niu.c 229 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  6. #include <linux/module.h>
  7. #include <linux/init.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/pci.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/netdevice.h>
  12. #include <linux/ethtool.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/delay.h>
  16. #include <linux/bitops.h>
  17. #include <linux/mii.h>
  18. #include <linux/if.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/if_vlan.h>
  21. #include <linux/ip.h>
  22. #include <linux/in.h>
  23. #include <linux/ipv6.h>
  24. #include <linux/log2.h>
  25. #include <linux/jiffies.h>
  26. #include <linux/crc32.h>
  27. #include <linux/list.h>
  28. #include <linux/slab.h>
  29. #include <linux/io.h>
  30. #include <linux/of_device.h>
  31. #include "niu.h"
  32. #define DRV_MODULE_NAME "niu"
  33. #define DRV_MODULE_VERSION "1.1"
  34. #define DRV_MODULE_RELDATE "Apr 22, 2010"
  35. static char version[] =
  36. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  37. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  38. MODULE_DESCRIPTION("NIU ethernet driver");
  39. MODULE_LICENSE("GPL");
  40. MODULE_VERSION(DRV_MODULE_VERSION);
  41. #ifndef readq
  42. static u64 readq(void __iomem *reg)
  43. {
  44. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  45. }
  46. static void writeq(u64 val, void __iomem *reg)
  47. {
  48. writel(val & 0xffffffff, reg);
  49. writel(val >> 32, reg + 0x4UL);
  50. }
  51. #endif
  52. static const struct pci_device_id niu_pci_tbl[] = {
  53. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  54. {}
  55. };
  56. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  57. #define NIU_TX_TIMEOUT (5 * HZ)
  58. #define nr64(reg) readq(np->regs + (reg))
  59. #define nw64(reg, val) writeq((val), np->regs + (reg))
  60. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  61. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  62. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  63. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  64. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  65. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  66. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  67. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  68. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  69. static int niu_debug;
  70. static int debug = -1;
  71. module_param(debug, int, 0);
  72. MODULE_PARM_DESC(debug, "NIU debug level");
  73. #define niu_lock_parent(np, flags) \
  74. spin_lock_irqsave(&np->parent->lock, flags)
  75. #define niu_unlock_parent(np, flags) \
  76. spin_unlock_irqrestore(&np->parent->lock, flags)
  77. static int serdes_init_10g_serdes(struct niu *np);
  78. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  79. u64 bits, int limit, int delay)
  80. {
  81. while (--limit >= 0) {
  82. u64 val = nr64_mac(reg);
  83. if (!(val & bits))
  84. break;
  85. udelay(delay);
  86. }
  87. if (limit < 0)
  88. return -ENODEV;
  89. return 0;
  90. }
  91. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  92. u64 bits, int limit, int delay,
  93. const char *reg_name)
  94. {
  95. int err;
  96. nw64_mac(reg, bits);
  97. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  98. if (err)
  99. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  100. (unsigned long long)bits, reg_name,
  101. (unsigned long long)nr64_mac(reg));
  102. return err;
  103. }
  104. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  105. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  106. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  107. })
  108. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  109. u64 bits, int limit, int delay)
  110. {
  111. while (--limit >= 0) {
  112. u64 val = nr64_ipp(reg);
  113. if (!(val & bits))
  114. break;
  115. udelay(delay);
  116. }
  117. if (limit < 0)
  118. return -ENODEV;
  119. return 0;
  120. }
  121. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  122. u64 bits, int limit, int delay,
  123. const char *reg_name)
  124. {
  125. int err;
  126. u64 val;
  127. val = nr64_ipp(reg);
  128. val |= bits;
  129. nw64_ipp(reg, val);
  130. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  131. if (err)
  132. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  133. (unsigned long long)bits, reg_name,
  134. (unsigned long long)nr64_ipp(reg));
  135. return err;
  136. }
  137. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  138. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  139. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  140. })
  141. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  142. u64 bits, int limit, int delay)
  143. {
  144. while (--limit >= 0) {
  145. u64 val = nr64(reg);
  146. if (!(val & bits))
  147. break;
  148. udelay(delay);
  149. }
  150. if (limit < 0)
  151. return -ENODEV;
  152. return 0;
  153. }
  154. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  155. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  156. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  157. })
  158. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  159. u64 bits, int limit, int delay,
  160. const char *reg_name)
  161. {
  162. int err;
  163. nw64(reg, bits);
  164. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  165. if (err)
  166. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  167. (unsigned long long)bits, reg_name,
  168. (unsigned long long)nr64(reg));
  169. return err;
  170. }
  171. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  172. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  173. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  174. })
  175. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  176. {
  177. u64 val = (u64) lp->timer;
  178. if (on)
  179. val |= LDG_IMGMT_ARM;
  180. nw64(LDG_IMGMT(lp->ldg_num), val);
  181. }
  182. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  183. {
  184. unsigned long mask_reg, bits;
  185. u64 val;
  186. if (ldn < 0 || ldn > LDN_MAX)
  187. return -EINVAL;
  188. if (ldn < 64) {
  189. mask_reg = LD_IM0(ldn);
  190. bits = LD_IM0_MASK;
  191. } else {
  192. mask_reg = LD_IM1(ldn - 64);
  193. bits = LD_IM1_MASK;
  194. }
  195. val = nr64(mask_reg);
  196. if (on)
  197. val &= ~bits;
  198. else
  199. val |= bits;
  200. nw64(mask_reg, val);
  201. return 0;
  202. }
  203. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  204. {
  205. struct niu_parent *parent = np->parent;
  206. int i;
  207. for (i = 0; i <= LDN_MAX; i++) {
  208. int err;
  209. if (parent->ldg_map[i] != lp->ldg_num)
  210. continue;
  211. err = niu_ldn_irq_enable(np, i, on);
  212. if (err)
  213. return err;
  214. }
  215. return 0;
  216. }
  217. static int niu_enable_interrupts(struct niu *np, int on)
  218. {
  219. int i;
  220. for (i = 0; i < np->num_ldg; i++) {
  221. struct niu_ldg *lp = &np->ldg[i];
  222. int err;
  223. err = niu_enable_ldn_in_ldg(np, lp, on);
  224. if (err)
  225. return err;
  226. }
  227. for (i = 0; i < np->num_ldg; i++)
  228. niu_ldg_rearm(np, &np->ldg[i], on);
  229. return 0;
  230. }
  231. static u32 phy_encode(u32 type, int port)
  232. {
  233. return type << (port * 2);
  234. }
  235. static u32 phy_decode(u32 val, int port)
  236. {
  237. return (val >> (port * 2)) & PORT_TYPE_MASK;
  238. }
  239. static int mdio_wait(struct niu *np)
  240. {
  241. int limit = 1000;
  242. u64 val;
  243. while (--limit > 0) {
  244. val = nr64(MIF_FRAME_OUTPUT);
  245. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  246. return val & MIF_FRAME_OUTPUT_DATA;
  247. udelay(10);
  248. }
  249. return -ENODEV;
  250. }
  251. static int mdio_read(struct niu *np, int port, int dev, int reg)
  252. {
  253. int err;
  254. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  255. err = mdio_wait(np);
  256. if (err < 0)
  257. return err;
  258. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  259. return mdio_wait(np);
  260. }
  261. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  262. {
  263. int err;
  264. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  265. err = mdio_wait(np);
  266. if (err < 0)
  267. return err;
  268. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  269. err = mdio_wait(np);
  270. if (err < 0)
  271. return err;
  272. return 0;
  273. }
  274. static int mii_read(struct niu *np, int port, int reg)
  275. {
  276. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  277. return mdio_wait(np);
  278. }
  279. static int mii_write(struct niu *np, int port, int reg, int data)
  280. {
  281. int err;
  282. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  283. err = mdio_wait(np);
  284. if (err < 0)
  285. return err;
  286. return 0;
  287. }
  288. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  289. {
  290. int err;
  291. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  292. ESR2_TI_PLL_TX_CFG_L(channel),
  293. val & 0xffff);
  294. if (!err)
  295. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  296. ESR2_TI_PLL_TX_CFG_H(channel),
  297. val >> 16);
  298. return err;
  299. }
  300. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  301. {
  302. int err;
  303. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  304. ESR2_TI_PLL_RX_CFG_L(channel),
  305. val & 0xffff);
  306. if (!err)
  307. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  308. ESR2_TI_PLL_RX_CFG_H(channel),
  309. val >> 16);
  310. return err;
  311. }
  312. /* Mode is always 10G fiber. */
  313. static int serdes_init_niu_10g_fiber(struct niu *np)
  314. {
  315. struct niu_link_config *lp = &np->link_config;
  316. u32 tx_cfg, rx_cfg;
  317. unsigned long i;
  318. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  319. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  320. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  321. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  322. if (lp->loopback_mode == LOOPBACK_PHY) {
  323. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  324. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  325. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  326. tx_cfg |= PLL_TX_CFG_ENTEST;
  327. rx_cfg |= PLL_RX_CFG_ENTEST;
  328. }
  329. /* Initialize all 4 lanes of the SERDES. */
  330. for (i = 0; i < 4; i++) {
  331. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  332. if (err)
  333. return err;
  334. }
  335. for (i = 0; i < 4; i++) {
  336. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  337. if (err)
  338. return err;
  339. }
  340. return 0;
  341. }
  342. static int serdes_init_niu_1g_serdes(struct niu *np)
  343. {
  344. struct niu_link_config *lp = &np->link_config;
  345. u16 pll_cfg, pll_sts;
  346. int max_retry = 100;
  347. u64 uninitialized_var(sig), mask, val;
  348. u32 tx_cfg, rx_cfg;
  349. unsigned long i;
  350. int err;
  351. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  352. PLL_TX_CFG_RATE_HALF);
  353. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  354. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  355. PLL_RX_CFG_RATE_HALF);
  356. if (np->port == 0)
  357. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  358. if (lp->loopback_mode == LOOPBACK_PHY) {
  359. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  360. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  361. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  362. tx_cfg |= PLL_TX_CFG_ENTEST;
  363. rx_cfg |= PLL_RX_CFG_ENTEST;
  364. }
  365. /* Initialize PLL for 1G */
  366. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  367. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  368. ESR2_TI_PLL_CFG_L, pll_cfg);
  369. if (err) {
  370. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  371. np->port, __func__);
  372. return err;
  373. }
  374. pll_sts = PLL_CFG_ENPLL;
  375. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  376. ESR2_TI_PLL_STS_L, pll_sts);
  377. if (err) {
  378. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  379. np->port, __func__);
  380. return err;
  381. }
  382. udelay(200);
  383. /* Initialize all 4 lanes of the SERDES. */
  384. for (i = 0; i < 4; i++) {
  385. err = esr2_set_tx_cfg(np, i, tx_cfg);
  386. if (err)
  387. return err;
  388. }
  389. for (i = 0; i < 4; i++) {
  390. err = esr2_set_rx_cfg(np, i, rx_cfg);
  391. if (err)
  392. return err;
  393. }
  394. switch (np->port) {
  395. case 0:
  396. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  397. mask = val;
  398. break;
  399. case 1:
  400. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  401. mask = val;
  402. break;
  403. default:
  404. return -EINVAL;
  405. }
  406. while (max_retry--) {
  407. sig = nr64(ESR_INT_SIGNALS);
  408. if ((sig & mask) == val)
  409. break;
  410. mdelay(500);
  411. }
  412. if ((sig & mask) != val) {
  413. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  414. np->port, (int)(sig & mask), (int)val);
  415. return -ENODEV;
  416. }
  417. return 0;
  418. }
  419. static int serdes_init_niu_10g_serdes(struct niu *np)
  420. {
  421. struct niu_link_config *lp = &np->link_config;
  422. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  423. int max_retry = 100;
  424. u64 uninitialized_var(sig), mask, val;
  425. unsigned long i;
  426. int err;
  427. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  428. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  429. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  430. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  431. if (lp->loopback_mode == LOOPBACK_PHY) {
  432. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  433. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  434. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  435. tx_cfg |= PLL_TX_CFG_ENTEST;
  436. rx_cfg |= PLL_RX_CFG_ENTEST;
  437. }
  438. /* Initialize PLL for 10G */
  439. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  440. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  441. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  442. if (err) {
  443. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  444. np->port, __func__);
  445. return err;
  446. }
  447. pll_sts = PLL_CFG_ENPLL;
  448. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  449. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  450. if (err) {
  451. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  452. np->port, __func__);
  453. return err;
  454. }
  455. udelay(200);
  456. /* Initialize all 4 lanes of the SERDES. */
  457. for (i = 0; i < 4; i++) {
  458. err = esr2_set_tx_cfg(np, i, tx_cfg);
  459. if (err)
  460. return err;
  461. }
  462. for (i = 0; i < 4; i++) {
  463. err = esr2_set_rx_cfg(np, i, rx_cfg);
  464. if (err)
  465. return err;
  466. }
  467. /* check if serdes is ready */
  468. switch (np->port) {
  469. case 0:
  470. mask = ESR_INT_SIGNALS_P0_BITS;
  471. val = (ESR_INT_SRDY0_P0 |
  472. ESR_INT_DET0_P0 |
  473. ESR_INT_XSRDY_P0 |
  474. ESR_INT_XDP_P0_CH3 |
  475. ESR_INT_XDP_P0_CH2 |
  476. ESR_INT_XDP_P0_CH1 |
  477. ESR_INT_XDP_P0_CH0);
  478. break;
  479. case 1:
  480. mask = ESR_INT_SIGNALS_P1_BITS;
  481. val = (ESR_INT_SRDY0_P1 |
  482. ESR_INT_DET0_P1 |
  483. ESR_INT_XSRDY_P1 |
  484. ESR_INT_XDP_P1_CH3 |
  485. ESR_INT_XDP_P1_CH2 |
  486. ESR_INT_XDP_P1_CH1 |
  487. ESR_INT_XDP_P1_CH0);
  488. break;
  489. default:
  490. return -EINVAL;
  491. }
  492. while (max_retry--) {
  493. sig = nr64(ESR_INT_SIGNALS);
  494. if ((sig & mask) == val)
  495. break;
  496. mdelay(500);
  497. }
  498. if ((sig & mask) != val) {
  499. pr_info("NIU Port %u signal bits [%08x] are not [%08x] for 10G...trying 1G\n",
  500. np->port, (int)(sig & mask), (int)val);
  501. /* 10G failed, try initializing at 1G */
  502. err = serdes_init_niu_1g_serdes(np);
  503. if (!err) {
  504. np->flags &= ~NIU_FLAGS_10G;
  505. np->mac_xcvr = MAC_XCVR_PCS;
  506. } else {
  507. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  508. np->port);
  509. return -ENODEV;
  510. }
  511. }
  512. return 0;
  513. }
  514. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  515. {
  516. int err;
  517. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  518. if (err >= 0) {
  519. *val = (err & 0xffff);
  520. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  521. ESR_RXTX_CTRL_H(chan));
  522. if (err >= 0)
  523. *val |= ((err & 0xffff) << 16);
  524. err = 0;
  525. }
  526. return err;
  527. }
  528. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  529. {
  530. int err;
  531. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  532. ESR_GLUE_CTRL0_L(chan));
  533. if (err >= 0) {
  534. *val = (err & 0xffff);
  535. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  536. ESR_GLUE_CTRL0_H(chan));
  537. if (err >= 0) {
  538. *val |= ((err & 0xffff) << 16);
  539. err = 0;
  540. }
  541. }
  542. return err;
  543. }
  544. static int esr_read_reset(struct niu *np, u32 *val)
  545. {
  546. int err;
  547. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  548. ESR_RXTX_RESET_CTRL_L);
  549. if (err >= 0) {
  550. *val = (err & 0xffff);
  551. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  552. ESR_RXTX_RESET_CTRL_H);
  553. if (err >= 0) {
  554. *val |= ((err & 0xffff) << 16);
  555. err = 0;
  556. }
  557. }
  558. return err;
  559. }
  560. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  561. {
  562. int err;
  563. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  564. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  565. if (!err)
  566. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  567. ESR_RXTX_CTRL_H(chan), (val >> 16));
  568. return err;
  569. }
  570. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  571. {
  572. int err;
  573. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  574. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  575. if (!err)
  576. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  577. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  578. return err;
  579. }
  580. static int esr_reset(struct niu *np)
  581. {
  582. u32 uninitialized_var(reset);
  583. int err;
  584. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  585. ESR_RXTX_RESET_CTRL_L, 0x0000);
  586. if (err)
  587. return err;
  588. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  589. ESR_RXTX_RESET_CTRL_H, 0xffff);
  590. if (err)
  591. return err;
  592. udelay(200);
  593. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  594. ESR_RXTX_RESET_CTRL_L, 0xffff);
  595. if (err)
  596. return err;
  597. udelay(200);
  598. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  599. ESR_RXTX_RESET_CTRL_H, 0x0000);
  600. if (err)
  601. return err;
  602. udelay(200);
  603. err = esr_read_reset(np, &reset);
  604. if (err)
  605. return err;
  606. if (reset != 0) {
  607. netdev_err(np->dev, "Port %u ESR_RESET did not clear [%08x]\n",
  608. np->port, reset);
  609. return -ENODEV;
  610. }
  611. return 0;
  612. }
  613. static int serdes_init_10g(struct niu *np)
  614. {
  615. struct niu_link_config *lp = &np->link_config;
  616. unsigned long ctrl_reg, test_cfg_reg, i;
  617. u64 ctrl_val, test_cfg_val, sig, mask, val;
  618. int err;
  619. switch (np->port) {
  620. case 0:
  621. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  622. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  623. break;
  624. case 1:
  625. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  626. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  627. break;
  628. default:
  629. return -EINVAL;
  630. }
  631. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  632. ENET_SERDES_CTRL_SDET_1 |
  633. ENET_SERDES_CTRL_SDET_2 |
  634. ENET_SERDES_CTRL_SDET_3 |
  635. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  636. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  637. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  638. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  639. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  640. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  641. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  642. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  643. test_cfg_val = 0;
  644. if (lp->loopback_mode == LOOPBACK_PHY) {
  645. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  646. ENET_SERDES_TEST_MD_0_SHIFT) |
  647. (ENET_TEST_MD_PAD_LOOPBACK <<
  648. ENET_SERDES_TEST_MD_1_SHIFT) |
  649. (ENET_TEST_MD_PAD_LOOPBACK <<
  650. ENET_SERDES_TEST_MD_2_SHIFT) |
  651. (ENET_TEST_MD_PAD_LOOPBACK <<
  652. ENET_SERDES_TEST_MD_3_SHIFT));
  653. }
  654. nw64(ctrl_reg, ctrl_val);
  655. nw64(test_cfg_reg, test_cfg_val);
  656. /* Initialize all 4 lanes of the SERDES. */
  657. for (i = 0; i < 4; i++) {
  658. u32 rxtx_ctrl, glue0;
  659. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  660. if (err)
  661. return err;
  662. err = esr_read_glue0(np, i, &glue0);
  663. if (err)
  664. return err;
  665. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  666. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  667. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  668. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  669. ESR_GLUE_CTRL0_THCNT |
  670. ESR_GLUE_CTRL0_BLTIME);
  671. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  672. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  673. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  674. (BLTIME_300_CYCLES <<
  675. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  676. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  677. if (err)
  678. return err;
  679. err = esr_write_glue0(np, i, glue0);
  680. if (err)
  681. return err;
  682. }
  683. err = esr_reset(np);
  684. if (err)
  685. return err;
  686. sig = nr64(ESR_INT_SIGNALS);
  687. switch (np->port) {
  688. case 0:
  689. mask = ESR_INT_SIGNALS_P0_BITS;
  690. val = (ESR_INT_SRDY0_P0 |
  691. ESR_INT_DET0_P0 |
  692. ESR_INT_XSRDY_P0 |
  693. ESR_INT_XDP_P0_CH3 |
  694. ESR_INT_XDP_P0_CH2 |
  695. ESR_INT_XDP_P0_CH1 |
  696. ESR_INT_XDP_P0_CH0);
  697. break;
  698. case 1:
  699. mask = ESR_INT_SIGNALS_P1_BITS;
  700. val = (ESR_INT_SRDY0_P1 |
  701. ESR_INT_DET0_P1 |
  702. ESR_INT_XSRDY_P1 |
  703. ESR_INT_XDP_P1_CH3 |
  704. ESR_INT_XDP_P1_CH2 |
  705. ESR_INT_XDP_P1_CH1 |
  706. ESR_INT_XDP_P1_CH0);
  707. break;
  708. default:
  709. return -EINVAL;
  710. }
  711. if ((sig & mask) != val) {
  712. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  713. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  714. return 0;
  715. }
  716. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  717. np->port, (int)(sig & mask), (int)val);
  718. return -ENODEV;
  719. }
  720. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  721. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  722. return 0;
  723. }
  724. static int serdes_init_1g(struct niu *np)
  725. {
  726. u64 val;
  727. val = nr64(ENET_SERDES_1_PLL_CFG);
  728. val &= ~ENET_SERDES_PLL_FBDIV2;
  729. switch (np->port) {
  730. case 0:
  731. val |= ENET_SERDES_PLL_HRATE0;
  732. break;
  733. case 1:
  734. val |= ENET_SERDES_PLL_HRATE1;
  735. break;
  736. case 2:
  737. val |= ENET_SERDES_PLL_HRATE2;
  738. break;
  739. case 3:
  740. val |= ENET_SERDES_PLL_HRATE3;
  741. break;
  742. default:
  743. return -EINVAL;
  744. }
  745. nw64(ENET_SERDES_1_PLL_CFG, val);
  746. return 0;
  747. }
  748. static int serdes_init_1g_serdes(struct niu *np)
  749. {
  750. struct niu_link_config *lp = &np->link_config;
  751. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  752. u64 ctrl_val, test_cfg_val, sig, mask, val;
  753. int err;
  754. u64 reset_val, val_rd;
  755. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  756. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  757. ENET_SERDES_PLL_FBDIV0;
  758. switch (np->port) {
  759. case 0:
  760. reset_val = ENET_SERDES_RESET_0;
  761. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  762. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  763. pll_cfg = ENET_SERDES_0_PLL_CFG;
  764. break;
  765. case 1:
  766. reset_val = ENET_SERDES_RESET_1;
  767. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  768. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  769. pll_cfg = ENET_SERDES_1_PLL_CFG;
  770. break;
  771. default:
  772. return -EINVAL;
  773. }
  774. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  775. ENET_SERDES_CTRL_SDET_1 |
  776. ENET_SERDES_CTRL_SDET_2 |
  777. ENET_SERDES_CTRL_SDET_3 |
  778. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  779. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  780. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  781. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  782. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  783. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  784. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  785. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  786. test_cfg_val = 0;
  787. if (lp->loopback_mode == LOOPBACK_PHY) {
  788. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  789. ENET_SERDES_TEST_MD_0_SHIFT) |
  790. (ENET_TEST_MD_PAD_LOOPBACK <<
  791. ENET_SERDES_TEST_MD_1_SHIFT) |
  792. (ENET_TEST_MD_PAD_LOOPBACK <<
  793. ENET_SERDES_TEST_MD_2_SHIFT) |
  794. (ENET_TEST_MD_PAD_LOOPBACK <<
  795. ENET_SERDES_TEST_MD_3_SHIFT));
  796. }
  797. nw64(ENET_SERDES_RESET, reset_val);
  798. mdelay(20);
  799. val_rd = nr64(ENET_SERDES_RESET);
  800. val_rd &= ~reset_val;
  801. nw64(pll_cfg, val);
  802. nw64(ctrl_reg, ctrl_val);
  803. nw64(test_cfg_reg, test_cfg_val);
  804. nw64(ENET_SERDES_RESET, val_rd);
  805. mdelay(2000);
  806. /* Initialize all 4 lanes of the SERDES. */
  807. for (i = 0; i < 4; i++) {
  808. u32 rxtx_ctrl, glue0;
  809. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  810. if (err)
  811. return err;
  812. err = esr_read_glue0(np, i, &glue0);
  813. if (err)
  814. return err;
  815. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  816. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  817. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  818. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  819. ESR_GLUE_CTRL0_THCNT |
  820. ESR_GLUE_CTRL0_BLTIME);
  821. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  822. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  823. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  824. (BLTIME_300_CYCLES <<
  825. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  826. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  827. if (err)
  828. return err;
  829. err = esr_write_glue0(np, i, glue0);
  830. if (err)
  831. return err;
  832. }
  833. sig = nr64(ESR_INT_SIGNALS);
  834. switch (np->port) {
  835. case 0:
  836. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  837. mask = val;
  838. break;
  839. case 1:
  840. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  841. mask = val;
  842. break;
  843. default:
  844. return -EINVAL;
  845. }
  846. if ((sig & mask) != val) {
  847. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  848. np->port, (int)(sig & mask), (int)val);
  849. return -ENODEV;
  850. }
  851. return 0;
  852. }
  853. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  854. {
  855. struct niu_link_config *lp = &np->link_config;
  856. int link_up;
  857. u64 val;
  858. u16 current_speed;
  859. unsigned long flags;
  860. u8 current_duplex;
  861. link_up = 0;
  862. current_speed = SPEED_INVALID;
  863. current_duplex = DUPLEX_INVALID;
  864. spin_lock_irqsave(&np->lock, flags);
  865. val = nr64_pcs(PCS_MII_STAT);
  866. if (val & PCS_MII_STAT_LINK_STATUS) {
  867. link_up = 1;
  868. current_speed = SPEED_1000;
  869. current_duplex = DUPLEX_FULL;
  870. }
  871. lp->active_speed = current_speed;
  872. lp->active_duplex = current_duplex;
  873. spin_unlock_irqrestore(&np->lock, flags);
  874. *link_up_p = link_up;
  875. return 0;
  876. }
  877. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  878. {
  879. unsigned long flags;
  880. struct niu_link_config *lp = &np->link_config;
  881. int link_up = 0;
  882. int link_ok = 1;
  883. u64 val, val2;
  884. u16 current_speed;
  885. u8 current_duplex;
  886. if (!(np->flags & NIU_FLAGS_10G))
  887. return link_status_1g_serdes(np, link_up_p);
  888. current_speed = SPEED_INVALID;
  889. current_duplex = DUPLEX_INVALID;
  890. spin_lock_irqsave(&np->lock, flags);
  891. val = nr64_xpcs(XPCS_STATUS(0));
  892. val2 = nr64_mac(XMAC_INTER2);
  893. if (val2 & 0x01000000)
  894. link_ok = 0;
  895. if ((val & 0x1000ULL) && link_ok) {
  896. link_up = 1;
  897. current_speed = SPEED_10000;
  898. current_duplex = DUPLEX_FULL;
  899. }
  900. lp->active_speed = current_speed;
  901. lp->active_duplex = current_duplex;
  902. spin_unlock_irqrestore(&np->lock, flags);
  903. *link_up_p = link_up;
  904. return 0;
  905. }
  906. static int link_status_mii(struct niu *np, int *link_up_p)
  907. {
  908. struct niu_link_config *lp = &np->link_config;
  909. int err;
  910. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  911. int supported, advertising, active_speed, active_duplex;
  912. err = mii_read(np, np->phy_addr, MII_BMCR);
  913. if (unlikely(err < 0))
  914. return err;
  915. bmcr = err;
  916. err = mii_read(np, np->phy_addr, MII_BMSR);
  917. if (unlikely(err < 0))
  918. return err;
  919. bmsr = err;
  920. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  921. if (unlikely(err < 0))
  922. return err;
  923. advert = err;
  924. err = mii_read(np, np->phy_addr, MII_LPA);
  925. if (unlikely(err < 0))
  926. return err;
  927. lpa = err;
  928. if (likely(bmsr & BMSR_ESTATEN)) {
  929. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  930. if (unlikely(err < 0))
  931. return err;
  932. estatus = err;
  933. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  934. if (unlikely(err < 0))
  935. return err;
  936. ctrl1000 = err;
  937. err = mii_read(np, np->phy_addr, MII_STAT1000);
  938. if (unlikely(err < 0))
  939. return err;
  940. stat1000 = err;
  941. } else
  942. estatus = ctrl1000 = stat1000 = 0;
  943. supported = 0;
  944. if (bmsr & BMSR_ANEGCAPABLE)
  945. supported |= SUPPORTED_Autoneg;
  946. if (bmsr & BMSR_10HALF)
  947. supported |= SUPPORTED_10baseT_Half;
  948. if (bmsr & BMSR_10FULL)
  949. supported |= SUPPORTED_10baseT_Full;
  950. if (bmsr & BMSR_100HALF)
  951. supported |= SUPPORTED_100baseT_Half;
  952. if (bmsr & BMSR_100FULL)
  953. supported |= SUPPORTED_100baseT_Full;
  954. if (estatus & ESTATUS_1000_THALF)
  955. supported |= SUPPORTED_1000baseT_Half;
  956. if (estatus & ESTATUS_1000_TFULL)
  957. supported |= SUPPORTED_1000baseT_Full;
  958. lp->supported = supported;
  959. advertising = mii_adv_to_ethtool_adv_t(advert);
  960. advertising |= mii_ctrl1000_to_ethtool_adv_t(ctrl1000);
  961. if (bmcr & BMCR_ANENABLE) {
  962. int neg, neg1000;
  963. lp->active_autoneg = 1;
  964. advertising |= ADVERTISED_Autoneg;
  965. neg = advert & lpa;
  966. neg1000 = (ctrl1000 << 2) & stat1000;
  967. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  968. active_speed = SPEED_1000;
  969. else if (neg & LPA_100)
  970. active_speed = SPEED_100;
  971. else if (neg & (LPA_10HALF | LPA_10FULL))
  972. active_speed = SPEED_10;
  973. else
  974. active_speed = SPEED_INVALID;
  975. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  976. active_duplex = DUPLEX_FULL;
  977. else if (active_speed != SPEED_INVALID)
  978. active_duplex = DUPLEX_HALF;
  979. else
  980. active_duplex = DUPLEX_INVALID;
  981. } else {
  982. lp->active_autoneg = 0;
  983. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  984. active_speed = SPEED_1000;
  985. else if (bmcr & BMCR_SPEED100)
  986. active_speed = SPEED_100;
  987. else
  988. active_speed = SPEED_10;
  989. if (bmcr & BMCR_FULLDPLX)
  990. active_duplex = DUPLEX_FULL;
  991. else
  992. active_duplex = DUPLEX_HALF;
  993. }
  994. lp->active_advertising = advertising;
  995. lp->active_speed = active_speed;
  996. lp->active_duplex = active_duplex;
  997. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  998. return 0;
  999. }
  1000. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1001. {
  1002. struct niu_link_config *lp = &np->link_config;
  1003. u16 current_speed, bmsr;
  1004. unsigned long flags;
  1005. u8 current_duplex;
  1006. int err, link_up;
  1007. link_up = 0;
  1008. current_speed = SPEED_INVALID;
  1009. current_duplex = DUPLEX_INVALID;
  1010. spin_lock_irqsave(&np->lock, flags);
  1011. err = -EINVAL;
  1012. err = mii_read(np, np->phy_addr, MII_BMSR);
  1013. if (err < 0)
  1014. goto out;
  1015. bmsr = err;
  1016. if (bmsr & BMSR_LSTATUS) {
  1017. u16 adv, lpa;
  1018. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1019. if (err < 0)
  1020. goto out;
  1021. adv = err;
  1022. err = mii_read(np, np->phy_addr, MII_LPA);
  1023. if (err < 0)
  1024. goto out;
  1025. lpa = err;
  1026. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1027. if (err < 0)
  1028. goto out;
  1029. link_up = 1;
  1030. current_speed = SPEED_1000;
  1031. current_duplex = DUPLEX_FULL;
  1032. }
  1033. lp->active_speed = current_speed;
  1034. lp->active_duplex = current_duplex;
  1035. err = 0;
  1036. out:
  1037. spin_unlock_irqrestore(&np->lock, flags);
  1038. *link_up_p = link_up;
  1039. return err;
  1040. }
  1041. static int link_status_1g(struct niu *np, int *link_up_p)
  1042. {
  1043. struct niu_link_config *lp = &np->link_config;
  1044. unsigned long flags;
  1045. int err;
  1046. spin_lock_irqsave(&np->lock, flags);
  1047. err = link_status_mii(np, link_up_p);
  1048. lp->supported |= SUPPORTED_TP;
  1049. lp->active_advertising |= ADVERTISED_TP;
  1050. spin_unlock_irqrestore(&np->lock, flags);
  1051. return err;
  1052. }
  1053. static int bcm8704_reset(struct niu *np)
  1054. {
  1055. int err, limit;
  1056. err = mdio_read(np, np->phy_addr,
  1057. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1058. if (err < 0 || err == 0xffff)
  1059. return err;
  1060. err |= BMCR_RESET;
  1061. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1062. MII_BMCR, err);
  1063. if (err)
  1064. return err;
  1065. limit = 1000;
  1066. while (--limit >= 0) {
  1067. err = mdio_read(np, np->phy_addr,
  1068. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1069. if (err < 0)
  1070. return err;
  1071. if (!(err & BMCR_RESET))
  1072. break;
  1073. }
  1074. if (limit < 0) {
  1075. netdev_err(np->dev, "Port %u PHY will not reset (bmcr=%04x)\n",
  1076. np->port, (err & 0xffff));
  1077. return -ENODEV;
  1078. }
  1079. return 0;
  1080. }
  1081. /* When written, certain PHY registers need to be read back twice
  1082. * in order for the bits to settle properly.
  1083. */
  1084. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1085. {
  1086. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1087. if (err < 0)
  1088. return err;
  1089. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1090. if (err < 0)
  1091. return err;
  1092. return 0;
  1093. }
  1094. static int bcm8706_init_user_dev3(struct niu *np)
  1095. {
  1096. int err;
  1097. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1098. BCM8704_USER_OPT_DIGITAL_CTRL);
  1099. if (err < 0)
  1100. return err;
  1101. err &= ~USER_ODIG_CTRL_GPIOS;
  1102. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1103. err |= USER_ODIG_CTRL_RESV2;
  1104. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1105. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1106. if (err)
  1107. return err;
  1108. mdelay(1000);
  1109. return 0;
  1110. }
  1111. static int bcm8704_init_user_dev3(struct niu *np)
  1112. {
  1113. int err;
  1114. err = mdio_write(np, np->phy_addr,
  1115. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1116. (USER_CONTROL_OPTXRST_LVL |
  1117. USER_CONTROL_OPBIASFLT_LVL |
  1118. USER_CONTROL_OBTMPFLT_LVL |
  1119. USER_CONTROL_OPPRFLT_LVL |
  1120. USER_CONTROL_OPTXFLT_LVL |
  1121. USER_CONTROL_OPRXLOS_LVL |
  1122. USER_CONTROL_OPRXFLT_LVL |
  1123. USER_CONTROL_OPTXON_LVL |
  1124. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1125. if (err)
  1126. return err;
  1127. err = mdio_write(np, np->phy_addr,
  1128. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1129. (USER_PMD_TX_CTL_XFP_CLKEN |
  1130. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1131. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1132. USER_PMD_TX_CTL_TSCK_LPWREN));
  1133. if (err)
  1134. return err;
  1135. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1136. if (err)
  1137. return err;
  1138. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1139. if (err)
  1140. return err;
  1141. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1142. BCM8704_USER_OPT_DIGITAL_CTRL);
  1143. if (err < 0)
  1144. return err;
  1145. err &= ~USER_ODIG_CTRL_GPIOS;
  1146. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1147. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1148. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1149. if (err)
  1150. return err;
  1151. mdelay(1000);
  1152. return 0;
  1153. }
  1154. static int mrvl88x2011_act_led(struct niu *np, int val)
  1155. {
  1156. int err;
  1157. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1158. MRVL88X2011_LED_8_TO_11_CTL);
  1159. if (err < 0)
  1160. return err;
  1161. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1162. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1163. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1164. MRVL88X2011_LED_8_TO_11_CTL, err);
  1165. }
  1166. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1167. {
  1168. int err;
  1169. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1170. MRVL88X2011_LED_BLINK_CTL);
  1171. if (err >= 0) {
  1172. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1173. err |= (rate << 4);
  1174. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1175. MRVL88X2011_LED_BLINK_CTL, err);
  1176. }
  1177. return err;
  1178. }
  1179. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1180. {
  1181. int err;
  1182. /* Set LED functions */
  1183. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1184. if (err)
  1185. return err;
  1186. /* led activity */
  1187. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1188. if (err)
  1189. return err;
  1190. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1191. MRVL88X2011_GENERAL_CTL);
  1192. if (err < 0)
  1193. return err;
  1194. err |= MRVL88X2011_ENA_XFPREFCLK;
  1195. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1196. MRVL88X2011_GENERAL_CTL, err);
  1197. if (err < 0)
  1198. return err;
  1199. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1200. MRVL88X2011_PMA_PMD_CTL_1);
  1201. if (err < 0)
  1202. return err;
  1203. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1204. err |= MRVL88X2011_LOOPBACK;
  1205. else
  1206. err &= ~MRVL88X2011_LOOPBACK;
  1207. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1208. MRVL88X2011_PMA_PMD_CTL_1, err);
  1209. if (err < 0)
  1210. return err;
  1211. /* Enable PMD */
  1212. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1213. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1214. }
  1215. static int xcvr_diag_bcm870x(struct niu *np)
  1216. {
  1217. u16 analog_stat0, tx_alarm_status;
  1218. int err = 0;
  1219. #if 1
  1220. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1221. MII_STAT1000);
  1222. if (err < 0)
  1223. return err;
  1224. pr_info("Port %u PMA_PMD(MII_STAT1000) [%04x]\n", np->port, err);
  1225. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1226. if (err < 0)
  1227. return err;
  1228. pr_info("Port %u USER_DEV3(0x20) [%04x]\n", np->port, err);
  1229. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1230. MII_NWAYTEST);
  1231. if (err < 0)
  1232. return err;
  1233. pr_info("Port %u PHYXS(MII_NWAYTEST) [%04x]\n", np->port, err);
  1234. #endif
  1235. /* XXX dig this out it might not be so useful XXX */
  1236. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1237. BCM8704_USER_ANALOG_STATUS0);
  1238. if (err < 0)
  1239. return err;
  1240. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1241. BCM8704_USER_ANALOG_STATUS0);
  1242. if (err < 0)
  1243. return err;
  1244. analog_stat0 = err;
  1245. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1246. BCM8704_USER_TX_ALARM_STATUS);
  1247. if (err < 0)
  1248. return err;
  1249. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1250. BCM8704_USER_TX_ALARM_STATUS);
  1251. if (err < 0)
  1252. return err;
  1253. tx_alarm_status = err;
  1254. if (analog_stat0 != 0x03fc) {
  1255. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1256. pr_info("Port %u cable not connected or bad cable\n",
  1257. np->port);
  1258. } else if (analog_stat0 == 0x639c) {
  1259. pr_info("Port %u optical module is bad or missing\n",
  1260. np->port);
  1261. }
  1262. }
  1263. return 0;
  1264. }
  1265. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1266. {
  1267. struct niu_link_config *lp = &np->link_config;
  1268. int err;
  1269. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1270. MII_BMCR);
  1271. if (err < 0)
  1272. return err;
  1273. err &= ~BMCR_LOOPBACK;
  1274. if (lp->loopback_mode == LOOPBACK_MAC)
  1275. err |= BMCR_LOOPBACK;
  1276. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1277. MII_BMCR, err);
  1278. if (err)
  1279. return err;
  1280. return 0;
  1281. }
  1282. static int xcvr_init_10g_bcm8706(struct niu *np)
  1283. {
  1284. int err = 0;
  1285. u64 val;
  1286. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1287. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1288. return err;
  1289. val = nr64_mac(XMAC_CONFIG);
  1290. val &= ~XMAC_CONFIG_LED_POLARITY;
  1291. val |= XMAC_CONFIG_FORCE_LED_ON;
  1292. nw64_mac(XMAC_CONFIG, val);
  1293. val = nr64(MIF_CONFIG);
  1294. val |= MIF_CONFIG_INDIRECT_MODE;
  1295. nw64(MIF_CONFIG, val);
  1296. err = bcm8704_reset(np);
  1297. if (err)
  1298. return err;
  1299. err = xcvr_10g_set_lb_bcm870x(np);
  1300. if (err)
  1301. return err;
  1302. err = bcm8706_init_user_dev3(np);
  1303. if (err)
  1304. return err;
  1305. err = xcvr_diag_bcm870x(np);
  1306. if (err)
  1307. return err;
  1308. return 0;
  1309. }
  1310. static int xcvr_init_10g_bcm8704(struct niu *np)
  1311. {
  1312. int err;
  1313. err = bcm8704_reset(np);
  1314. if (err)
  1315. return err;
  1316. err = bcm8704_init_user_dev3(np);
  1317. if (err)
  1318. return err;
  1319. err = xcvr_10g_set_lb_bcm870x(np);
  1320. if (err)
  1321. return err;
  1322. err = xcvr_diag_bcm870x(np);
  1323. if (err)
  1324. return err;
  1325. return 0;
  1326. }
  1327. static int xcvr_init_10g(struct niu *np)
  1328. {
  1329. int phy_id, err;
  1330. u64 val;
  1331. val = nr64_mac(XMAC_CONFIG);
  1332. val &= ~XMAC_CONFIG_LED_POLARITY;
  1333. val |= XMAC_CONFIG_FORCE_LED_ON;
  1334. nw64_mac(XMAC_CONFIG, val);
  1335. /* XXX shared resource, lock parent XXX */
  1336. val = nr64(MIF_CONFIG);
  1337. val |= MIF_CONFIG_INDIRECT_MODE;
  1338. nw64(MIF_CONFIG, val);
  1339. phy_id = phy_decode(np->parent->port_phy, np->port);
  1340. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1341. /* handle different phy types */
  1342. switch (phy_id & NIU_PHY_ID_MASK) {
  1343. case NIU_PHY_ID_MRVL88X2011:
  1344. err = xcvr_init_10g_mrvl88x2011(np);
  1345. break;
  1346. default: /* bcom 8704 */
  1347. err = xcvr_init_10g_bcm8704(np);
  1348. break;
  1349. }
  1350. return err;
  1351. }
  1352. static int mii_reset(struct niu *np)
  1353. {
  1354. int limit, err;
  1355. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1356. if (err)
  1357. return err;
  1358. limit = 1000;
  1359. while (--limit >= 0) {
  1360. udelay(500);
  1361. err = mii_read(np, np->phy_addr, MII_BMCR);
  1362. if (err < 0)
  1363. return err;
  1364. if (!(err & BMCR_RESET))
  1365. break;
  1366. }
  1367. if (limit < 0) {
  1368. netdev_err(np->dev, "Port %u MII would not reset, bmcr[%04x]\n",
  1369. np->port, err);
  1370. return -ENODEV;
  1371. }
  1372. return 0;
  1373. }
  1374. static int xcvr_init_1g_rgmii(struct niu *np)
  1375. {
  1376. int err;
  1377. u64 val;
  1378. u16 bmcr, bmsr, estat;
  1379. val = nr64(MIF_CONFIG);
  1380. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1381. nw64(MIF_CONFIG, val);
  1382. err = mii_reset(np);
  1383. if (err)
  1384. return err;
  1385. err = mii_read(np, np->phy_addr, MII_BMSR);
  1386. if (err < 0)
  1387. return err;
  1388. bmsr = err;
  1389. estat = 0;
  1390. if (bmsr & BMSR_ESTATEN) {
  1391. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1392. if (err < 0)
  1393. return err;
  1394. estat = err;
  1395. }
  1396. bmcr = 0;
  1397. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1398. if (err)
  1399. return err;
  1400. if (bmsr & BMSR_ESTATEN) {
  1401. u16 ctrl1000 = 0;
  1402. if (estat & ESTATUS_1000_TFULL)
  1403. ctrl1000 |= ADVERTISE_1000FULL;
  1404. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1405. if (err)
  1406. return err;
  1407. }
  1408. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1409. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1410. if (err)
  1411. return err;
  1412. err = mii_read(np, np->phy_addr, MII_BMCR);
  1413. if (err < 0)
  1414. return err;
  1415. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1416. err = mii_read(np, np->phy_addr, MII_BMSR);
  1417. if (err < 0)
  1418. return err;
  1419. return 0;
  1420. }
  1421. static int mii_init_common(struct niu *np)
  1422. {
  1423. struct niu_link_config *lp = &np->link_config;
  1424. u16 bmcr, bmsr, adv, estat;
  1425. int err;
  1426. err = mii_reset(np);
  1427. if (err)
  1428. return err;
  1429. err = mii_read(np, np->phy_addr, MII_BMSR);
  1430. if (err < 0)
  1431. return err;
  1432. bmsr = err;
  1433. estat = 0;
  1434. if (bmsr & BMSR_ESTATEN) {
  1435. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1436. if (err < 0)
  1437. return err;
  1438. estat = err;
  1439. }
  1440. bmcr = 0;
  1441. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1442. if (err)
  1443. return err;
  1444. if (lp->loopback_mode == LOOPBACK_MAC) {
  1445. bmcr |= BMCR_LOOPBACK;
  1446. if (lp->active_speed == SPEED_1000)
  1447. bmcr |= BMCR_SPEED1000;
  1448. if (lp->active_duplex == DUPLEX_FULL)
  1449. bmcr |= BMCR_FULLDPLX;
  1450. }
  1451. if (lp->loopback_mode == LOOPBACK_PHY) {
  1452. u16 aux;
  1453. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1454. BCM5464R_AUX_CTL_WRITE_1);
  1455. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1456. if (err)
  1457. return err;
  1458. }
  1459. if (lp->autoneg) {
  1460. u16 ctrl1000;
  1461. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1462. if ((bmsr & BMSR_10HALF) &&
  1463. (lp->advertising & ADVERTISED_10baseT_Half))
  1464. adv |= ADVERTISE_10HALF;
  1465. if ((bmsr & BMSR_10FULL) &&
  1466. (lp->advertising & ADVERTISED_10baseT_Full))
  1467. adv |= ADVERTISE_10FULL;
  1468. if ((bmsr & BMSR_100HALF) &&
  1469. (lp->advertising & ADVERTISED_100baseT_Half))
  1470. adv |= ADVERTISE_100HALF;
  1471. if ((bmsr & BMSR_100FULL) &&
  1472. (lp->advertising & ADVERTISED_100baseT_Full))
  1473. adv |= ADVERTISE_100FULL;
  1474. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1475. if (err)
  1476. return err;
  1477. if (likely(bmsr & BMSR_ESTATEN)) {
  1478. ctrl1000 = 0;
  1479. if ((estat & ESTATUS_1000_THALF) &&
  1480. (lp->advertising & ADVERTISED_1000baseT_Half))
  1481. ctrl1000 |= ADVERTISE_1000HALF;
  1482. if ((estat & ESTATUS_1000_TFULL) &&
  1483. (lp->advertising & ADVERTISED_1000baseT_Full))
  1484. ctrl1000 |= ADVERTISE_1000FULL;
  1485. err = mii_write(np, np->phy_addr,
  1486. MII_CTRL1000, ctrl1000);
  1487. if (err)
  1488. return err;
  1489. }
  1490. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1491. } else {
  1492. /* !lp->autoneg */
  1493. int fulldpx;
  1494. if (lp->duplex == DUPLEX_FULL) {
  1495. bmcr |= BMCR_FULLDPLX;
  1496. fulldpx = 1;
  1497. } else if (lp->duplex == DUPLEX_HALF)
  1498. fulldpx = 0;
  1499. else
  1500. return -EINVAL;
  1501. if (lp->speed == SPEED_1000) {
  1502. /* if X-full requested while not supported, or
  1503. X-half requested while not supported... */
  1504. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1505. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1506. return -EINVAL;
  1507. bmcr |= BMCR_SPEED1000;
  1508. } else if (lp->speed == SPEED_100) {
  1509. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1510. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1511. return -EINVAL;
  1512. bmcr |= BMCR_SPEED100;
  1513. } else if (lp->speed == SPEED_10) {
  1514. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1515. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1516. return -EINVAL;
  1517. } else
  1518. return -EINVAL;
  1519. }
  1520. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1521. if (err)
  1522. return err;
  1523. #if 0
  1524. err = mii_read(np, np->phy_addr, MII_BMCR);
  1525. if (err < 0)
  1526. return err;
  1527. bmcr = err;
  1528. err = mii_read(np, np->phy_addr, MII_BMSR);
  1529. if (err < 0)
  1530. return err;
  1531. bmsr = err;
  1532. pr_info("Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1533. np->port, bmcr, bmsr);
  1534. #endif
  1535. return 0;
  1536. }
  1537. static int xcvr_init_1g(struct niu *np)
  1538. {
  1539. u64 val;
  1540. /* XXX shared resource, lock parent XXX */
  1541. val = nr64(MIF_CONFIG);
  1542. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1543. nw64(MIF_CONFIG, val);
  1544. return mii_init_common(np);
  1545. }
  1546. static int niu_xcvr_init(struct niu *np)
  1547. {
  1548. const struct niu_phy_ops *ops = np->phy_ops;
  1549. int err;
  1550. err = 0;
  1551. if (ops->xcvr_init)
  1552. err = ops->xcvr_init(np);
  1553. return err;
  1554. }
  1555. static int niu_serdes_init(struct niu *np)
  1556. {
  1557. const struct niu_phy_ops *ops = np->phy_ops;
  1558. int err;
  1559. err = 0;
  1560. if (ops->serdes_init)
  1561. err = ops->serdes_init(np);
  1562. return err;
  1563. }
  1564. static void niu_init_xif(struct niu *);
  1565. static void niu_handle_led(struct niu *, int status);
  1566. static int niu_link_status_common(struct niu *np, int link_up)
  1567. {
  1568. struct niu_link_config *lp = &np->link_config;
  1569. struct net_device *dev = np->dev;
  1570. unsigned long flags;
  1571. if (!netif_carrier_ok(dev) && link_up) {
  1572. netif_info(np, link, dev, "Link is up at %s, %s duplex\n",
  1573. lp->active_speed == SPEED_10000 ? "10Gb/sec" :
  1574. lp->active_speed == SPEED_1000 ? "1Gb/sec" :
  1575. lp->active_speed == SPEED_100 ? "100Mbit/sec" :
  1576. "10Mbit/sec",
  1577. lp->active_duplex == DUPLEX_FULL ? "full" : "half");
  1578. spin_lock_irqsave(&np->lock, flags);
  1579. niu_init_xif(np);
  1580. niu_handle_led(np, 1);
  1581. spin_unlock_irqrestore(&np->lock, flags);
  1582. netif_carrier_on(dev);
  1583. } else if (netif_carrier_ok(dev) && !link_up) {
  1584. netif_warn(np, link, dev, "Link is down\n");
  1585. spin_lock_irqsave(&np->lock, flags);
  1586. niu_handle_led(np, 0);
  1587. spin_unlock_irqrestore(&np->lock, flags);
  1588. netif_carrier_off(dev);
  1589. }
  1590. return 0;
  1591. }
  1592. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1593. {
  1594. int err, link_up, pma_status, pcs_status;
  1595. link_up = 0;
  1596. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1597. MRVL88X2011_10G_PMD_STATUS_2);
  1598. if (err < 0)
  1599. goto out;
  1600. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1601. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1602. MRVL88X2011_PMA_PMD_STATUS_1);
  1603. if (err < 0)
  1604. goto out;
  1605. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1606. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1607. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1608. MRVL88X2011_PMA_PMD_STATUS_1);
  1609. if (err < 0)
  1610. goto out;
  1611. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1612. MRVL88X2011_PMA_PMD_STATUS_1);
  1613. if (err < 0)
  1614. goto out;
  1615. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1616. /* Check XGXS Register : 4.0018.[0-3,12] */
  1617. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1618. MRVL88X2011_10G_XGXS_LANE_STAT);
  1619. if (err < 0)
  1620. goto out;
  1621. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1622. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1623. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1624. 0x800))
  1625. link_up = (pma_status && pcs_status) ? 1 : 0;
  1626. np->link_config.active_speed = SPEED_10000;
  1627. np->link_config.active_duplex = DUPLEX_FULL;
  1628. err = 0;
  1629. out:
  1630. mrvl88x2011_act_led(np, (link_up ?
  1631. MRVL88X2011_LED_CTL_PCS_ACT :
  1632. MRVL88X2011_LED_CTL_OFF));
  1633. *link_up_p = link_up;
  1634. return err;
  1635. }
  1636. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1637. {
  1638. int err, link_up;
  1639. link_up = 0;
  1640. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1641. BCM8704_PMD_RCV_SIGDET);
  1642. if (err < 0 || err == 0xffff)
  1643. goto out;
  1644. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1645. err = 0;
  1646. goto out;
  1647. }
  1648. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1649. BCM8704_PCS_10G_R_STATUS);
  1650. if (err < 0)
  1651. goto out;
  1652. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1653. err = 0;
  1654. goto out;
  1655. }
  1656. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1657. BCM8704_PHYXS_XGXS_LANE_STAT);
  1658. if (err < 0)
  1659. goto out;
  1660. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1661. PHYXS_XGXS_LANE_STAT_MAGIC |
  1662. PHYXS_XGXS_LANE_STAT_PATTEST |
  1663. PHYXS_XGXS_LANE_STAT_LANE3 |
  1664. PHYXS_XGXS_LANE_STAT_LANE2 |
  1665. PHYXS_XGXS_LANE_STAT_LANE1 |
  1666. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1667. err = 0;
  1668. np->link_config.active_speed = SPEED_INVALID;
  1669. np->link_config.active_duplex = DUPLEX_INVALID;
  1670. goto out;
  1671. }
  1672. link_up = 1;
  1673. np->link_config.active_speed = SPEED_10000;
  1674. np->link_config.active_duplex = DUPLEX_FULL;
  1675. err = 0;
  1676. out:
  1677. *link_up_p = link_up;
  1678. return err;
  1679. }
  1680. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1681. {
  1682. int err, link_up;
  1683. link_up = 0;
  1684. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1685. BCM8704_PMD_RCV_SIGDET);
  1686. if (err < 0)
  1687. goto out;
  1688. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1689. err = 0;
  1690. goto out;
  1691. }
  1692. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1693. BCM8704_PCS_10G_R_STATUS);
  1694. if (err < 0)
  1695. goto out;
  1696. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1697. err = 0;
  1698. goto out;
  1699. }
  1700. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1701. BCM8704_PHYXS_XGXS_LANE_STAT);
  1702. if (err < 0)
  1703. goto out;
  1704. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1705. PHYXS_XGXS_LANE_STAT_MAGIC |
  1706. PHYXS_XGXS_LANE_STAT_LANE3 |
  1707. PHYXS_XGXS_LANE_STAT_LANE2 |
  1708. PHYXS_XGXS_LANE_STAT_LANE1 |
  1709. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1710. err = 0;
  1711. goto out;
  1712. }
  1713. link_up = 1;
  1714. np->link_config.active_speed = SPEED_10000;
  1715. np->link_config.active_duplex = DUPLEX_FULL;
  1716. err = 0;
  1717. out:
  1718. *link_up_p = link_up;
  1719. return err;
  1720. }
  1721. static int link_status_10g(struct niu *np, int *link_up_p)
  1722. {
  1723. unsigned long flags;
  1724. int err = -EINVAL;
  1725. spin_lock_irqsave(&np->lock, flags);
  1726. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1727. int phy_id;
  1728. phy_id = phy_decode(np->parent->port_phy, np->port);
  1729. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1730. /* handle different phy types */
  1731. switch (phy_id & NIU_PHY_ID_MASK) {
  1732. case NIU_PHY_ID_MRVL88X2011:
  1733. err = link_status_10g_mrvl(np, link_up_p);
  1734. break;
  1735. default: /* bcom 8704 */
  1736. err = link_status_10g_bcom(np, link_up_p);
  1737. break;
  1738. }
  1739. }
  1740. spin_unlock_irqrestore(&np->lock, flags);
  1741. return err;
  1742. }
  1743. static int niu_10g_phy_present(struct niu *np)
  1744. {
  1745. u64 sig, mask, val;
  1746. sig = nr64(ESR_INT_SIGNALS);
  1747. switch (np->port) {
  1748. case 0:
  1749. mask = ESR_INT_SIGNALS_P0_BITS;
  1750. val = (ESR_INT_SRDY0_P0 |
  1751. ESR_INT_DET0_P0 |
  1752. ESR_INT_XSRDY_P0 |
  1753. ESR_INT_XDP_P0_CH3 |
  1754. ESR_INT_XDP_P0_CH2 |
  1755. ESR_INT_XDP_P0_CH1 |
  1756. ESR_INT_XDP_P0_CH0);
  1757. break;
  1758. case 1:
  1759. mask = ESR_INT_SIGNALS_P1_BITS;
  1760. val = (ESR_INT_SRDY0_P1 |
  1761. ESR_INT_DET0_P1 |
  1762. ESR_INT_XSRDY_P1 |
  1763. ESR_INT_XDP_P1_CH3 |
  1764. ESR_INT_XDP_P1_CH2 |
  1765. ESR_INT_XDP_P1_CH1 |
  1766. ESR_INT_XDP_P1_CH0);
  1767. break;
  1768. default:
  1769. return 0;
  1770. }
  1771. if ((sig & mask) != val)
  1772. return 0;
  1773. return 1;
  1774. }
  1775. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1776. {
  1777. unsigned long flags;
  1778. int err = 0;
  1779. int phy_present;
  1780. int phy_present_prev;
  1781. spin_lock_irqsave(&np->lock, flags);
  1782. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1783. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1784. 1 : 0;
  1785. phy_present = niu_10g_phy_present(np);
  1786. if (phy_present != phy_present_prev) {
  1787. /* state change */
  1788. if (phy_present) {
  1789. /* A NEM was just plugged in */
  1790. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1791. if (np->phy_ops->xcvr_init)
  1792. err = np->phy_ops->xcvr_init(np);
  1793. if (err) {
  1794. err = mdio_read(np, np->phy_addr,
  1795. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1796. if (err == 0xffff) {
  1797. /* No mdio, back-to-back XAUI */
  1798. goto out;
  1799. }
  1800. /* debounce */
  1801. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1802. }
  1803. } else {
  1804. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1805. *link_up_p = 0;
  1806. netif_warn(np, link, np->dev,
  1807. "Hotplug PHY Removed\n");
  1808. }
  1809. }
  1810. out:
  1811. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1812. err = link_status_10g_bcm8706(np, link_up_p);
  1813. if (err == 0xffff) {
  1814. /* No mdio, back-to-back XAUI: it is C10NEM */
  1815. *link_up_p = 1;
  1816. np->link_config.active_speed = SPEED_10000;
  1817. np->link_config.active_duplex = DUPLEX_FULL;
  1818. }
  1819. }
  1820. }
  1821. spin_unlock_irqrestore(&np->lock, flags);
  1822. return 0;
  1823. }
  1824. static int niu_link_status(struct niu *np, int *link_up_p)
  1825. {
  1826. const struct niu_phy_ops *ops = np->phy_ops;
  1827. int err;
  1828. err = 0;
  1829. if (ops->link_status)
  1830. err = ops->link_status(np, link_up_p);
  1831. return err;
  1832. }
  1833. static void niu_timer(unsigned long __opaque)
  1834. {
  1835. struct niu *np = (struct niu *) __opaque;
  1836. unsigned long off;
  1837. int err, link_up;
  1838. err = niu_link_status(np, &link_up);
  1839. if (!err)
  1840. niu_link_status_common(np, link_up);
  1841. if (netif_carrier_ok(np->dev))
  1842. off = 5 * HZ;
  1843. else
  1844. off = 1 * HZ;
  1845. np->timer.expires = jiffies + off;
  1846. add_timer(&np->timer);
  1847. }
  1848. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1849. .serdes_init = serdes_init_10g_serdes,
  1850. .link_status = link_status_10g_serdes,
  1851. };
  1852. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1853. .serdes_init = serdes_init_niu_10g_serdes,
  1854. .link_status = link_status_10g_serdes,
  1855. };
  1856. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1857. .serdes_init = serdes_init_niu_1g_serdes,
  1858. .link_status = link_status_1g_serdes,
  1859. };
  1860. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1861. .xcvr_init = xcvr_init_1g_rgmii,
  1862. .link_status = link_status_1g_rgmii,
  1863. };
  1864. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1865. .serdes_init = serdes_init_niu_10g_fiber,
  1866. .xcvr_init = xcvr_init_10g,
  1867. .link_status = link_status_10g,
  1868. };
  1869. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1870. .serdes_init = serdes_init_10g,
  1871. .xcvr_init = xcvr_init_10g,
  1872. .link_status = link_status_10g,
  1873. };
  1874. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1875. .serdes_init = serdes_init_10g,
  1876. .xcvr_init = xcvr_init_10g_bcm8706,
  1877. .link_status = link_status_10g_hotplug,
  1878. };
  1879. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1880. .serdes_init = serdes_init_niu_10g_fiber,
  1881. .xcvr_init = xcvr_init_10g_bcm8706,
  1882. .link_status = link_status_10g_hotplug,
  1883. };
  1884. static const struct niu_phy_ops phy_ops_10g_copper = {
  1885. .serdes_init = serdes_init_10g,
  1886. .link_status = link_status_10g, /* XXX */
  1887. };
  1888. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1889. .serdes_init = serdes_init_1g,
  1890. .xcvr_init = xcvr_init_1g,
  1891. .link_status = link_status_1g,
  1892. };
  1893. static const struct niu_phy_ops phy_ops_1g_copper = {
  1894. .xcvr_init = xcvr_init_1g,
  1895. .link_status = link_status_1g,
  1896. };
  1897. struct niu_phy_template {
  1898. const struct niu_phy_ops *ops;
  1899. u32 phy_addr_base;
  1900. };
  1901. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1902. .ops = &phy_ops_10g_fiber_niu,
  1903. .phy_addr_base = 16,
  1904. };
  1905. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1906. .ops = &phy_ops_10g_serdes_niu,
  1907. .phy_addr_base = 0,
  1908. };
  1909. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1910. .ops = &phy_ops_1g_serdes_niu,
  1911. .phy_addr_base = 0,
  1912. };
  1913. static const struct niu_phy_template phy_template_10g_fiber = {
  1914. .ops = &phy_ops_10g_fiber,
  1915. .phy_addr_base = 8,
  1916. };
  1917. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1918. .ops = &phy_ops_10g_fiber_hotplug,
  1919. .phy_addr_base = 8,
  1920. };
  1921. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1922. .ops = &phy_ops_niu_10g_hotplug,
  1923. .phy_addr_base = 8,
  1924. };
  1925. static const struct niu_phy_template phy_template_10g_copper = {
  1926. .ops = &phy_ops_10g_copper,
  1927. .phy_addr_base = 10,
  1928. };
  1929. static const struct niu_phy_template phy_template_1g_fiber = {
  1930. .ops = &phy_ops_1g_fiber,
  1931. .phy_addr_base = 0,
  1932. };
  1933. static const struct niu_phy_template phy_template_1g_copper = {
  1934. .ops = &phy_ops_1g_copper,
  1935. .phy_addr_base = 0,
  1936. };
  1937. static const struct niu_phy_template phy_template_1g_rgmii = {
  1938. .ops = &phy_ops_1g_rgmii,
  1939. .phy_addr_base = 0,
  1940. };
  1941. static const struct niu_phy_template phy_template_10g_serdes = {
  1942. .ops = &phy_ops_10g_serdes,
  1943. .phy_addr_base = 0,
  1944. };
  1945. static int niu_atca_port_num[4] = {
  1946. 0, 0, 11, 10
  1947. };
  1948. static int serdes_init_10g_serdes(struct niu *np)
  1949. {
  1950. struct niu_link_config *lp = &np->link_config;
  1951. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1952. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1953. switch (np->port) {
  1954. case 0:
  1955. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1956. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1957. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1958. break;
  1959. case 1:
  1960. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1961. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1962. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1963. break;
  1964. default:
  1965. return -EINVAL;
  1966. }
  1967. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1968. ENET_SERDES_CTRL_SDET_1 |
  1969. ENET_SERDES_CTRL_SDET_2 |
  1970. ENET_SERDES_CTRL_SDET_3 |
  1971. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1972. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1973. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1974. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1975. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1976. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  1977. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  1978. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  1979. test_cfg_val = 0;
  1980. if (lp->loopback_mode == LOOPBACK_PHY) {
  1981. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  1982. ENET_SERDES_TEST_MD_0_SHIFT) |
  1983. (ENET_TEST_MD_PAD_LOOPBACK <<
  1984. ENET_SERDES_TEST_MD_1_SHIFT) |
  1985. (ENET_TEST_MD_PAD_LOOPBACK <<
  1986. ENET_SERDES_TEST_MD_2_SHIFT) |
  1987. (ENET_TEST_MD_PAD_LOOPBACK <<
  1988. ENET_SERDES_TEST_MD_3_SHIFT));
  1989. }
  1990. esr_reset(np);
  1991. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  1992. nw64(ctrl_reg, ctrl_val);
  1993. nw64(test_cfg_reg, test_cfg_val);
  1994. /* Initialize all 4 lanes of the SERDES. */
  1995. for (i = 0; i < 4; i++) {
  1996. u32 rxtx_ctrl, glue0;
  1997. int err;
  1998. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  1999. if (err)
  2000. return err;
  2001. err = esr_read_glue0(np, i, &glue0);
  2002. if (err)
  2003. return err;
  2004. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2005. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2006. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2007. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2008. ESR_GLUE_CTRL0_THCNT |
  2009. ESR_GLUE_CTRL0_BLTIME);
  2010. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2011. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2012. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2013. (BLTIME_300_CYCLES <<
  2014. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2015. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2016. if (err)
  2017. return err;
  2018. err = esr_write_glue0(np, i, glue0);
  2019. if (err)
  2020. return err;
  2021. }
  2022. sig = nr64(ESR_INT_SIGNALS);
  2023. switch (np->port) {
  2024. case 0:
  2025. mask = ESR_INT_SIGNALS_P0_BITS;
  2026. val = (ESR_INT_SRDY0_P0 |
  2027. ESR_INT_DET0_P0 |
  2028. ESR_INT_XSRDY_P0 |
  2029. ESR_INT_XDP_P0_CH3 |
  2030. ESR_INT_XDP_P0_CH2 |
  2031. ESR_INT_XDP_P0_CH1 |
  2032. ESR_INT_XDP_P0_CH0);
  2033. break;
  2034. case 1:
  2035. mask = ESR_INT_SIGNALS_P1_BITS;
  2036. val = (ESR_INT_SRDY0_P1 |
  2037. ESR_INT_DET0_P1 |
  2038. ESR_INT_XSRDY_P1 |
  2039. ESR_INT_XDP_P1_CH3 |
  2040. ESR_INT_XDP_P1_CH2 |
  2041. ESR_INT_XDP_P1_CH1 |
  2042. ESR_INT_XDP_P1_CH0);
  2043. break;
  2044. default:
  2045. return -EINVAL;
  2046. }
  2047. if ((sig & mask) != val) {
  2048. int err;
  2049. err = serdes_init_1g_serdes(np);
  2050. if (!err) {
  2051. np->flags &= ~NIU_FLAGS_10G;
  2052. np->mac_xcvr = MAC_XCVR_PCS;
  2053. } else {
  2054. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  2055. np->port);
  2056. return -ENODEV;
  2057. }
  2058. }
  2059. return 0;
  2060. }
  2061. static int niu_determine_phy_disposition(struct niu *np)
  2062. {
  2063. struct niu_parent *parent = np->parent;
  2064. u8 plat_type = parent->plat_type;
  2065. const struct niu_phy_template *tp;
  2066. u32 phy_addr_off = 0;
  2067. if (plat_type == PLAT_TYPE_NIU) {
  2068. switch (np->flags &
  2069. (NIU_FLAGS_10G |
  2070. NIU_FLAGS_FIBER |
  2071. NIU_FLAGS_XCVR_SERDES)) {
  2072. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2073. /* 10G Serdes */
  2074. tp = &phy_template_niu_10g_serdes;
  2075. break;
  2076. case NIU_FLAGS_XCVR_SERDES:
  2077. /* 1G Serdes */
  2078. tp = &phy_template_niu_1g_serdes;
  2079. break;
  2080. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2081. /* 10G Fiber */
  2082. default:
  2083. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2084. tp = &phy_template_niu_10g_hotplug;
  2085. if (np->port == 0)
  2086. phy_addr_off = 8;
  2087. if (np->port == 1)
  2088. phy_addr_off = 12;
  2089. } else {
  2090. tp = &phy_template_niu_10g_fiber;
  2091. phy_addr_off += np->port;
  2092. }
  2093. break;
  2094. }
  2095. } else {
  2096. switch (np->flags &
  2097. (NIU_FLAGS_10G |
  2098. NIU_FLAGS_FIBER |
  2099. NIU_FLAGS_XCVR_SERDES)) {
  2100. case 0:
  2101. /* 1G copper */
  2102. tp = &phy_template_1g_copper;
  2103. if (plat_type == PLAT_TYPE_VF_P0)
  2104. phy_addr_off = 10;
  2105. else if (plat_type == PLAT_TYPE_VF_P1)
  2106. phy_addr_off = 26;
  2107. phy_addr_off += (np->port ^ 0x3);
  2108. break;
  2109. case NIU_FLAGS_10G:
  2110. /* 10G copper */
  2111. tp = &phy_template_10g_copper;
  2112. break;
  2113. case NIU_FLAGS_FIBER:
  2114. /* 1G fiber */
  2115. tp = &phy_template_1g_fiber;
  2116. break;
  2117. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2118. /* 10G fiber */
  2119. tp = &phy_template_10g_fiber;
  2120. if (plat_type == PLAT_TYPE_VF_P0 ||
  2121. plat_type == PLAT_TYPE_VF_P1)
  2122. phy_addr_off = 8;
  2123. phy_addr_off += np->port;
  2124. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2125. tp = &phy_template_10g_fiber_hotplug;
  2126. if (np->port == 0)
  2127. phy_addr_off = 8;
  2128. if (np->port == 1)
  2129. phy_addr_off = 12;
  2130. }
  2131. break;
  2132. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2133. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2134. case NIU_FLAGS_XCVR_SERDES:
  2135. switch(np->port) {
  2136. case 0:
  2137. case 1:
  2138. tp = &phy_template_10g_serdes;
  2139. break;
  2140. case 2:
  2141. case 3:
  2142. tp = &phy_template_1g_rgmii;
  2143. break;
  2144. default:
  2145. return -EINVAL;
  2146. }
  2147. phy_addr_off = niu_atca_port_num[np->port];
  2148. break;
  2149. default:
  2150. return -EINVAL;
  2151. }
  2152. }
  2153. np->phy_ops = tp->ops;
  2154. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2155. return 0;
  2156. }
  2157. static int niu_init_link(struct niu *np)
  2158. {
  2159. struct niu_parent *parent = np->parent;
  2160. int err, ignore;
  2161. if (parent->plat_type == PLAT_TYPE_NIU) {
  2162. err = niu_xcvr_init(np);
  2163. if (err)
  2164. return err;
  2165. msleep(200);
  2166. }
  2167. err = niu_serdes_init(np);
  2168. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2169. return err;
  2170. msleep(200);
  2171. err = niu_xcvr_init(np);
  2172. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2173. niu_link_status(np, &ignore);
  2174. return 0;
  2175. }
  2176. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2177. {
  2178. u16 reg0 = addr[4] << 8 | addr[5];
  2179. u16 reg1 = addr[2] << 8 | addr[3];
  2180. u16 reg2 = addr[0] << 8 | addr[1];
  2181. if (np->flags & NIU_FLAGS_XMAC) {
  2182. nw64_mac(XMAC_ADDR0, reg0);
  2183. nw64_mac(XMAC_ADDR1, reg1);
  2184. nw64_mac(XMAC_ADDR2, reg2);
  2185. } else {
  2186. nw64_mac(BMAC_ADDR0, reg0);
  2187. nw64_mac(BMAC_ADDR1, reg1);
  2188. nw64_mac(BMAC_ADDR2, reg2);
  2189. }
  2190. }
  2191. static int niu_num_alt_addr(struct niu *np)
  2192. {
  2193. if (np->flags & NIU_FLAGS_XMAC)
  2194. return XMAC_NUM_ALT_ADDR;
  2195. else
  2196. return BMAC_NUM_ALT_ADDR;
  2197. }
  2198. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2199. {
  2200. u16 reg0 = addr[4] << 8 | addr[5];
  2201. u16 reg1 = addr[2] << 8 | addr[3];
  2202. u16 reg2 = addr[0] << 8 | addr[1];
  2203. if (index >= niu_num_alt_addr(np))
  2204. return -EINVAL;
  2205. if (np->flags & NIU_FLAGS_XMAC) {
  2206. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2207. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2208. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2209. } else {
  2210. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2211. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2212. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2213. }
  2214. return 0;
  2215. }
  2216. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2217. {
  2218. unsigned long reg;
  2219. u64 val, mask;
  2220. if (index >= niu_num_alt_addr(np))
  2221. return -EINVAL;
  2222. if (np->flags & NIU_FLAGS_XMAC) {
  2223. reg = XMAC_ADDR_CMPEN;
  2224. mask = 1 << index;
  2225. } else {
  2226. reg = BMAC_ADDR_CMPEN;
  2227. mask = 1 << (index + 1);
  2228. }
  2229. val = nr64_mac(reg);
  2230. if (on)
  2231. val |= mask;
  2232. else
  2233. val &= ~mask;
  2234. nw64_mac(reg, val);
  2235. return 0;
  2236. }
  2237. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2238. int num, int mac_pref)
  2239. {
  2240. u64 val = nr64_mac(reg);
  2241. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2242. val |= num;
  2243. if (mac_pref)
  2244. val |= HOST_INFO_MPR;
  2245. nw64_mac(reg, val);
  2246. }
  2247. static int __set_rdc_table_num(struct niu *np,
  2248. int xmac_index, int bmac_index,
  2249. int rdc_table_num, int mac_pref)
  2250. {
  2251. unsigned long reg;
  2252. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2253. return -EINVAL;
  2254. if (np->flags & NIU_FLAGS_XMAC)
  2255. reg = XMAC_HOST_INFO(xmac_index);
  2256. else
  2257. reg = BMAC_HOST_INFO(bmac_index);
  2258. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2259. return 0;
  2260. }
  2261. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2262. int mac_pref)
  2263. {
  2264. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2265. }
  2266. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2267. int mac_pref)
  2268. {
  2269. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2270. }
  2271. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2272. int table_num, int mac_pref)
  2273. {
  2274. if (idx >= niu_num_alt_addr(np))
  2275. return -EINVAL;
  2276. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2277. }
  2278. static u64 vlan_entry_set_parity(u64 reg_val)
  2279. {
  2280. u64 port01_mask;
  2281. u64 port23_mask;
  2282. port01_mask = 0x00ff;
  2283. port23_mask = 0xff00;
  2284. if (hweight64(reg_val & port01_mask) & 1)
  2285. reg_val |= ENET_VLAN_TBL_PARITY0;
  2286. else
  2287. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2288. if (hweight64(reg_val & port23_mask) & 1)
  2289. reg_val |= ENET_VLAN_TBL_PARITY1;
  2290. else
  2291. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2292. return reg_val;
  2293. }
  2294. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2295. int port, int vpr, int rdc_table)
  2296. {
  2297. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2298. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2299. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2300. ENET_VLAN_TBL_SHIFT(port));
  2301. if (vpr)
  2302. reg_val |= (ENET_VLAN_TBL_VPR <<
  2303. ENET_VLAN_TBL_SHIFT(port));
  2304. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2305. reg_val = vlan_entry_set_parity(reg_val);
  2306. nw64(ENET_VLAN_TBL(index), reg_val);
  2307. }
  2308. static void vlan_tbl_clear(struct niu *np)
  2309. {
  2310. int i;
  2311. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2312. nw64(ENET_VLAN_TBL(i), 0);
  2313. }
  2314. static int tcam_wait_bit(struct niu *np, u64 bit)
  2315. {
  2316. int limit = 1000;
  2317. while (--limit > 0) {
  2318. if (nr64(TCAM_CTL) & bit)
  2319. break;
  2320. udelay(1);
  2321. }
  2322. if (limit <= 0)
  2323. return -ENODEV;
  2324. return 0;
  2325. }
  2326. static int tcam_flush(struct niu *np, int index)
  2327. {
  2328. nw64(TCAM_KEY_0, 0x00);
  2329. nw64(TCAM_KEY_MASK_0, 0xff);
  2330. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2331. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2332. }
  2333. #if 0
  2334. static int tcam_read(struct niu *np, int index,
  2335. u64 *key, u64 *mask)
  2336. {
  2337. int err;
  2338. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2339. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2340. if (!err) {
  2341. key[0] = nr64(TCAM_KEY_0);
  2342. key[1] = nr64(TCAM_KEY_1);
  2343. key[2] = nr64(TCAM_KEY_2);
  2344. key[3] = nr64(TCAM_KEY_3);
  2345. mask[0] = nr64(TCAM_KEY_MASK_0);
  2346. mask[1] = nr64(TCAM_KEY_MASK_1);
  2347. mask[2] = nr64(TCAM_KEY_MASK_2);
  2348. mask[3] = nr64(TCAM_KEY_MASK_3);
  2349. }
  2350. return err;
  2351. }
  2352. #endif
  2353. static int tcam_write(struct niu *np, int index,
  2354. u64 *key, u64 *mask)
  2355. {
  2356. nw64(TCAM_KEY_0, key[0]);
  2357. nw64(TCAM_KEY_1, key[1]);
  2358. nw64(TCAM_KEY_2, key[2]);
  2359. nw64(TCAM_KEY_3, key[3]);
  2360. nw64(TCAM_KEY_MASK_0, mask[0]);
  2361. nw64(TCAM_KEY_MASK_1, mask[1]);
  2362. nw64(TCAM_KEY_MASK_2, mask[2]);
  2363. nw64(TCAM_KEY_MASK_3, mask[3]);
  2364. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2365. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2366. }
  2367. #if 0
  2368. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2369. {
  2370. int err;
  2371. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2372. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2373. if (!err)
  2374. *data = nr64(TCAM_KEY_1);
  2375. return err;
  2376. }
  2377. #endif
  2378. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2379. {
  2380. nw64(TCAM_KEY_1, assoc_data);
  2381. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2382. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2383. }
  2384. static void tcam_enable(struct niu *np, int on)
  2385. {
  2386. u64 val = nr64(FFLP_CFG_1);
  2387. if (on)
  2388. val &= ~FFLP_CFG_1_TCAM_DIS;
  2389. else
  2390. val |= FFLP_CFG_1_TCAM_DIS;
  2391. nw64(FFLP_CFG_1, val);
  2392. }
  2393. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2394. {
  2395. u64 val = nr64(FFLP_CFG_1);
  2396. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2397. FFLP_CFG_1_CAMLAT |
  2398. FFLP_CFG_1_CAMRATIO);
  2399. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2400. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2401. nw64(FFLP_CFG_1, val);
  2402. val = nr64(FFLP_CFG_1);
  2403. val |= FFLP_CFG_1_FFLPINITDONE;
  2404. nw64(FFLP_CFG_1, val);
  2405. }
  2406. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2407. int on)
  2408. {
  2409. unsigned long reg;
  2410. u64 val;
  2411. if (class < CLASS_CODE_ETHERTYPE1 ||
  2412. class > CLASS_CODE_ETHERTYPE2)
  2413. return -EINVAL;
  2414. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2415. val = nr64(reg);
  2416. if (on)
  2417. val |= L2_CLS_VLD;
  2418. else
  2419. val &= ~L2_CLS_VLD;
  2420. nw64(reg, val);
  2421. return 0;
  2422. }
  2423. #if 0
  2424. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2425. u64 ether_type)
  2426. {
  2427. unsigned long reg;
  2428. u64 val;
  2429. if (class < CLASS_CODE_ETHERTYPE1 ||
  2430. class > CLASS_CODE_ETHERTYPE2 ||
  2431. (ether_type & ~(u64)0xffff) != 0)
  2432. return -EINVAL;
  2433. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2434. val = nr64(reg);
  2435. val &= ~L2_CLS_ETYPE;
  2436. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2437. nw64(reg, val);
  2438. return 0;
  2439. }
  2440. #endif
  2441. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2442. int on)
  2443. {
  2444. unsigned long reg;
  2445. u64 val;
  2446. if (class < CLASS_CODE_USER_PROG1 ||
  2447. class > CLASS_CODE_USER_PROG4)
  2448. return -EINVAL;
  2449. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2450. val = nr64(reg);
  2451. if (on)
  2452. val |= L3_CLS_VALID;
  2453. else
  2454. val &= ~L3_CLS_VALID;
  2455. nw64(reg, val);
  2456. return 0;
  2457. }
  2458. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2459. int ipv6, u64 protocol_id,
  2460. u64 tos_mask, u64 tos_val)
  2461. {
  2462. unsigned long reg;
  2463. u64 val;
  2464. if (class < CLASS_CODE_USER_PROG1 ||
  2465. class > CLASS_CODE_USER_PROG4 ||
  2466. (protocol_id & ~(u64)0xff) != 0 ||
  2467. (tos_mask & ~(u64)0xff) != 0 ||
  2468. (tos_val & ~(u64)0xff) != 0)
  2469. return -EINVAL;
  2470. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2471. val = nr64(reg);
  2472. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2473. L3_CLS_TOSMASK | L3_CLS_TOS);
  2474. if (ipv6)
  2475. val |= L3_CLS_IPVER;
  2476. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2477. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2478. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2479. nw64(reg, val);
  2480. return 0;
  2481. }
  2482. static int tcam_early_init(struct niu *np)
  2483. {
  2484. unsigned long i;
  2485. int err;
  2486. tcam_enable(np, 0);
  2487. tcam_set_lat_and_ratio(np,
  2488. DEFAULT_TCAM_LATENCY,
  2489. DEFAULT_TCAM_ACCESS_RATIO);
  2490. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2491. err = tcam_user_eth_class_enable(np, i, 0);
  2492. if (err)
  2493. return err;
  2494. }
  2495. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2496. err = tcam_user_ip_class_enable(np, i, 0);
  2497. if (err)
  2498. return err;
  2499. }
  2500. return 0;
  2501. }
  2502. static int tcam_flush_all(struct niu *np)
  2503. {
  2504. unsigned long i;
  2505. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2506. int err = tcam_flush(np, i);
  2507. if (err)
  2508. return err;
  2509. }
  2510. return 0;
  2511. }
  2512. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2513. {
  2514. return (u64)index | (num_entries == 1 ? HASH_TBL_ADDR_AUTOINC : 0);
  2515. }
  2516. #if 0
  2517. static int hash_read(struct niu *np, unsigned long partition,
  2518. unsigned long index, unsigned long num_entries,
  2519. u64 *data)
  2520. {
  2521. u64 val = hash_addr_regval(index, num_entries);
  2522. unsigned long i;
  2523. if (partition >= FCRAM_NUM_PARTITIONS ||
  2524. index + num_entries > FCRAM_SIZE)
  2525. return -EINVAL;
  2526. nw64(HASH_TBL_ADDR(partition), val);
  2527. for (i = 0; i < num_entries; i++)
  2528. data[i] = nr64(HASH_TBL_DATA(partition));
  2529. return 0;
  2530. }
  2531. #endif
  2532. static int hash_write(struct niu *np, unsigned long partition,
  2533. unsigned long index, unsigned long num_entries,
  2534. u64 *data)
  2535. {
  2536. u64 val = hash_addr_regval(index, num_entries);
  2537. unsigned long i;
  2538. if (partition >= FCRAM_NUM_PARTITIONS ||
  2539. index + (num_entries * 8) > FCRAM_SIZE)
  2540. return -EINVAL;
  2541. nw64(HASH_TBL_ADDR(partition), val);
  2542. for (i = 0; i < num_entries; i++)
  2543. nw64(HASH_TBL_DATA(partition), data[i]);
  2544. return 0;
  2545. }
  2546. static void fflp_reset(struct niu *np)
  2547. {
  2548. u64 val;
  2549. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2550. udelay(10);
  2551. nw64(FFLP_CFG_1, 0);
  2552. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2553. nw64(FFLP_CFG_1, val);
  2554. }
  2555. static void fflp_set_timings(struct niu *np)
  2556. {
  2557. u64 val = nr64(FFLP_CFG_1);
  2558. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2559. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2560. nw64(FFLP_CFG_1, val);
  2561. val = nr64(FFLP_CFG_1);
  2562. val |= FFLP_CFG_1_FFLPINITDONE;
  2563. nw64(FFLP_CFG_1, val);
  2564. val = nr64(FCRAM_REF_TMR);
  2565. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2566. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2567. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2568. nw64(FCRAM_REF_TMR, val);
  2569. }
  2570. static int fflp_set_partition(struct niu *np, u64 partition,
  2571. u64 mask, u64 base, int enable)
  2572. {
  2573. unsigned long reg;
  2574. u64 val;
  2575. if (partition >= FCRAM_NUM_PARTITIONS ||
  2576. (mask & ~(u64)0x1f) != 0 ||
  2577. (base & ~(u64)0x1f) != 0)
  2578. return -EINVAL;
  2579. reg = FLW_PRT_SEL(partition);
  2580. val = nr64(reg);
  2581. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2582. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2583. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2584. if (enable)
  2585. val |= FLW_PRT_SEL_EXT;
  2586. nw64(reg, val);
  2587. return 0;
  2588. }
  2589. static int fflp_disable_all_partitions(struct niu *np)
  2590. {
  2591. unsigned long i;
  2592. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2593. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2594. if (err)
  2595. return err;
  2596. }
  2597. return 0;
  2598. }
  2599. static void fflp_llcsnap_enable(struct niu *np, int on)
  2600. {
  2601. u64 val = nr64(FFLP_CFG_1);
  2602. if (on)
  2603. val |= FFLP_CFG_1_LLCSNAP;
  2604. else
  2605. val &= ~FFLP_CFG_1_LLCSNAP;
  2606. nw64(FFLP_CFG_1, val);
  2607. }
  2608. static void fflp_errors_enable(struct niu *np, int on)
  2609. {
  2610. u64 val = nr64(FFLP_CFG_1);
  2611. if (on)
  2612. val &= ~FFLP_CFG_1_ERRORDIS;
  2613. else
  2614. val |= FFLP_CFG_1_ERRORDIS;
  2615. nw64(FFLP_CFG_1, val);
  2616. }
  2617. static int fflp_hash_clear(struct niu *np)
  2618. {
  2619. struct fcram_hash_ipv4 ent;
  2620. unsigned long i;
  2621. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2622. memset(&ent, 0, sizeof(ent));
  2623. ent.header = HASH_HEADER_EXT;
  2624. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2625. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2626. if (err)
  2627. return err;
  2628. }
  2629. return 0;
  2630. }
  2631. static int fflp_early_init(struct niu *np)
  2632. {
  2633. struct niu_parent *parent;
  2634. unsigned long flags;
  2635. int err;
  2636. niu_lock_parent(np, flags);
  2637. parent = np->parent;
  2638. err = 0;
  2639. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2640. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2641. fflp_reset(np);
  2642. fflp_set_timings(np);
  2643. err = fflp_disable_all_partitions(np);
  2644. if (err) {
  2645. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2646. "fflp_disable_all_partitions failed, err=%d\n",
  2647. err);
  2648. goto out;
  2649. }
  2650. }
  2651. err = tcam_early_init(np);
  2652. if (err) {
  2653. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2654. "tcam_early_init failed, err=%d\n", err);
  2655. goto out;
  2656. }
  2657. fflp_llcsnap_enable(np, 1);
  2658. fflp_errors_enable(np, 0);
  2659. nw64(H1POLY, 0);
  2660. nw64(H2POLY, 0);
  2661. err = tcam_flush_all(np);
  2662. if (err) {
  2663. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2664. "tcam_flush_all failed, err=%d\n", err);
  2665. goto out;
  2666. }
  2667. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2668. err = fflp_hash_clear(np);
  2669. if (err) {
  2670. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2671. "fflp_hash_clear failed, err=%d\n",
  2672. err);
  2673. goto out;
  2674. }
  2675. }
  2676. vlan_tbl_clear(np);
  2677. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2678. }
  2679. out:
  2680. niu_unlock_parent(np, flags);
  2681. return err;
  2682. }
  2683. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2684. {
  2685. if (class_code < CLASS_CODE_USER_PROG1 ||
  2686. class_code > CLASS_CODE_SCTP_IPV6)
  2687. return -EINVAL;
  2688. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2689. return 0;
  2690. }
  2691. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2692. {
  2693. if (class_code < CLASS_CODE_USER_PROG1 ||
  2694. class_code > CLASS_CODE_SCTP_IPV6)
  2695. return -EINVAL;
  2696. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2697. return 0;
  2698. }
  2699. /* Entries for the ports are interleaved in the TCAM */
  2700. static u16 tcam_get_index(struct niu *np, u16 idx)
  2701. {
  2702. /* One entry reserved for IP fragment rule */
  2703. if (idx >= (np->clas.tcam_sz - 1))
  2704. idx = 0;
  2705. return np->clas.tcam_top + ((idx+1) * np->parent->num_ports);
  2706. }
  2707. static u16 tcam_get_size(struct niu *np)
  2708. {
  2709. /* One entry reserved for IP fragment rule */
  2710. return np->clas.tcam_sz - 1;
  2711. }
  2712. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2713. {
  2714. /* One entry reserved for IP fragment rule */
  2715. return np->clas.tcam_valid_entries - 1;
  2716. }
  2717. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2718. u32 offset, u32 size, u32 truesize)
  2719. {
  2720. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, page, offset, size);
  2721. skb->len += size;
  2722. skb->data_len += size;
  2723. skb->truesize += truesize;
  2724. }
  2725. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2726. {
  2727. a >>= PAGE_SHIFT;
  2728. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2729. return a & (MAX_RBR_RING_SIZE - 1);
  2730. }
  2731. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2732. struct page ***link)
  2733. {
  2734. unsigned int h = niu_hash_rxaddr(rp, addr);
  2735. struct page *p, **pp;
  2736. addr &= PAGE_MASK;
  2737. pp = &rp->rxhash[h];
  2738. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2739. if (p->index == addr) {
  2740. *link = pp;
  2741. goto found;
  2742. }
  2743. }
  2744. BUG();
  2745. found:
  2746. return p;
  2747. }
  2748. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2749. {
  2750. unsigned int h = niu_hash_rxaddr(rp, base);
  2751. page->index = base;
  2752. page->mapping = (struct address_space *) rp->rxhash[h];
  2753. rp->rxhash[h] = page;
  2754. }
  2755. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2756. gfp_t mask, int start_index)
  2757. {
  2758. struct page *page;
  2759. u64 addr;
  2760. int i;
  2761. page = alloc_page(mask);
  2762. if (!page)
  2763. return -ENOMEM;
  2764. addr = np->ops->map_page(np->device, page, 0,
  2765. PAGE_SIZE, DMA_FROM_DEVICE);
  2766. if (!addr) {
  2767. __free_page(page);
  2768. return -ENOMEM;
  2769. }
  2770. niu_hash_page(rp, page, addr);
  2771. if (rp->rbr_blocks_per_page > 1)
  2772. atomic_add(rp->rbr_blocks_per_page - 1,
  2773. &compound_head(page)->_count);
  2774. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2775. __le32 *rbr = &rp->rbr[start_index + i];
  2776. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2777. addr += rp->rbr_block_size;
  2778. }
  2779. return 0;
  2780. }
  2781. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2782. {
  2783. int index = rp->rbr_index;
  2784. rp->rbr_pending++;
  2785. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2786. int err = niu_rbr_add_page(np, rp, mask, index);
  2787. if (unlikely(err)) {
  2788. rp->rbr_pending--;
  2789. return;
  2790. }
  2791. rp->rbr_index += rp->rbr_blocks_per_page;
  2792. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2793. if (rp->rbr_index == rp->rbr_table_size)
  2794. rp->rbr_index = 0;
  2795. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2796. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2797. rp->rbr_pending = 0;
  2798. }
  2799. }
  2800. }
  2801. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2802. {
  2803. unsigned int index = rp->rcr_index;
  2804. int num_rcr = 0;
  2805. rp->rx_dropped++;
  2806. while (1) {
  2807. struct page *page, **link;
  2808. u64 addr, val;
  2809. u32 rcr_size;
  2810. num_rcr++;
  2811. val = le64_to_cpup(&rp->rcr[index]);
  2812. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2813. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2814. page = niu_find_rxpage(rp, addr, &link);
  2815. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2816. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2817. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2818. *link = (struct page *) page->mapping;
  2819. np->ops->unmap_page(np->device, page->index,
  2820. PAGE_SIZE, DMA_FROM_DEVICE);
  2821. page->index = 0;
  2822. page->mapping = NULL;
  2823. __free_page(page);
  2824. rp->rbr_refill_pending++;
  2825. }
  2826. index = NEXT_RCR(rp, index);
  2827. if (!(val & RCR_ENTRY_MULTI))
  2828. break;
  2829. }
  2830. rp->rcr_index = index;
  2831. return num_rcr;
  2832. }
  2833. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2834. struct rx_ring_info *rp)
  2835. {
  2836. unsigned int index = rp->rcr_index;
  2837. struct rx_pkt_hdr1 *rh;
  2838. struct sk_buff *skb;
  2839. int len, num_rcr;
  2840. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2841. if (unlikely(!skb))
  2842. return niu_rx_pkt_ignore(np, rp);
  2843. num_rcr = 0;
  2844. while (1) {
  2845. struct page *page, **link;
  2846. u32 rcr_size, append_size;
  2847. u64 addr, val, off;
  2848. num_rcr++;
  2849. val = le64_to_cpup(&rp->rcr[index]);
  2850. len = (val & RCR_ENTRY_L2_LEN) >>
  2851. RCR_ENTRY_L2_LEN_SHIFT;
  2852. len -= ETH_FCS_LEN;
  2853. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2854. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2855. page = niu_find_rxpage(rp, addr, &link);
  2856. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2857. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2858. off = addr & ~PAGE_MASK;
  2859. append_size = rcr_size;
  2860. if (num_rcr == 1) {
  2861. int ptype;
  2862. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2863. if ((ptype == RCR_PKT_TYPE_TCP ||
  2864. ptype == RCR_PKT_TYPE_UDP) &&
  2865. !(val & (RCR_ENTRY_NOPORT |
  2866. RCR_ENTRY_ERROR)))
  2867. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2868. else
  2869. skb_checksum_none_assert(skb);
  2870. } else if (!(val & RCR_ENTRY_MULTI))
  2871. append_size = len - skb->len;
  2872. niu_rx_skb_append(skb, page, off, append_size, rcr_size);
  2873. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2874. *link = (struct page *) page->mapping;
  2875. np->ops->unmap_page(np->device, page->index,
  2876. PAGE_SIZE, DMA_FROM_DEVICE);
  2877. page->index = 0;
  2878. page->mapping = NULL;
  2879. rp->rbr_refill_pending++;
  2880. } else
  2881. get_page(page);
  2882. index = NEXT_RCR(rp, index);
  2883. if (!(val & RCR_ENTRY_MULTI))
  2884. break;
  2885. }
  2886. rp->rcr_index = index;
  2887. len += sizeof(*rh);
  2888. len = min_t(int, len, sizeof(*rh) + VLAN_ETH_HLEN);
  2889. __pskb_pull_tail(skb, len);
  2890. rh = (struct rx_pkt_hdr1 *) skb->data;
  2891. if (np->dev->features & NETIF_F_RXHASH)
  2892. skb_set_hash(skb,
  2893. ((u32)rh->hashval2_0 << 24 |
  2894. (u32)rh->hashval2_1 << 16 |
  2895. (u32)rh->hashval1_1 << 8 |
  2896. (u32)rh->hashval1_2 << 0),
  2897. PKT_HASH_TYPE_L3);
  2898. skb_pull(skb, sizeof(*rh));
  2899. rp->rx_packets++;
  2900. rp->rx_bytes += skb->len;
  2901. skb->protocol = eth_type_trans(skb, np->dev);
  2902. skb_record_rx_queue(skb, rp->rx_channel);
  2903. napi_gro_receive(napi, skb);
  2904. return num_rcr;
  2905. }
  2906. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2907. {
  2908. int blocks_per_page = rp->rbr_blocks_per_page;
  2909. int err, index = rp->rbr_index;
  2910. err = 0;
  2911. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2912. err = niu_rbr_add_page(np, rp, mask, index);
  2913. if (unlikely(err))
  2914. break;
  2915. index += blocks_per_page;
  2916. }
  2917. rp->rbr_index = index;
  2918. return err;
  2919. }
  2920. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2921. {
  2922. int i;
  2923. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2924. struct page *page;
  2925. page = rp->rxhash[i];
  2926. while (page) {
  2927. struct page *next = (struct page *) page->mapping;
  2928. u64 base = page->index;
  2929. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2930. DMA_FROM_DEVICE);
  2931. page->index = 0;
  2932. page->mapping = NULL;
  2933. __free_page(page);
  2934. page = next;
  2935. }
  2936. }
  2937. for (i = 0; i < rp->rbr_table_size; i++)
  2938. rp->rbr[i] = cpu_to_le32(0);
  2939. rp->rbr_index = 0;
  2940. }
  2941. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2942. {
  2943. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2944. struct sk_buff *skb = tb->skb;
  2945. struct tx_pkt_hdr *tp;
  2946. u64 tx_flags;
  2947. int i, len;
  2948. tp = (struct tx_pkt_hdr *) skb->data;
  2949. tx_flags = le64_to_cpup(&tp->flags);
  2950. rp->tx_packets++;
  2951. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2952. ((tx_flags & TXHDR_PAD) / 2));
  2953. len = skb_headlen(skb);
  2954. np->ops->unmap_single(np->device, tb->mapping,
  2955. len, DMA_TO_DEVICE);
  2956. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2957. rp->mark_pending--;
  2958. tb->skb = NULL;
  2959. do {
  2960. idx = NEXT_TX(rp, idx);
  2961. len -= MAX_TX_DESC_LEN;
  2962. } while (len > 0);
  2963. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2964. tb = &rp->tx_buffs[idx];
  2965. BUG_ON(tb->skb != NULL);
  2966. np->ops->unmap_page(np->device, tb->mapping,
  2967. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2968. DMA_TO_DEVICE);
  2969. idx = NEXT_TX(rp, idx);
  2970. }
  2971. dev_kfree_skb(skb);
  2972. return idx;
  2973. }
  2974. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2975. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2976. {
  2977. struct netdev_queue *txq;
  2978. u16 pkt_cnt, tmp;
  2979. int cons, index;
  2980. u64 cs;
  2981. index = (rp - np->tx_rings);
  2982. txq = netdev_get_tx_queue(np->dev, index);
  2983. cs = rp->tx_cs;
  2984. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2985. goto out;
  2986. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2987. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2988. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2989. rp->last_pkt_cnt = tmp;
  2990. cons = rp->cons;
  2991. netif_printk(np, tx_done, KERN_DEBUG, np->dev,
  2992. "%s() pkt_cnt[%u] cons[%d]\n", __func__, pkt_cnt, cons);
  2993. while (pkt_cnt--)
  2994. cons = release_tx_packet(np, rp, cons);
  2995. rp->cons = cons;
  2996. smp_mb();
  2997. out:
  2998. if (unlikely(netif_tx_queue_stopped(txq) &&
  2999. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  3000. __netif_tx_lock(txq, smp_processor_id());
  3001. if (netif_tx_queue_stopped(txq) &&
  3002. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3003. netif_tx_wake_queue(txq);
  3004. __netif_tx_unlock(txq);
  3005. }
  3006. }
  3007. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3008. struct rx_ring_info *rp,
  3009. const int limit)
  3010. {
  3011. /* This elaborate scheme is needed for reading the RX discard
  3012. * counters, as they are only 16-bit and can overflow quickly,
  3013. * and because the overflow indication bit is not usable as
  3014. * the counter value does not wrap, but remains at max value
  3015. * 0xFFFF.
  3016. *
  3017. * In theory and in practice counters can be lost in between
  3018. * reading nr64() and clearing the counter nw64(). For this
  3019. * reason, the number of counter clearings nw64() is
  3020. * limited/reduced though the limit parameter.
  3021. */
  3022. int rx_channel = rp->rx_channel;
  3023. u32 misc, wred;
  3024. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3025. * following discard events: IPP (Input Port Process),
  3026. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3027. * Block Ring) prefetch buffer is empty.
  3028. */
  3029. misc = nr64(RXMISC(rx_channel));
  3030. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3031. nw64(RXMISC(rx_channel), 0);
  3032. rp->rx_errors += misc & RXMISC_COUNT;
  3033. if (unlikely(misc & RXMISC_OFLOW))
  3034. dev_err(np->device, "rx-%d: Counter overflow RXMISC discard\n",
  3035. rx_channel);
  3036. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3037. "rx-%d: MISC drop=%u over=%u\n",
  3038. rx_channel, misc, misc-limit);
  3039. }
  3040. /* WRED (Weighted Random Early Discard) by hardware */
  3041. wred = nr64(RED_DIS_CNT(rx_channel));
  3042. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3043. nw64(RED_DIS_CNT(rx_channel), 0);
  3044. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3045. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3046. dev_err(np->device, "rx-%d: Counter overflow WRED discard\n", rx_channel);
  3047. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3048. "rx-%d: WRED drop=%u over=%u\n",
  3049. rx_channel, wred, wred-limit);
  3050. }
  3051. }
  3052. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3053. struct rx_ring_info *rp, int budget)
  3054. {
  3055. int qlen, rcr_done = 0, work_done = 0;
  3056. struct rxdma_mailbox *mbox = rp->mbox;
  3057. u64 stat;
  3058. #if 1
  3059. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3060. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3061. #else
  3062. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3063. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3064. #endif
  3065. mbox->rx_dma_ctl_stat = 0;
  3066. mbox->rcrstat_a = 0;
  3067. netif_printk(np, rx_status, KERN_DEBUG, np->dev,
  3068. "%s(chan[%d]), stat[%llx] qlen=%d\n",
  3069. __func__, rp->rx_channel, (unsigned long long)stat, qlen);
  3070. rcr_done = work_done = 0;
  3071. qlen = min(qlen, budget);
  3072. while (work_done < qlen) {
  3073. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3074. work_done++;
  3075. }
  3076. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3077. unsigned int i;
  3078. for (i = 0; i < rp->rbr_refill_pending; i++)
  3079. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3080. rp->rbr_refill_pending = 0;
  3081. }
  3082. stat = (RX_DMA_CTL_STAT_MEX |
  3083. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3084. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3085. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3086. /* Only sync discards stats when qlen indicate potential for drops */
  3087. if (qlen > 10)
  3088. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3089. return work_done;
  3090. }
  3091. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3092. {
  3093. u64 v0 = lp->v0;
  3094. u32 tx_vec = (v0 >> 32);
  3095. u32 rx_vec = (v0 & 0xffffffff);
  3096. int i, work_done = 0;
  3097. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3098. "%s() v0[%016llx]\n", __func__, (unsigned long long)v0);
  3099. for (i = 0; i < np->num_tx_rings; i++) {
  3100. struct tx_ring_info *rp = &np->tx_rings[i];
  3101. if (tx_vec & (1 << rp->tx_channel))
  3102. niu_tx_work(np, rp);
  3103. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3104. }
  3105. for (i = 0; i < np->num_rx_rings; i++) {
  3106. struct rx_ring_info *rp = &np->rx_rings[i];
  3107. if (rx_vec & (1 << rp->rx_channel)) {
  3108. int this_work_done;
  3109. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3110. budget);
  3111. budget -= this_work_done;
  3112. work_done += this_work_done;
  3113. }
  3114. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3115. }
  3116. return work_done;
  3117. }
  3118. static int niu_poll(struct napi_struct *napi, int budget)
  3119. {
  3120. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3121. struct niu *np = lp->np;
  3122. int work_done;
  3123. work_done = niu_poll_core(np, lp, budget);
  3124. if (work_done < budget) {
  3125. napi_complete(napi);
  3126. niu_ldg_rearm(np, lp, 1);
  3127. }
  3128. return work_done;
  3129. }
  3130. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3131. u64 stat)
  3132. {
  3133. netdev_err(np->dev, "RX channel %u errors ( ", rp->rx_channel);
  3134. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3135. pr_cont("RBR_TMOUT ");
  3136. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3137. pr_cont("RSP_CNT ");
  3138. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3139. pr_cont("BYTE_EN_BUS ");
  3140. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3141. pr_cont("RSP_DAT ");
  3142. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3143. pr_cont("RCR_ACK ");
  3144. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3145. pr_cont("RCR_SHA_PAR ");
  3146. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3147. pr_cont("RBR_PRE_PAR ");
  3148. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3149. pr_cont("CONFIG ");
  3150. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3151. pr_cont("RCRINCON ");
  3152. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3153. pr_cont("RCRFULL ");
  3154. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3155. pr_cont("RBRFULL ");
  3156. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3157. pr_cont("RBRLOGPAGE ");
  3158. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3159. pr_cont("CFIGLOGPAGE ");
  3160. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3161. pr_cont("DC_FIDO ");
  3162. pr_cont(")\n");
  3163. }
  3164. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3165. {
  3166. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3167. int err = 0;
  3168. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3169. RX_DMA_CTL_STAT_PORT_FATAL))
  3170. err = -EINVAL;
  3171. if (err) {
  3172. netdev_err(np->dev, "RX channel %u error, stat[%llx]\n",
  3173. rp->rx_channel,
  3174. (unsigned long long) stat);
  3175. niu_log_rxchan_errors(np, rp, stat);
  3176. }
  3177. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3178. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3179. return err;
  3180. }
  3181. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3182. u64 cs)
  3183. {
  3184. netdev_err(np->dev, "TX channel %u errors ( ", rp->tx_channel);
  3185. if (cs & TX_CS_MBOX_ERR)
  3186. pr_cont("MBOX ");
  3187. if (cs & TX_CS_PKT_SIZE_ERR)
  3188. pr_cont("PKT_SIZE ");
  3189. if (cs & TX_CS_TX_RING_OFLOW)
  3190. pr_cont("TX_RING_OFLOW ");
  3191. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3192. pr_cont("PREF_BUF_PAR ");
  3193. if (cs & TX_CS_NACK_PREF)
  3194. pr_cont("NACK_PREF ");
  3195. if (cs & TX_CS_NACK_PKT_RD)
  3196. pr_cont("NACK_PKT_RD ");
  3197. if (cs & TX_CS_CONF_PART_ERR)
  3198. pr_cont("CONF_PART ");
  3199. if (cs & TX_CS_PKT_PRT_ERR)
  3200. pr_cont("PKT_PTR ");
  3201. pr_cont(")\n");
  3202. }
  3203. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3204. {
  3205. u64 cs, logh, logl;
  3206. cs = nr64(TX_CS(rp->tx_channel));
  3207. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3208. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3209. netdev_err(np->dev, "TX channel %u error, cs[%llx] logh[%llx] logl[%llx]\n",
  3210. rp->tx_channel,
  3211. (unsigned long long)cs,
  3212. (unsigned long long)logh,
  3213. (unsigned long long)logl);
  3214. niu_log_txchan_errors(np, rp, cs);
  3215. return -ENODEV;
  3216. }
  3217. static int niu_mif_interrupt(struct niu *np)
  3218. {
  3219. u64 mif_status = nr64(MIF_STATUS);
  3220. int phy_mdint = 0;
  3221. if (np->flags & NIU_FLAGS_XMAC) {
  3222. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3223. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3224. phy_mdint = 1;
  3225. }
  3226. netdev_err(np->dev, "MIF interrupt, stat[%llx] phy_mdint(%d)\n",
  3227. (unsigned long long)mif_status, phy_mdint);
  3228. return -ENODEV;
  3229. }
  3230. static void niu_xmac_interrupt(struct niu *np)
  3231. {
  3232. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3233. u64 val;
  3234. val = nr64_mac(XTXMAC_STATUS);
  3235. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3236. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3237. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3238. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3239. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3240. mp->tx_fifo_errors++;
  3241. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3242. mp->tx_overflow_errors++;
  3243. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3244. mp->tx_max_pkt_size_errors++;
  3245. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3246. mp->tx_underflow_errors++;
  3247. val = nr64_mac(XRXMAC_STATUS);
  3248. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3249. mp->rx_local_faults++;
  3250. if (val & XRXMAC_STATUS_RFLT_DET)
  3251. mp->rx_remote_faults++;
  3252. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3253. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3254. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3255. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3256. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3257. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3258. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3259. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3260. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3261. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3262. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3263. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3264. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3265. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3266. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3267. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3268. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3269. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3270. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3271. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3272. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3273. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3274. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3275. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3276. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3277. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3278. if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP)
  3279. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3280. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3281. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3282. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3283. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3284. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3285. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3286. if (val & XRXMAC_STATUS_RXUFLOW)
  3287. mp->rx_underflows++;
  3288. if (val & XRXMAC_STATUS_RXOFLOW)
  3289. mp->rx_overflows++;
  3290. val = nr64_mac(XMAC_FC_STAT);
  3291. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3292. mp->pause_off_state++;
  3293. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3294. mp->pause_on_state++;
  3295. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3296. mp->pause_received++;
  3297. }
  3298. static void niu_bmac_interrupt(struct niu *np)
  3299. {
  3300. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3301. u64 val;
  3302. val = nr64_mac(BTXMAC_STATUS);
  3303. if (val & BTXMAC_STATUS_UNDERRUN)
  3304. mp->tx_underflow_errors++;
  3305. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3306. mp->tx_max_pkt_size_errors++;
  3307. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3308. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3309. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3310. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3311. val = nr64_mac(BRXMAC_STATUS);
  3312. if (val & BRXMAC_STATUS_OVERFLOW)
  3313. mp->rx_overflows++;
  3314. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3315. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3316. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3317. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3318. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3319. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3320. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3321. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3322. val = nr64_mac(BMAC_CTRL_STATUS);
  3323. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3324. mp->pause_off_state++;
  3325. if (val & BMAC_CTRL_STATUS_PAUSE)
  3326. mp->pause_on_state++;
  3327. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3328. mp->pause_received++;
  3329. }
  3330. static int niu_mac_interrupt(struct niu *np)
  3331. {
  3332. if (np->flags & NIU_FLAGS_XMAC)
  3333. niu_xmac_interrupt(np);
  3334. else
  3335. niu_bmac_interrupt(np);
  3336. return 0;
  3337. }
  3338. static void niu_log_device_error(struct niu *np, u64 stat)
  3339. {
  3340. netdev_err(np->dev, "Core device errors ( ");
  3341. if (stat & SYS_ERR_MASK_META2)
  3342. pr_cont("META2 ");
  3343. if (stat & SYS_ERR_MASK_META1)
  3344. pr_cont("META1 ");
  3345. if (stat & SYS_ERR_MASK_PEU)
  3346. pr_cont("PEU ");
  3347. if (stat & SYS_ERR_MASK_TXC)
  3348. pr_cont("TXC ");
  3349. if (stat & SYS_ERR_MASK_RDMC)
  3350. pr_cont("RDMC ");
  3351. if (stat & SYS_ERR_MASK_TDMC)
  3352. pr_cont("TDMC ");
  3353. if (stat & SYS_ERR_MASK_ZCP)
  3354. pr_cont("ZCP ");
  3355. if (stat & SYS_ERR_MASK_FFLP)
  3356. pr_cont("FFLP ");
  3357. if (stat & SYS_ERR_MASK_IPP)
  3358. pr_cont("IPP ");
  3359. if (stat & SYS_ERR_MASK_MAC)
  3360. pr_cont("MAC ");
  3361. if (stat & SYS_ERR_MASK_SMX)
  3362. pr_cont("SMX ");
  3363. pr_cont(")\n");
  3364. }
  3365. static int niu_device_error(struct niu *np)
  3366. {
  3367. u64 stat = nr64(SYS_ERR_STAT);
  3368. netdev_err(np->dev, "Core device error, stat[%llx]\n",
  3369. (unsigned long long)stat);
  3370. niu_log_device_error(np, stat);
  3371. return -ENODEV;
  3372. }
  3373. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3374. u64 v0, u64 v1, u64 v2)
  3375. {
  3376. int i, err = 0;
  3377. lp->v0 = v0;
  3378. lp->v1 = v1;
  3379. lp->v2 = v2;
  3380. if (v1 & 0x00000000ffffffffULL) {
  3381. u32 rx_vec = (v1 & 0xffffffff);
  3382. for (i = 0; i < np->num_rx_rings; i++) {
  3383. struct rx_ring_info *rp = &np->rx_rings[i];
  3384. if (rx_vec & (1 << rp->rx_channel)) {
  3385. int r = niu_rx_error(np, rp);
  3386. if (r) {
  3387. err = r;
  3388. } else {
  3389. if (!v0)
  3390. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3391. RX_DMA_CTL_STAT_MEX);
  3392. }
  3393. }
  3394. }
  3395. }
  3396. if (v1 & 0x7fffffff00000000ULL) {
  3397. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3398. for (i = 0; i < np->num_tx_rings; i++) {
  3399. struct tx_ring_info *rp = &np->tx_rings[i];
  3400. if (tx_vec & (1 << rp->tx_channel)) {
  3401. int r = niu_tx_error(np, rp);
  3402. if (r)
  3403. err = r;
  3404. }
  3405. }
  3406. }
  3407. if ((v0 | v1) & 0x8000000000000000ULL) {
  3408. int r = niu_mif_interrupt(np);
  3409. if (r)
  3410. err = r;
  3411. }
  3412. if (v2) {
  3413. if (v2 & 0x01ef) {
  3414. int r = niu_mac_interrupt(np);
  3415. if (r)
  3416. err = r;
  3417. }
  3418. if (v2 & 0x0210) {
  3419. int r = niu_device_error(np);
  3420. if (r)
  3421. err = r;
  3422. }
  3423. }
  3424. if (err)
  3425. niu_enable_interrupts(np, 0);
  3426. return err;
  3427. }
  3428. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3429. int ldn)
  3430. {
  3431. struct rxdma_mailbox *mbox = rp->mbox;
  3432. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3433. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3434. RX_DMA_CTL_STAT_RCRTO);
  3435. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3436. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3437. "%s() stat[%llx]\n", __func__, (unsigned long long)stat);
  3438. }
  3439. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3440. int ldn)
  3441. {
  3442. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3443. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3444. "%s() cs[%llx]\n", __func__, (unsigned long long)rp->tx_cs);
  3445. }
  3446. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3447. {
  3448. struct niu_parent *parent = np->parent;
  3449. u32 rx_vec, tx_vec;
  3450. int i;
  3451. tx_vec = (v0 >> 32);
  3452. rx_vec = (v0 & 0xffffffff);
  3453. for (i = 0; i < np->num_rx_rings; i++) {
  3454. struct rx_ring_info *rp = &np->rx_rings[i];
  3455. int ldn = LDN_RXDMA(rp->rx_channel);
  3456. if (parent->ldg_map[ldn] != ldg)
  3457. continue;
  3458. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3459. if (rx_vec & (1 << rp->rx_channel))
  3460. niu_rxchan_intr(np, rp, ldn);
  3461. }
  3462. for (i = 0; i < np->num_tx_rings; i++) {
  3463. struct tx_ring_info *rp = &np->tx_rings[i];
  3464. int ldn = LDN_TXDMA(rp->tx_channel);
  3465. if (parent->ldg_map[ldn] != ldg)
  3466. continue;
  3467. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3468. if (tx_vec & (1 << rp->tx_channel))
  3469. niu_txchan_intr(np, rp, ldn);
  3470. }
  3471. }
  3472. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3473. u64 v0, u64 v1, u64 v2)
  3474. {
  3475. if (likely(napi_schedule_prep(&lp->napi))) {
  3476. lp->v0 = v0;
  3477. lp->v1 = v1;
  3478. lp->v2 = v2;
  3479. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3480. __napi_schedule(&lp->napi);
  3481. }
  3482. }
  3483. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3484. {
  3485. struct niu_ldg *lp = dev_id;
  3486. struct niu *np = lp->np;
  3487. int ldg = lp->ldg_num;
  3488. unsigned long flags;
  3489. u64 v0, v1, v2;
  3490. if (netif_msg_intr(np))
  3491. printk(KERN_DEBUG KBUILD_MODNAME ": " "%s() ldg[%p](%d)",
  3492. __func__, lp, ldg);
  3493. spin_lock_irqsave(&np->lock, flags);
  3494. v0 = nr64(LDSV0(ldg));
  3495. v1 = nr64(LDSV1(ldg));
  3496. v2 = nr64(LDSV2(ldg));
  3497. if (netif_msg_intr(np))
  3498. pr_cont(" v0[%llx] v1[%llx] v2[%llx]\n",
  3499. (unsigned long long) v0,
  3500. (unsigned long long) v1,
  3501. (unsigned long long) v2);
  3502. if (unlikely(!v0 && !v1 && !v2)) {
  3503. spin_unlock_irqrestore(&np->lock, flags);
  3504. return IRQ_NONE;
  3505. }
  3506. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3507. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3508. if (err)
  3509. goto out;
  3510. }
  3511. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3512. niu_schedule_napi(np, lp, v0, v1, v2);
  3513. else
  3514. niu_ldg_rearm(np, lp, 1);
  3515. out:
  3516. spin_unlock_irqrestore(&np->lock, flags);
  3517. return IRQ_HANDLED;
  3518. }
  3519. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3520. {
  3521. if (rp->mbox) {
  3522. np->ops->free_coherent(np->device,
  3523. sizeof(struct rxdma_mailbox),
  3524. rp->mbox, rp->mbox_dma);
  3525. rp->mbox = NULL;
  3526. }
  3527. if (rp->rcr) {
  3528. np->ops->free_coherent(np->device,
  3529. MAX_RCR_RING_SIZE * sizeof(__le64),
  3530. rp->rcr, rp->rcr_dma);
  3531. rp->rcr = NULL;
  3532. rp->rcr_table_size = 0;
  3533. rp->rcr_index = 0;
  3534. }
  3535. if (rp->rbr) {
  3536. niu_rbr_free(np, rp);
  3537. np->ops->free_coherent(np->device,
  3538. MAX_RBR_RING_SIZE * sizeof(__le32),
  3539. rp->rbr, rp->rbr_dma);
  3540. rp->rbr = NULL;
  3541. rp->rbr_table_size = 0;
  3542. rp->rbr_index = 0;
  3543. }
  3544. kfree(rp->rxhash);
  3545. rp->rxhash = NULL;
  3546. }
  3547. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3548. {
  3549. if (rp->mbox) {
  3550. np->ops->free_coherent(np->device,
  3551. sizeof(struct txdma_mailbox),
  3552. rp->mbox, rp->mbox_dma);
  3553. rp->mbox = NULL;
  3554. }
  3555. if (rp->descr) {
  3556. int i;
  3557. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3558. if (rp->tx_buffs[i].skb)
  3559. (void) release_tx_packet(np, rp, i);
  3560. }
  3561. np->ops->free_coherent(np->device,
  3562. MAX_TX_RING_SIZE * sizeof(__le64),
  3563. rp->descr, rp->descr_dma);
  3564. rp->descr = NULL;
  3565. rp->pending = 0;
  3566. rp->prod = 0;
  3567. rp->cons = 0;
  3568. rp->wrap_bit = 0;
  3569. }
  3570. }
  3571. static void niu_free_channels(struct niu *np)
  3572. {
  3573. int i;
  3574. if (np->rx_rings) {
  3575. for (i = 0; i < np->num_rx_rings; i++) {
  3576. struct rx_ring_info *rp = &np->rx_rings[i];
  3577. niu_free_rx_ring_info(np, rp);
  3578. }
  3579. kfree(np->rx_rings);
  3580. np->rx_rings = NULL;
  3581. np->num_rx_rings = 0;
  3582. }
  3583. if (np->tx_rings) {
  3584. for (i = 0; i < np->num_tx_rings; i++) {
  3585. struct tx_ring_info *rp = &np->tx_rings[i];
  3586. niu_free_tx_ring_info(np, rp);
  3587. }
  3588. kfree(np->tx_rings);
  3589. np->tx_rings = NULL;
  3590. np->num_tx_rings = 0;
  3591. }
  3592. }
  3593. static int niu_alloc_rx_ring_info(struct niu *np,
  3594. struct rx_ring_info *rp)
  3595. {
  3596. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3597. rp->rxhash = kcalloc(MAX_RBR_RING_SIZE, sizeof(struct page *),
  3598. GFP_KERNEL);
  3599. if (!rp->rxhash)
  3600. return -ENOMEM;
  3601. rp->mbox = np->ops->alloc_coherent(np->device,
  3602. sizeof(struct rxdma_mailbox),
  3603. &rp->mbox_dma, GFP_KERNEL);
  3604. if (!rp->mbox)
  3605. return -ENOMEM;
  3606. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3607. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA mailbox %p\n",
  3608. rp->mbox);
  3609. return -EINVAL;
  3610. }
  3611. rp->rcr = np->ops->alloc_coherent(np->device,
  3612. MAX_RCR_RING_SIZE * sizeof(__le64),
  3613. &rp->rcr_dma, GFP_KERNEL);
  3614. if (!rp->rcr)
  3615. return -ENOMEM;
  3616. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3617. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RCR table %p\n",
  3618. rp->rcr);
  3619. return -EINVAL;
  3620. }
  3621. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3622. rp->rcr_index = 0;
  3623. rp->rbr = np->ops->alloc_coherent(np->device,
  3624. MAX_RBR_RING_SIZE * sizeof(__le32),
  3625. &rp->rbr_dma, GFP_KERNEL);
  3626. if (!rp->rbr)
  3627. return -ENOMEM;
  3628. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3629. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RBR table %p\n",
  3630. rp->rbr);
  3631. return -EINVAL;
  3632. }
  3633. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3634. rp->rbr_index = 0;
  3635. rp->rbr_pending = 0;
  3636. return 0;
  3637. }
  3638. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3639. {
  3640. int mtu = np->dev->mtu;
  3641. /* These values are recommended by the HW designers for fair
  3642. * utilization of DRR amongst the rings.
  3643. */
  3644. rp->max_burst = mtu + 32;
  3645. if (rp->max_burst > 4096)
  3646. rp->max_burst = 4096;
  3647. }
  3648. static int niu_alloc_tx_ring_info(struct niu *np,
  3649. struct tx_ring_info *rp)
  3650. {
  3651. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3652. rp->mbox = np->ops->alloc_coherent(np->device,
  3653. sizeof(struct txdma_mailbox),
  3654. &rp->mbox_dma, GFP_KERNEL);
  3655. if (!rp->mbox)
  3656. return -ENOMEM;
  3657. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3658. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA mailbox %p\n",
  3659. rp->mbox);
  3660. return -EINVAL;
  3661. }
  3662. rp->descr = np->ops->alloc_coherent(np->device,
  3663. MAX_TX_RING_SIZE * sizeof(__le64),
  3664. &rp->descr_dma, GFP_KERNEL);
  3665. if (!rp->descr)
  3666. return -ENOMEM;
  3667. if ((unsigned long)rp->descr & (64UL - 1)) {
  3668. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA descr table %p\n",
  3669. rp->descr);
  3670. return -EINVAL;
  3671. }
  3672. rp->pending = MAX_TX_RING_SIZE;
  3673. rp->prod = 0;
  3674. rp->cons = 0;
  3675. rp->wrap_bit = 0;
  3676. /* XXX make these configurable... XXX */
  3677. rp->mark_freq = rp->pending / 4;
  3678. niu_set_max_burst(np, rp);
  3679. return 0;
  3680. }
  3681. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3682. {
  3683. u16 bss;
  3684. bss = min(PAGE_SHIFT, 15);
  3685. rp->rbr_block_size = 1 << bss;
  3686. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3687. rp->rbr_sizes[0] = 256;
  3688. rp->rbr_sizes[1] = 1024;
  3689. if (np->dev->mtu > ETH_DATA_LEN) {
  3690. switch (PAGE_SIZE) {
  3691. case 4 * 1024:
  3692. rp->rbr_sizes[2] = 4096;
  3693. break;
  3694. default:
  3695. rp->rbr_sizes[2] = 8192;
  3696. break;
  3697. }
  3698. } else {
  3699. rp->rbr_sizes[2] = 2048;
  3700. }
  3701. rp->rbr_sizes[3] = rp->rbr_block_size;
  3702. }
  3703. static int niu_alloc_channels(struct niu *np)
  3704. {
  3705. struct niu_parent *parent = np->parent;
  3706. int first_rx_channel, first_tx_channel;
  3707. int num_rx_rings, num_tx_rings;
  3708. struct rx_ring_info *rx_rings;
  3709. struct tx_ring_info *tx_rings;
  3710. int i, port, err;
  3711. port = np->port;
  3712. first_rx_channel = first_tx_channel = 0;
  3713. for (i = 0; i < port; i++) {
  3714. first_rx_channel += parent->rxchan_per_port[i];
  3715. first_tx_channel += parent->txchan_per_port[i];
  3716. }
  3717. num_rx_rings = parent->rxchan_per_port[port];
  3718. num_tx_rings = parent->txchan_per_port[port];
  3719. rx_rings = kcalloc(num_rx_rings, sizeof(struct rx_ring_info),
  3720. GFP_KERNEL);
  3721. err = -ENOMEM;
  3722. if (!rx_rings)
  3723. goto out_err;
  3724. np->num_rx_rings = num_rx_rings;
  3725. smp_wmb();
  3726. np->rx_rings = rx_rings;
  3727. netif_set_real_num_rx_queues(np->dev, num_rx_rings);
  3728. for (i = 0; i < np->num_rx_rings; i++) {
  3729. struct rx_ring_info *rp = &np->rx_rings[i];
  3730. rp->np = np;
  3731. rp->rx_channel = first_rx_channel + i;
  3732. err = niu_alloc_rx_ring_info(np, rp);
  3733. if (err)
  3734. goto out_err;
  3735. niu_size_rbr(np, rp);
  3736. /* XXX better defaults, configurable, etc... XXX */
  3737. rp->nonsyn_window = 64;
  3738. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3739. rp->syn_window = 64;
  3740. rp->syn_threshold = rp->rcr_table_size - 64;
  3741. rp->rcr_pkt_threshold = 16;
  3742. rp->rcr_timeout = 8;
  3743. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3744. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3745. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3746. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3747. if (err)
  3748. return err;
  3749. }
  3750. tx_rings = kcalloc(num_tx_rings, sizeof(struct tx_ring_info),
  3751. GFP_KERNEL);
  3752. err = -ENOMEM;
  3753. if (!tx_rings)
  3754. goto out_err;
  3755. np->num_tx_rings = num_tx_rings;
  3756. smp_wmb();
  3757. np->tx_rings = tx_rings;
  3758. netif_set_real_num_tx_queues(np->dev, num_tx_rings);
  3759. for (i = 0; i < np->num_tx_rings; i++) {
  3760. struct tx_ring_info *rp = &np->tx_rings[i];
  3761. rp->np = np;
  3762. rp->tx_channel = first_tx_channel + i;
  3763. err = niu_alloc_tx_ring_info(np, rp);
  3764. if (err)
  3765. goto out_err;
  3766. }
  3767. return 0;
  3768. out_err:
  3769. niu_free_channels(np);
  3770. return err;
  3771. }
  3772. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3773. {
  3774. int limit = 1000;
  3775. while (--limit > 0) {
  3776. u64 val = nr64(TX_CS(channel));
  3777. if (val & TX_CS_SNG_STATE)
  3778. return 0;
  3779. }
  3780. return -ENODEV;
  3781. }
  3782. static int niu_tx_channel_stop(struct niu *np, int channel)
  3783. {
  3784. u64 val = nr64(TX_CS(channel));
  3785. val |= TX_CS_STOP_N_GO;
  3786. nw64(TX_CS(channel), val);
  3787. return niu_tx_cs_sng_poll(np, channel);
  3788. }
  3789. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3790. {
  3791. int limit = 1000;
  3792. while (--limit > 0) {
  3793. u64 val = nr64(TX_CS(channel));
  3794. if (!(val & TX_CS_RST))
  3795. return 0;
  3796. }
  3797. return -ENODEV;
  3798. }
  3799. static int niu_tx_channel_reset(struct niu *np, int channel)
  3800. {
  3801. u64 val = nr64(TX_CS(channel));
  3802. int err;
  3803. val |= TX_CS_RST;
  3804. nw64(TX_CS(channel), val);
  3805. err = niu_tx_cs_reset_poll(np, channel);
  3806. if (!err)
  3807. nw64(TX_RING_KICK(channel), 0);
  3808. return err;
  3809. }
  3810. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3811. {
  3812. u64 val;
  3813. nw64(TX_LOG_MASK1(channel), 0);
  3814. nw64(TX_LOG_VAL1(channel), 0);
  3815. nw64(TX_LOG_MASK2(channel), 0);
  3816. nw64(TX_LOG_VAL2(channel), 0);
  3817. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3818. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3819. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3820. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3821. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3822. nw64(TX_LOG_PAGE_VLD(channel), val);
  3823. /* XXX TXDMA 32bit mode? XXX */
  3824. return 0;
  3825. }
  3826. static void niu_txc_enable_port(struct niu *np, int on)
  3827. {
  3828. unsigned long flags;
  3829. u64 val, mask;
  3830. niu_lock_parent(np, flags);
  3831. val = nr64(TXC_CONTROL);
  3832. mask = (u64)1 << np->port;
  3833. if (on) {
  3834. val |= TXC_CONTROL_ENABLE | mask;
  3835. } else {
  3836. val &= ~mask;
  3837. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3838. val &= ~TXC_CONTROL_ENABLE;
  3839. }
  3840. nw64(TXC_CONTROL, val);
  3841. niu_unlock_parent(np, flags);
  3842. }
  3843. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3844. {
  3845. unsigned long flags;
  3846. u64 val;
  3847. niu_lock_parent(np, flags);
  3848. val = nr64(TXC_INT_MASK);
  3849. val &= ~TXC_INT_MASK_VAL(np->port);
  3850. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3851. niu_unlock_parent(np, flags);
  3852. }
  3853. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3854. {
  3855. u64 val = 0;
  3856. if (on) {
  3857. int i;
  3858. for (i = 0; i < np->num_tx_rings; i++)
  3859. val |= (1 << np->tx_rings[i].tx_channel);
  3860. }
  3861. nw64(TXC_PORT_DMA(np->port), val);
  3862. }
  3863. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3864. {
  3865. int err, channel = rp->tx_channel;
  3866. u64 val, ring_len;
  3867. err = niu_tx_channel_stop(np, channel);
  3868. if (err)
  3869. return err;
  3870. err = niu_tx_channel_reset(np, channel);
  3871. if (err)
  3872. return err;
  3873. err = niu_tx_channel_lpage_init(np, channel);
  3874. if (err)
  3875. return err;
  3876. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3877. nw64(TX_ENT_MSK(channel), 0);
  3878. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3879. TX_RNG_CFIG_STADDR)) {
  3880. netdev_err(np->dev, "TX ring channel %d DMA addr (%llx) is not aligned\n",
  3881. channel, (unsigned long long)rp->descr_dma);
  3882. return -EINVAL;
  3883. }
  3884. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3885. * blocks. rp->pending is the number of TX descriptors in
  3886. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3887. * to get the proper value the chip wants.
  3888. */
  3889. ring_len = (rp->pending / 8);
  3890. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3891. rp->descr_dma);
  3892. nw64(TX_RNG_CFIG(channel), val);
  3893. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3894. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3895. netdev_err(np->dev, "TX ring channel %d MBOX addr (%llx) has invalid bits\n",
  3896. channel, (unsigned long long)rp->mbox_dma);
  3897. return -EINVAL;
  3898. }
  3899. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3900. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3901. nw64(TX_CS(channel), 0);
  3902. rp->last_pkt_cnt = 0;
  3903. return 0;
  3904. }
  3905. static void niu_init_rdc_groups(struct niu *np)
  3906. {
  3907. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3908. int i, first_table_num = tp->first_table_num;
  3909. for (i = 0; i < tp->num_tables; i++) {
  3910. struct rdc_table *tbl = &tp->tables[i];
  3911. int this_table = first_table_num + i;
  3912. int slot;
  3913. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3914. nw64(RDC_TBL(this_table, slot),
  3915. tbl->rxdma_channel[slot]);
  3916. }
  3917. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3918. }
  3919. static void niu_init_drr_weight(struct niu *np)
  3920. {
  3921. int type = phy_decode(np->parent->port_phy, np->port);
  3922. u64 val;
  3923. switch (type) {
  3924. case PORT_TYPE_10G:
  3925. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3926. break;
  3927. case PORT_TYPE_1G:
  3928. default:
  3929. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3930. break;
  3931. }
  3932. nw64(PT_DRR_WT(np->port), val);
  3933. }
  3934. static int niu_init_hostinfo(struct niu *np)
  3935. {
  3936. struct niu_parent *parent = np->parent;
  3937. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3938. int i, err, num_alt = niu_num_alt_addr(np);
  3939. int first_rdc_table = tp->first_table_num;
  3940. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3941. if (err)
  3942. return err;
  3943. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3944. if (err)
  3945. return err;
  3946. for (i = 0; i < num_alt; i++) {
  3947. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3948. if (err)
  3949. return err;
  3950. }
  3951. return 0;
  3952. }
  3953. static int niu_rx_channel_reset(struct niu *np, int channel)
  3954. {
  3955. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3956. RXDMA_CFIG1_RST, 1000, 10,
  3957. "RXDMA_CFIG1");
  3958. }
  3959. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3960. {
  3961. u64 val;
  3962. nw64(RX_LOG_MASK1(channel), 0);
  3963. nw64(RX_LOG_VAL1(channel), 0);
  3964. nw64(RX_LOG_MASK2(channel), 0);
  3965. nw64(RX_LOG_VAL2(channel), 0);
  3966. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3967. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3968. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3969. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3970. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3971. nw64(RX_LOG_PAGE_VLD(channel), val);
  3972. return 0;
  3973. }
  3974. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3975. {
  3976. u64 val;
  3977. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3978. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3979. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3980. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3981. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3982. }
  3983. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3984. {
  3985. u64 val = 0;
  3986. *ret = 0;
  3987. switch (rp->rbr_block_size) {
  3988. case 4 * 1024:
  3989. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3990. break;
  3991. case 8 * 1024:
  3992. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3993. break;
  3994. case 16 * 1024:
  3995. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3996. break;
  3997. case 32 * 1024:
  3998. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3999. break;
  4000. default:
  4001. return -EINVAL;
  4002. }
  4003. val |= RBR_CFIG_B_VLD2;
  4004. switch (rp->rbr_sizes[2]) {
  4005. case 2 * 1024:
  4006. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4007. break;
  4008. case 4 * 1024:
  4009. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4010. break;
  4011. case 8 * 1024:
  4012. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4013. break;
  4014. case 16 * 1024:
  4015. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4016. break;
  4017. default:
  4018. return -EINVAL;
  4019. }
  4020. val |= RBR_CFIG_B_VLD1;
  4021. switch (rp->rbr_sizes[1]) {
  4022. case 1 * 1024:
  4023. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4024. break;
  4025. case 2 * 1024:
  4026. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4027. break;
  4028. case 4 * 1024:
  4029. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4030. break;
  4031. case 8 * 1024:
  4032. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4033. break;
  4034. default:
  4035. return -EINVAL;
  4036. }
  4037. val |= RBR_CFIG_B_VLD0;
  4038. switch (rp->rbr_sizes[0]) {
  4039. case 256:
  4040. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4041. break;
  4042. case 512:
  4043. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4044. break;
  4045. case 1 * 1024:
  4046. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4047. break;
  4048. case 2 * 1024:
  4049. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4050. break;
  4051. default:
  4052. return -EINVAL;
  4053. }
  4054. *ret = val;
  4055. return 0;
  4056. }
  4057. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4058. {
  4059. u64 val = nr64(RXDMA_CFIG1(channel));
  4060. int limit;
  4061. if (on)
  4062. val |= RXDMA_CFIG1_EN;
  4063. else
  4064. val &= ~RXDMA_CFIG1_EN;
  4065. nw64(RXDMA_CFIG1(channel), val);
  4066. limit = 1000;
  4067. while (--limit > 0) {
  4068. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4069. break;
  4070. udelay(10);
  4071. }
  4072. if (limit <= 0)
  4073. return -ENODEV;
  4074. return 0;
  4075. }
  4076. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4077. {
  4078. int err, channel = rp->rx_channel;
  4079. u64 val;
  4080. err = niu_rx_channel_reset(np, channel);
  4081. if (err)
  4082. return err;
  4083. err = niu_rx_channel_lpage_init(np, channel);
  4084. if (err)
  4085. return err;
  4086. niu_rx_channel_wred_init(np, rp);
  4087. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4088. nw64(RX_DMA_CTL_STAT(channel),
  4089. (RX_DMA_CTL_STAT_MEX |
  4090. RX_DMA_CTL_STAT_RCRTHRES |
  4091. RX_DMA_CTL_STAT_RCRTO |
  4092. RX_DMA_CTL_STAT_RBR_EMPTY));
  4093. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4094. nw64(RXDMA_CFIG2(channel),
  4095. ((rp->mbox_dma & RXDMA_CFIG2_MBADDR_L) |
  4096. RXDMA_CFIG2_FULL_HDR));
  4097. nw64(RBR_CFIG_A(channel),
  4098. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4099. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4100. err = niu_compute_rbr_cfig_b(rp, &val);
  4101. if (err)
  4102. return err;
  4103. nw64(RBR_CFIG_B(channel), val);
  4104. nw64(RCRCFIG_A(channel),
  4105. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4106. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4107. nw64(RCRCFIG_B(channel),
  4108. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4109. RCRCFIG_B_ENTOUT |
  4110. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4111. err = niu_enable_rx_channel(np, channel, 1);
  4112. if (err)
  4113. return err;
  4114. nw64(RBR_KICK(channel), rp->rbr_index);
  4115. val = nr64(RX_DMA_CTL_STAT(channel));
  4116. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4117. nw64(RX_DMA_CTL_STAT(channel), val);
  4118. return 0;
  4119. }
  4120. static int niu_init_rx_channels(struct niu *np)
  4121. {
  4122. unsigned long flags;
  4123. u64 seed = jiffies_64;
  4124. int err, i;
  4125. niu_lock_parent(np, flags);
  4126. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4127. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4128. niu_unlock_parent(np, flags);
  4129. /* XXX RXDMA 32bit mode? XXX */
  4130. niu_init_rdc_groups(np);
  4131. niu_init_drr_weight(np);
  4132. err = niu_init_hostinfo(np);
  4133. if (err)
  4134. return err;
  4135. for (i = 0; i < np->num_rx_rings; i++) {
  4136. struct rx_ring_info *rp = &np->rx_rings[i];
  4137. err = niu_init_one_rx_channel(np, rp);
  4138. if (err)
  4139. return err;
  4140. }
  4141. return 0;
  4142. }
  4143. static int niu_set_ip_frag_rule(struct niu *np)
  4144. {
  4145. struct niu_parent *parent = np->parent;
  4146. struct niu_classifier *cp = &np->clas;
  4147. struct niu_tcam_entry *tp;
  4148. int index, err;
  4149. index = cp->tcam_top;
  4150. tp = &parent->tcam[index];
  4151. /* Note that the noport bit is the same in both ipv4 and
  4152. * ipv6 format TCAM entries.
  4153. */
  4154. memset(tp, 0, sizeof(*tp));
  4155. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4156. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4157. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4158. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4159. err = tcam_write(np, index, tp->key, tp->key_mask);
  4160. if (err)
  4161. return err;
  4162. err = tcam_assoc_write(np, index, tp->assoc_data);
  4163. if (err)
  4164. return err;
  4165. tp->valid = 1;
  4166. cp->tcam_valid_entries++;
  4167. return 0;
  4168. }
  4169. static int niu_init_classifier_hw(struct niu *np)
  4170. {
  4171. struct niu_parent *parent = np->parent;
  4172. struct niu_classifier *cp = &np->clas;
  4173. int i, err;
  4174. nw64(H1POLY, cp->h1_init);
  4175. nw64(H2POLY, cp->h2_init);
  4176. err = niu_init_hostinfo(np);
  4177. if (err)
  4178. return err;
  4179. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4180. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4181. vlan_tbl_write(np, i, np->port,
  4182. vp->vlan_pref, vp->rdc_num);
  4183. }
  4184. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4185. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4186. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4187. ap->rdc_num, ap->mac_pref);
  4188. if (err)
  4189. return err;
  4190. }
  4191. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4192. int index = i - CLASS_CODE_USER_PROG1;
  4193. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4194. if (err)
  4195. return err;
  4196. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4197. if (err)
  4198. return err;
  4199. }
  4200. err = niu_set_ip_frag_rule(np);
  4201. if (err)
  4202. return err;
  4203. tcam_enable(np, 1);
  4204. return 0;
  4205. }
  4206. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4207. {
  4208. nw64(ZCP_RAM_DATA0, data[0]);
  4209. nw64(ZCP_RAM_DATA1, data[1]);
  4210. nw64(ZCP_RAM_DATA2, data[2]);
  4211. nw64(ZCP_RAM_DATA3, data[3]);
  4212. nw64(ZCP_RAM_DATA4, data[4]);
  4213. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4214. nw64(ZCP_RAM_ACC,
  4215. (ZCP_RAM_ACC_WRITE |
  4216. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4217. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4218. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4219. 1000, 100);
  4220. }
  4221. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4222. {
  4223. int err;
  4224. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4225. 1000, 100);
  4226. if (err) {
  4227. netdev_err(np->dev, "ZCP read busy won't clear, ZCP_RAM_ACC[%llx]\n",
  4228. (unsigned long long)nr64(ZCP_RAM_ACC));
  4229. return err;
  4230. }
  4231. nw64(ZCP_RAM_ACC,
  4232. (ZCP_RAM_ACC_READ |
  4233. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4234. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4235. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4236. 1000, 100);
  4237. if (err) {
  4238. netdev_err(np->dev, "ZCP read busy2 won't clear, ZCP_RAM_ACC[%llx]\n",
  4239. (unsigned long long)nr64(ZCP_RAM_ACC));
  4240. return err;
  4241. }
  4242. data[0] = nr64(ZCP_RAM_DATA0);
  4243. data[1] = nr64(ZCP_RAM_DATA1);
  4244. data[2] = nr64(ZCP_RAM_DATA2);
  4245. data[3] = nr64(ZCP_RAM_DATA3);
  4246. data[4] = nr64(ZCP_RAM_DATA4);
  4247. return 0;
  4248. }
  4249. static void niu_zcp_cfifo_reset(struct niu *np)
  4250. {
  4251. u64 val = nr64(RESET_CFIFO);
  4252. val |= RESET_CFIFO_RST(np->port);
  4253. nw64(RESET_CFIFO, val);
  4254. udelay(10);
  4255. val &= ~RESET_CFIFO_RST(np->port);
  4256. nw64(RESET_CFIFO, val);
  4257. }
  4258. static int niu_init_zcp(struct niu *np)
  4259. {
  4260. u64 data[5], rbuf[5];
  4261. int i, max, err;
  4262. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4263. if (np->port == 0 || np->port == 1)
  4264. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4265. else
  4266. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4267. } else
  4268. max = NIU_CFIFO_ENTRIES;
  4269. data[0] = 0;
  4270. data[1] = 0;
  4271. data[2] = 0;
  4272. data[3] = 0;
  4273. data[4] = 0;
  4274. for (i = 0; i < max; i++) {
  4275. err = niu_zcp_write(np, i, data);
  4276. if (err)
  4277. return err;
  4278. err = niu_zcp_read(np, i, rbuf);
  4279. if (err)
  4280. return err;
  4281. }
  4282. niu_zcp_cfifo_reset(np);
  4283. nw64(CFIFO_ECC(np->port), 0);
  4284. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4285. (void) nr64(ZCP_INT_STAT);
  4286. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4287. return 0;
  4288. }
  4289. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4290. {
  4291. u64 val = nr64_ipp(IPP_CFIG);
  4292. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4293. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4294. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4295. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4296. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4297. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4298. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4299. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4300. }
  4301. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4302. {
  4303. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4304. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4305. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4306. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4307. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4308. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4309. }
  4310. static int niu_ipp_reset(struct niu *np)
  4311. {
  4312. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4313. 1000, 100, "IPP_CFIG");
  4314. }
  4315. static int niu_init_ipp(struct niu *np)
  4316. {
  4317. u64 data[5], rbuf[5], val;
  4318. int i, max, err;
  4319. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4320. if (np->port == 0 || np->port == 1)
  4321. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4322. else
  4323. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4324. } else
  4325. max = NIU_DFIFO_ENTRIES;
  4326. data[0] = 0;
  4327. data[1] = 0;
  4328. data[2] = 0;
  4329. data[3] = 0;
  4330. data[4] = 0;
  4331. for (i = 0; i < max; i++) {
  4332. niu_ipp_write(np, i, data);
  4333. niu_ipp_read(np, i, rbuf);
  4334. }
  4335. (void) nr64_ipp(IPP_INT_STAT);
  4336. (void) nr64_ipp(IPP_INT_STAT);
  4337. err = niu_ipp_reset(np);
  4338. if (err)
  4339. return err;
  4340. (void) nr64_ipp(IPP_PKT_DIS);
  4341. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4342. (void) nr64_ipp(IPP_ECC);
  4343. (void) nr64_ipp(IPP_INT_STAT);
  4344. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4345. val = nr64_ipp(IPP_CFIG);
  4346. val &= ~IPP_CFIG_IP_MAX_PKT;
  4347. val |= (IPP_CFIG_IPP_ENABLE |
  4348. IPP_CFIG_DFIFO_ECC_EN |
  4349. IPP_CFIG_DROP_BAD_CRC |
  4350. IPP_CFIG_CKSUM_EN |
  4351. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4352. nw64_ipp(IPP_CFIG, val);
  4353. return 0;
  4354. }
  4355. static void niu_handle_led(struct niu *np, int status)
  4356. {
  4357. u64 val;
  4358. val = nr64_mac(XMAC_CONFIG);
  4359. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4360. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4361. if (status) {
  4362. val |= XMAC_CONFIG_LED_POLARITY;
  4363. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4364. } else {
  4365. val |= XMAC_CONFIG_FORCE_LED_ON;
  4366. val &= ~XMAC_CONFIG_LED_POLARITY;
  4367. }
  4368. }
  4369. nw64_mac(XMAC_CONFIG, val);
  4370. }
  4371. static void niu_init_xif_xmac(struct niu *np)
  4372. {
  4373. struct niu_link_config *lp = &np->link_config;
  4374. u64 val;
  4375. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4376. val = nr64(MIF_CONFIG);
  4377. val |= MIF_CONFIG_ATCA_GE;
  4378. nw64(MIF_CONFIG, val);
  4379. }
  4380. val = nr64_mac(XMAC_CONFIG);
  4381. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4382. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4383. if (lp->loopback_mode == LOOPBACK_MAC) {
  4384. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4385. val |= XMAC_CONFIG_LOOPBACK;
  4386. } else {
  4387. val &= ~XMAC_CONFIG_LOOPBACK;
  4388. }
  4389. if (np->flags & NIU_FLAGS_10G) {
  4390. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4391. } else {
  4392. val |= XMAC_CONFIG_LFS_DISABLE;
  4393. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4394. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4395. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4396. else
  4397. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4398. }
  4399. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4400. if (lp->active_speed == SPEED_100)
  4401. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4402. else
  4403. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4404. nw64_mac(XMAC_CONFIG, val);
  4405. val = nr64_mac(XMAC_CONFIG);
  4406. val &= ~XMAC_CONFIG_MODE_MASK;
  4407. if (np->flags & NIU_FLAGS_10G) {
  4408. val |= XMAC_CONFIG_MODE_XGMII;
  4409. } else {
  4410. if (lp->active_speed == SPEED_1000)
  4411. val |= XMAC_CONFIG_MODE_GMII;
  4412. else
  4413. val |= XMAC_CONFIG_MODE_MII;
  4414. }
  4415. nw64_mac(XMAC_CONFIG, val);
  4416. }
  4417. static void niu_init_xif_bmac(struct niu *np)
  4418. {
  4419. struct niu_link_config *lp = &np->link_config;
  4420. u64 val;
  4421. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4422. if (lp->loopback_mode == LOOPBACK_MAC)
  4423. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4424. else
  4425. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4426. if (lp->active_speed == SPEED_1000)
  4427. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4428. else
  4429. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4430. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4431. BMAC_XIF_CONFIG_LED_POLARITY);
  4432. if (!(np->flags & NIU_FLAGS_10G) &&
  4433. !(np->flags & NIU_FLAGS_FIBER) &&
  4434. lp->active_speed == SPEED_100)
  4435. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4436. else
  4437. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4438. nw64_mac(BMAC_XIF_CONFIG, val);
  4439. }
  4440. static void niu_init_xif(struct niu *np)
  4441. {
  4442. if (np->flags & NIU_FLAGS_XMAC)
  4443. niu_init_xif_xmac(np);
  4444. else
  4445. niu_init_xif_bmac(np);
  4446. }
  4447. static void niu_pcs_mii_reset(struct niu *np)
  4448. {
  4449. int limit = 1000;
  4450. u64 val = nr64_pcs(PCS_MII_CTL);
  4451. val |= PCS_MII_CTL_RST;
  4452. nw64_pcs(PCS_MII_CTL, val);
  4453. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4454. udelay(100);
  4455. val = nr64_pcs(PCS_MII_CTL);
  4456. }
  4457. }
  4458. static void niu_xpcs_reset(struct niu *np)
  4459. {
  4460. int limit = 1000;
  4461. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4462. val |= XPCS_CONTROL1_RESET;
  4463. nw64_xpcs(XPCS_CONTROL1, val);
  4464. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4465. udelay(100);
  4466. val = nr64_xpcs(XPCS_CONTROL1);
  4467. }
  4468. }
  4469. static int niu_init_pcs(struct niu *np)
  4470. {
  4471. struct niu_link_config *lp = &np->link_config;
  4472. u64 val;
  4473. switch (np->flags & (NIU_FLAGS_10G |
  4474. NIU_FLAGS_FIBER |
  4475. NIU_FLAGS_XCVR_SERDES)) {
  4476. case NIU_FLAGS_FIBER:
  4477. /* 1G fiber */
  4478. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4479. nw64_pcs(PCS_DPATH_MODE, 0);
  4480. niu_pcs_mii_reset(np);
  4481. break;
  4482. case NIU_FLAGS_10G:
  4483. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4484. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4485. /* 10G SERDES */
  4486. if (!(np->flags & NIU_FLAGS_XMAC))
  4487. return -EINVAL;
  4488. /* 10G copper or fiber */
  4489. val = nr64_mac(XMAC_CONFIG);
  4490. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4491. nw64_mac(XMAC_CONFIG, val);
  4492. niu_xpcs_reset(np);
  4493. val = nr64_xpcs(XPCS_CONTROL1);
  4494. if (lp->loopback_mode == LOOPBACK_PHY)
  4495. val |= XPCS_CONTROL1_LOOPBACK;
  4496. else
  4497. val &= ~XPCS_CONTROL1_LOOPBACK;
  4498. nw64_xpcs(XPCS_CONTROL1, val);
  4499. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4500. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4501. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4502. break;
  4503. case NIU_FLAGS_XCVR_SERDES:
  4504. /* 1G SERDES */
  4505. niu_pcs_mii_reset(np);
  4506. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4507. nw64_pcs(PCS_DPATH_MODE, 0);
  4508. break;
  4509. case 0:
  4510. /* 1G copper */
  4511. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4512. /* 1G RGMII FIBER */
  4513. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4514. niu_pcs_mii_reset(np);
  4515. break;
  4516. default:
  4517. return -EINVAL;
  4518. }
  4519. return 0;
  4520. }
  4521. static int niu_reset_tx_xmac(struct niu *np)
  4522. {
  4523. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4524. (XTXMAC_SW_RST_REG_RS |
  4525. XTXMAC_SW_RST_SOFT_RST),
  4526. 1000, 100, "XTXMAC_SW_RST");
  4527. }
  4528. static int niu_reset_tx_bmac(struct niu *np)
  4529. {
  4530. int limit;
  4531. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4532. limit = 1000;
  4533. while (--limit >= 0) {
  4534. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4535. break;
  4536. udelay(100);
  4537. }
  4538. if (limit < 0) {
  4539. dev_err(np->device, "Port %u TX BMAC would not reset, BTXMAC_SW_RST[%llx]\n",
  4540. np->port,
  4541. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4542. return -ENODEV;
  4543. }
  4544. return 0;
  4545. }
  4546. static int niu_reset_tx_mac(struct niu *np)
  4547. {
  4548. if (np->flags & NIU_FLAGS_XMAC)
  4549. return niu_reset_tx_xmac(np);
  4550. else
  4551. return niu_reset_tx_bmac(np);
  4552. }
  4553. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4554. {
  4555. u64 val;
  4556. val = nr64_mac(XMAC_MIN);
  4557. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4558. XMAC_MIN_RX_MIN_PKT_SIZE);
  4559. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4560. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4561. nw64_mac(XMAC_MIN, val);
  4562. nw64_mac(XMAC_MAX, max);
  4563. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4564. val = nr64_mac(XMAC_IPG);
  4565. if (np->flags & NIU_FLAGS_10G) {
  4566. val &= ~XMAC_IPG_IPG_XGMII;
  4567. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4568. } else {
  4569. val &= ~XMAC_IPG_IPG_MII_GMII;
  4570. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4571. }
  4572. nw64_mac(XMAC_IPG, val);
  4573. val = nr64_mac(XMAC_CONFIG);
  4574. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4575. XMAC_CONFIG_STRETCH_MODE |
  4576. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4577. XMAC_CONFIG_TX_ENABLE);
  4578. nw64_mac(XMAC_CONFIG, val);
  4579. nw64_mac(TXMAC_FRM_CNT, 0);
  4580. nw64_mac(TXMAC_BYTE_CNT, 0);
  4581. }
  4582. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4583. {
  4584. u64 val;
  4585. nw64_mac(BMAC_MIN_FRAME, min);
  4586. nw64_mac(BMAC_MAX_FRAME, max);
  4587. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4588. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4589. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4590. val = nr64_mac(BTXMAC_CONFIG);
  4591. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4592. BTXMAC_CONFIG_ENABLE);
  4593. nw64_mac(BTXMAC_CONFIG, val);
  4594. }
  4595. static void niu_init_tx_mac(struct niu *np)
  4596. {
  4597. u64 min, max;
  4598. min = 64;
  4599. if (np->dev->mtu > ETH_DATA_LEN)
  4600. max = 9216;
  4601. else
  4602. max = 1522;
  4603. /* The XMAC_MIN register only accepts values for TX min which
  4604. * have the low 3 bits cleared.
  4605. */
  4606. BUG_ON(min & 0x7);
  4607. if (np->flags & NIU_FLAGS_XMAC)
  4608. niu_init_tx_xmac(np, min, max);
  4609. else
  4610. niu_init_tx_bmac(np, min, max);
  4611. }
  4612. static int niu_reset_rx_xmac(struct niu *np)
  4613. {
  4614. int limit;
  4615. nw64_mac(XRXMAC_SW_RST,
  4616. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4617. limit = 1000;
  4618. while (--limit >= 0) {
  4619. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4620. XRXMAC_SW_RST_SOFT_RST)))
  4621. break;
  4622. udelay(100);
  4623. }
  4624. if (limit < 0) {
  4625. dev_err(np->device, "Port %u RX XMAC would not reset, XRXMAC_SW_RST[%llx]\n",
  4626. np->port,
  4627. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4628. return -ENODEV;
  4629. }
  4630. return 0;
  4631. }
  4632. static int niu_reset_rx_bmac(struct niu *np)
  4633. {
  4634. int limit;
  4635. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4636. limit = 1000;
  4637. while (--limit >= 0) {
  4638. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4639. break;
  4640. udelay(100);
  4641. }
  4642. if (limit < 0) {
  4643. dev_err(np->device, "Port %u RX BMAC would not reset, BRXMAC_SW_RST[%llx]\n",
  4644. np->port,
  4645. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4646. return -ENODEV;
  4647. }
  4648. return 0;
  4649. }
  4650. static int niu_reset_rx_mac(struct niu *np)
  4651. {
  4652. if (np->flags & NIU_FLAGS_XMAC)
  4653. return niu_reset_rx_xmac(np);
  4654. else
  4655. return niu_reset_rx_bmac(np);
  4656. }
  4657. static void niu_init_rx_xmac(struct niu *np)
  4658. {
  4659. struct niu_parent *parent = np->parent;
  4660. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4661. int first_rdc_table = tp->first_table_num;
  4662. unsigned long i;
  4663. u64 val;
  4664. nw64_mac(XMAC_ADD_FILT0, 0);
  4665. nw64_mac(XMAC_ADD_FILT1, 0);
  4666. nw64_mac(XMAC_ADD_FILT2, 0);
  4667. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4668. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4669. for (i = 0; i < MAC_NUM_HASH; i++)
  4670. nw64_mac(XMAC_HASH_TBL(i), 0);
  4671. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4672. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4673. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4674. val = nr64_mac(XMAC_CONFIG);
  4675. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4676. XMAC_CONFIG_PROMISCUOUS |
  4677. XMAC_CONFIG_PROMISC_GROUP |
  4678. XMAC_CONFIG_ERR_CHK_DIS |
  4679. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4680. XMAC_CONFIG_RESERVED_MULTICAST |
  4681. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4682. XMAC_CONFIG_ADDR_FILTER_EN |
  4683. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4684. XMAC_CONFIG_STRIP_CRC |
  4685. XMAC_CONFIG_PASS_FLOW_CTRL |
  4686. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4687. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4688. nw64_mac(XMAC_CONFIG, val);
  4689. nw64_mac(RXMAC_BT_CNT, 0);
  4690. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4691. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4692. nw64_mac(RXMAC_FRAG_CNT, 0);
  4693. nw64_mac(RXMAC_HIST_CNT1, 0);
  4694. nw64_mac(RXMAC_HIST_CNT2, 0);
  4695. nw64_mac(RXMAC_HIST_CNT3, 0);
  4696. nw64_mac(RXMAC_HIST_CNT4, 0);
  4697. nw64_mac(RXMAC_HIST_CNT5, 0);
  4698. nw64_mac(RXMAC_HIST_CNT6, 0);
  4699. nw64_mac(RXMAC_HIST_CNT7, 0);
  4700. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4701. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4702. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4703. nw64_mac(LINK_FAULT_CNT, 0);
  4704. }
  4705. static void niu_init_rx_bmac(struct niu *np)
  4706. {
  4707. struct niu_parent *parent = np->parent;
  4708. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4709. int first_rdc_table = tp->first_table_num;
  4710. unsigned long i;
  4711. u64 val;
  4712. nw64_mac(BMAC_ADD_FILT0, 0);
  4713. nw64_mac(BMAC_ADD_FILT1, 0);
  4714. nw64_mac(BMAC_ADD_FILT2, 0);
  4715. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4716. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4717. for (i = 0; i < MAC_NUM_HASH; i++)
  4718. nw64_mac(BMAC_HASH_TBL(i), 0);
  4719. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4720. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4721. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4722. val = nr64_mac(BRXMAC_CONFIG);
  4723. val &= ~(BRXMAC_CONFIG_ENABLE |
  4724. BRXMAC_CONFIG_STRIP_PAD |
  4725. BRXMAC_CONFIG_STRIP_FCS |
  4726. BRXMAC_CONFIG_PROMISC |
  4727. BRXMAC_CONFIG_PROMISC_GRP |
  4728. BRXMAC_CONFIG_ADDR_FILT_EN |
  4729. BRXMAC_CONFIG_DISCARD_DIS);
  4730. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4731. nw64_mac(BRXMAC_CONFIG, val);
  4732. val = nr64_mac(BMAC_ADDR_CMPEN);
  4733. val |= BMAC_ADDR_CMPEN_EN0;
  4734. nw64_mac(BMAC_ADDR_CMPEN, val);
  4735. }
  4736. static void niu_init_rx_mac(struct niu *np)
  4737. {
  4738. niu_set_primary_mac(np, np->dev->dev_addr);
  4739. if (np->flags & NIU_FLAGS_XMAC)
  4740. niu_init_rx_xmac(np);
  4741. else
  4742. niu_init_rx_bmac(np);
  4743. }
  4744. static void niu_enable_tx_xmac(struct niu *np, int on)
  4745. {
  4746. u64 val = nr64_mac(XMAC_CONFIG);
  4747. if (on)
  4748. val |= XMAC_CONFIG_TX_ENABLE;
  4749. else
  4750. val &= ~XMAC_CONFIG_TX_ENABLE;
  4751. nw64_mac(XMAC_CONFIG, val);
  4752. }
  4753. static void niu_enable_tx_bmac(struct niu *np, int on)
  4754. {
  4755. u64 val = nr64_mac(BTXMAC_CONFIG);
  4756. if (on)
  4757. val |= BTXMAC_CONFIG_ENABLE;
  4758. else
  4759. val &= ~BTXMAC_CONFIG_ENABLE;
  4760. nw64_mac(BTXMAC_CONFIG, val);
  4761. }
  4762. static void niu_enable_tx_mac(struct niu *np, int on)
  4763. {
  4764. if (np->flags & NIU_FLAGS_XMAC)
  4765. niu_enable_tx_xmac(np, on);
  4766. else
  4767. niu_enable_tx_bmac(np, on);
  4768. }
  4769. static void niu_enable_rx_xmac(struct niu *np, int on)
  4770. {
  4771. u64 val = nr64_mac(XMAC_CONFIG);
  4772. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4773. XMAC_CONFIG_PROMISCUOUS);
  4774. if (np->flags & NIU_FLAGS_MCAST)
  4775. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4776. if (np->flags & NIU_FLAGS_PROMISC)
  4777. val |= XMAC_CONFIG_PROMISCUOUS;
  4778. if (on)
  4779. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4780. else
  4781. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4782. nw64_mac(XMAC_CONFIG, val);
  4783. }
  4784. static void niu_enable_rx_bmac(struct niu *np, int on)
  4785. {
  4786. u64 val = nr64_mac(BRXMAC_CONFIG);
  4787. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4788. BRXMAC_CONFIG_PROMISC);
  4789. if (np->flags & NIU_FLAGS_MCAST)
  4790. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4791. if (np->flags & NIU_FLAGS_PROMISC)
  4792. val |= BRXMAC_CONFIG_PROMISC;
  4793. if (on)
  4794. val |= BRXMAC_CONFIG_ENABLE;
  4795. else
  4796. val &= ~BRXMAC_CONFIG_ENABLE;
  4797. nw64_mac(BRXMAC_CONFIG, val);
  4798. }
  4799. static void niu_enable_rx_mac(struct niu *np, int on)
  4800. {
  4801. if (np->flags & NIU_FLAGS_XMAC)
  4802. niu_enable_rx_xmac(np, on);
  4803. else
  4804. niu_enable_rx_bmac(np, on);
  4805. }
  4806. static int niu_init_mac(struct niu *np)
  4807. {
  4808. int err;
  4809. niu_init_xif(np);
  4810. err = niu_init_pcs(np);
  4811. if (err)
  4812. return err;
  4813. err = niu_reset_tx_mac(np);
  4814. if (err)
  4815. return err;
  4816. niu_init_tx_mac(np);
  4817. err = niu_reset_rx_mac(np);
  4818. if (err)
  4819. return err;
  4820. niu_init_rx_mac(np);
  4821. /* This looks hookey but the RX MAC reset we just did will
  4822. * undo some of the state we setup in niu_init_tx_mac() so we
  4823. * have to call it again. In particular, the RX MAC reset will
  4824. * set the XMAC_MAX register back to it's default value.
  4825. */
  4826. niu_init_tx_mac(np);
  4827. niu_enable_tx_mac(np, 1);
  4828. niu_enable_rx_mac(np, 1);
  4829. return 0;
  4830. }
  4831. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4832. {
  4833. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4834. }
  4835. static void niu_stop_tx_channels(struct niu *np)
  4836. {
  4837. int i;
  4838. for (i = 0; i < np->num_tx_rings; i++) {
  4839. struct tx_ring_info *rp = &np->tx_rings[i];
  4840. niu_stop_one_tx_channel(np, rp);
  4841. }
  4842. }
  4843. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4844. {
  4845. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4846. }
  4847. static void niu_reset_tx_channels(struct niu *np)
  4848. {
  4849. int i;
  4850. for (i = 0; i < np->num_tx_rings; i++) {
  4851. struct tx_ring_info *rp = &np->tx_rings[i];
  4852. niu_reset_one_tx_channel(np, rp);
  4853. }
  4854. }
  4855. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4856. {
  4857. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4858. }
  4859. static void niu_stop_rx_channels(struct niu *np)
  4860. {
  4861. int i;
  4862. for (i = 0; i < np->num_rx_rings; i++) {
  4863. struct rx_ring_info *rp = &np->rx_rings[i];
  4864. niu_stop_one_rx_channel(np, rp);
  4865. }
  4866. }
  4867. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4868. {
  4869. int channel = rp->rx_channel;
  4870. (void) niu_rx_channel_reset(np, channel);
  4871. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4872. nw64(RX_DMA_CTL_STAT(channel), 0);
  4873. (void) niu_enable_rx_channel(np, channel, 0);
  4874. }
  4875. static void niu_reset_rx_channels(struct niu *np)
  4876. {
  4877. int i;
  4878. for (i = 0; i < np->num_rx_rings; i++) {
  4879. struct rx_ring_info *rp = &np->rx_rings[i];
  4880. niu_reset_one_rx_channel(np, rp);
  4881. }
  4882. }
  4883. static void niu_disable_ipp(struct niu *np)
  4884. {
  4885. u64 rd, wr, val;
  4886. int limit;
  4887. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4888. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4889. limit = 100;
  4890. while (--limit >= 0 && (rd != wr)) {
  4891. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4892. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4893. }
  4894. if (limit < 0 &&
  4895. (rd != 0 && wr != 1)) {
  4896. netdev_err(np->dev, "IPP would not quiesce, rd_ptr[%llx] wr_ptr[%llx]\n",
  4897. (unsigned long long)nr64_ipp(IPP_DFIFO_RD_PTR),
  4898. (unsigned long long)nr64_ipp(IPP_DFIFO_WR_PTR));
  4899. }
  4900. val = nr64_ipp(IPP_CFIG);
  4901. val &= ~(IPP_CFIG_IPP_ENABLE |
  4902. IPP_CFIG_DFIFO_ECC_EN |
  4903. IPP_CFIG_DROP_BAD_CRC |
  4904. IPP_CFIG_CKSUM_EN);
  4905. nw64_ipp(IPP_CFIG, val);
  4906. (void) niu_ipp_reset(np);
  4907. }
  4908. static int niu_init_hw(struct niu *np)
  4909. {
  4910. int i, err;
  4911. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TXC\n");
  4912. niu_txc_enable_port(np, 1);
  4913. niu_txc_port_dma_enable(np, 1);
  4914. niu_txc_set_imask(np, 0);
  4915. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TX channels\n");
  4916. for (i = 0; i < np->num_tx_rings; i++) {
  4917. struct tx_ring_info *rp = &np->tx_rings[i];
  4918. err = niu_init_one_tx_channel(np, rp);
  4919. if (err)
  4920. return err;
  4921. }
  4922. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize RX channels\n");
  4923. err = niu_init_rx_channels(np);
  4924. if (err)
  4925. goto out_uninit_tx_channels;
  4926. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize classifier\n");
  4927. err = niu_init_classifier_hw(np);
  4928. if (err)
  4929. goto out_uninit_rx_channels;
  4930. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize ZCP\n");
  4931. err = niu_init_zcp(np);
  4932. if (err)
  4933. goto out_uninit_rx_channels;
  4934. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize IPP\n");
  4935. err = niu_init_ipp(np);
  4936. if (err)
  4937. goto out_uninit_rx_channels;
  4938. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize MAC\n");
  4939. err = niu_init_mac(np);
  4940. if (err)
  4941. goto out_uninit_ipp;
  4942. return 0;
  4943. out_uninit_ipp:
  4944. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit IPP\n");
  4945. niu_disable_ipp(np);
  4946. out_uninit_rx_channels:
  4947. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit RX channels\n");
  4948. niu_stop_rx_channels(np);
  4949. niu_reset_rx_channels(np);
  4950. out_uninit_tx_channels:
  4951. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit TX channels\n");
  4952. niu_stop_tx_channels(np);
  4953. niu_reset_tx_channels(np);
  4954. return err;
  4955. }
  4956. static void niu_stop_hw(struct niu *np)
  4957. {
  4958. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable interrupts\n");
  4959. niu_enable_interrupts(np, 0);
  4960. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable RX MAC\n");
  4961. niu_enable_rx_mac(np, 0);
  4962. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable IPP\n");
  4963. niu_disable_ipp(np);
  4964. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop TX channels\n");
  4965. niu_stop_tx_channels(np);
  4966. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop RX channels\n");
  4967. niu_stop_rx_channels(np);
  4968. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset TX channels\n");
  4969. niu_reset_tx_channels(np);
  4970. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset RX channels\n");
  4971. niu_reset_rx_channels(np);
  4972. }
  4973. static void niu_set_irq_name(struct niu *np)
  4974. {
  4975. int port = np->port;
  4976. int i, j = 1;
  4977. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4978. if (port == 0) {
  4979. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4980. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4981. j = 3;
  4982. }
  4983. for (i = 0; i < np->num_ldg - j; i++) {
  4984. if (i < np->num_rx_rings)
  4985. sprintf(np->irq_name[i+j], "%s-rx-%d",
  4986. np->dev->name, i);
  4987. else if (i < np->num_tx_rings + np->num_rx_rings)
  4988. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  4989. i - np->num_rx_rings);
  4990. }
  4991. }
  4992. static int niu_request_irq(struct niu *np)
  4993. {
  4994. int i, j, err;
  4995. niu_set_irq_name(np);
  4996. err = 0;
  4997. for (i = 0; i < np->num_ldg; i++) {
  4998. struct niu_ldg *lp = &np->ldg[i];
  4999. err = request_irq(lp->irq, niu_interrupt, IRQF_SHARED,
  5000. np->irq_name[i], lp);
  5001. if (err)
  5002. goto out_free_irqs;
  5003. }
  5004. return 0;
  5005. out_free_irqs:
  5006. for (j = 0; j < i; j++) {
  5007. struct niu_ldg *lp = &np->ldg[j];
  5008. free_irq(lp->irq, lp);
  5009. }
  5010. return err;
  5011. }
  5012. static void niu_free_irq(struct niu *np)
  5013. {
  5014. int i;
  5015. for (i = 0; i < np->num_ldg; i++) {
  5016. struct niu_ldg *lp = &np->ldg[i];
  5017. free_irq(lp->irq, lp);
  5018. }
  5019. }
  5020. static void niu_enable_napi(struct niu *np)
  5021. {
  5022. int i;
  5023. for (i = 0; i < np->num_ldg; i++)
  5024. napi_enable(&np->ldg[i].napi);
  5025. }
  5026. static void niu_disable_napi(struct niu *np)
  5027. {
  5028. int i;
  5029. for (i = 0; i < np->num_ldg; i++)
  5030. napi_disable(&np->ldg[i].napi);
  5031. }
  5032. static int niu_open(struct net_device *dev)
  5033. {
  5034. struct niu *np = netdev_priv(dev);
  5035. int err;
  5036. netif_carrier_off(dev);
  5037. err = niu_alloc_channels(np);
  5038. if (err)
  5039. goto out_err;
  5040. err = niu_enable_interrupts(np, 0);
  5041. if (err)
  5042. goto out_free_channels;
  5043. err = niu_request_irq(np);
  5044. if (err)
  5045. goto out_free_channels;
  5046. niu_enable_napi(np);
  5047. spin_lock_irq(&np->lock);
  5048. err = niu_init_hw(np);
  5049. if (!err) {
  5050. init_timer(&np->timer);
  5051. np->timer.expires = jiffies + HZ;
  5052. np->timer.data = (unsigned long) np;
  5053. np->timer.function = niu_timer;
  5054. err = niu_enable_interrupts(np, 1);
  5055. if (err)
  5056. niu_stop_hw(np);
  5057. }
  5058. spin_unlock_irq(&np->lock);
  5059. if (err) {
  5060. niu_disable_napi(np);
  5061. goto out_free_irq;
  5062. }
  5063. netif_tx_start_all_queues(dev);
  5064. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5065. netif_carrier_on(dev);
  5066. add_timer(&np->timer);
  5067. return 0;
  5068. out_free_irq:
  5069. niu_free_irq(np);
  5070. out_free_channels:
  5071. niu_free_channels(np);
  5072. out_err:
  5073. return err;
  5074. }
  5075. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5076. {
  5077. cancel_work_sync(&np->reset_task);
  5078. niu_disable_napi(np);
  5079. netif_tx_stop_all_queues(dev);
  5080. del_timer_sync(&np->timer);
  5081. spin_lock_irq(&np->lock);
  5082. niu_stop_hw(np);
  5083. spin_unlock_irq(&np->lock);
  5084. }
  5085. static int niu_close(struct net_device *dev)
  5086. {
  5087. struct niu *np = netdev_priv(dev);
  5088. niu_full_shutdown(np, dev);
  5089. niu_free_irq(np);
  5090. niu_free_channels(np);
  5091. niu_handle_led(np, 0);
  5092. return 0;
  5093. }
  5094. static void niu_sync_xmac_stats(struct niu *np)
  5095. {
  5096. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5097. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5098. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5099. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5100. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5101. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5102. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5103. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5104. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5105. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5106. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5107. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5108. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5109. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5110. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5111. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5112. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5113. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5114. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5115. }
  5116. static void niu_sync_bmac_stats(struct niu *np)
  5117. {
  5118. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5119. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5120. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5121. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5122. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5123. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5124. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5125. }
  5126. static void niu_sync_mac_stats(struct niu *np)
  5127. {
  5128. if (np->flags & NIU_FLAGS_XMAC)
  5129. niu_sync_xmac_stats(np);
  5130. else
  5131. niu_sync_bmac_stats(np);
  5132. }
  5133. static void niu_get_rx_stats(struct niu *np,
  5134. struct rtnl_link_stats64 *stats)
  5135. {
  5136. u64 pkts, dropped, errors, bytes;
  5137. struct rx_ring_info *rx_rings;
  5138. int i;
  5139. pkts = dropped = errors = bytes = 0;
  5140. rx_rings = ACCESS_ONCE(np->rx_rings);
  5141. if (!rx_rings)
  5142. goto no_rings;
  5143. for (i = 0; i < np->num_rx_rings; i++) {
  5144. struct rx_ring_info *rp = &rx_rings[i];
  5145. niu_sync_rx_discard_stats(np, rp, 0);
  5146. pkts += rp->rx_packets;
  5147. bytes += rp->rx_bytes;
  5148. dropped += rp->rx_dropped;
  5149. errors += rp->rx_errors;
  5150. }
  5151. no_rings:
  5152. stats->rx_packets = pkts;
  5153. stats->rx_bytes = bytes;
  5154. stats->rx_dropped = dropped;
  5155. stats->rx_errors = errors;
  5156. }
  5157. static void niu_get_tx_stats(struct niu *np,
  5158. struct rtnl_link_stats64 *stats)
  5159. {
  5160. u64 pkts, errors, bytes;
  5161. struct tx_ring_info *tx_rings;
  5162. int i;
  5163. pkts = errors = bytes = 0;
  5164. tx_rings = ACCESS_ONCE(np->tx_rings);
  5165. if (!tx_rings)
  5166. goto no_rings;
  5167. for (i = 0; i < np->num_tx_rings; i++) {
  5168. struct tx_ring_info *rp = &tx_rings[i];
  5169. pkts += rp->tx_packets;
  5170. bytes += rp->tx_bytes;
  5171. errors += rp->tx_errors;
  5172. }
  5173. no_rings:
  5174. stats->tx_packets = pkts;
  5175. stats->tx_bytes = bytes;
  5176. stats->tx_errors = errors;
  5177. }
  5178. static struct rtnl_link_stats64 *niu_get_stats(struct net_device *dev,
  5179. struct rtnl_link_stats64 *stats)
  5180. {
  5181. struct niu *np = netdev_priv(dev);
  5182. if (netif_running(dev)) {
  5183. niu_get_rx_stats(np, stats);
  5184. niu_get_tx_stats(np, stats);
  5185. }
  5186. return stats;
  5187. }
  5188. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5189. {
  5190. int i;
  5191. for (i = 0; i < 16; i++)
  5192. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5193. }
  5194. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5195. {
  5196. int i;
  5197. for (i = 0; i < 16; i++)
  5198. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5199. }
  5200. static void niu_load_hash(struct niu *np, u16 *hash)
  5201. {
  5202. if (np->flags & NIU_FLAGS_XMAC)
  5203. niu_load_hash_xmac(np, hash);
  5204. else
  5205. niu_load_hash_bmac(np, hash);
  5206. }
  5207. static void niu_set_rx_mode(struct net_device *dev)
  5208. {
  5209. struct niu *np = netdev_priv(dev);
  5210. int i, alt_cnt, err;
  5211. struct netdev_hw_addr *ha;
  5212. unsigned long flags;
  5213. u16 hash[16] = { 0, };
  5214. spin_lock_irqsave(&np->lock, flags);
  5215. niu_enable_rx_mac(np, 0);
  5216. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5217. if (dev->flags & IFF_PROMISC)
  5218. np->flags |= NIU_FLAGS_PROMISC;
  5219. if ((dev->flags & IFF_ALLMULTI) || (!netdev_mc_empty(dev)))
  5220. np->flags |= NIU_FLAGS_MCAST;
  5221. alt_cnt = netdev_uc_count(dev);
  5222. if (alt_cnt > niu_num_alt_addr(np)) {
  5223. alt_cnt = 0;
  5224. np->flags |= NIU_FLAGS_PROMISC;
  5225. }
  5226. if (alt_cnt) {
  5227. int index = 0;
  5228. netdev_for_each_uc_addr(ha, dev) {
  5229. err = niu_set_alt_mac(np, index, ha->addr);
  5230. if (err)
  5231. netdev_warn(dev, "Error %d adding alt mac %d\n",
  5232. err, index);
  5233. err = niu_enable_alt_mac(np, index, 1);
  5234. if (err)
  5235. netdev_warn(dev, "Error %d enabling alt mac %d\n",
  5236. err, index);
  5237. index++;
  5238. }
  5239. } else {
  5240. int alt_start;
  5241. if (np->flags & NIU_FLAGS_XMAC)
  5242. alt_start = 0;
  5243. else
  5244. alt_start = 1;
  5245. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5246. err = niu_enable_alt_mac(np, i, 0);
  5247. if (err)
  5248. netdev_warn(dev, "Error %d disabling alt mac %d\n",
  5249. err, i);
  5250. }
  5251. }
  5252. if (dev->flags & IFF_ALLMULTI) {
  5253. for (i = 0; i < 16; i++)
  5254. hash[i] = 0xffff;
  5255. } else if (!netdev_mc_empty(dev)) {
  5256. netdev_for_each_mc_addr(ha, dev) {
  5257. u32 crc = ether_crc_le(ETH_ALEN, ha->addr);
  5258. crc >>= 24;
  5259. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5260. }
  5261. }
  5262. if (np->flags & NIU_FLAGS_MCAST)
  5263. niu_load_hash(np, hash);
  5264. niu_enable_rx_mac(np, 1);
  5265. spin_unlock_irqrestore(&np->lock, flags);
  5266. }
  5267. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5268. {
  5269. struct niu *np = netdev_priv(dev);
  5270. struct sockaddr *addr = p;
  5271. unsigned long flags;
  5272. if (!is_valid_ether_addr(addr->sa_data))
  5273. return -EADDRNOTAVAIL;
  5274. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5275. if (!netif_running(dev))
  5276. return 0;
  5277. spin_lock_irqsave(&np->lock, flags);
  5278. niu_enable_rx_mac(np, 0);
  5279. niu_set_primary_mac(np, dev->dev_addr);
  5280. niu_enable_rx_mac(np, 1);
  5281. spin_unlock_irqrestore(&np->lock, flags);
  5282. return 0;
  5283. }
  5284. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5285. {
  5286. return -EOPNOTSUPP;
  5287. }
  5288. static void niu_netif_stop(struct niu *np)
  5289. {
  5290. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5291. niu_disable_napi(np);
  5292. netif_tx_disable(np->dev);
  5293. }
  5294. static void niu_netif_start(struct niu *np)
  5295. {
  5296. /* NOTE: unconditional netif_wake_queue is only appropriate
  5297. * so long as all callers are assured to have free tx slots
  5298. * (such as after niu_init_hw).
  5299. */
  5300. netif_tx_wake_all_queues(np->dev);
  5301. niu_enable_napi(np);
  5302. niu_enable_interrupts(np, 1);
  5303. }
  5304. static void niu_reset_buffers(struct niu *np)
  5305. {
  5306. int i, j, k, err;
  5307. if (np->rx_rings) {
  5308. for (i = 0; i < np->num_rx_rings; i++) {
  5309. struct rx_ring_info *rp = &np->rx_rings[i];
  5310. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5311. struct page *page;
  5312. page = rp->rxhash[j];
  5313. while (page) {
  5314. struct page *next =
  5315. (struct page *) page->mapping;
  5316. u64 base = page->index;
  5317. base = base >> RBR_DESCR_ADDR_SHIFT;
  5318. rp->rbr[k++] = cpu_to_le32(base);
  5319. page = next;
  5320. }
  5321. }
  5322. for (; k < MAX_RBR_RING_SIZE; k++) {
  5323. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5324. if (unlikely(err))
  5325. break;
  5326. }
  5327. rp->rbr_index = rp->rbr_table_size - 1;
  5328. rp->rcr_index = 0;
  5329. rp->rbr_pending = 0;
  5330. rp->rbr_refill_pending = 0;
  5331. }
  5332. }
  5333. if (np->tx_rings) {
  5334. for (i = 0; i < np->num_tx_rings; i++) {
  5335. struct tx_ring_info *rp = &np->tx_rings[i];
  5336. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5337. if (rp->tx_buffs[j].skb)
  5338. (void) release_tx_packet(np, rp, j);
  5339. }
  5340. rp->pending = MAX_TX_RING_SIZE;
  5341. rp->prod = 0;
  5342. rp->cons = 0;
  5343. rp->wrap_bit = 0;
  5344. }
  5345. }
  5346. }
  5347. static void niu_reset_task(struct work_struct *work)
  5348. {
  5349. struct niu *np = container_of(work, struct niu, reset_task);
  5350. unsigned long flags;
  5351. int err;
  5352. spin_lock_irqsave(&np->lock, flags);
  5353. if (!netif_running(np->dev)) {
  5354. spin_unlock_irqrestore(&np->lock, flags);
  5355. return;
  5356. }
  5357. spin_unlock_irqrestore(&np->lock, flags);
  5358. del_timer_sync(&np->timer);
  5359. niu_netif_stop(np);
  5360. spin_lock_irqsave(&np->lock, flags);
  5361. niu_stop_hw(np);
  5362. spin_unlock_irqrestore(&np->lock, flags);
  5363. niu_reset_buffers(np);
  5364. spin_lock_irqsave(&np->lock, flags);
  5365. err = niu_init_hw(np);
  5366. if (!err) {
  5367. np->timer.expires = jiffies + HZ;
  5368. add_timer(&np->timer);
  5369. niu_netif_start(np);
  5370. }
  5371. spin_unlock_irqrestore(&np->lock, flags);
  5372. }
  5373. static void niu_tx_timeout(struct net_device *dev)
  5374. {
  5375. struct niu *np = netdev_priv(dev);
  5376. dev_err(np->device, "%s: Transmit timed out, resetting\n",
  5377. dev->name);
  5378. schedule_work(&np->reset_task);
  5379. }
  5380. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5381. u64 mapping, u64 len, u64 mark,
  5382. u64 n_frags)
  5383. {
  5384. __le64 *desc = &rp->descr[index];
  5385. *desc = cpu_to_le64(mark |
  5386. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5387. (len << TX_DESC_TR_LEN_SHIFT) |
  5388. (mapping & TX_DESC_SAD));
  5389. }
  5390. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5391. u64 pad_bytes, u64 len)
  5392. {
  5393. u16 eth_proto, eth_proto_inner;
  5394. u64 csum_bits, l3off, ihl, ret;
  5395. u8 ip_proto;
  5396. int ipv6;
  5397. eth_proto = be16_to_cpu(ehdr->h_proto);
  5398. eth_proto_inner = eth_proto;
  5399. if (eth_proto == ETH_P_8021Q) {
  5400. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5401. __be16 val = vp->h_vlan_encapsulated_proto;
  5402. eth_proto_inner = be16_to_cpu(val);
  5403. }
  5404. ipv6 = ihl = 0;
  5405. switch (skb->protocol) {
  5406. case cpu_to_be16(ETH_P_IP):
  5407. ip_proto = ip_hdr(skb)->protocol;
  5408. ihl = ip_hdr(skb)->ihl;
  5409. break;
  5410. case cpu_to_be16(ETH_P_IPV6):
  5411. ip_proto = ipv6_hdr(skb)->nexthdr;
  5412. ihl = (40 >> 2);
  5413. ipv6 = 1;
  5414. break;
  5415. default:
  5416. ip_proto = ihl = 0;
  5417. break;
  5418. }
  5419. csum_bits = TXHDR_CSUM_NONE;
  5420. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5421. u64 start, stuff;
  5422. csum_bits = (ip_proto == IPPROTO_TCP ?
  5423. TXHDR_CSUM_TCP :
  5424. (ip_proto == IPPROTO_UDP ?
  5425. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5426. start = skb_checksum_start_offset(skb) -
  5427. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5428. stuff = start + skb->csum_offset;
  5429. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5430. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5431. }
  5432. l3off = skb_network_offset(skb) -
  5433. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5434. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5435. (len << TXHDR_LEN_SHIFT) |
  5436. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5437. (ihl << TXHDR_IHL_SHIFT) |
  5438. ((eth_proto_inner < ETH_P_802_3_MIN) ? TXHDR_LLC : 0) |
  5439. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5440. (ipv6 ? TXHDR_IP_VER : 0) |
  5441. csum_bits);
  5442. return ret;
  5443. }
  5444. static netdev_tx_t niu_start_xmit(struct sk_buff *skb,
  5445. struct net_device *dev)
  5446. {
  5447. struct niu *np = netdev_priv(dev);
  5448. unsigned long align, headroom;
  5449. struct netdev_queue *txq;
  5450. struct tx_ring_info *rp;
  5451. struct tx_pkt_hdr *tp;
  5452. unsigned int len, nfg;
  5453. struct ethhdr *ehdr;
  5454. int prod, i, tlen;
  5455. u64 mapping, mrk;
  5456. i = skb_get_queue_mapping(skb);
  5457. rp = &np->tx_rings[i];
  5458. txq = netdev_get_tx_queue(dev, i);
  5459. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5460. netif_tx_stop_queue(txq);
  5461. dev_err(np->device, "%s: BUG! Tx ring full when queue awake!\n", dev->name);
  5462. rp->tx_errors++;
  5463. return NETDEV_TX_BUSY;
  5464. }
  5465. if (skb->len < ETH_ZLEN) {
  5466. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5467. if (skb_pad(skb, pad_bytes))
  5468. goto out;
  5469. skb_put(skb, pad_bytes);
  5470. }
  5471. len = sizeof(struct tx_pkt_hdr) + 15;
  5472. if (skb_headroom(skb) < len) {
  5473. struct sk_buff *skb_new;
  5474. skb_new = skb_realloc_headroom(skb, len);
  5475. if (!skb_new) {
  5476. rp->tx_errors++;
  5477. goto out_drop;
  5478. }
  5479. kfree_skb(skb);
  5480. skb = skb_new;
  5481. } else
  5482. skb_orphan(skb);
  5483. align = ((unsigned long) skb->data & (16 - 1));
  5484. headroom = align + sizeof(struct tx_pkt_hdr);
  5485. ehdr = (struct ethhdr *) skb->data;
  5486. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5487. len = skb->len - sizeof(struct tx_pkt_hdr);
  5488. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5489. tp->resv = 0;
  5490. len = skb_headlen(skb);
  5491. mapping = np->ops->map_single(np->device, skb->data,
  5492. len, DMA_TO_DEVICE);
  5493. prod = rp->prod;
  5494. rp->tx_buffs[prod].skb = skb;
  5495. rp->tx_buffs[prod].mapping = mapping;
  5496. mrk = TX_DESC_SOP;
  5497. if (++rp->mark_counter == rp->mark_freq) {
  5498. rp->mark_counter = 0;
  5499. mrk |= TX_DESC_MARK;
  5500. rp->mark_pending++;
  5501. }
  5502. tlen = len;
  5503. nfg = skb_shinfo(skb)->nr_frags;
  5504. while (tlen > 0) {
  5505. tlen -= MAX_TX_DESC_LEN;
  5506. nfg++;
  5507. }
  5508. while (len > 0) {
  5509. unsigned int this_len = len;
  5510. if (this_len > MAX_TX_DESC_LEN)
  5511. this_len = MAX_TX_DESC_LEN;
  5512. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5513. mrk = nfg = 0;
  5514. prod = NEXT_TX(rp, prod);
  5515. mapping += this_len;
  5516. len -= this_len;
  5517. }
  5518. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5519. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5520. len = skb_frag_size(frag);
  5521. mapping = np->ops->map_page(np->device, skb_frag_page(frag),
  5522. frag->page_offset, len,
  5523. DMA_TO_DEVICE);
  5524. rp->tx_buffs[prod].skb = NULL;
  5525. rp->tx_buffs[prod].mapping = mapping;
  5526. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5527. prod = NEXT_TX(rp, prod);
  5528. }
  5529. if (prod < rp->prod)
  5530. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5531. rp->prod = prod;
  5532. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5533. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5534. netif_tx_stop_queue(txq);
  5535. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5536. netif_tx_wake_queue(txq);
  5537. }
  5538. out:
  5539. return NETDEV_TX_OK;
  5540. out_drop:
  5541. rp->tx_errors++;
  5542. kfree_skb(skb);
  5543. goto out;
  5544. }
  5545. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5546. {
  5547. struct niu *np = netdev_priv(dev);
  5548. int err, orig_jumbo, new_jumbo;
  5549. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5550. return -EINVAL;
  5551. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5552. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5553. dev->mtu = new_mtu;
  5554. if (!netif_running(dev) ||
  5555. (orig_jumbo == new_jumbo))
  5556. return 0;
  5557. niu_full_shutdown(np, dev);
  5558. niu_free_channels(np);
  5559. niu_enable_napi(np);
  5560. err = niu_alloc_channels(np);
  5561. if (err)
  5562. return err;
  5563. spin_lock_irq(&np->lock);
  5564. err = niu_init_hw(np);
  5565. if (!err) {
  5566. init_timer(&np->timer);
  5567. np->timer.expires = jiffies + HZ;
  5568. np->timer.data = (unsigned long) np;
  5569. np->timer.function = niu_timer;
  5570. err = niu_enable_interrupts(np, 1);
  5571. if (err)
  5572. niu_stop_hw(np);
  5573. }
  5574. spin_unlock_irq(&np->lock);
  5575. if (!err) {
  5576. netif_tx_start_all_queues(dev);
  5577. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5578. netif_carrier_on(dev);
  5579. add_timer(&np->timer);
  5580. }
  5581. return err;
  5582. }
  5583. static void niu_get_drvinfo(struct net_device *dev,
  5584. struct ethtool_drvinfo *info)
  5585. {
  5586. struct niu *np = netdev_priv(dev);
  5587. struct niu_vpd *vpd = &np->vpd;
  5588. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5589. strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5590. snprintf(info->fw_version, sizeof(info->fw_version), "%d.%d",
  5591. vpd->fcode_major, vpd->fcode_minor);
  5592. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5593. strlcpy(info->bus_info, pci_name(np->pdev),
  5594. sizeof(info->bus_info));
  5595. }
  5596. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5597. {
  5598. struct niu *np = netdev_priv(dev);
  5599. struct niu_link_config *lp;
  5600. lp = &np->link_config;
  5601. memset(cmd, 0, sizeof(*cmd));
  5602. cmd->phy_address = np->phy_addr;
  5603. cmd->supported = lp->supported;
  5604. cmd->advertising = lp->active_advertising;
  5605. cmd->autoneg = lp->active_autoneg;
  5606. ethtool_cmd_speed_set(cmd, lp->active_speed);
  5607. cmd->duplex = lp->active_duplex;
  5608. cmd->port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5609. cmd->transceiver = (np->flags & NIU_FLAGS_XCVR_SERDES) ?
  5610. XCVR_EXTERNAL : XCVR_INTERNAL;
  5611. return 0;
  5612. }
  5613. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5614. {
  5615. struct niu *np = netdev_priv(dev);
  5616. struct niu_link_config *lp = &np->link_config;
  5617. lp->advertising = cmd->advertising;
  5618. lp->speed = ethtool_cmd_speed(cmd);
  5619. lp->duplex = cmd->duplex;
  5620. lp->autoneg = cmd->autoneg;
  5621. return niu_init_link(np);
  5622. }
  5623. static u32 niu_get_msglevel(struct net_device *dev)
  5624. {
  5625. struct niu *np = netdev_priv(dev);
  5626. return np->msg_enable;
  5627. }
  5628. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5629. {
  5630. struct niu *np = netdev_priv(dev);
  5631. np->msg_enable = value;
  5632. }
  5633. static int niu_nway_reset(struct net_device *dev)
  5634. {
  5635. struct niu *np = netdev_priv(dev);
  5636. if (np->link_config.autoneg)
  5637. return niu_init_link(np);
  5638. return 0;
  5639. }
  5640. static int niu_get_eeprom_len(struct net_device *dev)
  5641. {
  5642. struct niu *np = netdev_priv(dev);
  5643. return np->eeprom_len;
  5644. }
  5645. static int niu_get_eeprom(struct net_device *dev,
  5646. struct ethtool_eeprom *eeprom, u8 *data)
  5647. {
  5648. struct niu *np = netdev_priv(dev);
  5649. u32 offset, len, val;
  5650. offset = eeprom->offset;
  5651. len = eeprom->len;
  5652. if (offset + len < offset)
  5653. return -EINVAL;
  5654. if (offset >= np->eeprom_len)
  5655. return -EINVAL;
  5656. if (offset + len > np->eeprom_len)
  5657. len = eeprom->len = np->eeprom_len - offset;
  5658. if (offset & 3) {
  5659. u32 b_offset, b_count;
  5660. b_offset = offset & 3;
  5661. b_count = 4 - b_offset;
  5662. if (b_count > len)
  5663. b_count = len;
  5664. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5665. memcpy(data, ((char *)&val) + b_offset, b_count);
  5666. data += b_count;
  5667. len -= b_count;
  5668. offset += b_count;
  5669. }
  5670. while (len >= 4) {
  5671. val = nr64(ESPC_NCR(offset / 4));
  5672. memcpy(data, &val, 4);
  5673. data += 4;
  5674. len -= 4;
  5675. offset += 4;
  5676. }
  5677. if (len) {
  5678. val = nr64(ESPC_NCR(offset / 4));
  5679. memcpy(data, &val, len);
  5680. }
  5681. return 0;
  5682. }
  5683. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5684. {
  5685. switch (flow_type) {
  5686. case TCP_V4_FLOW:
  5687. case TCP_V6_FLOW:
  5688. *pid = IPPROTO_TCP;
  5689. break;
  5690. case UDP_V4_FLOW:
  5691. case UDP_V6_FLOW:
  5692. *pid = IPPROTO_UDP;
  5693. break;
  5694. case SCTP_V4_FLOW:
  5695. case SCTP_V6_FLOW:
  5696. *pid = IPPROTO_SCTP;
  5697. break;
  5698. case AH_V4_FLOW:
  5699. case AH_V6_FLOW:
  5700. *pid = IPPROTO_AH;
  5701. break;
  5702. case ESP_V4_FLOW:
  5703. case ESP_V6_FLOW:
  5704. *pid = IPPROTO_ESP;
  5705. break;
  5706. default:
  5707. *pid = 0;
  5708. break;
  5709. }
  5710. }
  5711. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5712. {
  5713. switch (class) {
  5714. case CLASS_CODE_TCP_IPV4:
  5715. *flow_type = TCP_V4_FLOW;
  5716. break;
  5717. case CLASS_CODE_UDP_IPV4:
  5718. *flow_type = UDP_V4_FLOW;
  5719. break;
  5720. case CLASS_CODE_AH_ESP_IPV4:
  5721. *flow_type = AH_V4_FLOW;
  5722. break;
  5723. case CLASS_CODE_SCTP_IPV4:
  5724. *flow_type = SCTP_V4_FLOW;
  5725. break;
  5726. case CLASS_CODE_TCP_IPV6:
  5727. *flow_type = TCP_V6_FLOW;
  5728. break;
  5729. case CLASS_CODE_UDP_IPV6:
  5730. *flow_type = UDP_V6_FLOW;
  5731. break;
  5732. case CLASS_CODE_AH_ESP_IPV6:
  5733. *flow_type = AH_V6_FLOW;
  5734. break;
  5735. case CLASS_CODE_SCTP_IPV6:
  5736. *flow_type = SCTP_V6_FLOW;
  5737. break;
  5738. case CLASS_CODE_USER_PROG1:
  5739. case CLASS_CODE_USER_PROG2:
  5740. case CLASS_CODE_USER_PROG3:
  5741. case CLASS_CODE_USER_PROG4:
  5742. *flow_type = IP_USER_FLOW;
  5743. break;
  5744. default:
  5745. return 0;
  5746. }
  5747. return 1;
  5748. }
  5749. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5750. {
  5751. switch (flow_type) {
  5752. case TCP_V4_FLOW:
  5753. *class = CLASS_CODE_TCP_IPV4;
  5754. break;
  5755. case UDP_V4_FLOW:
  5756. *class = CLASS_CODE_UDP_IPV4;
  5757. break;
  5758. case AH_ESP_V4_FLOW:
  5759. case AH_V4_FLOW:
  5760. case ESP_V4_FLOW:
  5761. *class = CLASS_CODE_AH_ESP_IPV4;
  5762. break;
  5763. case SCTP_V4_FLOW:
  5764. *class = CLASS_CODE_SCTP_IPV4;
  5765. break;
  5766. case TCP_V6_FLOW:
  5767. *class = CLASS_CODE_TCP_IPV6;
  5768. break;
  5769. case UDP_V6_FLOW:
  5770. *class = CLASS_CODE_UDP_IPV6;
  5771. break;
  5772. case AH_ESP_V6_FLOW:
  5773. case AH_V6_FLOW:
  5774. case ESP_V6_FLOW:
  5775. *class = CLASS_CODE_AH_ESP_IPV6;
  5776. break;
  5777. case SCTP_V6_FLOW:
  5778. *class = CLASS_CODE_SCTP_IPV6;
  5779. break;
  5780. default:
  5781. return 0;
  5782. }
  5783. return 1;
  5784. }
  5785. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5786. {
  5787. u64 ethflow = 0;
  5788. if (flow_key & FLOW_KEY_L2DA)
  5789. ethflow |= RXH_L2DA;
  5790. if (flow_key & FLOW_KEY_VLAN)
  5791. ethflow |= RXH_VLAN;
  5792. if (flow_key & FLOW_KEY_IPSA)
  5793. ethflow |= RXH_IP_SRC;
  5794. if (flow_key & FLOW_KEY_IPDA)
  5795. ethflow |= RXH_IP_DST;
  5796. if (flow_key & FLOW_KEY_PROTO)
  5797. ethflow |= RXH_L3_PROTO;
  5798. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5799. ethflow |= RXH_L4_B_0_1;
  5800. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5801. ethflow |= RXH_L4_B_2_3;
  5802. return ethflow;
  5803. }
  5804. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5805. {
  5806. u64 key = 0;
  5807. if (ethflow & RXH_L2DA)
  5808. key |= FLOW_KEY_L2DA;
  5809. if (ethflow & RXH_VLAN)
  5810. key |= FLOW_KEY_VLAN;
  5811. if (ethflow & RXH_IP_SRC)
  5812. key |= FLOW_KEY_IPSA;
  5813. if (ethflow & RXH_IP_DST)
  5814. key |= FLOW_KEY_IPDA;
  5815. if (ethflow & RXH_L3_PROTO)
  5816. key |= FLOW_KEY_PROTO;
  5817. if (ethflow & RXH_L4_B_0_1)
  5818. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5819. if (ethflow & RXH_L4_B_2_3)
  5820. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5821. *flow_key = key;
  5822. return 1;
  5823. }
  5824. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5825. {
  5826. u64 class;
  5827. nfc->data = 0;
  5828. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5829. return -EINVAL;
  5830. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5831. TCAM_KEY_DISC)
  5832. nfc->data = RXH_DISCARD;
  5833. else
  5834. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5835. CLASS_CODE_USER_PROG1]);
  5836. return 0;
  5837. }
  5838. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5839. struct ethtool_rx_flow_spec *fsp)
  5840. {
  5841. u32 tmp;
  5842. u16 prt;
  5843. tmp = (tp->key[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5844. fsp->h_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5845. tmp = (tp->key[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5846. fsp->h_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5847. tmp = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5848. fsp->m_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5849. tmp = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5850. fsp->m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5851. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5852. TCAM_V4KEY2_TOS_SHIFT;
  5853. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5854. TCAM_V4KEY2_TOS_SHIFT;
  5855. switch (fsp->flow_type) {
  5856. case TCP_V4_FLOW:
  5857. case UDP_V4_FLOW:
  5858. case SCTP_V4_FLOW:
  5859. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5860. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5861. fsp->h_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5862. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5863. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5864. fsp->h_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5865. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5866. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5867. fsp->m_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5868. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5869. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5870. fsp->m_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5871. break;
  5872. case AH_V4_FLOW:
  5873. case ESP_V4_FLOW:
  5874. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5875. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5876. fsp->h_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5877. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5878. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5879. fsp->m_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5880. break;
  5881. case IP_USER_FLOW:
  5882. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5883. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5884. fsp->h_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5885. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5886. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5887. fsp->m_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5888. fsp->h_u.usr_ip4_spec.proto =
  5889. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5890. TCAM_V4KEY2_PROTO_SHIFT;
  5891. fsp->m_u.usr_ip4_spec.proto =
  5892. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5893. TCAM_V4KEY2_PROTO_SHIFT;
  5894. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5895. break;
  5896. default:
  5897. break;
  5898. }
  5899. }
  5900. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5901. struct ethtool_rxnfc *nfc)
  5902. {
  5903. struct niu_parent *parent = np->parent;
  5904. struct niu_tcam_entry *tp;
  5905. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5906. u16 idx;
  5907. u64 class;
  5908. int ret = 0;
  5909. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5910. tp = &parent->tcam[idx];
  5911. if (!tp->valid) {
  5912. netdev_info(np->dev, "niu%d: entry [%d] invalid for idx[%d]\n",
  5913. parent->index, (u16)nfc->fs.location, idx);
  5914. return -EINVAL;
  5915. }
  5916. /* fill the flow spec entry */
  5917. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5918. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5919. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5920. if (ret < 0) {
  5921. netdev_info(np->dev, "niu%d: niu_class_to_ethflow failed\n",
  5922. parent->index);
  5923. ret = -EINVAL;
  5924. goto out;
  5925. }
  5926. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5927. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5928. TCAM_V4KEY2_PROTO_SHIFT;
  5929. if (proto == IPPROTO_ESP) {
  5930. if (fsp->flow_type == AH_V4_FLOW)
  5931. fsp->flow_type = ESP_V4_FLOW;
  5932. else
  5933. fsp->flow_type = ESP_V6_FLOW;
  5934. }
  5935. }
  5936. switch (fsp->flow_type) {
  5937. case TCP_V4_FLOW:
  5938. case UDP_V4_FLOW:
  5939. case SCTP_V4_FLOW:
  5940. case AH_V4_FLOW:
  5941. case ESP_V4_FLOW:
  5942. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5943. break;
  5944. case TCP_V6_FLOW:
  5945. case UDP_V6_FLOW:
  5946. case SCTP_V6_FLOW:
  5947. case AH_V6_FLOW:
  5948. case ESP_V6_FLOW:
  5949. /* Not yet implemented */
  5950. ret = -EINVAL;
  5951. break;
  5952. case IP_USER_FLOW:
  5953. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5954. break;
  5955. default:
  5956. ret = -EINVAL;
  5957. break;
  5958. }
  5959. if (ret < 0)
  5960. goto out;
  5961. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  5962. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  5963. else
  5964. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  5965. TCAM_ASSOCDATA_OFFSET_SHIFT;
  5966. /* put the tcam size here */
  5967. nfc->data = tcam_get_size(np);
  5968. out:
  5969. return ret;
  5970. }
  5971. static int niu_get_ethtool_tcam_all(struct niu *np,
  5972. struct ethtool_rxnfc *nfc,
  5973. u32 *rule_locs)
  5974. {
  5975. struct niu_parent *parent = np->parent;
  5976. struct niu_tcam_entry *tp;
  5977. int i, idx, cnt;
  5978. unsigned long flags;
  5979. int ret = 0;
  5980. /* put the tcam size here */
  5981. nfc->data = tcam_get_size(np);
  5982. niu_lock_parent(np, flags);
  5983. for (cnt = 0, i = 0; i < nfc->data; i++) {
  5984. idx = tcam_get_index(np, i);
  5985. tp = &parent->tcam[idx];
  5986. if (!tp->valid)
  5987. continue;
  5988. if (cnt == nfc->rule_cnt) {
  5989. ret = -EMSGSIZE;
  5990. break;
  5991. }
  5992. rule_locs[cnt] = i;
  5993. cnt++;
  5994. }
  5995. niu_unlock_parent(np, flags);
  5996. nfc->rule_cnt = cnt;
  5997. return ret;
  5998. }
  5999. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  6000. u32 *rule_locs)
  6001. {
  6002. struct niu *np = netdev_priv(dev);
  6003. int ret = 0;
  6004. switch (cmd->cmd) {
  6005. case ETHTOOL_GRXFH:
  6006. ret = niu_get_hash_opts(np, cmd);
  6007. break;
  6008. case ETHTOOL_GRXRINGS:
  6009. cmd->data = np->num_rx_rings;
  6010. break;
  6011. case ETHTOOL_GRXCLSRLCNT:
  6012. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6013. break;
  6014. case ETHTOOL_GRXCLSRULE:
  6015. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6016. break;
  6017. case ETHTOOL_GRXCLSRLALL:
  6018. ret = niu_get_ethtool_tcam_all(np, cmd, rule_locs);
  6019. break;
  6020. default:
  6021. ret = -EINVAL;
  6022. break;
  6023. }
  6024. return ret;
  6025. }
  6026. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6027. {
  6028. u64 class;
  6029. u64 flow_key = 0;
  6030. unsigned long flags;
  6031. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6032. return -EINVAL;
  6033. if (class < CLASS_CODE_USER_PROG1 ||
  6034. class > CLASS_CODE_SCTP_IPV6)
  6035. return -EINVAL;
  6036. if (nfc->data & RXH_DISCARD) {
  6037. niu_lock_parent(np, flags);
  6038. flow_key = np->parent->tcam_key[class -
  6039. CLASS_CODE_USER_PROG1];
  6040. flow_key |= TCAM_KEY_DISC;
  6041. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6042. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6043. niu_unlock_parent(np, flags);
  6044. return 0;
  6045. } else {
  6046. /* Discard was set before, but is not set now */
  6047. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6048. TCAM_KEY_DISC) {
  6049. niu_lock_parent(np, flags);
  6050. flow_key = np->parent->tcam_key[class -
  6051. CLASS_CODE_USER_PROG1];
  6052. flow_key &= ~TCAM_KEY_DISC;
  6053. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6054. flow_key);
  6055. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6056. flow_key;
  6057. niu_unlock_parent(np, flags);
  6058. }
  6059. }
  6060. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6061. return -EINVAL;
  6062. niu_lock_parent(np, flags);
  6063. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6064. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6065. niu_unlock_parent(np, flags);
  6066. return 0;
  6067. }
  6068. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6069. struct niu_tcam_entry *tp,
  6070. int l2_rdc_tab, u64 class)
  6071. {
  6072. u8 pid = 0;
  6073. u32 sip, dip, sipm, dipm, spi, spim;
  6074. u16 sport, dport, spm, dpm;
  6075. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6076. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6077. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6078. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6079. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6080. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6081. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6082. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6083. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6084. tp->key[3] |= dip;
  6085. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6086. tp->key_mask[3] |= dipm;
  6087. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6088. TCAM_V4KEY2_TOS_SHIFT);
  6089. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6090. TCAM_V4KEY2_TOS_SHIFT);
  6091. switch (fsp->flow_type) {
  6092. case TCP_V4_FLOW:
  6093. case UDP_V4_FLOW:
  6094. case SCTP_V4_FLOW:
  6095. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6096. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6097. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6098. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6099. tp->key[2] |= (((u64)sport << 16) | dport);
  6100. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6101. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6102. break;
  6103. case AH_V4_FLOW:
  6104. case ESP_V4_FLOW:
  6105. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6106. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6107. tp->key[2] |= spi;
  6108. tp->key_mask[2] |= spim;
  6109. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6110. break;
  6111. case IP_USER_FLOW:
  6112. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6113. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6114. tp->key[2] |= spi;
  6115. tp->key_mask[2] |= spim;
  6116. pid = fsp->h_u.usr_ip4_spec.proto;
  6117. break;
  6118. default:
  6119. break;
  6120. }
  6121. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6122. if (pid) {
  6123. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6124. }
  6125. }
  6126. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6127. struct ethtool_rxnfc *nfc)
  6128. {
  6129. struct niu_parent *parent = np->parent;
  6130. struct niu_tcam_entry *tp;
  6131. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6132. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6133. int l2_rdc_table = rdc_table->first_table_num;
  6134. u16 idx;
  6135. u64 class;
  6136. unsigned long flags;
  6137. int err, ret;
  6138. ret = 0;
  6139. idx = nfc->fs.location;
  6140. if (idx >= tcam_get_size(np))
  6141. return -EINVAL;
  6142. if (fsp->flow_type == IP_USER_FLOW) {
  6143. int i;
  6144. int add_usr_cls = 0;
  6145. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6146. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6147. if (uspec->ip_ver != ETH_RX_NFC_IP4)
  6148. return -EINVAL;
  6149. niu_lock_parent(np, flags);
  6150. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6151. if (parent->l3_cls[i]) {
  6152. if (uspec->proto == parent->l3_cls_pid[i]) {
  6153. class = parent->l3_cls[i];
  6154. parent->l3_cls_refcnt[i]++;
  6155. add_usr_cls = 1;
  6156. break;
  6157. }
  6158. } else {
  6159. /* Program new user IP class */
  6160. switch (i) {
  6161. case 0:
  6162. class = CLASS_CODE_USER_PROG1;
  6163. break;
  6164. case 1:
  6165. class = CLASS_CODE_USER_PROG2;
  6166. break;
  6167. case 2:
  6168. class = CLASS_CODE_USER_PROG3;
  6169. break;
  6170. case 3:
  6171. class = CLASS_CODE_USER_PROG4;
  6172. break;
  6173. default:
  6174. break;
  6175. }
  6176. ret = tcam_user_ip_class_set(np, class, 0,
  6177. uspec->proto,
  6178. uspec->tos,
  6179. umask->tos);
  6180. if (ret)
  6181. goto out;
  6182. ret = tcam_user_ip_class_enable(np, class, 1);
  6183. if (ret)
  6184. goto out;
  6185. parent->l3_cls[i] = class;
  6186. parent->l3_cls_pid[i] = uspec->proto;
  6187. parent->l3_cls_refcnt[i]++;
  6188. add_usr_cls = 1;
  6189. break;
  6190. }
  6191. }
  6192. if (!add_usr_cls) {
  6193. netdev_info(np->dev, "niu%d: %s(): Could not find/insert class for pid %d\n",
  6194. parent->index, __func__, uspec->proto);
  6195. ret = -EINVAL;
  6196. goto out;
  6197. }
  6198. niu_unlock_parent(np, flags);
  6199. } else {
  6200. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6201. return -EINVAL;
  6202. }
  6203. }
  6204. niu_lock_parent(np, flags);
  6205. idx = tcam_get_index(np, idx);
  6206. tp = &parent->tcam[idx];
  6207. memset(tp, 0, sizeof(*tp));
  6208. /* fill in the tcam key and mask */
  6209. switch (fsp->flow_type) {
  6210. case TCP_V4_FLOW:
  6211. case UDP_V4_FLOW:
  6212. case SCTP_V4_FLOW:
  6213. case AH_V4_FLOW:
  6214. case ESP_V4_FLOW:
  6215. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6216. break;
  6217. case TCP_V6_FLOW:
  6218. case UDP_V6_FLOW:
  6219. case SCTP_V6_FLOW:
  6220. case AH_V6_FLOW:
  6221. case ESP_V6_FLOW:
  6222. /* Not yet implemented */
  6223. netdev_info(np->dev, "niu%d: In %s(): flow %d for IPv6 not implemented\n",
  6224. parent->index, __func__, fsp->flow_type);
  6225. ret = -EINVAL;
  6226. goto out;
  6227. case IP_USER_FLOW:
  6228. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6229. break;
  6230. default:
  6231. netdev_info(np->dev, "niu%d: In %s(): Unknown flow type %d\n",
  6232. parent->index, __func__, fsp->flow_type);
  6233. ret = -EINVAL;
  6234. goto out;
  6235. }
  6236. /* fill in the assoc data */
  6237. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6238. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6239. } else {
  6240. if (fsp->ring_cookie >= np->num_rx_rings) {
  6241. netdev_info(np->dev, "niu%d: In %s(): Invalid RX ring %lld\n",
  6242. parent->index, __func__,
  6243. (long long)fsp->ring_cookie);
  6244. ret = -EINVAL;
  6245. goto out;
  6246. }
  6247. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6248. (fsp->ring_cookie <<
  6249. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6250. }
  6251. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6252. if (err) {
  6253. ret = -EINVAL;
  6254. goto out;
  6255. }
  6256. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6257. if (err) {
  6258. ret = -EINVAL;
  6259. goto out;
  6260. }
  6261. /* validate the entry */
  6262. tp->valid = 1;
  6263. np->clas.tcam_valid_entries++;
  6264. out:
  6265. niu_unlock_parent(np, flags);
  6266. return ret;
  6267. }
  6268. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6269. {
  6270. struct niu_parent *parent = np->parent;
  6271. struct niu_tcam_entry *tp;
  6272. u16 idx;
  6273. unsigned long flags;
  6274. u64 class;
  6275. int ret = 0;
  6276. if (loc >= tcam_get_size(np))
  6277. return -EINVAL;
  6278. niu_lock_parent(np, flags);
  6279. idx = tcam_get_index(np, loc);
  6280. tp = &parent->tcam[idx];
  6281. /* if the entry is of a user defined class, then update*/
  6282. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6283. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6284. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6285. int i;
  6286. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6287. if (parent->l3_cls[i] == class) {
  6288. parent->l3_cls_refcnt[i]--;
  6289. if (!parent->l3_cls_refcnt[i]) {
  6290. /* disable class */
  6291. ret = tcam_user_ip_class_enable(np,
  6292. class,
  6293. 0);
  6294. if (ret)
  6295. goto out;
  6296. parent->l3_cls[i] = 0;
  6297. parent->l3_cls_pid[i] = 0;
  6298. }
  6299. break;
  6300. }
  6301. }
  6302. if (i == NIU_L3_PROG_CLS) {
  6303. netdev_info(np->dev, "niu%d: In %s(): Usr class 0x%llx not found\n",
  6304. parent->index, __func__,
  6305. (unsigned long long)class);
  6306. ret = -EINVAL;
  6307. goto out;
  6308. }
  6309. }
  6310. ret = tcam_flush(np, idx);
  6311. if (ret)
  6312. goto out;
  6313. /* invalidate the entry */
  6314. tp->valid = 0;
  6315. np->clas.tcam_valid_entries--;
  6316. out:
  6317. niu_unlock_parent(np, flags);
  6318. return ret;
  6319. }
  6320. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6321. {
  6322. struct niu *np = netdev_priv(dev);
  6323. int ret = 0;
  6324. switch (cmd->cmd) {
  6325. case ETHTOOL_SRXFH:
  6326. ret = niu_set_hash_opts(np, cmd);
  6327. break;
  6328. case ETHTOOL_SRXCLSRLINS:
  6329. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6330. break;
  6331. case ETHTOOL_SRXCLSRLDEL:
  6332. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6333. break;
  6334. default:
  6335. ret = -EINVAL;
  6336. break;
  6337. }
  6338. return ret;
  6339. }
  6340. static const struct {
  6341. const char string[ETH_GSTRING_LEN];
  6342. } niu_xmac_stat_keys[] = {
  6343. { "tx_frames" },
  6344. { "tx_bytes" },
  6345. { "tx_fifo_errors" },
  6346. { "tx_overflow_errors" },
  6347. { "tx_max_pkt_size_errors" },
  6348. { "tx_underflow_errors" },
  6349. { "rx_local_faults" },
  6350. { "rx_remote_faults" },
  6351. { "rx_link_faults" },
  6352. { "rx_align_errors" },
  6353. { "rx_frags" },
  6354. { "rx_mcasts" },
  6355. { "rx_bcasts" },
  6356. { "rx_hist_cnt1" },
  6357. { "rx_hist_cnt2" },
  6358. { "rx_hist_cnt3" },
  6359. { "rx_hist_cnt4" },
  6360. { "rx_hist_cnt5" },
  6361. { "rx_hist_cnt6" },
  6362. { "rx_hist_cnt7" },
  6363. { "rx_octets" },
  6364. { "rx_code_violations" },
  6365. { "rx_len_errors" },
  6366. { "rx_crc_errors" },
  6367. { "rx_underflows" },
  6368. { "rx_overflows" },
  6369. { "pause_off_state" },
  6370. { "pause_on_state" },
  6371. { "pause_received" },
  6372. };
  6373. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6374. static const struct {
  6375. const char string[ETH_GSTRING_LEN];
  6376. } niu_bmac_stat_keys[] = {
  6377. { "tx_underflow_errors" },
  6378. { "tx_max_pkt_size_errors" },
  6379. { "tx_bytes" },
  6380. { "tx_frames" },
  6381. { "rx_overflows" },
  6382. { "rx_frames" },
  6383. { "rx_align_errors" },
  6384. { "rx_crc_errors" },
  6385. { "rx_len_errors" },
  6386. { "pause_off_state" },
  6387. { "pause_on_state" },
  6388. { "pause_received" },
  6389. };
  6390. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6391. static const struct {
  6392. const char string[ETH_GSTRING_LEN];
  6393. } niu_rxchan_stat_keys[] = {
  6394. { "rx_channel" },
  6395. { "rx_packets" },
  6396. { "rx_bytes" },
  6397. { "rx_dropped" },
  6398. { "rx_errors" },
  6399. };
  6400. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6401. static const struct {
  6402. const char string[ETH_GSTRING_LEN];
  6403. } niu_txchan_stat_keys[] = {
  6404. { "tx_channel" },
  6405. { "tx_packets" },
  6406. { "tx_bytes" },
  6407. { "tx_errors" },
  6408. };
  6409. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6410. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6411. {
  6412. struct niu *np = netdev_priv(dev);
  6413. int i;
  6414. if (stringset != ETH_SS_STATS)
  6415. return;
  6416. if (np->flags & NIU_FLAGS_XMAC) {
  6417. memcpy(data, niu_xmac_stat_keys,
  6418. sizeof(niu_xmac_stat_keys));
  6419. data += sizeof(niu_xmac_stat_keys);
  6420. } else {
  6421. memcpy(data, niu_bmac_stat_keys,
  6422. sizeof(niu_bmac_stat_keys));
  6423. data += sizeof(niu_bmac_stat_keys);
  6424. }
  6425. for (i = 0; i < np->num_rx_rings; i++) {
  6426. memcpy(data, niu_rxchan_stat_keys,
  6427. sizeof(niu_rxchan_stat_keys));
  6428. data += sizeof(niu_rxchan_stat_keys);
  6429. }
  6430. for (i = 0; i < np->num_tx_rings; i++) {
  6431. memcpy(data, niu_txchan_stat_keys,
  6432. sizeof(niu_txchan_stat_keys));
  6433. data += sizeof(niu_txchan_stat_keys);
  6434. }
  6435. }
  6436. static int niu_get_sset_count(struct net_device *dev, int stringset)
  6437. {
  6438. struct niu *np = netdev_priv(dev);
  6439. if (stringset != ETH_SS_STATS)
  6440. return -EINVAL;
  6441. return (np->flags & NIU_FLAGS_XMAC ?
  6442. NUM_XMAC_STAT_KEYS :
  6443. NUM_BMAC_STAT_KEYS) +
  6444. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6445. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS);
  6446. }
  6447. static void niu_get_ethtool_stats(struct net_device *dev,
  6448. struct ethtool_stats *stats, u64 *data)
  6449. {
  6450. struct niu *np = netdev_priv(dev);
  6451. int i;
  6452. niu_sync_mac_stats(np);
  6453. if (np->flags & NIU_FLAGS_XMAC) {
  6454. memcpy(data, &np->mac_stats.xmac,
  6455. sizeof(struct niu_xmac_stats));
  6456. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6457. } else {
  6458. memcpy(data, &np->mac_stats.bmac,
  6459. sizeof(struct niu_bmac_stats));
  6460. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6461. }
  6462. for (i = 0; i < np->num_rx_rings; i++) {
  6463. struct rx_ring_info *rp = &np->rx_rings[i];
  6464. niu_sync_rx_discard_stats(np, rp, 0);
  6465. data[0] = rp->rx_channel;
  6466. data[1] = rp->rx_packets;
  6467. data[2] = rp->rx_bytes;
  6468. data[3] = rp->rx_dropped;
  6469. data[4] = rp->rx_errors;
  6470. data += 5;
  6471. }
  6472. for (i = 0; i < np->num_tx_rings; i++) {
  6473. struct tx_ring_info *rp = &np->tx_rings[i];
  6474. data[0] = rp->tx_channel;
  6475. data[1] = rp->tx_packets;
  6476. data[2] = rp->tx_bytes;
  6477. data[3] = rp->tx_errors;
  6478. data += 4;
  6479. }
  6480. }
  6481. static u64 niu_led_state_save(struct niu *np)
  6482. {
  6483. if (np->flags & NIU_FLAGS_XMAC)
  6484. return nr64_mac(XMAC_CONFIG);
  6485. else
  6486. return nr64_mac(BMAC_XIF_CONFIG);
  6487. }
  6488. static void niu_led_state_restore(struct niu *np, u64 val)
  6489. {
  6490. if (np->flags & NIU_FLAGS_XMAC)
  6491. nw64_mac(XMAC_CONFIG, val);
  6492. else
  6493. nw64_mac(BMAC_XIF_CONFIG, val);
  6494. }
  6495. static void niu_force_led(struct niu *np, int on)
  6496. {
  6497. u64 val, reg, bit;
  6498. if (np->flags & NIU_FLAGS_XMAC) {
  6499. reg = XMAC_CONFIG;
  6500. bit = XMAC_CONFIG_FORCE_LED_ON;
  6501. } else {
  6502. reg = BMAC_XIF_CONFIG;
  6503. bit = BMAC_XIF_CONFIG_LINK_LED;
  6504. }
  6505. val = nr64_mac(reg);
  6506. if (on)
  6507. val |= bit;
  6508. else
  6509. val &= ~bit;
  6510. nw64_mac(reg, val);
  6511. }
  6512. static int niu_set_phys_id(struct net_device *dev,
  6513. enum ethtool_phys_id_state state)
  6514. {
  6515. struct niu *np = netdev_priv(dev);
  6516. if (!netif_running(dev))
  6517. return -EAGAIN;
  6518. switch (state) {
  6519. case ETHTOOL_ID_ACTIVE:
  6520. np->orig_led_state = niu_led_state_save(np);
  6521. return 1; /* cycle on/off once per second */
  6522. case ETHTOOL_ID_ON:
  6523. niu_force_led(np, 1);
  6524. break;
  6525. case ETHTOOL_ID_OFF:
  6526. niu_force_led(np, 0);
  6527. break;
  6528. case ETHTOOL_ID_INACTIVE:
  6529. niu_led_state_restore(np, np->orig_led_state);
  6530. }
  6531. return 0;
  6532. }
  6533. static const struct ethtool_ops niu_ethtool_ops = {
  6534. .get_drvinfo = niu_get_drvinfo,
  6535. .get_link = ethtool_op_get_link,
  6536. .get_msglevel = niu_get_msglevel,
  6537. .set_msglevel = niu_set_msglevel,
  6538. .nway_reset = niu_nway_reset,
  6539. .get_eeprom_len = niu_get_eeprom_len,
  6540. .get_eeprom = niu_get_eeprom,
  6541. .get_settings = niu_get_settings,
  6542. .set_settings = niu_set_settings,
  6543. .get_strings = niu_get_strings,
  6544. .get_sset_count = niu_get_sset_count,
  6545. .get_ethtool_stats = niu_get_ethtool_stats,
  6546. .set_phys_id = niu_set_phys_id,
  6547. .get_rxnfc = niu_get_nfc,
  6548. .set_rxnfc = niu_set_nfc,
  6549. };
  6550. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6551. int ldg, int ldn)
  6552. {
  6553. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6554. return -EINVAL;
  6555. if (ldn < 0 || ldn > LDN_MAX)
  6556. return -EINVAL;
  6557. parent->ldg_map[ldn] = ldg;
  6558. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6559. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6560. * the firmware, and we're not supposed to change them.
  6561. * Validate the mapping, because if it's wrong we probably
  6562. * won't get any interrupts and that's painful to debug.
  6563. */
  6564. if (nr64(LDG_NUM(ldn)) != ldg) {
  6565. dev_err(np->device, "Port %u, mis-matched LDG assignment for ldn %d, should be %d is %llu\n",
  6566. np->port, ldn, ldg,
  6567. (unsigned long long) nr64(LDG_NUM(ldn)));
  6568. return -EINVAL;
  6569. }
  6570. } else
  6571. nw64(LDG_NUM(ldn), ldg);
  6572. return 0;
  6573. }
  6574. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6575. {
  6576. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6577. return -EINVAL;
  6578. nw64(LDG_TIMER_RES, res);
  6579. return 0;
  6580. }
  6581. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6582. {
  6583. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6584. (func < 0 || func > 3) ||
  6585. (vector < 0 || vector > 0x1f))
  6586. return -EINVAL;
  6587. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6588. return 0;
  6589. }
  6590. static int niu_pci_eeprom_read(struct niu *np, u32 addr)
  6591. {
  6592. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6593. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6594. int limit;
  6595. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6596. return -EINVAL;
  6597. frame = frame_base;
  6598. nw64(ESPC_PIO_STAT, frame);
  6599. limit = 64;
  6600. do {
  6601. udelay(5);
  6602. frame = nr64(ESPC_PIO_STAT);
  6603. if (frame & ESPC_PIO_STAT_READ_END)
  6604. break;
  6605. } while (limit--);
  6606. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6607. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6608. (unsigned long long) frame);
  6609. return -ENODEV;
  6610. }
  6611. frame = frame_base;
  6612. nw64(ESPC_PIO_STAT, frame);
  6613. limit = 64;
  6614. do {
  6615. udelay(5);
  6616. frame = nr64(ESPC_PIO_STAT);
  6617. if (frame & ESPC_PIO_STAT_READ_END)
  6618. break;
  6619. } while (limit--);
  6620. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6621. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6622. (unsigned long long) frame);
  6623. return -ENODEV;
  6624. }
  6625. frame = nr64(ESPC_PIO_STAT);
  6626. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6627. }
  6628. static int niu_pci_eeprom_read16(struct niu *np, u32 off)
  6629. {
  6630. int err = niu_pci_eeprom_read(np, off);
  6631. u16 val;
  6632. if (err < 0)
  6633. return err;
  6634. val = (err << 8);
  6635. err = niu_pci_eeprom_read(np, off + 1);
  6636. if (err < 0)
  6637. return err;
  6638. val |= (err & 0xff);
  6639. return val;
  6640. }
  6641. static int niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6642. {
  6643. int err = niu_pci_eeprom_read(np, off);
  6644. u16 val;
  6645. if (err < 0)
  6646. return err;
  6647. val = (err & 0xff);
  6648. err = niu_pci_eeprom_read(np, off + 1);
  6649. if (err < 0)
  6650. return err;
  6651. val |= (err & 0xff) << 8;
  6652. return val;
  6653. }
  6654. static int niu_pci_vpd_get_propname(struct niu *np, u32 off, char *namebuf,
  6655. int namebuf_len)
  6656. {
  6657. int i;
  6658. for (i = 0; i < namebuf_len; i++) {
  6659. int err = niu_pci_eeprom_read(np, off + i);
  6660. if (err < 0)
  6661. return err;
  6662. *namebuf++ = err;
  6663. if (!err)
  6664. break;
  6665. }
  6666. if (i >= namebuf_len)
  6667. return -EINVAL;
  6668. return i + 1;
  6669. }
  6670. static void niu_vpd_parse_version(struct niu *np)
  6671. {
  6672. struct niu_vpd *vpd = &np->vpd;
  6673. int len = strlen(vpd->version) + 1;
  6674. const char *s = vpd->version;
  6675. int i;
  6676. for (i = 0; i < len - 5; i++) {
  6677. if (!strncmp(s + i, "FCode ", 6))
  6678. break;
  6679. }
  6680. if (i >= len - 5)
  6681. return;
  6682. s += i + 5;
  6683. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6684. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6685. "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6686. vpd->fcode_major, vpd->fcode_minor);
  6687. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6688. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6689. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6690. np->flags |= NIU_FLAGS_VPD_VALID;
  6691. }
  6692. /* ESPC_PIO_EN_ENABLE must be set */
  6693. static int niu_pci_vpd_scan_props(struct niu *np, u32 start, u32 end)
  6694. {
  6695. unsigned int found_mask = 0;
  6696. #define FOUND_MASK_MODEL 0x00000001
  6697. #define FOUND_MASK_BMODEL 0x00000002
  6698. #define FOUND_MASK_VERS 0x00000004
  6699. #define FOUND_MASK_MAC 0x00000008
  6700. #define FOUND_MASK_NMAC 0x00000010
  6701. #define FOUND_MASK_PHY 0x00000020
  6702. #define FOUND_MASK_ALL 0x0000003f
  6703. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6704. "VPD_SCAN: start[%x] end[%x]\n", start, end);
  6705. while (start < end) {
  6706. int len, err, prop_len;
  6707. char namebuf[64];
  6708. u8 *prop_buf;
  6709. int max_len;
  6710. if (found_mask == FOUND_MASK_ALL) {
  6711. niu_vpd_parse_version(np);
  6712. return 1;
  6713. }
  6714. err = niu_pci_eeprom_read(np, start + 2);
  6715. if (err < 0)
  6716. return err;
  6717. len = err;
  6718. start += 3;
  6719. prop_len = niu_pci_eeprom_read(np, start + 4);
  6720. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6721. if (err < 0)
  6722. return err;
  6723. prop_buf = NULL;
  6724. max_len = 0;
  6725. if (!strcmp(namebuf, "model")) {
  6726. prop_buf = np->vpd.model;
  6727. max_len = NIU_VPD_MODEL_MAX;
  6728. found_mask |= FOUND_MASK_MODEL;
  6729. } else if (!strcmp(namebuf, "board-model")) {
  6730. prop_buf = np->vpd.board_model;
  6731. max_len = NIU_VPD_BD_MODEL_MAX;
  6732. found_mask |= FOUND_MASK_BMODEL;
  6733. } else if (!strcmp(namebuf, "version")) {
  6734. prop_buf = np->vpd.version;
  6735. max_len = NIU_VPD_VERSION_MAX;
  6736. found_mask |= FOUND_MASK_VERS;
  6737. } else if (!strcmp(namebuf, "local-mac-address")) {
  6738. prop_buf = np->vpd.local_mac;
  6739. max_len = ETH_ALEN;
  6740. found_mask |= FOUND_MASK_MAC;
  6741. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6742. prop_buf = &np->vpd.mac_num;
  6743. max_len = 1;
  6744. found_mask |= FOUND_MASK_NMAC;
  6745. } else if (!strcmp(namebuf, "phy-type")) {
  6746. prop_buf = np->vpd.phy_type;
  6747. max_len = NIU_VPD_PHY_TYPE_MAX;
  6748. found_mask |= FOUND_MASK_PHY;
  6749. }
  6750. if (max_len && prop_len > max_len) {
  6751. dev_err(np->device, "Property '%s' length (%d) is too long\n", namebuf, prop_len);
  6752. return -EINVAL;
  6753. }
  6754. if (prop_buf) {
  6755. u32 off = start + 5 + err;
  6756. int i;
  6757. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6758. "VPD_SCAN: Reading in property [%s] len[%d]\n",
  6759. namebuf, prop_len);
  6760. for (i = 0; i < prop_len; i++)
  6761. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6762. }
  6763. start += len;
  6764. }
  6765. return 0;
  6766. }
  6767. /* ESPC_PIO_EN_ENABLE must be set */
  6768. static void niu_pci_vpd_fetch(struct niu *np, u32 start)
  6769. {
  6770. u32 offset;
  6771. int err;
  6772. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6773. if (err < 0)
  6774. return;
  6775. offset = err + 3;
  6776. while (start + offset < ESPC_EEPROM_SIZE) {
  6777. u32 here = start + offset;
  6778. u32 end;
  6779. err = niu_pci_eeprom_read(np, here);
  6780. if (err != 0x90)
  6781. return;
  6782. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6783. if (err < 0)
  6784. return;
  6785. here = start + offset + 3;
  6786. end = start + offset + err;
  6787. offset += err;
  6788. err = niu_pci_vpd_scan_props(np, here, end);
  6789. if (err < 0 || err == 1)
  6790. return;
  6791. }
  6792. }
  6793. /* ESPC_PIO_EN_ENABLE must be set */
  6794. static u32 niu_pci_vpd_offset(struct niu *np)
  6795. {
  6796. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6797. int err;
  6798. while (start < end) {
  6799. ret = start;
  6800. /* ROM header signature? */
  6801. err = niu_pci_eeprom_read16(np, start + 0);
  6802. if (err != 0x55aa)
  6803. return 0;
  6804. /* Apply offset to PCI data structure. */
  6805. err = niu_pci_eeprom_read16(np, start + 23);
  6806. if (err < 0)
  6807. return 0;
  6808. start += err;
  6809. /* Check for "PCIR" signature. */
  6810. err = niu_pci_eeprom_read16(np, start + 0);
  6811. if (err != 0x5043)
  6812. return 0;
  6813. err = niu_pci_eeprom_read16(np, start + 2);
  6814. if (err != 0x4952)
  6815. return 0;
  6816. /* Check for OBP image type. */
  6817. err = niu_pci_eeprom_read(np, start + 20);
  6818. if (err < 0)
  6819. return 0;
  6820. if (err != 0x01) {
  6821. err = niu_pci_eeprom_read(np, ret + 2);
  6822. if (err < 0)
  6823. return 0;
  6824. start = ret + (err * 512);
  6825. continue;
  6826. }
  6827. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6828. if (err < 0)
  6829. return err;
  6830. ret += err;
  6831. err = niu_pci_eeprom_read(np, ret + 0);
  6832. if (err != 0x82)
  6833. return 0;
  6834. return ret;
  6835. }
  6836. return 0;
  6837. }
  6838. static int niu_phy_type_prop_decode(struct niu *np, const char *phy_prop)
  6839. {
  6840. if (!strcmp(phy_prop, "mif")) {
  6841. /* 1G copper, MII */
  6842. np->flags &= ~(NIU_FLAGS_FIBER |
  6843. NIU_FLAGS_10G);
  6844. np->mac_xcvr = MAC_XCVR_MII;
  6845. } else if (!strcmp(phy_prop, "xgf")) {
  6846. /* 10G fiber, XPCS */
  6847. np->flags |= (NIU_FLAGS_10G |
  6848. NIU_FLAGS_FIBER);
  6849. np->mac_xcvr = MAC_XCVR_XPCS;
  6850. } else if (!strcmp(phy_prop, "pcs")) {
  6851. /* 1G fiber, PCS */
  6852. np->flags &= ~NIU_FLAGS_10G;
  6853. np->flags |= NIU_FLAGS_FIBER;
  6854. np->mac_xcvr = MAC_XCVR_PCS;
  6855. } else if (!strcmp(phy_prop, "xgc")) {
  6856. /* 10G copper, XPCS */
  6857. np->flags |= NIU_FLAGS_10G;
  6858. np->flags &= ~NIU_FLAGS_FIBER;
  6859. np->mac_xcvr = MAC_XCVR_XPCS;
  6860. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6861. /* 10G Serdes or 1G Serdes, default to 10G */
  6862. np->flags |= NIU_FLAGS_10G;
  6863. np->flags &= ~NIU_FLAGS_FIBER;
  6864. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6865. np->mac_xcvr = MAC_XCVR_XPCS;
  6866. } else {
  6867. return -EINVAL;
  6868. }
  6869. return 0;
  6870. }
  6871. static int niu_pci_vpd_get_nports(struct niu *np)
  6872. {
  6873. int ports = 0;
  6874. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6875. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6876. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6877. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6878. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6879. ports = 4;
  6880. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6881. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6882. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6883. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6884. ports = 2;
  6885. }
  6886. return ports;
  6887. }
  6888. static void niu_pci_vpd_validate(struct niu *np)
  6889. {
  6890. struct net_device *dev = np->dev;
  6891. struct niu_vpd *vpd = &np->vpd;
  6892. u8 val8;
  6893. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6894. dev_err(np->device, "VPD MAC invalid, falling back to SPROM\n");
  6895. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6896. return;
  6897. }
  6898. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6899. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6900. np->flags |= NIU_FLAGS_10G;
  6901. np->flags &= ~NIU_FLAGS_FIBER;
  6902. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6903. np->mac_xcvr = MAC_XCVR_PCS;
  6904. if (np->port > 1) {
  6905. np->flags |= NIU_FLAGS_FIBER;
  6906. np->flags &= ~NIU_FLAGS_10G;
  6907. }
  6908. if (np->flags & NIU_FLAGS_10G)
  6909. np->mac_xcvr = MAC_XCVR_XPCS;
  6910. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6911. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6912. NIU_FLAGS_HOTPLUG_PHY);
  6913. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6914. dev_err(np->device, "Illegal phy string [%s]\n",
  6915. np->vpd.phy_type);
  6916. dev_err(np->device, "Falling back to SPROM\n");
  6917. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6918. return;
  6919. }
  6920. memcpy(dev->dev_addr, vpd->local_mac, ETH_ALEN);
  6921. val8 = dev->dev_addr[5];
  6922. dev->dev_addr[5] += np->port;
  6923. if (dev->dev_addr[5] < val8)
  6924. dev->dev_addr[4]++;
  6925. }
  6926. static int niu_pci_probe_sprom(struct niu *np)
  6927. {
  6928. struct net_device *dev = np->dev;
  6929. int len, i;
  6930. u64 val, sum;
  6931. u8 val8;
  6932. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6933. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6934. len = val / 4;
  6935. np->eeprom_len = len;
  6936. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6937. "SPROM: Image size %llu\n", (unsigned long long)val);
  6938. sum = 0;
  6939. for (i = 0; i < len; i++) {
  6940. val = nr64(ESPC_NCR(i));
  6941. sum += (val >> 0) & 0xff;
  6942. sum += (val >> 8) & 0xff;
  6943. sum += (val >> 16) & 0xff;
  6944. sum += (val >> 24) & 0xff;
  6945. }
  6946. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6947. "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6948. if ((sum & 0xff) != 0xab) {
  6949. dev_err(np->device, "Bad SPROM checksum (%x, should be 0xab)\n", (int)(sum & 0xff));
  6950. return -EINVAL;
  6951. }
  6952. val = nr64(ESPC_PHY_TYPE);
  6953. switch (np->port) {
  6954. case 0:
  6955. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6956. ESPC_PHY_TYPE_PORT0_SHIFT;
  6957. break;
  6958. case 1:
  6959. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  6960. ESPC_PHY_TYPE_PORT1_SHIFT;
  6961. break;
  6962. case 2:
  6963. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  6964. ESPC_PHY_TYPE_PORT2_SHIFT;
  6965. break;
  6966. case 3:
  6967. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  6968. ESPC_PHY_TYPE_PORT3_SHIFT;
  6969. break;
  6970. default:
  6971. dev_err(np->device, "Bogus port number %u\n",
  6972. np->port);
  6973. return -EINVAL;
  6974. }
  6975. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6976. "SPROM: PHY type %x\n", val8);
  6977. switch (val8) {
  6978. case ESPC_PHY_TYPE_1G_COPPER:
  6979. /* 1G copper, MII */
  6980. np->flags &= ~(NIU_FLAGS_FIBER |
  6981. NIU_FLAGS_10G);
  6982. np->mac_xcvr = MAC_XCVR_MII;
  6983. break;
  6984. case ESPC_PHY_TYPE_1G_FIBER:
  6985. /* 1G fiber, PCS */
  6986. np->flags &= ~NIU_FLAGS_10G;
  6987. np->flags |= NIU_FLAGS_FIBER;
  6988. np->mac_xcvr = MAC_XCVR_PCS;
  6989. break;
  6990. case ESPC_PHY_TYPE_10G_COPPER:
  6991. /* 10G copper, XPCS */
  6992. np->flags |= NIU_FLAGS_10G;
  6993. np->flags &= ~NIU_FLAGS_FIBER;
  6994. np->mac_xcvr = MAC_XCVR_XPCS;
  6995. break;
  6996. case ESPC_PHY_TYPE_10G_FIBER:
  6997. /* 10G fiber, XPCS */
  6998. np->flags |= (NIU_FLAGS_10G |
  6999. NIU_FLAGS_FIBER);
  7000. np->mac_xcvr = MAC_XCVR_XPCS;
  7001. break;
  7002. default:
  7003. dev_err(np->device, "Bogus SPROM phy type %u\n", val8);
  7004. return -EINVAL;
  7005. }
  7006. val = nr64(ESPC_MAC_ADDR0);
  7007. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7008. "SPROM: MAC_ADDR0[%08llx]\n", (unsigned long long)val);
  7009. dev->dev_addr[0] = (val >> 0) & 0xff;
  7010. dev->dev_addr[1] = (val >> 8) & 0xff;
  7011. dev->dev_addr[2] = (val >> 16) & 0xff;
  7012. dev->dev_addr[3] = (val >> 24) & 0xff;
  7013. val = nr64(ESPC_MAC_ADDR1);
  7014. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7015. "SPROM: MAC_ADDR1[%08llx]\n", (unsigned long long)val);
  7016. dev->dev_addr[4] = (val >> 0) & 0xff;
  7017. dev->dev_addr[5] = (val >> 8) & 0xff;
  7018. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  7019. dev_err(np->device, "SPROM MAC address invalid [ %pM ]\n",
  7020. dev->dev_addr);
  7021. return -EINVAL;
  7022. }
  7023. val8 = dev->dev_addr[5];
  7024. dev->dev_addr[5] += np->port;
  7025. if (dev->dev_addr[5] < val8)
  7026. dev->dev_addr[4]++;
  7027. val = nr64(ESPC_MOD_STR_LEN);
  7028. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7029. "SPROM: MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7030. if (val >= 8 * 4)
  7031. return -EINVAL;
  7032. for (i = 0; i < val; i += 4) {
  7033. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7034. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7035. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7036. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7037. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7038. }
  7039. np->vpd.model[val] = '\0';
  7040. val = nr64(ESPC_BD_MOD_STR_LEN);
  7041. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7042. "SPROM: BD_MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7043. if (val >= 4 * 4)
  7044. return -EINVAL;
  7045. for (i = 0; i < val; i += 4) {
  7046. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7047. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7048. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7049. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7050. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7051. }
  7052. np->vpd.board_model[val] = '\0';
  7053. np->vpd.mac_num =
  7054. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7055. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7056. "SPROM: NUM_PORTS_MACS[%d]\n", np->vpd.mac_num);
  7057. return 0;
  7058. }
  7059. static int niu_get_and_validate_port(struct niu *np)
  7060. {
  7061. struct niu_parent *parent = np->parent;
  7062. if (np->port <= 1)
  7063. np->flags |= NIU_FLAGS_XMAC;
  7064. if (!parent->num_ports) {
  7065. if (parent->plat_type == PLAT_TYPE_NIU) {
  7066. parent->num_ports = 2;
  7067. } else {
  7068. parent->num_ports = niu_pci_vpd_get_nports(np);
  7069. if (!parent->num_ports) {
  7070. /* Fall back to SPROM as last resort.
  7071. * This will fail on most cards.
  7072. */
  7073. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7074. ESPC_NUM_PORTS_MACS_VAL;
  7075. /* All of the current probing methods fail on
  7076. * Maramba on-board parts.
  7077. */
  7078. if (!parent->num_ports)
  7079. parent->num_ports = 4;
  7080. }
  7081. }
  7082. }
  7083. if (np->port >= parent->num_ports)
  7084. return -ENODEV;
  7085. return 0;
  7086. }
  7087. static int phy_record(struct niu_parent *parent, struct phy_probe_info *p,
  7088. int dev_id_1, int dev_id_2, u8 phy_port, int type)
  7089. {
  7090. u32 id = (dev_id_1 << 16) | dev_id_2;
  7091. u8 idx;
  7092. if (dev_id_1 < 0 || dev_id_2 < 0)
  7093. return 0;
  7094. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7095. /* Because of the NIU_PHY_ID_MASK being applied, the 8704
  7096. * test covers the 8706 as well.
  7097. */
  7098. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7099. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011))
  7100. return 0;
  7101. } else {
  7102. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7103. return 0;
  7104. }
  7105. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7106. parent->index, id,
  7107. type == PHY_TYPE_PMA_PMD ? "PMA/PMD" :
  7108. type == PHY_TYPE_PCS ? "PCS" : "MII",
  7109. phy_port);
  7110. if (p->cur[type] >= NIU_MAX_PORTS) {
  7111. pr_err("Too many PHY ports\n");
  7112. return -EINVAL;
  7113. }
  7114. idx = p->cur[type];
  7115. p->phy_id[type][idx] = id;
  7116. p->phy_port[type][idx] = phy_port;
  7117. p->cur[type] = idx + 1;
  7118. return 0;
  7119. }
  7120. static int port_has_10g(struct phy_probe_info *p, int port)
  7121. {
  7122. int i;
  7123. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7124. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7125. return 1;
  7126. }
  7127. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7128. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7129. return 1;
  7130. }
  7131. return 0;
  7132. }
  7133. static int count_10g_ports(struct phy_probe_info *p, int *lowest)
  7134. {
  7135. int port, cnt;
  7136. cnt = 0;
  7137. *lowest = 32;
  7138. for (port = 8; port < 32; port++) {
  7139. if (port_has_10g(p, port)) {
  7140. if (!cnt)
  7141. *lowest = port;
  7142. cnt++;
  7143. }
  7144. }
  7145. return cnt;
  7146. }
  7147. static int count_1g_ports(struct phy_probe_info *p, int *lowest)
  7148. {
  7149. *lowest = 32;
  7150. if (p->cur[PHY_TYPE_MII])
  7151. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7152. return p->cur[PHY_TYPE_MII];
  7153. }
  7154. static void niu_n2_divide_channels(struct niu_parent *parent)
  7155. {
  7156. int num_ports = parent->num_ports;
  7157. int i;
  7158. for (i = 0; i < num_ports; i++) {
  7159. parent->rxchan_per_port[i] = (16 / num_ports);
  7160. parent->txchan_per_port[i] = (16 / num_ports);
  7161. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7162. parent->index, i,
  7163. parent->rxchan_per_port[i],
  7164. parent->txchan_per_port[i]);
  7165. }
  7166. }
  7167. static void niu_divide_channels(struct niu_parent *parent,
  7168. int num_10g, int num_1g)
  7169. {
  7170. int num_ports = parent->num_ports;
  7171. int rx_chans_per_10g, rx_chans_per_1g;
  7172. int tx_chans_per_10g, tx_chans_per_1g;
  7173. int i, tot_rx, tot_tx;
  7174. if (!num_10g || !num_1g) {
  7175. rx_chans_per_10g = rx_chans_per_1g =
  7176. (NIU_NUM_RXCHAN / num_ports);
  7177. tx_chans_per_10g = tx_chans_per_1g =
  7178. (NIU_NUM_TXCHAN / num_ports);
  7179. } else {
  7180. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7181. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7182. (rx_chans_per_1g * num_1g)) /
  7183. num_10g;
  7184. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7185. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7186. (tx_chans_per_1g * num_1g)) /
  7187. num_10g;
  7188. }
  7189. tot_rx = tot_tx = 0;
  7190. for (i = 0; i < num_ports; i++) {
  7191. int type = phy_decode(parent->port_phy, i);
  7192. if (type == PORT_TYPE_10G) {
  7193. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7194. parent->txchan_per_port[i] = tx_chans_per_10g;
  7195. } else {
  7196. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7197. parent->txchan_per_port[i] = tx_chans_per_1g;
  7198. }
  7199. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7200. parent->index, i,
  7201. parent->rxchan_per_port[i],
  7202. parent->txchan_per_port[i]);
  7203. tot_rx += parent->rxchan_per_port[i];
  7204. tot_tx += parent->txchan_per_port[i];
  7205. }
  7206. if (tot_rx > NIU_NUM_RXCHAN) {
  7207. pr_err("niu%d: Too many RX channels (%d), resetting to one per port\n",
  7208. parent->index, tot_rx);
  7209. for (i = 0; i < num_ports; i++)
  7210. parent->rxchan_per_port[i] = 1;
  7211. }
  7212. if (tot_tx > NIU_NUM_TXCHAN) {
  7213. pr_err("niu%d: Too many TX channels (%d), resetting to one per port\n",
  7214. parent->index, tot_tx);
  7215. for (i = 0; i < num_ports; i++)
  7216. parent->txchan_per_port[i] = 1;
  7217. }
  7218. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7219. pr_warning("niu%d: Driver bug, wasted channels, RX[%d] TX[%d]\n",
  7220. parent->index, tot_rx, tot_tx);
  7221. }
  7222. }
  7223. static void niu_divide_rdc_groups(struct niu_parent *parent,
  7224. int num_10g, int num_1g)
  7225. {
  7226. int i, num_ports = parent->num_ports;
  7227. int rdc_group, rdc_groups_per_port;
  7228. int rdc_channel_base;
  7229. rdc_group = 0;
  7230. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7231. rdc_channel_base = 0;
  7232. for (i = 0; i < num_ports; i++) {
  7233. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7234. int grp, num_channels = parent->rxchan_per_port[i];
  7235. int this_channel_offset;
  7236. tp->first_table_num = rdc_group;
  7237. tp->num_tables = rdc_groups_per_port;
  7238. this_channel_offset = 0;
  7239. for (grp = 0; grp < tp->num_tables; grp++) {
  7240. struct rdc_table *rt = &tp->tables[grp];
  7241. int slot;
  7242. pr_info("niu%d: Port %d RDC tbl(%d) [ ",
  7243. parent->index, i, tp->first_table_num + grp);
  7244. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7245. rt->rxdma_channel[slot] =
  7246. rdc_channel_base + this_channel_offset;
  7247. pr_cont("%d ", rt->rxdma_channel[slot]);
  7248. if (++this_channel_offset == num_channels)
  7249. this_channel_offset = 0;
  7250. }
  7251. pr_cont("]\n");
  7252. }
  7253. parent->rdc_default[i] = rdc_channel_base;
  7254. rdc_channel_base += num_channels;
  7255. rdc_group += rdc_groups_per_port;
  7256. }
  7257. }
  7258. static int fill_phy_probe_info(struct niu *np, struct niu_parent *parent,
  7259. struct phy_probe_info *info)
  7260. {
  7261. unsigned long flags;
  7262. int port, err;
  7263. memset(info, 0, sizeof(*info));
  7264. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7265. niu_lock_parent(np, flags);
  7266. err = 0;
  7267. for (port = 8; port < 32; port++) {
  7268. int dev_id_1, dev_id_2;
  7269. dev_id_1 = mdio_read(np, port,
  7270. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7271. dev_id_2 = mdio_read(np, port,
  7272. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7273. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7274. PHY_TYPE_PMA_PMD);
  7275. if (err)
  7276. break;
  7277. dev_id_1 = mdio_read(np, port,
  7278. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7279. dev_id_2 = mdio_read(np, port,
  7280. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7281. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7282. PHY_TYPE_PCS);
  7283. if (err)
  7284. break;
  7285. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7286. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7287. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7288. PHY_TYPE_MII);
  7289. if (err)
  7290. break;
  7291. }
  7292. niu_unlock_parent(np, flags);
  7293. return err;
  7294. }
  7295. static int walk_phys(struct niu *np, struct niu_parent *parent)
  7296. {
  7297. struct phy_probe_info *info = &parent->phy_probe_info;
  7298. int lowest_10g, lowest_1g;
  7299. int num_10g, num_1g;
  7300. u32 val;
  7301. int err;
  7302. num_10g = num_1g = 0;
  7303. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7304. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7305. num_10g = 0;
  7306. num_1g = 2;
  7307. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7308. parent->num_ports = 4;
  7309. val = (phy_encode(PORT_TYPE_1G, 0) |
  7310. phy_encode(PORT_TYPE_1G, 1) |
  7311. phy_encode(PORT_TYPE_1G, 2) |
  7312. phy_encode(PORT_TYPE_1G, 3));
  7313. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7314. num_10g = 2;
  7315. num_1g = 0;
  7316. parent->num_ports = 2;
  7317. val = (phy_encode(PORT_TYPE_10G, 0) |
  7318. phy_encode(PORT_TYPE_10G, 1));
  7319. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7320. (parent->plat_type == PLAT_TYPE_NIU)) {
  7321. /* this is the Monza case */
  7322. if (np->flags & NIU_FLAGS_10G) {
  7323. val = (phy_encode(PORT_TYPE_10G, 0) |
  7324. phy_encode(PORT_TYPE_10G, 1));
  7325. } else {
  7326. val = (phy_encode(PORT_TYPE_1G, 0) |
  7327. phy_encode(PORT_TYPE_1G, 1));
  7328. }
  7329. } else {
  7330. err = fill_phy_probe_info(np, parent, info);
  7331. if (err)
  7332. return err;
  7333. num_10g = count_10g_ports(info, &lowest_10g);
  7334. num_1g = count_1g_ports(info, &lowest_1g);
  7335. switch ((num_10g << 4) | num_1g) {
  7336. case 0x24:
  7337. if (lowest_1g == 10)
  7338. parent->plat_type = PLAT_TYPE_VF_P0;
  7339. else if (lowest_1g == 26)
  7340. parent->plat_type = PLAT_TYPE_VF_P1;
  7341. else
  7342. goto unknown_vg_1g_port;
  7343. /* fallthru */
  7344. case 0x22:
  7345. val = (phy_encode(PORT_TYPE_10G, 0) |
  7346. phy_encode(PORT_TYPE_10G, 1) |
  7347. phy_encode(PORT_TYPE_1G, 2) |
  7348. phy_encode(PORT_TYPE_1G, 3));
  7349. break;
  7350. case 0x20:
  7351. val = (phy_encode(PORT_TYPE_10G, 0) |
  7352. phy_encode(PORT_TYPE_10G, 1));
  7353. break;
  7354. case 0x10:
  7355. val = phy_encode(PORT_TYPE_10G, np->port);
  7356. break;
  7357. case 0x14:
  7358. if (lowest_1g == 10)
  7359. parent->plat_type = PLAT_TYPE_VF_P0;
  7360. else if (lowest_1g == 26)
  7361. parent->plat_type = PLAT_TYPE_VF_P1;
  7362. else
  7363. goto unknown_vg_1g_port;
  7364. /* fallthru */
  7365. case 0x13:
  7366. if ((lowest_10g & 0x7) == 0)
  7367. val = (phy_encode(PORT_TYPE_10G, 0) |
  7368. phy_encode(PORT_TYPE_1G, 1) |
  7369. phy_encode(PORT_TYPE_1G, 2) |
  7370. phy_encode(PORT_TYPE_1G, 3));
  7371. else
  7372. val = (phy_encode(PORT_TYPE_1G, 0) |
  7373. phy_encode(PORT_TYPE_10G, 1) |
  7374. phy_encode(PORT_TYPE_1G, 2) |
  7375. phy_encode(PORT_TYPE_1G, 3));
  7376. break;
  7377. case 0x04:
  7378. if (lowest_1g == 10)
  7379. parent->plat_type = PLAT_TYPE_VF_P0;
  7380. else if (lowest_1g == 26)
  7381. parent->plat_type = PLAT_TYPE_VF_P1;
  7382. else
  7383. goto unknown_vg_1g_port;
  7384. val = (phy_encode(PORT_TYPE_1G, 0) |
  7385. phy_encode(PORT_TYPE_1G, 1) |
  7386. phy_encode(PORT_TYPE_1G, 2) |
  7387. phy_encode(PORT_TYPE_1G, 3));
  7388. break;
  7389. default:
  7390. pr_err("Unsupported port config 10G[%d] 1G[%d]\n",
  7391. num_10g, num_1g);
  7392. return -EINVAL;
  7393. }
  7394. }
  7395. parent->port_phy = val;
  7396. if (parent->plat_type == PLAT_TYPE_NIU)
  7397. niu_n2_divide_channels(parent);
  7398. else
  7399. niu_divide_channels(parent, num_10g, num_1g);
  7400. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7401. return 0;
  7402. unknown_vg_1g_port:
  7403. pr_err("Cannot identify platform type, 1gport=%d\n", lowest_1g);
  7404. return -EINVAL;
  7405. }
  7406. static int niu_probe_ports(struct niu *np)
  7407. {
  7408. struct niu_parent *parent = np->parent;
  7409. int err, i;
  7410. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7411. err = walk_phys(np, parent);
  7412. if (err)
  7413. return err;
  7414. niu_set_ldg_timer_res(np, 2);
  7415. for (i = 0; i <= LDN_MAX; i++)
  7416. niu_ldn_irq_enable(np, i, 0);
  7417. }
  7418. if (parent->port_phy == PORT_PHY_INVALID)
  7419. return -EINVAL;
  7420. return 0;
  7421. }
  7422. static int niu_classifier_swstate_init(struct niu *np)
  7423. {
  7424. struct niu_classifier *cp = &np->clas;
  7425. cp->tcam_top = (u16) np->port;
  7426. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7427. cp->h1_init = 0xffffffff;
  7428. cp->h2_init = 0xffff;
  7429. return fflp_early_init(np);
  7430. }
  7431. static void niu_link_config_init(struct niu *np)
  7432. {
  7433. struct niu_link_config *lp = &np->link_config;
  7434. lp->advertising = (ADVERTISED_10baseT_Half |
  7435. ADVERTISED_10baseT_Full |
  7436. ADVERTISED_100baseT_Half |
  7437. ADVERTISED_100baseT_Full |
  7438. ADVERTISED_1000baseT_Half |
  7439. ADVERTISED_1000baseT_Full |
  7440. ADVERTISED_10000baseT_Full |
  7441. ADVERTISED_Autoneg);
  7442. lp->speed = lp->active_speed = SPEED_INVALID;
  7443. lp->duplex = DUPLEX_FULL;
  7444. lp->active_duplex = DUPLEX_INVALID;
  7445. lp->autoneg = 1;
  7446. #if 0
  7447. lp->loopback_mode = LOOPBACK_MAC;
  7448. lp->active_speed = SPEED_10000;
  7449. lp->active_duplex = DUPLEX_FULL;
  7450. #else
  7451. lp->loopback_mode = LOOPBACK_DISABLED;
  7452. #endif
  7453. }
  7454. static int niu_init_mac_ipp_pcs_base(struct niu *np)
  7455. {
  7456. switch (np->port) {
  7457. case 0:
  7458. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7459. np->ipp_off = 0x00000;
  7460. np->pcs_off = 0x04000;
  7461. np->xpcs_off = 0x02000;
  7462. break;
  7463. case 1:
  7464. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7465. np->ipp_off = 0x08000;
  7466. np->pcs_off = 0x0a000;
  7467. np->xpcs_off = 0x08000;
  7468. break;
  7469. case 2:
  7470. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7471. np->ipp_off = 0x04000;
  7472. np->pcs_off = 0x0e000;
  7473. np->xpcs_off = ~0UL;
  7474. break;
  7475. case 3:
  7476. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7477. np->ipp_off = 0x0c000;
  7478. np->pcs_off = 0x12000;
  7479. np->xpcs_off = ~0UL;
  7480. break;
  7481. default:
  7482. dev_err(np->device, "Port %u is invalid, cannot compute MAC block offset\n", np->port);
  7483. return -EINVAL;
  7484. }
  7485. return 0;
  7486. }
  7487. static void niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7488. {
  7489. struct msix_entry msi_vec[NIU_NUM_LDG];
  7490. struct niu_parent *parent = np->parent;
  7491. struct pci_dev *pdev = np->pdev;
  7492. int i, num_irqs;
  7493. u8 first_ldg;
  7494. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7495. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7496. ldg_num_map[i] = first_ldg + i;
  7497. num_irqs = (parent->rxchan_per_port[np->port] +
  7498. parent->txchan_per_port[np->port] +
  7499. (np->port == 0 ? 3 : 1));
  7500. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7501. for (i = 0; i < num_irqs; i++) {
  7502. msi_vec[i].vector = 0;
  7503. msi_vec[i].entry = i;
  7504. }
  7505. num_irqs = pci_enable_msix_range(pdev, msi_vec, 1, num_irqs);
  7506. if (num_irqs < 0) {
  7507. np->flags &= ~NIU_FLAGS_MSIX;
  7508. return;
  7509. }
  7510. np->flags |= NIU_FLAGS_MSIX;
  7511. for (i = 0; i < num_irqs; i++)
  7512. np->ldg[i].irq = msi_vec[i].vector;
  7513. np->num_ldg = num_irqs;
  7514. }
  7515. static int niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7516. {
  7517. #ifdef CONFIG_SPARC64
  7518. struct platform_device *op = np->op;
  7519. const u32 *int_prop;
  7520. int i;
  7521. int_prop = of_get_property(op->dev.of_node, "interrupts", NULL);
  7522. if (!int_prop)
  7523. return -ENODEV;
  7524. for (i = 0; i < op->archdata.num_irqs; i++) {
  7525. ldg_num_map[i] = int_prop[i];
  7526. np->ldg[i].irq = op->archdata.irqs[i];
  7527. }
  7528. np->num_ldg = op->archdata.num_irqs;
  7529. return 0;
  7530. #else
  7531. return -EINVAL;
  7532. #endif
  7533. }
  7534. static int niu_ldg_init(struct niu *np)
  7535. {
  7536. struct niu_parent *parent = np->parent;
  7537. u8 ldg_num_map[NIU_NUM_LDG];
  7538. int first_chan, num_chan;
  7539. int i, err, ldg_rotor;
  7540. u8 port;
  7541. np->num_ldg = 1;
  7542. np->ldg[0].irq = np->dev->irq;
  7543. if (parent->plat_type == PLAT_TYPE_NIU) {
  7544. err = niu_n2_irq_init(np, ldg_num_map);
  7545. if (err)
  7546. return err;
  7547. } else
  7548. niu_try_msix(np, ldg_num_map);
  7549. port = np->port;
  7550. for (i = 0; i < np->num_ldg; i++) {
  7551. struct niu_ldg *lp = &np->ldg[i];
  7552. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7553. lp->np = np;
  7554. lp->ldg_num = ldg_num_map[i];
  7555. lp->timer = 2; /* XXX */
  7556. /* On N2 NIU the firmware has setup the SID mappings so they go
  7557. * to the correct values that will route the LDG to the proper
  7558. * interrupt in the NCU interrupt table.
  7559. */
  7560. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7561. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7562. if (err)
  7563. return err;
  7564. }
  7565. }
  7566. /* We adopt the LDG assignment ordering used by the N2 NIU
  7567. * 'interrupt' properties because that simplifies a lot of
  7568. * things. This ordering is:
  7569. *
  7570. * MAC
  7571. * MIF (if port zero)
  7572. * SYSERR (if port zero)
  7573. * RX channels
  7574. * TX channels
  7575. */
  7576. ldg_rotor = 0;
  7577. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7578. LDN_MAC(port));
  7579. if (err)
  7580. return err;
  7581. ldg_rotor++;
  7582. if (ldg_rotor == np->num_ldg)
  7583. ldg_rotor = 0;
  7584. if (port == 0) {
  7585. err = niu_ldg_assign_ldn(np, parent,
  7586. ldg_num_map[ldg_rotor],
  7587. LDN_MIF);
  7588. if (err)
  7589. return err;
  7590. ldg_rotor++;
  7591. if (ldg_rotor == np->num_ldg)
  7592. ldg_rotor = 0;
  7593. err = niu_ldg_assign_ldn(np, parent,
  7594. ldg_num_map[ldg_rotor],
  7595. LDN_DEVICE_ERROR);
  7596. if (err)
  7597. return err;
  7598. ldg_rotor++;
  7599. if (ldg_rotor == np->num_ldg)
  7600. ldg_rotor = 0;
  7601. }
  7602. first_chan = 0;
  7603. for (i = 0; i < port; i++)
  7604. first_chan += parent->rxchan_per_port[i];
  7605. num_chan = parent->rxchan_per_port[port];
  7606. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7607. err = niu_ldg_assign_ldn(np, parent,
  7608. ldg_num_map[ldg_rotor],
  7609. LDN_RXDMA(i));
  7610. if (err)
  7611. return err;
  7612. ldg_rotor++;
  7613. if (ldg_rotor == np->num_ldg)
  7614. ldg_rotor = 0;
  7615. }
  7616. first_chan = 0;
  7617. for (i = 0; i < port; i++)
  7618. first_chan += parent->txchan_per_port[i];
  7619. num_chan = parent->txchan_per_port[port];
  7620. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7621. err = niu_ldg_assign_ldn(np, parent,
  7622. ldg_num_map[ldg_rotor],
  7623. LDN_TXDMA(i));
  7624. if (err)
  7625. return err;
  7626. ldg_rotor++;
  7627. if (ldg_rotor == np->num_ldg)
  7628. ldg_rotor = 0;
  7629. }
  7630. return 0;
  7631. }
  7632. static void niu_ldg_free(struct niu *np)
  7633. {
  7634. if (np->flags & NIU_FLAGS_MSIX)
  7635. pci_disable_msix(np->pdev);
  7636. }
  7637. static int niu_get_of_props(struct niu *np)
  7638. {
  7639. #ifdef CONFIG_SPARC64
  7640. struct net_device *dev = np->dev;
  7641. struct device_node *dp;
  7642. const char *phy_type;
  7643. const u8 *mac_addr;
  7644. const char *model;
  7645. int prop_len;
  7646. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7647. dp = np->op->dev.of_node;
  7648. else
  7649. dp = pci_device_to_OF_node(np->pdev);
  7650. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7651. if (!phy_type) {
  7652. netdev_err(dev, "%s: OF node lacks phy-type property\n",
  7653. dp->full_name);
  7654. return -EINVAL;
  7655. }
  7656. if (!strcmp(phy_type, "none"))
  7657. return -ENODEV;
  7658. strcpy(np->vpd.phy_type, phy_type);
  7659. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7660. netdev_err(dev, "%s: Illegal phy string [%s]\n",
  7661. dp->full_name, np->vpd.phy_type);
  7662. return -EINVAL;
  7663. }
  7664. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7665. if (!mac_addr) {
  7666. netdev_err(dev, "%s: OF node lacks local-mac-address property\n",
  7667. dp->full_name);
  7668. return -EINVAL;
  7669. }
  7670. if (prop_len != dev->addr_len) {
  7671. netdev_err(dev, "%s: OF MAC address prop len (%d) is wrong\n",
  7672. dp->full_name, prop_len);
  7673. }
  7674. memcpy(dev->dev_addr, mac_addr, dev->addr_len);
  7675. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  7676. netdev_err(dev, "%s: OF MAC address is invalid\n",
  7677. dp->full_name);
  7678. netdev_err(dev, "%s: [ %pM ]\n", dp->full_name, dev->dev_addr);
  7679. return -EINVAL;
  7680. }
  7681. model = of_get_property(dp, "model", &prop_len);
  7682. if (model)
  7683. strcpy(np->vpd.model, model);
  7684. if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
  7685. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7686. NIU_FLAGS_HOTPLUG_PHY);
  7687. }
  7688. return 0;
  7689. #else
  7690. return -EINVAL;
  7691. #endif
  7692. }
  7693. static int niu_get_invariants(struct niu *np)
  7694. {
  7695. int err, have_props;
  7696. u32 offset;
  7697. err = niu_get_of_props(np);
  7698. if (err == -ENODEV)
  7699. return err;
  7700. have_props = !err;
  7701. err = niu_init_mac_ipp_pcs_base(np);
  7702. if (err)
  7703. return err;
  7704. if (have_props) {
  7705. err = niu_get_and_validate_port(np);
  7706. if (err)
  7707. return err;
  7708. } else {
  7709. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7710. return -EINVAL;
  7711. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7712. offset = niu_pci_vpd_offset(np);
  7713. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7714. "%s() VPD offset [%08x]\n", __func__, offset);
  7715. if (offset)
  7716. niu_pci_vpd_fetch(np, offset);
  7717. nw64(ESPC_PIO_EN, 0);
  7718. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7719. niu_pci_vpd_validate(np);
  7720. err = niu_get_and_validate_port(np);
  7721. if (err)
  7722. return err;
  7723. }
  7724. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7725. err = niu_get_and_validate_port(np);
  7726. if (err)
  7727. return err;
  7728. err = niu_pci_probe_sprom(np);
  7729. if (err)
  7730. return err;
  7731. }
  7732. }
  7733. err = niu_probe_ports(np);
  7734. if (err)
  7735. return err;
  7736. niu_ldg_init(np);
  7737. niu_classifier_swstate_init(np);
  7738. niu_link_config_init(np);
  7739. err = niu_determine_phy_disposition(np);
  7740. if (!err)
  7741. err = niu_init_link(np);
  7742. return err;
  7743. }
  7744. static LIST_HEAD(niu_parent_list);
  7745. static DEFINE_MUTEX(niu_parent_lock);
  7746. static int niu_parent_index;
  7747. static ssize_t show_port_phy(struct device *dev,
  7748. struct device_attribute *attr, char *buf)
  7749. {
  7750. struct platform_device *plat_dev = to_platform_device(dev);
  7751. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7752. u32 port_phy = p->port_phy;
  7753. char *orig_buf = buf;
  7754. int i;
  7755. if (port_phy == PORT_PHY_UNKNOWN ||
  7756. port_phy == PORT_PHY_INVALID)
  7757. return 0;
  7758. for (i = 0; i < p->num_ports; i++) {
  7759. const char *type_str;
  7760. int type;
  7761. type = phy_decode(port_phy, i);
  7762. if (type == PORT_TYPE_10G)
  7763. type_str = "10G";
  7764. else
  7765. type_str = "1G";
  7766. buf += sprintf(buf,
  7767. (i == 0) ? "%s" : " %s",
  7768. type_str);
  7769. }
  7770. buf += sprintf(buf, "\n");
  7771. return buf - orig_buf;
  7772. }
  7773. static ssize_t show_plat_type(struct device *dev,
  7774. struct device_attribute *attr, char *buf)
  7775. {
  7776. struct platform_device *plat_dev = to_platform_device(dev);
  7777. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7778. const char *type_str;
  7779. switch (p->plat_type) {
  7780. case PLAT_TYPE_ATLAS:
  7781. type_str = "atlas";
  7782. break;
  7783. case PLAT_TYPE_NIU:
  7784. type_str = "niu";
  7785. break;
  7786. case PLAT_TYPE_VF_P0:
  7787. type_str = "vf_p0";
  7788. break;
  7789. case PLAT_TYPE_VF_P1:
  7790. type_str = "vf_p1";
  7791. break;
  7792. default:
  7793. type_str = "unknown";
  7794. break;
  7795. }
  7796. return sprintf(buf, "%s\n", type_str);
  7797. }
  7798. static ssize_t __show_chan_per_port(struct device *dev,
  7799. struct device_attribute *attr, char *buf,
  7800. int rx)
  7801. {
  7802. struct platform_device *plat_dev = to_platform_device(dev);
  7803. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7804. char *orig_buf = buf;
  7805. u8 *arr;
  7806. int i;
  7807. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7808. for (i = 0; i < p->num_ports; i++) {
  7809. buf += sprintf(buf,
  7810. (i == 0) ? "%d" : " %d",
  7811. arr[i]);
  7812. }
  7813. buf += sprintf(buf, "\n");
  7814. return buf - orig_buf;
  7815. }
  7816. static ssize_t show_rxchan_per_port(struct device *dev,
  7817. struct device_attribute *attr, char *buf)
  7818. {
  7819. return __show_chan_per_port(dev, attr, buf, 1);
  7820. }
  7821. static ssize_t show_txchan_per_port(struct device *dev,
  7822. struct device_attribute *attr, char *buf)
  7823. {
  7824. return __show_chan_per_port(dev, attr, buf, 1);
  7825. }
  7826. static ssize_t show_num_ports(struct device *dev,
  7827. struct device_attribute *attr, char *buf)
  7828. {
  7829. struct platform_device *plat_dev = to_platform_device(dev);
  7830. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7831. return sprintf(buf, "%d\n", p->num_ports);
  7832. }
  7833. static struct device_attribute niu_parent_attributes[] = {
  7834. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7835. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7836. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7837. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7838. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7839. {}
  7840. };
  7841. static struct niu_parent *niu_new_parent(struct niu *np,
  7842. union niu_parent_id *id, u8 ptype)
  7843. {
  7844. struct platform_device *plat_dev;
  7845. struct niu_parent *p;
  7846. int i;
  7847. plat_dev = platform_device_register_simple("niu-board", niu_parent_index,
  7848. NULL, 0);
  7849. if (IS_ERR(plat_dev))
  7850. return NULL;
  7851. for (i = 0; niu_parent_attributes[i].attr.name; i++) {
  7852. int err = device_create_file(&plat_dev->dev,
  7853. &niu_parent_attributes[i]);
  7854. if (err)
  7855. goto fail_unregister;
  7856. }
  7857. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7858. if (!p)
  7859. goto fail_unregister;
  7860. p->index = niu_parent_index++;
  7861. plat_dev->dev.platform_data = p;
  7862. p->plat_dev = plat_dev;
  7863. memcpy(&p->id, id, sizeof(*id));
  7864. p->plat_type = ptype;
  7865. INIT_LIST_HEAD(&p->list);
  7866. atomic_set(&p->refcnt, 0);
  7867. list_add(&p->list, &niu_parent_list);
  7868. spin_lock_init(&p->lock);
  7869. p->rxdma_clock_divider = 7500;
  7870. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7871. if (p->plat_type == PLAT_TYPE_NIU)
  7872. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7873. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7874. int index = i - CLASS_CODE_USER_PROG1;
  7875. p->tcam_key[index] = TCAM_KEY_TSEL;
  7876. p->flow_key[index] = (FLOW_KEY_IPSA |
  7877. FLOW_KEY_IPDA |
  7878. FLOW_KEY_PROTO |
  7879. (FLOW_KEY_L4_BYTE12 <<
  7880. FLOW_KEY_L4_0_SHIFT) |
  7881. (FLOW_KEY_L4_BYTE12 <<
  7882. FLOW_KEY_L4_1_SHIFT));
  7883. }
  7884. for (i = 0; i < LDN_MAX + 1; i++)
  7885. p->ldg_map[i] = LDG_INVALID;
  7886. return p;
  7887. fail_unregister:
  7888. platform_device_unregister(plat_dev);
  7889. return NULL;
  7890. }
  7891. static struct niu_parent *niu_get_parent(struct niu *np,
  7892. union niu_parent_id *id, u8 ptype)
  7893. {
  7894. struct niu_parent *p, *tmp;
  7895. int port = np->port;
  7896. mutex_lock(&niu_parent_lock);
  7897. p = NULL;
  7898. list_for_each_entry(tmp, &niu_parent_list, list) {
  7899. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7900. p = tmp;
  7901. break;
  7902. }
  7903. }
  7904. if (!p)
  7905. p = niu_new_parent(np, id, ptype);
  7906. if (p) {
  7907. char port_name[6];
  7908. int err;
  7909. sprintf(port_name, "port%d", port);
  7910. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7911. &np->device->kobj,
  7912. port_name);
  7913. if (!err) {
  7914. p->ports[port] = np;
  7915. atomic_inc(&p->refcnt);
  7916. }
  7917. }
  7918. mutex_unlock(&niu_parent_lock);
  7919. return p;
  7920. }
  7921. static void niu_put_parent(struct niu *np)
  7922. {
  7923. struct niu_parent *p = np->parent;
  7924. u8 port = np->port;
  7925. char port_name[6];
  7926. BUG_ON(!p || p->ports[port] != np);
  7927. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7928. "%s() port[%u]\n", __func__, port);
  7929. sprintf(port_name, "port%d", port);
  7930. mutex_lock(&niu_parent_lock);
  7931. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  7932. p->ports[port] = NULL;
  7933. np->parent = NULL;
  7934. if (atomic_dec_and_test(&p->refcnt)) {
  7935. list_del(&p->list);
  7936. platform_device_unregister(p->plat_dev);
  7937. }
  7938. mutex_unlock(&niu_parent_lock);
  7939. }
  7940. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  7941. u64 *handle, gfp_t flag)
  7942. {
  7943. dma_addr_t dh;
  7944. void *ret;
  7945. ret = dma_alloc_coherent(dev, size, &dh, flag);
  7946. if (ret)
  7947. *handle = dh;
  7948. return ret;
  7949. }
  7950. static void niu_pci_free_coherent(struct device *dev, size_t size,
  7951. void *cpu_addr, u64 handle)
  7952. {
  7953. dma_free_coherent(dev, size, cpu_addr, handle);
  7954. }
  7955. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  7956. unsigned long offset, size_t size,
  7957. enum dma_data_direction direction)
  7958. {
  7959. return dma_map_page(dev, page, offset, size, direction);
  7960. }
  7961. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  7962. size_t size, enum dma_data_direction direction)
  7963. {
  7964. dma_unmap_page(dev, dma_address, size, direction);
  7965. }
  7966. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  7967. size_t size,
  7968. enum dma_data_direction direction)
  7969. {
  7970. return dma_map_single(dev, cpu_addr, size, direction);
  7971. }
  7972. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  7973. size_t size,
  7974. enum dma_data_direction direction)
  7975. {
  7976. dma_unmap_single(dev, dma_address, size, direction);
  7977. }
  7978. static const struct niu_ops niu_pci_ops = {
  7979. .alloc_coherent = niu_pci_alloc_coherent,
  7980. .free_coherent = niu_pci_free_coherent,
  7981. .map_page = niu_pci_map_page,
  7982. .unmap_page = niu_pci_unmap_page,
  7983. .map_single = niu_pci_map_single,
  7984. .unmap_single = niu_pci_unmap_single,
  7985. };
  7986. static void niu_driver_version(void)
  7987. {
  7988. static int niu_version_printed;
  7989. if (niu_version_printed++ == 0)
  7990. pr_info("%s", version);
  7991. }
  7992. static struct net_device *niu_alloc_and_init(struct device *gen_dev,
  7993. struct pci_dev *pdev,
  7994. struct platform_device *op,
  7995. const struct niu_ops *ops, u8 port)
  7996. {
  7997. struct net_device *dev;
  7998. struct niu *np;
  7999. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  8000. if (!dev)
  8001. return NULL;
  8002. SET_NETDEV_DEV(dev, gen_dev);
  8003. np = netdev_priv(dev);
  8004. np->dev = dev;
  8005. np->pdev = pdev;
  8006. np->op = op;
  8007. np->device = gen_dev;
  8008. np->ops = ops;
  8009. np->msg_enable = niu_debug;
  8010. spin_lock_init(&np->lock);
  8011. INIT_WORK(&np->reset_task, niu_reset_task);
  8012. np->port = port;
  8013. return dev;
  8014. }
  8015. static const struct net_device_ops niu_netdev_ops = {
  8016. .ndo_open = niu_open,
  8017. .ndo_stop = niu_close,
  8018. .ndo_start_xmit = niu_start_xmit,
  8019. .ndo_get_stats64 = niu_get_stats,
  8020. .ndo_set_rx_mode = niu_set_rx_mode,
  8021. .ndo_validate_addr = eth_validate_addr,
  8022. .ndo_set_mac_address = niu_set_mac_addr,
  8023. .ndo_do_ioctl = niu_ioctl,
  8024. .ndo_tx_timeout = niu_tx_timeout,
  8025. .ndo_change_mtu = niu_change_mtu,
  8026. };
  8027. static void niu_assign_netdev_ops(struct net_device *dev)
  8028. {
  8029. dev->netdev_ops = &niu_netdev_ops;
  8030. dev->ethtool_ops = &niu_ethtool_ops;
  8031. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8032. }
  8033. static void niu_device_announce(struct niu *np)
  8034. {
  8035. struct net_device *dev = np->dev;
  8036. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8037. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8038. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8039. dev->name,
  8040. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8041. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8042. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8043. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8044. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8045. np->vpd.phy_type);
  8046. } else {
  8047. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8048. dev->name,
  8049. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8050. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8051. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8052. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8053. "COPPER")),
  8054. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8055. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8056. np->vpd.phy_type);
  8057. }
  8058. }
  8059. static void niu_set_basic_features(struct net_device *dev)
  8060. {
  8061. dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXHASH;
  8062. dev->features |= dev->hw_features | NETIF_F_RXCSUM;
  8063. }
  8064. static int niu_pci_init_one(struct pci_dev *pdev,
  8065. const struct pci_device_id *ent)
  8066. {
  8067. union niu_parent_id parent_id;
  8068. struct net_device *dev;
  8069. struct niu *np;
  8070. int err;
  8071. u64 dma_mask;
  8072. niu_driver_version();
  8073. err = pci_enable_device(pdev);
  8074. if (err) {
  8075. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  8076. return err;
  8077. }
  8078. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8079. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8080. dev_err(&pdev->dev, "Cannot find proper PCI device base addresses, aborting\n");
  8081. err = -ENODEV;
  8082. goto err_out_disable_pdev;
  8083. }
  8084. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8085. if (err) {
  8086. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  8087. goto err_out_disable_pdev;
  8088. }
  8089. if (!pci_is_pcie(pdev)) {
  8090. dev_err(&pdev->dev, "Cannot find PCI Express capability, aborting\n");
  8091. err = -ENODEV;
  8092. goto err_out_free_res;
  8093. }
  8094. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8095. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8096. if (!dev) {
  8097. err = -ENOMEM;
  8098. goto err_out_free_res;
  8099. }
  8100. np = netdev_priv(dev);
  8101. memset(&parent_id, 0, sizeof(parent_id));
  8102. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8103. parent_id.pci.bus = pdev->bus->number;
  8104. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8105. np->parent = niu_get_parent(np, &parent_id,
  8106. PLAT_TYPE_ATLAS);
  8107. if (!np->parent) {
  8108. err = -ENOMEM;
  8109. goto err_out_free_dev;
  8110. }
  8111. pcie_capability_clear_and_set_word(pdev, PCI_EXP_DEVCTL,
  8112. PCI_EXP_DEVCTL_NOSNOOP_EN,
  8113. PCI_EXP_DEVCTL_CERE | PCI_EXP_DEVCTL_NFERE |
  8114. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE |
  8115. PCI_EXP_DEVCTL_RELAX_EN);
  8116. dma_mask = DMA_BIT_MASK(44);
  8117. err = pci_set_dma_mask(pdev, dma_mask);
  8118. if (!err) {
  8119. dev->features |= NETIF_F_HIGHDMA;
  8120. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8121. if (err) {
  8122. dev_err(&pdev->dev, "Unable to obtain 44 bit DMA for consistent allocations, aborting\n");
  8123. goto err_out_release_parent;
  8124. }
  8125. }
  8126. if (err) {
  8127. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8128. if (err) {
  8129. dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
  8130. goto err_out_release_parent;
  8131. }
  8132. }
  8133. niu_set_basic_features(dev);
  8134. dev->priv_flags |= IFF_UNICAST_FLT;
  8135. np->regs = pci_ioremap_bar(pdev, 0);
  8136. if (!np->regs) {
  8137. dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
  8138. err = -ENOMEM;
  8139. goto err_out_release_parent;
  8140. }
  8141. pci_set_master(pdev);
  8142. pci_save_state(pdev);
  8143. dev->irq = pdev->irq;
  8144. niu_assign_netdev_ops(dev);
  8145. err = niu_get_invariants(np);
  8146. if (err) {
  8147. if (err != -ENODEV)
  8148. dev_err(&pdev->dev, "Problem fetching invariants of chip, aborting\n");
  8149. goto err_out_iounmap;
  8150. }
  8151. err = register_netdev(dev);
  8152. if (err) {
  8153. dev_err(&pdev->dev, "Cannot register net device, aborting\n");
  8154. goto err_out_iounmap;
  8155. }
  8156. pci_set_drvdata(pdev, dev);
  8157. niu_device_announce(np);
  8158. return 0;
  8159. err_out_iounmap:
  8160. if (np->regs) {
  8161. iounmap(np->regs);
  8162. np->regs = NULL;
  8163. }
  8164. err_out_release_parent:
  8165. niu_put_parent(np);
  8166. err_out_free_dev:
  8167. free_netdev(dev);
  8168. err_out_free_res:
  8169. pci_release_regions(pdev);
  8170. err_out_disable_pdev:
  8171. pci_disable_device(pdev);
  8172. return err;
  8173. }
  8174. static void niu_pci_remove_one(struct pci_dev *pdev)
  8175. {
  8176. struct net_device *dev = pci_get_drvdata(pdev);
  8177. if (dev) {
  8178. struct niu *np = netdev_priv(dev);
  8179. unregister_netdev(dev);
  8180. if (np->regs) {
  8181. iounmap(np->regs);
  8182. np->regs = NULL;
  8183. }
  8184. niu_ldg_free(np);
  8185. niu_put_parent(np);
  8186. free_netdev(dev);
  8187. pci_release_regions(pdev);
  8188. pci_disable_device(pdev);
  8189. }
  8190. }
  8191. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8192. {
  8193. struct net_device *dev = pci_get_drvdata(pdev);
  8194. struct niu *np = netdev_priv(dev);
  8195. unsigned long flags;
  8196. if (!netif_running(dev))
  8197. return 0;
  8198. flush_work(&np->reset_task);
  8199. niu_netif_stop(np);
  8200. del_timer_sync(&np->timer);
  8201. spin_lock_irqsave(&np->lock, flags);
  8202. niu_enable_interrupts(np, 0);
  8203. spin_unlock_irqrestore(&np->lock, flags);
  8204. netif_device_detach(dev);
  8205. spin_lock_irqsave(&np->lock, flags);
  8206. niu_stop_hw(np);
  8207. spin_unlock_irqrestore(&np->lock, flags);
  8208. pci_save_state(pdev);
  8209. return 0;
  8210. }
  8211. static int niu_resume(struct pci_dev *pdev)
  8212. {
  8213. struct net_device *dev = pci_get_drvdata(pdev);
  8214. struct niu *np = netdev_priv(dev);
  8215. unsigned long flags;
  8216. int err;
  8217. if (!netif_running(dev))
  8218. return 0;
  8219. pci_restore_state(pdev);
  8220. netif_device_attach(dev);
  8221. spin_lock_irqsave(&np->lock, flags);
  8222. err = niu_init_hw(np);
  8223. if (!err) {
  8224. np->timer.expires = jiffies + HZ;
  8225. add_timer(&np->timer);
  8226. niu_netif_start(np);
  8227. }
  8228. spin_unlock_irqrestore(&np->lock, flags);
  8229. return err;
  8230. }
  8231. static struct pci_driver niu_pci_driver = {
  8232. .name = DRV_MODULE_NAME,
  8233. .id_table = niu_pci_tbl,
  8234. .probe = niu_pci_init_one,
  8235. .remove = niu_pci_remove_one,
  8236. .suspend = niu_suspend,
  8237. .resume = niu_resume,
  8238. };
  8239. #ifdef CONFIG_SPARC64
  8240. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8241. u64 *dma_addr, gfp_t flag)
  8242. {
  8243. unsigned long order = get_order(size);
  8244. unsigned long page = __get_free_pages(flag, order);
  8245. if (page == 0UL)
  8246. return NULL;
  8247. memset((char *)page, 0, PAGE_SIZE << order);
  8248. *dma_addr = __pa(page);
  8249. return (void *) page;
  8250. }
  8251. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8252. void *cpu_addr, u64 handle)
  8253. {
  8254. unsigned long order = get_order(size);
  8255. free_pages((unsigned long) cpu_addr, order);
  8256. }
  8257. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8258. unsigned long offset, size_t size,
  8259. enum dma_data_direction direction)
  8260. {
  8261. return page_to_phys(page) + offset;
  8262. }
  8263. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8264. size_t size, enum dma_data_direction direction)
  8265. {
  8266. /* Nothing to do. */
  8267. }
  8268. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8269. size_t size,
  8270. enum dma_data_direction direction)
  8271. {
  8272. return __pa(cpu_addr);
  8273. }
  8274. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8275. size_t size,
  8276. enum dma_data_direction direction)
  8277. {
  8278. /* Nothing to do. */
  8279. }
  8280. static const struct niu_ops niu_phys_ops = {
  8281. .alloc_coherent = niu_phys_alloc_coherent,
  8282. .free_coherent = niu_phys_free_coherent,
  8283. .map_page = niu_phys_map_page,
  8284. .unmap_page = niu_phys_unmap_page,
  8285. .map_single = niu_phys_map_single,
  8286. .unmap_single = niu_phys_unmap_single,
  8287. };
  8288. static int niu_of_probe(struct platform_device *op)
  8289. {
  8290. union niu_parent_id parent_id;
  8291. struct net_device *dev;
  8292. struct niu *np;
  8293. const u32 *reg;
  8294. int err;
  8295. niu_driver_version();
  8296. reg = of_get_property(op->dev.of_node, "reg", NULL);
  8297. if (!reg) {
  8298. dev_err(&op->dev, "%s: No 'reg' property, aborting\n",
  8299. op->dev.of_node->full_name);
  8300. return -ENODEV;
  8301. }
  8302. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8303. &niu_phys_ops, reg[0] & 0x1);
  8304. if (!dev) {
  8305. err = -ENOMEM;
  8306. goto err_out;
  8307. }
  8308. np = netdev_priv(dev);
  8309. memset(&parent_id, 0, sizeof(parent_id));
  8310. parent_id.of = of_get_parent(op->dev.of_node);
  8311. np->parent = niu_get_parent(np, &parent_id,
  8312. PLAT_TYPE_NIU);
  8313. if (!np->parent) {
  8314. err = -ENOMEM;
  8315. goto err_out_free_dev;
  8316. }
  8317. niu_set_basic_features(dev);
  8318. np->regs = of_ioremap(&op->resource[1], 0,
  8319. resource_size(&op->resource[1]),
  8320. "niu regs");
  8321. if (!np->regs) {
  8322. dev_err(&op->dev, "Cannot map device registers, aborting\n");
  8323. err = -ENOMEM;
  8324. goto err_out_release_parent;
  8325. }
  8326. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8327. resource_size(&op->resource[2]),
  8328. "niu vregs-1");
  8329. if (!np->vir_regs_1) {
  8330. dev_err(&op->dev, "Cannot map device vir registers 1, aborting\n");
  8331. err = -ENOMEM;
  8332. goto err_out_iounmap;
  8333. }
  8334. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8335. resource_size(&op->resource[3]),
  8336. "niu vregs-2");
  8337. if (!np->vir_regs_2) {
  8338. dev_err(&op->dev, "Cannot map device vir registers 2, aborting\n");
  8339. err = -ENOMEM;
  8340. goto err_out_iounmap;
  8341. }
  8342. niu_assign_netdev_ops(dev);
  8343. err = niu_get_invariants(np);
  8344. if (err) {
  8345. if (err != -ENODEV)
  8346. dev_err(&op->dev, "Problem fetching invariants of chip, aborting\n");
  8347. goto err_out_iounmap;
  8348. }
  8349. err = register_netdev(dev);
  8350. if (err) {
  8351. dev_err(&op->dev, "Cannot register net device, aborting\n");
  8352. goto err_out_iounmap;
  8353. }
  8354. platform_set_drvdata(op, dev);
  8355. niu_device_announce(np);
  8356. return 0;
  8357. err_out_iounmap:
  8358. if (np->vir_regs_1) {
  8359. of_iounmap(&op->resource[2], np->vir_regs_1,
  8360. resource_size(&op->resource[2]));
  8361. np->vir_regs_1 = NULL;
  8362. }
  8363. if (np->vir_regs_2) {
  8364. of_iounmap(&op->resource[3], np->vir_regs_2,
  8365. resource_size(&op->resource[3]));
  8366. np->vir_regs_2 = NULL;
  8367. }
  8368. if (np->regs) {
  8369. of_iounmap(&op->resource[1], np->regs,
  8370. resource_size(&op->resource[1]));
  8371. np->regs = NULL;
  8372. }
  8373. err_out_release_parent:
  8374. niu_put_parent(np);
  8375. err_out_free_dev:
  8376. free_netdev(dev);
  8377. err_out:
  8378. return err;
  8379. }
  8380. static int niu_of_remove(struct platform_device *op)
  8381. {
  8382. struct net_device *dev = platform_get_drvdata(op);
  8383. if (dev) {
  8384. struct niu *np = netdev_priv(dev);
  8385. unregister_netdev(dev);
  8386. if (np->vir_regs_1) {
  8387. of_iounmap(&op->resource[2], np->vir_regs_1,
  8388. resource_size(&op->resource[2]));
  8389. np->vir_regs_1 = NULL;
  8390. }
  8391. if (np->vir_regs_2) {
  8392. of_iounmap(&op->resource[3], np->vir_regs_2,
  8393. resource_size(&op->resource[3]));
  8394. np->vir_regs_2 = NULL;
  8395. }
  8396. if (np->regs) {
  8397. of_iounmap(&op->resource[1], np->regs,
  8398. resource_size(&op->resource[1]));
  8399. np->regs = NULL;
  8400. }
  8401. niu_ldg_free(np);
  8402. niu_put_parent(np);
  8403. free_netdev(dev);
  8404. }
  8405. return 0;
  8406. }
  8407. static const struct of_device_id niu_match[] = {
  8408. {
  8409. .name = "network",
  8410. .compatible = "SUNW,niusl",
  8411. },
  8412. {},
  8413. };
  8414. MODULE_DEVICE_TABLE(of, niu_match);
  8415. static struct platform_driver niu_of_driver = {
  8416. .driver = {
  8417. .name = "niu",
  8418. .owner = THIS_MODULE,
  8419. .of_match_table = niu_match,
  8420. },
  8421. .probe = niu_of_probe,
  8422. .remove = niu_of_remove,
  8423. };
  8424. #endif /* CONFIG_SPARC64 */
  8425. static int __init niu_init(void)
  8426. {
  8427. int err = 0;
  8428. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8429. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8430. #ifdef CONFIG_SPARC64
  8431. err = platform_driver_register(&niu_of_driver);
  8432. #endif
  8433. if (!err) {
  8434. err = pci_register_driver(&niu_pci_driver);
  8435. #ifdef CONFIG_SPARC64
  8436. if (err)
  8437. platform_driver_unregister(&niu_of_driver);
  8438. #endif
  8439. }
  8440. return err;
  8441. }
  8442. static void __exit niu_exit(void)
  8443. {
  8444. pci_unregister_driver(&niu_pci_driver);
  8445. #ifdef CONFIG_SPARC64
  8446. platform_driver_unregister(&niu_of_driver);
  8447. #endif
  8448. }
  8449. module_init(niu_init);
  8450. module_exit(niu_exit);