checkpoint.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include <trace/events/f2fs.h>
  23. static struct kmem_cache *ino_entry_slab;
  24. static struct kmem_cache *inode_entry_slab;
  25. /*
  26. * We guarantee no failure on the returned page.
  27. */
  28. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  29. {
  30. struct address_space *mapping = META_MAPPING(sbi);
  31. struct page *page = NULL;
  32. repeat:
  33. page = grab_cache_page(mapping, index);
  34. if (!page) {
  35. cond_resched();
  36. goto repeat;
  37. }
  38. f2fs_wait_on_page_writeback(page, META);
  39. SetPageUptodate(page);
  40. return page;
  41. }
  42. /*
  43. * We guarantee no failure on the returned page.
  44. */
  45. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  46. {
  47. struct address_space *mapping = META_MAPPING(sbi);
  48. struct page *page;
  49. repeat:
  50. page = grab_cache_page(mapping, index);
  51. if (!page) {
  52. cond_resched();
  53. goto repeat;
  54. }
  55. if (PageUptodate(page))
  56. goto out;
  57. if (f2fs_submit_page_bio(sbi, page, index,
  58. READ_SYNC | REQ_META | REQ_PRIO))
  59. goto repeat;
  60. lock_page(page);
  61. if (unlikely(page->mapping != mapping)) {
  62. f2fs_put_page(page, 1);
  63. goto repeat;
  64. }
  65. out:
  66. return page;
  67. }
  68. static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
  69. {
  70. switch (type) {
  71. case META_NAT:
  72. return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
  73. case META_SIT:
  74. return SIT_BLK_CNT(sbi);
  75. case META_SSA:
  76. case META_CP:
  77. return 0;
  78. default:
  79. BUG();
  80. }
  81. }
  82. /*
  83. * Readahead CP/NAT/SIT/SSA pages
  84. */
  85. int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
  86. {
  87. block_t prev_blk_addr = 0;
  88. struct page *page;
  89. int blkno = start;
  90. int max_blks = get_max_meta_blks(sbi, type);
  91. struct f2fs_io_info fio = {
  92. .type = META,
  93. .rw = READ_SYNC | REQ_META | REQ_PRIO
  94. };
  95. for (; nrpages-- > 0; blkno++) {
  96. block_t blk_addr;
  97. switch (type) {
  98. case META_NAT:
  99. /* get nat block addr */
  100. if (unlikely(blkno >= max_blks))
  101. blkno = 0;
  102. blk_addr = current_nat_addr(sbi,
  103. blkno * NAT_ENTRY_PER_BLOCK);
  104. break;
  105. case META_SIT:
  106. /* get sit block addr */
  107. if (unlikely(blkno >= max_blks))
  108. goto out;
  109. blk_addr = current_sit_addr(sbi,
  110. blkno * SIT_ENTRY_PER_BLOCK);
  111. if (blkno != start && prev_blk_addr + 1 != blk_addr)
  112. goto out;
  113. prev_blk_addr = blk_addr;
  114. break;
  115. case META_SSA:
  116. case META_CP:
  117. /* get ssa/cp block addr */
  118. blk_addr = blkno;
  119. break;
  120. default:
  121. BUG();
  122. }
  123. page = grab_cache_page(META_MAPPING(sbi), blk_addr);
  124. if (!page)
  125. continue;
  126. if (PageUptodate(page)) {
  127. f2fs_put_page(page, 1);
  128. continue;
  129. }
  130. f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
  131. f2fs_put_page(page, 0);
  132. }
  133. out:
  134. f2fs_submit_merged_bio(sbi, META, READ);
  135. return blkno - start;
  136. }
  137. static int f2fs_write_meta_page(struct page *page,
  138. struct writeback_control *wbc)
  139. {
  140. struct inode *inode = page->mapping->host;
  141. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  142. trace_f2fs_writepage(page, META);
  143. if (unlikely(sbi->por_doing))
  144. goto redirty_out;
  145. if (wbc->for_reclaim)
  146. goto redirty_out;
  147. if (unlikely(f2fs_cp_error(sbi)))
  148. goto redirty_out;
  149. f2fs_wait_on_page_writeback(page, META);
  150. write_meta_page(sbi, page);
  151. dec_page_count(sbi, F2FS_DIRTY_META);
  152. unlock_page(page);
  153. return 0;
  154. redirty_out:
  155. redirty_page_for_writepage(wbc, page);
  156. return AOP_WRITEPAGE_ACTIVATE;
  157. }
  158. static int f2fs_write_meta_pages(struct address_space *mapping,
  159. struct writeback_control *wbc)
  160. {
  161. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  162. long diff, written;
  163. trace_f2fs_writepages(mapping->host, wbc, META);
  164. /* collect a number of dirty meta pages and write together */
  165. if (wbc->for_kupdate ||
  166. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  167. goto skip_write;
  168. /* if mounting is failed, skip writing node pages */
  169. mutex_lock(&sbi->cp_mutex);
  170. diff = nr_pages_to_write(sbi, META, wbc);
  171. written = sync_meta_pages(sbi, META, wbc->nr_to_write);
  172. mutex_unlock(&sbi->cp_mutex);
  173. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  174. return 0;
  175. skip_write:
  176. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  177. return 0;
  178. }
  179. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  180. long nr_to_write)
  181. {
  182. struct address_space *mapping = META_MAPPING(sbi);
  183. pgoff_t index = 0, end = LONG_MAX;
  184. struct pagevec pvec;
  185. long nwritten = 0;
  186. struct writeback_control wbc = {
  187. .for_reclaim = 0,
  188. };
  189. pagevec_init(&pvec, 0);
  190. while (index <= end) {
  191. int i, nr_pages;
  192. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  193. PAGECACHE_TAG_DIRTY,
  194. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  195. if (unlikely(nr_pages == 0))
  196. break;
  197. for (i = 0; i < nr_pages; i++) {
  198. struct page *page = pvec.pages[i];
  199. lock_page(page);
  200. if (unlikely(page->mapping != mapping)) {
  201. continue_unlock:
  202. unlock_page(page);
  203. continue;
  204. }
  205. if (!PageDirty(page)) {
  206. /* someone wrote it for us */
  207. goto continue_unlock;
  208. }
  209. if (!clear_page_dirty_for_io(page))
  210. goto continue_unlock;
  211. if (f2fs_write_meta_page(page, &wbc)) {
  212. unlock_page(page);
  213. break;
  214. }
  215. nwritten++;
  216. if (unlikely(nwritten >= nr_to_write))
  217. break;
  218. }
  219. pagevec_release(&pvec);
  220. cond_resched();
  221. }
  222. if (nwritten)
  223. f2fs_submit_merged_bio(sbi, type, WRITE);
  224. return nwritten;
  225. }
  226. static int f2fs_set_meta_page_dirty(struct page *page)
  227. {
  228. struct address_space *mapping = page->mapping;
  229. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  230. trace_f2fs_set_page_dirty(page, META);
  231. SetPageUptodate(page);
  232. if (!PageDirty(page)) {
  233. __set_page_dirty_nobuffers(page);
  234. inc_page_count(sbi, F2FS_DIRTY_META);
  235. return 1;
  236. }
  237. return 0;
  238. }
  239. const struct address_space_operations f2fs_meta_aops = {
  240. .writepage = f2fs_write_meta_page,
  241. .writepages = f2fs_write_meta_pages,
  242. .set_page_dirty = f2fs_set_meta_page_dirty,
  243. };
  244. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  245. {
  246. struct ino_entry *e;
  247. retry:
  248. spin_lock(&sbi->ino_lock[type]);
  249. e = radix_tree_lookup(&sbi->ino_root[type], ino);
  250. if (!e) {
  251. e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
  252. if (!e) {
  253. spin_unlock(&sbi->ino_lock[type]);
  254. goto retry;
  255. }
  256. if (radix_tree_insert(&sbi->ino_root[type], ino, e)) {
  257. spin_unlock(&sbi->ino_lock[type]);
  258. kmem_cache_free(ino_entry_slab, e);
  259. goto retry;
  260. }
  261. memset(e, 0, sizeof(struct ino_entry));
  262. e->ino = ino;
  263. list_add_tail(&e->list, &sbi->ino_list[type]);
  264. }
  265. spin_unlock(&sbi->ino_lock[type]);
  266. }
  267. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  268. {
  269. struct ino_entry *e;
  270. spin_lock(&sbi->ino_lock[type]);
  271. e = radix_tree_lookup(&sbi->ino_root[type], ino);
  272. if (e) {
  273. list_del(&e->list);
  274. radix_tree_delete(&sbi->ino_root[type], ino);
  275. if (type == ORPHAN_INO)
  276. sbi->n_orphans--;
  277. spin_unlock(&sbi->ino_lock[type]);
  278. kmem_cache_free(ino_entry_slab, e);
  279. return;
  280. }
  281. spin_unlock(&sbi->ino_lock[type]);
  282. }
  283. void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  284. {
  285. /* add new dirty ino entry into list */
  286. __add_ino_entry(sbi, ino, type);
  287. }
  288. void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  289. {
  290. /* remove dirty ino entry from list */
  291. __remove_ino_entry(sbi, ino, type);
  292. }
  293. /* mode should be APPEND_INO or UPDATE_INO */
  294. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  295. {
  296. struct ino_entry *e;
  297. spin_lock(&sbi->ino_lock[mode]);
  298. e = radix_tree_lookup(&sbi->ino_root[mode], ino);
  299. spin_unlock(&sbi->ino_lock[mode]);
  300. return e ? true : false;
  301. }
  302. void release_dirty_inode(struct f2fs_sb_info *sbi)
  303. {
  304. struct ino_entry *e, *tmp;
  305. int i;
  306. for (i = APPEND_INO; i <= UPDATE_INO; i++) {
  307. spin_lock(&sbi->ino_lock[i]);
  308. list_for_each_entry_safe(e, tmp, &sbi->ino_list[i], list) {
  309. list_del(&e->list);
  310. radix_tree_delete(&sbi->ino_root[i], e->ino);
  311. kmem_cache_free(ino_entry_slab, e);
  312. }
  313. spin_unlock(&sbi->ino_lock[i]);
  314. }
  315. }
  316. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  317. {
  318. int err = 0;
  319. spin_lock(&sbi->ino_lock[ORPHAN_INO]);
  320. if (unlikely(sbi->n_orphans >= sbi->max_orphans))
  321. err = -ENOSPC;
  322. else
  323. sbi->n_orphans++;
  324. spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
  325. return err;
  326. }
  327. void release_orphan_inode(struct f2fs_sb_info *sbi)
  328. {
  329. spin_lock(&sbi->ino_lock[ORPHAN_INO]);
  330. f2fs_bug_on(sbi->n_orphans == 0);
  331. sbi->n_orphans--;
  332. spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
  333. }
  334. void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  335. {
  336. /* add new orphan ino entry into list */
  337. __add_ino_entry(sbi, ino, ORPHAN_INO);
  338. }
  339. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  340. {
  341. /* remove orphan entry from orphan list */
  342. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  343. }
  344. static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  345. {
  346. struct inode *inode = f2fs_iget(sbi->sb, ino);
  347. f2fs_bug_on(IS_ERR(inode));
  348. clear_nlink(inode);
  349. /* truncate all the data during iput */
  350. iput(inode);
  351. }
  352. void recover_orphan_inodes(struct f2fs_sb_info *sbi)
  353. {
  354. block_t start_blk, orphan_blkaddr, i, j;
  355. if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
  356. return;
  357. sbi->por_doing = true;
  358. start_blk = __start_cp_addr(sbi) + 1 +
  359. le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  360. orphan_blkaddr = __start_sum_addr(sbi) - 1;
  361. ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
  362. for (i = 0; i < orphan_blkaddr; i++) {
  363. struct page *page = get_meta_page(sbi, start_blk + i);
  364. struct f2fs_orphan_block *orphan_blk;
  365. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  366. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  367. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  368. recover_orphan_inode(sbi, ino);
  369. }
  370. f2fs_put_page(page, 1);
  371. }
  372. /* clear Orphan Flag */
  373. clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
  374. sbi->por_doing = false;
  375. return;
  376. }
  377. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  378. {
  379. struct list_head *head;
  380. struct f2fs_orphan_block *orphan_blk = NULL;
  381. unsigned int nentries = 0;
  382. unsigned short index;
  383. unsigned short orphan_blocks =
  384. (unsigned short)GET_ORPHAN_BLOCKS(sbi->n_orphans);
  385. struct page *page = NULL;
  386. struct ino_entry *orphan = NULL;
  387. for (index = 0; index < orphan_blocks; index++)
  388. grab_meta_page(sbi, start_blk + index);
  389. index = 1;
  390. spin_lock(&sbi->ino_lock[ORPHAN_INO]);
  391. head = &sbi->ino_list[ORPHAN_INO];
  392. /* loop for each orphan inode entry and write them in Jornal block */
  393. list_for_each_entry(orphan, head, list) {
  394. if (!page) {
  395. page = find_get_page(META_MAPPING(sbi), start_blk++);
  396. f2fs_bug_on(!page);
  397. orphan_blk =
  398. (struct f2fs_orphan_block *)page_address(page);
  399. memset(orphan_blk, 0, sizeof(*orphan_blk));
  400. f2fs_put_page(page, 0);
  401. }
  402. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  403. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  404. /*
  405. * an orphan block is full of 1020 entries,
  406. * then we need to flush current orphan blocks
  407. * and bring another one in memory
  408. */
  409. orphan_blk->blk_addr = cpu_to_le16(index);
  410. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  411. orphan_blk->entry_count = cpu_to_le32(nentries);
  412. set_page_dirty(page);
  413. f2fs_put_page(page, 1);
  414. index++;
  415. nentries = 0;
  416. page = NULL;
  417. }
  418. }
  419. if (page) {
  420. orphan_blk->blk_addr = cpu_to_le16(index);
  421. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  422. orphan_blk->entry_count = cpu_to_le32(nentries);
  423. set_page_dirty(page);
  424. f2fs_put_page(page, 1);
  425. }
  426. spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
  427. }
  428. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  429. block_t cp_addr, unsigned long long *version)
  430. {
  431. struct page *cp_page_1, *cp_page_2 = NULL;
  432. unsigned long blk_size = sbi->blocksize;
  433. struct f2fs_checkpoint *cp_block;
  434. unsigned long long cur_version = 0, pre_version = 0;
  435. size_t crc_offset;
  436. __u32 crc = 0;
  437. /* Read the 1st cp block in this CP pack */
  438. cp_page_1 = get_meta_page(sbi, cp_addr);
  439. /* get the version number */
  440. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
  441. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  442. if (crc_offset >= blk_size)
  443. goto invalid_cp1;
  444. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  445. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  446. goto invalid_cp1;
  447. pre_version = cur_cp_version(cp_block);
  448. /* Read the 2nd cp block in this CP pack */
  449. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  450. cp_page_2 = get_meta_page(sbi, cp_addr);
  451. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
  452. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  453. if (crc_offset >= blk_size)
  454. goto invalid_cp2;
  455. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  456. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  457. goto invalid_cp2;
  458. cur_version = cur_cp_version(cp_block);
  459. if (cur_version == pre_version) {
  460. *version = cur_version;
  461. f2fs_put_page(cp_page_2, 1);
  462. return cp_page_1;
  463. }
  464. invalid_cp2:
  465. f2fs_put_page(cp_page_2, 1);
  466. invalid_cp1:
  467. f2fs_put_page(cp_page_1, 1);
  468. return NULL;
  469. }
  470. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  471. {
  472. struct f2fs_checkpoint *cp_block;
  473. struct f2fs_super_block *fsb = sbi->raw_super;
  474. struct page *cp1, *cp2, *cur_page;
  475. unsigned long blk_size = sbi->blocksize;
  476. unsigned long long cp1_version = 0, cp2_version = 0;
  477. unsigned long long cp_start_blk_no;
  478. unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  479. block_t cp_blk_no;
  480. int i;
  481. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  482. if (!sbi->ckpt)
  483. return -ENOMEM;
  484. /*
  485. * Finding out valid cp block involves read both
  486. * sets( cp pack1 and cp pack 2)
  487. */
  488. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  489. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  490. /* The second checkpoint pack should start at the next segment */
  491. cp_start_blk_no += ((unsigned long long)1) <<
  492. le32_to_cpu(fsb->log_blocks_per_seg);
  493. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  494. if (cp1 && cp2) {
  495. if (ver_after(cp2_version, cp1_version))
  496. cur_page = cp2;
  497. else
  498. cur_page = cp1;
  499. } else if (cp1) {
  500. cur_page = cp1;
  501. } else if (cp2) {
  502. cur_page = cp2;
  503. } else {
  504. goto fail_no_cp;
  505. }
  506. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  507. memcpy(sbi->ckpt, cp_block, blk_size);
  508. if (cp_blks <= 1)
  509. goto done;
  510. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  511. if (cur_page == cp2)
  512. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  513. for (i = 1; i < cp_blks; i++) {
  514. void *sit_bitmap_ptr;
  515. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  516. cur_page = get_meta_page(sbi, cp_blk_no + i);
  517. sit_bitmap_ptr = page_address(cur_page);
  518. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  519. f2fs_put_page(cur_page, 1);
  520. }
  521. done:
  522. f2fs_put_page(cp1, 1);
  523. f2fs_put_page(cp2, 1);
  524. return 0;
  525. fail_no_cp:
  526. kfree(sbi->ckpt);
  527. return -EINVAL;
  528. }
  529. static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
  530. {
  531. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  532. if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
  533. return -EEXIST;
  534. set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  535. F2FS_I(inode)->dirty_dir = new;
  536. list_add_tail(&new->list, &sbi->dir_inode_list);
  537. stat_inc_dirty_dir(sbi);
  538. return 0;
  539. }
  540. void set_dirty_dir_page(struct inode *inode, struct page *page)
  541. {
  542. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  543. struct dir_inode_entry *new;
  544. int ret = 0;
  545. if (!S_ISDIR(inode->i_mode))
  546. return;
  547. new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  548. new->inode = inode;
  549. INIT_LIST_HEAD(&new->list);
  550. spin_lock(&sbi->dir_inode_lock);
  551. ret = __add_dirty_inode(inode, new);
  552. inode_inc_dirty_dents(inode);
  553. SetPagePrivate(page);
  554. spin_unlock(&sbi->dir_inode_lock);
  555. if (ret)
  556. kmem_cache_free(inode_entry_slab, new);
  557. }
  558. void add_dirty_dir_inode(struct inode *inode)
  559. {
  560. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  561. struct dir_inode_entry *new =
  562. f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  563. int ret = 0;
  564. new->inode = inode;
  565. INIT_LIST_HEAD(&new->list);
  566. spin_lock(&sbi->dir_inode_lock);
  567. ret = __add_dirty_inode(inode, new);
  568. spin_unlock(&sbi->dir_inode_lock);
  569. if (ret)
  570. kmem_cache_free(inode_entry_slab, new);
  571. }
  572. void remove_dirty_dir_inode(struct inode *inode)
  573. {
  574. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  575. struct dir_inode_entry *entry;
  576. if (!S_ISDIR(inode->i_mode))
  577. return;
  578. spin_lock(&sbi->dir_inode_lock);
  579. if (get_dirty_dents(inode) ||
  580. !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
  581. spin_unlock(&sbi->dir_inode_lock);
  582. return;
  583. }
  584. entry = F2FS_I(inode)->dirty_dir;
  585. list_del(&entry->list);
  586. F2FS_I(inode)->dirty_dir = NULL;
  587. clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  588. stat_dec_dirty_dir(sbi);
  589. spin_unlock(&sbi->dir_inode_lock);
  590. kmem_cache_free(inode_entry_slab, entry);
  591. /* Only from the recovery routine */
  592. if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
  593. clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
  594. iput(inode);
  595. }
  596. }
  597. void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
  598. {
  599. struct list_head *head;
  600. struct dir_inode_entry *entry;
  601. struct inode *inode;
  602. retry:
  603. spin_lock(&sbi->dir_inode_lock);
  604. head = &sbi->dir_inode_list;
  605. if (list_empty(head)) {
  606. spin_unlock(&sbi->dir_inode_lock);
  607. return;
  608. }
  609. entry = list_entry(head->next, struct dir_inode_entry, list);
  610. inode = igrab(entry->inode);
  611. spin_unlock(&sbi->dir_inode_lock);
  612. if (inode) {
  613. filemap_fdatawrite(inode->i_mapping);
  614. iput(inode);
  615. } else {
  616. /*
  617. * We should submit bio, since it exists several
  618. * wribacking dentry pages in the freeing inode.
  619. */
  620. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  621. }
  622. goto retry;
  623. }
  624. /*
  625. * Freeze all the FS-operations for checkpoint.
  626. */
  627. static int block_operations(struct f2fs_sb_info *sbi)
  628. {
  629. struct writeback_control wbc = {
  630. .sync_mode = WB_SYNC_ALL,
  631. .nr_to_write = LONG_MAX,
  632. .for_reclaim = 0,
  633. };
  634. struct blk_plug plug;
  635. int err = 0;
  636. blk_start_plug(&plug);
  637. retry_flush_dents:
  638. f2fs_lock_all(sbi);
  639. /* write all the dirty dentry pages */
  640. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  641. f2fs_unlock_all(sbi);
  642. sync_dirty_dir_inodes(sbi);
  643. if (unlikely(f2fs_cp_error(sbi))) {
  644. err = -EIO;
  645. goto out;
  646. }
  647. goto retry_flush_dents;
  648. }
  649. /*
  650. * POR: we should ensure that there are no dirty node pages
  651. * until finishing nat/sit flush.
  652. */
  653. retry_flush_nodes:
  654. down_write(&sbi->node_write);
  655. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  656. up_write(&sbi->node_write);
  657. sync_node_pages(sbi, 0, &wbc);
  658. if (unlikely(f2fs_cp_error(sbi))) {
  659. f2fs_unlock_all(sbi);
  660. err = -EIO;
  661. goto out;
  662. }
  663. goto retry_flush_nodes;
  664. }
  665. out:
  666. blk_finish_plug(&plug);
  667. return err;
  668. }
  669. static void unblock_operations(struct f2fs_sb_info *sbi)
  670. {
  671. up_write(&sbi->node_write);
  672. f2fs_unlock_all(sbi);
  673. }
  674. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  675. {
  676. DEFINE_WAIT(wait);
  677. for (;;) {
  678. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  679. if (!get_pages(sbi, F2FS_WRITEBACK))
  680. break;
  681. io_schedule();
  682. }
  683. finish_wait(&sbi->cp_wait, &wait);
  684. }
  685. static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
  686. {
  687. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  688. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  689. nid_t last_nid = 0;
  690. block_t start_blk;
  691. struct page *cp_page;
  692. unsigned int data_sum_blocks, orphan_blocks;
  693. __u32 crc32 = 0;
  694. void *kaddr;
  695. int i;
  696. int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  697. /*
  698. * This avoids to conduct wrong roll-forward operations and uses
  699. * metapages, so should be called prior to sync_meta_pages below.
  700. */
  701. discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
  702. /* Flush all the NAT/SIT pages */
  703. while (get_pages(sbi, F2FS_DIRTY_META)) {
  704. sync_meta_pages(sbi, META, LONG_MAX);
  705. if (unlikely(f2fs_cp_error(sbi)))
  706. return;
  707. }
  708. next_free_nid(sbi, &last_nid);
  709. /*
  710. * modify checkpoint
  711. * version number is already updated
  712. */
  713. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  714. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  715. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  716. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  717. ckpt->cur_node_segno[i] =
  718. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  719. ckpt->cur_node_blkoff[i] =
  720. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  721. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  722. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  723. }
  724. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  725. ckpt->cur_data_segno[i] =
  726. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  727. ckpt->cur_data_blkoff[i] =
  728. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  729. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  730. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  731. }
  732. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  733. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  734. ckpt->next_free_nid = cpu_to_le32(last_nid);
  735. /* 2 cp + n data seg summary + orphan inode blocks */
  736. data_sum_blocks = npages_for_summary_flush(sbi);
  737. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  738. set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  739. else
  740. clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  741. orphan_blocks = GET_ORPHAN_BLOCKS(sbi->n_orphans);
  742. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  743. orphan_blocks);
  744. if (is_umount) {
  745. set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  746. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  747. cp_payload_blks + data_sum_blocks +
  748. orphan_blocks + NR_CURSEG_NODE_TYPE);
  749. } else {
  750. clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  751. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  752. cp_payload_blks + data_sum_blocks +
  753. orphan_blocks);
  754. }
  755. if (sbi->n_orphans)
  756. set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  757. else
  758. clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  759. /* update SIT/NAT bitmap */
  760. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  761. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  762. crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
  763. *((__le32 *)((unsigned char *)ckpt +
  764. le32_to_cpu(ckpt->checksum_offset)))
  765. = cpu_to_le32(crc32);
  766. start_blk = __start_cp_addr(sbi);
  767. /* write out checkpoint buffer at block 0 */
  768. cp_page = grab_meta_page(sbi, start_blk++);
  769. kaddr = page_address(cp_page);
  770. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  771. set_page_dirty(cp_page);
  772. f2fs_put_page(cp_page, 1);
  773. for (i = 1; i < 1 + cp_payload_blks; i++) {
  774. cp_page = grab_meta_page(sbi, start_blk++);
  775. kaddr = page_address(cp_page);
  776. memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
  777. (1 << sbi->log_blocksize));
  778. set_page_dirty(cp_page);
  779. f2fs_put_page(cp_page, 1);
  780. }
  781. if (sbi->n_orphans) {
  782. write_orphan_inodes(sbi, start_blk);
  783. start_blk += orphan_blocks;
  784. }
  785. write_data_summaries(sbi, start_blk);
  786. start_blk += data_sum_blocks;
  787. if (is_umount) {
  788. write_node_summaries(sbi, start_blk);
  789. start_blk += NR_CURSEG_NODE_TYPE;
  790. }
  791. /* writeout checkpoint block */
  792. cp_page = grab_meta_page(sbi, start_blk);
  793. kaddr = page_address(cp_page);
  794. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  795. set_page_dirty(cp_page);
  796. f2fs_put_page(cp_page, 1);
  797. /* wait for previous submitted node/meta pages writeback */
  798. wait_on_all_pages_writeback(sbi);
  799. if (unlikely(f2fs_cp_error(sbi)))
  800. return;
  801. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
  802. filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
  803. /* update user_block_counts */
  804. sbi->last_valid_block_count = sbi->total_valid_block_count;
  805. sbi->alloc_valid_block_count = 0;
  806. /* Here, we only have one bio having CP pack */
  807. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  808. release_dirty_inode(sbi);
  809. if (unlikely(f2fs_cp_error(sbi)))
  810. return;
  811. clear_prefree_segments(sbi);
  812. F2FS_RESET_SB_DIRT(sbi);
  813. }
  814. /*
  815. * We guarantee that this checkpoint procedure will not fail.
  816. */
  817. void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
  818. {
  819. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  820. unsigned long long ckpt_ver;
  821. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
  822. mutex_lock(&sbi->cp_mutex);
  823. if (!sbi->s_dirty)
  824. goto out;
  825. if (unlikely(f2fs_cp_error(sbi)))
  826. goto out;
  827. if (block_operations(sbi))
  828. goto out;
  829. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
  830. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  831. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  832. f2fs_submit_merged_bio(sbi, META, WRITE);
  833. /*
  834. * update checkpoint pack index
  835. * Increase the version number so that
  836. * SIT entries and seg summaries are written at correct place
  837. */
  838. ckpt_ver = cur_cp_version(ckpt);
  839. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  840. /* write cached NAT/SIT entries to NAT/SIT area */
  841. flush_nat_entries(sbi);
  842. flush_sit_entries(sbi);
  843. /* unlock all the fs_lock[] in do_checkpoint() */
  844. do_checkpoint(sbi, is_umount);
  845. unblock_operations(sbi);
  846. stat_inc_cp_count(sbi->stat_info);
  847. out:
  848. mutex_unlock(&sbi->cp_mutex);
  849. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
  850. }
  851. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  852. {
  853. int i;
  854. for (i = 0; i < MAX_INO_ENTRY; i++) {
  855. INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC);
  856. spin_lock_init(&sbi->ino_lock[i]);
  857. INIT_LIST_HEAD(&sbi->ino_list[i]);
  858. }
  859. /*
  860. * considering 512 blocks in a segment 8 blocks are needed for cp
  861. * and log segment summaries. Remaining blocks are used to keep
  862. * orphan entries with the limitation one reserved segment
  863. * for cp pack we can have max 1020*504 orphan entries
  864. */
  865. sbi->n_orphans = 0;
  866. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  867. NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
  868. }
  869. int __init create_checkpoint_caches(void)
  870. {
  871. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  872. sizeof(struct ino_entry));
  873. if (!ino_entry_slab)
  874. return -ENOMEM;
  875. inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
  876. sizeof(struct dir_inode_entry));
  877. if (!inode_entry_slab) {
  878. kmem_cache_destroy(ino_entry_slab);
  879. return -ENOMEM;
  880. }
  881. return 0;
  882. }
  883. void destroy_checkpoint_caches(void)
  884. {
  885. kmem_cache_destroy(ino_entry_slab);
  886. kmem_cache_destroy(inode_entry_slab);
  887. }