  2573. */
  2574. balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
  2575. zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
  2576. /*
  2577. * If there is no low memory pressure or the zone is balanced then no
  2578. * reclaim is necessary
  2579. */
  2580. lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
  2581. if (!lowmem_pressure && zone_balanced(zone, testorder,
  2582. balance_gap, classzone_idx))
  2583. return true;
  2584. shrink_zone(zone, sc);
  2585. nodes_clear(shrink.nodes_to_scan);
  2586. node_set(zone_to_nid(zone), shrink.nodes_to_scan);
  2587. reclaim_state->reclaimed_slab = 0;
  2588. shrink_slab(&shrink, sc->nr_scanned, lru_pages);
  2589. sc->nr_reclaimed += reclaim_state->reclaimed_slab;
  2590. /* Account for the number of pages attempted to reclaim */
  2591. *nr_attempted += sc->nr_to_reclaim;
  2592. zone_clear_flag(zone, ZONE_WRITEBACK);
  2593. /*
  2594. * If a zone reaches its high watermark, consider it to be no longer
  2595. * congested. It's possible there are dirty pages backed by congested
  2596. * BDIs but as pressure is relieved, speculatively avoid congestion
  2597. * waits.
  2598. */
  2599. if (zone_reclaimable(zone) &&
  2600. zone_balanced(zone, testorder, 0, classzone_idx)) {
  2601. zone_clear_flag(zone, ZONE_CONGESTED);
  2602. zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
  2603. }
  2604. return sc->nr_scanned >= sc->nr_to_reclaim;
  2605. }
  2606. /*
  2607. * For kswapd, balance_pgdat() will work across all this node's zones until
  2608. * they are all at high_wmark_pages(zone).
  2609. *
  2610. * Returns the final order kswapd was reclaiming at
  2611. *
  2612. * There is special handling here for zones which are full of pinned pages.
  2613. * This can happen if the pages are all mlocked, or if they are all used by
  2614. * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
  2615. * What we do is to detect the case where all pages in the zone have been
  2616. * scanned twice and there has been zero successful reclaim. Mark the zone as
  2617. * dead and from now on, only perform a short scan. Basically we're polling
  2618. * the zone for when the problem goes away.
  2619. *
  2620. * kswapd scans the zones in the highmem->normal->dma direction. It skips
  2621. * zones which have free_pages > high_wmark_pages(zone), but once a zone is
  2622. * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
  2623. * lower zones regardless of the number of free pages in the lower zones. This
  2624. * interoperates with the page allocator fallback scheme to ensure that aging
  2625. * of pages is balanced across the zones.
  2626. */
  2627. static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
  2628. int *classzone_idx)
  2629. {
  2630. int i;
  2631. int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
  2632. unsigned long nr_soft_reclaimed;
  2633. unsigned long nr_soft_scanned;
  2634. struct scan_control sc = {
  2635. .gfp_mask = GFP_KERNEL,
  2636. .order = order,
  2637. .priority = DEF_PRIORITY,
  2638. .may_writepage = !laptop_mode,
  2639. .may_unmap = 1,
  2640. .may_swap = 1,
  2641. };
  2642. count_vm_event(PAGEOUTRUN);
  2643. do {
  2644. unsigned long lru_pages = 0;
  2645. unsigned long nr_attempted = 0;
  2646. bool raise_priority = true;
  2647. bool pgdat_needs_compaction = (order > 0);
  2648. sc.nr_reclaimed = 0;
  2649. /*
  2650. * Scan in the highmem->dma direction for the highest
  2651. * zone which needs scanning
  2652. */
  2653. for (i = pgdat->nr_zones - 1; i >= 0; i--) {
  2654. struct zone *zone = pgdat->node_zones + i;
  2655. if (!populated_zone(zone))
  2656. continue;
  2657. if (sc.priority != DEF_PRIORITY &&
  2658. !zone_reclaimable(zone))
  2659. continue;
  2660. /*
  2661. * Do some background aging of the anon list, to give
  2662. * pages a chance to be referenced before reclaiming.
  2663. */
  2664. age_active_anon(zone, &sc);
  2665. /*
  2666. * If the number of buffer_heads in the machine
  2667. * exceeds the maximum allowed level and this node
  2668. * has a highmem zone, force kswapd to reclaim from
  2669. * it to relieve lowmem pressure.
  2670. */
  2671. if (buffer_heads_over_limit && is_highmem_idx(i)) {
  2672. end_zone = i;
  2673. break;
  2674. }
  2675. if (!zone_balanced(zone, order, 0, 0)) {
  2676. end_zone = i;
  2677. break;
  2678. } else {
  2679. /*
  2680. * If balanced, clear the dirty and congested
  2681. * flags
  2682. */
  2683. zone_clear_flag(zone, ZONE_CONGESTED);
  2684. zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
  2685. }
  2686. }
  2687. if (i < 0)
  2688. goto out;
  2689. for (i = 0; i <= end_zone; i++) {
  2690. struct zone *zone = pgdat->node_zones + i;
  2691. if (!populated_zone(zone))
  2692. continue;
  2693. lru_pages += zone_reclaimable_pages(zone);
  2694. /*
  2695. * If any zone is currently balanced then kswapd will
  2696. * not call compaction as it is expected that the
  2697. * necessary pages are already available.
  2698. */
  2699. if (pgdat_needs_compaction &&
  2700. zone_watermark_ok(zone, order,
  2701. low_wmark_pages(zone),
  2702. *classzone_idx, 0))
  2703. pgdat_needs_compaction = false;
  2704. }
  2705. /*
  2706. * If we're getting trouble reclaiming, start doing writepage
  2707. * even in laptop mode.
  2708. */
  2709. if (sc.priority < DEF_PRIORITY - 2)
  2710. sc.may_writepage = 1;
  2711. /*
  2712. * Now scan the zone in the dma->highmem direction, stopping
  2713. * at the last zone which needs scanning.
  2714. *
  2715. * We do this because the page allocator works in the opposite
  2716. * direction. This prevents the page allocator from allocating
  2717. * pages behind kswapd's direction of progress, which would
  2718. * cause too much scanning of the lower zones.
  2719. */
  2720. for (i = 0; i <= end_zone; i++) {
  2721. struct zone *zone = pgdat->node_zones + i;
  2722. if (!populated_zone(zone))
  2723. continue;
  2724. if (sc.priority != DEF_PRIORITY &&
  2725. !zone_reclaimable(zone))
  2726. continue;
  2727. sc.nr_scanned = 0;
  2728. nr_soft_scanned = 0;
  2729. /*
  2730. * Call soft limit reclaim before calling shrink_zone.
  2731. */
  2732. nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
  2733. order, sc.gfp_mask,
  2734. &nr_soft_scanned);
  2735. sc.nr_reclaimed += nr_soft_reclaimed;
  2736. /*
  2737. * There should be no need to raise the scanning
  2738. * priority if enough pages are already being scanned
  2739. * that that high watermark would be met at 100%
  2740. * efficiency.
  2741. */
  2742. if (kswapd_shrink_zone(zone, end_zone, &sc,
  2743. lru_pages, &nr_attempted))
  2744. raise_priority = false;
  2745. }
  2746. /*
  2747. * If the low watermark is met there is no need for processes
  2748. * to be throttled on pfmemalloc_wait as they should not be
  2749. * able to safely make forward progress. Wake them
  2750. */
  2751. if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
  2752. pfmemalloc_watermark_ok(pgdat))
  2753. wake_up(&pgdat->pfmemalloc_wait);
  2754. /*
  2755. * Fragmentation may mean that the system cannot be rebalanced
  2756. * for high-order allocations in all zones. If twice the
  2757. * allocation size has been reclaimed and the zones are still
  2758. * not balanced then recheck the watermarks at order-0 to
  2759. * prevent kswapd reclaiming excessively. Assume that a
  2760. * process requested a high-order can direct reclaim/compact.
  2761. */
  2762. if (order && sc.nr_reclaimed >= 2UL << order)
  2763. order = sc.order = 0;
  2764. /* Check if kswapd should be suspending */
  2765. if (try_to_freeze() || kthread_should_stop())
  2766. break;
  2767. /*
  2768. * Compact if necessary and kswapd is reclaiming at least the
  2769. * high watermark number of pages as requsted
  2770. */
  2771. if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
  2772. compact_pgdat(pgdat, order);
  2773. /*
  2774. * Raise priority if scanning rate is too low or there was no
  2775. * progress in reclaiming pages
  2776. */
  2777. if (raise_priority || !sc.nr_reclaimed)
  2778. sc.priority--;
  2779. } while (sc.priority >= 1 &&
  2780. !pgdat_balanced(pgdat, order, *classzone_idx));
  2781. out:
  2782. /*
  2783. * Return the order we were reclaiming at so prepare_kswapd_sleep()
  2784. * makes a decision on the order we were last reclaiming at. However,
  2785. * if another caller entered the allocator slow path while kswapd
  2786. * was awake, order will remain at the higher level
  2787. */
  2788. *classzone_idx = end_zone;
  2789. return order;
  2790. }
  2791. static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
  2792. {
  2793. long remaining = 0;
  2794. DEFINE_WAIT(wait);
  2795. if (freezing(current) || kthread_should_stop())
  2796. return;
  2797. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2798. /* Try to sleep for a short interval */
  2799. if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
  2800. remaining = schedule_timeout(HZ/10);
  2801. finish_wait(&pgdat->kswapd_wait, &wait);
  2802. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2803. }
  2804. /*
  2805. * After a short sleep, check if it was a premature sleep. If not, then
  2806. * go fully to sleep until explicitly woken up.
  2807. */
  2808. if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
  2809. trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
  2810. /*
  2811. * vmstat counters are not perfectly accurate and the estimated
  2812. * value for counters such as NR_FREE_PAGES can deviate from the
  2813. * true value by nr_online_cpus * threshold. To avoid the zone
  2814. * watermarks being breached while under pressure, we reduce the
  2815. * per-cpu vmstat threshold while kswapd is awake and restore
  2816. * them before going back to sleep.
  2817. */
  2818. set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
  2819. /*
  2820. * Compaction records what page blocks it recently failed to
  2821. * isolate pages from and skips them in the future scanning.
  2822. * When kswapd is going to sleep, it is reasonable to assume
  2823. * that pages and compaction may succeed so reset the cache.
  2824. */
  2825. reset_isolation_suitable(pgdat);
  2826. if (!kthread_should_stop())
  2827. schedule();
  2828. set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
  2829. } else {
  2830. if (remaining)
  2831. count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
  2832. else
  2833. count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
  2834. }
  2835. finish_wait(&pgdat->kswapd_wait, &wait);
  2836. }
  2837. /*
  2838. * The background pageout daemon, started as a kernel thread
  2839. * from the init process.
  2840. *
  2841. * This basically trickles out pages so that we have _some_
  2842. * free memory available even if there is no other activity
  2843. * that frees anything up. This is needed for things like routing
  2844. * etc, where we otherwise might have all activity going on in
  2845. * asynchronous contexts that cannot page things out.
  2846. *
  2847. * If there are applications that are active memory-allocators
  2848. * (most normal use), this basically shouldn't matter.
  2849. */
  2850. static int kswapd(void *p)
  2851. {
  2852. unsigned long order, new_order;
  2853. unsigned balanced_order;
  2854. int classzone_idx, new_classzone_idx;
  2855. int balanced_classzone_idx;
  2856. pg_data_t *pgdat = (pg_data_t*)p;
  2857. struct task_struct *tsk = current;
  2858. struct reclaim_state reclaim_state = {
  2859. .reclaimed_slab = 0,
  2860. };
  2861. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  2862. lockdep_set_current_reclaim_state(GFP_KERNEL);
  2863. if (!cpumask_empty(cpumask))
  2864. set_cpus_allowed_ptr(tsk, cpumask);
  2865. current->reclaim_state = &reclaim_state;
  2866. /*
  2867. * Tell the memory management that we're a "memory allocator",
  2868. * and that if we need more memory we should get access to it
  2869. * regardless (see "__alloc_pages()"). "kswapd" should
  2870. * never get caught in the normal page freeing logic.
  2871. *
  2872. * (Kswapd normally doesn't need memory anyway, but sometimes
  2873. * you need a small amount of memory in order to be able to
  2874. * page out something else, and this flag essentially protects
  2875. * us from recursively trying to free more memory as we're
  2876. * trying to free the first piece of memory in the first place).
  2877. */
  2878. tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
  2879. set_freezable();
  2880. order = new_order = 0;
  2881. balanced_order = 0;
  2882. classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
  2883. balanced_classzone_idx = classzone_idx;
  2884. for ( ; ; ) {
  2885. bool ret;
  2886. /*
  2887. * If the last balance_pgdat was unsuccessful it's unlikely a
  2888. * new request of a similar or harder type will succeed soon
  2889. * so consider going to sleep on the basis we reclaimed at
  2890. */
  2891. if (balanced_classzone_idx >= new_classzone_idx &&
  2892. balanced_order == new_order) {
  2893. new_order = pgdat->kswapd_max_order;
  2894. new_classzone_idx = pgdat->classzone_idx;
  2895. pgdat->kswapd_max_order = 0;
  2896. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2897. }
  2898. if (order < new_order || classzone_idx > new_classzone_idx) {
  2899. /*
  2900. * Don't sleep if someone wants a larger 'order'
  2901. * allocation or has tigher zone constraints
  2902. */
  2903. order = new_order;
  2904. classzone_idx = new_classzone_idx;
  2905. } else {
  2906. kswapd_try_to_sleep(pgdat, balanced_order,
  2907. balanced_classzone_idx);
  2908. order = pgdat->kswapd_max_order;
  2909. classzone_idx = pgdat->classzone_idx;
  2910. new_order = order;
  2911. new_classzone_idx = classzone_idx;
  2912. pgdat->kswapd_max_order = 0;
  2913. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2914. }
  2915. ret = try_to_freeze();
  2916. if (kthread_should_stop())
  2917. break;
  2918. /*
  2919. * We can speed up thawing tasks if we don't call balance_pgdat
  2920. * after returning from the refrigerator
  2921. */
  2922. if (!ret) {
  2923. trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
  2924. balanced_classzone_idx = classzone_idx;
  2925. balanced_order = balance_pgdat(pgdat, order,
  2926. &balanced_classzone_idx);
  2927. }
  2928. }
  2929. tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
  2930. current->reclaim_state = NULL;
  2931. lockdep_clear_current_reclaim_state();
  2932. return 0;
  2933. }
  2934. /*
  2935. * A zone is low on free memory, so wake its kswapd task to service it.
  2936. */
  2937. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
  2938. {
  2939. pg_data_t *pgdat;
  2940. if (!populated_zone(zone))
  2941. return;
  2942. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2943. return;
  2944. pgdat = zone->zone_pgdat;
  2945. if (pgdat->kswapd_max_order < order) {
  2946. pgdat->kswapd_max_order = order;
  2947. pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
  2948. }
  2949. if (!waitqueue_active(&pgdat->kswapd_wait))
  2950. return;
  2951. if (zone_balanced(zone, order, 0, 0))
  2952. return;
  2953. trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
  2954. wake_up_interruptible(&pgdat->kswapd_wait);
  2955. }
  2956. #ifdef CONFIG_HIBERNATION
  2957. /*
  2958. * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
  2959. * freed pages.
  2960. *
  2961. * Rather than trying to age LRUs the aim is to preserve the overall
  2962. * LRU order by reclaiming preferentially
  2963. * inactive > active > active referenced > active mapped
  2964. */
  2965. unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
  2966. {
  2967. struct reclaim_state reclaim_state;
  2968. struct scan_control sc = {
  2969. .nr_to_reclaim = nr_to_reclaim,
  2970. .gfp_mask = GFP_HIGHUSER_MOVABLE,
  2971. .priority = DEF_PRIORITY,
  2972. .may_writepage = 1,
  2973. .may_unmap = 1,
  2974. .may_swap = 1,
  2975. .hibernation_mode = 1,
  2976. };
  2977. struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
  2978. struct task_struct *p = current;
  2979. unsigned long nr_reclaimed;
  2980. p->flags |= PF_MEMALLOC;
  2981. lockdep_set_current_reclaim_state(sc.gfp_mask);
  2982. reclaim_state.reclaimed_slab = 0;
  2983. p->reclaim_state = &reclaim_state;
  2984. nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
  2985. p->reclaim_state = NULL;
  2986. lockdep_clear_current_reclaim_state();
  2987. p->flags &= ~PF_MEMALLOC;
  2988. return nr_reclaimed;
  2989. }
  2990. #endif /* CONFIG_HIBERNATION */
  2991. /* It's optimal to keep kswapds on the same CPUs as their memory, but
  2992. not required for correctness. So if the last cpu in a node goes
  2993. away, we get changed to run anywhere: as the first one comes back,
  2994. restore their cpu bindings. */
  2995. static int cpu_callback(struct notifier_block *nfb, unsigned long action,
  2996. void *hcpu)
  2997. {
  2998. int nid;
  2999. if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
  3000. for_each_node_state(nid, N_MEMORY) {
  3001. pg_data_t *pgdat = NODE_DATA(nid);
  3002. const struct cpumask *mask;
  3003. mask = cpumask_of_node(pgdat->node_id);
  3004. if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
  3005. /* One of our CPUs online: restore mask */
  3006. set_cpus_allowed_ptr(pgdat->kswapd, mask);
  3007. }
  3008. }
  3009. return NOTIFY_OK;
  3010. }
  3011. /*
  3012. * This kswapd start function will be called by init and node-hot-add.
  3013. * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
  3014. */
  3015. int kswapd_run(int nid)
  3016. {
  3017. pg_data_t *pgdat = NODE_DATA(nid);
  3018. int ret = 0;
  3019. if (pgdat->kswapd)
  3020. return 0;
  3021. pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
  3022. if (IS_ERR(pgdat->kswapd)) {
  3023. /* failure at boot is fatal */
  3024. BUG_ON(system_state == SYSTEM_BOOTING);
  3025. pr_err("Failed to start kswapd on node %d\n", nid);
  3026. ret = PTR_ERR(pgdat->kswapd);
  3027. pgdat->kswapd = NULL;
  3028. }
  3029. return ret;
  3030. }
  3031. /*
  3032. * Called by memory hotplug when all memory in a node is offlined. Caller must
  3033. * hold mem_hotplug_begin/end().
  3034. */
  3035. void kswapd_stop(int nid)
  3036. {
  3037. struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
  3038. if (kswapd) {
  3039. kthread_stop(kswapd);
  3040. NODE_DATA(nid)->kswapd = NULL;
  3041. }
  3042. }
  3043. static int __init kswapd_init(void)
  3044. {
  3045. int nid;
  3046. swap_setup();
  3047. for_each_node_state(nid, N_MEMORY)
  3048. kswapd_run(nid);
  3049. hotcpu_notifier(cpu_callback, 0);
  3050. return 0;
  3051. }
  3052. module_init(kswapd_init)
  3053. #ifdef CONFIG_NUMA
  3054. /*
  3055. * Zone reclaim mode
  3056. *
  3057. * If non-zero call zone_reclaim when the number of free pages falls below
  3058. * the watermarks.
  3059. */
  3060. int zone_reclaim_mode __read_mostly;
  3061. #define RECLAIM_OFF 0
  3062. #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
  3063. #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
  3064. #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
  3065. /*
  3066. * Priority for ZONE_RECLAIM. This determines the fraction of pages
  3067. * of a node considered for each zone_reclaim. 4 scans 1/16th of
  3068. * a zone.
  3069. */
  3070. #define ZONE_RECLAIM_PRIORITY 4
  3071. /*
  3072. * Percentage of pages in a zone that must be unmapped for zone_reclaim to
  3073. * occur.
  3074. */
  3075. int sysctl_min_unmapped_ratio = 1;
  3076. /*
  3077. * If the number of slab pages in a zone grows beyond this percentage then
  3078. * slab reclaim needs to occur.
  3079. */
  3080. int sysctl_min_slab_ratio = 5;
  3081. static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
  3082. {
  3083. unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
  3084. unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
  3085. zone_page_state(zone, NR_ACTIVE_FILE);
  3086. /*
  3087. * It's possible for there to be more file mapped pages than
  3088. * accounted for by the pages on the file LRU lists because
  3089. * tmpfs pages accounted for as ANON can also be FILE_MAPPED
  3090. */
  3091. return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
  3092. }
  3093. /* Work out how many page cache pages we can reclaim in this reclaim_mode */
  3094. static long zone_pagecache_reclaimable(struct zone *zone)
  3095. {
  3096. long nr_pagecache_reclaimable;
  3097. long delta = 0;
  3098. /*
  3099. * If RECLAIM_SWAP is set, then all file pages are considered
  3100. * potentially reclaimable. Otherwise, we have to worry about
  3101. * pages like swapcache and zone_unmapped_file_pages() provides
  3102. * a better estimate
  3103. */
  3104. if (zone_reclaim_mode & RECLAIM_SWAP)
  3105. nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
  3106. else
  3107. nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
  3108. /* If we can't clean pages, remove dirty pages from consideration */
  3109. if (!(zone_reclaim_mode & RECLAIM_WRITE))
  3110. delta += zone_page_state(zone, NR_FILE_DIRTY);
  3111. /* Watch for any possible underflows due to delta */
  3112. if (unlikely(delta > nr_pagecache_reclaimable))
  3113. delta = nr_pagecache_reclaimable;
  3114. return nr_pagecache_reclaimable - delta;
  3115. }
  3116. /*
  3117. * Try to free up some pages from this zone through reclaim.
  3118. */
  3119. static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  3120. {
  3121. /* Minimum pages needed in order to stay on node */
  3122. const unsigned long nr_pages = 1 << order;
  3123. struct task_struct *p = current;
  3124. struct reclaim_state reclaim_state;
  3125. struct scan_control sc = {
  3126. .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
  3127. .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
  3128. .order = order,
  3129. .priority = ZONE_RECLAIM_PRIORITY,
  3130. .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
  3131. .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
  3132. .may_swap = 1,
  3133. };
  3134. struct shrink_control shrink = {
  3135. .gfp_mask = sc.gfp_mask,
  3136. };
  3137. unsigned long nr_slab_pages0, nr_slab_pages1;
  3138. cond_resched();
  3139. /*
  3140. * We need to be able to allocate from the reserves for RECLAIM_SWAP
  3141. * and we also need to be able to write out pages for RECLAIM_WRITE
  3142. * and RECLAIM_SWAP.
  3143. */
  3144. p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
  3145. lockdep_set_current_reclaim_state(gfp_mask);
  3146. reclaim_state.reclaimed_slab = 0;
  3147. p->reclaim_state = &reclaim_state;
  3148. if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
  3149. /*
  3150. * Free memory by calling shrink zone with increasing
  3151. * priorities until we have enough memory freed.
  3152. */
  3153. do {
  3154. shrink_zone(zone, &sc);
  3155. } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
  3156. }
  3157. nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  3158. if (nr_slab_pages0 > zone->min_slab_pages) {
  3159. /*
  3160. * shrink_slab() does not currently allow us to determine how
  3161. * many pages were freed in this zone. So we take the current
  3162. * number of slab pages and shake the slab until it is reduced
  3163. * by the same nr_pages that we used for reclaiming unmapped
  3164. * pages.
  3165. */
  3166. nodes_clear(shrink.nodes_to_scan);
  3167. node_set(zone_to_nid(zone), shrink.nodes_to_scan);
  3168. for (;;) {
  3169. unsigned long lru_pages = zone_reclaimable_pages(zone);
  3170. /* No reclaimable slab or very low memory pressure */
  3171. if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
  3172. break;
  3173. /* Freed enough memory */
  3174. nr_slab_pages1 = zone_page_state(zone,
  3175. NR_SLAB_RECLAIMABLE);
  3176. if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
  3177. break;
  3178. }
  3179. /*
  3180. * Update nr_reclaimed by the number of slab pages we
  3181. * reclaimed from this zone.
  3182. */
  3183. nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  3184. if (nr_slab_pages1 < nr_slab_pages0)
  3185. sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
  3186. }
  3187. p->reclaim_state = NULL;
  3188. current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
  3189. lockdep_clear_current_reclaim_state();
  3190. return sc.nr_reclaimed >= nr_pages;
  3191. }
  3192. int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  3193. {
  3194. int node_id;
  3195. int ret;
  3196. /*
  3197. * Zone reclaim reclaims unmapped file backed pages and
  3198. * slab pages if we are over the defined limits.
  3199. *
  3200. * A small portion of unmapped file backed pages is needed for
  3201. * file I/O otherwise pages read by file I/O will be immediately
  3202. * thrown out if the zone is overallocated. So we do not reclaim
  3203. * if less than a specified percentage of the zone is used by
  3204. * unmapped file backed pages.
  3205. */
  3206. if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
  3207. zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
  3208. return ZONE_RECLAIM_FULL;
  3209. if (!zone_reclaimable(zone))
  3210. return ZONE_RECLAIM_FULL;
  3211. /*
  3212. * Do not scan if the allocation should not be delayed.
  3213. */
  3214. if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
  3215. return ZONE_RECLAIM_NOSCAN;
  3216. /*
  3217. * Only run zone reclaim on the local zone or on zones that do not
  3218. * have associated processors. This will favor the local processor
  3219. * over remote processors and spread off node memory allocations
  3220. * as wide as possible.
  3221. */
  3222. node_id = zone_to_nid(zone);
  3223. if (node_state(node_id, N_CPU) && node_id != numa_node_id())
  3224. return ZONE_RECLAIM_NOSCAN;
  3225. if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
  3226. return ZONE_RECLAIM_NOSCAN;
  3227. ret = __zone_reclaim(zone, gfp_mask, order);
  3228. zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
  3229. if (!ret)
  3230. count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
  3231. return ret;
  3232. }
  3233. #endif
  3234. /*
  3235. * page_evictable - test whether a page is evictable
  3236. * @page: the page to test
  3237. *
  3238. * Test whether page is evictable--i.e., should be placed on active/inactive
  3239. * lists vs unevictable list.
  3240. *
  3241. * Reasons page might not be evictable:
  3242. * (1) page's mapping marked unevictable
  3243. * (2) page is part of an mlocked VMA
  3244. *
  3245. */
  3246. int page_evictable(struct page *page)
  3247. {
  3248. return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
  3249. }
  3250. #ifdef CONFIG_SHMEM
  3251. /**
  3252. * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
  3253. * @pages: array of pages to check
  3254. * @nr_pages: number of pages to check
  3255. *
  3256. * Checks pages for evictability and moves them to the appropriate lru list.
  3257. *
  3258. * This function is only used for SysV IPC SHM_UNLOCK.
  3259. */
  3260. void check_move_unevictable_pages(struct page **pages, int nr_pages)
  3261. {
  3262. struct lruvec *lruvec;
  3263. struct zone *zone = NULL;
  3264. int pgscanned = 0;
  3265. int pgrescued = 0;
  3266. int i;
  3267. for (i = 0; i < nr_pages; i++) {
  3268. struct page *page = pages[i];
  3269. struct zone *pagezone;
  3270. pgscanned++;
  3271. pagezone = page_zone(page);
  3272. if (pagezone != zone) {
  3273. if (zone)
  3274. spin_unlock_irq(&zone->lru_lock);
  3275. zone = pagezone;
  3276. spin_lock_irq(&zone->lru_lock);
  3277. }
  3278. lruvec = mem_cgroup_page_lruvec(page, zone);
  3279. if (!PageLRU(page) || !PageUnevictable(page))
  3280. continue;
  3281. if (page_evictable(page)) {
  3282. enum lru_list lru = page_lru_base_type(page);
  3283. VM_BUG_ON_PAGE(PageActive(page), page);
  3284. ClearPageUnevictable(page);
  3285. del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
  3286. add_page_to_lru_list(page, lruvec, lru);
  3287. pgrescued++;
  3288. }
  3289. }
  3290. if (zone) {
  3291. __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
  3292. __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
  3293. spin_unlock_irq(&zone->lru_lock);
  3294. }
  3295. }
  3296. #endif /* CONFIG_SHMEM */
  3297. static void warn_scan_unevictable_pages(void)
  3298. {
  3299. printk_once(KERN_WARNING
  3300. "%s: The scan_unevictable_pages sysctl/node-interface has been "
  3301. "disabled for lack of a legitimate use case. If you have "
  3302. "one, please send an email to linux-mm@kvack.org.\n",
  3303. current->comm);
  3304. }
  3305. /*
  3306. * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
  3307. * all nodes' unevictable lists for evictable pages
  3308. */
  3309. unsigned long scan_unevictable_pages;
  3310. int scan_unevictable_handler(struct ctl_table *table, int write,
  3311. void __user *buffer,
  3312. size_t *length, loff_t *ppos)
  3313. {
  3314. warn_scan_unevictable_pages();
  3315. proc_doulongvec_minmax(table, write, buffer, length, ppos);
  3316. scan_unevictable_pages = 0;
  3317. return 0;
  3318. }
  3319. #ifdef CONFIG_NUMA
  3320. /*
  3321. * per node 'scan_unevictable_pages' attribute. On demand re-scan of
  3322. * a specified node's per zone unevictable lists for evictable pages.
  3323. */
  3324. static ssize_t read_scan_unevictable_node(struct device *dev,
  3325. struct device_attribute *attr,
  3326. char *buf)
  3327. {
  3328. warn_scan_unevictable_pages();
  3329. return sprintf(buf, "0\n"); /* always zero; should fit... */
  3330. }
  3331. static ssize_t write_scan_unevictable_node(struct device *dev,
  3332. struct device_attribute *attr,
  3333. const char *buf, size_t count)
  3334. {
  3335. warn_scan_unevictable_pages();
  3336. return 1;
  3337. }
  3338. static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
  3339. read_scan_unevictable_node,
  3340. write_scan_unevictable_node);
  3341. int scan_unevictable_register_node(struct node *node)
  3342. {
  3343. return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
  3344. }
  3345. void scan_unevictable_unregister_node(struct node *node)
  3346. {
  3347. device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
  3348. }
  3349. #endif