dm9000.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768
  1. /*
  2. * Davicom DM9000 Fast Ethernet driver for Linux.
  3. * Copyright (C) 1997 Sten Wang
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
  16. *
  17. * Additional updates, Copyright:
  18. * Ben Dooks <ben@simtec.co.uk>
  19. * Sascha Hauer <s.hauer@pengutronix.de>
  20. */
  21. #include <linux/module.h>
  22. #include <linux/ioport.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/skbuff.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/crc32.h>
  29. #include <linux/mii.h>
  30. #include <linux/of.h>
  31. #include <linux/of_net.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/dm9000.h>
  34. #include <linux/delay.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/irq.h>
  37. #include <linux/slab.h>
  38. #include <asm/delay.h>
  39. #include <asm/irq.h>
  40. #include <asm/io.h>
  41. #include "dm9000.h"
  42. /* Board/System/Debug information/definition ---------------- */
  43. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  44. #define CARDNAME "dm9000"
  45. #define DRV_VERSION "1.31"
  46. /*
  47. * Transmit timeout, default 5 seconds.
  48. */
  49. static int watchdog = 5000;
  50. module_param(watchdog, int, 0400);
  51. MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  52. /*
  53. * Debug messages level
  54. */
  55. static int debug;
  56. module_param(debug, int, 0644);
  57. MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
  58. /* DM9000 register address locking.
  59. *
  60. * The DM9000 uses an address register to control where data written
  61. * to the data register goes. This means that the address register
  62. * must be preserved over interrupts or similar calls.
  63. *
  64. * During interrupt and other critical calls, a spinlock is used to
  65. * protect the system, but the calls themselves save the address
  66. * in the address register in case they are interrupting another
  67. * access to the device.
  68. *
  69. * For general accesses a lock is provided so that calls which are
  70. * allowed to sleep are serialised so that the address register does
  71. * not need to be saved. This lock also serves to serialise access
  72. * to the EEPROM and PHY access registers which are shared between
  73. * these two devices.
  74. */
  75. /* The driver supports the original DM9000E, and now the two newer
  76. * devices, DM9000A and DM9000B.
  77. */
  78. enum dm9000_type {
  79. TYPE_DM9000E, /* original DM9000 */
  80. TYPE_DM9000A,
  81. TYPE_DM9000B
  82. };
  83. /* Structure/enum declaration ------------------------------- */
  84. struct board_info {
  85. void __iomem *io_addr; /* Register I/O base address */
  86. void __iomem *io_data; /* Data I/O address */
  87. u16 irq; /* IRQ */
  88. u16 tx_pkt_cnt;
  89. u16 queue_pkt_len;
  90. u16 queue_start_addr;
  91. u16 queue_ip_summed;
  92. u16 dbug_cnt;
  93. u8 io_mode; /* 0:word, 2:byte */
  94. u8 phy_addr;
  95. u8 imr_all;
  96. unsigned int flags;
  97. unsigned int in_timeout:1;
  98. unsigned int in_suspend:1;
  99. unsigned int wake_supported:1;
  100. enum dm9000_type type;
  101. void (*inblk)(void __iomem *port, void *data, int length);
  102. void (*outblk)(void __iomem *port, void *data, int length);
  103. void (*dumpblk)(void __iomem *port, int length);
  104. struct device *dev; /* parent device */
  105. struct resource *addr_res; /* resources found */
  106. struct resource *data_res;
  107. struct resource *addr_req; /* resources requested */
  108. struct resource *data_req;
  109. struct resource *irq_res;
  110. int irq_wake;
  111. struct mutex addr_lock; /* phy and eeprom access lock */
  112. struct delayed_work phy_poll;
  113. struct net_device *ndev;
  114. spinlock_t lock;
  115. struct mii_if_info mii;
  116. u32 msg_enable;
  117. u32 wake_state;
  118. int ip_summed;
  119. };
  120. /* debug code */
  121. #define dm9000_dbg(db, lev, msg...) do { \
  122. if ((lev) < debug) { \
  123. dev_dbg(db->dev, msg); \
  124. } \
  125. } while (0)
  126. static inline struct board_info *to_dm9000_board(struct net_device *dev)
  127. {
  128. return netdev_priv(dev);
  129. }
  130. /* DM9000 network board routine ---------------------------- */
  131. /*
  132. * Read a byte from I/O port
  133. */
  134. static u8
  135. ior(struct board_info *db, int reg)
  136. {
  137. writeb(reg, db->io_addr);
  138. return readb(db->io_data);
  139. }
  140. /*
  141. * Write a byte to I/O port
  142. */
  143. static void
  144. iow(struct board_info *db, int reg, int value)
  145. {
  146. writeb(reg, db->io_addr);
  147. writeb(value, db->io_data);
  148. }
  149. static void
  150. dm9000_reset(struct board_info *db)
  151. {
  152. dev_dbg(db->dev, "resetting device\n");
  153. /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
  154. * The essential point is that we have to do a double reset, and the
  155. * instruction is to set LBK into MAC internal loopback mode.
  156. */
  157. iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
  158. udelay(100); /* Application note says at least 20 us */
  159. if (ior(db, DM9000_NCR) & 1)
  160. dev_err(db->dev, "dm9000 did not respond to first reset\n");
  161. iow(db, DM9000_NCR, 0);
  162. iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
  163. udelay(100);
  164. if (ior(db, DM9000_NCR) & 1)
  165. dev_err(db->dev, "dm9000 did not respond to second reset\n");
  166. }
  167. /* routines for sending block to chip */
  168. static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
  169. {
  170. iowrite8_rep(reg, data, count);
  171. }
  172. static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
  173. {
  174. iowrite16_rep(reg, data, (count+1) >> 1);
  175. }
  176. static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
  177. {
  178. iowrite32_rep(reg, data, (count+3) >> 2);
  179. }
  180. /* input block from chip to memory */
  181. static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
  182. {
  183. ioread8_rep(reg, data, count);
  184. }
  185. static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
  186. {
  187. ioread16_rep(reg, data, (count+1) >> 1);
  188. }
  189. static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
  190. {
  191. ioread32_rep(reg, data, (count+3) >> 2);
  192. }
  193. /* dump block from chip to null */
  194. static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
  195. {
  196. int i;
  197. int tmp;
  198. for (i = 0; i < count; i++)
  199. tmp = readb(reg);
  200. }
  201. static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
  202. {
  203. int i;
  204. int tmp;
  205. count = (count + 1) >> 1;
  206. for (i = 0; i < count; i++)
  207. tmp = readw(reg);
  208. }
  209. static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
  210. {
  211. int i;
  212. int tmp;
  213. count = (count + 3) >> 2;
  214. for (i = 0; i < count; i++)
  215. tmp = readl(reg);
  216. }
  217. /*
  218. * Sleep, either by using msleep() or if we are suspending, then
  219. * use mdelay() to sleep.
  220. */
  221. static void dm9000_msleep(struct board_info *db, unsigned int ms)
  222. {
  223. if (db->in_suspend || db->in_timeout)
  224. mdelay(ms);
  225. else
  226. msleep(ms);
  227. }
  228. /* Read a word from phyxcer */
  229. static int
  230. dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
  231. {
  232. struct board_info *db = netdev_priv(dev);
  233. unsigned long flags;
  234. unsigned int reg_save;
  235. int ret;
  236. mutex_lock(&db->addr_lock);
  237. spin_lock_irqsave(&db->lock, flags);
  238. /* Save previous register address */
  239. reg_save = readb(db->io_addr);
  240. /* Fill the phyxcer register into REG_0C */
  241. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  242. /* Issue phyxcer read command */
  243. iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
  244. writeb(reg_save, db->io_addr);
  245. spin_unlock_irqrestore(&db->lock, flags);
  246. dm9000_msleep(db, 1); /* Wait read complete */
  247. spin_lock_irqsave(&db->lock, flags);
  248. reg_save = readb(db->io_addr);
  249. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  250. /* The read data keeps on REG_0D & REG_0E */
  251. ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
  252. /* restore the previous address */
  253. writeb(reg_save, db->io_addr);
  254. spin_unlock_irqrestore(&db->lock, flags);
  255. mutex_unlock(&db->addr_lock);
  256. dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
  257. return ret;
  258. }
  259. /* Write a word to phyxcer */
  260. static void
  261. dm9000_phy_write(struct net_device *dev,
  262. int phyaddr_unused, int reg, int value)
  263. {
  264. struct board_info *db = netdev_priv(dev);
  265. unsigned long flags;
  266. unsigned long reg_save;
  267. dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
  268. if (!db->in_timeout)
  269. mutex_lock(&db->addr_lock);
  270. spin_lock_irqsave(&db->lock, flags);
  271. /* Save previous register address */
  272. reg_save = readb(db->io_addr);
  273. /* Fill the phyxcer register into REG_0C */
  274. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  275. /* Fill the written data into REG_0D & REG_0E */
  276. iow(db, DM9000_EPDRL, value);
  277. iow(db, DM9000_EPDRH, value >> 8);
  278. /* Issue phyxcer write command */
  279. iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
  280. writeb(reg_save, db->io_addr);
  281. spin_unlock_irqrestore(&db->lock, flags);
  282. dm9000_msleep(db, 1); /* Wait write complete */
  283. spin_lock_irqsave(&db->lock, flags);
  284. reg_save = readb(db->io_addr);
  285. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  286. /* restore the previous address */
  287. writeb(reg_save, db->io_addr);
  288. spin_unlock_irqrestore(&db->lock, flags);
  289. if (!db->in_timeout)
  290. mutex_unlock(&db->addr_lock);
  291. }
  292. /* dm9000_set_io
  293. *
  294. * select the specified set of io routines to use with the
  295. * device
  296. */
  297. static void dm9000_set_io(struct board_info *db, int byte_width)
  298. {
  299. /* use the size of the data resource to work out what IO
  300. * routines we want to use
  301. */
  302. switch (byte_width) {
  303. case 1:
  304. db->dumpblk = dm9000_dumpblk_8bit;
  305. db->outblk = dm9000_outblk_8bit;
  306. db->inblk = dm9000_inblk_8bit;
  307. break;
  308. case 3:
  309. dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
  310. case 2:
  311. db->dumpblk = dm9000_dumpblk_16bit;
  312. db->outblk = dm9000_outblk_16bit;
  313. db->inblk = dm9000_inblk_16bit;
  314. break;
  315. case 4:
  316. default:
  317. db->dumpblk = dm9000_dumpblk_32bit;
  318. db->outblk = dm9000_outblk_32bit;
  319. db->inblk = dm9000_inblk_32bit;
  320. break;
  321. }
  322. }
  323. static void dm9000_schedule_poll(struct board_info *db)
  324. {
  325. if (db->type == TYPE_DM9000E)
  326. schedule_delayed_work(&db->phy_poll, HZ * 2);
  327. }
  328. static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  329. {
  330. struct board_info *dm = to_dm9000_board(dev);
  331. if (!netif_running(dev))
  332. return -EINVAL;
  333. return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
  334. }
  335. static unsigned int
  336. dm9000_read_locked(struct board_info *db, int reg)
  337. {
  338. unsigned long flags;
  339. unsigned int ret;
  340. spin_lock_irqsave(&db->lock, flags);
  341. ret = ior(db, reg);
  342. spin_unlock_irqrestore(&db->lock, flags);
  343. return ret;
  344. }
  345. static int dm9000_wait_eeprom(struct board_info *db)
  346. {
  347. unsigned int status;
  348. int timeout = 8; /* wait max 8msec */
  349. /* The DM9000 data sheets say we should be able to
  350. * poll the ERRE bit in EPCR to wait for the EEPROM
  351. * operation. From testing several chips, this bit
  352. * does not seem to work.
  353. *
  354. * We attempt to use the bit, but fall back to the
  355. * timeout (which is why we do not return an error
  356. * on expiry) to say that the EEPROM operation has
  357. * completed.
  358. */
  359. while (1) {
  360. status = dm9000_read_locked(db, DM9000_EPCR);
  361. if ((status & EPCR_ERRE) == 0)
  362. break;
  363. msleep(1);
  364. if (timeout-- < 0) {
  365. dev_dbg(db->dev, "timeout waiting EEPROM\n");
  366. break;
  367. }
  368. }
  369. return 0;
  370. }
  371. /*
  372. * Read a word data from EEPROM
  373. */
  374. static void
  375. dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
  376. {
  377. unsigned long flags;
  378. if (db->flags & DM9000_PLATF_NO_EEPROM) {
  379. to[0] = 0xff;
  380. to[1] = 0xff;
  381. return;
  382. }
  383. mutex_lock(&db->addr_lock);
  384. spin_lock_irqsave(&db->lock, flags);
  385. iow(db, DM9000_EPAR, offset);
  386. iow(db, DM9000_EPCR, EPCR_ERPRR);
  387. spin_unlock_irqrestore(&db->lock, flags);
  388. dm9000_wait_eeprom(db);
  389. /* delay for at-least 150uS */
  390. msleep(1);
  391. spin_lock_irqsave(&db->lock, flags);
  392. iow(db, DM9000_EPCR, 0x0);
  393. to[0] = ior(db, DM9000_EPDRL);
  394. to[1] = ior(db, DM9000_EPDRH);
  395. spin_unlock_irqrestore(&db->lock, flags);
  396. mutex_unlock(&db->addr_lock);
  397. }
  398. /*
  399. * Write a word data to SROM
  400. */
  401. static void
  402. dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
  403. {
  404. unsigned long flags;
  405. if (db->flags & DM9000_PLATF_NO_EEPROM)
  406. return;
  407. mutex_lock(&db->addr_lock);
  408. spin_lock_irqsave(&db->lock, flags);
  409. iow(db, DM9000_EPAR, offset);
  410. iow(db, DM9000_EPDRH, data[1]);
  411. iow(db, DM9000_EPDRL, data[0]);
  412. iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
  413. spin_unlock_irqrestore(&db->lock, flags);
  414. dm9000_wait_eeprom(db);
  415. mdelay(1); /* wait at least 150uS to clear */
  416. spin_lock_irqsave(&db->lock, flags);
  417. iow(db, DM9000_EPCR, 0);
  418. spin_unlock_irqrestore(&db->lock, flags);
  419. mutex_unlock(&db->addr_lock);
  420. }
  421. /* ethtool ops */
  422. static void dm9000_get_drvinfo(struct net_device *dev,
  423. struct ethtool_drvinfo *info)
  424. {
  425. struct board_info *dm = to_dm9000_board(dev);
  426. strlcpy(info->driver, CARDNAME, sizeof(info->driver));
  427. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  428. strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
  429. sizeof(info->bus_info));
  430. }
  431. static u32 dm9000_get_msglevel(struct net_device *dev)
  432. {
  433. struct board_info *dm = to_dm9000_board(dev);
  434. return dm->msg_enable;
  435. }
  436. static void dm9000_set_msglevel(struct net_device *dev, u32 value)
  437. {
  438. struct board_info *dm = to_dm9000_board(dev);
  439. dm->msg_enable = value;
  440. }
  441. static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  442. {
  443. struct board_info *dm = to_dm9000_board(dev);
  444. mii_ethtool_gset(&dm->mii, cmd);
  445. return 0;
  446. }
  447. static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  448. {
  449. struct board_info *dm = to_dm9000_board(dev);
  450. return mii_ethtool_sset(&dm->mii, cmd);
  451. }
  452. static int dm9000_nway_reset(struct net_device *dev)
  453. {
  454. struct board_info *dm = to_dm9000_board(dev);
  455. return mii_nway_restart(&dm->mii);
  456. }
  457. static int dm9000_set_features(struct net_device *dev,
  458. netdev_features_t features)
  459. {
  460. struct board_info *dm = to_dm9000_board(dev);
  461. netdev_features_t changed = dev->features ^ features;
  462. unsigned long flags;
  463. if (!(changed & NETIF_F_RXCSUM))
  464. return 0;
  465. spin_lock_irqsave(&dm->lock, flags);
  466. iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
  467. spin_unlock_irqrestore(&dm->lock, flags);
  468. return 0;
  469. }
  470. static u32 dm9000_get_link(struct net_device *dev)
  471. {
  472. struct board_info *dm = to_dm9000_board(dev);
  473. u32 ret;
  474. if (dm->flags & DM9000_PLATF_EXT_PHY)
  475. ret = mii_link_ok(&dm->mii);
  476. else
  477. ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
  478. return ret;
  479. }
  480. #define DM_EEPROM_MAGIC (0x444D394B)
  481. static int dm9000_get_eeprom_len(struct net_device *dev)
  482. {
  483. return 128;
  484. }
  485. static int dm9000_get_eeprom(struct net_device *dev,
  486. struct ethtool_eeprom *ee, u8 *data)
  487. {
  488. struct board_info *dm = to_dm9000_board(dev);
  489. int offset = ee->offset;
  490. int len = ee->len;
  491. int i;
  492. /* EEPROM access is aligned to two bytes */
  493. if ((len & 1) != 0 || (offset & 1) != 0)
  494. return -EINVAL;
  495. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  496. return -ENOENT;
  497. ee->magic = DM_EEPROM_MAGIC;
  498. for (i = 0; i < len; i += 2)
  499. dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
  500. return 0;
  501. }
  502. static int dm9000_set_eeprom(struct net_device *dev,
  503. struct ethtool_eeprom *ee, u8 *data)
  504. {
  505. struct board_info *dm = to_dm9000_board(dev);
  506. int offset = ee->offset;
  507. int len = ee->len;
  508. int done;
  509. /* EEPROM access is aligned to two bytes */
  510. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  511. return -ENOENT;
  512. if (ee->magic != DM_EEPROM_MAGIC)
  513. return -EINVAL;
  514. while (len > 0) {
  515. if (len & 1 || offset & 1) {
  516. int which = offset & 1;
  517. u8 tmp[2];
  518. dm9000_read_eeprom(dm, offset / 2, tmp);
  519. tmp[which] = *data;
  520. dm9000_write_eeprom(dm, offset / 2, tmp);
  521. done = 1;
  522. } else {
  523. dm9000_write_eeprom(dm, offset / 2, data);
  524. done = 2;
  525. }
  526. data += done;
  527. offset += done;
  528. len -= done;
  529. }
  530. return 0;
  531. }
  532. static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
  533. {
  534. struct board_info *dm = to_dm9000_board(dev);
  535. memset(w, 0, sizeof(struct ethtool_wolinfo));
  536. /* note, we could probably support wake-phy too */
  537. w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
  538. w->wolopts = dm->wake_state;
  539. }
  540. static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
  541. {
  542. struct board_info *dm = to_dm9000_board(dev);
  543. unsigned long flags;
  544. u32 opts = w->wolopts;
  545. u32 wcr = 0;
  546. if (!dm->wake_supported)
  547. return -EOPNOTSUPP;
  548. if (opts & ~WAKE_MAGIC)
  549. return -EINVAL;
  550. if (opts & WAKE_MAGIC)
  551. wcr |= WCR_MAGICEN;
  552. mutex_lock(&dm->addr_lock);
  553. spin_lock_irqsave(&dm->lock, flags);
  554. iow(dm, DM9000_WCR, wcr);
  555. spin_unlock_irqrestore(&dm->lock, flags);
  556. mutex_unlock(&dm->addr_lock);
  557. if (dm->wake_state != opts) {
  558. /* change in wol state, update IRQ state */
  559. if (!dm->wake_state)
  560. irq_set_irq_wake(dm->irq_wake, 1);
  561. else if (dm->wake_state && !opts)
  562. irq_set_irq_wake(dm->irq_wake, 0);
  563. }
  564. dm->wake_state = opts;
  565. return 0;
  566. }
  567. static const struct ethtool_ops dm9000_ethtool_ops = {
  568. .get_drvinfo = dm9000_get_drvinfo,
  569. .get_settings = dm9000_get_settings,
  570. .set_settings = dm9000_set_settings,
  571. .get_msglevel = dm9000_get_msglevel,
  572. .set_msglevel = dm9000_set_msglevel,
  573. .nway_reset = dm9000_nway_reset,
  574. .get_link = dm9000_get_link,
  575. .get_wol = dm9000_get_wol,
  576. .set_wol = dm9000_set_wol,
  577. .get_eeprom_len = dm9000_get_eeprom_len,
  578. .get_eeprom = dm9000_get_eeprom,
  579. .set_eeprom = dm9000_set_eeprom,
  580. };
  581. static void dm9000_show_carrier(struct board_info *db,
  582. unsigned carrier, unsigned nsr)
  583. {
  584. int lpa;
  585. struct net_device *ndev = db->ndev;
  586. struct mii_if_info *mii = &db->mii;
  587. unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
  588. if (carrier) {
  589. lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
  590. dev_info(db->dev,
  591. "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
  592. ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
  593. (ncr & NCR_FDX) ? "full" : "half", lpa);
  594. } else {
  595. dev_info(db->dev, "%s: link down\n", ndev->name);
  596. }
  597. }
  598. static void
  599. dm9000_poll_work(struct work_struct *w)
  600. {
  601. struct delayed_work *dw = to_delayed_work(w);
  602. struct board_info *db = container_of(dw, struct board_info, phy_poll);
  603. struct net_device *ndev = db->ndev;
  604. if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
  605. !(db->flags & DM9000_PLATF_EXT_PHY)) {
  606. unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
  607. unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
  608. unsigned new_carrier;
  609. new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
  610. if (old_carrier != new_carrier) {
  611. if (netif_msg_link(db))
  612. dm9000_show_carrier(db, new_carrier, nsr);
  613. if (!new_carrier)
  614. netif_carrier_off(ndev);
  615. else
  616. netif_carrier_on(ndev);
  617. }
  618. } else
  619. mii_check_media(&db->mii, netif_msg_link(db), 0);
  620. if (netif_running(ndev))
  621. dm9000_schedule_poll(db);
  622. }
  623. /* dm9000_release_board
  624. *
  625. * release a board, and any mapped resources
  626. */
  627. static void
  628. dm9000_release_board(struct platform_device *pdev, struct board_info *db)
  629. {
  630. /* unmap our resources */
  631. iounmap(db->io_addr);
  632. iounmap(db->io_data);
  633. /* release the resources */
  634. if (db->data_req)
  635. release_resource(db->data_req);
  636. kfree(db->data_req);
  637. if (db->addr_req)
  638. release_resource(db->addr_req);
  639. kfree(db->addr_req);
  640. }
  641. static unsigned char dm9000_type_to_char(enum dm9000_type type)
  642. {
  643. switch (type) {
  644. case TYPE_DM9000E: return 'e';
  645. case TYPE_DM9000A: return 'a';
  646. case TYPE_DM9000B: return 'b';
  647. }
  648. return '?';
  649. }
  650. /*
  651. * Set DM9000 multicast address
  652. */
  653. static void
  654. dm9000_hash_table_unlocked(struct net_device *dev)
  655. {
  656. struct board_info *db = netdev_priv(dev);
  657. struct netdev_hw_addr *ha;
  658. int i, oft;
  659. u32 hash_val;
  660. u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
  661. u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
  662. dm9000_dbg(db, 1, "entering %s\n", __func__);
  663. for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
  664. iow(db, oft, dev->dev_addr[i]);
  665. if (dev->flags & IFF_PROMISC)
  666. rcr |= RCR_PRMSC;
  667. if (dev->flags & IFF_ALLMULTI)
  668. rcr |= RCR_ALL;
  669. /* the multicast address in Hash Table : 64 bits */
  670. netdev_for_each_mc_addr(ha, dev) {
  671. hash_val = ether_crc_le(6, ha->addr) & 0x3f;
  672. hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
  673. }
  674. /* Write the hash table to MAC MD table */
  675. for (i = 0, oft = DM9000_MAR; i < 4; i++) {
  676. iow(db, oft++, hash_table[i]);
  677. iow(db, oft++, hash_table[i] >> 8);
  678. }
  679. iow(db, DM9000_RCR, rcr);
  680. }
  681. static void
  682. dm9000_hash_table(struct net_device *dev)
  683. {
  684. struct board_info *db = netdev_priv(dev);
  685. unsigned long flags;
  686. spin_lock_irqsave(&db->lock, flags);
  687. dm9000_hash_table_unlocked(dev);
  688. spin_unlock_irqrestore(&db->lock, flags);
  689. }
  690. static void
  691. dm9000_mask_interrupts(struct board_info *db)
  692. {
  693. iow(db, DM9000_IMR, IMR_PAR);
  694. }
  695. static void
  696. dm9000_unmask_interrupts(struct board_info *db)
  697. {
  698. iow(db, DM9000_IMR, db->imr_all);
  699. }
  700. /*
  701. * Initialize dm9000 board
  702. */
  703. static void
  704. dm9000_init_dm9000(struct net_device *dev)
  705. {
  706. struct board_info *db = netdev_priv(dev);
  707. unsigned int imr;
  708. unsigned int ncr;
  709. dm9000_dbg(db, 1, "entering %s\n", __func__);
  710. dm9000_reset(db);
  711. dm9000_mask_interrupts(db);
  712. /* I/O mode */
  713. db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
  714. /* Checksum mode */
  715. if (dev->hw_features & NETIF_F_RXCSUM)
  716. iow(db, DM9000_RCSR,
  717. (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
  718. iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  719. iow(db, DM9000_GPR, 0);
  720. /* If we are dealing with DM9000B, some extra steps are required: a
  721. * manual phy reset, and setting init params.
  722. */
  723. if (db->type == TYPE_DM9000B) {
  724. dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
  725. dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
  726. }
  727. ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
  728. /* if wol is needed, then always set NCR_WAKEEN otherwise we end
  729. * up dumping the wake events if we disable this. There is already
  730. * a wake-mask in DM9000_WCR */
  731. if (db->wake_supported)
  732. ncr |= NCR_WAKEEN;
  733. iow(db, DM9000_NCR, ncr);
  734. /* Program operating register */
  735. iow(db, DM9000_TCR, 0); /* TX Polling clear */
  736. iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  737. iow(db, DM9000_FCR, 0xff); /* Flow Control */
  738. iow(db, DM9000_SMCR, 0); /* Special Mode */
  739. /* clear TX status */
  740. iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
  741. iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
  742. /* Set address filter table */
  743. dm9000_hash_table_unlocked(dev);
  744. imr = IMR_PAR | IMR_PTM | IMR_PRM;
  745. if (db->type != TYPE_DM9000E)
  746. imr |= IMR_LNKCHNG;
  747. db->imr_all = imr;
  748. /* Init Driver variable */
  749. db->tx_pkt_cnt = 0;
  750. db->queue_pkt_len = 0;
  751. dev->trans_start = jiffies;
  752. }
  753. /* Our watchdog timed out. Called by the networking layer */
  754. static void dm9000_timeout(struct net_device *dev)
  755. {
  756. struct board_info *db = netdev_priv(dev);
  757. u8 reg_save;
  758. unsigned long flags;
  759. /* Save previous register address */
  760. spin_lock_irqsave(&db->lock, flags);
  761. db->in_timeout = 1;
  762. reg_save = readb(db->io_addr);
  763. netif_stop_queue(dev);
  764. dm9000_init_dm9000(dev);
  765. dm9000_unmask_interrupts(db);
  766. /* We can accept TX packets again */
  767. dev->trans_start = jiffies; /* prevent tx timeout */
  768. netif_wake_queue(dev);
  769. /* Restore previous register address */
  770. writeb(reg_save, db->io_addr);
  771. db->in_timeout = 0;
  772. spin_unlock_irqrestore(&db->lock, flags);
  773. }
  774. static void dm9000_send_packet(struct net_device *dev,
  775. int ip_summed,
  776. u16 pkt_len)
  777. {
  778. struct board_info *dm = to_dm9000_board(dev);
  779. /* The DM9000 is not smart enough to leave fragmented packets alone. */
  780. if (dm->ip_summed != ip_summed) {
  781. if (ip_summed == CHECKSUM_NONE)
  782. iow(dm, DM9000_TCCR, 0);
  783. else
  784. iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
  785. dm->ip_summed = ip_summed;
  786. }
  787. /* Set TX length to DM9000 */
  788. iow(dm, DM9000_TXPLL, pkt_len);
  789. iow(dm, DM9000_TXPLH, pkt_len >> 8);
  790. /* Issue TX polling command */
  791. iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  792. }
  793. /*
  794. * Hardware start transmission.
  795. * Send a packet to media from the upper layer.
  796. */
  797. static int
  798. dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
  799. {
  800. unsigned long flags;
  801. struct board_info *db = netdev_priv(dev);
  802. dm9000_dbg(db, 3, "%s:\n", __func__);
  803. if (db->tx_pkt_cnt > 1)
  804. return NETDEV_TX_BUSY;
  805. spin_lock_irqsave(&db->lock, flags);
  806. /* Move data to DM9000 TX RAM */
  807. writeb(DM9000_MWCMD, db->io_addr);
  808. (db->outblk)(db->io_data, skb->data, skb->len);
  809. dev->stats.tx_bytes += skb->len;
  810. db->tx_pkt_cnt++;
  811. /* TX control: First packet immediately send, second packet queue */
  812. if (db->tx_pkt_cnt == 1) {
  813. dm9000_send_packet(dev, skb->ip_summed, skb->len);
  814. } else {
  815. /* Second packet */
  816. db->queue_pkt_len = skb->len;
  817. db->queue_ip_summed = skb->ip_summed;
  818. netif_stop_queue(dev);
  819. }
  820. spin_unlock_irqrestore(&db->lock, flags);
  821. /* free this SKB */
  822. dev_consume_skb_any(skb);
  823. return NETDEV_TX_OK;
  824. }
  825. /*
  826. * DM9000 interrupt handler
  827. * receive the packet to upper layer, free the transmitted packet
  828. */
  829. static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
  830. {
  831. int tx_status = ior(db, DM9000_NSR); /* Got TX status */
  832. if (tx_status & (NSR_TX2END | NSR_TX1END)) {
  833. /* One packet sent complete */
  834. db->tx_pkt_cnt--;
  835. dev->stats.tx_packets++;
  836. if (netif_msg_tx_done(db))
  837. dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
  838. /* Queue packet check & send */
  839. if (db->tx_pkt_cnt > 0)
  840. dm9000_send_packet(dev, db->queue_ip_summed,
  841. db->queue_pkt_len);
  842. netif_wake_queue(dev);
  843. }
  844. }
  845. struct dm9000_rxhdr {
  846. u8 RxPktReady;
  847. u8 RxStatus;
  848. __le16 RxLen;
  849. } __packed;
  850. /*
  851. * Received a packet and pass to upper layer
  852. */
  853. static void
  854. dm9000_rx(struct net_device *dev)
  855. {
  856. struct board_info *db = netdev_priv(dev);
  857. struct dm9000_rxhdr rxhdr;
  858. struct sk_buff *skb;
  859. u8 rxbyte, *rdptr;
  860. bool GoodPacket;
  861. int RxLen;
  862. /* Check packet ready or not */
  863. do {
  864. ior(db, DM9000_MRCMDX); /* Dummy read */
  865. /* Get most updated data */
  866. rxbyte = readb(db->io_data);
  867. /* Status check: this byte must be 0 or 1 */
  868. if (rxbyte & DM9000_PKT_ERR) {
  869. dev_warn(db->dev, "status check fail: %d\n", rxbyte);
  870. iow(db, DM9000_RCR, 0x00); /* Stop Device */
  871. return;
  872. }
  873. if (!(rxbyte & DM9000_PKT_RDY))
  874. return;
  875. /* A packet ready now & Get status/length */
  876. GoodPacket = true;
  877. writeb(DM9000_MRCMD, db->io_addr);
  878. (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
  879. RxLen = le16_to_cpu(rxhdr.RxLen);
  880. if (netif_msg_rx_status(db))
  881. dev_dbg(db->dev, "RX: status %02x, length %04x\n",
  882. rxhdr.RxStatus, RxLen);
  883. /* Packet Status check */
  884. if (RxLen < 0x40) {
  885. GoodPacket = false;
  886. if (netif_msg_rx_err(db))
  887. dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
  888. }
  889. if (RxLen > DM9000_PKT_MAX) {
  890. dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
  891. }
  892. /* rxhdr.RxStatus is identical to RSR register. */
  893. if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
  894. RSR_PLE | RSR_RWTO |
  895. RSR_LCS | RSR_RF)) {
  896. GoodPacket = false;
  897. if (rxhdr.RxStatus & RSR_FOE) {
  898. if (netif_msg_rx_err(db))
  899. dev_dbg(db->dev, "fifo error\n");
  900. dev->stats.rx_fifo_errors++;
  901. }
  902. if (rxhdr.RxStatus & RSR_CE) {
  903. if (netif_msg_rx_err(db))
  904. dev_dbg(db->dev, "crc error\n");
  905. dev->stats.rx_crc_errors++;
  906. }
  907. if (rxhdr.RxStatus & RSR_RF) {
  908. if (netif_msg_rx_err(db))
  909. dev_dbg(db->dev, "length error\n");
  910. dev->stats.rx_length_errors++;
  911. }
  912. }
  913. /* Move data from DM9000 */
  914. if (GoodPacket &&
  915. ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
  916. skb_reserve(skb, 2);
  917. rdptr = (u8 *) skb_put(skb, RxLen - 4);
  918. /* Read received packet from RX SRAM */
  919. (db->inblk)(db->io_data, rdptr, RxLen);
  920. dev->stats.rx_bytes += RxLen;
  921. /* Pass to upper layer */
  922. skb->protocol = eth_type_trans(skb, dev);
  923. if (dev->features & NETIF_F_RXCSUM) {
  924. if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
  925. skb->ip_summed = CHECKSUM_UNNECESSARY;
  926. else
  927. skb_checksum_none_assert(skb);
  928. }
  929. netif_rx(skb);
  930. dev->stats.rx_packets++;
  931. } else {
  932. /* need to dump the packet's data */
  933. (db->dumpblk)(db->io_data, RxLen);
  934. }
  935. } while (rxbyte & DM9000_PKT_RDY);
  936. }
  937. static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
  938. {
  939. struct net_device *dev = dev_id;
  940. struct board_info *db = netdev_priv(dev);
  941. int int_status;
  942. unsigned long flags;
  943. u8 reg_save;
  944. dm9000_dbg(db, 3, "entering %s\n", __func__);
  945. /* A real interrupt coming */
  946. /* holders of db->lock must always block IRQs */
  947. spin_lock_irqsave(&db->lock, flags);
  948. /* Save previous register address */
  949. reg_save = readb(db->io_addr);
  950. dm9000_mask_interrupts(db);
  951. /* Got DM9000 interrupt status */
  952. int_status = ior(db, DM9000_ISR); /* Got ISR */
  953. iow(db, DM9000_ISR, int_status); /* Clear ISR status */
  954. if (netif_msg_intr(db))
  955. dev_dbg(db->dev, "interrupt status %02x\n", int_status);
  956. /* Received the coming packet */
  957. if (int_status & ISR_PRS)
  958. dm9000_rx(dev);
  959. /* Trnasmit Interrupt check */
  960. if (int_status & ISR_PTS)
  961. dm9000_tx_done(dev, db);
  962. if (db->type != TYPE_DM9000E) {
  963. if (int_status & ISR_LNKCHNG) {
  964. /* fire a link-change request */
  965. schedule_delayed_work(&db->phy_poll, 1);
  966. }
  967. }
  968. dm9000_unmask_interrupts(db);
  969. /* Restore previous register address */
  970. writeb(reg_save, db->io_addr);
  971. spin_unlock_irqrestore(&db->lock, flags);
  972. return IRQ_HANDLED;
  973. }
  974. static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
  975. {
  976. struct net_device *dev = dev_id;
  977. struct board_info *db = netdev_priv(dev);
  978. unsigned long flags;
  979. unsigned nsr, wcr;
  980. spin_lock_irqsave(&db->lock, flags);
  981. nsr = ior(db, DM9000_NSR);
  982. wcr = ior(db, DM9000_WCR);
  983. dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
  984. if (nsr & NSR_WAKEST) {
  985. /* clear, so we can avoid */
  986. iow(db, DM9000_NSR, NSR_WAKEST);
  987. if (wcr & WCR_LINKST)
  988. dev_info(db->dev, "wake by link status change\n");
  989. if (wcr & WCR_SAMPLEST)
  990. dev_info(db->dev, "wake by sample packet\n");
  991. if (wcr & WCR_MAGICST)
  992. dev_info(db->dev, "wake by magic packet\n");
  993. if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
  994. dev_err(db->dev, "wake signalled with no reason? "
  995. "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
  996. }
  997. spin_unlock_irqrestore(&db->lock, flags);
  998. return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
  999. }
  1000. #ifdef CONFIG_NET_POLL_CONTROLLER
  1001. /*
  1002. *Used by netconsole
  1003. */
  1004. static void dm9000_poll_controller(struct net_device *dev)
  1005. {
  1006. disable_irq(dev->irq);
  1007. dm9000_interrupt(dev->irq, dev);
  1008. enable_irq(dev->irq);
  1009. }
  1010. #endif
  1011. /*
  1012. * Open the interface.
  1013. * The interface is opened whenever "ifconfig" actives it.
  1014. */
  1015. static int
  1016. dm9000_open(struct net_device *dev)
  1017. {
  1018. struct board_info *db = netdev_priv(dev);
  1019. unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
  1020. if (netif_msg_ifup(db))
  1021. dev_dbg(db->dev, "enabling %s\n", dev->name);
  1022. /* If there is no IRQ type specified, default to something that
  1023. * may work, and tell the user that this is a problem */
  1024. if (irqflags == IRQF_TRIGGER_NONE)
  1025. irqflags = irq_get_trigger_type(dev->irq);
  1026. if (irqflags == IRQF_TRIGGER_NONE)
  1027. dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
  1028. irqflags |= IRQF_SHARED;
  1029. /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
  1030. iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
  1031. mdelay(1); /* delay needs by DM9000B */
  1032. /* Initialize DM9000 board */
  1033. dm9000_init_dm9000(dev);
  1034. if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
  1035. return -EAGAIN;
  1036. /* Now that we have an interrupt handler hooked up we can unmask
  1037. * our interrupts
  1038. */
  1039. dm9000_unmask_interrupts(db);
  1040. /* Init driver variable */
  1041. db->dbug_cnt = 0;
  1042. mii_check_media(&db->mii, netif_msg_link(db), 1);
  1043. netif_start_queue(dev);
  1044. /* Poll initial link status */
  1045. schedule_delayed_work(&db->phy_poll, 1);
  1046. return 0;
  1047. }
  1048. static void
  1049. dm9000_shutdown(struct net_device *dev)
  1050. {
  1051. struct board_info *db = netdev_priv(dev);
  1052. /* RESET device */
  1053. dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
  1054. iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
  1055. dm9000_mask_interrupts(db);
  1056. iow(db, DM9000_RCR, 0x00); /* Disable RX */
  1057. }
  1058. /*
  1059. * Stop the interface.
  1060. * The interface is stopped when it is brought.
  1061. */
  1062. static int
  1063. dm9000_stop(struct net_device *ndev)
  1064. {
  1065. struct board_info *db = netdev_priv(ndev);
  1066. if (netif_msg_ifdown(db))
  1067. dev_dbg(db->dev, "shutting down %s\n", ndev->name);
  1068. cancel_delayed_work_sync(&db->phy_poll);
  1069. netif_stop_queue(ndev);
  1070. netif_carrier_off(ndev);
  1071. /* free interrupt */
  1072. free_irq(ndev->irq, ndev);
  1073. dm9000_shutdown(ndev);
  1074. return 0;
  1075. }
  1076. static const struct net_device_ops dm9000_netdev_ops = {
  1077. .ndo_open = dm9000_open,
  1078. .ndo_stop = dm9000_stop,
  1079. .ndo_start_xmit = dm9000_start_xmit,
  1080. .ndo_tx_timeout = dm9000_timeout,
  1081. .ndo_set_rx_mode = dm9000_hash_table,
  1082. .ndo_do_ioctl = dm9000_ioctl,
  1083. .ndo_change_mtu = eth_change_mtu,
  1084. .ndo_set_features = dm9000_set_features,
  1085. .ndo_validate_addr = eth_validate_addr,
  1086. .ndo_set_mac_address = eth_mac_addr,
  1087. #ifdef CONFIG_NET_POLL_CONTROLLER
  1088. .ndo_poll_controller = dm9000_poll_controller,
  1089. #endif
  1090. };
  1091. static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
  1092. {
  1093. struct dm9000_plat_data *pdata;
  1094. struct device_node *np = dev->of_node;
  1095. const void *mac_addr;
  1096. if (!IS_ENABLED(CONFIG_OF) || !np)
  1097. return NULL;
  1098. pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
  1099. if (!pdata)
  1100. return ERR_PTR(-ENOMEM);
  1101. if (of_find_property(np, "davicom,ext-phy", NULL))
  1102. pdata->flags |= DM9000_PLATF_EXT_PHY;
  1103. if (of_find_property(np, "davicom,no-eeprom", NULL))
  1104. pdata->flags |= DM9000_PLATF_NO_EEPROM;
  1105. mac_addr = of_get_mac_address(np);
  1106. if (mac_addr)
  1107. memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
  1108. return pdata;
  1109. }
  1110. /*
  1111. * Search DM9000 board, allocate space and register it
  1112. */
  1113. static int
  1114. dm9000_probe(struct platform_device *pdev)
  1115. {
  1116. struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
  1117. struct board_info *db; /* Point a board information structure */
  1118. struct net_device *ndev;
  1119. const unsigned char *mac_src;
  1120. int ret = 0;
  1121. int iosize;
  1122. int i;
  1123. u32 id_val;
  1124. if (!pdata) {
  1125. pdata = dm9000_parse_dt(&pdev->dev);
  1126. if (IS_ERR(pdata))
  1127. return PTR_ERR(pdata);
  1128. }
  1129. /* Init network device */
  1130. ndev = alloc_etherdev(sizeof(struct board_info));
  1131. if (!ndev)
  1132. return -ENOMEM;
  1133. SET_NETDEV_DEV(ndev, &pdev->dev);
  1134. dev_dbg(&pdev->dev, "dm9000_probe()\n");
  1135. /* setup board info structure */
  1136. db = netdev_priv(ndev);
  1137. db->dev = &pdev->dev;
  1138. db->ndev = ndev;
  1139. spin_lock_init(&db->lock);
  1140. mutex_init(&db->addr_lock);
  1141. INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
  1142. db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1143. db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1144. db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  1145. if (db->addr_res == NULL || db->data_res == NULL ||
  1146. db->irq_res == NULL) {
  1147. dev_err(db->dev, "insufficient resources\n");
  1148. ret = -ENOENT;
  1149. goto out;
  1150. }
  1151. db->irq_wake = platform_get_irq(pdev, 1);
  1152. if (db->irq_wake >= 0) {
  1153. dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
  1154. ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
  1155. IRQF_SHARED, dev_name(db->dev), ndev);
  1156. if (ret) {
  1157. dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
  1158. } else {
  1159. /* test to see if irq is really wakeup capable */
  1160. ret = irq_set_irq_wake(db->irq_wake, 1);
  1161. if (ret) {
  1162. dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
  1163. db->irq_wake, ret);
  1164. ret = 0;
  1165. } else {
  1166. irq_set_irq_wake(db->irq_wake, 0);
  1167. db->wake_supported = 1;
  1168. }
  1169. }
  1170. }
  1171. iosize = resource_size(db->addr_res);
  1172. db->addr_req = request_mem_region(db->addr_res->start, iosize,
  1173. pdev->name);
  1174. if (db->addr_req == NULL) {
  1175. dev_err(db->dev, "cannot claim address reg area\n");
  1176. ret = -EIO;
  1177. goto out;
  1178. }
  1179. db->io_addr = ioremap(db->addr_res->start, iosize);
  1180. if (db->io_addr == NULL) {
  1181. dev_err(db->dev, "failed to ioremap address reg\n");
  1182. ret = -EINVAL;
  1183. goto out;
  1184. }
  1185. iosize = resource_size(db->data_res);
  1186. db->data_req = request_mem_region(db->data_res->start, iosize,
  1187. pdev->name);
  1188. if (db->data_req == NULL) {
  1189. dev_err(db->dev, "cannot claim data reg area\n");
  1190. ret = -EIO;
  1191. goto out;
  1192. }
  1193. db->io_data = ioremap(db->data_res->start, iosize);
  1194. if (db->io_data == NULL) {
  1195. dev_err(db->dev, "failed to ioremap data reg\n");
  1196. ret = -EINVAL;
  1197. goto out;
  1198. }
  1199. /* fill in parameters for net-dev structure */
  1200. ndev->base_addr = (unsigned long)db->io_addr;
  1201. ndev->irq = db->irq_res->start;
  1202. /* ensure at least we have a default set of IO routines */
  1203. dm9000_set_io(db, iosize);
  1204. /* check to see if anything is being over-ridden */
  1205. if (pdata != NULL) {
  1206. /* check to see if the driver wants to over-ride the
  1207. * default IO width */
  1208. if (pdata->flags & DM9000_PLATF_8BITONLY)
  1209. dm9000_set_io(db, 1);
  1210. if (pdata->flags & DM9000_PLATF_16BITONLY)
  1211. dm9000_set_io(db, 2);
  1212. if (pdata->flags & DM9000_PLATF_32BITONLY)
  1213. dm9000_set_io(db, 4);
  1214. /* check to see if there are any IO routine
  1215. * over-rides */
  1216. if (pdata->inblk != NULL)
  1217. db->inblk = pdata->inblk;
  1218. if (pdata->outblk != NULL)
  1219. db->outblk = pdata->outblk;
  1220. if (pdata->dumpblk != NULL)
  1221. db->dumpblk = pdata->dumpblk;
  1222. db->flags = pdata->flags;
  1223. }
  1224. #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
  1225. db->flags |= DM9000_PLATF_SIMPLE_PHY;
  1226. #endif
  1227. dm9000_reset(db);
  1228. /* try multiple times, DM9000 sometimes gets the read wrong */
  1229. for (i = 0; i < 8; i++) {
  1230. id_val = ior(db, DM9000_VIDL);
  1231. id_val |= (u32)ior(db, DM9000_VIDH) << 8;
  1232. id_val |= (u32)ior(db, DM9000_PIDL) << 16;
  1233. id_val |= (u32)ior(db, DM9000_PIDH) << 24;
  1234. if (id_val == DM9000_ID)
  1235. break;
  1236. dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
  1237. }
  1238. if (id_val != DM9000_ID) {
  1239. dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
  1240. ret = -ENODEV;
  1241. goto out;
  1242. }
  1243. /* Identify what type of DM9000 we are working on */
  1244. id_val = ior(db, DM9000_CHIPR);
  1245. dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
  1246. switch (id_val) {
  1247. case CHIPR_DM9000A:
  1248. db->type = TYPE_DM9000A;
  1249. break;
  1250. case CHIPR_DM9000B:
  1251. db->type = TYPE_DM9000B;
  1252. break;
  1253. default:
  1254. dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
  1255. db->type = TYPE_DM9000E;
  1256. }
  1257. /* dm9000a/b are capable of hardware checksum offload */
  1258. if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
  1259. ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
  1260. ndev->features |= ndev->hw_features;
  1261. }
  1262. /* from this point we assume that we have found a DM9000 */
  1263. /* driver system function */
  1264. ether_setup(ndev);
  1265. ndev->netdev_ops = &dm9000_netdev_ops;
  1266. ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
  1267. ndev->ethtool_ops = &dm9000_ethtool_ops;
  1268. db->msg_enable = NETIF_MSG_LINK;
  1269. db->mii.phy_id_mask = 0x1f;
  1270. db->mii.reg_num_mask = 0x1f;
  1271. db->mii.force_media = 0;
  1272. db->mii.full_duplex = 0;
  1273. db->mii.dev = ndev;
  1274. db->mii.mdio_read = dm9000_phy_read;
  1275. db->mii.mdio_write = dm9000_phy_write;
  1276. mac_src = "eeprom";
  1277. /* try reading the node address from the attached EEPROM */
  1278. for (i = 0; i < 6; i += 2)
  1279. dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
  1280. if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
  1281. mac_src = "platform data";
  1282. memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
  1283. }
  1284. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1285. /* try reading from mac */
  1286. mac_src = "chip";
  1287. for (i = 0; i < 6; i++)
  1288. ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
  1289. }
  1290. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1291. dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
  1292. "set using ifconfig\n", ndev->name);
  1293. eth_hw_addr_random(ndev);
  1294. mac_src = "random";
  1295. }
  1296. platform_set_drvdata(pdev, ndev);
  1297. ret = register_netdev(ndev);
  1298. if (ret == 0)
  1299. printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
  1300. ndev->name, dm9000_type_to_char(db->type),
  1301. db->io_addr, db->io_data, ndev->irq,
  1302. ndev->dev_addr, mac_src);
  1303. return 0;
  1304. out:
  1305. dev_err(db->dev, "not found (%d).\n", ret);
  1306. dm9000_release_board(pdev, db);
  1307. free_netdev(ndev);
  1308. return ret;
  1309. }
  1310. static int
  1311. dm9000_drv_suspend(struct device *dev)
  1312. {
  1313. struct platform_device *pdev = to_platform_device(dev);
  1314. struct net_device *ndev = platform_get_drvdata(pdev);
  1315. struct board_info *db;
  1316. if (ndev) {
  1317. db = netdev_priv(ndev);
  1318. db->in_suspend = 1;
  1319. if (!netif_running(ndev))
  1320. return 0;
  1321. netif_device_detach(ndev);
  1322. /* only shutdown if not using WoL */
  1323. if (!db->wake_state)
  1324. dm9000_shutdown(ndev);
  1325. }
  1326. return 0;
  1327. }
  1328. static int
  1329. dm9000_drv_resume(struct device *dev)
  1330. {
  1331. struct platform_device *pdev = to_platform_device(dev);
  1332. struct net_device *ndev = platform_get_drvdata(pdev);
  1333. struct board_info *db = netdev_priv(ndev);
  1334. if (ndev) {
  1335. if (netif_running(ndev)) {
  1336. /* reset if we were not in wake mode to ensure if
  1337. * the device was powered off it is in a known state */
  1338. if (!db->wake_state) {
  1339. dm9000_init_dm9000(ndev);
  1340. dm9000_unmask_interrupts(db);
  1341. }
  1342. netif_device_attach(ndev);
  1343. }
  1344. db->in_suspend = 0;
  1345. }
  1346. return 0;
  1347. }
  1348. static const struct dev_pm_ops dm9000_drv_pm_ops = {
  1349. .suspend = dm9000_drv_suspend,
  1350. .resume = dm9000_drv_resume,
  1351. };
  1352. static int
  1353. dm9000_drv_remove(struct platform_device *pdev)
  1354. {
  1355. struct net_device *ndev = platform_get_drvdata(pdev);
  1356. unregister_netdev(ndev);
  1357. dm9000_release_board(pdev, netdev_priv(ndev));
  1358. free_netdev(ndev); /* free device structure */
  1359. dev_dbg(&pdev->dev, "released and freed device\n");
  1360. return 0;
  1361. }
  1362. #ifdef CONFIG_OF
  1363. static const struct of_device_id dm9000_of_matches[] = {
  1364. { .compatible = "davicom,dm9000", },
  1365. { /* sentinel */ }
  1366. };
  1367. MODULE_DEVICE_TABLE(of, dm9000_of_matches);
  1368. #endif
  1369. static struct platform_driver dm9000_driver = {
  1370. .driver = {
  1371. .name = "dm9000",
  1372. .owner = THIS_MODULE,
  1373. .pm = &dm9000_drv_pm_ops,
  1374. .of_match_table = of_match_ptr(dm9000_of_matches),
  1375. },
  1376. .probe = dm9000_probe,
  1377. .remove = dm9000_drv_remove,
  1378. };
  1379. module_platform_driver(dm9000_driver);
  1380. MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
  1381. MODULE_DESCRIPTION("Davicom DM9000 network driver");
  1382. MODULE_LICENSE("GPL");
  1383. MODULE_ALIAS("platform:dm9000");