file.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include "f2fs.h"
  24. #include "node.h"
  25. #include "segment.h"
  26. #include "xattr.h"
  27. #include "acl.h"
  28. #include <trace/events/f2fs.h>
  29. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  30. struct vm_fault *vmf)
  31. {
  32. struct page *page = vmf->page;
  33. struct inode *inode = file_inode(vma->vm_file);
  34. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  35. struct dnode_of_data dn;
  36. int err;
  37. f2fs_balance_fs(sbi);
  38. sb_start_pagefault(inode->i_sb);
  39. /* force to convert with normal data indices */
  40. err = f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1, page);
  41. if (err)
  42. goto out;
  43. /* block allocation */
  44. f2fs_lock_op(sbi);
  45. set_new_dnode(&dn, inode, NULL, NULL, 0);
  46. err = f2fs_reserve_block(&dn, page->index);
  47. f2fs_unlock_op(sbi);
  48. if (err)
  49. goto out;
  50. file_update_time(vma->vm_file);
  51. lock_page(page);
  52. if (unlikely(page->mapping != inode->i_mapping ||
  53. page_offset(page) > i_size_read(inode) ||
  54. !PageUptodate(page))) {
  55. unlock_page(page);
  56. err = -EFAULT;
  57. goto out;
  58. }
  59. /*
  60. * check to see if the page is mapped already (no holes)
  61. */
  62. if (PageMappedToDisk(page))
  63. goto mapped;
  64. /* page is wholly or partially inside EOF */
  65. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  66. unsigned offset;
  67. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  68. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  69. }
  70. set_page_dirty(page);
  71. SetPageUptodate(page);
  72. trace_f2fs_vm_page_mkwrite(page, DATA);
  73. mapped:
  74. /* fill the page */
  75. f2fs_wait_on_page_writeback(page, DATA);
  76. out:
  77. sb_end_pagefault(inode->i_sb);
  78. return block_page_mkwrite_return(err);
  79. }
  80. static const struct vm_operations_struct f2fs_file_vm_ops = {
  81. .fault = filemap_fault,
  82. .map_pages = filemap_map_pages,
  83. .page_mkwrite = f2fs_vm_page_mkwrite,
  84. .remap_pages = generic_file_remap_pages,
  85. };
  86. static int get_parent_ino(struct inode *inode, nid_t *pino)
  87. {
  88. struct dentry *dentry;
  89. inode = igrab(inode);
  90. dentry = d_find_any_alias(inode);
  91. iput(inode);
  92. if (!dentry)
  93. return 0;
  94. if (update_dent_inode(inode, &dentry->d_name)) {
  95. dput(dentry);
  96. return 0;
  97. }
  98. *pino = parent_ino(dentry);
  99. dput(dentry);
  100. return 1;
  101. }
  102. static inline bool need_do_checkpoint(struct inode *inode)
  103. {
  104. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  105. bool need_cp = false;
  106. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  107. need_cp = true;
  108. else if (file_wrong_pino(inode))
  109. need_cp = true;
  110. else if (!space_for_roll_forward(sbi))
  111. need_cp = true;
  112. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  113. need_cp = true;
  114. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  115. need_cp = true;
  116. return need_cp;
  117. }
  118. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  119. {
  120. struct inode *inode = file->f_mapping->host;
  121. struct f2fs_inode_info *fi = F2FS_I(inode);
  122. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  123. int ret = 0;
  124. bool need_cp = false;
  125. struct writeback_control wbc = {
  126. .sync_mode = WB_SYNC_ALL,
  127. .nr_to_write = LONG_MAX,
  128. .for_reclaim = 0,
  129. };
  130. if (unlikely(f2fs_readonly(inode->i_sb)))
  131. return 0;
  132. trace_f2fs_sync_file_enter(inode);
  133. /* if fdatasync is triggered, let's do in-place-update */
  134. if (datasync)
  135. set_inode_flag(fi, FI_NEED_IPU);
  136. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  137. if (datasync)
  138. clear_inode_flag(fi, FI_NEED_IPU);
  139. if (ret) {
  140. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  141. return ret;
  142. }
  143. /*
  144. * if there is no written data, don't waste time to write recovery info.
  145. */
  146. if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
  147. !exist_written_data(sbi, inode->i_ino, APPEND_INO)) {
  148. if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
  149. exist_written_data(sbi, inode->i_ino, UPDATE_INO))
  150. goto flush_out;
  151. goto out;
  152. }
  153. /* guarantee free sections for fsync */
  154. f2fs_balance_fs(sbi);
  155. /*
  156. * Both of fdatasync() and fsync() are able to be recovered from
  157. * sudden-power-off.
  158. */
  159. down_read(&fi->i_sem);
  160. need_cp = need_do_checkpoint(inode);
  161. up_read(&fi->i_sem);
  162. if (need_cp) {
  163. nid_t pino;
  164. /* all the dirty node pages should be flushed for POR */
  165. ret = f2fs_sync_fs(inode->i_sb, 1);
  166. down_write(&fi->i_sem);
  167. F2FS_I(inode)->xattr_ver = 0;
  168. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  169. get_parent_ino(inode, &pino)) {
  170. F2FS_I(inode)->i_pino = pino;
  171. file_got_pino(inode);
  172. up_write(&fi->i_sem);
  173. mark_inode_dirty_sync(inode);
  174. ret = f2fs_write_inode(inode, NULL);
  175. if (ret)
  176. goto out;
  177. } else {
  178. up_write(&fi->i_sem);
  179. }
  180. } else {
  181. /* if there is no written node page, write its inode page */
  182. while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
  183. if (fsync_mark_done(sbi, inode->i_ino))
  184. goto out;
  185. mark_inode_dirty_sync(inode);
  186. ret = f2fs_write_inode(inode, NULL);
  187. if (ret)
  188. goto out;
  189. }
  190. ret = wait_on_node_pages_writeback(sbi, inode->i_ino);
  191. if (ret)
  192. goto out;
  193. /* once recovery info is written, don't need to tack this */
  194. remove_dirty_inode(sbi, inode->i_ino, APPEND_INO);
  195. clear_inode_flag(fi, FI_APPEND_WRITE);
  196. flush_out:
  197. remove_dirty_inode(sbi, inode->i_ino, UPDATE_INO);
  198. clear_inode_flag(fi, FI_UPDATE_WRITE);
  199. ret = f2fs_issue_flush(F2FS_SB(inode->i_sb));
  200. }
  201. out:
  202. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  203. return ret;
  204. }
  205. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  206. pgoff_t pgofs, int whence)
  207. {
  208. struct pagevec pvec;
  209. int nr_pages;
  210. if (whence != SEEK_DATA)
  211. return 0;
  212. /* find first dirty page index */
  213. pagevec_init(&pvec, 0);
  214. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  215. PAGECACHE_TAG_DIRTY, 1);
  216. pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
  217. pagevec_release(&pvec);
  218. return pgofs;
  219. }
  220. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  221. int whence)
  222. {
  223. switch (whence) {
  224. case SEEK_DATA:
  225. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  226. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  227. return true;
  228. break;
  229. case SEEK_HOLE:
  230. if (blkaddr == NULL_ADDR)
  231. return true;
  232. break;
  233. }
  234. return false;
  235. }
  236. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  237. {
  238. struct inode *inode = file->f_mapping->host;
  239. loff_t maxbytes = inode->i_sb->s_maxbytes;
  240. struct dnode_of_data dn;
  241. pgoff_t pgofs, end_offset, dirty;
  242. loff_t data_ofs = offset;
  243. loff_t isize;
  244. int err = 0;
  245. mutex_lock(&inode->i_mutex);
  246. isize = i_size_read(inode);
  247. if (offset >= isize)
  248. goto fail;
  249. /* handle inline data case */
  250. if (f2fs_has_inline_data(inode)) {
  251. if (whence == SEEK_HOLE)
  252. data_ofs = isize;
  253. goto found;
  254. }
  255. pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
  256. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  257. for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
  258. set_new_dnode(&dn, inode, NULL, NULL, 0);
  259. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  260. if (err && err != -ENOENT) {
  261. goto fail;
  262. } else if (err == -ENOENT) {
  263. /* direct node does not exists */
  264. if (whence == SEEK_DATA) {
  265. pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
  266. F2FS_I(inode));
  267. continue;
  268. } else {
  269. goto found;
  270. }
  271. }
  272. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  273. /* find data/hole in dnode block */
  274. for (; dn.ofs_in_node < end_offset;
  275. dn.ofs_in_node++, pgofs++,
  276. data_ofs = pgofs << PAGE_CACHE_SHIFT) {
  277. block_t blkaddr;
  278. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  279. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  280. f2fs_put_dnode(&dn);
  281. goto found;
  282. }
  283. }
  284. f2fs_put_dnode(&dn);
  285. }
  286. if (whence == SEEK_DATA)
  287. goto fail;
  288. found:
  289. if (whence == SEEK_HOLE && data_ofs > isize)
  290. data_ofs = isize;
  291. mutex_unlock(&inode->i_mutex);
  292. return vfs_setpos(file, data_ofs, maxbytes);
  293. fail:
  294. mutex_unlock(&inode->i_mutex);
  295. return -ENXIO;
  296. }
  297. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  298. {
  299. struct inode *inode = file->f_mapping->host;
  300. loff_t maxbytes = inode->i_sb->s_maxbytes;
  301. switch (whence) {
  302. case SEEK_SET:
  303. case SEEK_CUR:
  304. case SEEK_END:
  305. return generic_file_llseek_size(file, offset, whence,
  306. maxbytes, i_size_read(inode));
  307. case SEEK_DATA:
  308. case SEEK_HOLE:
  309. return f2fs_seek_block(file, offset, whence);
  310. }
  311. return -EINVAL;
  312. }
  313. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  314. {
  315. file_accessed(file);
  316. vma->vm_ops = &f2fs_file_vm_ops;
  317. return 0;
  318. }
  319. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  320. {
  321. int nr_free = 0, ofs = dn->ofs_in_node;
  322. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  323. struct f2fs_node *raw_node;
  324. __le32 *addr;
  325. raw_node = F2FS_NODE(dn->node_page);
  326. addr = blkaddr_in_node(raw_node) + ofs;
  327. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  328. block_t blkaddr = le32_to_cpu(*addr);
  329. if (blkaddr == NULL_ADDR)
  330. continue;
  331. update_extent_cache(NULL_ADDR, dn);
  332. invalidate_blocks(sbi, blkaddr);
  333. nr_free++;
  334. }
  335. if (nr_free) {
  336. dec_valid_block_count(sbi, dn->inode, nr_free);
  337. set_page_dirty(dn->node_page);
  338. sync_inode_page(dn);
  339. }
  340. dn->ofs_in_node = ofs;
  341. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  342. dn->ofs_in_node, nr_free);
  343. return nr_free;
  344. }
  345. void truncate_data_blocks(struct dnode_of_data *dn)
  346. {
  347. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  348. }
  349. static void truncate_partial_data_page(struct inode *inode, u64 from)
  350. {
  351. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  352. struct page *page;
  353. if (f2fs_has_inline_data(inode))
  354. return truncate_inline_data(inode, from);
  355. if (!offset)
  356. return;
  357. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
  358. if (IS_ERR(page))
  359. return;
  360. lock_page(page);
  361. if (unlikely(!PageUptodate(page) ||
  362. page->mapping != inode->i_mapping))
  363. goto out;
  364. f2fs_wait_on_page_writeback(page, DATA);
  365. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  366. set_page_dirty(page);
  367. out:
  368. f2fs_put_page(page, 1);
  369. }
  370. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  371. {
  372. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  373. unsigned int blocksize = inode->i_sb->s_blocksize;
  374. struct dnode_of_data dn;
  375. pgoff_t free_from;
  376. int count = 0, err = 0;
  377. trace_f2fs_truncate_blocks_enter(inode, from);
  378. if (f2fs_has_inline_data(inode))
  379. goto done;
  380. free_from = (pgoff_t)
  381. ((from + blocksize - 1) >> (sbi->log_blocksize));
  382. if (lock)
  383. f2fs_lock_op(sbi);
  384. set_new_dnode(&dn, inode, NULL, NULL, 0);
  385. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  386. if (err) {
  387. if (err == -ENOENT)
  388. goto free_next;
  389. if (lock)
  390. f2fs_unlock_op(sbi);
  391. trace_f2fs_truncate_blocks_exit(inode, err);
  392. return err;
  393. }
  394. count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  395. count -= dn.ofs_in_node;
  396. f2fs_bug_on(count < 0);
  397. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  398. truncate_data_blocks_range(&dn, count);
  399. free_from += count;
  400. }
  401. f2fs_put_dnode(&dn);
  402. free_next:
  403. err = truncate_inode_blocks(inode, free_from);
  404. if (lock)
  405. f2fs_unlock_op(sbi);
  406. done:
  407. /* lastly zero out the first data page */
  408. truncate_partial_data_page(inode, from);
  409. trace_f2fs_truncate_blocks_exit(inode, err);
  410. return err;
  411. }
  412. void f2fs_truncate(struct inode *inode)
  413. {
  414. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  415. S_ISLNK(inode->i_mode)))
  416. return;
  417. trace_f2fs_truncate(inode);
  418. if (!truncate_blocks(inode, i_size_read(inode), true)) {
  419. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  420. mark_inode_dirty(inode);
  421. }
  422. }
  423. int f2fs_getattr(struct vfsmount *mnt,
  424. struct dentry *dentry, struct kstat *stat)
  425. {
  426. struct inode *inode = dentry->d_inode;
  427. generic_fillattr(inode, stat);
  428. stat->blocks <<= 3;
  429. return 0;
  430. }
  431. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  432. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  433. {
  434. struct f2fs_inode_info *fi = F2FS_I(inode);
  435. unsigned int ia_valid = attr->ia_valid;
  436. if (ia_valid & ATTR_UID)
  437. inode->i_uid = attr->ia_uid;
  438. if (ia_valid & ATTR_GID)
  439. inode->i_gid = attr->ia_gid;
  440. if (ia_valid & ATTR_ATIME)
  441. inode->i_atime = timespec_trunc(attr->ia_atime,
  442. inode->i_sb->s_time_gran);
  443. if (ia_valid & ATTR_MTIME)
  444. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  445. inode->i_sb->s_time_gran);
  446. if (ia_valid & ATTR_CTIME)
  447. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  448. inode->i_sb->s_time_gran);
  449. if (ia_valid & ATTR_MODE) {
  450. umode_t mode = attr->ia_mode;
  451. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  452. mode &= ~S_ISGID;
  453. set_acl_inode(fi, mode);
  454. }
  455. }
  456. #else
  457. #define __setattr_copy setattr_copy
  458. #endif
  459. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  460. {
  461. struct inode *inode = dentry->d_inode;
  462. struct f2fs_inode_info *fi = F2FS_I(inode);
  463. int err;
  464. err = inode_change_ok(inode, attr);
  465. if (err)
  466. return err;
  467. if ((attr->ia_valid & ATTR_SIZE) &&
  468. attr->ia_size != i_size_read(inode)) {
  469. err = f2fs_convert_inline_data(inode, attr->ia_size, NULL);
  470. if (err)
  471. return err;
  472. truncate_setsize(inode, attr->ia_size);
  473. f2fs_truncate(inode);
  474. f2fs_balance_fs(F2FS_SB(inode->i_sb));
  475. }
  476. __setattr_copy(inode, attr);
  477. if (attr->ia_valid & ATTR_MODE) {
  478. err = posix_acl_chmod(inode, get_inode_mode(inode));
  479. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  480. inode->i_mode = fi->i_acl_mode;
  481. clear_inode_flag(fi, FI_ACL_MODE);
  482. }
  483. }
  484. mark_inode_dirty(inode);
  485. return err;
  486. }
  487. const struct inode_operations f2fs_file_inode_operations = {
  488. .getattr = f2fs_getattr,
  489. .setattr = f2fs_setattr,
  490. .get_acl = f2fs_get_acl,
  491. .set_acl = f2fs_set_acl,
  492. #ifdef CONFIG_F2FS_FS_XATTR
  493. .setxattr = generic_setxattr,
  494. .getxattr = generic_getxattr,
  495. .listxattr = f2fs_listxattr,
  496. .removexattr = generic_removexattr,
  497. #endif
  498. .fiemap = f2fs_fiemap,
  499. };
  500. static void fill_zero(struct inode *inode, pgoff_t index,
  501. loff_t start, loff_t len)
  502. {
  503. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  504. struct page *page;
  505. if (!len)
  506. return;
  507. f2fs_balance_fs(sbi);
  508. f2fs_lock_op(sbi);
  509. page = get_new_data_page(inode, NULL, index, false);
  510. f2fs_unlock_op(sbi);
  511. if (!IS_ERR(page)) {
  512. f2fs_wait_on_page_writeback(page, DATA);
  513. zero_user(page, start, len);
  514. set_page_dirty(page);
  515. f2fs_put_page(page, 1);
  516. }
  517. }
  518. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  519. {
  520. pgoff_t index;
  521. int err;
  522. for (index = pg_start; index < pg_end; index++) {
  523. struct dnode_of_data dn;
  524. set_new_dnode(&dn, inode, NULL, NULL, 0);
  525. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  526. if (err) {
  527. if (err == -ENOENT)
  528. continue;
  529. return err;
  530. }
  531. if (dn.data_blkaddr != NULL_ADDR)
  532. truncate_data_blocks_range(&dn, 1);
  533. f2fs_put_dnode(&dn);
  534. }
  535. return 0;
  536. }
  537. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  538. {
  539. pgoff_t pg_start, pg_end;
  540. loff_t off_start, off_end;
  541. int ret = 0;
  542. ret = f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1, NULL);
  543. if (ret)
  544. return ret;
  545. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  546. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  547. off_start = offset & (PAGE_CACHE_SIZE - 1);
  548. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  549. if (pg_start == pg_end) {
  550. fill_zero(inode, pg_start, off_start,
  551. off_end - off_start);
  552. } else {
  553. if (off_start)
  554. fill_zero(inode, pg_start++, off_start,
  555. PAGE_CACHE_SIZE - off_start);
  556. if (off_end)
  557. fill_zero(inode, pg_end, 0, off_end);
  558. if (pg_start < pg_end) {
  559. struct address_space *mapping = inode->i_mapping;
  560. loff_t blk_start, blk_end;
  561. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  562. f2fs_balance_fs(sbi);
  563. blk_start = pg_start << PAGE_CACHE_SHIFT;
  564. blk_end = pg_end << PAGE_CACHE_SHIFT;
  565. truncate_inode_pages_range(mapping, blk_start,
  566. blk_end - 1);
  567. f2fs_lock_op(sbi);
  568. ret = truncate_hole(inode, pg_start, pg_end);
  569. f2fs_unlock_op(sbi);
  570. }
  571. }
  572. return ret;
  573. }
  574. static int expand_inode_data(struct inode *inode, loff_t offset,
  575. loff_t len, int mode)
  576. {
  577. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  578. pgoff_t index, pg_start, pg_end;
  579. loff_t new_size = i_size_read(inode);
  580. loff_t off_start, off_end;
  581. int ret = 0;
  582. f2fs_balance_fs(sbi);
  583. ret = inode_newsize_ok(inode, (len + offset));
  584. if (ret)
  585. return ret;
  586. ret = f2fs_convert_inline_data(inode, offset + len, NULL);
  587. if (ret)
  588. return ret;
  589. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  590. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  591. off_start = offset & (PAGE_CACHE_SIZE - 1);
  592. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  593. f2fs_lock_op(sbi);
  594. for (index = pg_start; index <= pg_end; index++) {
  595. struct dnode_of_data dn;
  596. if (index == pg_end && !off_end)
  597. goto noalloc;
  598. set_new_dnode(&dn, inode, NULL, NULL, 0);
  599. ret = f2fs_reserve_block(&dn, index);
  600. if (ret)
  601. break;
  602. noalloc:
  603. if (pg_start == pg_end)
  604. new_size = offset + len;
  605. else if (index == pg_start && off_start)
  606. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  607. else if (index == pg_end)
  608. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  609. else
  610. new_size += PAGE_CACHE_SIZE;
  611. }
  612. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  613. i_size_read(inode) < new_size) {
  614. i_size_write(inode, new_size);
  615. mark_inode_dirty(inode);
  616. update_inode_page(inode);
  617. }
  618. f2fs_unlock_op(sbi);
  619. return ret;
  620. }
  621. static long f2fs_fallocate(struct file *file, int mode,
  622. loff_t offset, loff_t len)
  623. {
  624. struct inode *inode = file_inode(file);
  625. long ret;
  626. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  627. return -EOPNOTSUPP;
  628. mutex_lock(&inode->i_mutex);
  629. if (mode & FALLOC_FL_PUNCH_HOLE)
  630. ret = punch_hole(inode, offset, len);
  631. else
  632. ret = expand_inode_data(inode, offset, len, mode);
  633. if (!ret) {
  634. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  635. mark_inode_dirty(inode);
  636. }
  637. mutex_unlock(&inode->i_mutex);
  638. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  639. return ret;
  640. }
  641. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  642. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  643. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  644. {
  645. if (S_ISDIR(mode))
  646. return flags;
  647. else if (S_ISREG(mode))
  648. return flags & F2FS_REG_FLMASK;
  649. else
  650. return flags & F2FS_OTHER_FLMASK;
  651. }
  652. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  653. {
  654. struct inode *inode = file_inode(filp);
  655. struct f2fs_inode_info *fi = F2FS_I(inode);
  656. unsigned int flags;
  657. int ret;
  658. switch (cmd) {
  659. case F2FS_IOC_GETFLAGS:
  660. flags = fi->i_flags & FS_FL_USER_VISIBLE;
  661. return put_user(flags, (int __user *) arg);
  662. case F2FS_IOC_SETFLAGS:
  663. {
  664. unsigned int oldflags;
  665. ret = mnt_want_write_file(filp);
  666. if (ret)
  667. return ret;
  668. if (!inode_owner_or_capable(inode)) {
  669. ret = -EACCES;
  670. goto out;
  671. }
  672. if (get_user(flags, (int __user *) arg)) {
  673. ret = -EFAULT;
  674. goto out;
  675. }
  676. flags = f2fs_mask_flags(inode->i_mode, flags);
  677. mutex_lock(&inode->i_mutex);
  678. oldflags = fi->i_flags;
  679. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  680. if (!capable(CAP_LINUX_IMMUTABLE)) {
  681. mutex_unlock(&inode->i_mutex);
  682. ret = -EPERM;
  683. goto out;
  684. }
  685. }
  686. flags = flags & FS_FL_USER_MODIFIABLE;
  687. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  688. fi->i_flags = flags;
  689. mutex_unlock(&inode->i_mutex);
  690. f2fs_set_inode_flags(inode);
  691. inode->i_ctime = CURRENT_TIME;
  692. mark_inode_dirty(inode);
  693. out:
  694. mnt_drop_write_file(filp);
  695. return ret;
  696. }
  697. default:
  698. return -ENOTTY;
  699. }
  700. }
  701. #ifdef CONFIG_COMPAT
  702. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  703. {
  704. switch (cmd) {
  705. case F2FS_IOC32_GETFLAGS:
  706. cmd = F2FS_IOC_GETFLAGS;
  707. break;
  708. case F2FS_IOC32_SETFLAGS:
  709. cmd = F2FS_IOC_SETFLAGS;
  710. break;
  711. default:
  712. return -ENOIOCTLCMD;
  713. }
  714. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  715. }
  716. #endif
  717. const struct file_operations f2fs_file_operations = {
  718. .llseek = f2fs_llseek,
  719. .read = new_sync_read,
  720. .write = new_sync_write,
  721. .read_iter = generic_file_read_iter,
  722. .write_iter = generic_file_write_iter,
  723. .open = generic_file_open,
  724. .mmap = f2fs_file_mmap,
  725. .fsync = f2fs_sync_file,
  726. .fallocate = f2fs_fallocate,
  727. .unlocked_ioctl = f2fs_ioctl,
  728. #ifdef CONFIG_COMPAT
  729. .compat_ioctl = f2fs_compat_ioctl,
  730. #endif
  731. .splice_read = generic_file_splice_read,
  732. .splice_write = iter_file_splice_write,
  733. };