namespace.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/init.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include <linux/proc_ns.h>
  23. #include <linux/magic.h>
  24. #include <linux/bootmem.h>
  25. #include "pnode.h"
  26. #include "internal.h"
  27. static unsigned int m_hash_mask __read_mostly;
  28. static unsigned int m_hash_shift __read_mostly;
  29. static unsigned int mp_hash_mask __read_mostly;
  30. static unsigned int mp_hash_shift __read_mostly;
  31. static __initdata unsigned long mhash_entries;
  32. static int __init set_mhash_entries(char *str)
  33. {
  34. if (!str)
  35. return 0;
  36. mhash_entries = simple_strtoul(str, &str, 0);
  37. return 1;
  38. }
  39. __setup("mhash_entries=", set_mhash_entries);
  40. static __initdata unsigned long mphash_entries;
  41. static int __init set_mphash_entries(char *str)
  42. {
  43. if (!str)
  44. return 0;
  45. mphash_entries = simple_strtoul(str, &str, 0);
  46. return 1;
  47. }
  48. __setup("mphash_entries=", set_mphash_entries);
  49. static u64 event;
  50. static DEFINE_IDA(mnt_id_ida);
  51. static DEFINE_IDA(mnt_group_ida);
  52. static DEFINE_SPINLOCK(mnt_id_lock);
  53. static int mnt_id_start = 0;
  54. static int mnt_group_start = 1;
  55. static struct hlist_head *mount_hashtable __read_mostly;
  56. static struct hlist_head *mountpoint_hashtable __read_mostly;
  57. static struct kmem_cache *mnt_cache __read_mostly;
  58. static DECLARE_RWSEM(namespace_sem);
  59. /* /sys/fs */
  60. struct kobject *fs_kobj;
  61. EXPORT_SYMBOL_GPL(fs_kobj);
  62. /*
  63. * vfsmount lock may be taken for read to prevent changes to the
  64. * vfsmount hash, ie. during mountpoint lookups or walking back
  65. * up the tree.
  66. *
  67. * It should be taken for write in all cases where the vfsmount
  68. * tree or hash is modified or when a vfsmount structure is modified.
  69. */
  70. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  71. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  72. {
  73. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  74. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  75. tmp = tmp + (tmp >> m_hash_shift);
  76. return &mount_hashtable[tmp & m_hash_mask];
  77. }
  78. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  79. {
  80. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  81. tmp = tmp + (tmp >> mp_hash_shift);
  82. return &mountpoint_hashtable[tmp & mp_hash_mask];
  83. }
  84. /*
  85. * allocation is serialized by namespace_sem, but we need the spinlock to
  86. * serialize with freeing.
  87. */
  88. static int mnt_alloc_id(struct mount *mnt)
  89. {
  90. int res;
  91. retry:
  92. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  93. spin_lock(&mnt_id_lock);
  94. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  95. if (!res)
  96. mnt_id_start = mnt->mnt_id + 1;
  97. spin_unlock(&mnt_id_lock);
  98. if (res == -EAGAIN)
  99. goto retry;
  100. return res;
  101. }
  102. static void mnt_free_id(struct mount *mnt)
  103. {
  104. int id = mnt->mnt_id;
  105. spin_lock(&mnt_id_lock);
  106. ida_remove(&mnt_id_ida, id);
  107. if (mnt_id_start > id)
  108. mnt_id_start = id;
  109. spin_unlock(&mnt_id_lock);
  110. }
  111. /*
  112. * Allocate a new peer group ID
  113. *
  114. * mnt_group_ida is protected by namespace_sem
  115. */
  116. static int mnt_alloc_group_id(struct mount *mnt)
  117. {
  118. int res;
  119. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  120. return -ENOMEM;
  121. res = ida_get_new_above(&mnt_group_ida,
  122. mnt_group_start,
  123. &mnt->mnt_group_id);
  124. if (!res)
  125. mnt_group_start = mnt->mnt_group_id + 1;
  126. return res;
  127. }
  128. /*
  129. * Release a peer group ID
  130. */
  131. void mnt_release_group_id(struct mount *mnt)
  132. {
  133. int id = mnt->mnt_group_id;
  134. ida_remove(&mnt_group_ida, id);
  135. if (mnt_group_start > id)
  136. mnt_group_start = id;
  137. mnt->mnt_group_id = 0;
  138. }
  139. /*
  140. * vfsmount lock must be held for read
  141. */
  142. static inline void mnt_add_count(struct mount *mnt, int n)
  143. {
  144. #ifdef CONFIG_SMP
  145. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  146. #else
  147. preempt_disable();
  148. mnt->mnt_count += n;
  149. preempt_enable();
  150. #endif
  151. }
  152. /*
  153. * vfsmount lock must be held for write
  154. */
  155. unsigned int mnt_get_count(struct mount *mnt)
  156. {
  157. #ifdef CONFIG_SMP
  158. unsigned int count = 0;
  159. int cpu;
  160. for_each_possible_cpu(cpu) {
  161. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  162. }
  163. return count;
  164. #else
  165. return mnt->mnt_count;
  166. #endif
  167. }
  168. static struct mount *alloc_vfsmnt(const char *name)
  169. {
  170. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  171. if (mnt) {
  172. int err;
  173. err = mnt_alloc_id(mnt);
  174. if (err)
  175. goto out_free_cache;
  176. if (name) {
  177. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  178. if (!mnt->mnt_devname)
  179. goto out_free_id;
  180. }
  181. #ifdef CONFIG_SMP
  182. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  183. if (!mnt->mnt_pcp)
  184. goto out_free_devname;
  185. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  186. #else
  187. mnt->mnt_count = 1;
  188. mnt->mnt_writers = 0;
  189. #endif
  190. INIT_HLIST_NODE(&mnt->mnt_hash);
  191. INIT_LIST_HEAD(&mnt->mnt_child);
  192. INIT_LIST_HEAD(&mnt->mnt_mounts);
  193. INIT_LIST_HEAD(&mnt->mnt_list);
  194. INIT_LIST_HEAD(&mnt->mnt_expire);
  195. INIT_LIST_HEAD(&mnt->mnt_share);
  196. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  197. INIT_LIST_HEAD(&mnt->mnt_slave);
  198. #ifdef CONFIG_FSNOTIFY
  199. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  200. #endif
  201. }
  202. return mnt;
  203. #ifdef CONFIG_SMP
  204. out_free_devname:
  205. kfree(mnt->mnt_devname);
  206. #endif
  207. out_free_id:
  208. mnt_free_id(mnt);
  209. out_free_cache:
  210. kmem_cache_free(mnt_cache, mnt);
  211. return NULL;
  212. }
  213. /*
  214. * Most r/o checks on a fs are for operations that take
  215. * discrete amounts of time, like a write() or unlink().
  216. * We must keep track of when those operations start
  217. * (for permission checks) and when they end, so that
  218. * we can determine when writes are able to occur to
  219. * a filesystem.
  220. */
  221. /*
  222. * __mnt_is_readonly: check whether a mount is read-only
  223. * @mnt: the mount to check for its write status
  224. *
  225. * This shouldn't be used directly ouside of the VFS.
  226. * It does not guarantee that the filesystem will stay
  227. * r/w, just that it is right *now*. This can not and
  228. * should not be used in place of IS_RDONLY(inode).
  229. * mnt_want/drop_write() will _keep_ the filesystem
  230. * r/w.
  231. */
  232. int __mnt_is_readonly(struct vfsmount *mnt)
  233. {
  234. if (mnt->mnt_flags & MNT_READONLY)
  235. return 1;
  236. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  237. return 1;
  238. return 0;
  239. }
  240. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  241. static inline void mnt_inc_writers(struct mount *mnt)
  242. {
  243. #ifdef CONFIG_SMP
  244. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  245. #else
  246. mnt->mnt_writers++;
  247. #endif
  248. }
  249. static inline void mnt_dec_writers(struct mount *mnt)
  250. {
  251. #ifdef CONFIG_SMP
  252. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  253. #else
  254. mnt->mnt_writers--;
  255. #endif
  256. }
  257. static unsigned int mnt_get_writers(struct mount *mnt)
  258. {
  259. #ifdef CONFIG_SMP
  260. unsigned int count = 0;
  261. int cpu;
  262. for_each_possible_cpu(cpu) {
  263. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  264. }
  265. return count;
  266. #else
  267. return mnt->mnt_writers;
  268. #endif
  269. }
  270. static int mnt_is_readonly(struct vfsmount *mnt)
  271. {
  272. if (mnt->mnt_sb->s_readonly_remount)
  273. return 1;
  274. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  275. smp_rmb();
  276. return __mnt_is_readonly(mnt);
  277. }
  278. /*
  279. * Most r/o & frozen checks on a fs are for operations that take discrete
  280. * amounts of time, like a write() or unlink(). We must keep track of when
  281. * those operations start (for permission checks) and when they end, so that we
  282. * can determine when writes are able to occur to a filesystem.
  283. */
  284. /**
  285. * __mnt_want_write - get write access to a mount without freeze protection
  286. * @m: the mount on which to take a write
  287. *
  288. * This tells the low-level filesystem that a write is about to be performed to
  289. * it, and makes sure that writes are allowed (mnt it read-write) before
  290. * returning success. This operation does not protect against filesystem being
  291. * frozen. When the write operation is finished, __mnt_drop_write() must be
  292. * called. This is effectively a refcount.
  293. */
  294. int __mnt_want_write(struct vfsmount *m)
  295. {
  296. struct mount *mnt = real_mount(m);
  297. int ret = 0;
  298. preempt_disable();
  299. mnt_inc_writers(mnt);
  300. /*
  301. * The store to mnt_inc_writers must be visible before we pass
  302. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  303. * incremented count after it has set MNT_WRITE_HOLD.
  304. */
  305. smp_mb();
  306. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  307. cpu_relax();
  308. /*
  309. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  310. * be set to match its requirements. So we must not load that until
  311. * MNT_WRITE_HOLD is cleared.
  312. */
  313. smp_rmb();
  314. if (mnt_is_readonly(m)) {
  315. mnt_dec_writers(mnt);
  316. ret = -EROFS;
  317. }
  318. preempt_enable();
  319. return ret;
  320. }
  321. /**
  322. * mnt_want_write - get write access to a mount
  323. * @m: the mount on which to take a write
  324. *
  325. * This tells the low-level filesystem that a write is about to be performed to
  326. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  327. * is not frozen) before returning success. When the write operation is
  328. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  329. */
  330. int mnt_want_write(struct vfsmount *m)
  331. {
  332. int ret;
  333. sb_start_write(m->mnt_sb);
  334. ret = __mnt_want_write(m);
  335. if (ret)
  336. sb_end_write(m->mnt_sb);
  337. return ret;
  338. }
  339. EXPORT_SYMBOL_GPL(mnt_want_write);
  340. /**
  341. * mnt_clone_write - get write access to a mount
  342. * @mnt: the mount on which to take a write
  343. *
  344. * This is effectively like mnt_want_write, except
  345. * it must only be used to take an extra write reference
  346. * on a mountpoint that we already know has a write reference
  347. * on it. This allows some optimisation.
  348. *
  349. * After finished, mnt_drop_write must be called as usual to
  350. * drop the reference.
  351. */
  352. int mnt_clone_write(struct vfsmount *mnt)
  353. {
  354. /* superblock may be r/o */
  355. if (__mnt_is_readonly(mnt))
  356. return -EROFS;
  357. preempt_disable();
  358. mnt_inc_writers(real_mount(mnt));
  359. preempt_enable();
  360. return 0;
  361. }
  362. EXPORT_SYMBOL_GPL(mnt_clone_write);
  363. /**
  364. * __mnt_want_write_file - get write access to a file's mount
  365. * @file: the file who's mount on which to take a write
  366. *
  367. * This is like __mnt_want_write, but it takes a file and can
  368. * do some optimisations if the file is open for write already
  369. */
  370. int __mnt_want_write_file(struct file *file)
  371. {
  372. if (!(file->f_mode & FMODE_WRITER))
  373. return __mnt_want_write(file->f_path.mnt);
  374. else
  375. return mnt_clone_write(file->f_path.mnt);
  376. }
  377. /**
  378. * mnt_want_write_file - get write access to a file's mount
  379. * @file: the file who's mount on which to take a write
  380. *
  381. * This is like mnt_want_write, but it takes a file and can
  382. * do some optimisations if the file is open for write already
  383. */
  384. int mnt_want_write_file(struct file *file)
  385. {
  386. int ret;
  387. sb_start_write(file->f_path.mnt->mnt_sb);
  388. ret = __mnt_want_write_file(file);
  389. if (ret)
  390. sb_end_write(file->f_path.mnt->mnt_sb);
  391. return ret;
  392. }
  393. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  394. /**
  395. * __mnt_drop_write - give up write access to a mount
  396. * @mnt: the mount on which to give up write access
  397. *
  398. * Tells the low-level filesystem that we are done
  399. * performing writes to it. Must be matched with
  400. * __mnt_want_write() call above.
  401. */
  402. void __mnt_drop_write(struct vfsmount *mnt)
  403. {
  404. preempt_disable();
  405. mnt_dec_writers(real_mount(mnt));
  406. preempt_enable();
  407. }
  408. /**
  409. * mnt_drop_write - give up write access to a mount
  410. * @mnt: the mount on which to give up write access
  411. *
  412. * Tells the low-level filesystem that we are done performing writes to it and
  413. * also allows filesystem to be frozen again. Must be matched with
  414. * mnt_want_write() call above.
  415. */
  416. void mnt_drop_write(struct vfsmount *mnt)
  417. {
  418. __mnt_drop_write(mnt);
  419. sb_end_write(mnt->mnt_sb);
  420. }
  421. EXPORT_SYMBOL_GPL(mnt_drop_write);
  422. void __mnt_drop_write_file(struct file *file)
  423. {
  424. __mnt_drop_write(file->f_path.mnt);
  425. }
  426. void mnt_drop_write_file(struct file *file)
  427. {
  428. mnt_drop_write(file->f_path.mnt);
  429. }
  430. EXPORT_SYMBOL(mnt_drop_write_file);
  431. static int mnt_make_readonly(struct mount *mnt)
  432. {
  433. int ret = 0;
  434. lock_mount_hash();
  435. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  436. /*
  437. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  438. * should be visible before we do.
  439. */
  440. smp_mb();
  441. /*
  442. * With writers on hold, if this value is zero, then there are
  443. * definitely no active writers (although held writers may subsequently
  444. * increment the count, they'll have to wait, and decrement it after
  445. * seeing MNT_READONLY).
  446. *
  447. * It is OK to have counter incremented on one CPU and decremented on
  448. * another: the sum will add up correctly. The danger would be when we
  449. * sum up each counter, if we read a counter before it is incremented,
  450. * but then read another CPU's count which it has been subsequently
  451. * decremented from -- we would see more decrements than we should.
  452. * MNT_WRITE_HOLD protects against this scenario, because
  453. * mnt_want_write first increments count, then smp_mb, then spins on
  454. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  455. * we're counting up here.
  456. */
  457. if (mnt_get_writers(mnt) > 0)
  458. ret = -EBUSY;
  459. else
  460. mnt->mnt.mnt_flags |= MNT_READONLY;
  461. /*
  462. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  463. * that become unheld will see MNT_READONLY.
  464. */
  465. smp_wmb();
  466. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  467. unlock_mount_hash();
  468. return ret;
  469. }
  470. static void __mnt_unmake_readonly(struct mount *mnt)
  471. {
  472. lock_mount_hash();
  473. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  474. unlock_mount_hash();
  475. }
  476. int sb_prepare_remount_readonly(struct super_block *sb)
  477. {
  478. struct mount *mnt;
  479. int err = 0;
  480. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  481. if (atomic_long_read(&sb->s_remove_count))
  482. return -EBUSY;
  483. lock_mount_hash();
  484. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  485. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  486. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  487. smp_mb();
  488. if (mnt_get_writers(mnt) > 0) {
  489. err = -EBUSY;
  490. break;
  491. }
  492. }
  493. }
  494. if (!err && atomic_long_read(&sb->s_remove_count))
  495. err = -EBUSY;
  496. if (!err) {
  497. sb->s_readonly_remount = 1;
  498. smp_wmb();
  499. }
  500. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  501. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  502. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  503. }
  504. unlock_mount_hash();
  505. return err;
  506. }
  507. static void free_vfsmnt(struct mount *mnt)
  508. {
  509. kfree(mnt->mnt_devname);
  510. #ifdef CONFIG_SMP
  511. free_percpu(mnt->mnt_pcp);
  512. #endif
  513. kmem_cache_free(mnt_cache, mnt);
  514. }
  515. static void delayed_free_vfsmnt(struct rcu_head *head)
  516. {
  517. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  518. }
  519. /* call under rcu_read_lock */
  520. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  521. {
  522. struct mount *mnt;
  523. if (read_seqretry(&mount_lock, seq))
  524. return false;
  525. if (bastard == NULL)
  526. return true;
  527. mnt = real_mount(bastard);
  528. mnt_add_count(mnt, 1);
  529. if (likely(!read_seqretry(&mount_lock, seq)))
  530. return true;
  531. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  532. mnt_add_count(mnt, -1);
  533. return false;
  534. }
  535. rcu_read_unlock();
  536. mntput(bastard);
  537. rcu_read_lock();
  538. return false;
  539. }
  540. /*
  541. * find the first mount at @dentry on vfsmount @mnt.
  542. * call under rcu_read_lock()
  543. */
  544. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  545. {
  546. struct hlist_head *head = m_hash(mnt, dentry);
  547. struct mount *p;
  548. hlist_for_each_entry_rcu(p, head, mnt_hash)
  549. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  550. return p;
  551. return NULL;
  552. }
  553. /*
  554. * find the last mount at @dentry on vfsmount @mnt.
  555. * mount_lock must be held.
  556. */
  557. struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
  558. {
  559. struct mount *p, *res;
  560. res = p = __lookup_mnt(mnt, dentry);
  561. if (!p)
  562. goto out;
  563. hlist_for_each_entry_continue(p, mnt_hash) {
  564. if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
  565. break;
  566. res = p;
  567. }
  568. out:
  569. return res;
  570. }
  571. /*
  572. * lookup_mnt - Return the first child mount mounted at path
  573. *
  574. * "First" means first mounted chronologically. If you create the
  575. * following mounts:
  576. *
  577. * mount /dev/sda1 /mnt
  578. * mount /dev/sda2 /mnt
  579. * mount /dev/sda3 /mnt
  580. *
  581. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  582. * return successively the root dentry and vfsmount of /dev/sda1, then
  583. * /dev/sda2, then /dev/sda3, then NULL.
  584. *
  585. * lookup_mnt takes a reference to the found vfsmount.
  586. */
  587. struct vfsmount *lookup_mnt(struct path *path)
  588. {
  589. struct mount *child_mnt;
  590. struct vfsmount *m;
  591. unsigned seq;
  592. rcu_read_lock();
  593. do {
  594. seq = read_seqbegin(&mount_lock);
  595. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  596. m = child_mnt ? &child_mnt->mnt : NULL;
  597. } while (!legitimize_mnt(m, seq));
  598. rcu_read_unlock();
  599. return m;
  600. }
  601. static struct mountpoint *new_mountpoint(struct dentry *dentry)
  602. {
  603. struct hlist_head *chain = mp_hash(dentry);
  604. struct mountpoint *mp;
  605. int ret;
  606. hlist_for_each_entry(mp, chain, m_hash) {
  607. if (mp->m_dentry == dentry) {
  608. /* might be worth a WARN_ON() */
  609. if (d_unlinked(dentry))
  610. return ERR_PTR(-ENOENT);
  611. mp->m_count++;
  612. return mp;
  613. }
  614. }
  615. mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  616. if (!mp)
  617. return ERR_PTR(-ENOMEM);
  618. ret = d_set_mounted(dentry);
  619. if (ret) {
  620. kfree(mp);
  621. return ERR_PTR(ret);
  622. }
  623. mp->m_dentry = dentry;
  624. mp->m_count = 1;
  625. hlist_add_head(&mp->m_hash, chain);
  626. return mp;
  627. }
  628. static void put_mountpoint(struct mountpoint *mp)
  629. {
  630. if (!--mp->m_count) {
  631. struct dentry *dentry = mp->m_dentry;
  632. spin_lock(&dentry->d_lock);
  633. dentry->d_flags &= ~DCACHE_MOUNTED;
  634. spin_unlock(&dentry->d_lock);
  635. hlist_del(&mp->m_hash);
  636. kfree(mp);
  637. }
  638. }
  639. static inline int check_mnt(struct mount *mnt)
  640. {
  641. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  642. }
  643. /*
  644. * vfsmount lock must be held for write
  645. */
  646. static void touch_mnt_namespace(struct mnt_namespace *ns)
  647. {
  648. if (ns) {
  649. ns->event = ++event;
  650. wake_up_interruptible(&ns->poll);
  651. }
  652. }
  653. /*
  654. * vfsmount lock must be held for write
  655. */
  656. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  657. {
  658. if (ns && ns->event != event) {
  659. ns->event = event;
  660. wake_up_interruptible(&ns->poll);
  661. }
  662. }
  663. /*
  664. * vfsmount lock must be held for write
  665. */
  666. static void detach_mnt(struct mount *mnt, struct path *old_path)
  667. {
  668. old_path->dentry = mnt->mnt_mountpoint;
  669. old_path->mnt = &mnt->mnt_parent->mnt;
  670. mnt->mnt_parent = mnt;
  671. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  672. list_del_init(&mnt->mnt_child);
  673. hlist_del_init_rcu(&mnt->mnt_hash);
  674. put_mountpoint(mnt->mnt_mp);
  675. mnt->mnt_mp = NULL;
  676. }
  677. /*
  678. * vfsmount lock must be held for write
  679. */
  680. void mnt_set_mountpoint(struct mount *mnt,
  681. struct mountpoint *mp,
  682. struct mount *child_mnt)
  683. {
  684. mp->m_count++;
  685. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  686. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  687. child_mnt->mnt_parent = mnt;
  688. child_mnt->mnt_mp = mp;
  689. }
  690. /*
  691. * vfsmount lock must be held for write
  692. */
  693. static void attach_mnt(struct mount *mnt,
  694. struct mount *parent,
  695. struct mountpoint *mp)
  696. {
  697. mnt_set_mountpoint(parent, mp, mnt);
  698. hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
  699. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  700. }
  701. static void attach_shadowed(struct mount *mnt,
  702. struct mount *parent,
  703. struct mount *shadows)
  704. {
  705. if (shadows) {
  706. hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
  707. list_add(&mnt->mnt_child, &shadows->mnt_child);
  708. } else {
  709. hlist_add_head_rcu(&mnt->mnt_hash,
  710. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  711. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  712. }
  713. }
  714. /*
  715. * vfsmount lock must be held for write
  716. */
  717. static void commit_tree(struct mount *mnt, struct mount *shadows)
  718. {
  719. struct mount *parent = mnt->mnt_parent;
  720. struct mount *m;
  721. LIST_HEAD(head);
  722. struct mnt_namespace *n = parent->mnt_ns;
  723. BUG_ON(parent == mnt);
  724. list_add_tail(&head, &mnt->mnt_list);
  725. list_for_each_entry(m, &head, mnt_list)
  726. m->mnt_ns = n;
  727. list_splice(&head, n->list.prev);
  728. attach_shadowed(mnt, parent, shadows);
  729. touch_mnt_namespace(n);
  730. }
  731. static struct mount *next_mnt(struct mount *p, struct mount *root)
  732. {
  733. struct list_head *next = p->mnt_mounts.next;
  734. if (next == &p->mnt_mounts) {
  735. while (1) {
  736. if (p == root)
  737. return NULL;
  738. next = p->mnt_child.next;
  739. if (next != &p->mnt_parent->mnt_mounts)
  740. break;
  741. p = p->mnt_parent;
  742. }
  743. }
  744. return list_entry(next, struct mount, mnt_child);
  745. }
  746. static struct mount *skip_mnt_tree(struct mount *p)
  747. {
  748. struct list_head *prev = p->mnt_mounts.prev;
  749. while (prev != &p->mnt_mounts) {
  750. p = list_entry(prev, struct mount, mnt_child);
  751. prev = p->mnt_mounts.prev;
  752. }
  753. return p;
  754. }
  755. struct vfsmount *
  756. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  757. {
  758. struct mount *mnt;
  759. struct dentry *root;
  760. if (!type)
  761. return ERR_PTR(-ENODEV);
  762. mnt = alloc_vfsmnt(name);
  763. if (!mnt)
  764. return ERR_PTR(-ENOMEM);
  765. if (flags & MS_KERNMOUNT)
  766. mnt->mnt.mnt_flags = MNT_INTERNAL;
  767. root = mount_fs(type, flags, name, data);
  768. if (IS_ERR(root)) {
  769. mnt_free_id(mnt);
  770. free_vfsmnt(mnt);
  771. return ERR_CAST(root);
  772. }
  773. mnt->mnt.mnt_root = root;
  774. mnt->mnt.mnt_sb = root->d_sb;
  775. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  776. mnt->mnt_parent = mnt;
  777. lock_mount_hash();
  778. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  779. unlock_mount_hash();
  780. return &mnt->mnt;
  781. }
  782. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  783. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  784. int flag)
  785. {
  786. struct super_block *sb = old->mnt.mnt_sb;
  787. struct mount *mnt;
  788. int err;
  789. mnt = alloc_vfsmnt(old->mnt_devname);
  790. if (!mnt)
  791. return ERR_PTR(-ENOMEM);
  792. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  793. mnt->mnt_group_id = 0; /* not a peer of original */
  794. else
  795. mnt->mnt_group_id = old->mnt_group_id;
  796. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  797. err = mnt_alloc_group_id(mnt);
  798. if (err)
  799. goto out_free;
  800. }
  801. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  802. /* Don't allow unprivileged users to change mount flags */
  803. if (flag & CL_UNPRIVILEGED) {
  804. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  805. if (mnt->mnt.mnt_flags & MNT_READONLY)
  806. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  807. if (mnt->mnt.mnt_flags & MNT_NODEV)
  808. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  809. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  810. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  811. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  812. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  813. }
  814. /* Don't allow unprivileged users to reveal what is under a mount */
  815. if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
  816. mnt->mnt.mnt_flags |= MNT_LOCKED;
  817. atomic_inc(&sb->s_active);
  818. mnt->mnt.mnt_sb = sb;
  819. mnt->mnt.mnt_root = dget(root);
  820. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  821. mnt->mnt_parent = mnt;
  822. lock_mount_hash();
  823. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  824. unlock_mount_hash();
  825. if ((flag & CL_SLAVE) ||
  826. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  827. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  828. mnt->mnt_master = old;
  829. CLEAR_MNT_SHARED(mnt);
  830. } else if (!(flag & CL_PRIVATE)) {
  831. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  832. list_add(&mnt->mnt_share, &old->mnt_share);
  833. if (IS_MNT_SLAVE(old))
  834. list_add(&mnt->mnt_slave, &old->mnt_slave);
  835. mnt->mnt_master = old->mnt_master;
  836. }
  837. if (flag & CL_MAKE_SHARED)
  838. set_mnt_shared(mnt);
  839. /* stick the duplicate mount on the same expiry list
  840. * as the original if that was on one */
  841. if (flag & CL_EXPIRE) {
  842. if (!list_empty(&old->mnt_expire))
  843. list_add(&mnt->mnt_expire, &old->mnt_expire);
  844. }
  845. return mnt;
  846. out_free:
  847. mnt_free_id(mnt);
  848. free_vfsmnt(mnt);
  849. return ERR_PTR(err);
  850. }
  851. static void mntput_no_expire(struct mount *mnt)
  852. {
  853. rcu_read_lock();
  854. mnt_add_count(mnt, -1);
  855. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  856. rcu_read_unlock();
  857. return;
  858. }
  859. lock_mount_hash();
  860. if (mnt_get_count(mnt)) {
  861. rcu_read_unlock();
  862. unlock_mount_hash();
  863. return;
  864. }
  865. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  866. rcu_read_unlock();
  867. unlock_mount_hash();
  868. return;
  869. }
  870. mnt->mnt.mnt_flags |= MNT_DOOMED;
  871. rcu_read_unlock();
  872. list_del(&mnt->mnt_instance);
  873. unlock_mount_hash();
  874. /*
  875. * This probably indicates that somebody messed
  876. * up a mnt_want/drop_write() pair. If this
  877. * happens, the filesystem was probably unable
  878. * to make r/w->r/o transitions.
  879. */
  880. /*
  881. * The locking used to deal with mnt_count decrement provides barriers,
  882. * so mnt_get_writers() below is safe.
  883. */
  884. WARN_ON(mnt_get_writers(mnt));
  885. if (unlikely(mnt->mnt_pins.first))
  886. mnt_pin_kill(mnt);
  887. fsnotify_vfsmount_delete(&mnt->mnt);
  888. dput(mnt->mnt.mnt_root);
  889. deactivate_super(mnt->mnt.mnt_sb);
  890. mnt_free_id(mnt);
  891. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  892. }
  893. void mntput(struct vfsmount *mnt)
  894. {
  895. if (mnt) {
  896. struct mount *m = real_mount(mnt);
  897. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  898. if (unlikely(m->mnt_expiry_mark))
  899. m->mnt_expiry_mark = 0;
  900. mntput_no_expire(m);
  901. }
  902. }
  903. EXPORT_SYMBOL(mntput);
  904. struct vfsmount *mntget(struct vfsmount *mnt)
  905. {
  906. if (mnt)
  907. mnt_add_count(real_mount(mnt), 1);
  908. return mnt;
  909. }
  910. EXPORT_SYMBOL(mntget);
  911. struct vfsmount *mnt_clone_internal(struct path *path)
  912. {
  913. struct mount *p;
  914. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  915. if (IS_ERR(p))
  916. return ERR_CAST(p);
  917. p->mnt.mnt_flags |= MNT_INTERNAL;
  918. return &p->mnt;
  919. }
  920. static inline void mangle(struct seq_file *m, const char *s)
  921. {
  922. seq_escape(m, s, " \t\n\\");
  923. }
  924. /*
  925. * Simple .show_options callback for filesystems which don't want to
  926. * implement more complex mount option showing.
  927. *
  928. * See also save_mount_options().
  929. */
  930. int generic_show_options(struct seq_file *m, struct dentry *root)
  931. {
  932. const char *options;
  933. rcu_read_lock();
  934. options = rcu_dereference(root->d_sb->s_options);
  935. if (options != NULL && options[0]) {
  936. seq_putc(m, ',');
  937. mangle(m, options);
  938. }
  939. rcu_read_unlock();
  940. return 0;
  941. }
  942. EXPORT_SYMBOL(generic_show_options);
  943. /*
  944. * If filesystem uses generic_show_options(), this function should be
  945. * called from the fill_super() callback.
  946. *
  947. * The .remount_fs callback usually needs to be handled in a special
  948. * way, to make sure, that previous options are not overwritten if the
  949. * remount fails.
  950. *
  951. * Also note, that if the filesystem's .remount_fs function doesn't
  952. * reset all options to their default value, but changes only newly
  953. * given options, then the displayed options will not reflect reality
  954. * any more.
  955. */
  956. void save_mount_options(struct super_block *sb, char *options)
  957. {
  958. BUG_ON(sb->s_options);
  959. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  960. }
  961. EXPORT_SYMBOL(save_mount_options);
  962. void replace_mount_options(struct super_block *sb, char *options)
  963. {
  964. char *old = sb->s_options;
  965. rcu_assign_pointer(sb->s_options, options);
  966. if (old) {
  967. synchronize_rcu();
  968. kfree(old);
  969. }
  970. }
  971. EXPORT_SYMBOL(replace_mount_options);
  972. #ifdef CONFIG_PROC_FS
  973. /* iterator; we want it to have access to namespace_sem, thus here... */
  974. static void *m_start(struct seq_file *m, loff_t *pos)
  975. {
  976. struct proc_mounts *p = proc_mounts(m);
  977. down_read(&namespace_sem);
  978. if (p->cached_event == p->ns->event) {
  979. void *v = p->cached_mount;
  980. if (*pos == p->cached_index)
  981. return v;
  982. if (*pos == p->cached_index + 1) {
  983. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  984. return p->cached_mount = v;
  985. }
  986. }
  987. p->cached_event = p->ns->event;
  988. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  989. p->cached_index = *pos;
  990. return p->cached_mount;
  991. }
  992. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  993. {
  994. struct proc_mounts *p = proc_mounts(m);
  995. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  996. p->cached_index = *pos;
  997. return p->cached_mount;
  998. }
  999. static void m_stop(struct seq_file *m, void *v)
  1000. {
  1001. up_read(&namespace_sem);
  1002. }
  1003. static int m_show(struct seq_file *m, void *v)
  1004. {
  1005. struct proc_mounts *p = proc_mounts(m);
  1006. struct mount *r = list_entry(v, struct mount, mnt_list);
  1007. return p->show(m, &r->mnt);
  1008. }
  1009. const struct seq_operations mounts_op = {
  1010. .start = m_start,
  1011. .next = m_next,
  1012. .stop = m_stop,
  1013. .show = m_show,
  1014. };
  1015. #endif /* CONFIG_PROC_FS */
  1016. /**
  1017. * may_umount_tree - check if a mount tree is busy
  1018. * @mnt: root of mount tree
  1019. *
  1020. * This is called to check if a tree of mounts has any
  1021. * open files, pwds, chroots or sub mounts that are
  1022. * busy.
  1023. */
  1024. int may_umount_tree(struct vfsmount *m)
  1025. {
  1026. struct mount *mnt = real_mount(m);
  1027. int actual_refs = 0;
  1028. int minimum_refs = 0;
  1029. struct mount *p;
  1030. BUG_ON(!m);
  1031. /* write lock needed for mnt_get_count */
  1032. lock_mount_hash();
  1033. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1034. actual_refs += mnt_get_count(p);
  1035. minimum_refs += 2;
  1036. }
  1037. unlock_mount_hash();
  1038. if (actual_refs > minimum_refs)
  1039. return 0;
  1040. return 1;
  1041. }
  1042. EXPORT_SYMBOL(may_umount_tree);
  1043. /**
  1044. * may_umount - check if a mount point is busy
  1045. * @mnt: root of mount
  1046. *
  1047. * This is called to check if a mount point has any
  1048. * open files, pwds, chroots or sub mounts. If the
  1049. * mount has sub mounts this will return busy
  1050. * regardless of whether the sub mounts are busy.
  1051. *
  1052. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1053. * give false negatives. The main reason why it's here is that we need
  1054. * a non-destructive way to look for easily umountable filesystems.
  1055. */
  1056. int may_umount(struct vfsmount *mnt)
  1057. {
  1058. int ret = 1;
  1059. down_read(&namespace_sem);
  1060. lock_mount_hash();
  1061. if (propagate_mount_busy(real_mount(mnt), 2))
  1062. ret = 0;
  1063. unlock_mount_hash();
  1064. up_read(&namespace_sem);
  1065. return ret;
  1066. }
  1067. EXPORT_SYMBOL(may_umount);
  1068. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1069. static void namespace_unlock(void)
  1070. {
  1071. struct mount *mnt;
  1072. struct hlist_head head = unmounted;
  1073. if (likely(hlist_empty(&head))) {
  1074. up_write(&namespace_sem);
  1075. return;
  1076. }
  1077. head.first->pprev = &head.first;
  1078. INIT_HLIST_HEAD(&unmounted);
  1079. /* undo decrements we'd done in umount_tree() */
  1080. hlist_for_each_entry(mnt, &head, mnt_hash)
  1081. if (mnt->mnt_ex_mountpoint.mnt)
  1082. mntget(mnt->mnt_ex_mountpoint.mnt);
  1083. up_write(&namespace_sem);
  1084. synchronize_rcu();
  1085. while (!hlist_empty(&head)) {
  1086. mnt = hlist_entry(head.first, struct mount, mnt_hash);
  1087. hlist_del_init(&mnt->mnt_hash);
  1088. if (mnt->mnt_ex_mountpoint.mnt)
  1089. path_put(&mnt->mnt_ex_mountpoint);
  1090. mntput(&mnt->mnt);
  1091. }
  1092. }
  1093. static inline void namespace_lock(void)
  1094. {
  1095. down_write(&namespace_sem);
  1096. }
  1097. /*
  1098. * mount_lock must be held
  1099. * namespace_sem must be held for write
  1100. * how = 0 => just this tree, don't propagate
  1101. * how = 1 => propagate; we know that nobody else has reference to any victims
  1102. * how = 2 => lazy umount
  1103. */
  1104. void umount_tree(struct mount *mnt, int how)
  1105. {
  1106. HLIST_HEAD(tmp_list);
  1107. struct mount *p;
  1108. struct mount *last = NULL;
  1109. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1110. hlist_del_init_rcu(&p->mnt_hash);
  1111. hlist_add_head(&p->mnt_hash, &tmp_list);
  1112. }
  1113. hlist_for_each_entry(p, &tmp_list, mnt_hash)
  1114. list_del_init(&p->mnt_child);
  1115. if (how)
  1116. propagate_umount(&tmp_list);
  1117. hlist_for_each_entry(p, &tmp_list, mnt_hash) {
  1118. list_del_init(&p->mnt_expire);
  1119. list_del_init(&p->mnt_list);
  1120. __touch_mnt_namespace(p->mnt_ns);
  1121. p->mnt_ns = NULL;
  1122. if (how < 2)
  1123. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1124. if (mnt_has_parent(p)) {
  1125. put_mountpoint(p->mnt_mp);
  1126. mnt_add_count(p->mnt_parent, -1);
  1127. /* move the reference to mountpoint into ->mnt_ex_mountpoint */
  1128. p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
  1129. p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
  1130. p->mnt_mountpoint = p->mnt.mnt_root;
  1131. p->mnt_parent = p;
  1132. p->mnt_mp = NULL;
  1133. }
  1134. change_mnt_propagation(p, MS_PRIVATE);
  1135. last = p;
  1136. }
  1137. if (last) {
  1138. last->mnt_hash.next = unmounted.first;
  1139. unmounted.first = tmp_list.first;
  1140. unmounted.first->pprev = &unmounted.first;
  1141. }
  1142. }
  1143. static void shrink_submounts(struct mount *mnt);
  1144. static int do_umount(struct mount *mnt, int flags)
  1145. {
  1146. struct super_block *sb = mnt->mnt.mnt_sb;
  1147. int retval;
  1148. retval = security_sb_umount(&mnt->mnt, flags);
  1149. if (retval)
  1150. return retval;
  1151. /*
  1152. * Allow userspace to request a mountpoint be expired rather than
  1153. * unmounting unconditionally. Unmount only happens if:
  1154. * (1) the mark is already set (the mark is cleared by mntput())
  1155. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1156. */
  1157. if (flags & MNT_EXPIRE) {
  1158. if (&mnt->mnt == current->fs->root.mnt ||
  1159. flags & (MNT_FORCE | MNT_DETACH))
  1160. return -EINVAL;
  1161. /*
  1162. * probably don't strictly need the lock here if we examined
  1163. * all race cases, but it's a slowpath.
  1164. */
  1165. lock_mount_hash();
  1166. if (mnt_get_count(mnt) != 2) {
  1167. unlock_mount_hash();
  1168. return -EBUSY;
  1169. }
  1170. unlock_mount_hash();
  1171. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1172. return -EAGAIN;
  1173. }
  1174. /*
  1175. * If we may have to abort operations to get out of this
  1176. * mount, and they will themselves hold resources we must
  1177. * allow the fs to do things. In the Unix tradition of
  1178. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1179. * might fail to complete on the first run through as other tasks
  1180. * must return, and the like. Thats for the mount program to worry
  1181. * about for the moment.
  1182. */
  1183. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1184. sb->s_op->umount_begin(sb);
  1185. }
  1186. /*
  1187. * No sense to grab the lock for this test, but test itself looks
  1188. * somewhat bogus. Suggestions for better replacement?
  1189. * Ho-hum... In principle, we might treat that as umount + switch
  1190. * to rootfs. GC would eventually take care of the old vfsmount.
  1191. * Actually it makes sense, especially if rootfs would contain a
  1192. * /reboot - static binary that would close all descriptors and
  1193. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1194. */
  1195. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1196. /*
  1197. * Special case for "unmounting" root ...
  1198. * we just try to remount it readonly.
  1199. */
  1200. down_write(&sb->s_umount);
  1201. if (!(sb->s_flags & MS_RDONLY))
  1202. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1203. up_write(&sb->s_umount);
  1204. return retval;
  1205. }
  1206. namespace_lock();
  1207. lock_mount_hash();
  1208. event++;
  1209. if (flags & MNT_DETACH) {
  1210. if (!list_empty(&mnt->mnt_list))
  1211. umount_tree(mnt, 2);
  1212. retval = 0;
  1213. } else {
  1214. shrink_submounts(mnt);
  1215. retval = -EBUSY;
  1216. if (!propagate_mount_busy(mnt, 2)) {
  1217. if (!list_empty(&mnt->mnt_list))
  1218. umount_tree(mnt, 1);
  1219. retval = 0;
  1220. }
  1221. }
  1222. unlock_mount_hash();
  1223. namespace_unlock();
  1224. return retval;
  1225. }
  1226. /*
  1227. * Is the caller allowed to modify his namespace?
  1228. */
  1229. static inline bool may_mount(void)
  1230. {
  1231. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1232. }
  1233. /*
  1234. * Now umount can handle mount points as well as block devices.
  1235. * This is important for filesystems which use unnamed block devices.
  1236. *
  1237. * We now support a flag for forced unmount like the other 'big iron'
  1238. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1239. */
  1240. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1241. {
  1242. struct path path;
  1243. struct mount *mnt;
  1244. int retval;
  1245. int lookup_flags = 0;
  1246. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1247. return -EINVAL;
  1248. if (!may_mount())
  1249. return -EPERM;
  1250. if (!(flags & UMOUNT_NOFOLLOW))
  1251. lookup_flags |= LOOKUP_FOLLOW;
  1252. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1253. if (retval)
  1254. goto out;
  1255. mnt = real_mount(path.mnt);
  1256. retval = -EINVAL;
  1257. if (path.dentry != path.mnt->mnt_root)
  1258. goto dput_and_out;
  1259. if (!check_mnt(mnt))
  1260. goto dput_and_out;
  1261. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1262. goto dput_and_out;
  1263. retval = do_umount(mnt, flags);
  1264. dput_and_out:
  1265. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1266. dput(path.dentry);
  1267. mntput_no_expire(mnt);
  1268. out:
  1269. return retval;
  1270. }
  1271. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1272. /*
  1273. * The 2.0 compatible umount. No flags.
  1274. */
  1275. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1276. {
  1277. return sys_umount(name, 0);
  1278. }
  1279. #endif
  1280. static bool is_mnt_ns_file(struct dentry *dentry)
  1281. {
  1282. /* Is this a proxy for a mount namespace? */
  1283. struct inode *inode = dentry->d_inode;
  1284. struct proc_ns *ei;
  1285. if (!proc_ns_inode(inode))
  1286. return false;
  1287. ei = get_proc_ns(inode);
  1288. if (ei->ns_ops != &mntns_operations)
  1289. return false;
  1290. return true;
  1291. }
  1292. static bool mnt_ns_loop(struct dentry *dentry)
  1293. {
  1294. /* Could bind mounting the mount namespace inode cause a
  1295. * mount namespace loop?
  1296. */
  1297. struct mnt_namespace *mnt_ns;
  1298. if (!is_mnt_ns_file(dentry))
  1299. return false;
  1300. mnt_ns = get_proc_ns(dentry->d_inode)->ns;
  1301. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1302. }
  1303. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1304. int flag)
  1305. {
  1306. struct mount *res, *p, *q, *r, *parent;
  1307. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1308. return ERR_PTR(-EINVAL);
  1309. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1310. return ERR_PTR(-EINVAL);
  1311. res = q = clone_mnt(mnt, dentry, flag);
  1312. if (IS_ERR(q))
  1313. return q;
  1314. q->mnt.mnt_flags &= ~MNT_LOCKED;
  1315. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1316. p = mnt;
  1317. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1318. struct mount *s;
  1319. if (!is_subdir(r->mnt_mountpoint, dentry))
  1320. continue;
  1321. for (s = r; s; s = next_mnt(s, r)) {
  1322. struct mount *t = NULL;
  1323. if (!(flag & CL_COPY_UNBINDABLE) &&
  1324. IS_MNT_UNBINDABLE(s)) {
  1325. s = skip_mnt_tree(s);
  1326. continue;
  1327. }
  1328. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1329. is_mnt_ns_file(s->mnt.mnt_root)) {
  1330. s = skip_mnt_tree(s);
  1331. continue;
  1332. }
  1333. while (p != s->mnt_parent) {
  1334. p = p->mnt_parent;
  1335. q = q->mnt_parent;
  1336. }
  1337. p = s;
  1338. parent = q;
  1339. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1340. if (IS_ERR(q))
  1341. goto out;
  1342. lock_mount_hash();
  1343. list_add_tail(&q->mnt_list, &res->mnt_list);
  1344. mnt_set_mountpoint(parent, p->mnt_mp, q);
  1345. if (!list_empty(&parent->mnt_mounts)) {
  1346. t = list_last_entry(&parent->mnt_mounts,
  1347. struct mount, mnt_child);
  1348. if (t->mnt_mp != p->mnt_mp)
  1349. t = NULL;
  1350. }
  1351. attach_shadowed(q, parent, t);
  1352. unlock_mount_hash();
  1353. }
  1354. }
  1355. return res;
  1356. out:
  1357. if (res) {
  1358. lock_mount_hash();
  1359. umount_tree(res, 0);
  1360. unlock_mount_hash();
  1361. }
  1362. return q;
  1363. }
  1364. /* Caller should check returned pointer for errors */
  1365. struct vfsmount *collect_mounts(struct path *path)
  1366. {
  1367. struct mount *tree;
  1368. namespace_lock();
  1369. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1370. CL_COPY_ALL | CL_PRIVATE);
  1371. namespace_unlock();
  1372. if (IS_ERR(tree))
  1373. return ERR_CAST(tree);
  1374. return &tree->mnt;
  1375. }
  1376. void drop_collected_mounts(struct vfsmount *mnt)
  1377. {
  1378. namespace_lock();
  1379. lock_mount_hash();
  1380. umount_tree(real_mount(mnt), 0);
  1381. unlock_mount_hash();
  1382. namespace_unlock();
  1383. }
  1384. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1385. struct vfsmount *root)
  1386. {
  1387. struct mount *mnt;
  1388. int res = f(root, arg);
  1389. if (res)
  1390. return res;
  1391. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1392. res = f(&mnt->mnt, arg);
  1393. if (res)
  1394. return res;
  1395. }
  1396. return 0;
  1397. }
  1398. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1399. {
  1400. struct mount *p;
  1401. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1402. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1403. mnt_release_group_id(p);
  1404. }
  1405. }
  1406. static int invent_group_ids(struct mount *mnt, bool recurse)
  1407. {
  1408. struct mount *p;
  1409. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1410. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1411. int err = mnt_alloc_group_id(p);
  1412. if (err) {
  1413. cleanup_group_ids(mnt, p);
  1414. return err;
  1415. }
  1416. }
  1417. }
  1418. return 0;
  1419. }
  1420. /*
  1421. * @source_mnt : mount tree to be attached
  1422. * @nd : place the mount tree @source_mnt is attached
  1423. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1424. * store the parent mount and mountpoint dentry.
  1425. * (done when source_mnt is moved)
  1426. *
  1427. * NOTE: in the table below explains the semantics when a source mount
  1428. * of a given type is attached to a destination mount of a given type.
  1429. * ---------------------------------------------------------------------------
  1430. * | BIND MOUNT OPERATION |
  1431. * |**************************************************************************
  1432. * | source-->| shared | private | slave | unbindable |
  1433. * | dest | | | | |
  1434. * | | | | | | |
  1435. * | v | | | | |
  1436. * |**************************************************************************
  1437. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1438. * | | | | | |
  1439. * |non-shared| shared (+) | private | slave (*) | invalid |
  1440. * ***************************************************************************
  1441. * A bind operation clones the source mount and mounts the clone on the
  1442. * destination mount.
  1443. *
  1444. * (++) the cloned mount is propagated to all the mounts in the propagation
  1445. * tree of the destination mount and the cloned mount is added to
  1446. * the peer group of the source mount.
  1447. * (+) the cloned mount is created under the destination mount and is marked
  1448. * as shared. The cloned mount is added to the peer group of the source
  1449. * mount.
  1450. * (+++) the mount is propagated to all the mounts in the propagation tree
  1451. * of the destination mount and the cloned mount is made slave
  1452. * of the same master as that of the source mount. The cloned mount
  1453. * is marked as 'shared and slave'.
  1454. * (*) the cloned mount is made a slave of the same master as that of the
  1455. * source mount.
  1456. *
  1457. * ---------------------------------------------------------------------------
  1458. * | MOVE MOUNT OPERATION |
  1459. * |**************************************************************************
  1460. * | source-->| shared | private | slave | unbindable |
  1461. * | dest | | | | |
  1462. * | | | | | | |
  1463. * | v | | | | |
  1464. * |**************************************************************************
  1465. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1466. * | | | | | |
  1467. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1468. * ***************************************************************************
  1469. *
  1470. * (+) the mount is moved to the destination. And is then propagated to
  1471. * all the mounts in the propagation tree of the destination mount.
  1472. * (+*) the mount is moved to the destination.
  1473. * (+++) the mount is moved to the destination and is then propagated to
  1474. * all the mounts belonging to the destination mount's propagation tree.
  1475. * the mount is marked as 'shared and slave'.
  1476. * (*) the mount continues to be a slave at the new location.
  1477. *
  1478. * if the source mount is a tree, the operations explained above is
  1479. * applied to each mount in the tree.
  1480. * Must be called without spinlocks held, since this function can sleep
  1481. * in allocations.
  1482. */
  1483. static int attach_recursive_mnt(struct mount *source_mnt,
  1484. struct mount *dest_mnt,
  1485. struct mountpoint *dest_mp,
  1486. struct path *parent_path)
  1487. {
  1488. HLIST_HEAD(tree_list);
  1489. struct mount *child, *p;
  1490. struct hlist_node *n;
  1491. int err;
  1492. if (IS_MNT_SHARED(dest_mnt)) {
  1493. err = invent_group_ids(source_mnt, true);
  1494. if (err)
  1495. goto out;
  1496. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1497. lock_mount_hash();
  1498. if (err)
  1499. goto out_cleanup_ids;
  1500. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1501. set_mnt_shared(p);
  1502. } else {
  1503. lock_mount_hash();
  1504. }
  1505. if (parent_path) {
  1506. detach_mnt(source_mnt, parent_path);
  1507. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1508. touch_mnt_namespace(source_mnt->mnt_ns);
  1509. } else {
  1510. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1511. commit_tree(source_mnt, NULL);
  1512. }
  1513. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1514. struct mount *q;
  1515. hlist_del_init(&child->mnt_hash);
  1516. q = __lookup_mnt_last(&child->mnt_parent->mnt,
  1517. child->mnt_mountpoint);
  1518. commit_tree(child, q);
  1519. }
  1520. unlock_mount_hash();
  1521. return 0;
  1522. out_cleanup_ids:
  1523. while (!hlist_empty(&tree_list)) {
  1524. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1525. umount_tree(child, 0);
  1526. }
  1527. unlock_mount_hash();
  1528. cleanup_group_ids(source_mnt, NULL);
  1529. out:
  1530. return err;
  1531. }
  1532. static struct mountpoint *lock_mount(struct path *path)
  1533. {
  1534. struct vfsmount *mnt;
  1535. struct dentry *dentry = path->dentry;
  1536. retry:
  1537. mutex_lock(&dentry->d_inode->i_mutex);
  1538. if (unlikely(cant_mount(dentry))) {
  1539. mutex_unlock(&dentry->d_inode->i_mutex);
  1540. return ERR_PTR(-ENOENT);
  1541. }
  1542. namespace_lock();
  1543. mnt = lookup_mnt(path);
  1544. if (likely(!mnt)) {
  1545. struct mountpoint *mp = new_mountpoint(dentry);
  1546. if (IS_ERR(mp)) {
  1547. namespace_unlock();
  1548. mutex_unlock(&dentry->d_inode->i_mutex);
  1549. return mp;
  1550. }
  1551. return mp;
  1552. }
  1553. namespace_unlock();
  1554. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1555. path_put(path);
  1556. path->mnt = mnt;
  1557. dentry = path->dentry = dget(mnt->mnt_root);
  1558. goto retry;
  1559. }
  1560. static void unlock_mount(struct mountpoint *where)
  1561. {
  1562. struct dentry *dentry = where->m_dentry;
  1563. put_mountpoint(where);
  1564. namespace_unlock();
  1565. mutex_unlock(&dentry->d_inode->i_mutex);
  1566. }
  1567. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1568. {
  1569. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1570. return -EINVAL;
  1571. if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
  1572. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1573. return -ENOTDIR;
  1574. return attach_recursive_mnt(mnt, p, mp, NULL);
  1575. }
  1576. /*
  1577. * Sanity check the flags to change_mnt_propagation.
  1578. */
  1579. static int flags_to_propagation_type(int flags)
  1580. {
  1581. int type = flags & ~(MS_REC | MS_SILENT);
  1582. /* Fail if any non-propagation flags are set */
  1583. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1584. return 0;
  1585. /* Only one propagation flag should be set */
  1586. if (!is_power_of_2(type))
  1587. return 0;
  1588. return type;
  1589. }
  1590. /*
  1591. * recursively change the type of the mountpoint.
  1592. */
  1593. static int do_change_type(struct path *path, int flag)
  1594. {
  1595. struct mount *m;
  1596. struct mount *mnt = real_mount(path->mnt);
  1597. int recurse = flag & MS_REC;
  1598. int type;
  1599. int err = 0;
  1600. if (path->dentry != path->mnt->mnt_root)
  1601. return -EINVAL;
  1602. type = flags_to_propagation_type(flag);
  1603. if (!type)
  1604. return -EINVAL;
  1605. namespace_lock();
  1606. if (type == MS_SHARED) {
  1607. err = invent_group_ids(mnt, recurse);
  1608. if (err)
  1609. goto out_unlock;
  1610. }
  1611. lock_mount_hash();
  1612. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1613. change_mnt_propagation(m, type);
  1614. unlock_mount_hash();
  1615. out_unlock:
  1616. namespace_unlock();
  1617. return err;
  1618. }
  1619. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1620. {
  1621. struct mount *child;
  1622. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1623. if (!is_subdir(child->mnt_mountpoint, dentry))
  1624. continue;
  1625. if (child->mnt.mnt_flags & MNT_LOCKED)
  1626. return true;
  1627. }
  1628. return false;
  1629. }
  1630. /*
  1631. * do loopback mount.
  1632. */
  1633. static int do_loopback(struct path *path, const char *old_name,
  1634. int recurse)
  1635. {
  1636. struct path old_path;
  1637. struct mount *mnt = NULL, *old, *parent;
  1638. struct mountpoint *mp;
  1639. int err;
  1640. if (!old_name || !*old_name)
  1641. return -EINVAL;
  1642. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1643. if (err)
  1644. return err;
  1645. err = -EINVAL;
  1646. if (mnt_ns_loop(old_path.dentry))
  1647. goto out;
  1648. mp = lock_mount(path);
  1649. err = PTR_ERR(mp);
  1650. if (IS_ERR(mp))
  1651. goto out;
  1652. old = real_mount(old_path.mnt);
  1653. parent = real_mount(path->mnt);
  1654. err = -EINVAL;
  1655. if (IS_MNT_UNBINDABLE(old))
  1656. goto out2;
  1657. if (!check_mnt(parent) || !check_mnt(old))
  1658. goto out2;
  1659. if (!recurse && has_locked_children(old, old_path.dentry))
  1660. goto out2;
  1661. if (recurse)
  1662. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1663. else
  1664. mnt = clone_mnt(old, old_path.dentry, 0);
  1665. if (IS_ERR(mnt)) {
  1666. err = PTR_ERR(mnt);
  1667. goto out2;
  1668. }
  1669. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1670. err = graft_tree(mnt, parent, mp);
  1671. if (err) {
  1672. lock_mount_hash();
  1673. umount_tree(mnt, 0);
  1674. unlock_mount_hash();
  1675. }
  1676. out2:
  1677. unlock_mount(mp);
  1678. out:
  1679. path_put(&old_path);
  1680. return err;
  1681. }
  1682. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1683. {
  1684. int error = 0;
  1685. int readonly_request = 0;
  1686. if (ms_flags & MS_RDONLY)
  1687. readonly_request = 1;
  1688. if (readonly_request == __mnt_is_readonly(mnt))
  1689. return 0;
  1690. if (readonly_request)
  1691. error = mnt_make_readonly(real_mount(mnt));
  1692. else
  1693. __mnt_unmake_readonly(real_mount(mnt));
  1694. return error;
  1695. }
  1696. /*
  1697. * change filesystem flags. dir should be a physical root of filesystem.
  1698. * If you've mounted a non-root directory somewhere and want to do remount
  1699. * on it - tough luck.
  1700. */
  1701. static int do_remount(struct path *path, int flags, int mnt_flags,
  1702. void *data)
  1703. {
  1704. int err;
  1705. struct super_block *sb = path->mnt->mnt_sb;
  1706. struct mount *mnt = real_mount(path->mnt);
  1707. if (!check_mnt(mnt))
  1708. return -EINVAL;
  1709. if (path->dentry != path->mnt->mnt_root)
  1710. return -EINVAL;
  1711. /* Don't allow changing of locked mnt flags.
  1712. *
  1713. * No locks need to be held here while testing the various
  1714. * MNT_LOCK flags because those flags can never be cleared
  1715. * once they are set.
  1716. */
  1717. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  1718. !(mnt_flags & MNT_READONLY)) {
  1719. return -EPERM;
  1720. }
  1721. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  1722. !(mnt_flags & MNT_NODEV)) {
  1723. return -EPERM;
  1724. }
  1725. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  1726. !(mnt_flags & MNT_NOSUID)) {
  1727. return -EPERM;
  1728. }
  1729. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  1730. !(mnt_flags & MNT_NOEXEC)) {
  1731. return -EPERM;
  1732. }
  1733. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  1734. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  1735. return -EPERM;
  1736. }
  1737. err = security_sb_remount(sb, data);
  1738. if (err)
  1739. return err;
  1740. down_write(&sb->s_umount);
  1741. if (flags & MS_BIND)
  1742. err = change_mount_flags(path->mnt, flags);
  1743. else if (!capable(CAP_SYS_ADMIN))
  1744. err = -EPERM;
  1745. else
  1746. err = do_remount_sb(sb, flags, data, 0);
  1747. if (!err) {
  1748. lock_mount_hash();
  1749. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  1750. mnt->mnt.mnt_flags = mnt_flags;
  1751. touch_mnt_namespace(mnt->mnt_ns);
  1752. unlock_mount_hash();
  1753. }
  1754. up_write(&sb->s_umount);
  1755. return err;
  1756. }
  1757. static inline int tree_contains_unbindable(struct mount *mnt)
  1758. {
  1759. struct mount *p;
  1760. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1761. if (IS_MNT_UNBINDABLE(p))
  1762. return 1;
  1763. }
  1764. return 0;
  1765. }
  1766. static int do_move_mount(struct path *path, const char *old_name)
  1767. {
  1768. struct path old_path, parent_path;
  1769. struct mount *p;
  1770. struct mount *old;
  1771. struct mountpoint *mp;
  1772. int err;
  1773. if (!old_name || !*old_name)
  1774. return -EINVAL;
  1775. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1776. if (err)
  1777. return err;
  1778. mp = lock_mount(path);
  1779. err = PTR_ERR(mp);
  1780. if (IS_ERR(mp))
  1781. goto out;
  1782. old = real_mount(old_path.mnt);
  1783. p = real_mount(path->mnt);
  1784. err = -EINVAL;
  1785. if (!check_mnt(p) || !check_mnt(old))
  1786. goto out1;
  1787. if (old->mnt.mnt_flags & MNT_LOCKED)
  1788. goto out1;
  1789. err = -EINVAL;
  1790. if (old_path.dentry != old_path.mnt->mnt_root)
  1791. goto out1;
  1792. if (!mnt_has_parent(old))
  1793. goto out1;
  1794. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1795. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1796. goto out1;
  1797. /*
  1798. * Don't move a mount residing in a shared parent.
  1799. */
  1800. if (IS_MNT_SHARED(old->mnt_parent))
  1801. goto out1;
  1802. /*
  1803. * Don't move a mount tree containing unbindable mounts to a destination
  1804. * mount which is shared.
  1805. */
  1806. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1807. goto out1;
  1808. err = -ELOOP;
  1809. for (; mnt_has_parent(p); p = p->mnt_parent)
  1810. if (p == old)
  1811. goto out1;
  1812. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  1813. if (err)
  1814. goto out1;
  1815. /* if the mount is moved, it should no longer be expire
  1816. * automatically */
  1817. list_del_init(&old->mnt_expire);
  1818. out1:
  1819. unlock_mount(mp);
  1820. out:
  1821. if (!err)
  1822. path_put(&parent_path);
  1823. path_put(&old_path);
  1824. return err;
  1825. }
  1826. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1827. {
  1828. int err;
  1829. const char *subtype = strchr(fstype, '.');
  1830. if (subtype) {
  1831. subtype++;
  1832. err = -EINVAL;
  1833. if (!subtype[0])
  1834. goto err;
  1835. } else
  1836. subtype = "";
  1837. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1838. err = -ENOMEM;
  1839. if (!mnt->mnt_sb->s_subtype)
  1840. goto err;
  1841. return mnt;
  1842. err:
  1843. mntput(mnt);
  1844. return ERR_PTR(err);
  1845. }
  1846. /*
  1847. * add a mount into a namespace's mount tree
  1848. */
  1849. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1850. {
  1851. struct mountpoint *mp;
  1852. struct mount *parent;
  1853. int err;
  1854. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  1855. mp = lock_mount(path);
  1856. if (IS_ERR(mp))
  1857. return PTR_ERR(mp);
  1858. parent = real_mount(path->mnt);
  1859. err = -EINVAL;
  1860. if (unlikely(!check_mnt(parent))) {
  1861. /* that's acceptable only for automounts done in private ns */
  1862. if (!(mnt_flags & MNT_SHRINKABLE))
  1863. goto unlock;
  1864. /* ... and for those we'd better have mountpoint still alive */
  1865. if (!parent->mnt_ns)
  1866. goto unlock;
  1867. }
  1868. /* Refuse the same filesystem on the same mount point */
  1869. err = -EBUSY;
  1870. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1871. path->mnt->mnt_root == path->dentry)
  1872. goto unlock;
  1873. err = -EINVAL;
  1874. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1875. goto unlock;
  1876. newmnt->mnt.mnt_flags = mnt_flags;
  1877. err = graft_tree(newmnt, parent, mp);
  1878. unlock:
  1879. unlock_mount(mp);
  1880. return err;
  1881. }
  1882. /*
  1883. * create a new mount for userspace and request it to be added into the
  1884. * namespace's tree
  1885. */
  1886. static int do_new_mount(struct path *path, const char *fstype, int flags,
  1887. int mnt_flags, const char *name, void *data)
  1888. {
  1889. struct file_system_type *type;
  1890. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  1891. struct vfsmount *mnt;
  1892. int err;
  1893. if (!fstype)
  1894. return -EINVAL;
  1895. type = get_fs_type(fstype);
  1896. if (!type)
  1897. return -ENODEV;
  1898. if (user_ns != &init_user_ns) {
  1899. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  1900. put_filesystem(type);
  1901. return -EPERM;
  1902. }
  1903. /* Only in special cases allow devices from mounts
  1904. * created outside the initial user namespace.
  1905. */
  1906. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1907. flags |= MS_NODEV;
  1908. mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
  1909. }
  1910. }
  1911. mnt = vfs_kern_mount(type, flags, name, data);
  1912. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1913. !mnt->mnt_sb->s_subtype)
  1914. mnt = fs_set_subtype(mnt, fstype);
  1915. put_filesystem(type);
  1916. if (IS_ERR(mnt))
  1917. return PTR_ERR(mnt);
  1918. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1919. if (err)
  1920. mntput(mnt);
  1921. return err;
  1922. }
  1923. int finish_automount(struct vfsmount *m, struct path *path)
  1924. {
  1925. struct mount *mnt = real_mount(m);
  1926. int err;
  1927. /* The new mount record should have at least 2 refs to prevent it being
  1928. * expired before we get a chance to add it
  1929. */
  1930. BUG_ON(mnt_get_count(mnt) < 2);
  1931. if (m->mnt_sb == path->mnt->mnt_sb &&
  1932. m->mnt_root == path->dentry) {
  1933. err = -ELOOP;
  1934. goto fail;
  1935. }
  1936. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1937. if (!err)
  1938. return 0;
  1939. fail:
  1940. /* remove m from any expiration list it may be on */
  1941. if (!list_empty(&mnt->mnt_expire)) {
  1942. namespace_lock();
  1943. list_del_init(&mnt->mnt_expire);
  1944. namespace_unlock();
  1945. }
  1946. mntput(m);
  1947. mntput(m);
  1948. return err;
  1949. }
  1950. /**
  1951. * mnt_set_expiry - Put a mount on an expiration list
  1952. * @mnt: The mount to list.
  1953. * @expiry_list: The list to add the mount to.
  1954. */
  1955. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1956. {
  1957. namespace_lock();
  1958. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1959. namespace_unlock();
  1960. }
  1961. EXPORT_SYMBOL(mnt_set_expiry);
  1962. /*
  1963. * process a list of expirable mountpoints with the intent of discarding any
  1964. * mountpoints that aren't in use and haven't been touched since last we came
  1965. * here
  1966. */
  1967. void mark_mounts_for_expiry(struct list_head *mounts)
  1968. {
  1969. struct mount *mnt, *next;
  1970. LIST_HEAD(graveyard);
  1971. if (list_empty(mounts))
  1972. return;
  1973. namespace_lock();
  1974. lock_mount_hash();
  1975. /* extract from the expiration list every vfsmount that matches the
  1976. * following criteria:
  1977. * - only referenced by its parent vfsmount
  1978. * - still marked for expiry (marked on the last call here; marks are
  1979. * cleared by mntput())
  1980. */
  1981. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1982. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1983. propagate_mount_busy(mnt, 1))
  1984. continue;
  1985. list_move(&mnt->mnt_expire, &graveyard);
  1986. }
  1987. while (!list_empty(&graveyard)) {
  1988. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1989. touch_mnt_namespace(mnt->mnt_ns);
  1990. umount_tree(mnt, 1);
  1991. }
  1992. unlock_mount_hash();
  1993. namespace_unlock();
  1994. }
  1995. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1996. /*
  1997. * Ripoff of 'select_parent()'
  1998. *
  1999. * search the list of submounts for a given mountpoint, and move any
  2000. * shrinkable submounts to the 'graveyard' list.
  2001. */
  2002. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2003. {
  2004. struct mount *this_parent = parent;
  2005. struct list_head *next;
  2006. int found = 0;
  2007. repeat:
  2008. next = this_parent->mnt_mounts.next;
  2009. resume:
  2010. while (next != &this_parent->mnt_mounts) {
  2011. struct list_head *tmp = next;
  2012. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2013. next = tmp->next;
  2014. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2015. continue;
  2016. /*
  2017. * Descend a level if the d_mounts list is non-empty.
  2018. */
  2019. if (!list_empty(&mnt->mnt_mounts)) {
  2020. this_parent = mnt;
  2021. goto repeat;
  2022. }
  2023. if (!propagate_mount_busy(mnt, 1)) {
  2024. list_move_tail(&mnt->mnt_expire, graveyard);
  2025. found++;
  2026. }
  2027. }
  2028. /*
  2029. * All done at this level ... ascend and resume the search
  2030. */
  2031. if (this_parent != parent) {
  2032. next = this_parent->mnt_child.next;
  2033. this_parent = this_parent->mnt_parent;
  2034. goto resume;
  2035. }
  2036. return found;
  2037. }
  2038. /*
  2039. * process a list of expirable mountpoints with the intent of discarding any
  2040. * submounts of a specific parent mountpoint
  2041. *
  2042. * mount_lock must be held for write
  2043. */
  2044. static void shrink_submounts(struct mount *mnt)
  2045. {
  2046. LIST_HEAD(graveyard);
  2047. struct mount *m;
  2048. /* extract submounts of 'mountpoint' from the expiration list */
  2049. while (select_submounts(mnt, &graveyard)) {
  2050. while (!list_empty(&graveyard)) {
  2051. m = list_first_entry(&graveyard, struct mount,
  2052. mnt_expire);
  2053. touch_mnt_namespace(m->mnt_ns);
  2054. umount_tree(m, 1);
  2055. }
  2056. }
  2057. }
  2058. /*
  2059. * Some copy_from_user() implementations do not return the exact number of
  2060. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2061. * Note that this function differs from copy_from_user() in that it will oops
  2062. * on bad values of `to', rather than returning a short copy.
  2063. */
  2064. static long exact_copy_from_user(void *to, const void __user * from,
  2065. unsigned long n)
  2066. {
  2067. char *t = to;
  2068. const char __user *f = from;
  2069. char c;
  2070. if (!access_ok(VERIFY_READ, from, n))
  2071. return n;
  2072. while (n) {
  2073. if (__get_user(c, f)) {
  2074. memset(t, 0, n);
  2075. break;
  2076. }
  2077. *t++ = c;
  2078. f++;
  2079. n--;
  2080. }
  2081. return n;
  2082. }
  2083. int copy_mount_options(const void __user * data, unsigned long *where)
  2084. {
  2085. int i;
  2086. unsigned long page;
  2087. unsigned long size;
  2088. *where = 0;
  2089. if (!data)
  2090. return 0;
  2091. if (!(page = __get_free_page(GFP_KERNEL)))
  2092. return -ENOMEM;
  2093. /* We only care that *some* data at the address the user
  2094. * gave us is valid. Just in case, we'll zero
  2095. * the remainder of the page.
  2096. */
  2097. /* copy_from_user cannot cross TASK_SIZE ! */
  2098. size = TASK_SIZE - (unsigned long)data;
  2099. if (size > PAGE_SIZE)
  2100. size = PAGE_SIZE;
  2101. i = size - exact_copy_from_user((void *)page, data, size);
  2102. if (!i) {
  2103. free_page(page);
  2104. return -EFAULT;
  2105. }
  2106. if (i != PAGE_SIZE)
  2107. memset((char *)page + i, 0, PAGE_SIZE - i);
  2108. *where = page;
  2109. return 0;
  2110. }
  2111. int copy_mount_string(const void __user *data, char **where)
  2112. {
  2113. char *tmp;
  2114. if (!data) {
  2115. *where = NULL;
  2116. return 0;
  2117. }
  2118. tmp = strndup_user(data, PAGE_SIZE);
  2119. if (IS_ERR(tmp))
  2120. return PTR_ERR(tmp);
  2121. *where = tmp;
  2122. return 0;
  2123. }
  2124. /*
  2125. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2126. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2127. *
  2128. * data is a (void *) that can point to any structure up to
  2129. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2130. * information (or be NULL).
  2131. *
  2132. * Pre-0.97 versions of mount() didn't have a flags word.
  2133. * When the flags word was introduced its top half was required
  2134. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2135. * Therefore, if this magic number is present, it carries no information
  2136. * and must be discarded.
  2137. */
  2138. long do_mount(const char *dev_name, const char *dir_name,
  2139. const char *type_page, unsigned long flags, void *data_page)
  2140. {
  2141. struct path path;
  2142. int retval = 0;
  2143. int mnt_flags = 0;
  2144. /* Discard magic */
  2145. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2146. flags &= ~MS_MGC_MSK;
  2147. /* Basic sanity checks */
  2148. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  2149. return -EINVAL;
  2150. if (data_page)
  2151. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2152. /* ... and get the mountpoint */
  2153. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  2154. if (retval)
  2155. return retval;
  2156. retval = security_sb_mount(dev_name, &path,
  2157. type_page, flags, data_page);
  2158. if (!retval && !may_mount())
  2159. retval = -EPERM;
  2160. if (retval)
  2161. goto dput_out;
  2162. /* Default to relatime unless overriden */
  2163. if (!(flags & MS_NOATIME))
  2164. mnt_flags |= MNT_RELATIME;
  2165. /* Separate the per-mountpoint flags */
  2166. if (flags & MS_NOSUID)
  2167. mnt_flags |= MNT_NOSUID;
  2168. if (flags & MS_NODEV)
  2169. mnt_flags |= MNT_NODEV;
  2170. if (flags & MS_NOEXEC)
  2171. mnt_flags |= MNT_NOEXEC;
  2172. if (flags & MS_NOATIME)
  2173. mnt_flags |= MNT_NOATIME;
  2174. if (flags & MS_NODIRATIME)
  2175. mnt_flags |= MNT_NODIRATIME;
  2176. if (flags & MS_STRICTATIME)
  2177. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2178. if (flags & MS_RDONLY)
  2179. mnt_flags |= MNT_READONLY;
  2180. /* The default atime for remount is preservation */
  2181. if ((flags & MS_REMOUNT) &&
  2182. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2183. MS_STRICTATIME)) == 0)) {
  2184. mnt_flags &= ~MNT_ATIME_MASK;
  2185. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2186. }
  2187. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2188. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2189. MS_STRICTATIME);
  2190. if (flags & MS_REMOUNT)
  2191. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2192. data_page);
  2193. else if (flags & MS_BIND)
  2194. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2195. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2196. retval = do_change_type(&path, flags);
  2197. else if (flags & MS_MOVE)
  2198. retval = do_move_mount(&path, dev_name);
  2199. else
  2200. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2201. dev_name, data_page);
  2202. dput_out:
  2203. path_put(&path);
  2204. return retval;
  2205. }
  2206. static void free_mnt_ns(struct mnt_namespace *ns)
  2207. {
  2208. proc_free_inum(ns->proc_inum);
  2209. put_user_ns(ns->user_ns);
  2210. kfree(ns);
  2211. }
  2212. /*
  2213. * Assign a sequence number so we can detect when we attempt to bind
  2214. * mount a reference to an older mount namespace into the current
  2215. * mount namespace, preventing reference counting loops. A 64bit
  2216. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2217. * is effectively never, so we can ignore the possibility.
  2218. */
  2219. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2220. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2221. {
  2222. struct mnt_namespace *new_ns;
  2223. int ret;
  2224. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2225. if (!new_ns)
  2226. return ERR_PTR(-ENOMEM);
  2227. ret = proc_alloc_inum(&new_ns->proc_inum);
  2228. if (ret) {
  2229. kfree(new_ns);
  2230. return ERR_PTR(ret);
  2231. }
  2232. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2233. atomic_set(&new_ns->count, 1);
  2234. new_ns->root = NULL;
  2235. INIT_LIST_HEAD(&new_ns->list);
  2236. init_waitqueue_head(&new_ns->poll);
  2237. new_ns->event = 0;
  2238. new_ns->user_ns = get_user_ns(user_ns);
  2239. return new_ns;
  2240. }
  2241. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2242. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2243. {
  2244. struct mnt_namespace *new_ns;
  2245. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2246. struct mount *p, *q;
  2247. struct mount *old;
  2248. struct mount *new;
  2249. int copy_flags;
  2250. BUG_ON(!ns);
  2251. if (likely(!(flags & CLONE_NEWNS))) {
  2252. get_mnt_ns(ns);
  2253. return ns;
  2254. }
  2255. old = ns->root;
  2256. new_ns = alloc_mnt_ns(user_ns);
  2257. if (IS_ERR(new_ns))
  2258. return new_ns;
  2259. namespace_lock();
  2260. /* First pass: copy the tree topology */
  2261. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2262. if (user_ns != ns->user_ns)
  2263. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2264. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2265. if (IS_ERR(new)) {
  2266. namespace_unlock();
  2267. free_mnt_ns(new_ns);
  2268. return ERR_CAST(new);
  2269. }
  2270. new_ns->root = new;
  2271. list_add_tail(&new_ns->list, &new->mnt_list);
  2272. /*
  2273. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2274. * as belonging to new namespace. We have already acquired a private
  2275. * fs_struct, so tsk->fs->lock is not needed.
  2276. */
  2277. p = old;
  2278. q = new;
  2279. while (p) {
  2280. q->mnt_ns = new_ns;
  2281. if (new_fs) {
  2282. if (&p->mnt == new_fs->root.mnt) {
  2283. new_fs->root.mnt = mntget(&q->mnt);
  2284. rootmnt = &p->mnt;
  2285. }
  2286. if (&p->mnt == new_fs->pwd.mnt) {
  2287. new_fs->pwd.mnt = mntget(&q->mnt);
  2288. pwdmnt = &p->mnt;
  2289. }
  2290. }
  2291. p = next_mnt(p, old);
  2292. q = next_mnt(q, new);
  2293. if (!q)
  2294. break;
  2295. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2296. p = next_mnt(p, old);
  2297. }
  2298. namespace_unlock();
  2299. if (rootmnt)
  2300. mntput(rootmnt);
  2301. if (pwdmnt)
  2302. mntput(pwdmnt);
  2303. return new_ns;
  2304. }
  2305. /**
  2306. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2307. * @mnt: pointer to the new root filesystem mountpoint
  2308. */
  2309. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2310. {
  2311. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2312. if (!IS_ERR(new_ns)) {
  2313. struct mount *mnt = real_mount(m);
  2314. mnt->mnt_ns = new_ns;
  2315. new_ns->root = mnt;
  2316. list_add(&mnt->mnt_list, &new_ns->list);
  2317. } else {
  2318. mntput(m);
  2319. }
  2320. return new_ns;
  2321. }
  2322. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2323. {
  2324. struct mnt_namespace *ns;
  2325. struct super_block *s;
  2326. struct path path;
  2327. int err;
  2328. ns = create_mnt_ns(mnt);
  2329. if (IS_ERR(ns))
  2330. return ERR_CAST(ns);
  2331. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2332. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2333. put_mnt_ns(ns);
  2334. if (err)
  2335. return ERR_PTR(err);
  2336. /* trade a vfsmount reference for active sb one */
  2337. s = path.mnt->mnt_sb;
  2338. atomic_inc(&s->s_active);
  2339. mntput(path.mnt);
  2340. /* lock the sucker */
  2341. down_write(&s->s_umount);
  2342. /* ... and return the root of (sub)tree on it */
  2343. return path.dentry;
  2344. }
  2345. EXPORT_SYMBOL(mount_subtree);
  2346. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2347. char __user *, type, unsigned long, flags, void __user *, data)
  2348. {
  2349. int ret;
  2350. char *kernel_type;
  2351. struct filename *kernel_dir;
  2352. char *kernel_dev;
  2353. unsigned long data_page;
  2354. ret = copy_mount_string(type, &kernel_type);
  2355. if (ret < 0)
  2356. goto out_type;
  2357. kernel_dir = getname(dir_name);
  2358. if (IS_ERR(kernel_dir)) {
  2359. ret = PTR_ERR(kernel_dir);
  2360. goto out_dir;
  2361. }
  2362. ret = copy_mount_string(dev_name, &kernel_dev);
  2363. if (ret < 0)
  2364. goto out_dev;
  2365. ret = copy_mount_options(data, &data_page);
  2366. if (ret < 0)
  2367. goto out_data;
  2368. ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
  2369. (void *) data_page);
  2370. free_page(data_page);
  2371. out_data:
  2372. kfree(kernel_dev);
  2373. out_dev:
  2374. putname(kernel_dir);
  2375. out_dir:
  2376. kfree(kernel_type);
  2377. out_type:
  2378. return ret;
  2379. }
  2380. /*
  2381. * Return true if path is reachable from root
  2382. *
  2383. * namespace_sem or mount_lock is held
  2384. */
  2385. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2386. const struct path *root)
  2387. {
  2388. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2389. dentry = mnt->mnt_mountpoint;
  2390. mnt = mnt->mnt_parent;
  2391. }
  2392. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2393. }
  2394. int path_is_under(struct path *path1, struct path *path2)
  2395. {
  2396. int res;
  2397. read_seqlock_excl(&mount_lock);
  2398. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2399. read_sequnlock_excl(&mount_lock);
  2400. return res;
  2401. }
  2402. EXPORT_SYMBOL(path_is_under);
  2403. /*
  2404. * pivot_root Semantics:
  2405. * Moves the root file system of the current process to the directory put_old,
  2406. * makes new_root as the new root file system of the current process, and sets
  2407. * root/cwd of all processes which had them on the current root to new_root.
  2408. *
  2409. * Restrictions:
  2410. * The new_root and put_old must be directories, and must not be on the
  2411. * same file system as the current process root. The put_old must be
  2412. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2413. * pointed to by put_old must yield the same directory as new_root. No other
  2414. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2415. *
  2416. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2417. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2418. * in this situation.
  2419. *
  2420. * Notes:
  2421. * - we don't move root/cwd if they are not at the root (reason: if something
  2422. * cared enough to change them, it's probably wrong to force them elsewhere)
  2423. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2424. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2425. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2426. * first.
  2427. */
  2428. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2429. const char __user *, put_old)
  2430. {
  2431. struct path new, old, parent_path, root_parent, root;
  2432. struct mount *new_mnt, *root_mnt, *old_mnt;
  2433. struct mountpoint *old_mp, *root_mp;
  2434. int error;
  2435. if (!may_mount())
  2436. return -EPERM;
  2437. error = user_path_dir(new_root, &new);
  2438. if (error)
  2439. goto out0;
  2440. error = user_path_dir(put_old, &old);
  2441. if (error)
  2442. goto out1;
  2443. error = security_sb_pivotroot(&old, &new);
  2444. if (error)
  2445. goto out2;
  2446. get_fs_root(current->fs, &root);
  2447. old_mp = lock_mount(&old);
  2448. error = PTR_ERR(old_mp);
  2449. if (IS_ERR(old_mp))
  2450. goto out3;
  2451. error = -EINVAL;
  2452. new_mnt = real_mount(new.mnt);
  2453. root_mnt = real_mount(root.mnt);
  2454. old_mnt = real_mount(old.mnt);
  2455. if (IS_MNT_SHARED(old_mnt) ||
  2456. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2457. IS_MNT_SHARED(root_mnt->mnt_parent))
  2458. goto out4;
  2459. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2460. goto out4;
  2461. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2462. goto out4;
  2463. error = -ENOENT;
  2464. if (d_unlinked(new.dentry))
  2465. goto out4;
  2466. error = -EBUSY;
  2467. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2468. goto out4; /* loop, on the same file system */
  2469. error = -EINVAL;
  2470. if (root.mnt->mnt_root != root.dentry)
  2471. goto out4; /* not a mountpoint */
  2472. if (!mnt_has_parent(root_mnt))
  2473. goto out4; /* not attached */
  2474. root_mp = root_mnt->mnt_mp;
  2475. if (new.mnt->mnt_root != new.dentry)
  2476. goto out4; /* not a mountpoint */
  2477. if (!mnt_has_parent(new_mnt))
  2478. goto out4; /* not attached */
  2479. /* make sure we can reach put_old from new_root */
  2480. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2481. goto out4;
  2482. root_mp->m_count++; /* pin it so it won't go away */
  2483. lock_mount_hash();
  2484. detach_mnt(new_mnt, &parent_path);
  2485. detach_mnt(root_mnt, &root_parent);
  2486. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2487. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2488. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2489. }
  2490. /* mount old root on put_old */
  2491. attach_mnt(root_mnt, old_mnt, old_mp);
  2492. /* mount new_root on / */
  2493. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2494. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2495. unlock_mount_hash();
  2496. chroot_fs_refs(&root, &new);
  2497. put_mountpoint(root_mp);
  2498. error = 0;
  2499. out4:
  2500. unlock_mount(old_mp);
  2501. if (!error) {
  2502. path_put(&root_parent);
  2503. path_put(&parent_path);
  2504. }
  2505. out3:
  2506. path_put(&root);
  2507. out2:
  2508. path_put(&old);
  2509. out1:
  2510. path_put(&new);
  2511. out0:
  2512. return error;
  2513. }
  2514. static void __init init_mount_tree(void)
  2515. {
  2516. struct vfsmount *mnt;
  2517. struct mnt_namespace *ns;
  2518. struct path root;
  2519. struct file_system_type *type;
  2520. type = get_fs_type("rootfs");
  2521. if (!type)
  2522. panic("Can't find rootfs type");
  2523. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2524. put_filesystem(type);
  2525. if (IS_ERR(mnt))
  2526. panic("Can't create rootfs");
  2527. ns = create_mnt_ns(mnt);
  2528. if (IS_ERR(ns))
  2529. panic("Can't allocate initial namespace");
  2530. init_task.nsproxy->mnt_ns = ns;
  2531. get_mnt_ns(ns);
  2532. root.mnt = mnt;
  2533. root.dentry = mnt->mnt_root;
  2534. set_fs_pwd(current->fs, &root);
  2535. set_fs_root(current->fs, &root);
  2536. }
  2537. void __init mnt_init(void)
  2538. {
  2539. unsigned u;
  2540. int err;
  2541. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2542. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2543. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2544. sizeof(struct hlist_head),
  2545. mhash_entries, 19,
  2546. 0,
  2547. &m_hash_shift, &m_hash_mask, 0, 0);
  2548. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2549. sizeof(struct hlist_head),
  2550. mphash_entries, 19,
  2551. 0,
  2552. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2553. if (!mount_hashtable || !mountpoint_hashtable)
  2554. panic("Failed to allocate mount hash table\n");
  2555. for (u = 0; u <= m_hash_mask; u++)
  2556. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2557. for (u = 0; u <= mp_hash_mask; u++)
  2558. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2559. kernfs_init();
  2560. err = sysfs_init();
  2561. if (err)
  2562. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2563. __func__, err);
  2564. fs_kobj = kobject_create_and_add("fs", NULL);
  2565. if (!fs_kobj)
  2566. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2567. init_rootfs();
  2568. init_mount_tree();
  2569. }
  2570. void put_mnt_ns(struct mnt_namespace *ns)
  2571. {
  2572. if (!atomic_dec_and_test(&ns->count))
  2573. return;
  2574. drop_collected_mounts(&ns->root->mnt);
  2575. free_mnt_ns(ns);
  2576. }
  2577. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2578. {
  2579. struct vfsmount *mnt;
  2580. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2581. if (!IS_ERR(mnt)) {
  2582. /*
  2583. * it is a longterm mount, don't release mnt until
  2584. * we unmount before file sys is unregistered
  2585. */
  2586. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2587. }
  2588. return mnt;
  2589. }
  2590. EXPORT_SYMBOL_GPL(kern_mount_data);
  2591. void kern_unmount(struct vfsmount *mnt)
  2592. {
  2593. /* release long term mount so mount point can be released */
  2594. if (!IS_ERR_OR_NULL(mnt)) {
  2595. real_mount(mnt)->mnt_ns = NULL;
  2596. synchronize_rcu(); /* yecchhh... */
  2597. mntput(mnt);
  2598. }
  2599. }
  2600. EXPORT_SYMBOL(kern_unmount);
  2601. bool our_mnt(struct vfsmount *mnt)
  2602. {
  2603. return check_mnt(real_mount(mnt));
  2604. }
  2605. bool current_chrooted(void)
  2606. {
  2607. /* Does the current process have a non-standard root */
  2608. struct path ns_root;
  2609. struct path fs_root;
  2610. bool chrooted;
  2611. /* Find the namespace root */
  2612. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2613. ns_root.dentry = ns_root.mnt->mnt_root;
  2614. path_get(&ns_root);
  2615. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2616. ;
  2617. get_fs_root(current->fs, &fs_root);
  2618. chrooted = !path_equal(&fs_root, &ns_root);
  2619. path_put(&fs_root);
  2620. path_put(&ns_root);
  2621. return chrooted;
  2622. }
  2623. bool fs_fully_visible(struct file_system_type *type)
  2624. {
  2625. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2626. struct mount *mnt;
  2627. bool visible = false;
  2628. if (unlikely(!ns))
  2629. return false;
  2630. down_read(&namespace_sem);
  2631. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2632. struct mount *child;
  2633. if (mnt->mnt.mnt_sb->s_type != type)
  2634. continue;
  2635. /* This mount is not fully visible if there are any child mounts
  2636. * that cover anything except for empty directories.
  2637. */
  2638. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2639. struct inode *inode = child->mnt_mountpoint->d_inode;
  2640. if (!S_ISDIR(inode->i_mode))
  2641. goto next;
  2642. if (inode->i_nlink > 2)
  2643. goto next;
  2644. }
  2645. visible = true;
  2646. goto found;
  2647. next: ;
  2648. }
  2649. found:
  2650. up_read(&namespace_sem);
  2651. return visible;
  2652. }
  2653. static void *mntns_get(struct task_struct *task)
  2654. {
  2655. struct mnt_namespace *ns = NULL;
  2656. struct nsproxy *nsproxy;
  2657. task_lock(task);
  2658. nsproxy = task->nsproxy;
  2659. if (nsproxy) {
  2660. ns = nsproxy->mnt_ns;
  2661. get_mnt_ns(ns);
  2662. }
  2663. task_unlock(task);
  2664. return ns;
  2665. }
  2666. static void mntns_put(void *ns)
  2667. {
  2668. put_mnt_ns(ns);
  2669. }
  2670. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2671. {
  2672. struct fs_struct *fs = current->fs;
  2673. struct mnt_namespace *mnt_ns = ns;
  2674. struct path root;
  2675. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2676. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  2677. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  2678. return -EPERM;
  2679. if (fs->users != 1)
  2680. return -EINVAL;
  2681. get_mnt_ns(mnt_ns);
  2682. put_mnt_ns(nsproxy->mnt_ns);
  2683. nsproxy->mnt_ns = mnt_ns;
  2684. /* Find the root */
  2685. root.mnt = &mnt_ns->root->mnt;
  2686. root.dentry = mnt_ns->root->mnt.mnt_root;
  2687. path_get(&root);
  2688. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2689. ;
  2690. /* Update the pwd and root */
  2691. set_fs_pwd(fs, &root);
  2692. set_fs_root(fs, &root);
  2693. path_put(&root);
  2694. return 0;
  2695. }
  2696. static unsigned int mntns_inum(void *ns)
  2697. {
  2698. struct mnt_namespace *mnt_ns = ns;
  2699. return mnt_ns->proc_inum;
  2700. }
  2701. const struct proc_ns_operations mntns_operations = {
  2702. .name = "mnt",
  2703. .type = CLONE_NEWNS,
  2704. .get = mntns_get,
  2705. .put = mntns_put,
  2706. .install = mntns_install,
  2707. .inum = mntns_inum,
  2708. };