swap_state.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497
  1. /*
  2. * linux/mm/swap_state.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. *
  7. * Rewritten to use page cache, (C) 1998 Stephen Tweedie
  8. */
  9. #include <linux/mm.h>
  10. #include <linux/gfp.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <linux/init.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/pagevec.h>
  19. #include <linux/migrate.h>
  20. #include <linux/page_cgroup.h>
  21. #include <asm/pgtable.h>
  22. /*
  23. * swapper_space is a fiction, retained to simplify the path through
  24. * vmscan's shrink_page_list.
  25. */
  26. static const struct address_space_operations swap_aops = {
  27. .writepage = swap_writepage,
  28. .set_page_dirty = swap_set_page_dirty,
  29. .migratepage = migrate_page,
  30. };
  31. static struct backing_dev_info swap_backing_dev_info = {
  32. .name = "swap",
  33. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
  34. };
  35. struct address_space swapper_spaces[MAX_SWAPFILES] = {
  36. [0 ... MAX_SWAPFILES - 1] = {
  37. .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
  38. .i_mmap_writable = ATOMIC_INIT(0),
  39. .a_ops = &swap_aops,
  40. .backing_dev_info = &swap_backing_dev_info,
  41. }
  42. };
  43. #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
  44. static struct {
  45. unsigned long add_total;
  46. unsigned long del_total;
  47. unsigned long find_success;
  48. unsigned long find_total;
  49. } swap_cache_info;
  50. unsigned long total_swapcache_pages(void)
  51. {
  52. int i;
  53. unsigned long ret = 0;
  54. for (i = 0; i < MAX_SWAPFILES; i++)
  55. ret += swapper_spaces[i].nrpages;
  56. return ret;
  57. }
  58. static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
  59. void show_swap_cache_info(void)
  60. {
  61. printk("%lu pages in swap cache\n", total_swapcache_pages());
  62. printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
  63. swap_cache_info.add_total, swap_cache_info.del_total,
  64. swap_cache_info.find_success, swap_cache_info.find_total);
  65. printk("Free swap = %ldkB\n",
  66. get_nr_swap_pages() << (PAGE_SHIFT - 10));
  67. printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
  68. }
  69. /*
  70. * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
  71. * but sets SwapCache flag and private instead of mapping and index.
  72. */
  73. int __add_to_swap_cache(struct page *page, swp_entry_t entry)
  74. {
  75. int error;
  76. struct address_space *address_space;
  77. VM_BUG_ON_PAGE(!PageLocked(page), page);
  78. VM_BUG_ON_PAGE(PageSwapCache(page), page);
  79. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  80. page_cache_get(page);
  81. SetPageSwapCache(page);
  82. set_page_private(page, entry.val);
  83. address_space = swap_address_space(entry);
  84. spin_lock_irq(&address_space->tree_lock);
  85. error = radix_tree_insert(&address_space->page_tree,
  86. entry.val, page);
  87. if (likely(!error)) {
  88. address_space->nrpages++;
  89. __inc_zone_page_state(page, NR_FILE_PAGES);
  90. INC_CACHE_INFO(add_total);
  91. }
  92. spin_unlock_irq(&address_space->tree_lock);
  93. if (unlikely(error)) {
  94. /*
  95. * Only the context which have set SWAP_HAS_CACHE flag
  96. * would call add_to_swap_cache().
  97. * So add_to_swap_cache() doesn't returns -EEXIST.
  98. */
  99. VM_BUG_ON(error == -EEXIST);
  100. set_page_private(page, 0UL);
  101. ClearPageSwapCache(page);
  102. page_cache_release(page);
  103. }
  104. return error;
  105. }
  106. int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
  107. {
  108. int error;
  109. error = radix_tree_maybe_preload(gfp_mask);
  110. if (!error) {
  111. error = __add_to_swap_cache(page, entry);
  112. radix_tree_preload_end();
  113. }
  114. return error;
  115. }
  116. /*
  117. * This must be called only on pages that have
  118. * been verified to be in the swap cache.
  119. */
  120. void __delete_from_swap_cache(struct page *page)
  121. {
  122. swp_entry_t entry;
  123. struct address_space *address_space;
  124. VM_BUG_ON_PAGE(!PageLocked(page), page);
  125. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  126. VM_BUG_ON_PAGE(PageWriteback(page), page);
  127. entry.val = page_private(page);
  128. address_space = swap_address_space(entry);
  129. radix_tree_delete(&address_space->page_tree, page_private(page));
  130. set_page_private(page, 0);
  131. ClearPageSwapCache(page);
  132. address_space->nrpages--;
  133. __dec_zone_page_state(page, NR_FILE_PAGES);
  134. INC_CACHE_INFO(del_total);
  135. }
  136. /**
  137. * add_to_swap - allocate swap space for a page
  138. * @page: page we want to move to swap
  139. *
  140. * Allocate swap space for the page and add the page to the
  141. * swap cache. Caller needs to hold the page lock.
  142. */
  143. int add_to_swap(struct page *page, struct list_head *list)
  144. {
  145. swp_entry_t entry;
  146. int err;
  147. VM_BUG_ON_PAGE(!PageLocked(page), page);
  148. VM_BUG_ON_PAGE(!PageUptodate(page), page);
  149. entry = get_swap_page();
  150. if (!entry.val)
  151. return 0;
  152. if (unlikely(PageTransHuge(page)))
  153. if (unlikely(split_huge_page_to_list(page, list))) {
  154. swapcache_free(entry);
  155. return 0;
  156. }
  157. /*
  158. * Radix-tree node allocations from PF_MEMALLOC contexts could
  159. * completely exhaust the page allocator. __GFP_NOMEMALLOC
  160. * stops emergency reserves from being allocated.
  161. *
  162. * TODO: this could cause a theoretical memory reclaim
  163. * deadlock in the swap out path.
  164. */
  165. /*
  166. * Add it to the swap cache and mark it dirty
  167. */
  168. err = add_to_swap_cache(page, entry,
  169. __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
  170. if (!err) { /* Success */
  171. SetPageDirty(page);
  172. return 1;
  173. } else { /* -ENOMEM radix-tree allocation failure */
  174. /*
  175. * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  176. * clear SWAP_HAS_CACHE flag.
  177. */
  178. swapcache_free(entry);
  179. return 0;
  180. }
  181. }
  182. /*
  183. * This must be called only on pages that have
  184. * been verified to be in the swap cache and locked.
  185. * It will never put the page into the free list,
  186. * the caller has a reference on the page.
  187. */
  188. void delete_from_swap_cache(struct page *page)
  189. {
  190. swp_entry_t entry;
  191. struct address_space *address_space;
  192. entry.val = page_private(page);
  193. address_space = swap_address_space(entry);
  194. spin_lock_irq(&address_space->tree_lock);
  195. __delete_from_swap_cache(page);
  196. spin_unlock_irq(&address_space->tree_lock);
  197. swapcache_free(entry);
  198. page_cache_release(page);
  199. }
  200. /*
  201. * If we are the only user, then try to free up the swap cache.
  202. *
  203. * Its ok to check for PageSwapCache without the page lock
  204. * here because we are going to recheck again inside
  205. * try_to_free_swap() _with_ the lock.
  206. * - Marcelo
  207. */
  208. static inline void free_swap_cache(struct page *page)
  209. {
  210. if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
  211. try_to_free_swap(page);
  212. unlock_page(page);
  213. }
  214. }
  215. /*
  216. * Perform a free_page(), also freeing any swap cache associated with
  217. * this page if it is the last user of the page.
  218. */
  219. void free_page_and_swap_cache(struct page *page)
  220. {
  221. free_swap_cache(page);
  222. page_cache_release(page);
  223. }
  224. /*
  225. * Passed an array of pages, drop them all from swapcache and then release
  226. * them. They are removed from the LRU and freed if this is their last use.
  227. */
  228. void free_pages_and_swap_cache(struct page **pages, int nr)
  229. {
  230. struct page **pagep = pages;
  231. lru_add_drain();
  232. while (nr) {
  233. int todo = min(nr, PAGEVEC_SIZE);
  234. int i;
  235. for (i = 0; i < todo; i++)
  236. free_swap_cache(pagep[i]);
  237. release_pages(pagep, todo, false);
  238. pagep += todo;
  239. nr -= todo;
  240. }
  241. }
  242. /*
  243. * Lookup a swap entry in the swap cache. A found page will be returned
  244. * unlocked and with its refcount incremented - we rely on the kernel
  245. * lock getting page table operations atomic even if we drop the page
  246. * lock before returning.
  247. */
  248. struct page * lookup_swap_cache(swp_entry_t entry)
  249. {
  250. struct page *page;
  251. page = find_get_page(swap_address_space(entry), entry.val);
  252. if (page) {
  253. INC_CACHE_INFO(find_success);
  254. if (TestClearPageReadahead(page))
  255. atomic_inc(&swapin_readahead_hits);
  256. }
  257. INC_CACHE_INFO(find_total);
  258. return page;
  259. }
  260. /*
  261. * Locate a page of swap in physical memory, reserving swap cache space
  262. * and reading the disk if it is not already cached.
  263. * A failure return means that either the page allocation failed or that
  264. * the swap entry is no longer in use.
  265. */
  266. struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
  267. struct vm_area_struct *vma, unsigned long addr)
  268. {
  269. struct page *found_page, *new_page = NULL;
  270. int err;
  271. do {
  272. /*
  273. * First check the swap cache. Since this is normally
  274. * called after lookup_swap_cache() failed, re-calling
  275. * that would confuse statistics.
  276. */
  277. found_page = find_get_page(swap_address_space(entry),
  278. entry.val);
  279. if (found_page)
  280. break;
  281. /*
  282. * Get a new page to read into from swap.
  283. */
  284. if (!new_page) {
  285. new_page = alloc_page_vma(gfp_mask, vma, addr);
  286. if (!new_page)
  287. break; /* Out of memory */
  288. }
  289. /*
  290. * call radix_tree_preload() while we can wait.
  291. */
  292. err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
  293. if (err)
  294. break;
  295. /*
  296. * Swap entry may have been freed since our caller observed it.
  297. */
  298. err = swapcache_prepare(entry);
  299. if (err == -EEXIST) {
  300. radix_tree_preload_end();
  301. /*
  302. * We might race against get_swap_page() and stumble
  303. * across a SWAP_HAS_CACHE swap_map entry whose page
  304. * has not been brought into the swapcache yet, while
  305. * the other end is scheduled away waiting on discard
  306. * I/O completion at scan_swap_map().
  307. *
  308. * In order to avoid turning this transitory state
  309. * into a permanent loop around this -EEXIST case
  310. * if !CONFIG_PREEMPT and the I/O completion happens
  311. * to be waiting on the CPU waitqueue where we are now
  312. * busy looping, we just conditionally invoke the
  313. * scheduler here, if there are some more important
  314. * tasks to run.
  315. */
  316. cond_resched();
  317. continue;
  318. }
  319. if (err) { /* swp entry is obsolete ? */
  320. radix_tree_preload_end();
  321. break;
  322. }
  323. /* May fail (-ENOMEM) if radix-tree node allocation failed. */
  324. __set_page_locked(new_page);
  325. SetPageSwapBacked(new_page);
  326. err = __add_to_swap_cache(new_page, entry);
  327. if (likely(!err)) {
  328. radix_tree_preload_end();
  329. /*
  330. * Initiate read into locked page and return.
  331. */
  332. lru_cache_add_anon(new_page);
  333. swap_readpage(new_page);
  334. return new_page;
  335. }
  336. radix_tree_preload_end();
  337. ClearPageSwapBacked(new_page);
  338. __clear_page_locked(new_page);
  339. /*
  340. * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  341. * clear SWAP_HAS_CACHE flag.
  342. */
  343. swapcache_free(entry);
  344. } while (err != -ENOMEM);
  345. if (new_page)
  346. page_cache_release(new_page);
  347. return found_page;
  348. }
  349. static unsigned long swapin_nr_pages(unsigned long offset)
  350. {
  351. static unsigned long prev_offset;
  352. unsigned int pages, max_pages, last_ra;
  353. static atomic_t last_readahead_pages;
  354. max_pages = 1 << ACCESS_ONCE(page_cluster);
  355. if (max_pages <= 1)
  356. return 1;
  357. /*
  358. * This heuristic has been found to work well on both sequential and
  359. * random loads, swapping to hard disk or to SSD: please don't ask
  360. * what the "+ 2" means, it just happens to work well, that's all.
  361. */
  362. pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
  363. if (pages == 2) {
  364. /*
  365. * We can have no readahead hits to judge by: but must not get
  366. * stuck here forever, so check for an adjacent offset instead
  367. * (and don't even bother to check whether swap type is same).
  368. */
  369. if (offset != prev_offset + 1 && offset != prev_offset - 1)
  370. pages = 1;
  371. prev_offset = offset;
  372. } else {
  373. unsigned int roundup = 4;
  374. while (roundup < pages)
  375. roundup <<= 1;
  376. pages = roundup;
  377. }
  378. if (pages > max_pages)
  379. pages = max_pages;
  380. /* Don't shrink readahead too fast */
  381. last_ra = atomic_read(&last_readahead_pages) / 2;
  382. if (pages < last_ra)
  383. pages = last_ra;
  384. atomic_set(&last_readahead_pages, pages);
  385. return pages;
  386. }
  387. /**
  388. * swapin_readahead - swap in pages in hope we need them soon
  389. * @entry: swap entry of this memory
  390. * @gfp_mask: memory allocation flags
  391. * @vma: user vma this address belongs to
  392. * @addr: target address for mempolicy
  393. *
  394. * Returns the struct page for entry and addr, after queueing swapin.
  395. *
  396. * Primitive swap readahead code. We simply read an aligned block of
  397. * (1 << page_cluster) entries in the swap area. This method is chosen
  398. * because it doesn't cost us any seek time. We also make sure to queue
  399. * the 'original' request together with the readahead ones...
  400. *
  401. * This has been extended to use the NUMA policies from the mm triggering
  402. * the readahead.
  403. *
  404. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  405. */
  406. struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
  407. struct vm_area_struct *vma, unsigned long addr)
  408. {
  409. struct page *page;
  410. unsigned long entry_offset = swp_offset(entry);
  411. unsigned long offset = entry_offset;
  412. unsigned long start_offset, end_offset;
  413. unsigned long mask;
  414. struct blk_plug plug;
  415. mask = swapin_nr_pages(offset) - 1;
  416. if (!mask)
  417. goto skip;
  418. /* Read a page_cluster sized and aligned cluster around offset. */
  419. start_offset = offset & ~mask;
  420. end_offset = offset | mask;
  421. if (!start_offset) /* First page is swap header. */
  422. start_offset++;
  423. blk_start_plug(&plug);
  424. for (offset = start_offset; offset <= end_offset ; offset++) {
  425. /* Ok, do the async read-ahead now */
  426. page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
  427. gfp_mask, vma, addr);
  428. if (!page)
  429. continue;
  430. if (offset != entry_offset)
  431. SetPageReadahead(page);
  432. page_cache_release(page);
  433. }
  434. blk_finish_plug(&plug);
  435. lru_add_drain(); /* Push any new pages onto the LRU now */
  436. skip:
  437. return read_swap_cache_async(entry, gfp_mask, vma, addr);
  438. }