data.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/aio.h>
  16. #include <linux/writeback.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include "f2fs.h"
  22. #include "node.h"
  23. #include "segment.h"
  24. #include <trace/events/f2fs.h>
  25. static void f2fs_read_end_io(struct bio *bio, int err)
  26. {
  27. struct bio_vec *bvec;
  28. int i;
  29. bio_for_each_segment_all(bvec, bio, i) {
  30. struct page *page = bvec->bv_page;
  31. if (!err) {
  32. SetPageUptodate(page);
  33. } else {
  34. ClearPageUptodate(page);
  35. SetPageError(page);
  36. }
  37. unlock_page(page);
  38. }
  39. bio_put(bio);
  40. }
  41. static void f2fs_write_end_io(struct bio *bio, int err)
  42. {
  43. struct f2fs_sb_info *sbi = bio->bi_private;
  44. struct bio_vec *bvec;
  45. int i;
  46. bio_for_each_segment_all(bvec, bio, i) {
  47. struct page *page = bvec->bv_page;
  48. if (unlikely(err)) {
  49. set_page_dirty(page);
  50. set_bit(AS_EIO, &page->mapping->flags);
  51. f2fs_stop_checkpoint(sbi);
  52. }
  53. end_page_writeback(page);
  54. dec_page_count(sbi, F2FS_WRITEBACK);
  55. }
  56. if (sbi->wait_io) {
  57. complete(sbi->wait_io);
  58. sbi->wait_io = NULL;
  59. }
  60. if (!get_pages(sbi, F2FS_WRITEBACK) &&
  61. !list_empty(&sbi->cp_wait.task_list))
  62. wake_up(&sbi->cp_wait);
  63. bio_put(bio);
  64. }
  65. /*
  66. * Low-level block read/write IO operations.
  67. */
  68. static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
  69. int npages, bool is_read)
  70. {
  71. struct bio *bio;
  72. /* No failure on bio allocation */
  73. bio = bio_alloc(GFP_NOIO, npages);
  74. bio->bi_bdev = sbi->sb->s_bdev;
  75. bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
  76. bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
  77. bio->bi_private = sbi;
  78. return bio;
  79. }
  80. static void __submit_merged_bio(struct f2fs_bio_info *io)
  81. {
  82. struct f2fs_io_info *fio = &io->fio;
  83. int rw;
  84. if (!io->bio)
  85. return;
  86. rw = fio->rw;
  87. if (is_read_io(rw)) {
  88. trace_f2fs_submit_read_bio(io->sbi->sb, rw,
  89. fio->type, io->bio);
  90. submit_bio(rw, io->bio);
  91. } else {
  92. trace_f2fs_submit_write_bio(io->sbi->sb, rw,
  93. fio->type, io->bio);
  94. /*
  95. * META_FLUSH is only from the checkpoint procedure, and we
  96. * should wait this metadata bio for FS consistency.
  97. */
  98. if (fio->type == META_FLUSH) {
  99. DECLARE_COMPLETION_ONSTACK(wait);
  100. io->sbi->wait_io = &wait;
  101. submit_bio(rw, io->bio);
  102. wait_for_completion(&wait);
  103. } else {
  104. submit_bio(rw, io->bio);
  105. }
  106. }
  107. io->bio = NULL;
  108. }
  109. void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
  110. enum page_type type, int rw)
  111. {
  112. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  113. struct f2fs_bio_info *io;
  114. io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
  115. down_write(&io->io_rwsem);
  116. /* change META to META_FLUSH in the checkpoint procedure */
  117. if (type >= META_FLUSH) {
  118. io->fio.type = META_FLUSH;
  119. if (test_opt(sbi, NOBARRIER))
  120. io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
  121. else
  122. io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
  123. }
  124. __submit_merged_bio(io);
  125. up_write(&io->io_rwsem);
  126. }
  127. /*
  128. * Fill the locked page with data located in the block address.
  129. * Return unlocked page.
  130. */
  131. int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
  132. block_t blk_addr, int rw)
  133. {
  134. struct bio *bio;
  135. trace_f2fs_submit_page_bio(page, blk_addr, rw);
  136. /* Allocate a new bio */
  137. bio = __bio_alloc(sbi, blk_addr, 1, is_read_io(rw));
  138. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  139. bio_put(bio);
  140. f2fs_put_page(page, 1);
  141. return -EFAULT;
  142. }
  143. submit_bio(rw, bio);
  144. return 0;
  145. }
  146. void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
  147. block_t blk_addr, struct f2fs_io_info *fio)
  148. {
  149. enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
  150. struct f2fs_bio_info *io;
  151. bool is_read = is_read_io(fio->rw);
  152. io = is_read ? &sbi->read_io : &sbi->write_io[btype];
  153. verify_block_addr(sbi, blk_addr);
  154. down_write(&io->io_rwsem);
  155. if (!is_read)
  156. inc_page_count(sbi, F2FS_WRITEBACK);
  157. if (io->bio && (io->last_block_in_bio != blk_addr - 1 ||
  158. io->fio.rw != fio->rw))
  159. __submit_merged_bio(io);
  160. alloc_new:
  161. if (io->bio == NULL) {
  162. int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
  163. io->bio = __bio_alloc(sbi, blk_addr, bio_blocks, is_read);
  164. io->fio = *fio;
  165. }
  166. if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
  167. PAGE_CACHE_SIZE) {
  168. __submit_merged_bio(io);
  169. goto alloc_new;
  170. }
  171. io->last_block_in_bio = blk_addr;
  172. up_write(&io->io_rwsem);
  173. trace_f2fs_submit_page_mbio(page, fio->rw, fio->type, blk_addr);
  174. }
  175. /*
  176. * Lock ordering for the change of data block address:
  177. * ->data_page
  178. * ->node_page
  179. * update block addresses in the node page
  180. */
  181. static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
  182. {
  183. struct f2fs_node *rn;
  184. __le32 *addr_array;
  185. struct page *node_page = dn->node_page;
  186. unsigned int ofs_in_node = dn->ofs_in_node;
  187. f2fs_wait_on_page_writeback(node_page, NODE);
  188. rn = F2FS_NODE(node_page);
  189. /* Get physical address of data block */
  190. addr_array = blkaddr_in_node(rn);
  191. addr_array[ofs_in_node] = cpu_to_le32(new_addr);
  192. set_page_dirty(node_page);
  193. }
  194. int reserve_new_block(struct dnode_of_data *dn)
  195. {
  196. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  197. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  198. return -EPERM;
  199. if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
  200. return -ENOSPC;
  201. trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
  202. __set_data_blkaddr(dn, NEW_ADDR);
  203. dn->data_blkaddr = NEW_ADDR;
  204. mark_inode_dirty(dn->inode);
  205. sync_inode_page(dn);
  206. return 0;
  207. }
  208. int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
  209. {
  210. bool need_put = dn->inode_page ? false : true;
  211. int err;
  212. /* if inode_page exists, index should be zero */
  213. f2fs_bug_on(!need_put && index);
  214. err = get_dnode_of_data(dn, index, ALLOC_NODE);
  215. if (err)
  216. return err;
  217. if (dn->data_blkaddr == NULL_ADDR)
  218. err = reserve_new_block(dn);
  219. if (err || need_put)
  220. f2fs_put_dnode(dn);
  221. return err;
  222. }
  223. static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
  224. struct buffer_head *bh_result)
  225. {
  226. struct f2fs_inode_info *fi = F2FS_I(inode);
  227. pgoff_t start_fofs, end_fofs;
  228. block_t start_blkaddr;
  229. if (is_inode_flag_set(fi, FI_NO_EXTENT))
  230. return 0;
  231. read_lock(&fi->ext.ext_lock);
  232. if (fi->ext.len == 0) {
  233. read_unlock(&fi->ext.ext_lock);
  234. return 0;
  235. }
  236. stat_inc_total_hit(inode->i_sb);
  237. start_fofs = fi->ext.fofs;
  238. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  239. start_blkaddr = fi->ext.blk_addr;
  240. if (pgofs >= start_fofs && pgofs <= end_fofs) {
  241. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  242. size_t count;
  243. clear_buffer_new(bh_result);
  244. map_bh(bh_result, inode->i_sb,
  245. start_blkaddr + pgofs - start_fofs);
  246. count = end_fofs - pgofs + 1;
  247. if (count < (UINT_MAX >> blkbits))
  248. bh_result->b_size = (count << blkbits);
  249. else
  250. bh_result->b_size = UINT_MAX;
  251. stat_inc_read_hit(inode->i_sb);
  252. read_unlock(&fi->ext.ext_lock);
  253. return 1;
  254. }
  255. read_unlock(&fi->ext.ext_lock);
  256. return 0;
  257. }
  258. void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
  259. {
  260. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  261. pgoff_t fofs, start_fofs, end_fofs;
  262. block_t start_blkaddr, end_blkaddr;
  263. int need_update = true;
  264. f2fs_bug_on(blk_addr == NEW_ADDR);
  265. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
  266. dn->ofs_in_node;
  267. /* Update the page address in the parent node */
  268. __set_data_blkaddr(dn, blk_addr);
  269. if (is_inode_flag_set(fi, FI_NO_EXTENT))
  270. return;
  271. write_lock(&fi->ext.ext_lock);
  272. start_fofs = fi->ext.fofs;
  273. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  274. start_blkaddr = fi->ext.blk_addr;
  275. end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
  276. /* Drop and initialize the matched extent */
  277. if (fi->ext.len == 1 && fofs == start_fofs)
  278. fi->ext.len = 0;
  279. /* Initial extent */
  280. if (fi->ext.len == 0) {
  281. if (blk_addr != NULL_ADDR) {
  282. fi->ext.fofs = fofs;
  283. fi->ext.blk_addr = blk_addr;
  284. fi->ext.len = 1;
  285. }
  286. goto end_update;
  287. }
  288. /* Front merge */
  289. if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
  290. fi->ext.fofs--;
  291. fi->ext.blk_addr--;
  292. fi->ext.len++;
  293. goto end_update;
  294. }
  295. /* Back merge */
  296. if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
  297. fi->ext.len++;
  298. goto end_update;
  299. }
  300. /* Split the existing extent */
  301. if (fi->ext.len > 1 &&
  302. fofs >= start_fofs && fofs <= end_fofs) {
  303. if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
  304. fi->ext.len = fofs - start_fofs;
  305. } else {
  306. fi->ext.fofs = fofs + 1;
  307. fi->ext.blk_addr = start_blkaddr +
  308. fofs - start_fofs + 1;
  309. fi->ext.len -= fofs - start_fofs + 1;
  310. }
  311. } else {
  312. need_update = false;
  313. }
  314. /* Finally, if the extent is very fragmented, let's drop the cache. */
  315. if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
  316. fi->ext.len = 0;
  317. set_inode_flag(fi, FI_NO_EXTENT);
  318. need_update = true;
  319. }
  320. end_update:
  321. write_unlock(&fi->ext.ext_lock);
  322. if (need_update)
  323. sync_inode_page(dn);
  324. return;
  325. }
  326. struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
  327. {
  328. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  329. struct address_space *mapping = inode->i_mapping;
  330. struct dnode_of_data dn;
  331. struct page *page;
  332. int err;
  333. page = find_get_page(mapping, index);
  334. if (page && PageUptodate(page))
  335. return page;
  336. f2fs_put_page(page, 0);
  337. set_new_dnode(&dn, inode, NULL, NULL, 0);
  338. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  339. if (err)
  340. return ERR_PTR(err);
  341. f2fs_put_dnode(&dn);
  342. if (dn.data_blkaddr == NULL_ADDR)
  343. return ERR_PTR(-ENOENT);
  344. /* By fallocate(), there is no cached page, but with NEW_ADDR */
  345. if (unlikely(dn.data_blkaddr == NEW_ADDR))
  346. return ERR_PTR(-EINVAL);
  347. page = grab_cache_page(mapping, index);
  348. if (!page)
  349. return ERR_PTR(-ENOMEM);
  350. if (PageUptodate(page)) {
  351. unlock_page(page);
  352. return page;
  353. }
  354. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
  355. sync ? READ_SYNC : READA);
  356. if (err)
  357. return ERR_PTR(err);
  358. if (sync) {
  359. wait_on_page_locked(page);
  360. if (unlikely(!PageUptodate(page))) {
  361. f2fs_put_page(page, 0);
  362. return ERR_PTR(-EIO);
  363. }
  364. }
  365. return page;
  366. }
  367. /*
  368. * If it tries to access a hole, return an error.
  369. * Because, the callers, functions in dir.c and GC, should be able to know
  370. * whether this page exists or not.
  371. */
  372. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  373. {
  374. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  375. struct address_space *mapping = inode->i_mapping;
  376. struct dnode_of_data dn;
  377. struct page *page;
  378. int err;
  379. repeat:
  380. page = grab_cache_page(mapping, index);
  381. if (!page)
  382. return ERR_PTR(-ENOMEM);
  383. set_new_dnode(&dn, inode, NULL, NULL, 0);
  384. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  385. if (err) {
  386. f2fs_put_page(page, 1);
  387. return ERR_PTR(err);
  388. }
  389. f2fs_put_dnode(&dn);
  390. if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
  391. f2fs_put_page(page, 1);
  392. return ERR_PTR(-ENOENT);
  393. }
  394. if (PageUptodate(page))
  395. return page;
  396. /*
  397. * A new dentry page is allocated but not able to be written, since its
  398. * new inode page couldn't be allocated due to -ENOSPC.
  399. * In such the case, its blkaddr can be remained as NEW_ADDR.
  400. * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
  401. */
  402. if (dn.data_blkaddr == NEW_ADDR) {
  403. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  404. SetPageUptodate(page);
  405. return page;
  406. }
  407. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr, READ_SYNC);
  408. if (err)
  409. return ERR_PTR(err);
  410. lock_page(page);
  411. if (unlikely(!PageUptodate(page))) {
  412. f2fs_put_page(page, 1);
  413. return ERR_PTR(-EIO);
  414. }
  415. if (unlikely(page->mapping != mapping)) {
  416. f2fs_put_page(page, 1);
  417. goto repeat;
  418. }
  419. return page;
  420. }
  421. /*
  422. * Caller ensures that this data page is never allocated.
  423. * A new zero-filled data page is allocated in the page cache.
  424. *
  425. * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
  426. * f2fs_unlock_op().
  427. * Note that, ipage is set only by make_empty_dir.
  428. */
  429. struct page *get_new_data_page(struct inode *inode,
  430. struct page *ipage, pgoff_t index, bool new_i_size)
  431. {
  432. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  433. struct address_space *mapping = inode->i_mapping;
  434. struct page *page;
  435. struct dnode_of_data dn;
  436. int err;
  437. set_new_dnode(&dn, inode, ipage, NULL, 0);
  438. err = f2fs_reserve_block(&dn, index);
  439. if (err)
  440. return ERR_PTR(err);
  441. repeat:
  442. page = grab_cache_page(mapping, index);
  443. if (!page) {
  444. err = -ENOMEM;
  445. goto put_err;
  446. }
  447. if (PageUptodate(page))
  448. return page;
  449. if (dn.data_blkaddr == NEW_ADDR) {
  450. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  451. SetPageUptodate(page);
  452. } else {
  453. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
  454. READ_SYNC);
  455. if (err)
  456. goto put_err;
  457. lock_page(page);
  458. if (unlikely(!PageUptodate(page))) {
  459. f2fs_put_page(page, 1);
  460. err = -EIO;
  461. goto put_err;
  462. }
  463. if (unlikely(page->mapping != mapping)) {
  464. f2fs_put_page(page, 1);
  465. goto repeat;
  466. }
  467. }
  468. if (new_i_size &&
  469. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  470. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  471. /* Only the directory inode sets new_i_size */
  472. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  473. }
  474. return page;
  475. put_err:
  476. f2fs_put_dnode(&dn);
  477. return ERR_PTR(err);
  478. }
  479. static int __allocate_data_block(struct dnode_of_data *dn)
  480. {
  481. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  482. struct f2fs_summary sum;
  483. block_t new_blkaddr;
  484. struct node_info ni;
  485. int type;
  486. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  487. return -EPERM;
  488. if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
  489. return -ENOSPC;
  490. __set_data_blkaddr(dn, NEW_ADDR);
  491. dn->data_blkaddr = NEW_ADDR;
  492. get_node_info(sbi, dn->nid, &ni);
  493. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  494. type = CURSEG_WARM_DATA;
  495. allocate_data_block(sbi, NULL, NULL_ADDR, &new_blkaddr, &sum, type);
  496. /* direct IO doesn't use extent cache to maximize the performance */
  497. set_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
  498. update_extent_cache(new_blkaddr, dn);
  499. clear_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
  500. dn->data_blkaddr = new_blkaddr;
  501. return 0;
  502. }
  503. /*
  504. * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
  505. * If original data blocks are allocated, then give them to blockdev.
  506. * Otherwise,
  507. * a. preallocate requested block addresses
  508. * b. do not use extent cache for better performance
  509. * c. give the block addresses to blockdev
  510. */
  511. static int __get_data_block(struct inode *inode, sector_t iblock,
  512. struct buffer_head *bh_result, int create, bool fiemap)
  513. {
  514. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  515. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  516. unsigned maxblocks = bh_result->b_size >> blkbits;
  517. struct dnode_of_data dn;
  518. int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
  519. pgoff_t pgofs, end_offset;
  520. int err = 0, ofs = 1;
  521. bool allocated = false;
  522. /* Get the page offset from the block offset(iblock) */
  523. pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
  524. if (check_extent_cache(inode, pgofs, bh_result))
  525. goto out;
  526. if (create) {
  527. f2fs_balance_fs(sbi);
  528. f2fs_lock_op(sbi);
  529. }
  530. /* When reading holes, we need its node page */
  531. set_new_dnode(&dn, inode, NULL, NULL, 0);
  532. err = get_dnode_of_data(&dn, pgofs, mode);
  533. if (err) {
  534. if (err == -ENOENT)
  535. err = 0;
  536. goto unlock_out;
  537. }
  538. if (dn.data_blkaddr == NEW_ADDR && !fiemap)
  539. goto put_out;
  540. if (dn.data_blkaddr != NULL_ADDR) {
  541. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  542. } else if (create) {
  543. err = __allocate_data_block(&dn);
  544. if (err)
  545. goto put_out;
  546. allocated = true;
  547. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  548. } else {
  549. goto put_out;
  550. }
  551. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  552. bh_result->b_size = (((size_t)1) << blkbits);
  553. dn.ofs_in_node++;
  554. pgofs++;
  555. get_next:
  556. if (dn.ofs_in_node >= end_offset) {
  557. if (allocated)
  558. sync_inode_page(&dn);
  559. allocated = false;
  560. f2fs_put_dnode(&dn);
  561. set_new_dnode(&dn, inode, NULL, NULL, 0);
  562. err = get_dnode_of_data(&dn, pgofs, mode);
  563. if (err) {
  564. if (err == -ENOENT)
  565. err = 0;
  566. goto unlock_out;
  567. }
  568. if (dn.data_blkaddr == NEW_ADDR && !fiemap)
  569. goto put_out;
  570. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  571. }
  572. if (maxblocks > (bh_result->b_size >> blkbits)) {
  573. block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  574. if (blkaddr == NULL_ADDR && create) {
  575. err = __allocate_data_block(&dn);
  576. if (err)
  577. goto sync_out;
  578. allocated = true;
  579. blkaddr = dn.data_blkaddr;
  580. }
  581. /* Give more consecutive addresses for the readahead */
  582. if (blkaddr == (bh_result->b_blocknr + ofs)) {
  583. ofs++;
  584. dn.ofs_in_node++;
  585. pgofs++;
  586. bh_result->b_size += (((size_t)1) << blkbits);
  587. goto get_next;
  588. }
  589. }
  590. sync_out:
  591. if (allocated)
  592. sync_inode_page(&dn);
  593. put_out:
  594. f2fs_put_dnode(&dn);
  595. unlock_out:
  596. if (create)
  597. f2fs_unlock_op(sbi);
  598. out:
  599. trace_f2fs_get_data_block(inode, iblock, bh_result, err);
  600. return err;
  601. }
  602. static int get_data_block(struct inode *inode, sector_t iblock,
  603. struct buffer_head *bh_result, int create)
  604. {
  605. return __get_data_block(inode, iblock, bh_result, create, false);
  606. }
  607. static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
  608. struct buffer_head *bh_result, int create)
  609. {
  610. return __get_data_block(inode, iblock, bh_result, create, true);
  611. }
  612. int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  613. u64 start, u64 len)
  614. {
  615. return generic_block_fiemap(inode, fieinfo,
  616. start, len, get_data_block_fiemap);
  617. }
  618. static int f2fs_read_data_page(struct file *file, struct page *page)
  619. {
  620. struct inode *inode = page->mapping->host;
  621. int ret;
  622. trace_f2fs_readpage(page, DATA);
  623. /* If the file has inline data, try to read it directly */
  624. if (f2fs_has_inline_data(inode))
  625. ret = f2fs_read_inline_data(inode, page);
  626. else
  627. ret = mpage_readpage(page, get_data_block);
  628. return ret;
  629. }
  630. static int f2fs_read_data_pages(struct file *file,
  631. struct address_space *mapping,
  632. struct list_head *pages, unsigned nr_pages)
  633. {
  634. struct inode *inode = file->f_mapping->host;
  635. /* If the file has inline data, skip readpages */
  636. if (f2fs_has_inline_data(inode))
  637. return 0;
  638. return mpage_readpages(mapping, pages, nr_pages, get_data_block);
  639. }
  640. int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
  641. {
  642. struct inode *inode = page->mapping->host;
  643. block_t old_blkaddr, new_blkaddr;
  644. struct dnode_of_data dn;
  645. int err = 0;
  646. set_new_dnode(&dn, inode, NULL, NULL, 0);
  647. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  648. if (err)
  649. return err;
  650. old_blkaddr = dn.data_blkaddr;
  651. /* This page is already truncated */
  652. if (old_blkaddr == NULL_ADDR)
  653. goto out_writepage;
  654. set_page_writeback(page);
  655. /*
  656. * If current allocation needs SSR,
  657. * it had better in-place writes for updated data.
  658. */
  659. if (unlikely(old_blkaddr != NEW_ADDR &&
  660. !is_cold_data(page) &&
  661. need_inplace_update(inode))) {
  662. rewrite_data_page(page, old_blkaddr, fio);
  663. set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
  664. } else {
  665. write_data_page(page, &dn, &new_blkaddr, fio);
  666. update_extent_cache(new_blkaddr, &dn);
  667. set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
  668. }
  669. out_writepage:
  670. f2fs_put_dnode(&dn);
  671. return err;
  672. }
  673. static int f2fs_write_data_page(struct page *page,
  674. struct writeback_control *wbc)
  675. {
  676. struct inode *inode = page->mapping->host;
  677. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  678. loff_t i_size = i_size_read(inode);
  679. const pgoff_t end_index = ((unsigned long long) i_size)
  680. >> PAGE_CACHE_SHIFT;
  681. unsigned offset = 0;
  682. bool need_balance_fs = false;
  683. int err = 0;
  684. struct f2fs_io_info fio = {
  685. .type = DATA,
  686. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  687. };
  688. trace_f2fs_writepage(page, DATA);
  689. if (page->index < end_index)
  690. goto write;
  691. /*
  692. * If the offset is out-of-range of file size,
  693. * this page does not have to be written to disk.
  694. */
  695. offset = i_size & (PAGE_CACHE_SIZE - 1);
  696. if ((page->index >= end_index + 1) || !offset)
  697. goto out;
  698. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  699. write:
  700. if (unlikely(sbi->por_doing))
  701. goto redirty_out;
  702. /* Dentry blocks are controlled by checkpoint */
  703. if (S_ISDIR(inode->i_mode)) {
  704. if (unlikely(f2fs_cp_error(sbi)))
  705. goto redirty_out;
  706. err = do_write_data_page(page, &fio);
  707. goto done;
  708. }
  709. /* we should bypass data pages to proceed the kworkder jobs */
  710. if (unlikely(f2fs_cp_error(sbi))) {
  711. SetPageError(page);
  712. unlock_page(page);
  713. return 0;
  714. }
  715. if (!wbc->for_reclaim)
  716. need_balance_fs = true;
  717. else if (has_not_enough_free_secs(sbi, 0))
  718. goto redirty_out;
  719. f2fs_lock_op(sbi);
  720. if (f2fs_has_inline_data(inode) || f2fs_may_inline(inode))
  721. err = f2fs_write_inline_data(inode, page, offset);
  722. else
  723. err = do_write_data_page(page, &fio);
  724. f2fs_unlock_op(sbi);
  725. done:
  726. if (err && err != -ENOENT)
  727. goto redirty_out;
  728. clear_cold_data(page);
  729. out:
  730. inode_dec_dirty_dents(inode);
  731. unlock_page(page);
  732. if (need_balance_fs)
  733. f2fs_balance_fs(sbi);
  734. if (wbc->for_reclaim)
  735. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  736. return 0;
  737. redirty_out:
  738. redirty_page_for_writepage(wbc, page);
  739. return AOP_WRITEPAGE_ACTIVATE;
  740. }
  741. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  742. void *data)
  743. {
  744. struct address_space *mapping = data;
  745. int ret = mapping->a_ops->writepage(page, wbc);
  746. mapping_set_error(mapping, ret);
  747. return ret;
  748. }
  749. static int f2fs_write_data_pages(struct address_space *mapping,
  750. struct writeback_control *wbc)
  751. {
  752. struct inode *inode = mapping->host;
  753. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  754. bool locked = false;
  755. int ret;
  756. long diff;
  757. trace_f2fs_writepages(mapping->host, wbc, DATA);
  758. /* deal with chardevs and other special file */
  759. if (!mapping->a_ops->writepage)
  760. return 0;
  761. if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
  762. get_dirty_dents(inode) < nr_pages_to_skip(sbi, DATA) &&
  763. available_free_memory(sbi, DIRTY_DENTS))
  764. goto skip_write;
  765. diff = nr_pages_to_write(sbi, DATA, wbc);
  766. if (!S_ISDIR(inode->i_mode)) {
  767. mutex_lock(&sbi->writepages);
  768. locked = true;
  769. }
  770. ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  771. if (locked)
  772. mutex_unlock(&sbi->writepages);
  773. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  774. remove_dirty_dir_inode(inode);
  775. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  776. return ret;
  777. skip_write:
  778. wbc->pages_skipped += get_dirty_dents(inode);
  779. return 0;
  780. }
  781. static void f2fs_write_failed(struct address_space *mapping, loff_t to)
  782. {
  783. struct inode *inode = mapping->host;
  784. if (to > inode->i_size) {
  785. truncate_pagecache(inode, inode->i_size);
  786. truncate_blocks(inode, inode->i_size, true);
  787. }
  788. }
  789. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  790. loff_t pos, unsigned len, unsigned flags,
  791. struct page **pagep, void **fsdata)
  792. {
  793. struct inode *inode = mapping->host;
  794. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  795. struct page *page;
  796. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  797. struct dnode_of_data dn;
  798. int err = 0;
  799. trace_f2fs_write_begin(inode, pos, len, flags);
  800. f2fs_balance_fs(sbi);
  801. repeat:
  802. err = f2fs_convert_inline_data(inode, pos + len, NULL);
  803. if (err)
  804. goto fail;
  805. page = grab_cache_page_write_begin(mapping, index, flags);
  806. if (!page) {
  807. err = -ENOMEM;
  808. goto fail;
  809. }
  810. /* to avoid latency during memory pressure */
  811. unlock_page(page);
  812. *pagep = page;
  813. if (f2fs_has_inline_data(inode) && (pos + len) <= MAX_INLINE_DATA)
  814. goto inline_data;
  815. f2fs_lock_op(sbi);
  816. set_new_dnode(&dn, inode, NULL, NULL, 0);
  817. err = f2fs_reserve_block(&dn, index);
  818. f2fs_unlock_op(sbi);
  819. if (err) {
  820. f2fs_put_page(page, 0);
  821. goto fail;
  822. }
  823. inline_data:
  824. lock_page(page);
  825. if (unlikely(page->mapping != mapping)) {
  826. f2fs_put_page(page, 1);
  827. goto repeat;
  828. }
  829. f2fs_wait_on_page_writeback(page, DATA);
  830. if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
  831. return 0;
  832. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  833. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  834. unsigned end = start + len;
  835. /* Reading beyond i_size is simple: memset to zero */
  836. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  837. goto out;
  838. }
  839. if (dn.data_blkaddr == NEW_ADDR) {
  840. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  841. } else {
  842. if (f2fs_has_inline_data(inode)) {
  843. err = f2fs_read_inline_data(inode, page);
  844. if (err) {
  845. page_cache_release(page);
  846. goto fail;
  847. }
  848. } else {
  849. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
  850. READ_SYNC);
  851. if (err)
  852. goto fail;
  853. }
  854. lock_page(page);
  855. if (unlikely(!PageUptodate(page))) {
  856. f2fs_put_page(page, 1);
  857. err = -EIO;
  858. goto fail;
  859. }
  860. if (unlikely(page->mapping != mapping)) {
  861. f2fs_put_page(page, 1);
  862. goto repeat;
  863. }
  864. }
  865. out:
  866. SetPageUptodate(page);
  867. clear_cold_data(page);
  868. return 0;
  869. fail:
  870. f2fs_write_failed(mapping, pos + len);
  871. return err;
  872. }
  873. static int f2fs_write_end(struct file *file,
  874. struct address_space *mapping,
  875. loff_t pos, unsigned len, unsigned copied,
  876. struct page *page, void *fsdata)
  877. {
  878. struct inode *inode = page->mapping->host;
  879. trace_f2fs_write_end(inode, pos, len, copied);
  880. set_page_dirty(page);
  881. if (pos + copied > i_size_read(inode)) {
  882. i_size_write(inode, pos + copied);
  883. mark_inode_dirty(inode);
  884. update_inode_page(inode);
  885. }
  886. f2fs_put_page(page, 1);
  887. return copied;
  888. }
  889. static int check_direct_IO(struct inode *inode, int rw,
  890. struct iov_iter *iter, loff_t offset)
  891. {
  892. unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
  893. if (rw == READ)
  894. return 0;
  895. if (offset & blocksize_mask)
  896. return -EINVAL;
  897. if (iov_iter_alignment(iter) & blocksize_mask)
  898. return -EINVAL;
  899. return 0;
  900. }
  901. static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
  902. struct iov_iter *iter, loff_t offset)
  903. {
  904. struct file *file = iocb->ki_filp;
  905. struct address_space *mapping = file->f_mapping;
  906. struct inode *inode = mapping->host;
  907. size_t count = iov_iter_count(iter);
  908. int err;
  909. /* Let buffer I/O handle the inline data case. */
  910. if (f2fs_has_inline_data(inode))
  911. return 0;
  912. if (check_direct_IO(inode, rw, iter, offset))
  913. return 0;
  914. /* clear fsync mark to recover these blocks */
  915. fsync_mark_clear(F2FS_SB(inode->i_sb), inode->i_ino);
  916. trace_f2fs_direct_IO_enter(inode, offset, count, rw);
  917. err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
  918. if (err < 0 && (rw & WRITE))
  919. f2fs_write_failed(mapping, offset + count);
  920. trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
  921. return err;
  922. }
  923. static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
  924. unsigned int length)
  925. {
  926. struct inode *inode = page->mapping->host;
  927. if (PageDirty(page))
  928. inode_dec_dirty_dents(inode);
  929. ClearPagePrivate(page);
  930. }
  931. static int f2fs_release_data_page(struct page *page, gfp_t wait)
  932. {
  933. ClearPagePrivate(page);
  934. return 1;
  935. }
  936. static int f2fs_set_data_page_dirty(struct page *page)
  937. {
  938. struct address_space *mapping = page->mapping;
  939. struct inode *inode = mapping->host;
  940. trace_f2fs_set_page_dirty(page, DATA);
  941. SetPageUptodate(page);
  942. mark_inode_dirty(inode);
  943. if (!PageDirty(page)) {
  944. __set_page_dirty_nobuffers(page);
  945. set_dirty_dir_page(inode, page);
  946. return 1;
  947. }
  948. return 0;
  949. }
  950. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  951. {
  952. struct inode *inode = mapping->host;
  953. if (f2fs_has_inline_data(inode))
  954. return 0;
  955. return generic_block_bmap(mapping, block, get_data_block);
  956. }
  957. const struct address_space_operations f2fs_dblock_aops = {
  958. .readpage = f2fs_read_data_page,
  959. .readpages = f2fs_read_data_pages,
  960. .writepage = f2fs_write_data_page,
  961. .writepages = f2fs_write_data_pages,
  962. .write_begin = f2fs_write_begin,
  963. .write_end = f2fs_write_end,
  964. .set_page_dirty = f2fs_set_data_page_dirty,
  965. .invalidatepage = f2fs_invalidate_data_page,
  966. .releasepage = f2fs_release_data_page,
  967. .direct_IO = f2fs_direct_IO,
  968. .bmap = f2fs_bmap,
  969. };