slub.c 126 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/notifier.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kmemcheck.h>
  23. #include <linux/cpu.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/mempolicy.h>
  26. #include <linux/ctype.h>
  27. #include <linux/debugobjects.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/memory.h>
  30. #include <linux/math64.h>
  31. #include <linux/fault-inject.h>
  32. #include <linux/stacktrace.h>
  33. #include <linux/prefetch.h>
  34. #include <linux/memcontrol.h>
  35. #include <trace/events/kmem.h>
  36. #include "internal.h"
  37. /*
  38. * Lock order:
  39. * 1. slab_mutex (Global Mutex)
  40. * 2. node->list_lock
  41. * 3. slab_lock(page) (Only on some arches and for debugging)
  42. *
  43. * slab_mutex
  44. *
  45. * The role of the slab_mutex is to protect the list of all the slabs
  46. * and to synchronize major metadata changes to slab cache structures.
  47. *
  48. * The slab_lock is only used for debugging and on arches that do not
  49. * have the ability to do a cmpxchg_double. It only protects the second
  50. * double word in the page struct. Meaning
  51. * A. page->freelist -> List of object free in a page
  52. * B. page->counters -> Counters of objects
  53. * C. page->frozen -> frozen state
  54. *
  55. * If a slab is frozen then it is exempt from list management. It is not
  56. * on any list. The processor that froze the slab is the one who can
  57. * perform list operations on the page. Other processors may put objects
  58. * onto the freelist but the processor that froze the slab is the only
  59. * one that can retrieve the objects from the page's freelist.
  60. *
  61. * The list_lock protects the partial and full list on each node and
  62. * the partial slab counter. If taken then no new slabs may be added or
  63. * removed from the lists nor make the number of partial slabs be modified.
  64. * (Note that the total number of slabs is an atomic value that may be
  65. * modified without taking the list lock).
  66. *
  67. * The list_lock is a centralized lock and thus we avoid taking it as
  68. * much as possible. As long as SLUB does not have to handle partial
  69. * slabs, operations can continue without any centralized lock. F.e.
  70. * allocating a long series of objects that fill up slabs does not require
  71. * the list lock.
  72. * Interrupts are disabled during allocation and deallocation in order to
  73. * make the slab allocator safe to use in the context of an irq. In addition
  74. * interrupts are disabled to ensure that the processor does not change
  75. * while handling per_cpu slabs, due to kernel preemption.
  76. *
  77. * SLUB assigns one slab for allocation to each processor.
  78. * Allocations only occur from these slabs called cpu slabs.
  79. *
  80. * Slabs with free elements are kept on a partial list and during regular
  81. * operations no list for full slabs is used. If an object in a full slab is
  82. * freed then the slab will show up again on the partial lists.
  83. * We track full slabs for debugging purposes though because otherwise we
  84. * cannot scan all objects.
  85. *
  86. * Slabs are freed when they become empty. Teardown and setup is
  87. * minimal so we rely on the page allocators per cpu caches for
  88. * fast frees and allocs.
  89. *
  90. * Overloading of page flags that are otherwise used for LRU management.
  91. *
  92. * PageActive The slab is frozen and exempt from list processing.
  93. * This means that the slab is dedicated to a purpose
  94. * such as satisfying allocations for a specific
  95. * processor. Objects may be freed in the slab while
  96. * it is frozen but slab_free will then skip the usual
  97. * list operations. It is up to the processor holding
  98. * the slab to integrate the slab into the slab lists
  99. * when the slab is no longer needed.
  100. *
  101. * One use of this flag is to mark slabs that are
  102. * used for allocations. Then such a slab becomes a cpu
  103. * slab. The cpu slab may be equipped with an additional
  104. * freelist that allows lockless access to
  105. * free objects in addition to the regular freelist
  106. * that requires the slab lock.
  107. *
  108. * PageError Slab requires special handling due to debug
  109. * options set. This moves slab handling out of
  110. * the fast path and disables lockless freelists.
  111. */
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
  121. {
  122. #ifdef CONFIG_SLUB_CPU_PARTIAL
  123. return !kmem_cache_debug(s);
  124. #else
  125. return false;
  126. #endif
  127. }
  128. /*
  129. * Issues still to be resolved:
  130. *
  131. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  132. *
  133. * - Variable sizing of the per node arrays
  134. */
  135. /* Enable to test recovery from slab corruption on boot */
  136. #undef SLUB_RESILIENCY_TEST
  137. /* Enable to log cmpxchg failures */
  138. #undef SLUB_DEBUG_CMPXCHG
  139. /*
  140. * Mininum number of partial slabs. These will be left on the partial
  141. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  142. */
  143. #define MIN_PARTIAL 5
  144. /*
  145. * Maximum number of desirable partial slabs.
  146. * The existence of more partial slabs makes kmem_cache_shrink
  147. * sort the partial list by the number of objects in use.
  148. */
  149. #define MAX_PARTIAL 10
  150. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  151. SLAB_POISON | SLAB_STORE_USER)
  152. /*
  153. * Debugging flags that require metadata to be stored in the slab. These get
  154. * disabled when slub_debug=O is used and a cache's min order increases with
  155. * metadata.
  156. */
  157. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  158. /*
  159. * Set of flags that will prevent slab merging
  160. */
  161. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  162. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  163. SLAB_FAILSLAB)
  164. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  165. SLAB_CACHE_DMA | SLAB_NOTRACK)
  166. #define OO_SHIFT 16
  167. #define OO_MASK ((1 << OO_SHIFT) - 1)
  168. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  169. /* Internal SLUB flags */
  170. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  171. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  172. #ifdef CONFIG_SMP
  173. static struct notifier_block slab_notifier;
  174. #endif
  175. /*
  176. * Tracking user of a slab.
  177. */
  178. #define TRACK_ADDRS_COUNT 16
  179. struct track {
  180. unsigned long addr; /* Called from address */
  181. #ifdef CONFIG_STACKTRACE
  182. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  183. #endif
  184. int cpu; /* Was running on cpu */
  185. int pid; /* Pid context */
  186. unsigned long when; /* When did the operation occur */
  187. };
  188. enum track_item { TRACK_ALLOC, TRACK_FREE };
  189. #ifdef CONFIG_SYSFS
  190. static int sysfs_slab_add(struct kmem_cache *);
  191. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  192. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  193. #else
  194. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  195. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  196. { return 0; }
  197. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  198. #endif
  199. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  200. {
  201. #ifdef CONFIG_SLUB_STATS
  202. /*
  203. * The rmw is racy on a preemptible kernel but this is acceptable, so
  204. * avoid this_cpu_add()'s irq-disable overhead.
  205. */
  206. raw_cpu_inc(s->cpu_slab->stat[si]);
  207. #endif
  208. }
  209. /********************************************************************
  210. * Core slab cache functions
  211. *******************************************************************/
  212. /* Verify that a pointer has an address that is valid within a slab page */
  213. static inline int check_valid_pointer(struct kmem_cache *s,
  214. struct page *page, const void *object)
  215. {
  216. void *base;
  217. if (!object)
  218. return 1;
  219. base = page_address(page);
  220. if (object < base || object >= base + page->objects * s->size ||
  221. (object - base) % s->size) {
  222. return 0;
  223. }
  224. return 1;
  225. }
  226. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  227. {
  228. return *(void **)(object + s->offset);
  229. }
  230. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  231. {
  232. prefetch(object + s->offset);
  233. }
  234. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  235. {
  236. void *p;
  237. #ifdef CONFIG_DEBUG_PAGEALLOC
  238. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  239. #else
  240. p = get_freepointer(s, object);
  241. #endif
  242. return p;
  243. }
  244. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  245. {
  246. *(void **)(object + s->offset) = fp;
  247. }
  248. /* Loop over all objects in a slab */
  249. #define for_each_object(__p, __s, __addr, __objects) \
  250. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  251. __p += (__s)->size)
  252. #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
  253. for (__p = (__addr), __idx = 1; __idx <= __objects;\
  254. __p += (__s)->size, __idx++)
  255. /* Determine object index from a given position */
  256. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  257. {
  258. return (p - addr) / s->size;
  259. }
  260. static inline size_t slab_ksize(const struct kmem_cache *s)
  261. {
  262. #ifdef CONFIG_SLUB_DEBUG
  263. /*
  264. * Debugging requires use of the padding between object
  265. * and whatever may come after it.
  266. */
  267. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  268. return s->object_size;
  269. #endif
  270. /*
  271. * If we have the need to store the freelist pointer
  272. * back there or track user information then we can
  273. * only use the space before that information.
  274. */
  275. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  276. return s->inuse;
  277. /*
  278. * Else we can use all the padding etc for the allocation
  279. */
  280. return s->size;
  281. }
  282. static inline int order_objects(int order, unsigned long size, int reserved)
  283. {
  284. return ((PAGE_SIZE << order) - reserved) / size;
  285. }
  286. static inline struct kmem_cache_order_objects oo_make(int order,
  287. unsigned long size, int reserved)
  288. {
  289. struct kmem_cache_order_objects x = {
  290. (order << OO_SHIFT) + order_objects(order, size, reserved)
  291. };
  292. return x;
  293. }
  294. static inline int oo_order(struct kmem_cache_order_objects x)
  295. {
  296. return x.x >> OO_SHIFT;
  297. }
  298. static inline int oo_objects(struct kmem_cache_order_objects x)
  299. {
  300. return x.x & OO_MASK;
  301. }
  302. /*
  303. * Per slab locking using the pagelock
  304. */
  305. static __always_inline void slab_lock(struct page *page)
  306. {
  307. bit_spin_lock(PG_locked, &page->flags);
  308. }
  309. static __always_inline void slab_unlock(struct page *page)
  310. {
  311. __bit_spin_unlock(PG_locked, &page->flags);
  312. }
  313. static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
  314. {
  315. struct page tmp;
  316. tmp.counters = counters_new;
  317. /*
  318. * page->counters can cover frozen/inuse/objects as well
  319. * as page->_count. If we assign to ->counters directly
  320. * we run the risk of losing updates to page->_count, so
  321. * be careful and only assign to the fields we need.
  322. */
  323. page->frozen = tmp.frozen;
  324. page->inuse = tmp.inuse;
  325. page->objects = tmp.objects;
  326. }
  327. /* Interrupts must be disabled (for the fallback code to work right) */
  328. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  329. void *freelist_old, unsigned long counters_old,
  330. void *freelist_new, unsigned long counters_new,
  331. const char *n)
  332. {
  333. VM_BUG_ON(!irqs_disabled());
  334. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  335. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  336. if (s->flags & __CMPXCHG_DOUBLE) {
  337. if (cmpxchg_double(&page->freelist, &page->counters,
  338. freelist_old, counters_old,
  339. freelist_new, counters_new))
  340. return 1;
  341. } else
  342. #endif
  343. {
  344. slab_lock(page);
  345. if (page->freelist == freelist_old &&
  346. page->counters == counters_old) {
  347. page->freelist = freelist_new;
  348. set_page_slub_counters(page, counters_new);
  349. slab_unlock(page);
  350. return 1;
  351. }
  352. slab_unlock(page);
  353. }
  354. cpu_relax();
  355. stat(s, CMPXCHG_DOUBLE_FAIL);
  356. #ifdef SLUB_DEBUG_CMPXCHG
  357. pr_info("%s %s: cmpxchg double redo ", n, s->name);
  358. #endif
  359. return 0;
  360. }
  361. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  362. void *freelist_old, unsigned long counters_old,
  363. void *freelist_new, unsigned long counters_new,
  364. const char *n)
  365. {
  366. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  367. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  368. if (s->flags & __CMPXCHG_DOUBLE) {
  369. if (cmpxchg_double(&page->freelist, &page->counters,
  370. freelist_old, counters_old,
  371. freelist_new, counters_new))
  372. return 1;
  373. } else
  374. #endif
  375. {
  376. unsigned long flags;
  377. local_irq_save(flags);
  378. slab_lock(page);
  379. if (page->freelist == freelist_old &&
  380. page->counters == counters_old) {
  381. page->freelist = freelist_new;
  382. set_page_slub_counters(page, counters_new);
  383. slab_unlock(page);
  384. local_irq_restore(flags);
  385. return 1;
  386. }
  387. slab_unlock(page);
  388. local_irq_restore(flags);
  389. }
  390. cpu_relax();
  391. stat(s, CMPXCHG_DOUBLE_FAIL);
  392. #ifdef SLUB_DEBUG_CMPXCHG
  393. pr_info("%s %s: cmpxchg double redo ", n, s->name);
  394. #endif
  395. return 0;
  396. }
  397. #ifdef CONFIG_SLUB_DEBUG
  398. /*
  399. * Determine a map of object in use on a page.
  400. *
  401. * Node listlock must be held to guarantee that the page does
  402. * not vanish from under us.
  403. */
  404. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  405. {
  406. void *p;
  407. void *addr = page_address(page);
  408. for (p = page->freelist; p; p = get_freepointer(s, p))
  409. set_bit(slab_index(p, s, addr), map);
  410. }
  411. /*
  412. * Debug settings:
  413. */
  414. #ifdef CONFIG_SLUB_DEBUG_ON
  415. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  416. #else
  417. static int slub_debug;
  418. #endif
  419. static char *slub_debug_slabs;
  420. static int disable_higher_order_debug;
  421. /*
  422. * Object debugging
  423. */
  424. static void print_section(char *text, u8 *addr, unsigned int length)
  425. {
  426. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  427. length, 1);
  428. }
  429. static struct track *get_track(struct kmem_cache *s, void *object,
  430. enum track_item alloc)
  431. {
  432. struct track *p;
  433. if (s->offset)
  434. p = object + s->offset + sizeof(void *);
  435. else
  436. p = object + s->inuse;
  437. return p + alloc;
  438. }
  439. static void set_track(struct kmem_cache *s, void *object,
  440. enum track_item alloc, unsigned long addr)
  441. {
  442. struct track *p = get_track(s, object, alloc);
  443. if (addr) {
  444. #ifdef CONFIG_STACKTRACE
  445. struct stack_trace trace;
  446. int i;
  447. trace.nr_entries = 0;
  448. trace.max_entries = TRACK_ADDRS_COUNT;
  449. trace.entries = p->addrs;
  450. trace.skip = 3;
  451. save_stack_trace(&trace);
  452. /* See rant in lockdep.c */
  453. if (trace.nr_entries != 0 &&
  454. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  455. trace.nr_entries--;
  456. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  457. p->addrs[i] = 0;
  458. #endif
  459. p->addr = addr;
  460. p->cpu = smp_processor_id();
  461. p->pid = current->pid;
  462. p->when = jiffies;
  463. } else
  464. memset(p, 0, sizeof(struct track));
  465. }
  466. static void init_tracking(struct kmem_cache *s, void *object)
  467. {
  468. if (!(s->flags & SLAB_STORE_USER))
  469. return;
  470. set_track(s, object, TRACK_FREE, 0UL);
  471. set_track(s, object, TRACK_ALLOC, 0UL);
  472. }
  473. static void print_track(const char *s, struct track *t)
  474. {
  475. if (!t->addr)
  476. return;
  477. pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  478. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  479. #ifdef CONFIG_STACKTRACE
  480. {
  481. int i;
  482. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  483. if (t->addrs[i])
  484. pr_err("\t%pS\n", (void *)t->addrs[i]);
  485. else
  486. break;
  487. }
  488. #endif
  489. }
  490. static void print_tracking(struct kmem_cache *s, void *object)
  491. {
  492. if (!(s->flags & SLAB_STORE_USER))
  493. return;
  494. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  495. print_track("Freed", get_track(s, object, TRACK_FREE));
  496. }
  497. static void print_page_info(struct page *page)
  498. {
  499. pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  500. page, page->objects, page->inuse, page->freelist, page->flags);
  501. }
  502. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  503. {
  504. struct va_format vaf;
  505. va_list args;
  506. va_start(args, fmt);
  507. vaf.fmt = fmt;
  508. vaf.va = &args;
  509. pr_err("=============================================================================\n");
  510. pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
  511. pr_err("-----------------------------------------------------------------------------\n\n");
  512. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  513. va_end(args);
  514. }
  515. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  516. {
  517. struct va_format vaf;
  518. va_list args;
  519. va_start(args, fmt);
  520. vaf.fmt = fmt;
  521. vaf.va = &args;
  522. pr_err("FIX %s: %pV\n", s->name, &vaf);
  523. va_end(args);
  524. }
  525. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  526. {
  527. unsigned int off; /* Offset of last byte */
  528. u8 *addr = page_address(page);
  529. print_tracking(s, p);
  530. print_page_info(page);
  531. pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  532. p, p - addr, get_freepointer(s, p));
  533. if (p > addr + 16)
  534. print_section("Bytes b4 ", p - 16, 16);
  535. print_section("Object ", p, min_t(unsigned long, s->object_size,
  536. PAGE_SIZE));
  537. if (s->flags & SLAB_RED_ZONE)
  538. print_section("Redzone ", p + s->object_size,
  539. s->inuse - s->object_size);
  540. if (s->offset)
  541. off = s->offset + sizeof(void *);
  542. else
  543. off = s->inuse;
  544. if (s->flags & SLAB_STORE_USER)
  545. off += 2 * sizeof(struct track);
  546. if (off != s->size)
  547. /* Beginning of the filler is the free pointer */
  548. print_section("Padding ", p + off, s->size - off);
  549. dump_stack();
  550. }
  551. static void object_err(struct kmem_cache *s, struct page *page,
  552. u8 *object, char *reason)
  553. {
  554. slab_bug(s, "%s", reason);
  555. print_trailer(s, page, object);
  556. }
  557. static void slab_err(struct kmem_cache *s, struct page *page,
  558. const char *fmt, ...)
  559. {
  560. va_list args;
  561. char buf[100];
  562. va_start(args, fmt);
  563. vsnprintf(buf, sizeof(buf), fmt, args);
  564. va_end(args);
  565. slab_bug(s, "%s", buf);
  566. print_page_info(page);
  567. dump_stack();
  568. }
  569. static void init_object(struct kmem_cache *s, void *object, u8 val)
  570. {
  571. u8 *p = object;
  572. if (s->flags & __OBJECT_POISON) {
  573. memset(p, POISON_FREE, s->object_size - 1);
  574. p[s->object_size - 1] = POISON_END;
  575. }
  576. if (s->flags & SLAB_RED_ZONE)
  577. memset(p + s->object_size, val, s->inuse - s->object_size);
  578. }
  579. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  580. void *from, void *to)
  581. {
  582. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  583. memset(from, data, to - from);
  584. }
  585. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  586. u8 *object, char *what,
  587. u8 *start, unsigned int value, unsigned int bytes)
  588. {
  589. u8 *fault;
  590. u8 *end;
  591. fault = memchr_inv(start, value, bytes);
  592. if (!fault)
  593. return 1;
  594. end = start + bytes;
  595. while (end > fault && end[-1] == value)
  596. end--;
  597. slab_bug(s, "%s overwritten", what);
  598. pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  599. fault, end - 1, fault[0], value);
  600. print_trailer(s, page, object);
  601. restore_bytes(s, what, value, fault, end);
  602. return 0;
  603. }
  604. /*
  605. * Object layout:
  606. *
  607. * object address
  608. * Bytes of the object to be managed.
  609. * If the freepointer may overlay the object then the free
  610. * pointer is the first word of the object.
  611. *
  612. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  613. * 0xa5 (POISON_END)
  614. *
  615. * object + s->object_size
  616. * Padding to reach word boundary. This is also used for Redzoning.
  617. * Padding is extended by another word if Redzoning is enabled and
  618. * object_size == inuse.
  619. *
  620. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  621. * 0xcc (RED_ACTIVE) for objects in use.
  622. *
  623. * object + s->inuse
  624. * Meta data starts here.
  625. *
  626. * A. Free pointer (if we cannot overwrite object on free)
  627. * B. Tracking data for SLAB_STORE_USER
  628. * C. Padding to reach required alignment boundary or at mininum
  629. * one word if debugging is on to be able to detect writes
  630. * before the word boundary.
  631. *
  632. * Padding is done using 0x5a (POISON_INUSE)
  633. *
  634. * object + s->size
  635. * Nothing is used beyond s->size.
  636. *
  637. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  638. * ignored. And therefore no slab options that rely on these boundaries
  639. * may be used with merged slabcaches.
  640. */
  641. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  642. {
  643. unsigned long off = s->inuse; /* The end of info */
  644. if (s->offset)
  645. /* Freepointer is placed after the object. */
  646. off += sizeof(void *);
  647. if (s->flags & SLAB_STORE_USER)
  648. /* We also have user information there */
  649. off += 2 * sizeof(struct track);
  650. if (s->size == off)
  651. return 1;
  652. return check_bytes_and_report(s, page, p, "Object padding",
  653. p + off, POISON_INUSE, s->size - off);
  654. }
  655. /* Check the pad bytes at the end of a slab page */
  656. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  657. {
  658. u8 *start;
  659. u8 *fault;
  660. u8 *end;
  661. int length;
  662. int remainder;
  663. if (!(s->flags & SLAB_POISON))
  664. return 1;
  665. start = page_address(page);
  666. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  667. end = start + length;
  668. remainder = length % s->size;
  669. if (!remainder)
  670. return 1;
  671. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  672. if (!fault)
  673. return 1;
  674. while (end > fault && end[-1] == POISON_INUSE)
  675. end--;
  676. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  677. print_section("Padding ", end - remainder, remainder);
  678. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  679. return 0;
  680. }
  681. static int check_object(struct kmem_cache *s, struct page *page,
  682. void *object, u8 val)
  683. {
  684. u8 *p = object;
  685. u8 *endobject = object + s->object_size;
  686. if (s->flags & SLAB_RED_ZONE) {
  687. if (!check_bytes_and_report(s, page, object, "Redzone",
  688. endobject, val, s->inuse - s->object_size))
  689. return 0;
  690. } else {
  691. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  692. check_bytes_and_report(s, page, p, "Alignment padding",
  693. endobject, POISON_INUSE,
  694. s->inuse - s->object_size);
  695. }
  696. }
  697. if (s->flags & SLAB_POISON) {
  698. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  699. (!check_bytes_and_report(s, page, p, "Poison", p,
  700. POISON_FREE, s->object_size - 1) ||
  701. !check_bytes_and_report(s, page, p, "Poison",
  702. p + s->object_size - 1, POISON_END, 1)))
  703. return 0;
  704. /*
  705. * check_pad_bytes cleans up on its own.
  706. */
  707. check_pad_bytes(s, page, p);
  708. }
  709. if (!s->offset && val == SLUB_RED_ACTIVE)
  710. /*
  711. * Object and freepointer overlap. Cannot check
  712. * freepointer while object is allocated.
  713. */
  714. return 1;
  715. /* Check free pointer validity */
  716. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  717. object_err(s, page, p, "Freepointer corrupt");
  718. /*
  719. * No choice but to zap it and thus lose the remainder
  720. * of the free objects in this slab. May cause
  721. * another error because the object count is now wrong.
  722. */
  723. set_freepointer(s, p, NULL);
  724. return 0;
  725. }
  726. return 1;
  727. }
  728. static int check_slab(struct kmem_cache *s, struct page *page)
  729. {
  730. int maxobj;
  731. VM_BUG_ON(!irqs_disabled());
  732. if (!PageSlab(page)) {
  733. slab_err(s, page, "Not a valid slab page");
  734. return 0;
  735. }
  736. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  737. if (page->objects > maxobj) {
  738. slab_err(s, page, "objects %u > max %u",
  739. s->name, page->objects, maxobj);
  740. return 0;
  741. }
  742. if (page->inuse > page->objects) {
  743. slab_err(s, page, "inuse %u > max %u",
  744. s->name, page->inuse, page->objects);
  745. return 0;
  746. }
  747. /* Slab_pad_check fixes things up after itself */
  748. slab_pad_check(s, page);
  749. return 1;
  750. }
  751. /*
  752. * Determine if a certain object on a page is on the freelist. Must hold the
  753. * slab lock to guarantee that the chains are in a consistent state.
  754. */
  755. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  756. {
  757. int nr = 0;
  758. void *fp;
  759. void *object = NULL;
  760. unsigned long max_objects;
  761. fp = page->freelist;
  762. while (fp && nr <= page->objects) {
  763. if (fp == search)
  764. return 1;
  765. if (!check_valid_pointer(s, page, fp)) {
  766. if (object) {
  767. object_err(s, page, object,
  768. "Freechain corrupt");
  769. set_freepointer(s, object, NULL);
  770. } else {
  771. slab_err(s, page, "Freepointer corrupt");
  772. page->freelist = NULL;
  773. page->inuse = page->objects;
  774. slab_fix(s, "Freelist cleared");
  775. return 0;
  776. }
  777. break;
  778. }
  779. object = fp;
  780. fp = get_freepointer(s, object);
  781. nr++;
  782. }
  783. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  784. if (max_objects > MAX_OBJS_PER_PAGE)
  785. max_objects = MAX_OBJS_PER_PAGE;
  786. if (page->objects != max_objects) {
  787. slab_err(s, page, "Wrong number of objects. Found %d but "
  788. "should be %d", page->objects, max_objects);
  789. page->objects = max_objects;
  790. slab_fix(s, "Number of objects adjusted.");
  791. }
  792. if (page->inuse != page->objects - nr) {
  793. slab_err(s, page, "Wrong object count. Counter is %d but "
  794. "counted were %d", page->inuse, page->objects - nr);
  795. page->inuse = page->objects - nr;
  796. slab_fix(s, "Object count adjusted.");
  797. }
  798. return search == NULL;
  799. }
  800. static void trace(struct kmem_cache *s, struct page *page, void *object,
  801. int alloc)
  802. {
  803. if (s->flags & SLAB_TRACE) {
  804. pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  805. s->name,
  806. alloc ? "alloc" : "free",
  807. object, page->inuse,
  808. page->freelist);
  809. if (!alloc)
  810. print_section("Object ", (void *)object,
  811. s->object_size);
  812. dump_stack();
  813. }
  814. }
  815. /*
  816. * Tracking of fully allocated slabs for debugging purposes.
  817. */
  818. static void add_full(struct kmem_cache *s,
  819. struct kmem_cache_node *n, struct page *page)
  820. {
  821. if (!(s->flags & SLAB_STORE_USER))
  822. return;
  823. lockdep_assert_held(&n->list_lock);
  824. list_add(&page->lru, &n->full);
  825. }
  826. static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
  827. {
  828. if (!(s->flags & SLAB_STORE_USER))
  829. return;
  830. lockdep_assert_held(&n->list_lock);
  831. list_del(&page->lru);
  832. }
  833. /* Tracking of the number of slabs for debugging purposes */
  834. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  835. {
  836. struct kmem_cache_node *n = get_node(s, node);
  837. return atomic_long_read(&n->nr_slabs);
  838. }
  839. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  840. {
  841. return atomic_long_read(&n->nr_slabs);
  842. }
  843. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  844. {
  845. struct kmem_cache_node *n = get_node(s, node);
  846. /*
  847. * May be called early in order to allocate a slab for the
  848. * kmem_cache_node structure. Solve the chicken-egg
  849. * dilemma by deferring the increment of the count during
  850. * bootstrap (see early_kmem_cache_node_alloc).
  851. */
  852. if (likely(n)) {
  853. atomic_long_inc(&n->nr_slabs);
  854. atomic_long_add(objects, &n->total_objects);
  855. }
  856. }
  857. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  858. {
  859. struct kmem_cache_node *n = get_node(s, node);
  860. atomic_long_dec(&n->nr_slabs);
  861. atomic_long_sub(objects, &n->total_objects);
  862. }
  863. /* Object debug checks for alloc/free paths */
  864. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  865. void *object)
  866. {
  867. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  868. return;
  869. init_object(s, object, SLUB_RED_INACTIVE);
  870. init_tracking(s, object);
  871. }
  872. static noinline int alloc_debug_processing(struct kmem_cache *s,
  873. struct page *page,
  874. void *object, unsigned long addr)
  875. {
  876. if (!check_slab(s, page))
  877. goto bad;
  878. if (!check_valid_pointer(s, page, object)) {
  879. object_err(s, page, object, "Freelist Pointer check fails");
  880. goto bad;
  881. }
  882. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  883. goto bad;
  884. /* Success perform special debug activities for allocs */
  885. if (s->flags & SLAB_STORE_USER)
  886. set_track(s, object, TRACK_ALLOC, addr);
  887. trace(s, page, object, 1);
  888. init_object(s, object, SLUB_RED_ACTIVE);
  889. return 1;
  890. bad:
  891. if (PageSlab(page)) {
  892. /*
  893. * If this is a slab page then lets do the best we can
  894. * to avoid issues in the future. Marking all objects
  895. * as used avoids touching the remaining objects.
  896. */
  897. slab_fix(s, "Marking all objects used");
  898. page->inuse = page->objects;
  899. page->freelist = NULL;
  900. }
  901. return 0;
  902. }
  903. static noinline struct kmem_cache_node *free_debug_processing(
  904. struct kmem_cache *s, struct page *page, void *object,
  905. unsigned long addr, unsigned long *flags)
  906. {
  907. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  908. spin_lock_irqsave(&n->list_lock, *flags);
  909. slab_lock(page);
  910. if (!check_slab(s, page))
  911. goto fail;
  912. if (!check_valid_pointer(s, page, object)) {
  913. slab_err(s, page, "Invalid object pointer 0x%p", object);
  914. goto fail;
  915. }
  916. if (on_freelist(s, page, object)) {
  917. object_err(s, page, object, "Object already free");
  918. goto fail;
  919. }
  920. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  921. goto out;
  922. if (unlikely(s != page->slab_cache)) {
  923. if (!PageSlab(page)) {
  924. slab_err(s, page, "Attempt to free object(0x%p) "
  925. "outside of slab", object);
  926. } else if (!page->slab_cache) {
  927. pr_err("SLUB <none>: no slab for object 0x%p.\n",
  928. object);
  929. dump_stack();
  930. } else
  931. object_err(s, page, object,
  932. "page slab pointer corrupt.");
  933. goto fail;
  934. }
  935. if (s->flags & SLAB_STORE_USER)
  936. set_track(s, object, TRACK_FREE, addr);
  937. trace(s, page, object, 0);
  938. init_object(s, object, SLUB_RED_INACTIVE);
  939. out:
  940. slab_unlock(page);
  941. /*
  942. * Keep node_lock to preserve integrity
  943. * until the object is actually freed
  944. */
  945. return n;
  946. fail:
  947. slab_unlock(page);
  948. spin_unlock_irqrestore(&n->list_lock, *flags);
  949. slab_fix(s, "Object at 0x%p not freed", object);
  950. return NULL;
  951. }
  952. static int __init setup_slub_debug(char *str)
  953. {
  954. slub_debug = DEBUG_DEFAULT_FLAGS;
  955. if (*str++ != '=' || !*str)
  956. /*
  957. * No options specified. Switch on full debugging.
  958. */
  959. goto out;
  960. if (*str == ',')
  961. /*
  962. * No options but restriction on slabs. This means full
  963. * debugging for slabs matching a pattern.
  964. */
  965. goto check_slabs;
  966. if (tolower(*str) == 'o') {
  967. /*
  968. * Avoid enabling debugging on caches if its minimum order
  969. * would increase as a result.
  970. */
  971. disable_higher_order_debug = 1;
  972. goto out;
  973. }
  974. slub_debug = 0;
  975. if (*str == '-')
  976. /*
  977. * Switch off all debugging measures.
  978. */
  979. goto out;
  980. /*
  981. * Determine which debug features should be switched on
  982. */
  983. for (; *str && *str != ','; str++) {
  984. switch (tolower(*str)) {
  985. case 'f':
  986. slub_debug |= SLAB_DEBUG_FREE;
  987. break;
  988. case 'z':
  989. slub_debug |= SLAB_RED_ZONE;
  990. break;
  991. case 'p':
  992. slub_debug |= SLAB_POISON;
  993. break;
  994. case 'u':
  995. slub_debug |= SLAB_STORE_USER;
  996. break;
  997. case 't':
  998. slub_debug |= SLAB_TRACE;
  999. break;
  1000. case 'a':
  1001. slub_debug |= SLAB_FAILSLAB;
  1002. break;
  1003. default:
  1004. pr_err("slub_debug option '%c' unknown. skipped\n",
  1005. *str);
  1006. }
  1007. }
  1008. check_slabs:
  1009. if (*str == ',')
  1010. slub_debug_slabs = str + 1;
  1011. out:
  1012. return 1;
  1013. }
  1014. __setup("slub_debug", setup_slub_debug);
  1015. static unsigned long kmem_cache_flags(unsigned long object_size,
  1016. unsigned long flags, const char *name,
  1017. void (*ctor)(void *))
  1018. {
  1019. /*
  1020. * Enable debugging if selected on the kernel commandline.
  1021. */
  1022. if (slub_debug && (!slub_debug_slabs || (name &&
  1023. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
  1024. flags |= slub_debug;
  1025. return flags;
  1026. }
  1027. #else
  1028. static inline void setup_object_debug(struct kmem_cache *s,
  1029. struct page *page, void *object) {}
  1030. static inline int alloc_debug_processing(struct kmem_cache *s,
  1031. struct page *page, void *object, unsigned long addr) { return 0; }
  1032. static inline struct kmem_cache_node *free_debug_processing(
  1033. struct kmem_cache *s, struct page *page, void *object,
  1034. unsigned long addr, unsigned long *flags) { return NULL; }
  1035. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1036. { return 1; }
  1037. static inline int check_object(struct kmem_cache *s, struct page *page,
  1038. void *object, u8 val) { return 1; }
  1039. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1040. struct page *page) {}
  1041. static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1042. struct page *page) {}
  1043. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1044. unsigned long flags, const char *name,
  1045. void (*ctor)(void *))
  1046. {
  1047. return flags;
  1048. }
  1049. #define slub_debug 0
  1050. #define disable_higher_order_debug 0
  1051. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1052. { return 0; }
  1053. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1054. { return 0; }
  1055. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1056. int objects) {}
  1057. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1058. int objects) {}
  1059. #endif /* CONFIG_SLUB_DEBUG */
  1060. /*
  1061. * Hooks for other subsystems that check memory allocations. In a typical
  1062. * production configuration these hooks all should produce no code at all.
  1063. */
  1064. static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
  1065. {
  1066. kmemleak_alloc(ptr, size, 1, flags);
  1067. }
  1068. static inline void kfree_hook(const void *x)
  1069. {
  1070. kmemleak_free(x);
  1071. }
  1072. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1073. {
  1074. flags &= gfp_allowed_mask;
  1075. lockdep_trace_alloc(flags);
  1076. might_sleep_if(flags & __GFP_WAIT);
  1077. return should_failslab(s->object_size, flags, s->flags);
  1078. }
  1079. static inline void slab_post_alloc_hook(struct kmem_cache *s,
  1080. gfp_t flags, void *object)
  1081. {
  1082. flags &= gfp_allowed_mask;
  1083. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  1084. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  1085. }
  1086. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  1087. {
  1088. kmemleak_free_recursive(x, s->flags);
  1089. /*
  1090. * Trouble is that we may no longer disable interrupts in the fast path
  1091. * So in order to make the debug calls that expect irqs to be
  1092. * disabled we need to disable interrupts temporarily.
  1093. */
  1094. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  1095. {
  1096. unsigned long flags;
  1097. local_irq_save(flags);
  1098. kmemcheck_slab_free(s, x, s->object_size);
  1099. debug_check_no_locks_freed(x, s->object_size);
  1100. local_irq_restore(flags);
  1101. }
  1102. #endif
  1103. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1104. debug_check_no_obj_freed(x, s->object_size);
  1105. }
  1106. /*
  1107. * Slab allocation and freeing
  1108. */
  1109. static inline struct page *alloc_slab_page(struct kmem_cache *s,
  1110. gfp_t flags, int node, struct kmem_cache_order_objects oo)
  1111. {
  1112. struct page *page;
  1113. int order = oo_order(oo);
  1114. flags |= __GFP_NOTRACK;
  1115. if (memcg_charge_slab(s, flags, order))
  1116. return NULL;
  1117. if (node == NUMA_NO_NODE)
  1118. page = alloc_pages(flags, order);
  1119. else
  1120. page = alloc_pages_exact_node(node, flags, order);
  1121. if (!page)
  1122. memcg_uncharge_slab(s, order);
  1123. return page;
  1124. }
  1125. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1126. {
  1127. struct page *page;
  1128. struct kmem_cache_order_objects oo = s->oo;
  1129. gfp_t alloc_gfp;
  1130. flags &= gfp_allowed_mask;
  1131. if (flags & __GFP_WAIT)
  1132. local_irq_enable();
  1133. flags |= s->allocflags;
  1134. /*
  1135. * Let the initial higher-order allocation fail under memory pressure
  1136. * so we fall-back to the minimum order allocation.
  1137. */
  1138. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1139. page = alloc_slab_page(s, alloc_gfp, node, oo);
  1140. if (unlikely(!page)) {
  1141. oo = s->min;
  1142. alloc_gfp = flags;
  1143. /*
  1144. * Allocation may have failed due to fragmentation.
  1145. * Try a lower order alloc if possible
  1146. */
  1147. page = alloc_slab_page(s, alloc_gfp, node, oo);
  1148. if (page)
  1149. stat(s, ORDER_FALLBACK);
  1150. }
  1151. if (kmemcheck_enabled && page
  1152. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1153. int pages = 1 << oo_order(oo);
  1154. kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
  1155. /*
  1156. * Objects from caches that have a constructor don't get
  1157. * cleared when they're allocated, so we need to do it here.
  1158. */
  1159. if (s->ctor)
  1160. kmemcheck_mark_uninitialized_pages(page, pages);
  1161. else
  1162. kmemcheck_mark_unallocated_pages(page, pages);
  1163. }
  1164. if (flags & __GFP_WAIT)
  1165. local_irq_disable();
  1166. if (!page)
  1167. return NULL;
  1168. page->objects = oo_objects(oo);
  1169. mod_zone_page_state(page_zone(page),
  1170. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1171. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1172. 1 << oo_order(oo));
  1173. return page;
  1174. }
  1175. static void setup_object(struct kmem_cache *s, struct page *page,
  1176. void *object)
  1177. {
  1178. setup_object_debug(s, page, object);
  1179. if (unlikely(s->ctor))
  1180. s->ctor(object);
  1181. }
  1182. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1183. {
  1184. struct page *page;
  1185. void *start;
  1186. void *p;
  1187. int order;
  1188. int idx;
  1189. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1190. page = allocate_slab(s,
  1191. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1192. if (!page)
  1193. goto out;
  1194. order = compound_order(page);
  1195. inc_slabs_node(s, page_to_nid(page), page->objects);
  1196. page->slab_cache = s;
  1197. __SetPageSlab(page);
  1198. if (page->pfmemalloc)
  1199. SetPageSlabPfmemalloc(page);
  1200. start = page_address(page);
  1201. if (unlikely(s->flags & SLAB_POISON))
  1202. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1203. for_each_object_idx(p, idx, s, start, page->objects) {
  1204. setup_object(s, page, p);
  1205. if (likely(idx < page->objects))
  1206. set_freepointer(s, p, p + s->size);
  1207. else
  1208. set_freepointer(s, p, NULL);
  1209. }
  1210. page->freelist = start;
  1211. page->inuse = page->objects;
  1212. page->frozen = 1;
  1213. out:
  1214. return page;
  1215. }
  1216. static void __free_slab(struct kmem_cache *s, struct page *page)
  1217. {
  1218. int order = compound_order(page);
  1219. int pages = 1 << order;
  1220. if (kmem_cache_debug(s)) {
  1221. void *p;
  1222. slab_pad_check(s, page);
  1223. for_each_object(p, s, page_address(page),
  1224. page->objects)
  1225. check_object(s, page, p, SLUB_RED_INACTIVE);
  1226. }
  1227. kmemcheck_free_shadow(page, compound_order(page));
  1228. mod_zone_page_state(page_zone(page),
  1229. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1230. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1231. -pages);
  1232. __ClearPageSlabPfmemalloc(page);
  1233. __ClearPageSlab(page);
  1234. page_mapcount_reset(page);
  1235. if (current->reclaim_state)
  1236. current->reclaim_state->reclaimed_slab += pages;
  1237. __free_pages(page, order);
  1238. memcg_uncharge_slab(s, order);
  1239. }
  1240. #define need_reserve_slab_rcu \
  1241. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1242. static void rcu_free_slab(struct rcu_head *h)
  1243. {
  1244. struct page *page;
  1245. if (need_reserve_slab_rcu)
  1246. page = virt_to_head_page(h);
  1247. else
  1248. page = container_of((struct list_head *)h, struct page, lru);
  1249. __free_slab(page->slab_cache, page);
  1250. }
  1251. static void free_slab(struct kmem_cache *s, struct page *page)
  1252. {
  1253. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1254. struct rcu_head *head;
  1255. if (need_reserve_slab_rcu) {
  1256. int order = compound_order(page);
  1257. int offset = (PAGE_SIZE << order) - s->reserved;
  1258. VM_BUG_ON(s->reserved != sizeof(*head));
  1259. head = page_address(page) + offset;
  1260. } else {
  1261. /*
  1262. * RCU free overloads the RCU head over the LRU
  1263. */
  1264. head = (void *)&page->lru;
  1265. }
  1266. call_rcu(head, rcu_free_slab);
  1267. } else
  1268. __free_slab(s, page);
  1269. }
  1270. static void discard_slab(struct kmem_cache *s, struct page *page)
  1271. {
  1272. dec_slabs_node(s, page_to_nid(page), page->objects);
  1273. free_slab(s, page);
  1274. }
  1275. /*
  1276. * Management of partially allocated slabs.
  1277. */
  1278. static inline void
  1279. __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
  1280. {
  1281. n->nr_partial++;
  1282. if (tail == DEACTIVATE_TO_TAIL)
  1283. list_add_tail(&page->lru, &n->partial);
  1284. else
  1285. list_add(&page->lru, &n->partial);
  1286. }
  1287. static inline void add_partial(struct kmem_cache_node *n,
  1288. struct page *page, int tail)
  1289. {
  1290. lockdep_assert_held(&n->list_lock);
  1291. __add_partial(n, page, tail);
  1292. }
  1293. static inline void
  1294. __remove_partial(struct kmem_cache_node *n, struct page *page)
  1295. {
  1296. list_del(&page->lru);
  1297. n->nr_partial--;
  1298. }
  1299. static inline void remove_partial(struct kmem_cache_node *n,
  1300. struct page *page)
  1301. {
  1302. lockdep_assert_held(&n->list_lock);
  1303. __remove_partial(n, page);
  1304. }
  1305. /*
  1306. * Remove slab from the partial list, freeze it and
  1307. * return the pointer to the freelist.
  1308. *
  1309. * Returns a list of objects or NULL if it fails.
  1310. */
  1311. static inline void *acquire_slab(struct kmem_cache *s,
  1312. struct kmem_cache_node *n, struct page *page,
  1313. int mode, int *objects)
  1314. {
  1315. void *freelist;
  1316. unsigned long counters;
  1317. struct page new;
  1318. lockdep_assert_held(&n->list_lock);
  1319. /*
  1320. * Zap the freelist and set the frozen bit.
  1321. * The old freelist is the list of objects for the
  1322. * per cpu allocation list.
  1323. */
  1324. freelist = page->freelist;
  1325. counters = page->counters;
  1326. new.counters = counters;
  1327. *objects = new.objects - new.inuse;
  1328. if (mode) {
  1329. new.inuse = page->objects;
  1330. new.freelist = NULL;
  1331. } else {
  1332. new.freelist = freelist;
  1333. }
  1334. VM_BUG_ON(new.frozen);
  1335. new.frozen = 1;
  1336. if (!__cmpxchg_double_slab(s, page,
  1337. freelist, counters,
  1338. new.freelist, new.counters,
  1339. "acquire_slab"))
  1340. return NULL;
  1341. remove_partial(n, page);
  1342. WARN_ON(!freelist);
  1343. return freelist;
  1344. }
  1345. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1346. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1347. /*
  1348. * Try to allocate a partial slab from a specific node.
  1349. */
  1350. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1351. struct kmem_cache_cpu *c, gfp_t flags)
  1352. {
  1353. struct page *page, *page2;
  1354. void *object = NULL;
  1355. int available = 0;
  1356. int objects;
  1357. /*
  1358. * Racy check. If we mistakenly see no partial slabs then we
  1359. * just allocate an empty slab. If we mistakenly try to get a
  1360. * partial slab and there is none available then get_partials()
  1361. * will return NULL.
  1362. */
  1363. if (!n || !n->nr_partial)
  1364. return NULL;
  1365. spin_lock(&n->list_lock);
  1366. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1367. void *t;
  1368. if (!pfmemalloc_match(page, flags))
  1369. continue;
  1370. t = acquire_slab(s, n, page, object == NULL, &objects);
  1371. if (!t)
  1372. break;
  1373. available += objects;
  1374. if (!object) {
  1375. c->page = page;
  1376. stat(s, ALLOC_FROM_PARTIAL);
  1377. object = t;
  1378. } else {
  1379. put_cpu_partial(s, page, 0);
  1380. stat(s, CPU_PARTIAL_NODE);
  1381. }
  1382. if (!kmem_cache_has_cpu_partial(s)
  1383. || available > s->cpu_partial / 2)
  1384. break;
  1385. }
  1386. spin_unlock(&n->list_lock);
  1387. return object;
  1388. }
  1389. /*
  1390. * Get a page from somewhere. Search in increasing NUMA distances.
  1391. */
  1392. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1393. struct kmem_cache_cpu *c)
  1394. {
  1395. #ifdef CONFIG_NUMA
  1396. struct zonelist *zonelist;
  1397. struct zoneref *z;
  1398. struct zone *zone;
  1399. enum zone_type high_zoneidx = gfp_zone(flags);
  1400. void *object;
  1401. unsigned int cpuset_mems_cookie;
  1402. /*
  1403. * The defrag ratio allows a configuration of the tradeoffs between
  1404. * inter node defragmentation and node local allocations. A lower
  1405. * defrag_ratio increases the tendency to do local allocations
  1406. * instead of attempting to obtain partial slabs from other nodes.
  1407. *
  1408. * If the defrag_ratio is set to 0 then kmalloc() always
  1409. * returns node local objects. If the ratio is higher then kmalloc()
  1410. * may return off node objects because partial slabs are obtained
  1411. * from other nodes and filled up.
  1412. *
  1413. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1414. * defrag_ratio = 1000) then every (well almost) allocation will
  1415. * first attempt to defrag slab caches on other nodes. This means
  1416. * scanning over all nodes to look for partial slabs which may be
  1417. * expensive if we do it every time we are trying to find a slab
  1418. * with available objects.
  1419. */
  1420. if (!s->remote_node_defrag_ratio ||
  1421. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1422. return NULL;
  1423. do {
  1424. cpuset_mems_cookie = read_mems_allowed_begin();
  1425. zonelist = node_zonelist(mempolicy_slab_node(), flags);
  1426. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1427. struct kmem_cache_node *n;
  1428. n = get_node(s, zone_to_nid(zone));
  1429. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1430. n->nr_partial > s->min_partial) {
  1431. object = get_partial_node(s, n, c, flags);
  1432. if (object) {
  1433. /*
  1434. * Don't check read_mems_allowed_retry()
  1435. * here - if mems_allowed was updated in
  1436. * parallel, that was a harmless race
  1437. * between allocation and the cpuset
  1438. * update
  1439. */
  1440. return object;
  1441. }
  1442. }
  1443. }
  1444. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  1445. #endif
  1446. return NULL;
  1447. }
  1448. /*
  1449. * Get a partial page, lock it and return it.
  1450. */
  1451. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1452. struct kmem_cache_cpu *c)
  1453. {
  1454. void *object;
  1455. int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node;
  1456. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1457. if (object || node != NUMA_NO_NODE)
  1458. return object;
  1459. return get_any_partial(s, flags, c);
  1460. }
  1461. #ifdef CONFIG_PREEMPT
  1462. /*
  1463. * Calculate the next globally unique transaction for disambiguiation
  1464. * during cmpxchg. The transactions start with the cpu number and are then
  1465. * incremented by CONFIG_NR_CPUS.
  1466. */
  1467. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1468. #else
  1469. /*
  1470. * No preemption supported therefore also no need to check for
  1471. * different cpus.
  1472. */
  1473. #define TID_STEP 1
  1474. #endif
  1475. static inline unsigned long next_tid(unsigned long tid)
  1476. {
  1477. return tid + TID_STEP;
  1478. }
  1479. static inline unsigned int tid_to_cpu(unsigned long tid)
  1480. {
  1481. return tid % TID_STEP;
  1482. }
  1483. static inline unsigned long tid_to_event(unsigned long tid)
  1484. {
  1485. return tid / TID_STEP;
  1486. }
  1487. static inline unsigned int init_tid(int cpu)
  1488. {
  1489. return cpu;
  1490. }
  1491. static inline void note_cmpxchg_failure(const char *n,
  1492. const struct kmem_cache *s, unsigned long tid)
  1493. {
  1494. #ifdef SLUB_DEBUG_CMPXCHG
  1495. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1496. pr_info("%s %s: cmpxchg redo ", n, s->name);
  1497. #ifdef CONFIG_PREEMPT
  1498. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1499. pr_warn("due to cpu change %d -> %d\n",
  1500. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1501. else
  1502. #endif
  1503. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1504. pr_warn("due to cpu running other code. Event %ld->%ld\n",
  1505. tid_to_event(tid), tid_to_event(actual_tid));
  1506. else
  1507. pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1508. actual_tid, tid, next_tid(tid));
  1509. #endif
  1510. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1511. }
  1512. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1513. {
  1514. int cpu;
  1515. for_each_possible_cpu(cpu)
  1516. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1517. }
  1518. /*
  1519. * Remove the cpu slab
  1520. */
  1521. static void deactivate_slab(struct kmem_cache *s, struct page *page,
  1522. void *freelist)
  1523. {
  1524. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1525. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1526. int lock = 0;
  1527. enum slab_modes l = M_NONE, m = M_NONE;
  1528. void *nextfree;
  1529. int tail = DEACTIVATE_TO_HEAD;
  1530. struct page new;
  1531. struct page old;
  1532. if (page->freelist) {
  1533. stat(s, DEACTIVATE_REMOTE_FREES);
  1534. tail = DEACTIVATE_TO_TAIL;
  1535. }
  1536. /*
  1537. * Stage one: Free all available per cpu objects back
  1538. * to the page freelist while it is still frozen. Leave the
  1539. * last one.
  1540. *
  1541. * There is no need to take the list->lock because the page
  1542. * is still frozen.
  1543. */
  1544. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1545. void *prior;
  1546. unsigned long counters;
  1547. do {
  1548. prior = page->freelist;
  1549. counters = page->counters;
  1550. set_freepointer(s, freelist, prior);
  1551. new.counters = counters;
  1552. new.inuse--;
  1553. VM_BUG_ON(!new.frozen);
  1554. } while (!__cmpxchg_double_slab(s, page,
  1555. prior, counters,
  1556. freelist, new.counters,
  1557. "drain percpu freelist"));
  1558. freelist = nextfree;
  1559. }
  1560. /*
  1561. * Stage two: Ensure that the page is unfrozen while the
  1562. * list presence reflects the actual number of objects
  1563. * during unfreeze.
  1564. *
  1565. * We setup the list membership and then perform a cmpxchg
  1566. * with the count. If there is a mismatch then the page
  1567. * is not unfrozen but the page is on the wrong list.
  1568. *
  1569. * Then we restart the process which may have to remove
  1570. * the page from the list that we just put it on again
  1571. * because the number of objects in the slab may have
  1572. * changed.
  1573. */
  1574. redo:
  1575. old.freelist = page->freelist;
  1576. old.counters = page->counters;
  1577. VM_BUG_ON(!old.frozen);
  1578. /* Determine target state of the slab */
  1579. new.counters = old.counters;
  1580. if (freelist) {
  1581. new.inuse--;
  1582. set_freepointer(s, freelist, old.freelist);
  1583. new.freelist = freelist;
  1584. } else
  1585. new.freelist = old.freelist;
  1586. new.frozen = 0;
  1587. if (!new.inuse && n->nr_partial >= s->min_partial)
  1588. m = M_FREE;
  1589. else if (new.freelist) {
  1590. m = M_PARTIAL;
  1591. if (!lock) {
  1592. lock = 1;
  1593. /*
  1594. * Taking the spinlock removes the possiblity
  1595. * that acquire_slab() will see a slab page that
  1596. * is frozen
  1597. */
  1598. spin_lock(&n->list_lock);
  1599. }
  1600. } else {
  1601. m = M_FULL;
  1602. if (kmem_cache_debug(s) && !lock) {
  1603. lock = 1;
  1604. /*
  1605. * This also ensures that the scanning of full
  1606. * slabs from diagnostic functions will not see
  1607. * any frozen slabs.
  1608. */
  1609. spin_lock(&n->list_lock);
  1610. }
  1611. }
  1612. if (l != m) {
  1613. if (l == M_PARTIAL)
  1614. remove_partial(n, page);
  1615. else if (l == M_FULL)
  1616. remove_full(s, n, page);
  1617. if (m == M_PARTIAL) {
  1618. add_partial(n, page, tail);
  1619. stat(s, tail);
  1620. } else if (m == M_FULL) {
  1621. stat(s, DEACTIVATE_FULL);
  1622. add_full(s, n, page);
  1623. }
  1624. }
  1625. l = m;
  1626. if (!__cmpxchg_double_slab(s, page,
  1627. old.freelist, old.counters,
  1628. new.freelist, new.counters,
  1629. "unfreezing slab"))
  1630. goto redo;
  1631. if (lock)
  1632. spin_unlock(&n->list_lock);
  1633. if (m == M_FREE) {
  1634. stat(s, DEACTIVATE_EMPTY);
  1635. discard_slab(s, page);
  1636. stat(s, FREE_SLAB);
  1637. }
  1638. }
  1639. /*
  1640. * Unfreeze all the cpu partial slabs.
  1641. *
  1642. * This function must be called with interrupts disabled
  1643. * for the cpu using c (or some other guarantee must be there
  1644. * to guarantee no concurrent accesses).
  1645. */
  1646. static void unfreeze_partials(struct kmem_cache *s,
  1647. struct kmem_cache_cpu *c)
  1648. {
  1649. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1650. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1651. struct page *page, *discard_page = NULL;
  1652. while ((page = c->partial)) {
  1653. struct page new;
  1654. struct page old;
  1655. c->partial = page->next;
  1656. n2 = get_node(s, page_to_nid(page));
  1657. if (n != n2) {
  1658. if (n)
  1659. spin_unlock(&n->list_lock);
  1660. n = n2;
  1661. spin_lock(&n->list_lock);
  1662. }
  1663. do {
  1664. old.freelist = page->freelist;
  1665. old.counters = page->counters;
  1666. VM_BUG_ON(!old.frozen);
  1667. new.counters = old.counters;
  1668. new.freelist = old.freelist;
  1669. new.frozen = 0;
  1670. } while (!__cmpxchg_double_slab(s, page,
  1671. old.freelist, old.counters,
  1672. new.freelist, new.counters,
  1673. "unfreezing slab"));
  1674. if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
  1675. page->next = discard_page;
  1676. discard_page = page;
  1677. } else {
  1678. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1679. stat(s, FREE_ADD_PARTIAL);
  1680. }
  1681. }
  1682. if (n)
  1683. spin_unlock(&n->list_lock);
  1684. while (discard_page) {
  1685. page = discard_page;
  1686. discard_page = discard_page->next;
  1687. stat(s, DEACTIVATE_EMPTY);
  1688. discard_slab(s, page);
  1689. stat(s, FREE_SLAB);
  1690. }
  1691. #endif
  1692. }
  1693. /*
  1694. * Put a page that was just frozen (in __slab_free) into a partial page
  1695. * slot if available. This is done without interrupts disabled and without
  1696. * preemption disabled. The cmpxchg is racy and may put the partial page
  1697. * onto a random cpus partial slot.
  1698. *
  1699. * If we did not find a slot then simply move all the partials to the
  1700. * per node partial list.
  1701. */
  1702. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1703. {
  1704. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1705. struct page *oldpage;
  1706. int pages;
  1707. int pobjects;
  1708. do {
  1709. pages = 0;
  1710. pobjects = 0;
  1711. oldpage = this_cpu_read(s->cpu_slab->partial);
  1712. if (oldpage) {
  1713. pobjects = oldpage->pobjects;
  1714. pages = oldpage->pages;
  1715. if (drain && pobjects > s->cpu_partial) {
  1716. unsigned long flags;
  1717. /*
  1718. * partial array is full. Move the existing
  1719. * set to the per node partial list.
  1720. */
  1721. local_irq_save(flags);
  1722. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1723. local_irq_restore(flags);
  1724. oldpage = NULL;
  1725. pobjects = 0;
  1726. pages = 0;
  1727. stat(s, CPU_PARTIAL_DRAIN);
  1728. }
  1729. }
  1730. pages++;
  1731. pobjects += page->objects - page->inuse;
  1732. page->pages = pages;
  1733. page->pobjects = pobjects;
  1734. page->next = oldpage;
  1735. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
  1736. != oldpage);
  1737. #endif
  1738. }
  1739. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1740. {
  1741. stat(s, CPUSLAB_FLUSH);
  1742. deactivate_slab(s, c->page, c->freelist);
  1743. c->tid = next_tid(c->tid);
  1744. c->page = NULL;
  1745. c->freelist = NULL;
  1746. }
  1747. /*
  1748. * Flush cpu slab.
  1749. *
  1750. * Called from IPI handler with interrupts disabled.
  1751. */
  1752. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1753. {
  1754. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1755. if (likely(c)) {
  1756. if (c->page)
  1757. flush_slab(s, c);
  1758. unfreeze_partials(s, c);
  1759. }
  1760. }
  1761. static void flush_cpu_slab(void *d)
  1762. {
  1763. struct kmem_cache *s = d;
  1764. __flush_cpu_slab(s, smp_processor_id());
  1765. }
  1766. static bool has_cpu_slab(int cpu, void *info)
  1767. {
  1768. struct kmem_cache *s = info;
  1769. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1770. return c->page || c->partial;
  1771. }
  1772. static void flush_all(struct kmem_cache *s)
  1773. {
  1774. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1775. }
  1776. /*
  1777. * Check if the objects in a per cpu structure fit numa
  1778. * locality expectations.
  1779. */
  1780. static inline int node_match(struct page *page, int node)
  1781. {
  1782. #ifdef CONFIG_NUMA
  1783. if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
  1784. return 0;
  1785. #endif
  1786. return 1;
  1787. }
  1788. #ifdef CONFIG_SLUB_DEBUG
  1789. static int count_free(struct page *page)
  1790. {
  1791. return page->objects - page->inuse;
  1792. }
  1793. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1794. {
  1795. return atomic_long_read(&n->total_objects);
  1796. }
  1797. #endif /* CONFIG_SLUB_DEBUG */
  1798. #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
  1799. static unsigned long count_partial(struct kmem_cache_node *n,
  1800. int (*get_count)(struct page *))
  1801. {
  1802. unsigned long flags;
  1803. unsigned long x = 0;
  1804. struct page *page;
  1805. spin_lock_irqsave(&n->list_lock, flags);
  1806. list_for_each_entry(page, &n->partial, lru)
  1807. x += get_count(page);
  1808. spin_unlock_irqrestore(&n->list_lock, flags);
  1809. return x;
  1810. }
  1811. #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
  1812. static noinline void
  1813. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1814. {
  1815. #ifdef CONFIG_SLUB_DEBUG
  1816. static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  1817. DEFAULT_RATELIMIT_BURST);
  1818. int node;
  1819. struct kmem_cache_node *n;
  1820. if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
  1821. return;
  1822. pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1823. nid, gfpflags);
  1824. pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
  1825. s->name, s->object_size, s->size, oo_order(s->oo),
  1826. oo_order(s->min));
  1827. if (oo_order(s->min) > get_order(s->object_size))
  1828. pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
  1829. s->name);
  1830. for_each_kmem_cache_node(s, node, n) {
  1831. unsigned long nr_slabs;
  1832. unsigned long nr_objs;
  1833. unsigned long nr_free;
  1834. nr_free = count_partial(n, count_free);
  1835. nr_slabs = node_nr_slabs(n);
  1836. nr_objs = node_nr_objs(n);
  1837. pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1838. node, nr_slabs, nr_objs, nr_free);
  1839. }
  1840. #endif
  1841. }
  1842. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1843. int node, struct kmem_cache_cpu **pc)
  1844. {
  1845. void *freelist;
  1846. struct kmem_cache_cpu *c = *pc;
  1847. struct page *page;
  1848. freelist = get_partial(s, flags, node, c);
  1849. if (freelist)
  1850. return freelist;
  1851. page = new_slab(s, flags, node);
  1852. if (page) {
  1853. c = raw_cpu_ptr(s->cpu_slab);
  1854. if (c->page)
  1855. flush_slab(s, c);
  1856. /*
  1857. * No other reference to the page yet so we can
  1858. * muck around with it freely without cmpxchg
  1859. */
  1860. freelist = page->freelist;
  1861. page->freelist = NULL;
  1862. stat(s, ALLOC_SLAB);
  1863. c->page = page;
  1864. *pc = c;
  1865. } else
  1866. freelist = NULL;
  1867. return freelist;
  1868. }
  1869. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1870. {
  1871. if (unlikely(PageSlabPfmemalloc(page)))
  1872. return gfp_pfmemalloc_allowed(gfpflags);
  1873. return true;
  1874. }
  1875. /*
  1876. * Check the page->freelist of a page and either transfer the freelist to the
  1877. * per cpu freelist or deactivate the page.
  1878. *
  1879. * The page is still frozen if the return value is not NULL.
  1880. *
  1881. * If this function returns NULL then the page has been unfrozen.
  1882. *
  1883. * This function must be called with interrupt disabled.
  1884. */
  1885. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1886. {
  1887. struct page new;
  1888. unsigned long counters;
  1889. void *freelist;
  1890. do {
  1891. freelist = page->freelist;
  1892. counters = page->counters;
  1893. new.counters = counters;
  1894. VM_BUG_ON(!new.frozen);
  1895. new.inuse = page->objects;
  1896. new.frozen = freelist != NULL;
  1897. } while (!__cmpxchg_double_slab(s, page,
  1898. freelist, counters,
  1899. NULL, new.counters,
  1900. "get_freelist"));
  1901. return freelist;
  1902. }
  1903. /*
  1904. * Slow path. The lockless freelist is empty or we need to perform
  1905. * debugging duties.
  1906. *
  1907. * Processing is still very fast if new objects have been freed to the
  1908. * regular freelist. In that case we simply take over the regular freelist
  1909. * as the lockless freelist and zap the regular freelist.
  1910. *
  1911. * If that is not working then we fall back to the partial lists. We take the
  1912. * first element of the freelist as the object to allocate now and move the
  1913. * rest of the freelist to the lockless freelist.
  1914. *
  1915. * And if we were unable to get a new slab from the partial slab lists then
  1916. * we need to allocate a new slab. This is the slowest path since it involves
  1917. * a call to the page allocator and the setup of a new slab.
  1918. */
  1919. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1920. unsigned long addr, struct kmem_cache_cpu *c)
  1921. {
  1922. void *freelist;
  1923. struct page *page;
  1924. unsigned long flags;
  1925. local_irq_save(flags);
  1926. #ifdef CONFIG_PREEMPT
  1927. /*
  1928. * We may have been preempted and rescheduled on a different
  1929. * cpu before disabling interrupts. Need to reload cpu area
  1930. * pointer.
  1931. */
  1932. c = this_cpu_ptr(s->cpu_slab);
  1933. #endif
  1934. page = c->page;
  1935. if (!page)
  1936. goto new_slab;
  1937. redo:
  1938. if (unlikely(!node_match(page, node))) {
  1939. stat(s, ALLOC_NODE_MISMATCH);
  1940. deactivate_slab(s, page, c->freelist);
  1941. c->page = NULL;
  1942. c->freelist = NULL;
  1943. goto new_slab;
  1944. }
  1945. /*
  1946. * By rights, we should be searching for a slab page that was
  1947. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1948. * information when the page leaves the per-cpu allocator
  1949. */
  1950. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1951. deactivate_slab(s, page, c->freelist);
  1952. c->page = NULL;
  1953. c->freelist = NULL;
  1954. goto new_slab;
  1955. }
  1956. /* must check again c->freelist in case of cpu migration or IRQ */
  1957. freelist = c->freelist;
  1958. if (freelist)
  1959. goto load_freelist;
  1960. freelist = get_freelist(s, page);
  1961. if (!freelist) {
  1962. c->page = NULL;
  1963. stat(s, DEACTIVATE_BYPASS);
  1964. goto new_slab;
  1965. }
  1966. stat(s, ALLOC_REFILL);
  1967. load_freelist:
  1968. /*
  1969. * freelist is pointing to the list of objects to be used.
  1970. * page is pointing to the page from which the objects are obtained.
  1971. * That page must be frozen for per cpu allocations to work.
  1972. */
  1973. VM_BUG_ON(!c->page->frozen);
  1974. c->freelist = get_freepointer(s, freelist);
  1975. c->tid = next_tid(c->tid);
  1976. local_irq_restore(flags);
  1977. return freelist;
  1978. new_slab:
  1979. if (c->partial) {
  1980. page = c->page = c->partial;
  1981. c->partial = page->next;
  1982. stat(s, CPU_PARTIAL_ALLOC);
  1983. c->freelist = NULL;
  1984. goto redo;
  1985. }
  1986. freelist = new_slab_objects(s, gfpflags, node, &c);
  1987. if (unlikely(!freelist)) {
  1988. slab_out_of_memory(s, gfpflags, node);
  1989. local_irq_restore(flags);
  1990. return NULL;
  1991. }
  1992. page = c->page;
  1993. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1994. goto load_freelist;
  1995. /* Only entered in the debug case */
  1996. if (kmem_cache_debug(s) &&
  1997. !alloc_debug_processing(s, page, freelist, addr))
  1998. goto new_slab; /* Slab failed checks. Next slab needed */
  1999. deactivate_slab(s, page, get_freepointer(s, freelist));
  2000. c->page = NULL;
  2001. c->freelist = NULL;
  2002. local_irq_restore(flags);
  2003. return freelist;
  2004. }
  2005. /*
  2006. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  2007. * have the fastpath folded into their functions. So no function call
  2008. * overhead for requests that can be satisfied on the fastpath.
  2009. *
  2010. * The fastpath works by first checking if the lockless freelist can be used.
  2011. * If not then __slab_alloc is called for slow processing.
  2012. *
  2013. * Otherwise we can simply pick the next object from the lockless free list.
  2014. */
  2015. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  2016. gfp_t gfpflags, int node, unsigned long addr)
  2017. {
  2018. void **object;
  2019. struct kmem_cache_cpu *c;
  2020. struct page *page;
  2021. unsigned long tid;
  2022. if (slab_pre_alloc_hook(s, gfpflags))
  2023. return NULL;
  2024. s = memcg_kmem_get_cache(s, gfpflags);
  2025. redo:
  2026. /*
  2027. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  2028. * enabled. We may switch back and forth between cpus while
  2029. * reading from one cpu area. That does not matter as long
  2030. * as we end up on the original cpu again when doing the cmpxchg.
  2031. *
  2032. * Preemption is disabled for the retrieval of the tid because that
  2033. * must occur from the current processor. We cannot allow rescheduling
  2034. * on a different processor between the determination of the pointer
  2035. * and the retrieval of the tid.
  2036. */
  2037. preempt_disable();
  2038. c = this_cpu_ptr(s->cpu_slab);
  2039. /*
  2040. * The transaction ids are globally unique per cpu and per operation on
  2041. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  2042. * occurs on the right processor and that there was no operation on the
  2043. * linked list in between.
  2044. */
  2045. tid = c->tid;
  2046. preempt_enable();
  2047. object = c->freelist;
  2048. page = c->page;
  2049. if (unlikely(!object || !node_match(page, node))) {
  2050. object = __slab_alloc(s, gfpflags, node, addr, c);
  2051. stat(s, ALLOC_SLOWPATH);
  2052. } else {
  2053. void *next_object = get_freepointer_safe(s, object);
  2054. /*
  2055. * The cmpxchg will only match if there was no additional
  2056. * operation and if we are on the right processor.
  2057. *
  2058. * The cmpxchg does the following atomically (without lock
  2059. * semantics!)
  2060. * 1. Relocate first pointer to the current per cpu area.
  2061. * 2. Verify that tid and freelist have not been changed
  2062. * 3. If they were not changed replace tid and freelist
  2063. *
  2064. * Since this is without lock semantics the protection is only
  2065. * against code executing on this cpu *not* from access by
  2066. * other cpus.
  2067. */
  2068. if (unlikely(!this_cpu_cmpxchg_double(
  2069. s->cpu_slab->freelist, s->cpu_slab->tid,
  2070. object, tid,
  2071. next_object, next_tid(tid)))) {
  2072. note_cmpxchg_failure("slab_alloc", s, tid);
  2073. goto redo;
  2074. }
  2075. prefetch_freepointer(s, next_object);
  2076. stat(s, ALLOC_FASTPATH);
  2077. }
  2078. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2079. memset(object, 0, s->object_size);
  2080. slab_post_alloc_hook(s, gfpflags, object);
  2081. return object;
  2082. }
  2083. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2084. gfp_t gfpflags, unsigned long addr)
  2085. {
  2086. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2087. }
  2088. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2089. {
  2090. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2091. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
  2092. s->size, gfpflags);
  2093. return ret;
  2094. }
  2095. EXPORT_SYMBOL(kmem_cache_alloc);
  2096. #ifdef CONFIG_TRACING
  2097. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2098. {
  2099. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2100. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2101. return ret;
  2102. }
  2103. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2104. #endif
  2105. #ifdef CONFIG_NUMA
  2106. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2107. {
  2108. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2109. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2110. s->object_size, s->size, gfpflags, node);
  2111. return ret;
  2112. }
  2113. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2114. #ifdef CONFIG_TRACING
  2115. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2116. gfp_t gfpflags,
  2117. int node, size_t size)
  2118. {
  2119. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2120. trace_kmalloc_node(_RET_IP_, ret,
  2121. size, s->size, gfpflags, node);
  2122. return ret;
  2123. }
  2124. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2125. #endif
  2126. #endif
  2127. /*
  2128. * Slow patch handling. This may still be called frequently since objects
  2129. * have a longer lifetime than the cpu slabs in most processing loads.
  2130. *
  2131. * So we still attempt to reduce cache line usage. Just take the slab
  2132. * lock and free the item. If there is no additional partial page
  2133. * handling required then we can return immediately.
  2134. */
  2135. static void __slab_free(struct kmem_cache *s, struct page *page,
  2136. void *x, unsigned long addr)
  2137. {
  2138. void *prior;
  2139. void **object = (void *)x;
  2140. int was_frozen;
  2141. struct page new;
  2142. unsigned long counters;
  2143. struct kmem_cache_node *n = NULL;
  2144. unsigned long uninitialized_var(flags);
  2145. stat(s, FREE_SLOWPATH);
  2146. if (kmem_cache_debug(s) &&
  2147. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2148. return;
  2149. do {
  2150. if (unlikely(n)) {
  2151. spin_unlock_irqrestore(&n->list_lock, flags);
  2152. n = NULL;
  2153. }
  2154. prior = page->freelist;
  2155. counters = page->counters;
  2156. set_freepointer(s, object, prior);
  2157. new.counters = counters;
  2158. was_frozen = new.frozen;
  2159. new.inuse--;
  2160. if ((!new.inuse || !prior) && !was_frozen) {
  2161. if (kmem_cache_has_cpu_partial(s) && !prior) {
  2162. /*
  2163. * Slab was on no list before and will be
  2164. * partially empty
  2165. * We can defer the list move and instead
  2166. * freeze it.
  2167. */
  2168. new.frozen = 1;
  2169. } else { /* Needs to be taken off a list */
  2170. n = get_node(s, page_to_nid(page));
  2171. /*
  2172. * Speculatively acquire the list_lock.
  2173. * If the cmpxchg does not succeed then we may
  2174. * drop the list_lock without any processing.
  2175. *
  2176. * Otherwise the list_lock will synchronize with
  2177. * other processors updating the list of slabs.
  2178. */
  2179. spin_lock_irqsave(&n->list_lock, flags);
  2180. }
  2181. }
  2182. } while (!cmpxchg_double_slab(s, page,
  2183. prior, counters,
  2184. object, new.counters,
  2185. "__slab_free"));
  2186. if (likely(!n)) {
  2187. /*
  2188. * If we just froze the page then put it onto the
  2189. * per cpu partial list.
  2190. */
  2191. if (new.frozen && !was_frozen) {
  2192. put_cpu_partial(s, page, 1);
  2193. stat(s, CPU_PARTIAL_FREE);
  2194. }
  2195. /*
  2196. * The list lock was not taken therefore no list
  2197. * activity can be necessary.
  2198. */
  2199. if (was_frozen)
  2200. stat(s, FREE_FROZEN);
  2201. return;
  2202. }
  2203. if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
  2204. goto slab_empty;
  2205. /*
  2206. * Objects left in the slab. If it was not on the partial list before
  2207. * then add it.
  2208. */
  2209. if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
  2210. if (kmem_cache_debug(s))
  2211. remove_full(s, n, page);
  2212. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2213. stat(s, FREE_ADD_PARTIAL);
  2214. }
  2215. spin_unlock_irqrestore(&n->list_lock, flags);
  2216. return;
  2217. slab_empty:
  2218. if (prior) {
  2219. /*
  2220. * Slab on the partial list.
  2221. */
  2222. remove_partial(n, page);
  2223. stat(s, FREE_REMOVE_PARTIAL);
  2224. } else {
  2225. /* Slab must be on the full list */
  2226. remove_full(s, n, page);
  2227. }
  2228. spin_unlock_irqrestore(&n->list_lock, flags);
  2229. stat(s, FREE_SLAB);
  2230. discard_slab(s, page);
  2231. }
  2232. /*
  2233. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2234. * can perform fastpath freeing without additional function calls.
  2235. *
  2236. * The fastpath is only possible if we are freeing to the current cpu slab
  2237. * of this processor. This typically the case if we have just allocated
  2238. * the item before.
  2239. *
  2240. * If fastpath is not possible then fall back to __slab_free where we deal
  2241. * with all sorts of special processing.
  2242. */
  2243. static __always_inline void slab_free(struct kmem_cache *s,
  2244. struct page *page, void *x, unsigned long addr)
  2245. {
  2246. void **object = (void *)x;
  2247. struct kmem_cache_cpu *c;
  2248. unsigned long tid;
  2249. slab_free_hook(s, x);
  2250. redo:
  2251. /*
  2252. * Determine the currently cpus per cpu slab.
  2253. * The cpu may change afterward. However that does not matter since
  2254. * data is retrieved via this pointer. If we are on the same cpu
  2255. * during the cmpxchg then the free will succedd.
  2256. */
  2257. preempt_disable();
  2258. c = this_cpu_ptr(s->cpu_slab);
  2259. tid = c->tid;
  2260. preempt_enable();
  2261. if (likely(page == c->page)) {
  2262. set_freepointer(s, object, c->freelist);
  2263. if (unlikely(!this_cpu_cmpxchg_double(
  2264. s->cpu_slab->freelist, s->cpu_slab->tid,
  2265. c->freelist, tid,
  2266. object, next_tid(tid)))) {
  2267. note_cmpxchg_failure("slab_free", s, tid);
  2268. goto redo;
  2269. }
  2270. stat(s, FREE_FASTPATH);
  2271. } else
  2272. __slab_free(s, page, x, addr);
  2273. }
  2274. void kmem_cache_free(struct kmem_cache *s, void *x)
  2275. {
  2276. s = cache_from_obj(s, x);
  2277. if (!s)
  2278. return;
  2279. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2280. trace_kmem_cache_free(_RET_IP_, x);
  2281. }
  2282. EXPORT_SYMBOL(kmem_cache_free);
  2283. /*
  2284. * Object placement in a slab is made very easy because we always start at
  2285. * offset 0. If we tune the size of the object to the alignment then we can
  2286. * get the required alignment by putting one properly sized object after
  2287. * another.
  2288. *
  2289. * Notice that the allocation order determines the sizes of the per cpu
  2290. * caches. Each processor has always one slab available for allocations.
  2291. * Increasing the allocation order reduces the number of times that slabs
  2292. * must be moved on and off the partial lists and is therefore a factor in
  2293. * locking overhead.
  2294. */
  2295. /*
  2296. * Mininum / Maximum order of slab pages. This influences locking overhead
  2297. * and slab fragmentation. A higher order reduces the number of partial slabs
  2298. * and increases the number of allocations possible without having to
  2299. * take the list_lock.
  2300. */
  2301. static int slub_min_order;
  2302. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2303. static int slub_min_objects;
  2304. /*
  2305. * Merge control. If this is set then no merging of slab caches will occur.
  2306. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2307. */
  2308. static int slub_nomerge;
  2309. /*
  2310. * Calculate the order of allocation given an slab object size.
  2311. *
  2312. * The order of allocation has significant impact on performance and other
  2313. * system components. Generally order 0 allocations should be preferred since
  2314. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2315. * be problematic to put into order 0 slabs because there may be too much
  2316. * unused space left. We go to a higher order if more than 1/16th of the slab
  2317. * would be wasted.
  2318. *
  2319. * In order to reach satisfactory performance we must ensure that a minimum
  2320. * number of objects is in one slab. Otherwise we may generate too much
  2321. * activity on the partial lists which requires taking the list_lock. This is
  2322. * less a concern for large slabs though which are rarely used.
  2323. *
  2324. * slub_max_order specifies the order where we begin to stop considering the
  2325. * number of objects in a slab as critical. If we reach slub_max_order then
  2326. * we try to keep the page order as low as possible. So we accept more waste
  2327. * of space in favor of a small page order.
  2328. *
  2329. * Higher order allocations also allow the placement of more objects in a
  2330. * slab and thereby reduce object handling overhead. If the user has
  2331. * requested a higher mininum order then we start with that one instead of
  2332. * the smallest order which will fit the object.
  2333. */
  2334. static inline int slab_order(int size, int min_objects,
  2335. int max_order, int fract_leftover, int reserved)
  2336. {
  2337. int order;
  2338. int rem;
  2339. int min_order = slub_min_order;
  2340. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2341. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2342. for (order = max(min_order,
  2343. fls(min_objects * size - 1) - PAGE_SHIFT);
  2344. order <= max_order; order++) {
  2345. unsigned long slab_size = PAGE_SIZE << order;
  2346. if (slab_size < min_objects * size + reserved)
  2347. continue;
  2348. rem = (slab_size - reserved) % size;
  2349. if (rem <= slab_size / fract_leftover)
  2350. break;
  2351. }
  2352. return order;
  2353. }
  2354. static inline int calculate_order(int size, int reserved)
  2355. {
  2356. int order;
  2357. int min_objects;
  2358. int fraction;
  2359. int max_objects;
  2360. /*
  2361. * Attempt to find best configuration for a slab. This
  2362. * works by first attempting to generate a layout with
  2363. * the best configuration and backing off gradually.
  2364. *
  2365. * First we reduce the acceptable waste in a slab. Then
  2366. * we reduce the minimum objects required in a slab.
  2367. */
  2368. min_objects = slub_min_objects;
  2369. if (!min_objects)
  2370. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2371. max_objects = order_objects(slub_max_order, size, reserved);
  2372. min_objects = min(min_objects, max_objects);
  2373. while (min_objects > 1) {
  2374. fraction = 16;
  2375. while (fraction >= 4) {
  2376. order = slab_order(size, min_objects,
  2377. slub_max_order, fraction, reserved);
  2378. if (order <= slub_max_order)
  2379. return order;
  2380. fraction /= 2;
  2381. }
  2382. min_objects--;
  2383. }
  2384. /*
  2385. * We were unable to place multiple objects in a slab. Now
  2386. * lets see if we can place a single object there.
  2387. */
  2388. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2389. if (order <= slub_max_order)
  2390. return order;
  2391. /*
  2392. * Doh this slab cannot be placed using slub_max_order.
  2393. */
  2394. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2395. if (order < MAX_ORDER)
  2396. return order;
  2397. return -ENOSYS;
  2398. }
  2399. static void
  2400. init_kmem_cache_node(struct kmem_cache_node *n)
  2401. {
  2402. n->nr_partial = 0;
  2403. spin_lock_init(&n->list_lock);
  2404. INIT_LIST_HEAD(&n->partial);
  2405. #ifdef CONFIG_SLUB_DEBUG
  2406. atomic_long_set(&n->nr_slabs, 0);
  2407. atomic_long_set(&n->total_objects, 0);
  2408. INIT_LIST_HEAD(&n->full);
  2409. #endif
  2410. }
  2411. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2412. {
  2413. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2414. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2415. /*
  2416. * Must align to double word boundary for the double cmpxchg
  2417. * instructions to work; see __pcpu_double_call_return_bool().
  2418. */
  2419. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2420. 2 * sizeof(void *));
  2421. if (!s->cpu_slab)
  2422. return 0;
  2423. init_kmem_cache_cpus(s);
  2424. return 1;
  2425. }
  2426. static struct kmem_cache *kmem_cache_node;
  2427. /*
  2428. * No kmalloc_node yet so do it by hand. We know that this is the first
  2429. * slab on the node for this slabcache. There are no concurrent accesses
  2430. * possible.
  2431. *
  2432. * Note that this function only works on the kmem_cache_node
  2433. * when allocating for the kmem_cache_node. This is used for bootstrapping
  2434. * memory on a fresh node that has no slab structures yet.
  2435. */
  2436. static void early_kmem_cache_node_alloc(int node)
  2437. {
  2438. struct page *page;
  2439. struct kmem_cache_node *n;
  2440. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2441. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2442. BUG_ON(!page);
  2443. if (page_to_nid(page) != node) {
  2444. pr_err("SLUB: Unable to allocate memory from node %d\n", node);
  2445. pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
  2446. }
  2447. n = page->freelist;
  2448. BUG_ON(!n);
  2449. page->freelist = get_freepointer(kmem_cache_node, n);
  2450. page->inuse = 1;
  2451. page->frozen = 0;
  2452. kmem_cache_node->node[node] = n;
  2453. #ifdef CONFIG_SLUB_DEBUG
  2454. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2455. init_tracking(kmem_cache_node, n);
  2456. #endif
  2457. init_kmem_cache_node(n);
  2458. inc_slabs_node(kmem_cache_node, node, page->objects);
  2459. /*
  2460. * No locks need to be taken here as it has just been
  2461. * initialized and there is no concurrent access.
  2462. */
  2463. __add_partial(n, page, DEACTIVATE_TO_HEAD);
  2464. }
  2465. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2466. {
  2467. int node;
  2468. struct kmem_cache_node *n;
  2469. for_each_kmem_cache_node(s, node, n) {
  2470. kmem_cache_free(kmem_cache_node, n);
  2471. s->node[node] = NULL;
  2472. }
  2473. }
  2474. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2475. {
  2476. int node;
  2477. for_each_node_state(node, N_NORMAL_MEMORY) {
  2478. struct kmem_cache_node *n;
  2479. if (slab_state == DOWN) {
  2480. early_kmem_cache_node_alloc(node);
  2481. continue;
  2482. }
  2483. n = kmem_cache_alloc_node(kmem_cache_node,
  2484. GFP_KERNEL, node);
  2485. if (!n) {
  2486. free_kmem_cache_nodes(s);
  2487. return 0;
  2488. }
  2489. s->node[node] = n;
  2490. init_kmem_cache_node(n);
  2491. }
  2492. return 1;
  2493. }
  2494. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2495. {
  2496. if (min < MIN_PARTIAL)
  2497. min = MIN_PARTIAL;
  2498. else if (min > MAX_PARTIAL)
  2499. min = MAX_PARTIAL;
  2500. s->min_partial = min;
  2501. }
  2502. /*
  2503. * calculate_sizes() determines the order and the distribution of data within
  2504. * a slab object.
  2505. */
  2506. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2507. {
  2508. unsigned long flags = s->flags;
  2509. unsigned long size = s->object_size;
  2510. int order;
  2511. /*
  2512. * Round up object size to the next word boundary. We can only
  2513. * place the free pointer at word boundaries and this determines
  2514. * the possible location of the free pointer.
  2515. */
  2516. size = ALIGN(size, sizeof(void *));
  2517. #ifdef CONFIG_SLUB_DEBUG
  2518. /*
  2519. * Determine if we can poison the object itself. If the user of
  2520. * the slab may touch the object after free or before allocation
  2521. * then we should never poison the object itself.
  2522. */
  2523. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2524. !s->ctor)
  2525. s->flags |= __OBJECT_POISON;
  2526. else
  2527. s->flags &= ~__OBJECT_POISON;
  2528. /*
  2529. * If we are Redzoning then check if there is some space between the
  2530. * end of the object and the free pointer. If not then add an
  2531. * additional word to have some bytes to store Redzone information.
  2532. */
  2533. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2534. size += sizeof(void *);
  2535. #endif
  2536. /*
  2537. * With that we have determined the number of bytes in actual use
  2538. * by the object. This is the potential offset to the free pointer.
  2539. */
  2540. s->inuse = size;
  2541. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2542. s->ctor)) {
  2543. /*
  2544. * Relocate free pointer after the object if it is not
  2545. * permitted to overwrite the first word of the object on
  2546. * kmem_cache_free.
  2547. *
  2548. * This is the case if we do RCU, have a constructor or
  2549. * destructor or are poisoning the objects.
  2550. */
  2551. s->offset = size;
  2552. size += sizeof(void *);
  2553. }
  2554. #ifdef CONFIG_SLUB_DEBUG
  2555. if (flags & SLAB_STORE_USER)
  2556. /*
  2557. * Need to store information about allocs and frees after
  2558. * the object.
  2559. */
  2560. size += 2 * sizeof(struct track);
  2561. if (flags & SLAB_RED_ZONE)
  2562. /*
  2563. * Add some empty padding so that we can catch
  2564. * overwrites from earlier objects rather than let
  2565. * tracking information or the free pointer be
  2566. * corrupted if a user writes before the start
  2567. * of the object.
  2568. */
  2569. size += sizeof(void *);
  2570. #endif
  2571. /*
  2572. * SLUB stores one object immediately after another beginning from
  2573. * offset 0. In order to align the objects we have to simply size
  2574. * each object to conform to the alignment.
  2575. */
  2576. size = ALIGN(size, s->align);
  2577. s->size = size;
  2578. if (forced_order >= 0)
  2579. order = forced_order;
  2580. else
  2581. order = calculate_order(size, s->reserved);
  2582. if (order < 0)
  2583. return 0;
  2584. s->allocflags = 0;
  2585. if (order)
  2586. s->allocflags |= __GFP_COMP;
  2587. if (s->flags & SLAB_CACHE_DMA)
  2588. s->allocflags |= GFP_DMA;
  2589. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2590. s->allocflags |= __GFP_RECLAIMABLE;
  2591. /*
  2592. * Determine the number of objects per slab
  2593. */
  2594. s->oo = oo_make(order, size, s->reserved);
  2595. s->min = oo_make(get_order(size), size, s->reserved);
  2596. if (oo_objects(s->oo) > oo_objects(s->max))
  2597. s->max = s->oo;
  2598. return !!oo_objects(s->oo);
  2599. }
  2600. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2601. {
  2602. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2603. s->reserved = 0;
  2604. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2605. s->reserved = sizeof(struct rcu_head);
  2606. if (!calculate_sizes(s, -1))
  2607. goto error;
  2608. if (disable_higher_order_debug) {
  2609. /*
  2610. * Disable debugging flags that store metadata if the min slab
  2611. * order increased.
  2612. */
  2613. if (get_order(s->size) > get_order(s->object_size)) {
  2614. s->flags &= ~DEBUG_METADATA_FLAGS;
  2615. s->offset = 0;
  2616. if (!calculate_sizes(s, -1))
  2617. goto error;
  2618. }
  2619. }
  2620. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2621. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2622. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2623. /* Enable fast mode */
  2624. s->flags |= __CMPXCHG_DOUBLE;
  2625. #endif
  2626. /*
  2627. * The larger the object size is, the more pages we want on the partial
  2628. * list to avoid pounding the page allocator excessively.
  2629. */
  2630. set_min_partial(s, ilog2(s->size) / 2);
  2631. /*
  2632. * cpu_partial determined the maximum number of objects kept in the
  2633. * per cpu partial lists of a processor.
  2634. *
  2635. * Per cpu partial lists mainly contain slabs that just have one
  2636. * object freed. If they are used for allocation then they can be
  2637. * filled up again with minimal effort. The slab will never hit the
  2638. * per node partial lists and therefore no locking will be required.
  2639. *
  2640. * This setting also determines
  2641. *
  2642. * A) The number of objects from per cpu partial slabs dumped to the
  2643. * per node list when we reach the limit.
  2644. * B) The number of objects in cpu partial slabs to extract from the
  2645. * per node list when we run out of per cpu objects. We only fetch
  2646. * 50% to keep some capacity around for frees.
  2647. */
  2648. if (!kmem_cache_has_cpu_partial(s))
  2649. s->cpu_partial = 0;
  2650. else if (s->size >= PAGE_SIZE)
  2651. s->cpu_partial = 2;
  2652. else if (s->size >= 1024)
  2653. s->cpu_partial = 6;
  2654. else if (s->size >= 256)
  2655. s->cpu_partial = 13;
  2656. else
  2657. s->cpu_partial = 30;
  2658. #ifdef CONFIG_NUMA
  2659. s->remote_node_defrag_ratio = 1000;
  2660. #endif
  2661. if (!init_kmem_cache_nodes(s))
  2662. goto error;
  2663. if (alloc_kmem_cache_cpus(s))
  2664. return 0;
  2665. free_kmem_cache_nodes(s);
  2666. error:
  2667. if (flags & SLAB_PANIC)
  2668. panic("Cannot create slab %s size=%lu realsize=%u "
  2669. "order=%u offset=%u flags=%lx\n",
  2670. s->name, (unsigned long)s->size, s->size,
  2671. oo_order(s->oo), s->offset, flags);
  2672. return -EINVAL;
  2673. }
  2674. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2675. const char *text)
  2676. {
  2677. #ifdef CONFIG_SLUB_DEBUG
  2678. void *addr = page_address(page);
  2679. void *p;
  2680. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2681. sizeof(long), GFP_ATOMIC);
  2682. if (!map)
  2683. return;
  2684. slab_err(s, page, text, s->name);
  2685. slab_lock(page);
  2686. get_map(s, page, map);
  2687. for_each_object(p, s, addr, page->objects) {
  2688. if (!test_bit(slab_index(p, s, addr), map)) {
  2689. pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
  2690. print_tracking(s, p);
  2691. }
  2692. }
  2693. slab_unlock(page);
  2694. kfree(map);
  2695. #endif
  2696. }
  2697. /*
  2698. * Attempt to free all partial slabs on a node.
  2699. * This is called from kmem_cache_close(). We must be the last thread
  2700. * using the cache and therefore we do not need to lock anymore.
  2701. */
  2702. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2703. {
  2704. struct page *page, *h;
  2705. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2706. if (!page->inuse) {
  2707. __remove_partial(n, page);
  2708. discard_slab(s, page);
  2709. } else {
  2710. list_slab_objects(s, page,
  2711. "Objects remaining in %s on kmem_cache_close()");
  2712. }
  2713. }
  2714. }
  2715. /*
  2716. * Release all resources used by a slab cache.
  2717. */
  2718. static inline int kmem_cache_close(struct kmem_cache *s)
  2719. {
  2720. int node;
  2721. struct kmem_cache_node *n;
  2722. flush_all(s);
  2723. /* Attempt to free all objects */
  2724. for_each_kmem_cache_node(s, node, n) {
  2725. free_partial(s, n);
  2726. if (n->nr_partial || slabs_node(s, node))
  2727. return 1;
  2728. }
  2729. free_percpu(s->cpu_slab);
  2730. free_kmem_cache_nodes(s);
  2731. return 0;
  2732. }
  2733. int __kmem_cache_shutdown(struct kmem_cache *s)
  2734. {
  2735. return kmem_cache_close(s);
  2736. }
  2737. /********************************************************************
  2738. * Kmalloc subsystem
  2739. *******************************************************************/
  2740. static int __init setup_slub_min_order(char *str)
  2741. {
  2742. get_option(&str, &slub_min_order);
  2743. return 1;
  2744. }
  2745. __setup("slub_min_order=", setup_slub_min_order);
  2746. static int __init setup_slub_max_order(char *str)
  2747. {
  2748. get_option(&str, &slub_max_order);
  2749. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2750. return 1;
  2751. }
  2752. __setup("slub_max_order=", setup_slub_max_order);
  2753. static int __init setup_slub_min_objects(char *str)
  2754. {
  2755. get_option(&str, &slub_min_objects);
  2756. return 1;
  2757. }
  2758. __setup("slub_min_objects=", setup_slub_min_objects);
  2759. static int __init setup_slub_nomerge(char *str)
  2760. {
  2761. slub_nomerge = 1;
  2762. return 1;
  2763. }
  2764. __setup("slub_nomerge", setup_slub_nomerge);
  2765. void *__kmalloc(size_t size, gfp_t flags)
  2766. {
  2767. struct kmem_cache *s;
  2768. void *ret;
  2769. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2770. return kmalloc_large(size, flags);
  2771. s = kmalloc_slab(size, flags);
  2772. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2773. return s;
  2774. ret = slab_alloc(s, flags, _RET_IP_);
  2775. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2776. return ret;
  2777. }
  2778. EXPORT_SYMBOL(__kmalloc);
  2779. #ifdef CONFIG_NUMA
  2780. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2781. {
  2782. struct page *page;
  2783. void *ptr = NULL;
  2784. flags |= __GFP_COMP | __GFP_NOTRACK;
  2785. page = alloc_kmem_pages_node(node, flags, get_order(size));
  2786. if (page)
  2787. ptr = page_address(page);
  2788. kmalloc_large_node_hook(ptr, size, flags);
  2789. return ptr;
  2790. }
  2791. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2792. {
  2793. struct kmem_cache *s;
  2794. void *ret;
  2795. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  2796. ret = kmalloc_large_node(size, flags, node);
  2797. trace_kmalloc_node(_RET_IP_, ret,
  2798. size, PAGE_SIZE << get_order(size),
  2799. flags, node);
  2800. return ret;
  2801. }
  2802. s = kmalloc_slab(size, flags);
  2803. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2804. return s;
  2805. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2806. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2807. return ret;
  2808. }
  2809. EXPORT_SYMBOL(__kmalloc_node);
  2810. #endif
  2811. size_t ksize(const void *object)
  2812. {
  2813. struct page *page;
  2814. if (unlikely(object == ZERO_SIZE_PTR))
  2815. return 0;
  2816. page = virt_to_head_page(object);
  2817. if (unlikely(!PageSlab(page))) {
  2818. WARN_ON(!PageCompound(page));
  2819. return PAGE_SIZE << compound_order(page);
  2820. }
  2821. return slab_ksize(page->slab_cache);
  2822. }
  2823. EXPORT_SYMBOL(ksize);
  2824. void kfree(const void *x)
  2825. {
  2826. struct page *page;
  2827. void *object = (void *)x;
  2828. trace_kfree(_RET_IP_, x);
  2829. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2830. return;
  2831. page = virt_to_head_page(x);
  2832. if (unlikely(!PageSlab(page))) {
  2833. BUG_ON(!PageCompound(page));
  2834. kfree_hook(x);
  2835. __free_kmem_pages(page, compound_order(page));
  2836. return;
  2837. }
  2838. slab_free(page->slab_cache, page, object, _RET_IP_);
  2839. }
  2840. EXPORT_SYMBOL(kfree);
  2841. /*
  2842. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2843. * the remaining slabs by the number of items in use. The slabs with the
  2844. * most items in use come first. New allocations will then fill those up
  2845. * and thus they can be removed from the partial lists.
  2846. *
  2847. * The slabs with the least items are placed last. This results in them
  2848. * being allocated from last increasing the chance that the last objects
  2849. * are freed in them.
  2850. */
  2851. int __kmem_cache_shrink(struct kmem_cache *s)
  2852. {
  2853. int node;
  2854. int i;
  2855. struct kmem_cache_node *n;
  2856. struct page *page;
  2857. struct page *t;
  2858. int objects = oo_objects(s->max);
  2859. struct list_head *slabs_by_inuse =
  2860. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2861. unsigned long flags;
  2862. if (!slabs_by_inuse)
  2863. return -ENOMEM;
  2864. flush_all(s);
  2865. for_each_kmem_cache_node(s, node, n) {
  2866. if (!n->nr_partial)
  2867. continue;
  2868. for (i = 0; i < objects; i++)
  2869. INIT_LIST_HEAD(slabs_by_inuse + i);
  2870. spin_lock_irqsave(&n->list_lock, flags);
  2871. /*
  2872. * Build lists indexed by the items in use in each slab.
  2873. *
  2874. * Note that concurrent frees may occur while we hold the
  2875. * list_lock. page->inuse here is the upper limit.
  2876. */
  2877. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2878. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2879. if (!page->inuse)
  2880. n->nr_partial--;
  2881. }
  2882. /*
  2883. * Rebuild the partial list with the slabs filled up most
  2884. * first and the least used slabs at the end.
  2885. */
  2886. for (i = objects - 1; i > 0; i--)
  2887. list_splice(slabs_by_inuse + i, n->partial.prev);
  2888. spin_unlock_irqrestore(&n->list_lock, flags);
  2889. /* Release empty slabs */
  2890. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2891. discard_slab(s, page);
  2892. }
  2893. kfree(slabs_by_inuse);
  2894. return 0;
  2895. }
  2896. static int slab_mem_going_offline_callback(void *arg)
  2897. {
  2898. struct kmem_cache *s;
  2899. mutex_lock(&slab_mutex);
  2900. list_for_each_entry(s, &slab_caches, list)
  2901. __kmem_cache_shrink(s);
  2902. mutex_unlock(&slab_mutex);
  2903. return 0;
  2904. }
  2905. static void slab_mem_offline_callback(void *arg)
  2906. {
  2907. struct kmem_cache_node *n;
  2908. struct kmem_cache *s;
  2909. struct memory_notify *marg = arg;
  2910. int offline_node;
  2911. offline_node = marg->status_change_nid_normal;
  2912. /*
  2913. * If the node still has available memory. we need kmem_cache_node
  2914. * for it yet.
  2915. */
  2916. if (offline_node < 0)
  2917. return;
  2918. mutex_lock(&slab_mutex);
  2919. list_for_each_entry(s, &slab_caches, list) {
  2920. n = get_node(s, offline_node);
  2921. if (n) {
  2922. /*
  2923. * if n->nr_slabs > 0, slabs still exist on the node
  2924. * that is going down. We were unable to free them,
  2925. * and offline_pages() function shouldn't call this
  2926. * callback. So, we must fail.
  2927. */
  2928. BUG_ON(slabs_node(s, offline_node));
  2929. s->node[offline_node] = NULL;
  2930. kmem_cache_free(kmem_cache_node, n);
  2931. }
  2932. }
  2933. mutex_unlock(&slab_mutex);
  2934. }
  2935. static int slab_mem_going_online_callback(void *arg)
  2936. {
  2937. struct kmem_cache_node *n;
  2938. struct kmem_cache *s;
  2939. struct memory_notify *marg = arg;
  2940. int nid = marg->status_change_nid_normal;
  2941. int ret = 0;
  2942. /*
  2943. * If the node's memory is already available, then kmem_cache_node is
  2944. * already created. Nothing to do.
  2945. */
  2946. if (nid < 0)
  2947. return 0;
  2948. /*
  2949. * We are bringing a node online. No memory is available yet. We must
  2950. * allocate a kmem_cache_node structure in order to bring the node
  2951. * online.
  2952. */
  2953. mutex_lock(&slab_mutex);
  2954. list_for_each_entry(s, &slab_caches, list) {
  2955. /*
  2956. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2957. * since memory is not yet available from the node that
  2958. * is brought up.
  2959. */
  2960. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2961. if (!n) {
  2962. ret = -ENOMEM;
  2963. goto out;
  2964. }
  2965. init_kmem_cache_node(n);
  2966. s->node[nid] = n;
  2967. }
  2968. out:
  2969. mutex_unlock(&slab_mutex);
  2970. return ret;
  2971. }
  2972. static int slab_memory_callback(struct notifier_block *self,
  2973. unsigned long action, void *arg)
  2974. {
  2975. int ret = 0;
  2976. switch (action) {
  2977. case MEM_GOING_ONLINE:
  2978. ret = slab_mem_going_online_callback(arg);
  2979. break;
  2980. case MEM_GOING_OFFLINE:
  2981. ret = slab_mem_going_offline_callback(arg);
  2982. break;
  2983. case MEM_OFFLINE:
  2984. case MEM_CANCEL_ONLINE:
  2985. slab_mem_offline_callback(arg);
  2986. break;
  2987. case MEM_ONLINE:
  2988. case MEM_CANCEL_OFFLINE:
  2989. break;
  2990. }
  2991. if (ret)
  2992. ret = notifier_from_errno(ret);
  2993. else
  2994. ret = NOTIFY_OK;
  2995. return ret;
  2996. }
  2997. static struct notifier_block slab_memory_callback_nb = {
  2998. .notifier_call = slab_memory_callback,
  2999. .priority = SLAB_CALLBACK_PRI,
  3000. };
  3001. /********************************************************************
  3002. * Basic setup of slabs
  3003. *******************************************************************/
  3004. /*
  3005. * Used for early kmem_cache structures that were allocated using
  3006. * the page allocator. Allocate them properly then fix up the pointers
  3007. * that may be pointing to the wrong kmem_cache structure.
  3008. */
  3009. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3010. {
  3011. int node;
  3012. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3013. struct kmem_cache_node *n;
  3014. memcpy(s, static_cache, kmem_cache->object_size);
  3015. /*
  3016. * This runs very early, and only the boot processor is supposed to be
  3017. * up. Even if it weren't true, IRQs are not up so we couldn't fire
  3018. * IPIs around.
  3019. */
  3020. __flush_cpu_slab(s, smp_processor_id());
  3021. for_each_kmem_cache_node(s, node, n) {
  3022. struct page *p;
  3023. list_for_each_entry(p, &n->partial, lru)
  3024. p->slab_cache = s;
  3025. #ifdef CONFIG_SLUB_DEBUG
  3026. list_for_each_entry(p, &n->full, lru)
  3027. p->slab_cache = s;
  3028. #endif
  3029. }
  3030. list_add(&s->list, &slab_caches);
  3031. return s;
  3032. }
  3033. void __init kmem_cache_init(void)
  3034. {
  3035. static __initdata struct kmem_cache boot_kmem_cache,
  3036. boot_kmem_cache_node;
  3037. if (debug_guardpage_minorder())
  3038. slub_max_order = 0;
  3039. kmem_cache_node = &boot_kmem_cache_node;
  3040. kmem_cache = &boot_kmem_cache;
  3041. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3042. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3043. register_hotmemory_notifier(&slab_memory_callback_nb);
  3044. /* Able to allocate the per node structures */
  3045. slab_state = PARTIAL;
  3046. create_boot_cache(kmem_cache, "kmem_cache",
  3047. offsetof(struct kmem_cache, node) +
  3048. nr_node_ids * sizeof(struct kmem_cache_node *),
  3049. SLAB_HWCACHE_ALIGN);
  3050. kmem_cache = bootstrap(&boot_kmem_cache);
  3051. /*
  3052. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3053. * kmem_cache_node is separately allocated so no need to
  3054. * update any list pointers.
  3055. */
  3056. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3057. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3058. create_kmalloc_caches(0);
  3059. #ifdef CONFIG_SMP
  3060. register_cpu_notifier(&slab_notifier);
  3061. #endif
  3062. pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
  3063. cache_line_size(),
  3064. slub_min_order, slub_max_order, slub_min_objects,
  3065. nr_cpu_ids, nr_node_ids);
  3066. }
  3067. void __init kmem_cache_init_late(void)
  3068. {
  3069. }
  3070. /*
  3071. * Find a mergeable slab cache
  3072. */
  3073. static int slab_unmergeable(struct kmem_cache *s)
  3074. {
  3075. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3076. return 1;
  3077. if (!is_root_cache(s))
  3078. return 1;
  3079. if (s->ctor)
  3080. return 1;
  3081. /*
  3082. * We may have set a slab to be unmergeable during bootstrap.
  3083. */
  3084. if (s->refcount < 0)
  3085. return 1;
  3086. return 0;
  3087. }
  3088. static struct kmem_cache *find_mergeable(size_t size, size_t align,
  3089. unsigned long flags, const char *name, void (*ctor)(void *))
  3090. {
  3091. struct kmem_cache *s;
  3092. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3093. return NULL;
  3094. if (ctor)
  3095. return NULL;
  3096. size = ALIGN(size, sizeof(void *));
  3097. align = calculate_alignment(flags, align, size);
  3098. size = ALIGN(size, align);
  3099. flags = kmem_cache_flags(size, flags, name, NULL);
  3100. list_for_each_entry(s, &slab_caches, list) {
  3101. if (slab_unmergeable(s))
  3102. continue;
  3103. if (size > s->size)
  3104. continue;
  3105. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3106. continue;
  3107. /*
  3108. * Check if alignment is compatible.
  3109. * Courtesy of Adrian Drzewiecki
  3110. */
  3111. if ((s->size & ~(align - 1)) != s->size)
  3112. continue;
  3113. if (s->size - size >= sizeof(void *))
  3114. continue;
  3115. return s;
  3116. }
  3117. return NULL;
  3118. }
  3119. struct kmem_cache *
  3120. __kmem_cache_alias(const char *name, size_t size, size_t align,
  3121. unsigned long flags, void (*ctor)(void *))
  3122. {
  3123. struct kmem_cache *s;
  3124. s = find_mergeable(size, align, flags, name, ctor);
  3125. if (s) {
  3126. int i;
  3127. struct kmem_cache *c;
  3128. s->refcount++;
  3129. /*
  3130. * Adjust the object sizes so that we clear
  3131. * the complete object on kzalloc.
  3132. */
  3133. s->object_size = max(s->object_size, (int)size);
  3134. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3135. for_each_memcg_cache_index(i) {
  3136. c = cache_from_memcg_idx(s, i);
  3137. if (!c)
  3138. continue;
  3139. c->object_size = s->object_size;
  3140. c->inuse = max_t(int, c->inuse,
  3141. ALIGN(size, sizeof(void *)));
  3142. }
  3143. if (sysfs_slab_alias(s, name)) {
  3144. s->refcount--;
  3145. s = NULL;
  3146. }
  3147. }
  3148. return s;
  3149. }
  3150. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3151. {
  3152. int err;
  3153. err = kmem_cache_open(s, flags);
  3154. if (err)
  3155. return err;
  3156. /* Mutex is not taken during early boot */
  3157. if (slab_state <= UP)
  3158. return 0;
  3159. memcg_propagate_slab_attrs(s);
  3160. err = sysfs_slab_add(s);
  3161. if (err)
  3162. kmem_cache_close(s);
  3163. return err;
  3164. }
  3165. #ifdef CONFIG_SMP
  3166. /*
  3167. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3168. * necessary.
  3169. */
  3170. static int slab_cpuup_callback(struct notifier_block *nfb,
  3171. unsigned long action, void *hcpu)
  3172. {
  3173. long cpu = (long)hcpu;
  3174. struct kmem_cache *s;
  3175. unsigned long flags;
  3176. switch (action) {
  3177. case CPU_UP_CANCELED:
  3178. case CPU_UP_CANCELED_FROZEN:
  3179. case CPU_DEAD:
  3180. case CPU_DEAD_FROZEN:
  3181. mutex_lock(&slab_mutex);
  3182. list_for_each_entry(s, &slab_caches, list) {
  3183. local_irq_save(flags);
  3184. __flush_cpu_slab(s, cpu);
  3185. local_irq_restore(flags);
  3186. }
  3187. mutex_unlock(&slab_mutex);
  3188. break;
  3189. default:
  3190. break;
  3191. }
  3192. return NOTIFY_OK;
  3193. }
  3194. static struct notifier_block slab_notifier = {
  3195. .notifier_call = slab_cpuup_callback
  3196. };
  3197. #endif
  3198. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3199. {
  3200. struct kmem_cache *s;
  3201. void *ret;
  3202. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3203. return kmalloc_large(size, gfpflags);
  3204. s = kmalloc_slab(size, gfpflags);
  3205. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3206. return s;
  3207. ret = slab_alloc(s, gfpflags, caller);
  3208. /* Honor the call site pointer we received. */
  3209. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3210. return ret;
  3211. }
  3212. #ifdef CONFIG_NUMA
  3213. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3214. int node, unsigned long caller)
  3215. {
  3216. struct kmem_cache *s;
  3217. void *ret;
  3218. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3219. ret = kmalloc_large_node(size, gfpflags, node);
  3220. trace_kmalloc_node(caller, ret,
  3221. size, PAGE_SIZE << get_order(size),
  3222. gfpflags, node);
  3223. return ret;
  3224. }
  3225. s = kmalloc_slab(size, gfpflags);
  3226. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3227. return s;
  3228. ret = slab_alloc_node(s, gfpflags, node, caller);
  3229. /* Honor the call site pointer we received. */
  3230. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3231. return ret;
  3232. }
  3233. #endif
  3234. #ifdef CONFIG_SYSFS
  3235. static int count_inuse(struct page *page)
  3236. {
  3237. return page->inuse;
  3238. }
  3239. static int count_total(struct page *page)
  3240. {
  3241. return page->objects;
  3242. }
  3243. #endif
  3244. #ifdef CONFIG_SLUB_DEBUG
  3245. static int validate_slab(struct kmem_cache *s, struct page *page,
  3246. unsigned long *map)
  3247. {
  3248. void *p;
  3249. void *addr = page_address(page);
  3250. if (!check_slab(s, page) ||
  3251. !on_freelist(s, page, NULL))
  3252. return 0;
  3253. /* Now we know that a valid freelist exists */
  3254. bitmap_zero(map, page->objects);
  3255. get_map(s, page, map);
  3256. for_each_object(p, s, addr, page->objects) {
  3257. if (test_bit(slab_index(p, s, addr), map))
  3258. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3259. return 0;
  3260. }
  3261. for_each_object(p, s, addr, page->objects)
  3262. if (!test_bit(slab_index(p, s, addr), map))
  3263. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3264. return 0;
  3265. return 1;
  3266. }
  3267. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3268. unsigned long *map)
  3269. {
  3270. slab_lock(page);
  3271. validate_slab(s, page, map);
  3272. slab_unlock(page);
  3273. }
  3274. static int validate_slab_node(struct kmem_cache *s,
  3275. struct kmem_cache_node *n, unsigned long *map)
  3276. {
  3277. unsigned long count = 0;
  3278. struct page *page;
  3279. unsigned long flags;
  3280. spin_lock_irqsave(&n->list_lock, flags);
  3281. list_for_each_entry(page, &n->partial, lru) {
  3282. validate_slab_slab(s, page, map);
  3283. count++;
  3284. }
  3285. if (count != n->nr_partial)
  3286. pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
  3287. s->name, count, n->nr_partial);
  3288. if (!(s->flags & SLAB_STORE_USER))
  3289. goto out;
  3290. list_for_each_entry(page, &n->full, lru) {
  3291. validate_slab_slab(s, page, map);
  3292. count++;
  3293. }
  3294. if (count != atomic_long_read(&n->nr_slabs))
  3295. pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
  3296. s->name, count, atomic_long_read(&n->nr_slabs));
  3297. out:
  3298. spin_unlock_irqrestore(&n->list_lock, flags);
  3299. return count;
  3300. }
  3301. static long validate_slab_cache(struct kmem_cache *s)
  3302. {
  3303. int node;
  3304. unsigned long count = 0;
  3305. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3306. sizeof(unsigned long), GFP_KERNEL);
  3307. struct kmem_cache_node *n;
  3308. if (!map)
  3309. return -ENOMEM;
  3310. flush_all(s);
  3311. for_each_kmem_cache_node(s, node, n)
  3312. count += validate_slab_node(s, n, map);
  3313. kfree(map);
  3314. return count;
  3315. }
  3316. /*
  3317. * Generate lists of code addresses where slabcache objects are allocated
  3318. * and freed.
  3319. */
  3320. struct location {
  3321. unsigned long count;
  3322. unsigned long addr;
  3323. long long sum_time;
  3324. long min_time;
  3325. long max_time;
  3326. long min_pid;
  3327. long max_pid;
  3328. DECLARE_BITMAP(cpus, NR_CPUS);
  3329. nodemask_t nodes;
  3330. };
  3331. struct loc_track {
  3332. unsigned long max;
  3333. unsigned long count;
  3334. struct location *loc;
  3335. };
  3336. static void free_loc_track(struct loc_track *t)
  3337. {
  3338. if (t->max)
  3339. free_pages((unsigned long)t->loc,
  3340. get_order(sizeof(struct location) * t->max));
  3341. }
  3342. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3343. {
  3344. struct location *l;
  3345. int order;
  3346. order = get_order(sizeof(struct location) * max);
  3347. l = (void *)__get_free_pages(flags, order);
  3348. if (!l)
  3349. return 0;
  3350. if (t->count) {
  3351. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3352. free_loc_track(t);
  3353. }
  3354. t->max = max;
  3355. t->loc = l;
  3356. return 1;
  3357. }
  3358. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3359. const struct track *track)
  3360. {
  3361. long start, end, pos;
  3362. struct location *l;
  3363. unsigned long caddr;
  3364. unsigned long age = jiffies - track->when;
  3365. start = -1;
  3366. end = t->count;
  3367. for ( ; ; ) {
  3368. pos = start + (end - start + 1) / 2;
  3369. /*
  3370. * There is nothing at "end". If we end up there
  3371. * we need to add something to before end.
  3372. */
  3373. if (pos == end)
  3374. break;
  3375. caddr = t->loc[pos].addr;
  3376. if (track->addr == caddr) {
  3377. l = &t->loc[pos];
  3378. l->count++;
  3379. if (track->when) {
  3380. l->sum_time += age;
  3381. if (age < l->min_time)
  3382. l->min_time = age;
  3383. if (age > l->max_time)
  3384. l->max_time = age;
  3385. if (track->pid < l->min_pid)
  3386. l->min_pid = track->pid;
  3387. if (track->pid > l->max_pid)
  3388. l->max_pid = track->pid;
  3389. cpumask_set_cpu(track->cpu,
  3390. to_cpumask(l->cpus));
  3391. }
  3392. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3393. return 1;
  3394. }
  3395. if (track->addr < caddr)
  3396. end = pos;
  3397. else
  3398. start = pos;
  3399. }
  3400. /*
  3401. * Not found. Insert new tracking element.
  3402. */
  3403. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3404. return 0;
  3405. l = t->loc + pos;
  3406. if (pos < t->count)
  3407. memmove(l + 1, l,
  3408. (t->count - pos) * sizeof(struct location));
  3409. t->count++;
  3410. l->count = 1;
  3411. l->addr = track->addr;
  3412. l->sum_time = age;
  3413. l->min_time = age;
  3414. l->max_time = age;
  3415. l->min_pid = track->pid;
  3416. l->max_pid = track->pid;
  3417. cpumask_clear(to_cpumask(l->cpus));
  3418. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3419. nodes_clear(l->nodes);
  3420. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3421. return 1;
  3422. }
  3423. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3424. struct page *page, enum track_item alloc,
  3425. unsigned long *map)
  3426. {
  3427. void *addr = page_address(page);
  3428. void *p;
  3429. bitmap_zero(map, page->objects);
  3430. get_map(s, page, map);
  3431. for_each_object(p, s, addr, page->objects)
  3432. if (!test_bit(slab_index(p, s, addr), map))
  3433. add_location(t, s, get_track(s, p, alloc));
  3434. }
  3435. static int list_locations(struct kmem_cache *s, char *buf,
  3436. enum track_item alloc)
  3437. {
  3438. int len = 0;
  3439. unsigned long i;
  3440. struct loc_track t = { 0, 0, NULL };
  3441. int node;
  3442. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3443. sizeof(unsigned long), GFP_KERNEL);
  3444. struct kmem_cache_node *n;
  3445. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3446. GFP_TEMPORARY)) {
  3447. kfree(map);
  3448. return sprintf(buf, "Out of memory\n");
  3449. }
  3450. /* Push back cpu slabs */
  3451. flush_all(s);
  3452. for_each_kmem_cache_node(s, node, n) {
  3453. unsigned long flags;
  3454. struct page *page;
  3455. if (!atomic_long_read(&n->nr_slabs))
  3456. continue;
  3457. spin_lock_irqsave(&n->list_lock, flags);
  3458. list_for_each_entry(page, &n->partial, lru)
  3459. process_slab(&t, s, page, alloc, map);
  3460. list_for_each_entry(page, &n->full, lru)
  3461. process_slab(&t, s, page, alloc, map);
  3462. spin_unlock_irqrestore(&n->list_lock, flags);
  3463. }
  3464. for (i = 0; i < t.count; i++) {
  3465. struct location *l = &t.loc[i];
  3466. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3467. break;
  3468. len += sprintf(buf + len, "%7ld ", l->count);
  3469. if (l->addr)
  3470. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3471. else
  3472. len += sprintf(buf + len, "<not-available>");
  3473. if (l->sum_time != l->min_time) {
  3474. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3475. l->min_time,
  3476. (long)div_u64(l->sum_time, l->count),
  3477. l->max_time);
  3478. } else
  3479. len += sprintf(buf + len, " age=%ld",
  3480. l->min_time);
  3481. if (l->min_pid != l->max_pid)
  3482. len += sprintf(buf + len, " pid=%ld-%ld",
  3483. l->min_pid, l->max_pid);
  3484. else
  3485. len += sprintf(buf + len, " pid=%ld",
  3486. l->min_pid);
  3487. if (num_online_cpus() > 1 &&
  3488. !cpumask_empty(to_cpumask(l->cpus)) &&
  3489. len < PAGE_SIZE - 60) {
  3490. len += sprintf(buf + len, " cpus=");
  3491. len += cpulist_scnprintf(buf + len,
  3492. PAGE_SIZE - len - 50,
  3493. to_cpumask(l->cpus));
  3494. }
  3495. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3496. len < PAGE_SIZE - 60) {
  3497. len += sprintf(buf + len, " nodes=");
  3498. len += nodelist_scnprintf(buf + len,
  3499. PAGE_SIZE - len - 50,
  3500. l->nodes);
  3501. }
  3502. len += sprintf(buf + len, "\n");
  3503. }
  3504. free_loc_track(&t);
  3505. kfree(map);
  3506. if (!t.count)
  3507. len += sprintf(buf, "No data\n");
  3508. return len;
  3509. }
  3510. #endif
  3511. #ifdef SLUB_RESILIENCY_TEST
  3512. static void __init resiliency_test(void)
  3513. {
  3514. u8 *p;
  3515. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3516. pr_err("SLUB resiliency testing\n");
  3517. pr_err("-----------------------\n");
  3518. pr_err("A. Corruption after allocation\n");
  3519. p = kzalloc(16, GFP_KERNEL);
  3520. p[16] = 0x12;
  3521. pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
  3522. p + 16);
  3523. validate_slab_cache(kmalloc_caches[4]);
  3524. /* Hmmm... The next two are dangerous */
  3525. p = kzalloc(32, GFP_KERNEL);
  3526. p[32 + sizeof(void *)] = 0x34;
  3527. pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
  3528. p);
  3529. pr_err("If allocated object is overwritten then not detectable\n\n");
  3530. validate_slab_cache(kmalloc_caches[5]);
  3531. p = kzalloc(64, GFP_KERNEL);
  3532. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3533. *p = 0x56;
  3534. pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3535. p);
  3536. pr_err("If allocated object is overwritten then not detectable\n\n");
  3537. validate_slab_cache(kmalloc_caches[6]);
  3538. pr_err("\nB. Corruption after free\n");
  3539. p = kzalloc(128, GFP_KERNEL);
  3540. kfree(p);
  3541. *p = 0x78;
  3542. pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3543. validate_slab_cache(kmalloc_caches[7]);
  3544. p = kzalloc(256, GFP_KERNEL);
  3545. kfree(p);
  3546. p[50] = 0x9a;
  3547. pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
  3548. validate_slab_cache(kmalloc_caches[8]);
  3549. p = kzalloc(512, GFP_KERNEL);
  3550. kfree(p);
  3551. p[512] = 0xab;
  3552. pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3553. validate_slab_cache(kmalloc_caches[9]);
  3554. }
  3555. #else
  3556. #ifdef CONFIG_SYSFS
  3557. static void resiliency_test(void) {};
  3558. #endif
  3559. #endif
  3560. #ifdef CONFIG_SYSFS
  3561. enum slab_stat_type {
  3562. SL_ALL, /* All slabs */
  3563. SL_PARTIAL, /* Only partially allocated slabs */
  3564. SL_CPU, /* Only slabs used for cpu caches */
  3565. SL_OBJECTS, /* Determine allocated objects not slabs */
  3566. SL_TOTAL /* Determine object capacity not slabs */
  3567. };
  3568. #define SO_ALL (1 << SL_ALL)
  3569. #define SO_PARTIAL (1 << SL_PARTIAL)
  3570. #define SO_CPU (1 << SL_CPU)
  3571. #define SO_OBJECTS (1 << SL_OBJECTS)
  3572. #define SO_TOTAL (1 << SL_TOTAL)
  3573. static ssize_t show_slab_objects(struct kmem_cache *s,
  3574. char *buf, unsigned long flags)
  3575. {
  3576. unsigned long total = 0;
  3577. int node;
  3578. int x;
  3579. unsigned long *nodes;
  3580. nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3581. if (!nodes)
  3582. return -ENOMEM;
  3583. if (flags & SO_CPU) {
  3584. int cpu;
  3585. for_each_possible_cpu(cpu) {
  3586. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
  3587. cpu);
  3588. int node;
  3589. struct page *page;
  3590. page = ACCESS_ONCE(c->page);
  3591. if (!page)
  3592. continue;
  3593. node = page_to_nid(page);
  3594. if (flags & SO_TOTAL)
  3595. x = page->objects;
  3596. else if (flags & SO_OBJECTS)
  3597. x = page->inuse;
  3598. else
  3599. x = 1;
  3600. total += x;
  3601. nodes[node] += x;
  3602. page = ACCESS_ONCE(c->partial);
  3603. if (page) {
  3604. node = page_to_nid(page);
  3605. if (flags & SO_TOTAL)
  3606. WARN_ON_ONCE(1);
  3607. else if (flags & SO_OBJECTS)
  3608. WARN_ON_ONCE(1);
  3609. else
  3610. x = page->pages;
  3611. total += x;
  3612. nodes[node] += x;
  3613. }
  3614. }
  3615. }
  3616. get_online_mems();
  3617. #ifdef CONFIG_SLUB_DEBUG
  3618. if (flags & SO_ALL) {
  3619. struct kmem_cache_node *n;
  3620. for_each_kmem_cache_node(s, node, n) {
  3621. if (flags & SO_TOTAL)
  3622. x = atomic_long_read(&n->total_objects);
  3623. else if (flags & SO_OBJECTS)
  3624. x = atomic_long_read(&n->total_objects) -
  3625. count_partial(n, count_free);
  3626. else
  3627. x = atomic_long_read(&n->nr_slabs);
  3628. total += x;
  3629. nodes[node] += x;
  3630. }
  3631. } else
  3632. #endif
  3633. if (flags & SO_PARTIAL) {
  3634. struct kmem_cache_node *n;
  3635. for_each_kmem_cache_node(s, node, n) {
  3636. if (flags & SO_TOTAL)
  3637. x = count_partial(n, count_total);
  3638. else if (flags & SO_OBJECTS)
  3639. x = count_partial(n, count_inuse);
  3640. else
  3641. x = n->nr_partial;
  3642. total += x;
  3643. nodes[node] += x;
  3644. }
  3645. }
  3646. x = sprintf(buf, "%lu", total);
  3647. #ifdef CONFIG_NUMA
  3648. for (node = 0; node < nr_node_ids; node++)
  3649. if (nodes[node])
  3650. x += sprintf(buf + x, " N%d=%lu",
  3651. node, nodes[node]);
  3652. #endif
  3653. put_online_mems();
  3654. kfree(nodes);
  3655. return x + sprintf(buf + x, "\n");
  3656. }
  3657. #ifdef CONFIG_SLUB_DEBUG
  3658. static int any_slab_objects(struct kmem_cache *s)
  3659. {
  3660. int node;
  3661. struct kmem_cache_node *n;
  3662. for_each_kmem_cache_node(s, node, n)
  3663. if (atomic_long_read(&n->total_objects))
  3664. return 1;
  3665. return 0;
  3666. }
  3667. #endif
  3668. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3669. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3670. struct slab_attribute {
  3671. struct attribute attr;
  3672. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3673. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3674. };
  3675. #define SLAB_ATTR_RO(_name) \
  3676. static struct slab_attribute _name##_attr = \
  3677. __ATTR(_name, 0400, _name##_show, NULL)
  3678. #define SLAB_ATTR(_name) \
  3679. static struct slab_attribute _name##_attr = \
  3680. __ATTR(_name, 0600, _name##_show, _name##_store)
  3681. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3682. {
  3683. return sprintf(buf, "%d\n", s->size);
  3684. }
  3685. SLAB_ATTR_RO(slab_size);
  3686. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3687. {
  3688. return sprintf(buf, "%d\n", s->align);
  3689. }
  3690. SLAB_ATTR_RO(align);
  3691. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3692. {
  3693. return sprintf(buf, "%d\n", s->object_size);
  3694. }
  3695. SLAB_ATTR_RO(object_size);
  3696. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3697. {
  3698. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3699. }
  3700. SLAB_ATTR_RO(objs_per_slab);
  3701. static ssize_t order_store(struct kmem_cache *s,
  3702. const char *buf, size_t length)
  3703. {
  3704. unsigned long order;
  3705. int err;
  3706. err = kstrtoul(buf, 10, &order);
  3707. if (err)
  3708. return err;
  3709. if (order > slub_max_order || order < slub_min_order)
  3710. return -EINVAL;
  3711. calculate_sizes(s, order);
  3712. return length;
  3713. }
  3714. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3715. {
  3716. return sprintf(buf, "%d\n", oo_order(s->oo));
  3717. }
  3718. SLAB_ATTR(order);
  3719. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3720. {
  3721. return sprintf(buf, "%lu\n", s->min_partial);
  3722. }
  3723. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3724. size_t length)
  3725. {
  3726. unsigned long min;
  3727. int err;
  3728. err = kstrtoul(buf, 10, &min);
  3729. if (err)
  3730. return err;
  3731. set_min_partial(s, min);
  3732. return length;
  3733. }
  3734. SLAB_ATTR(min_partial);
  3735. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3736. {
  3737. return sprintf(buf, "%u\n", s->cpu_partial);
  3738. }
  3739. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3740. size_t length)
  3741. {
  3742. unsigned long objects;
  3743. int err;
  3744. err = kstrtoul(buf, 10, &objects);
  3745. if (err)
  3746. return err;
  3747. if (objects && !kmem_cache_has_cpu_partial(s))
  3748. return -EINVAL;
  3749. s->cpu_partial = objects;
  3750. flush_all(s);
  3751. return length;
  3752. }
  3753. SLAB_ATTR(cpu_partial);
  3754. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3755. {
  3756. if (!s->ctor)
  3757. return 0;
  3758. return sprintf(buf, "%pS\n", s->ctor);
  3759. }
  3760. SLAB_ATTR_RO(ctor);
  3761. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3762. {
  3763. return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
  3764. }
  3765. SLAB_ATTR_RO(aliases);
  3766. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3767. {
  3768. return show_slab_objects(s, buf, SO_PARTIAL);
  3769. }
  3770. SLAB_ATTR_RO(partial);
  3771. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3772. {
  3773. return show_slab_objects(s, buf, SO_CPU);
  3774. }
  3775. SLAB_ATTR_RO(cpu_slabs);
  3776. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3777. {
  3778. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3779. }
  3780. SLAB_ATTR_RO(objects);
  3781. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3782. {
  3783. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3784. }
  3785. SLAB_ATTR_RO(objects_partial);
  3786. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3787. {
  3788. int objects = 0;
  3789. int pages = 0;
  3790. int cpu;
  3791. int len;
  3792. for_each_online_cpu(cpu) {
  3793. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3794. if (page) {
  3795. pages += page->pages;
  3796. objects += page->pobjects;
  3797. }
  3798. }
  3799. len = sprintf(buf, "%d(%d)", objects, pages);
  3800. #ifdef CONFIG_SMP
  3801. for_each_online_cpu(cpu) {
  3802. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3803. if (page && len < PAGE_SIZE - 20)
  3804. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3805. page->pobjects, page->pages);
  3806. }
  3807. #endif
  3808. return len + sprintf(buf + len, "\n");
  3809. }
  3810. SLAB_ATTR_RO(slabs_cpu_partial);
  3811. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3812. {
  3813. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3814. }
  3815. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3816. const char *buf, size_t length)
  3817. {
  3818. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3819. if (buf[0] == '1')
  3820. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3821. return length;
  3822. }
  3823. SLAB_ATTR(reclaim_account);
  3824. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3825. {
  3826. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3827. }
  3828. SLAB_ATTR_RO(hwcache_align);
  3829. #ifdef CONFIG_ZONE_DMA
  3830. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3831. {
  3832. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3833. }
  3834. SLAB_ATTR_RO(cache_dma);
  3835. #endif
  3836. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3837. {
  3838. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3839. }
  3840. SLAB_ATTR_RO(destroy_by_rcu);
  3841. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3842. {
  3843. return sprintf(buf, "%d\n", s->reserved);
  3844. }
  3845. SLAB_ATTR_RO(reserved);
  3846. #ifdef CONFIG_SLUB_DEBUG
  3847. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3848. {
  3849. return show_slab_objects(s, buf, SO_ALL);
  3850. }
  3851. SLAB_ATTR_RO(slabs);
  3852. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3853. {
  3854. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3855. }
  3856. SLAB_ATTR_RO(total_objects);
  3857. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3858. {
  3859. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3860. }
  3861. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3862. const char *buf, size_t length)
  3863. {
  3864. s->flags &= ~SLAB_DEBUG_FREE;
  3865. if (buf[0] == '1') {
  3866. s->flags &= ~__CMPXCHG_DOUBLE;
  3867. s->flags |= SLAB_DEBUG_FREE;
  3868. }
  3869. return length;
  3870. }
  3871. SLAB_ATTR(sanity_checks);
  3872. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3873. {
  3874. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3875. }
  3876. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3877. size_t length)
  3878. {
  3879. s->flags &= ~SLAB_TRACE;
  3880. if (buf[0] == '1') {
  3881. s->flags &= ~__CMPXCHG_DOUBLE;
  3882. s->flags |= SLAB_TRACE;
  3883. }
  3884. return length;
  3885. }
  3886. SLAB_ATTR(trace);
  3887. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3888. {
  3889. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3890. }
  3891. static ssize_t red_zone_store(struct kmem_cache *s,
  3892. const char *buf, size_t length)
  3893. {
  3894. if (any_slab_objects(s))
  3895. return -EBUSY;
  3896. s->flags &= ~SLAB_RED_ZONE;
  3897. if (buf[0] == '1') {
  3898. s->flags &= ~__CMPXCHG_DOUBLE;
  3899. s->flags |= SLAB_RED_ZONE;
  3900. }
  3901. calculate_sizes(s, -1);
  3902. return length;
  3903. }
  3904. SLAB_ATTR(red_zone);
  3905. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3906. {
  3907. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3908. }
  3909. static ssize_t poison_store(struct kmem_cache *s,
  3910. const char *buf, size_t length)
  3911. {
  3912. if (any_slab_objects(s))
  3913. return -EBUSY;
  3914. s->flags &= ~SLAB_POISON;
  3915. if (buf[0] == '1') {
  3916. s->flags &= ~__CMPXCHG_DOUBLE;
  3917. s->flags |= SLAB_POISON;
  3918. }
  3919. calculate_sizes(s, -1);
  3920. return length;
  3921. }
  3922. SLAB_ATTR(poison);
  3923. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3924. {
  3925. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3926. }
  3927. static ssize_t store_user_store(struct kmem_cache *s,
  3928. const char *buf, size_t length)
  3929. {
  3930. if (any_slab_objects(s))
  3931. return -EBUSY;
  3932. s->flags &= ~SLAB_STORE_USER;
  3933. if (buf[0] == '1') {
  3934. s->flags &= ~__CMPXCHG_DOUBLE;
  3935. s->flags |= SLAB_STORE_USER;
  3936. }
  3937. calculate_sizes(s, -1);
  3938. return length;
  3939. }
  3940. SLAB_ATTR(store_user);
  3941. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3942. {
  3943. return 0;
  3944. }
  3945. static ssize_t validate_store(struct kmem_cache *s,
  3946. const char *buf, size_t length)
  3947. {
  3948. int ret = -EINVAL;
  3949. if (buf[0] == '1') {
  3950. ret = validate_slab_cache(s);
  3951. if (ret >= 0)
  3952. ret = length;
  3953. }
  3954. return ret;
  3955. }
  3956. SLAB_ATTR(validate);
  3957. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3958. {
  3959. if (!(s->flags & SLAB_STORE_USER))
  3960. return -ENOSYS;
  3961. return list_locations(s, buf, TRACK_ALLOC);
  3962. }
  3963. SLAB_ATTR_RO(alloc_calls);
  3964. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3965. {
  3966. if (!(s->flags & SLAB_STORE_USER))
  3967. return -ENOSYS;
  3968. return list_locations(s, buf, TRACK_FREE);
  3969. }
  3970. SLAB_ATTR_RO(free_calls);
  3971. #endif /* CONFIG_SLUB_DEBUG */
  3972. #ifdef CONFIG_FAILSLAB
  3973. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3974. {
  3975. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3976. }
  3977. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3978. size_t length)
  3979. {
  3980. s->flags &= ~SLAB_FAILSLAB;
  3981. if (buf[0] == '1')
  3982. s->flags |= SLAB_FAILSLAB;
  3983. return length;
  3984. }
  3985. SLAB_ATTR(failslab);
  3986. #endif
  3987. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3988. {
  3989. return 0;
  3990. }
  3991. static ssize_t shrink_store(struct kmem_cache *s,
  3992. const char *buf, size_t length)
  3993. {
  3994. if (buf[0] == '1') {
  3995. int rc = kmem_cache_shrink(s);
  3996. if (rc)
  3997. return rc;
  3998. } else
  3999. return -EINVAL;
  4000. return length;
  4001. }
  4002. SLAB_ATTR(shrink);
  4003. #ifdef CONFIG_NUMA
  4004. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4005. {
  4006. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4007. }
  4008. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4009. const char *buf, size_t length)
  4010. {
  4011. unsigned long ratio;
  4012. int err;
  4013. err = kstrtoul(buf, 10, &ratio);
  4014. if (err)
  4015. return err;
  4016. if (ratio <= 100)
  4017. s->remote_node_defrag_ratio = ratio * 10;
  4018. return length;
  4019. }
  4020. SLAB_ATTR(remote_node_defrag_ratio);
  4021. #endif
  4022. #ifdef CONFIG_SLUB_STATS
  4023. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4024. {
  4025. unsigned long sum = 0;
  4026. int cpu;
  4027. int len;
  4028. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4029. if (!data)
  4030. return -ENOMEM;
  4031. for_each_online_cpu(cpu) {
  4032. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4033. data[cpu] = x;
  4034. sum += x;
  4035. }
  4036. len = sprintf(buf, "%lu", sum);
  4037. #ifdef CONFIG_SMP
  4038. for_each_online_cpu(cpu) {
  4039. if (data[cpu] && len < PAGE_SIZE - 20)
  4040. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4041. }
  4042. #endif
  4043. kfree(data);
  4044. return len + sprintf(buf + len, "\n");
  4045. }
  4046. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4047. {
  4048. int cpu;
  4049. for_each_online_cpu(cpu)
  4050. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4051. }
  4052. #define STAT_ATTR(si, text) \
  4053. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4054. { \
  4055. return show_stat(s, buf, si); \
  4056. } \
  4057. static ssize_t text##_store(struct kmem_cache *s, \
  4058. const char *buf, size_t length) \
  4059. { \
  4060. if (buf[0] != '0') \
  4061. return -EINVAL; \
  4062. clear_stat(s, si); \
  4063. return length; \
  4064. } \
  4065. SLAB_ATTR(text); \
  4066. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4067. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4068. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4069. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4070. STAT_ATTR(FREE_FROZEN, free_frozen);
  4071. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4072. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4073. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4074. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4075. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4076. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4077. STAT_ATTR(FREE_SLAB, free_slab);
  4078. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4079. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4080. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4081. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4082. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4083. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4084. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4085. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4086. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4087. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4088. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4089. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4090. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4091. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4092. #endif
  4093. static struct attribute *slab_attrs[] = {
  4094. &slab_size_attr.attr,
  4095. &object_size_attr.attr,
  4096. &objs_per_slab_attr.attr,
  4097. &order_attr.attr,
  4098. &min_partial_attr.attr,
  4099. &cpu_partial_attr.attr,
  4100. &objects_attr.attr,
  4101. &objects_partial_attr.attr,
  4102. &partial_attr.attr,
  4103. &cpu_slabs_attr.attr,
  4104. &ctor_attr.attr,
  4105. &aliases_attr.attr,
  4106. &align_attr.attr,
  4107. &hwcache_align_attr.attr,
  4108. &reclaim_account_attr.attr,
  4109. &destroy_by_rcu_attr.attr,
  4110. &shrink_attr.attr,
  4111. &reserved_attr.attr,
  4112. &slabs_cpu_partial_attr.attr,
  4113. #ifdef CONFIG_SLUB_DEBUG
  4114. &total_objects_attr.attr,
  4115. &slabs_attr.attr,
  4116. &sanity_checks_attr.attr,
  4117. &trace_attr.attr,
  4118. &red_zone_attr.attr,
  4119. &poison_attr.attr,
  4120. &store_user_attr.attr,
  4121. &validate_attr.attr,
  4122. &alloc_calls_attr.attr,
  4123. &free_calls_attr.attr,
  4124. #endif
  4125. #ifdef CONFIG_ZONE_DMA
  4126. &cache_dma_attr.attr,
  4127. #endif
  4128. #ifdef CONFIG_NUMA
  4129. &remote_node_defrag_ratio_attr.attr,
  4130. #endif
  4131. #ifdef CONFIG_SLUB_STATS
  4132. &alloc_fastpath_attr.attr,
  4133. &alloc_slowpath_attr.attr,
  4134. &free_fastpath_attr.attr,
  4135. &free_slowpath_attr.attr,
  4136. &free_frozen_attr.attr,
  4137. &free_add_partial_attr.attr,
  4138. &free_remove_partial_attr.attr,
  4139. &alloc_from_partial_attr.attr,
  4140. &alloc_slab_attr.attr,
  4141. &alloc_refill_attr.attr,
  4142. &alloc_node_mismatch_attr.attr,
  4143. &free_slab_attr.attr,
  4144. &cpuslab_flush_attr.attr,
  4145. &deactivate_full_attr.attr,
  4146. &deactivate_empty_attr.attr,
  4147. &deactivate_to_head_attr.attr,
  4148. &deactivate_to_tail_attr.attr,
  4149. &deactivate_remote_frees_attr.attr,
  4150. &deactivate_bypass_attr.attr,
  4151. &order_fallback_attr.attr,
  4152. &cmpxchg_double_fail_attr.attr,
  4153. &cmpxchg_double_cpu_fail_attr.attr,
  4154. &cpu_partial_alloc_attr.attr,
  4155. &cpu_partial_free_attr.attr,
  4156. &cpu_partial_node_attr.attr,
  4157. &cpu_partial_drain_attr.attr,
  4158. #endif
  4159. #ifdef CONFIG_FAILSLAB
  4160. &failslab_attr.attr,
  4161. #endif
  4162. NULL
  4163. };
  4164. static struct attribute_group slab_attr_group = {
  4165. .attrs = slab_attrs,
  4166. };
  4167. static ssize_t slab_attr_show(struct kobject *kobj,
  4168. struct attribute *attr,
  4169. char *buf)
  4170. {
  4171. struct slab_attribute *attribute;
  4172. struct kmem_cache *s;
  4173. int err;
  4174. attribute = to_slab_attr(attr);
  4175. s = to_slab(kobj);
  4176. if (!attribute->show)
  4177. return -EIO;
  4178. err = attribute->show(s, buf);
  4179. return err;
  4180. }
  4181. static ssize_t slab_attr_store(struct kobject *kobj,
  4182. struct attribute *attr,
  4183. const char *buf, size_t len)
  4184. {
  4185. struct slab_attribute *attribute;
  4186. struct kmem_cache *s;
  4187. int err;
  4188. attribute = to_slab_attr(attr);
  4189. s = to_slab(kobj);
  4190. if (!attribute->store)
  4191. return -EIO;
  4192. err = attribute->store(s, buf, len);
  4193. #ifdef CONFIG_MEMCG_KMEM
  4194. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4195. int i;
  4196. mutex_lock(&slab_mutex);
  4197. if (s->max_attr_size < len)
  4198. s->max_attr_size = len;
  4199. /*
  4200. * This is a best effort propagation, so this function's return
  4201. * value will be determined by the parent cache only. This is
  4202. * basically because not all attributes will have a well
  4203. * defined semantics for rollbacks - most of the actions will
  4204. * have permanent effects.
  4205. *
  4206. * Returning the error value of any of the children that fail
  4207. * is not 100 % defined, in the sense that users seeing the
  4208. * error code won't be able to know anything about the state of
  4209. * the cache.
  4210. *
  4211. * Only returning the error code for the parent cache at least
  4212. * has well defined semantics. The cache being written to
  4213. * directly either failed or succeeded, in which case we loop
  4214. * through the descendants with best-effort propagation.
  4215. */
  4216. for_each_memcg_cache_index(i) {
  4217. struct kmem_cache *c = cache_from_memcg_idx(s, i);
  4218. if (c)
  4219. attribute->store(c, buf, len);
  4220. }
  4221. mutex_unlock(&slab_mutex);
  4222. }
  4223. #endif
  4224. return err;
  4225. }
  4226. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4227. {
  4228. #ifdef CONFIG_MEMCG_KMEM
  4229. int i;
  4230. char *buffer = NULL;
  4231. struct kmem_cache *root_cache;
  4232. if (is_root_cache(s))
  4233. return;
  4234. root_cache = s->memcg_params->root_cache;
  4235. /*
  4236. * This mean this cache had no attribute written. Therefore, no point
  4237. * in copying default values around
  4238. */
  4239. if (!root_cache->max_attr_size)
  4240. return;
  4241. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4242. char mbuf[64];
  4243. char *buf;
  4244. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4245. if (!attr || !attr->store || !attr->show)
  4246. continue;
  4247. /*
  4248. * It is really bad that we have to allocate here, so we will
  4249. * do it only as a fallback. If we actually allocate, though,
  4250. * we can just use the allocated buffer until the end.
  4251. *
  4252. * Most of the slub attributes will tend to be very small in
  4253. * size, but sysfs allows buffers up to a page, so they can
  4254. * theoretically happen.
  4255. */
  4256. if (buffer)
  4257. buf = buffer;
  4258. else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
  4259. buf = mbuf;
  4260. else {
  4261. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4262. if (WARN_ON(!buffer))
  4263. continue;
  4264. buf = buffer;
  4265. }
  4266. attr->show(root_cache, buf);
  4267. attr->store(s, buf, strlen(buf));
  4268. }
  4269. if (buffer)
  4270. free_page((unsigned long)buffer);
  4271. #endif
  4272. }
  4273. static void kmem_cache_release(struct kobject *k)
  4274. {
  4275. slab_kmem_cache_release(to_slab(k));
  4276. }
  4277. static const struct sysfs_ops slab_sysfs_ops = {
  4278. .show = slab_attr_show,
  4279. .store = slab_attr_store,
  4280. };
  4281. static struct kobj_type slab_ktype = {
  4282. .sysfs_ops = &slab_sysfs_ops,
  4283. .release = kmem_cache_release,
  4284. };
  4285. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4286. {
  4287. struct kobj_type *ktype = get_ktype(kobj);
  4288. if (ktype == &slab_ktype)
  4289. return 1;
  4290. return 0;
  4291. }
  4292. static const struct kset_uevent_ops slab_uevent_ops = {
  4293. .filter = uevent_filter,
  4294. };
  4295. static struct kset *slab_kset;
  4296. static inline struct kset *cache_kset(struct kmem_cache *s)
  4297. {
  4298. #ifdef CONFIG_MEMCG_KMEM
  4299. if (!is_root_cache(s))
  4300. return s->memcg_params->root_cache->memcg_kset;
  4301. #endif
  4302. return slab_kset;
  4303. }
  4304. #define ID_STR_LENGTH 64
  4305. /* Create a unique string id for a slab cache:
  4306. *
  4307. * Format :[flags-]size
  4308. */
  4309. static char *create_unique_id(struct kmem_cache *s)
  4310. {
  4311. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4312. char *p = name;
  4313. BUG_ON(!name);
  4314. *p++ = ':';
  4315. /*
  4316. * First flags affecting slabcache operations. We will only
  4317. * get here for aliasable slabs so we do not need to support
  4318. * too many flags. The flags here must cover all flags that
  4319. * are matched during merging to guarantee that the id is
  4320. * unique.
  4321. */
  4322. if (s->flags & SLAB_CACHE_DMA)
  4323. *p++ = 'd';
  4324. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4325. *p++ = 'a';
  4326. if (s->flags & SLAB_DEBUG_FREE)
  4327. *p++ = 'F';
  4328. if (!(s->flags & SLAB_NOTRACK))
  4329. *p++ = 't';
  4330. if (p != name + 1)
  4331. *p++ = '-';
  4332. p += sprintf(p, "%07d", s->size);
  4333. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4334. return name;
  4335. }
  4336. static int sysfs_slab_add(struct kmem_cache *s)
  4337. {
  4338. int err;
  4339. const char *name;
  4340. int unmergeable = slab_unmergeable(s);
  4341. if (unmergeable) {
  4342. /*
  4343. * Slabcache can never be merged so we can use the name proper.
  4344. * This is typically the case for debug situations. In that
  4345. * case we can catch duplicate names easily.
  4346. */
  4347. sysfs_remove_link(&slab_kset->kobj, s->name);
  4348. name = s->name;
  4349. } else {
  4350. /*
  4351. * Create a unique name for the slab as a target
  4352. * for the symlinks.
  4353. */
  4354. name = create_unique_id(s);
  4355. }
  4356. s->kobj.kset = cache_kset(s);
  4357. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
  4358. if (err)
  4359. goto out_put_kobj;
  4360. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4361. if (err)
  4362. goto out_del_kobj;
  4363. #ifdef CONFIG_MEMCG_KMEM
  4364. if (is_root_cache(s)) {
  4365. s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
  4366. if (!s->memcg_kset) {
  4367. err = -ENOMEM;
  4368. goto out_del_kobj;
  4369. }
  4370. }
  4371. #endif
  4372. kobject_uevent(&s->kobj, KOBJ_ADD);
  4373. if (!unmergeable) {
  4374. /* Setup first alias */
  4375. sysfs_slab_alias(s, s->name);
  4376. }
  4377. out:
  4378. if (!unmergeable)
  4379. kfree(name);
  4380. return err;
  4381. out_del_kobj:
  4382. kobject_del(&s->kobj);
  4383. out_put_kobj:
  4384. kobject_put(&s->kobj);
  4385. goto out;
  4386. }
  4387. void sysfs_slab_remove(struct kmem_cache *s)
  4388. {
  4389. if (slab_state < FULL)
  4390. /*
  4391. * Sysfs has not been setup yet so no need to remove the
  4392. * cache from sysfs.
  4393. */
  4394. return;
  4395. #ifdef CONFIG_MEMCG_KMEM
  4396. kset_unregister(s->memcg_kset);
  4397. #endif
  4398. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4399. kobject_del(&s->kobj);
  4400. kobject_put(&s->kobj);
  4401. }
  4402. /*
  4403. * Need to buffer aliases during bootup until sysfs becomes
  4404. * available lest we lose that information.
  4405. */
  4406. struct saved_alias {
  4407. struct kmem_cache *s;
  4408. const char *name;
  4409. struct saved_alias *next;
  4410. };
  4411. static struct saved_alias *alias_list;
  4412. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4413. {
  4414. struct saved_alias *al;
  4415. if (slab_state == FULL) {
  4416. /*
  4417. * If we have a leftover link then remove it.
  4418. */
  4419. sysfs_remove_link(&slab_kset->kobj, name);
  4420. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4421. }
  4422. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4423. if (!al)
  4424. return -ENOMEM;
  4425. al->s = s;
  4426. al->name = name;
  4427. al->next = alias_list;
  4428. alias_list = al;
  4429. return 0;
  4430. }
  4431. static int __init slab_sysfs_init(void)
  4432. {
  4433. struct kmem_cache *s;
  4434. int err;
  4435. mutex_lock(&slab_mutex);
  4436. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4437. if (!slab_kset) {
  4438. mutex_unlock(&slab_mutex);
  4439. pr_err("Cannot register slab subsystem.\n");
  4440. return -ENOSYS;
  4441. }
  4442. slab_state = FULL;
  4443. list_for_each_entry(s, &slab_caches, list) {
  4444. err = sysfs_slab_add(s);
  4445. if (err)
  4446. pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
  4447. s->name);
  4448. }
  4449. while (alias_list) {
  4450. struct saved_alias *al = alias_list;
  4451. alias_list = alias_list->next;
  4452. err = sysfs_slab_alias(al->s, al->name);
  4453. if (err)
  4454. pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
  4455. al->name);
  4456. kfree(al);
  4457. }
  4458. mutex_unlock(&slab_mutex);
  4459. resiliency_test();
  4460. return 0;
  4461. }
  4462. __initcall(slab_sysfs_init);
  4463. #endif /* CONFIG_SYSFS */
  4464. /*
  4465. * The /proc/slabinfo ABI
  4466. */
  4467. #ifdef CONFIG_SLABINFO
  4468. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4469. {
  4470. unsigned long nr_slabs = 0;
  4471. unsigned long nr_objs = 0;
  4472. unsigned long nr_free = 0;
  4473. int node;
  4474. struct kmem_cache_node *n;
  4475. for_each_kmem_cache_node(s, node, n) {
  4476. nr_slabs += node_nr_slabs(n);
  4477. nr_objs += node_nr_objs(n);
  4478. nr_free += count_partial(n, count_free);
  4479. }
  4480. sinfo->active_objs = nr_objs - nr_free;
  4481. sinfo->num_objs = nr_objs;
  4482. sinfo->active_slabs = nr_slabs;
  4483. sinfo->num_slabs = nr_slabs;
  4484. sinfo->objects_per_slab = oo_objects(s->oo);
  4485. sinfo->cache_order = oo_order(s->oo);
  4486. }
  4487. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4488. {
  4489. }
  4490. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4491. size_t count, loff_t *ppos)
  4492. {
  4493. return -EIO;
  4494. }
  4495. #endif /* CONFIG_SLABINFO */