recovery.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503
  1. /*
  2. * fs/f2fs/recovery.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "segment.h"
  16. static struct kmem_cache *fsync_entry_slab;
  17. bool space_for_roll_forward(struct f2fs_sb_info *sbi)
  18. {
  19. if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
  20. > sbi->user_block_count)
  21. return false;
  22. return true;
  23. }
  24. static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
  25. nid_t ino)
  26. {
  27. struct fsync_inode_entry *entry;
  28. list_for_each_entry(entry, head, list)
  29. if (entry->inode->i_ino == ino)
  30. return entry;
  31. return NULL;
  32. }
  33. static int recover_dentry(struct page *ipage, struct inode *inode)
  34. {
  35. struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
  36. nid_t pino = le32_to_cpu(raw_inode->i_pino);
  37. struct f2fs_dir_entry *de;
  38. struct qstr name;
  39. struct page *page;
  40. struct inode *dir, *einode;
  41. int err = 0;
  42. dir = f2fs_iget(inode->i_sb, pino);
  43. if (IS_ERR(dir)) {
  44. err = PTR_ERR(dir);
  45. goto out;
  46. }
  47. name.len = le32_to_cpu(raw_inode->i_namelen);
  48. name.name = raw_inode->i_name;
  49. if (unlikely(name.len > F2FS_NAME_LEN)) {
  50. WARN_ON(1);
  51. err = -ENAMETOOLONG;
  52. goto out_err;
  53. }
  54. retry:
  55. de = f2fs_find_entry(dir, &name, &page);
  56. if (de && inode->i_ino == le32_to_cpu(de->ino)) {
  57. clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
  58. goto out_unmap_put;
  59. }
  60. if (de) {
  61. einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
  62. if (IS_ERR(einode)) {
  63. WARN_ON(1);
  64. err = PTR_ERR(einode);
  65. if (err == -ENOENT)
  66. err = -EEXIST;
  67. goto out_unmap_put;
  68. }
  69. err = acquire_orphan_inode(F2FS_SB(inode->i_sb));
  70. if (err) {
  71. iput(einode);
  72. goto out_unmap_put;
  73. }
  74. f2fs_delete_entry(de, page, einode);
  75. iput(einode);
  76. goto retry;
  77. }
  78. err = __f2fs_add_link(dir, &name, inode);
  79. if (err)
  80. goto out_err;
  81. if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) {
  82. iput(dir);
  83. } else {
  84. add_dirty_dir_inode(dir);
  85. set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
  86. }
  87. goto out;
  88. out_unmap_put:
  89. kunmap(page);
  90. f2fs_put_page(page, 0);
  91. out_err:
  92. iput(dir);
  93. out:
  94. f2fs_msg(inode->i_sb, KERN_NOTICE,
  95. "%s: ino = %x, name = %s, dir = %lx, err = %d",
  96. __func__, ino_of_node(ipage), raw_inode->i_name,
  97. IS_ERR(dir) ? 0 : dir->i_ino, err);
  98. return err;
  99. }
  100. static int recover_inode(struct inode *inode, struct page *node_page)
  101. {
  102. struct f2fs_inode *raw_inode = F2FS_INODE(node_page);
  103. if (!IS_INODE(node_page))
  104. return 0;
  105. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  106. i_size_write(inode, le64_to_cpu(raw_inode->i_size));
  107. inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  108. inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
  109. inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  110. inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  111. inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
  112. inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  113. if (is_dent_dnode(node_page))
  114. return recover_dentry(node_page, inode);
  115. f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
  116. ino_of_node(node_page), raw_inode->i_name);
  117. return 0;
  118. }
  119. static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
  120. {
  121. unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
  122. struct curseg_info *curseg;
  123. struct page *page;
  124. block_t blkaddr;
  125. int err = 0;
  126. /* get node pages in the current segment */
  127. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  128. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  129. /* read node page */
  130. page = alloc_page(GFP_F2FS_ZERO);
  131. if (!page)
  132. return -ENOMEM;
  133. lock_page(page);
  134. while (1) {
  135. struct fsync_inode_entry *entry;
  136. err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
  137. if (err)
  138. return err;
  139. lock_page(page);
  140. if (cp_ver != cpver_of_node(page))
  141. break;
  142. if (!is_fsync_dnode(page))
  143. goto next;
  144. entry = get_fsync_inode(head, ino_of_node(page));
  145. if (entry) {
  146. if (IS_INODE(page) && is_dent_dnode(page))
  147. set_inode_flag(F2FS_I(entry->inode),
  148. FI_INC_LINK);
  149. } else {
  150. if (IS_INODE(page) && is_dent_dnode(page)) {
  151. err = recover_inode_page(sbi, page);
  152. if (err)
  153. break;
  154. }
  155. /* add this fsync inode to the list */
  156. entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
  157. if (!entry) {
  158. err = -ENOMEM;
  159. break;
  160. }
  161. entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
  162. if (IS_ERR(entry->inode)) {
  163. err = PTR_ERR(entry->inode);
  164. kmem_cache_free(fsync_entry_slab, entry);
  165. break;
  166. }
  167. list_add_tail(&entry->list, head);
  168. }
  169. entry->blkaddr = blkaddr;
  170. err = recover_inode(entry->inode, page);
  171. if (err && err != -ENOENT)
  172. break;
  173. next:
  174. /* check next segment */
  175. blkaddr = next_blkaddr_of_node(page);
  176. }
  177. unlock_page(page);
  178. __free_pages(page, 0);
  179. return err;
  180. }
  181. static void destroy_fsync_dnodes(struct list_head *head)
  182. {
  183. struct fsync_inode_entry *entry, *tmp;
  184. list_for_each_entry_safe(entry, tmp, head, list) {
  185. iput(entry->inode);
  186. list_del(&entry->list);
  187. kmem_cache_free(fsync_entry_slab, entry);
  188. }
  189. }
  190. static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
  191. block_t blkaddr, struct dnode_of_data *dn)
  192. {
  193. struct seg_entry *sentry;
  194. unsigned int segno = GET_SEGNO(sbi, blkaddr);
  195. unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  196. struct f2fs_summary_block *sum_node;
  197. struct f2fs_summary sum;
  198. struct page *sum_page, *node_page;
  199. nid_t ino, nid;
  200. struct inode *inode;
  201. unsigned int offset;
  202. block_t bidx;
  203. int i;
  204. sentry = get_seg_entry(sbi, segno);
  205. if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
  206. return 0;
  207. /* Get the previous summary */
  208. for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
  209. struct curseg_info *curseg = CURSEG_I(sbi, i);
  210. if (curseg->segno == segno) {
  211. sum = curseg->sum_blk->entries[blkoff];
  212. goto got_it;
  213. }
  214. }
  215. sum_page = get_sum_page(sbi, segno);
  216. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  217. sum = sum_node->entries[blkoff];
  218. f2fs_put_page(sum_page, 1);
  219. got_it:
  220. /* Use the locked dnode page and inode */
  221. nid = le32_to_cpu(sum.nid);
  222. if (dn->inode->i_ino == nid) {
  223. struct dnode_of_data tdn = *dn;
  224. tdn.nid = nid;
  225. tdn.node_page = dn->inode_page;
  226. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  227. truncate_data_blocks_range(&tdn, 1);
  228. return 0;
  229. } else if (dn->nid == nid) {
  230. struct dnode_of_data tdn = *dn;
  231. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  232. truncate_data_blocks_range(&tdn, 1);
  233. return 0;
  234. }
  235. /* Get the node page */
  236. node_page = get_node_page(sbi, nid);
  237. if (IS_ERR(node_page))
  238. return PTR_ERR(node_page);
  239. offset = ofs_of_node(node_page);
  240. ino = ino_of_node(node_page);
  241. f2fs_put_page(node_page, 1);
  242. /* Deallocate previous index in the node page */
  243. inode = f2fs_iget(sbi->sb, ino);
  244. if (IS_ERR(inode))
  245. return PTR_ERR(inode);
  246. bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
  247. le16_to_cpu(sum.ofs_in_node);
  248. truncate_hole(inode, bidx, bidx + 1);
  249. iput(inode);
  250. return 0;
  251. }
  252. static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
  253. struct page *page, block_t blkaddr)
  254. {
  255. struct f2fs_inode_info *fi = F2FS_I(inode);
  256. unsigned int start, end;
  257. struct dnode_of_data dn;
  258. struct f2fs_summary sum;
  259. struct node_info ni;
  260. int err = 0, recovered = 0;
  261. /* step 1: recover xattr */
  262. if (IS_INODE(page)) {
  263. recover_inline_xattr(inode, page);
  264. } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
  265. recover_xattr_data(inode, page, blkaddr);
  266. goto out;
  267. }
  268. /* step 2: recover inline data */
  269. if (recover_inline_data(inode, page))
  270. goto out;
  271. /* step 3: recover data indices */
  272. start = start_bidx_of_node(ofs_of_node(page), fi);
  273. end = start + ADDRS_PER_PAGE(page, fi);
  274. f2fs_lock_op(sbi);
  275. set_new_dnode(&dn, inode, NULL, NULL, 0);
  276. err = get_dnode_of_data(&dn, start, ALLOC_NODE);
  277. if (err) {
  278. f2fs_unlock_op(sbi);
  279. goto out;
  280. }
  281. f2fs_wait_on_page_writeback(dn.node_page, NODE);
  282. get_node_info(sbi, dn.nid, &ni);
  283. f2fs_bug_on(ni.ino != ino_of_node(page));
  284. f2fs_bug_on(ofs_of_node(dn.node_page) != ofs_of_node(page));
  285. for (; start < end; start++) {
  286. block_t src, dest;
  287. src = datablock_addr(dn.node_page, dn.ofs_in_node);
  288. dest = datablock_addr(page, dn.ofs_in_node);
  289. if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
  290. if (src == NULL_ADDR) {
  291. err = reserve_new_block(&dn);
  292. /* We should not get -ENOSPC */
  293. f2fs_bug_on(err);
  294. }
  295. /* Check the previous node page having this index */
  296. err = check_index_in_prev_nodes(sbi, dest, &dn);
  297. if (err)
  298. goto err;
  299. set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
  300. /* write dummy data page */
  301. recover_data_page(sbi, NULL, &sum, src, dest);
  302. update_extent_cache(dest, &dn);
  303. recovered++;
  304. }
  305. dn.ofs_in_node++;
  306. }
  307. /* write node page in place */
  308. set_summary(&sum, dn.nid, 0, 0);
  309. if (IS_INODE(dn.node_page))
  310. sync_inode_page(&dn);
  311. copy_node_footer(dn.node_page, page);
  312. fill_node_footer(dn.node_page, dn.nid, ni.ino,
  313. ofs_of_node(page), false);
  314. set_page_dirty(dn.node_page);
  315. err:
  316. f2fs_put_dnode(&dn);
  317. f2fs_unlock_op(sbi);
  318. out:
  319. f2fs_msg(sbi->sb, KERN_NOTICE,
  320. "recover_data: ino = %lx, recovered = %d blocks, err = %d",
  321. inode->i_ino, recovered, err);
  322. return err;
  323. }
  324. static int recover_data(struct f2fs_sb_info *sbi,
  325. struct list_head *head, int type)
  326. {
  327. unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
  328. struct curseg_info *curseg;
  329. struct page *page;
  330. int err = 0;
  331. block_t blkaddr;
  332. /* get node pages in the current segment */
  333. curseg = CURSEG_I(sbi, type);
  334. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  335. /* read node page */
  336. page = alloc_page(GFP_F2FS_ZERO);
  337. if (!page)
  338. return -ENOMEM;
  339. lock_page(page);
  340. while (1) {
  341. struct fsync_inode_entry *entry;
  342. err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
  343. if (err)
  344. return err;
  345. lock_page(page);
  346. if (cp_ver != cpver_of_node(page))
  347. break;
  348. entry = get_fsync_inode(head, ino_of_node(page));
  349. if (!entry)
  350. goto next;
  351. err = do_recover_data(sbi, entry->inode, page, blkaddr);
  352. if (err)
  353. break;
  354. if (entry->blkaddr == blkaddr) {
  355. iput(entry->inode);
  356. list_del(&entry->list);
  357. kmem_cache_free(fsync_entry_slab, entry);
  358. }
  359. next:
  360. /* check next segment */
  361. blkaddr = next_blkaddr_of_node(page);
  362. }
  363. unlock_page(page);
  364. __free_pages(page, 0);
  365. if (!err)
  366. allocate_new_segments(sbi);
  367. return err;
  368. }
  369. int recover_fsync_data(struct f2fs_sb_info *sbi)
  370. {
  371. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  372. struct list_head inode_list;
  373. block_t blkaddr;
  374. int err;
  375. bool need_writecp = false;
  376. fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
  377. sizeof(struct fsync_inode_entry));
  378. if (!fsync_entry_slab)
  379. return -ENOMEM;
  380. INIT_LIST_HEAD(&inode_list);
  381. /* step #1: find fsynced inode numbers */
  382. sbi->por_doing = true;
  383. /* prevent checkpoint */
  384. mutex_lock(&sbi->cp_mutex);
  385. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  386. err = find_fsync_dnodes(sbi, &inode_list);
  387. if (err)
  388. goto out;
  389. if (list_empty(&inode_list))
  390. goto out;
  391. need_writecp = true;
  392. /* step #2: recover data */
  393. err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
  394. if (!err)
  395. f2fs_bug_on(!list_empty(&inode_list));
  396. out:
  397. destroy_fsync_dnodes(&inode_list);
  398. kmem_cache_destroy(fsync_entry_slab);
  399. if (err) {
  400. truncate_inode_pages_final(NODE_MAPPING(sbi));
  401. truncate_inode_pages_final(META_MAPPING(sbi));
  402. }
  403. sbi->por_doing = false;
  404. if (err) {
  405. discard_next_dnode(sbi, blkaddr);
  406. /* Flush all the NAT/SIT pages */
  407. while (get_pages(sbi, F2FS_DIRTY_META))
  408. sync_meta_pages(sbi, META, LONG_MAX);
  409. set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
  410. mutex_unlock(&sbi->cp_mutex);
  411. } else if (need_writecp) {
  412. mutex_unlock(&sbi->cp_mutex);
  413. write_checkpoint(sbi, false);
  414. } else {
  415. mutex_unlock(&sbi->cp_mutex);
  416. }
  417. return err;
  418. }