ehv_bytechan.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839
  1. /* ePAPR hypervisor byte channel device driver
  2. *
  3. * Copyright 2009-2011 Freescale Semiconductor, Inc.
  4. *
  5. * Author: Timur Tabi <timur@freescale.com>
  6. *
  7. * This file is licensed under the terms of the GNU General Public License
  8. * version 2. This program is licensed "as is" without any warranty of any
  9. * kind, whether express or implied.
  10. *
  11. * This driver support three distinct interfaces, all of which are related to
  12. * ePAPR hypervisor byte channels.
  13. *
  14. * 1) An early-console (udbg) driver. This provides early console output
  15. * through a byte channel. The byte channel handle must be specified in a
  16. * Kconfig option.
  17. *
  18. * 2) A normal console driver. Output is sent to the byte channel designated
  19. * for stdout in the device tree. The console driver is for handling kernel
  20. * printk calls.
  21. *
  22. * 3) A tty driver, which is used to handle user-space input and output. The
  23. * byte channel used for the console is designated as the default tty.
  24. */
  25. #include <linux/module.h>
  26. #include <linux/init.h>
  27. #include <linux/slab.h>
  28. #include <linux/err.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <asm/epapr_hcalls.h>
  33. #include <linux/of.h>
  34. #include <linux/of_irq.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/cdev.h>
  37. #include <linux/console.h>
  38. #include <linux/tty.h>
  39. #include <linux/tty_flip.h>
  40. #include <linux/circ_buf.h>
  41. #include <asm/udbg.h>
  42. /* The size of the transmit circular buffer. This must be a power of two. */
  43. #define BUF_SIZE 2048
  44. /* Per-byte channel private data */
  45. struct ehv_bc_data {
  46. struct device *dev;
  47. struct tty_port port;
  48. uint32_t handle;
  49. unsigned int rx_irq;
  50. unsigned int tx_irq;
  51. spinlock_t lock; /* lock for transmit buffer */
  52. unsigned char buf[BUF_SIZE]; /* transmit circular buffer */
  53. unsigned int head; /* circular buffer head */
  54. unsigned int tail; /* circular buffer tail */
  55. int tx_irq_enabled; /* true == TX interrupt is enabled */
  56. };
  57. /* Array of byte channel objects */
  58. static struct ehv_bc_data *bcs;
  59. /* Byte channel handle for stdout (and stdin), taken from device tree */
  60. static unsigned int stdout_bc;
  61. /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
  62. static unsigned int stdout_irq;
  63. /**************************** SUPPORT FUNCTIONS ****************************/
  64. /*
  65. * Enable the transmit interrupt
  66. *
  67. * Unlike a serial device, byte channels have no mechanism for disabling their
  68. * own receive or transmit interrupts. To emulate that feature, we toggle
  69. * the IRQ in the kernel.
  70. *
  71. * We cannot just blindly call enable_irq() or disable_irq(), because these
  72. * calls are reference counted. This means that we cannot call enable_irq()
  73. * if interrupts are already enabled. This can happen in two situations:
  74. *
  75. * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
  76. * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
  77. *
  78. * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
  79. */
  80. static void enable_tx_interrupt(struct ehv_bc_data *bc)
  81. {
  82. if (!bc->tx_irq_enabled) {
  83. enable_irq(bc->tx_irq);
  84. bc->tx_irq_enabled = 1;
  85. }
  86. }
  87. static void disable_tx_interrupt(struct ehv_bc_data *bc)
  88. {
  89. if (bc->tx_irq_enabled) {
  90. disable_irq_nosync(bc->tx_irq);
  91. bc->tx_irq_enabled = 0;
  92. }
  93. }
  94. /*
  95. * find the byte channel handle to use for the console
  96. *
  97. * The byte channel to be used for the console is specified via a "stdout"
  98. * property in the /chosen node.
  99. */
  100. static int find_console_handle(void)
  101. {
  102. struct device_node *np = of_stdout;
  103. const char *sprop = NULL;
  104. const uint32_t *iprop;
  105. /* We don't care what the aliased node is actually called. We only
  106. * care if it's compatible with "epapr,hv-byte-channel", because that
  107. * indicates that it's a byte channel node.
  108. */
  109. if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel"))
  110. return 0;
  111. stdout_irq = irq_of_parse_and_map(np, 0);
  112. if (stdout_irq == NO_IRQ) {
  113. pr_err("ehv-bc: no 'interrupts' property in %s node\n", np->full_name);
  114. return 0;
  115. }
  116. /*
  117. * The 'hv-handle' property contains the handle for this byte channel.
  118. */
  119. iprop = of_get_property(np, "hv-handle", NULL);
  120. if (!iprop) {
  121. pr_err("ehv-bc: no 'hv-handle' property in %s node\n",
  122. np->name);
  123. return 0;
  124. }
  125. stdout_bc = be32_to_cpu(*iprop);
  126. return 1;
  127. }
  128. /*************************** EARLY CONSOLE DRIVER ***************************/
  129. #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
  130. /*
  131. * send a byte to a byte channel, wait if necessary
  132. *
  133. * This function sends a byte to a byte channel, and it waits and
  134. * retries if the byte channel is full. It returns if the character
  135. * has been sent, or if some error has occurred.
  136. *
  137. */
  138. static void byte_channel_spin_send(const char data)
  139. {
  140. int ret, count;
  141. do {
  142. count = 1;
  143. ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
  144. &count, &data);
  145. } while (ret == EV_EAGAIN);
  146. }
  147. /*
  148. * The udbg subsystem calls this function to display a single character.
  149. * We convert CR to a CR/LF.
  150. */
  151. static void ehv_bc_udbg_putc(char c)
  152. {
  153. if (c == '\n')
  154. byte_channel_spin_send('\r');
  155. byte_channel_spin_send(c);
  156. }
  157. /*
  158. * early console initialization
  159. *
  160. * PowerPC kernels support an early printk console, also known as udbg.
  161. * This function must be called via the ppc_md.init_early function pointer.
  162. * At this point, the device tree has been unflattened, so we can obtain the
  163. * byte channel handle for stdout.
  164. *
  165. * We only support displaying of characters (putc). We do not support
  166. * keyboard input.
  167. */
  168. void __init udbg_init_ehv_bc(void)
  169. {
  170. unsigned int rx_count, tx_count;
  171. unsigned int ret;
  172. /* Verify the byte channel handle */
  173. ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
  174. &rx_count, &tx_count);
  175. if (ret)
  176. return;
  177. udbg_putc = ehv_bc_udbg_putc;
  178. register_early_udbg_console();
  179. udbg_printf("ehv-bc: early console using byte channel handle %u\n",
  180. CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
  181. }
  182. #endif
  183. /****************************** CONSOLE DRIVER ******************************/
  184. static struct tty_driver *ehv_bc_driver;
  185. /*
  186. * Byte channel console sending worker function.
  187. *
  188. * For consoles, if the output buffer is full, we should just spin until it
  189. * clears.
  190. */
  191. static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
  192. unsigned int count)
  193. {
  194. unsigned int len;
  195. int ret = 0;
  196. while (count) {
  197. len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
  198. do {
  199. ret = ev_byte_channel_send(handle, &len, s);
  200. } while (ret == EV_EAGAIN);
  201. count -= len;
  202. s += len;
  203. }
  204. return ret;
  205. }
  206. /*
  207. * write a string to the console
  208. *
  209. * This function gets called to write a string from the kernel, typically from
  210. * a printk(). This function spins until all data is written.
  211. *
  212. * We copy the data to a temporary buffer because we need to insert a \r in
  213. * front of every \n. It's more efficient to copy the data to the buffer than
  214. * it is to make multiple hcalls for each character or each newline.
  215. */
  216. static void ehv_bc_console_write(struct console *co, const char *s,
  217. unsigned int count)
  218. {
  219. char s2[EV_BYTE_CHANNEL_MAX_BYTES];
  220. unsigned int i, j = 0;
  221. char c;
  222. for (i = 0; i < count; i++) {
  223. c = *s++;
  224. if (c == '\n')
  225. s2[j++] = '\r';
  226. s2[j++] = c;
  227. if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
  228. if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
  229. return;
  230. j = 0;
  231. }
  232. }
  233. if (j)
  234. ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
  235. }
  236. /*
  237. * When /dev/console is opened, the kernel iterates the console list looking
  238. * for one with ->device and then calls that method. On success, it expects
  239. * the passed-in int* to contain the minor number to use.
  240. */
  241. static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
  242. {
  243. *index = co->index;
  244. return ehv_bc_driver;
  245. }
  246. static struct console ehv_bc_console = {
  247. .name = "ttyEHV",
  248. .write = ehv_bc_console_write,
  249. .device = ehv_bc_console_device,
  250. .flags = CON_PRINTBUFFER | CON_ENABLED,
  251. };
  252. /*
  253. * Console initialization
  254. *
  255. * This is the first function that is called after the device tree is
  256. * available, so here is where we determine the byte channel handle and IRQ for
  257. * stdout/stdin, even though that information is used by the tty and character
  258. * drivers.
  259. */
  260. static int __init ehv_bc_console_init(void)
  261. {
  262. if (!find_console_handle()) {
  263. pr_debug("ehv-bc: stdout is not a byte channel\n");
  264. return -ENODEV;
  265. }
  266. #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
  267. /* Print a friendly warning if the user chose the wrong byte channel
  268. * handle for udbg.
  269. */
  270. if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
  271. pr_warning("ehv-bc: udbg handle %u is not the stdout handle\n",
  272. CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
  273. #endif
  274. /* add_preferred_console() must be called before register_console(),
  275. otherwise it won't work. However, we don't want to enumerate all the
  276. byte channels here, either, since we only care about one. */
  277. add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
  278. register_console(&ehv_bc_console);
  279. pr_info("ehv-bc: registered console driver for byte channel %u\n",
  280. stdout_bc);
  281. return 0;
  282. }
  283. console_initcall(ehv_bc_console_init);
  284. /******************************** TTY DRIVER ********************************/
  285. /*
  286. * byte channel receive interupt handler
  287. *
  288. * This ISR is called whenever data is available on a byte channel.
  289. */
  290. static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
  291. {
  292. struct ehv_bc_data *bc = data;
  293. unsigned int rx_count, tx_count, len;
  294. int count;
  295. char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
  296. int ret;
  297. /* Find out how much data needs to be read, and then ask the TTY layer
  298. * if it can handle that much. We want to ensure that every byte we
  299. * read from the byte channel will be accepted by the TTY layer.
  300. */
  301. ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
  302. count = tty_buffer_request_room(&bc->port, rx_count);
  303. /* 'count' is the maximum amount of data the TTY layer can accept at
  304. * this time. However, during testing, I was never able to get 'count'
  305. * to be less than 'rx_count'. I'm not sure whether I'm calling it
  306. * correctly.
  307. */
  308. while (count > 0) {
  309. len = min_t(unsigned int, count, sizeof(buffer));
  310. /* Read some data from the byte channel. This function will
  311. * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
  312. */
  313. ev_byte_channel_receive(bc->handle, &len, buffer);
  314. /* 'len' is now the amount of data that's been received. 'len'
  315. * can't be zero, and most likely it's equal to one.
  316. */
  317. /* Pass the received data to the tty layer. */
  318. ret = tty_insert_flip_string(&bc->port, buffer, len);
  319. /* 'ret' is the number of bytes that the TTY layer accepted.
  320. * If it's not equal to 'len', then it means the buffer is
  321. * full, which should never happen. If it does happen, we can
  322. * exit gracefully, but we drop the last 'len - ret' characters
  323. * that we read from the byte channel.
  324. */
  325. if (ret != len)
  326. break;
  327. count -= len;
  328. }
  329. /* Tell the tty layer that we're done. */
  330. tty_flip_buffer_push(&bc->port);
  331. return IRQ_HANDLED;
  332. }
  333. /*
  334. * dequeue the transmit buffer to the hypervisor
  335. *
  336. * This function, which can be called in interrupt context, dequeues as much
  337. * data as possible from the transmit buffer to the byte channel.
  338. */
  339. static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
  340. {
  341. unsigned int count;
  342. unsigned int len, ret;
  343. unsigned long flags;
  344. do {
  345. spin_lock_irqsave(&bc->lock, flags);
  346. len = min_t(unsigned int,
  347. CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
  348. EV_BYTE_CHANNEL_MAX_BYTES);
  349. ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
  350. /* 'len' is valid only if the return code is 0 or EV_EAGAIN */
  351. if (!ret || (ret == EV_EAGAIN))
  352. bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
  353. count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
  354. spin_unlock_irqrestore(&bc->lock, flags);
  355. } while (count && !ret);
  356. spin_lock_irqsave(&bc->lock, flags);
  357. if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
  358. /*
  359. * If we haven't emptied the buffer, then enable the TX IRQ.
  360. * We'll get an interrupt when there's more room in the
  361. * hypervisor's output buffer.
  362. */
  363. enable_tx_interrupt(bc);
  364. else
  365. disable_tx_interrupt(bc);
  366. spin_unlock_irqrestore(&bc->lock, flags);
  367. }
  368. /*
  369. * byte channel transmit interupt handler
  370. *
  371. * This ISR is called whenever space becomes available for transmitting
  372. * characters on a byte channel.
  373. */
  374. static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
  375. {
  376. struct ehv_bc_data *bc = data;
  377. ehv_bc_tx_dequeue(bc);
  378. tty_port_tty_wakeup(&bc->port);
  379. return IRQ_HANDLED;
  380. }
  381. /*
  382. * This function is called when the tty layer has data for us send. We store
  383. * the data first in a circular buffer, and then dequeue as much of that data
  384. * as possible.
  385. *
  386. * We don't need to worry about whether there is enough room in the buffer for
  387. * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty
  388. * layer how much data it can safely send to us. We guarantee that
  389. * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
  390. * too much data.
  391. */
  392. static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s,
  393. int count)
  394. {
  395. struct ehv_bc_data *bc = ttys->driver_data;
  396. unsigned long flags;
  397. unsigned int len;
  398. unsigned int written = 0;
  399. while (1) {
  400. spin_lock_irqsave(&bc->lock, flags);
  401. len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
  402. if (count < len)
  403. len = count;
  404. if (len) {
  405. memcpy(bc->buf + bc->head, s, len);
  406. bc->head = (bc->head + len) & (BUF_SIZE - 1);
  407. }
  408. spin_unlock_irqrestore(&bc->lock, flags);
  409. if (!len)
  410. break;
  411. s += len;
  412. count -= len;
  413. written += len;
  414. }
  415. ehv_bc_tx_dequeue(bc);
  416. return written;
  417. }
  418. /*
  419. * This function can be called multiple times for a given tty_struct, which is
  420. * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
  421. *
  422. * The tty layer will still call this function even if the device was not
  423. * registered (i.e. tty_register_device() was not called). This happens
  424. * because tty_register_device() is optional and some legacy drivers don't
  425. * use it. So we need to check for that.
  426. */
  427. static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
  428. {
  429. struct ehv_bc_data *bc = &bcs[ttys->index];
  430. if (!bc->dev)
  431. return -ENODEV;
  432. return tty_port_open(&bc->port, ttys, filp);
  433. }
  434. /*
  435. * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
  436. * still call this function to close the tty device. So we can't assume that
  437. * the tty port has been initialized.
  438. */
  439. static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
  440. {
  441. struct ehv_bc_data *bc = &bcs[ttys->index];
  442. if (bc->dev)
  443. tty_port_close(&bc->port, ttys, filp);
  444. }
  445. /*
  446. * Return the amount of space in the output buffer
  447. *
  448. * This is actually a contract between the driver and the tty layer outlining
  449. * how much write room the driver can guarantee will be sent OR BUFFERED. This
  450. * driver MUST honor the return value.
  451. */
  452. static int ehv_bc_tty_write_room(struct tty_struct *ttys)
  453. {
  454. struct ehv_bc_data *bc = ttys->driver_data;
  455. unsigned long flags;
  456. int count;
  457. spin_lock_irqsave(&bc->lock, flags);
  458. count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
  459. spin_unlock_irqrestore(&bc->lock, flags);
  460. return count;
  461. }
  462. /*
  463. * Stop sending data to the tty layer
  464. *
  465. * This function is called when the tty layer's input buffers are getting full,
  466. * so the driver should stop sending it data. The easiest way to do this is to
  467. * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
  468. * called.
  469. *
  470. * The hypervisor will continue to queue up any incoming data. If there is any
  471. * data in the queue when the RX interrupt is enabled, we'll immediately get an
  472. * RX interrupt.
  473. */
  474. static void ehv_bc_tty_throttle(struct tty_struct *ttys)
  475. {
  476. struct ehv_bc_data *bc = ttys->driver_data;
  477. disable_irq(bc->rx_irq);
  478. }
  479. /*
  480. * Resume sending data to the tty layer
  481. *
  482. * This function is called after previously calling ehv_bc_tty_throttle(). The
  483. * tty layer's input buffers now have more room, so the driver can resume
  484. * sending it data.
  485. */
  486. static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
  487. {
  488. struct ehv_bc_data *bc = ttys->driver_data;
  489. /* If there is any data in the queue when the RX interrupt is enabled,
  490. * we'll immediately get an RX interrupt.
  491. */
  492. enable_irq(bc->rx_irq);
  493. }
  494. static void ehv_bc_tty_hangup(struct tty_struct *ttys)
  495. {
  496. struct ehv_bc_data *bc = ttys->driver_data;
  497. ehv_bc_tx_dequeue(bc);
  498. tty_port_hangup(&bc->port);
  499. }
  500. /*
  501. * TTY driver operations
  502. *
  503. * If we could ask the hypervisor how much data is still in the TX buffer, or
  504. * at least how big the TX buffers are, then we could implement the
  505. * .wait_until_sent and .chars_in_buffer functions.
  506. */
  507. static const struct tty_operations ehv_bc_ops = {
  508. .open = ehv_bc_tty_open,
  509. .close = ehv_bc_tty_close,
  510. .write = ehv_bc_tty_write,
  511. .write_room = ehv_bc_tty_write_room,
  512. .throttle = ehv_bc_tty_throttle,
  513. .unthrottle = ehv_bc_tty_unthrottle,
  514. .hangup = ehv_bc_tty_hangup,
  515. };
  516. /*
  517. * initialize the TTY port
  518. *
  519. * This function will only be called once, no matter how many times
  520. * ehv_bc_tty_open() is called. That's why we register the ISR here, and also
  521. * why we initialize tty_struct-related variables here.
  522. */
  523. static int ehv_bc_tty_port_activate(struct tty_port *port,
  524. struct tty_struct *ttys)
  525. {
  526. struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
  527. int ret;
  528. ttys->driver_data = bc;
  529. ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
  530. if (ret < 0) {
  531. dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
  532. bc->rx_irq, ret);
  533. return ret;
  534. }
  535. /* request_irq also enables the IRQ */
  536. bc->tx_irq_enabled = 1;
  537. ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
  538. if (ret < 0) {
  539. dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
  540. bc->tx_irq, ret);
  541. free_irq(bc->rx_irq, bc);
  542. return ret;
  543. }
  544. /* The TX IRQ is enabled only when we can't write all the data to the
  545. * byte channel at once, so by default it's disabled.
  546. */
  547. disable_tx_interrupt(bc);
  548. return 0;
  549. }
  550. static void ehv_bc_tty_port_shutdown(struct tty_port *port)
  551. {
  552. struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
  553. free_irq(bc->tx_irq, bc);
  554. free_irq(bc->rx_irq, bc);
  555. }
  556. static const struct tty_port_operations ehv_bc_tty_port_ops = {
  557. .activate = ehv_bc_tty_port_activate,
  558. .shutdown = ehv_bc_tty_port_shutdown,
  559. };
  560. static int ehv_bc_tty_probe(struct platform_device *pdev)
  561. {
  562. struct device_node *np = pdev->dev.of_node;
  563. struct ehv_bc_data *bc;
  564. const uint32_t *iprop;
  565. unsigned int handle;
  566. int ret;
  567. static unsigned int index = 1;
  568. unsigned int i;
  569. iprop = of_get_property(np, "hv-handle", NULL);
  570. if (!iprop) {
  571. dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n",
  572. np->name);
  573. return -ENODEV;
  574. }
  575. /* We already told the console layer that the index for the console
  576. * device is zero, so we need to make sure that we use that index when
  577. * we probe the console byte channel node.
  578. */
  579. handle = be32_to_cpu(*iprop);
  580. i = (handle == stdout_bc) ? 0 : index++;
  581. bc = &bcs[i];
  582. bc->handle = handle;
  583. bc->head = 0;
  584. bc->tail = 0;
  585. spin_lock_init(&bc->lock);
  586. bc->rx_irq = irq_of_parse_and_map(np, 0);
  587. bc->tx_irq = irq_of_parse_and_map(np, 1);
  588. if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) {
  589. dev_err(&pdev->dev, "no 'interrupts' property in %s node\n",
  590. np->name);
  591. ret = -ENODEV;
  592. goto error;
  593. }
  594. tty_port_init(&bc->port);
  595. bc->port.ops = &ehv_bc_tty_port_ops;
  596. bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
  597. &pdev->dev);
  598. if (IS_ERR(bc->dev)) {
  599. ret = PTR_ERR(bc->dev);
  600. dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
  601. goto error;
  602. }
  603. dev_set_drvdata(&pdev->dev, bc);
  604. dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
  605. ehv_bc_driver->name, i, bc->handle);
  606. return 0;
  607. error:
  608. tty_port_destroy(&bc->port);
  609. irq_dispose_mapping(bc->tx_irq);
  610. irq_dispose_mapping(bc->rx_irq);
  611. memset(bc, 0, sizeof(struct ehv_bc_data));
  612. return ret;
  613. }
  614. static int ehv_bc_tty_remove(struct platform_device *pdev)
  615. {
  616. struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev);
  617. tty_unregister_device(ehv_bc_driver, bc - bcs);
  618. tty_port_destroy(&bc->port);
  619. irq_dispose_mapping(bc->tx_irq);
  620. irq_dispose_mapping(bc->rx_irq);
  621. return 0;
  622. }
  623. static const struct of_device_id ehv_bc_tty_of_ids[] = {
  624. { .compatible = "epapr,hv-byte-channel" },
  625. {}
  626. };
  627. static struct platform_driver ehv_bc_tty_driver = {
  628. .driver = {
  629. .owner = THIS_MODULE,
  630. .name = "ehv-bc",
  631. .of_match_table = ehv_bc_tty_of_ids,
  632. },
  633. .probe = ehv_bc_tty_probe,
  634. .remove = ehv_bc_tty_remove,
  635. };
  636. /**
  637. * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
  638. *
  639. * This function is called when this module is loaded.
  640. */
  641. static int __init ehv_bc_init(void)
  642. {
  643. struct device_node *np;
  644. unsigned int count = 0; /* Number of elements in bcs[] */
  645. int ret;
  646. pr_info("ePAPR hypervisor byte channel driver\n");
  647. /* Count the number of byte channels */
  648. for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
  649. count++;
  650. if (!count)
  651. return -ENODEV;
  652. /* The array index of an element in bcs[] is the same as the tty index
  653. * for that element. If you know the address of an element in the
  654. * array, then you can use pointer math (e.g. "bc - bcs") to get its
  655. * tty index.
  656. */
  657. bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL);
  658. if (!bcs)
  659. return -ENOMEM;
  660. ehv_bc_driver = alloc_tty_driver(count);
  661. if (!ehv_bc_driver) {
  662. ret = -ENOMEM;
  663. goto error;
  664. }
  665. ehv_bc_driver->driver_name = "ehv-bc";
  666. ehv_bc_driver->name = ehv_bc_console.name;
  667. ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE;
  668. ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE;
  669. ehv_bc_driver->init_termios = tty_std_termios;
  670. ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
  671. tty_set_operations(ehv_bc_driver, &ehv_bc_ops);
  672. ret = tty_register_driver(ehv_bc_driver);
  673. if (ret) {
  674. pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
  675. goto error;
  676. }
  677. ret = platform_driver_register(&ehv_bc_tty_driver);
  678. if (ret) {
  679. pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
  680. ret);
  681. goto error;
  682. }
  683. return 0;
  684. error:
  685. if (ehv_bc_driver) {
  686. tty_unregister_driver(ehv_bc_driver);
  687. put_tty_driver(ehv_bc_driver);
  688. }
  689. kfree(bcs);
  690. return ret;
  691. }
  692. /**
  693. * ehv_bc_exit - ePAPR hypervisor byte channel driver termination
  694. *
  695. * This function is called when this driver is unloaded.
  696. */
  697. static void __exit ehv_bc_exit(void)
  698. {
  699. platform_driver_unregister(&ehv_bc_tty_driver);
  700. tty_unregister_driver(ehv_bc_driver);
  701. put_tty_driver(ehv_bc_driver);
  702. kfree(bcs);
  703. }
  704. module_init(ehv_bc_init);
  705. module_exit(ehv_bc_exit);
  706. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  707. MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver");
  708. MODULE_LICENSE("GPL v2");