bnx2.c 216 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819
  1. /* bnx2.c: QLogic NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2014 Broadcom Corporation
  4. * Copyright (c) 2014 QLogic Corporation
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation.
  9. *
  10. * Written by: Michael Chan (mchan@broadcom.com)
  11. */
  12. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/moduleparam.h>
  15. #include <linux/stringify.h>
  16. #include <linux/kernel.h>
  17. #include <linux/timer.h>
  18. #include <linux/errno.h>
  19. #include <linux/ioport.h>
  20. #include <linux/slab.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/pci.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/skbuff.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/bitops.h>
  29. #include <asm/io.h>
  30. #include <asm/irq.h>
  31. #include <linux/delay.h>
  32. #include <asm/byteorder.h>
  33. #include <asm/page.h>
  34. #include <linux/time.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/mii.h>
  37. #include <linux/if.h>
  38. #include <linux/if_vlan.h>
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/firmware.h>
  47. #include <linux/log2.h>
  48. #include <linux/aer.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define DRV_MODULE_VERSION "2.2.5"
  57. #define DRV_MODULE_RELDATE "December 20, 2013"
  58. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
  59. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
  60. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
  61. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
  62. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
  63. #define RUN_AT(x) (jiffies + (x))
  64. /* Time in jiffies before concluding the transmitter is hung. */
  65. #define TX_TIMEOUT (5*HZ)
  66. static char version[] =
  67. "QLogic NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  68. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  69. MODULE_DESCRIPTION("QLogic NetXtreme II BCM5706/5708/5709/5716 Driver");
  70. MODULE_LICENSE("GPL");
  71. MODULE_VERSION(DRV_MODULE_VERSION);
  72. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  73. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  74. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  77. static int disable_msi = 0;
  78. module_param(disable_msi, int, S_IRUGO);
  79. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  80. typedef enum {
  81. BCM5706 = 0,
  82. NC370T,
  83. NC370I,
  84. BCM5706S,
  85. NC370F,
  86. BCM5708,
  87. BCM5708S,
  88. BCM5709,
  89. BCM5709S,
  90. BCM5716,
  91. BCM5716S,
  92. } board_t;
  93. /* indexed by board_t, above */
  94. static struct {
  95. char *name;
  96. } board_info[] = {
  97. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  98. { "HP NC370T Multifunction Gigabit Server Adapter" },
  99. { "HP NC370i Multifunction Gigabit Server Adapter" },
  100. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  101. { "HP NC370F Multifunction Gigabit Server Adapter" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  108. };
  109. static const struct pci_device_id bnx2_pci_tbl[] = {
  110. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  111. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  112. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  113. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  114. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  115. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  116. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  117. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  118. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  119. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  120. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  121. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  122. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  123. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  124. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  125. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  126. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  127. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  128. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  129. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  130. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  131. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  132. { 0, }
  133. };
  134. static const struct flash_spec flash_table[] =
  135. {
  136. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  137. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  138. /* Slow EEPROM */
  139. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  140. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  141. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  142. "EEPROM - slow"},
  143. /* Expansion entry 0001 */
  144. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  145. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  146. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  147. "Entry 0001"},
  148. /* Saifun SA25F010 (non-buffered flash) */
  149. /* strap, cfg1, & write1 need updates */
  150. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  151. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  152. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  153. "Non-buffered flash (128kB)"},
  154. /* Saifun SA25F020 (non-buffered flash) */
  155. /* strap, cfg1, & write1 need updates */
  156. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  157. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  158. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  159. "Non-buffered flash (256kB)"},
  160. /* Expansion entry 0100 */
  161. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  162. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  163. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  164. "Entry 0100"},
  165. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  166. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  167. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  168. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  169. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  170. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  171. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  172. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  173. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  174. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  175. /* Saifun SA25F005 (non-buffered flash) */
  176. /* strap, cfg1, & write1 need updates */
  177. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  178. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  179. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  180. "Non-buffered flash (64kB)"},
  181. /* Fast EEPROM */
  182. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  183. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  184. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  185. "EEPROM - fast"},
  186. /* Expansion entry 1001 */
  187. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  188. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  189. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  190. "Entry 1001"},
  191. /* Expansion entry 1010 */
  192. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  193. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  194. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  195. "Entry 1010"},
  196. /* ATMEL AT45DB011B (buffered flash) */
  197. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  198. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  199. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  200. "Buffered flash (128kB)"},
  201. /* Expansion entry 1100 */
  202. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  203. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  204. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  205. "Entry 1100"},
  206. /* Expansion entry 1101 */
  207. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  208. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  209. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  210. "Entry 1101"},
  211. /* Ateml Expansion entry 1110 */
  212. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  213. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  214. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  215. "Entry 1110 (Atmel)"},
  216. /* ATMEL AT45DB021B (buffered flash) */
  217. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  218. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  219. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  220. "Buffered flash (256kB)"},
  221. };
  222. static const struct flash_spec flash_5709 = {
  223. .flags = BNX2_NV_BUFFERED,
  224. .page_bits = BCM5709_FLASH_PAGE_BITS,
  225. .page_size = BCM5709_FLASH_PAGE_SIZE,
  226. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  227. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  228. .name = "5709 Buffered flash (256kB)",
  229. };
  230. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  231. static void bnx2_init_napi(struct bnx2 *bp);
  232. static void bnx2_del_napi(struct bnx2 *bp);
  233. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  234. {
  235. u32 diff;
  236. /* Tell compiler to fetch tx_prod and tx_cons from memory. */
  237. barrier();
  238. /* The ring uses 256 indices for 255 entries, one of them
  239. * needs to be skipped.
  240. */
  241. diff = txr->tx_prod - txr->tx_cons;
  242. if (unlikely(diff >= BNX2_TX_DESC_CNT)) {
  243. diff &= 0xffff;
  244. if (diff == BNX2_TX_DESC_CNT)
  245. diff = BNX2_MAX_TX_DESC_CNT;
  246. }
  247. return bp->tx_ring_size - diff;
  248. }
  249. static u32
  250. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  251. {
  252. u32 val;
  253. spin_lock_bh(&bp->indirect_lock);
  254. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  255. val = BNX2_RD(bp, BNX2_PCICFG_REG_WINDOW);
  256. spin_unlock_bh(&bp->indirect_lock);
  257. return val;
  258. }
  259. static void
  260. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  261. {
  262. spin_lock_bh(&bp->indirect_lock);
  263. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  264. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  265. spin_unlock_bh(&bp->indirect_lock);
  266. }
  267. static void
  268. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  269. {
  270. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  271. }
  272. static u32
  273. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  274. {
  275. return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
  276. }
  277. static void
  278. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  279. {
  280. offset += cid_addr;
  281. spin_lock_bh(&bp->indirect_lock);
  282. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  283. int i;
  284. BNX2_WR(bp, BNX2_CTX_CTX_DATA, val);
  285. BNX2_WR(bp, BNX2_CTX_CTX_CTRL,
  286. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  287. for (i = 0; i < 5; i++) {
  288. val = BNX2_RD(bp, BNX2_CTX_CTX_CTRL);
  289. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  290. break;
  291. udelay(5);
  292. }
  293. } else {
  294. BNX2_WR(bp, BNX2_CTX_DATA_ADR, offset);
  295. BNX2_WR(bp, BNX2_CTX_DATA, val);
  296. }
  297. spin_unlock_bh(&bp->indirect_lock);
  298. }
  299. #ifdef BCM_CNIC
  300. static int
  301. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  302. {
  303. struct bnx2 *bp = netdev_priv(dev);
  304. struct drv_ctl_io *io = &info->data.io;
  305. switch (info->cmd) {
  306. case DRV_CTL_IO_WR_CMD:
  307. bnx2_reg_wr_ind(bp, io->offset, io->data);
  308. break;
  309. case DRV_CTL_IO_RD_CMD:
  310. io->data = bnx2_reg_rd_ind(bp, io->offset);
  311. break;
  312. case DRV_CTL_CTX_WR_CMD:
  313. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  314. break;
  315. default:
  316. return -EINVAL;
  317. }
  318. return 0;
  319. }
  320. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  321. {
  322. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  323. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  324. int sb_id;
  325. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  326. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  327. bnapi->cnic_present = 0;
  328. sb_id = bp->irq_nvecs;
  329. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  330. } else {
  331. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  332. bnapi->cnic_tag = bnapi->last_status_idx;
  333. bnapi->cnic_present = 1;
  334. sb_id = 0;
  335. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  336. }
  337. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  338. cp->irq_arr[0].status_blk = (void *)
  339. ((unsigned long) bnapi->status_blk.msi +
  340. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  341. cp->irq_arr[0].status_blk_num = sb_id;
  342. cp->num_irq = 1;
  343. }
  344. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  345. void *data)
  346. {
  347. struct bnx2 *bp = netdev_priv(dev);
  348. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  349. if (ops == NULL)
  350. return -EINVAL;
  351. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  352. return -EBUSY;
  353. if (!bnx2_reg_rd_ind(bp, BNX2_FW_MAX_ISCSI_CONN))
  354. return -ENODEV;
  355. bp->cnic_data = data;
  356. rcu_assign_pointer(bp->cnic_ops, ops);
  357. cp->num_irq = 0;
  358. cp->drv_state = CNIC_DRV_STATE_REGD;
  359. bnx2_setup_cnic_irq_info(bp);
  360. return 0;
  361. }
  362. static int bnx2_unregister_cnic(struct net_device *dev)
  363. {
  364. struct bnx2 *bp = netdev_priv(dev);
  365. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  366. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  367. mutex_lock(&bp->cnic_lock);
  368. cp->drv_state = 0;
  369. bnapi->cnic_present = 0;
  370. RCU_INIT_POINTER(bp->cnic_ops, NULL);
  371. mutex_unlock(&bp->cnic_lock);
  372. synchronize_rcu();
  373. return 0;
  374. }
  375. static struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  376. {
  377. struct bnx2 *bp = netdev_priv(dev);
  378. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  379. if (!cp->max_iscsi_conn)
  380. return NULL;
  381. cp->drv_owner = THIS_MODULE;
  382. cp->chip_id = bp->chip_id;
  383. cp->pdev = bp->pdev;
  384. cp->io_base = bp->regview;
  385. cp->drv_ctl = bnx2_drv_ctl;
  386. cp->drv_register_cnic = bnx2_register_cnic;
  387. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  388. return cp;
  389. }
  390. static void
  391. bnx2_cnic_stop(struct bnx2 *bp)
  392. {
  393. struct cnic_ops *c_ops;
  394. struct cnic_ctl_info info;
  395. mutex_lock(&bp->cnic_lock);
  396. c_ops = rcu_dereference_protected(bp->cnic_ops,
  397. lockdep_is_held(&bp->cnic_lock));
  398. if (c_ops) {
  399. info.cmd = CNIC_CTL_STOP_CMD;
  400. c_ops->cnic_ctl(bp->cnic_data, &info);
  401. }
  402. mutex_unlock(&bp->cnic_lock);
  403. }
  404. static void
  405. bnx2_cnic_start(struct bnx2 *bp)
  406. {
  407. struct cnic_ops *c_ops;
  408. struct cnic_ctl_info info;
  409. mutex_lock(&bp->cnic_lock);
  410. c_ops = rcu_dereference_protected(bp->cnic_ops,
  411. lockdep_is_held(&bp->cnic_lock));
  412. if (c_ops) {
  413. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  414. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  415. bnapi->cnic_tag = bnapi->last_status_idx;
  416. }
  417. info.cmd = CNIC_CTL_START_CMD;
  418. c_ops->cnic_ctl(bp->cnic_data, &info);
  419. }
  420. mutex_unlock(&bp->cnic_lock);
  421. }
  422. #else
  423. static void
  424. bnx2_cnic_stop(struct bnx2 *bp)
  425. {
  426. }
  427. static void
  428. bnx2_cnic_start(struct bnx2 *bp)
  429. {
  430. }
  431. #endif
  432. static int
  433. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  434. {
  435. u32 val1;
  436. int i, ret;
  437. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  438. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  439. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  440. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  441. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  442. udelay(40);
  443. }
  444. val1 = (bp->phy_addr << 21) | (reg << 16) |
  445. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  446. BNX2_EMAC_MDIO_COMM_START_BUSY;
  447. BNX2_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  448. for (i = 0; i < 50; i++) {
  449. udelay(10);
  450. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  451. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  452. udelay(5);
  453. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  454. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  455. break;
  456. }
  457. }
  458. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  459. *val = 0x0;
  460. ret = -EBUSY;
  461. }
  462. else {
  463. *val = val1;
  464. ret = 0;
  465. }
  466. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  467. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  468. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  469. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  470. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  471. udelay(40);
  472. }
  473. return ret;
  474. }
  475. static int
  476. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  477. {
  478. u32 val1;
  479. int i, ret;
  480. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  481. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  482. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  483. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  484. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  485. udelay(40);
  486. }
  487. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  488. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  489. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  490. BNX2_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  491. for (i = 0; i < 50; i++) {
  492. udelay(10);
  493. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  494. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  495. udelay(5);
  496. break;
  497. }
  498. }
  499. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  500. ret = -EBUSY;
  501. else
  502. ret = 0;
  503. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  504. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  505. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  506. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  507. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  508. udelay(40);
  509. }
  510. return ret;
  511. }
  512. static void
  513. bnx2_disable_int(struct bnx2 *bp)
  514. {
  515. int i;
  516. struct bnx2_napi *bnapi;
  517. for (i = 0; i < bp->irq_nvecs; i++) {
  518. bnapi = &bp->bnx2_napi[i];
  519. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  520. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  521. }
  522. BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  523. }
  524. static void
  525. bnx2_enable_int(struct bnx2 *bp)
  526. {
  527. int i;
  528. struct bnx2_napi *bnapi;
  529. for (i = 0; i < bp->irq_nvecs; i++) {
  530. bnapi = &bp->bnx2_napi[i];
  531. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  532. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  533. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  534. bnapi->last_status_idx);
  535. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  536. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  537. bnapi->last_status_idx);
  538. }
  539. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  540. }
  541. static void
  542. bnx2_disable_int_sync(struct bnx2 *bp)
  543. {
  544. int i;
  545. atomic_inc(&bp->intr_sem);
  546. if (!netif_running(bp->dev))
  547. return;
  548. bnx2_disable_int(bp);
  549. for (i = 0; i < bp->irq_nvecs; i++)
  550. synchronize_irq(bp->irq_tbl[i].vector);
  551. }
  552. static void
  553. bnx2_napi_disable(struct bnx2 *bp)
  554. {
  555. int i;
  556. for (i = 0; i < bp->irq_nvecs; i++)
  557. napi_disable(&bp->bnx2_napi[i].napi);
  558. }
  559. static void
  560. bnx2_napi_enable(struct bnx2 *bp)
  561. {
  562. int i;
  563. for (i = 0; i < bp->irq_nvecs; i++)
  564. napi_enable(&bp->bnx2_napi[i].napi);
  565. }
  566. static void
  567. bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
  568. {
  569. if (stop_cnic)
  570. bnx2_cnic_stop(bp);
  571. if (netif_running(bp->dev)) {
  572. bnx2_napi_disable(bp);
  573. netif_tx_disable(bp->dev);
  574. }
  575. bnx2_disable_int_sync(bp);
  576. netif_carrier_off(bp->dev); /* prevent tx timeout */
  577. }
  578. static void
  579. bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
  580. {
  581. if (atomic_dec_and_test(&bp->intr_sem)) {
  582. if (netif_running(bp->dev)) {
  583. netif_tx_wake_all_queues(bp->dev);
  584. spin_lock_bh(&bp->phy_lock);
  585. if (bp->link_up)
  586. netif_carrier_on(bp->dev);
  587. spin_unlock_bh(&bp->phy_lock);
  588. bnx2_napi_enable(bp);
  589. bnx2_enable_int(bp);
  590. if (start_cnic)
  591. bnx2_cnic_start(bp);
  592. }
  593. }
  594. }
  595. static void
  596. bnx2_free_tx_mem(struct bnx2 *bp)
  597. {
  598. int i;
  599. for (i = 0; i < bp->num_tx_rings; i++) {
  600. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  601. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  602. if (txr->tx_desc_ring) {
  603. dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  604. txr->tx_desc_ring,
  605. txr->tx_desc_mapping);
  606. txr->tx_desc_ring = NULL;
  607. }
  608. kfree(txr->tx_buf_ring);
  609. txr->tx_buf_ring = NULL;
  610. }
  611. }
  612. static void
  613. bnx2_free_rx_mem(struct bnx2 *bp)
  614. {
  615. int i;
  616. for (i = 0; i < bp->num_rx_rings; i++) {
  617. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  618. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  619. int j;
  620. for (j = 0; j < bp->rx_max_ring; j++) {
  621. if (rxr->rx_desc_ring[j])
  622. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  623. rxr->rx_desc_ring[j],
  624. rxr->rx_desc_mapping[j]);
  625. rxr->rx_desc_ring[j] = NULL;
  626. }
  627. vfree(rxr->rx_buf_ring);
  628. rxr->rx_buf_ring = NULL;
  629. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  630. if (rxr->rx_pg_desc_ring[j])
  631. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  632. rxr->rx_pg_desc_ring[j],
  633. rxr->rx_pg_desc_mapping[j]);
  634. rxr->rx_pg_desc_ring[j] = NULL;
  635. }
  636. vfree(rxr->rx_pg_ring);
  637. rxr->rx_pg_ring = NULL;
  638. }
  639. }
  640. static int
  641. bnx2_alloc_tx_mem(struct bnx2 *bp)
  642. {
  643. int i;
  644. for (i = 0; i < bp->num_tx_rings; i++) {
  645. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  646. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  647. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  648. if (txr->tx_buf_ring == NULL)
  649. return -ENOMEM;
  650. txr->tx_desc_ring =
  651. dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  652. &txr->tx_desc_mapping, GFP_KERNEL);
  653. if (txr->tx_desc_ring == NULL)
  654. return -ENOMEM;
  655. }
  656. return 0;
  657. }
  658. static int
  659. bnx2_alloc_rx_mem(struct bnx2 *bp)
  660. {
  661. int i;
  662. for (i = 0; i < bp->num_rx_rings; i++) {
  663. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  664. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  665. int j;
  666. rxr->rx_buf_ring =
  667. vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  668. if (rxr->rx_buf_ring == NULL)
  669. return -ENOMEM;
  670. for (j = 0; j < bp->rx_max_ring; j++) {
  671. rxr->rx_desc_ring[j] =
  672. dma_alloc_coherent(&bp->pdev->dev,
  673. RXBD_RING_SIZE,
  674. &rxr->rx_desc_mapping[j],
  675. GFP_KERNEL);
  676. if (rxr->rx_desc_ring[j] == NULL)
  677. return -ENOMEM;
  678. }
  679. if (bp->rx_pg_ring_size) {
  680. rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
  681. bp->rx_max_pg_ring);
  682. if (rxr->rx_pg_ring == NULL)
  683. return -ENOMEM;
  684. }
  685. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  686. rxr->rx_pg_desc_ring[j] =
  687. dma_alloc_coherent(&bp->pdev->dev,
  688. RXBD_RING_SIZE,
  689. &rxr->rx_pg_desc_mapping[j],
  690. GFP_KERNEL);
  691. if (rxr->rx_pg_desc_ring[j] == NULL)
  692. return -ENOMEM;
  693. }
  694. }
  695. return 0;
  696. }
  697. static void
  698. bnx2_free_mem(struct bnx2 *bp)
  699. {
  700. int i;
  701. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  702. bnx2_free_tx_mem(bp);
  703. bnx2_free_rx_mem(bp);
  704. for (i = 0; i < bp->ctx_pages; i++) {
  705. if (bp->ctx_blk[i]) {
  706. dma_free_coherent(&bp->pdev->dev, BNX2_PAGE_SIZE,
  707. bp->ctx_blk[i],
  708. bp->ctx_blk_mapping[i]);
  709. bp->ctx_blk[i] = NULL;
  710. }
  711. }
  712. if (bnapi->status_blk.msi) {
  713. dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
  714. bnapi->status_blk.msi,
  715. bp->status_blk_mapping);
  716. bnapi->status_blk.msi = NULL;
  717. bp->stats_blk = NULL;
  718. }
  719. }
  720. static int
  721. bnx2_alloc_mem(struct bnx2 *bp)
  722. {
  723. int i, status_blk_size, err;
  724. struct bnx2_napi *bnapi;
  725. void *status_blk;
  726. /* Combine status and statistics blocks into one allocation. */
  727. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  728. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  729. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  730. BNX2_SBLK_MSIX_ALIGN_SIZE);
  731. bp->status_stats_size = status_blk_size +
  732. sizeof(struct statistics_block);
  733. status_blk = dma_zalloc_coherent(&bp->pdev->dev, bp->status_stats_size,
  734. &bp->status_blk_mapping, GFP_KERNEL);
  735. if (status_blk == NULL)
  736. goto alloc_mem_err;
  737. bnapi = &bp->bnx2_napi[0];
  738. bnapi->status_blk.msi = status_blk;
  739. bnapi->hw_tx_cons_ptr =
  740. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  741. bnapi->hw_rx_cons_ptr =
  742. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  743. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  744. for (i = 1; i < bp->irq_nvecs; i++) {
  745. struct status_block_msix *sblk;
  746. bnapi = &bp->bnx2_napi[i];
  747. sblk = (status_blk + BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  748. bnapi->status_blk.msix = sblk;
  749. bnapi->hw_tx_cons_ptr =
  750. &sblk->status_tx_quick_consumer_index;
  751. bnapi->hw_rx_cons_ptr =
  752. &sblk->status_rx_quick_consumer_index;
  753. bnapi->int_num = i << 24;
  754. }
  755. }
  756. bp->stats_blk = status_blk + status_blk_size;
  757. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  758. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  759. bp->ctx_pages = 0x2000 / BNX2_PAGE_SIZE;
  760. if (bp->ctx_pages == 0)
  761. bp->ctx_pages = 1;
  762. for (i = 0; i < bp->ctx_pages; i++) {
  763. bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
  764. BNX2_PAGE_SIZE,
  765. &bp->ctx_blk_mapping[i],
  766. GFP_KERNEL);
  767. if (bp->ctx_blk[i] == NULL)
  768. goto alloc_mem_err;
  769. }
  770. }
  771. err = bnx2_alloc_rx_mem(bp);
  772. if (err)
  773. goto alloc_mem_err;
  774. err = bnx2_alloc_tx_mem(bp);
  775. if (err)
  776. goto alloc_mem_err;
  777. return 0;
  778. alloc_mem_err:
  779. bnx2_free_mem(bp);
  780. return -ENOMEM;
  781. }
  782. static void
  783. bnx2_report_fw_link(struct bnx2 *bp)
  784. {
  785. u32 fw_link_status = 0;
  786. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  787. return;
  788. if (bp->link_up) {
  789. u32 bmsr;
  790. switch (bp->line_speed) {
  791. case SPEED_10:
  792. if (bp->duplex == DUPLEX_HALF)
  793. fw_link_status = BNX2_LINK_STATUS_10HALF;
  794. else
  795. fw_link_status = BNX2_LINK_STATUS_10FULL;
  796. break;
  797. case SPEED_100:
  798. if (bp->duplex == DUPLEX_HALF)
  799. fw_link_status = BNX2_LINK_STATUS_100HALF;
  800. else
  801. fw_link_status = BNX2_LINK_STATUS_100FULL;
  802. break;
  803. case SPEED_1000:
  804. if (bp->duplex == DUPLEX_HALF)
  805. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  806. else
  807. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  808. break;
  809. case SPEED_2500:
  810. if (bp->duplex == DUPLEX_HALF)
  811. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  812. else
  813. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  814. break;
  815. }
  816. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  817. if (bp->autoneg) {
  818. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  819. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  820. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  821. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  822. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  823. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  824. else
  825. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  826. }
  827. }
  828. else
  829. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  830. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  831. }
  832. static char *
  833. bnx2_xceiver_str(struct bnx2 *bp)
  834. {
  835. return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
  836. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  837. "Copper");
  838. }
  839. static void
  840. bnx2_report_link(struct bnx2 *bp)
  841. {
  842. if (bp->link_up) {
  843. netif_carrier_on(bp->dev);
  844. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  845. bnx2_xceiver_str(bp),
  846. bp->line_speed,
  847. bp->duplex == DUPLEX_FULL ? "full" : "half");
  848. if (bp->flow_ctrl) {
  849. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  850. pr_cont(", receive ");
  851. if (bp->flow_ctrl & FLOW_CTRL_TX)
  852. pr_cont("& transmit ");
  853. }
  854. else {
  855. pr_cont(", transmit ");
  856. }
  857. pr_cont("flow control ON");
  858. }
  859. pr_cont("\n");
  860. } else {
  861. netif_carrier_off(bp->dev);
  862. netdev_err(bp->dev, "NIC %s Link is Down\n",
  863. bnx2_xceiver_str(bp));
  864. }
  865. bnx2_report_fw_link(bp);
  866. }
  867. static void
  868. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  869. {
  870. u32 local_adv, remote_adv;
  871. bp->flow_ctrl = 0;
  872. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  873. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  874. if (bp->duplex == DUPLEX_FULL) {
  875. bp->flow_ctrl = bp->req_flow_ctrl;
  876. }
  877. return;
  878. }
  879. if (bp->duplex != DUPLEX_FULL) {
  880. return;
  881. }
  882. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  883. (BNX2_CHIP(bp) == BNX2_CHIP_5708)) {
  884. u32 val;
  885. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  886. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  887. bp->flow_ctrl |= FLOW_CTRL_TX;
  888. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  889. bp->flow_ctrl |= FLOW_CTRL_RX;
  890. return;
  891. }
  892. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  893. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  894. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  895. u32 new_local_adv = 0;
  896. u32 new_remote_adv = 0;
  897. if (local_adv & ADVERTISE_1000XPAUSE)
  898. new_local_adv |= ADVERTISE_PAUSE_CAP;
  899. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  900. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  901. if (remote_adv & ADVERTISE_1000XPAUSE)
  902. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  903. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  904. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  905. local_adv = new_local_adv;
  906. remote_adv = new_remote_adv;
  907. }
  908. /* See Table 28B-3 of 802.3ab-1999 spec. */
  909. if (local_adv & ADVERTISE_PAUSE_CAP) {
  910. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  911. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  912. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  913. }
  914. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  915. bp->flow_ctrl = FLOW_CTRL_RX;
  916. }
  917. }
  918. else {
  919. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  920. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  921. }
  922. }
  923. }
  924. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  925. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  926. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  927. bp->flow_ctrl = FLOW_CTRL_TX;
  928. }
  929. }
  930. }
  931. static int
  932. bnx2_5709s_linkup(struct bnx2 *bp)
  933. {
  934. u32 val, speed;
  935. bp->link_up = 1;
  936. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  937. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  938. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  939. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  940. bp->line_speed = bp->req_line_speed;
  941. bp->duplex = bp->req_duplex;
  942. return 0;
  943. }
  944. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  945. switch (speed) {
  946. case MII_BNX2_GP_TOP_AN_SPEED_10:
  947. bp->line_speed = SPEED_10;
  948. break;
  949. case MII_BNX2_GP_TOP_AN_SPEED_100:
  950. bp->line_speed = SPEED_100;
  951. break;
  952. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  953. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  954. bp->line_speed = SPEED_1000;
  955. break;
  956. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  957. bp->line_speed = SPEED_2500;
  958. break;
  959. }
  960. if (val & MII_BNX2_GP_TOP_AN_FD)
  961. bp->duplex = DUPLEX_FULL;
  962. else
  963. bp->duplex = DUPLEX_HALF;
  964. return 0;
  965. }
  966. static int
  967. bnx2_5708s_linkup(struct bnx2 *bp)
  968. {
  969. u32 val;
  970. bp->link_up = 1;
  971. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  972. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  973. case BCM5708S_1000X_STAT1_SPEED_10:
  974. bp->line_speed = SPEED_10;
  975. break;
  976. case BCM5708S_1000X_STAT1_SPEED_100:
  977. bp->line_speed = SPEED_100;
  978. break;
  979. case BCM5708S_1000X_STAT1_SPEED_1G:
  980. bp->line_speed = SPEED_1000;
  981. break;
  982. case BCM5708S_1000X_STAT1_SPEED_2G5:
  983. bp->line_speed = SPEED_2500;
  984. break;
  985. }
  986. if (val & BCM5708S_1000X_STAT1_FD)
  987. bp->duplex = DUPLEX_FULL;
  988. else
  989. bp->duplex = DUPLEX_HALF;
  990. return 0;
  991. }
  992. static int
  993. bnx2_5706s_linkup(struct bnx2 *bp)
  994. {
  995. u32 bmcr, local_adv, remote_adv, common;
  996. bp->link_up = 1;
  997. bp->line_speed = SPEED_1000;
  998. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  999. if (bmcr & BMCR_FULLDPLX) {
  1000. bp->duplex = DUPLEX_FULL;
  1001. }
  1002. else {
  1003. bp->duplex = DUPLEX_HALF;
  1004. }
  1005. if (!(bmcr & BMCR_ANENABLE)) {
  1006. return 0;
  1007. }
  1008. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1009. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1010. common = local_adv & remote_adv;
  1011. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1012. if (common & ADVERTISE_1000XFULL) {
  1013. bp->duplex = DUPLEX_FULL;
  1014. }
  1015. else {
  1016. bp->duplex = DUPLEX_HALF;
  1017. }
  1018. }
  1019. return 0;
  1020. }
  1021. static int
  1022. bnx2_copper_linkup(struct bnx2 *bp)
  1023. {
  1024. u32 bmcr;
  1025. bp->phy_flags &= ~BNX2_PHY_FLAG_MDIX;
  1026. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1027. if (bmcr & BMCR_ANENABLE) {
  1028. u32 local_adv, remote_adv, common;
  1029. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1030. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1031. common = local_adv & (remote_adv >> 2);
  1032. if (common & ADVERTISE_1000FULL) {
  1033. bp->line_speed = SPEED_1000;
  1034. bp->duplex = DUPLEX_FULL;
  1035. }
  1036. else if (common & ADVERTISE_1000HALF) {
  1037. bp->line_speed = SPEED_1000;
  1038. bp->duplex = DUPLEX_HALF;
  1039. }
  1040. else {
  1041. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1042. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1043. common = local_adv & remote_adv;
  1044. if (common & ADVERTISE_100FULL) {
  1045. bp->line_speed = SPEED_100;
  1046. bp->duplex = DUPLEX_FULL;
  1047. }
  1048. else if (common & ADVERTISE_100HALF) {
  1049. bp->line_speed = SPEED_100;
  1050. bp->duplex = DUPLEX_HALF;
  1051. }
  1052. else if (common & ADVERTISE_10FULL) {
  1053. bp->line_speed = SPEED_10;
  1054. bp->duplex = DUPLEX_FULL;
  1055. }
  1056. else if (common & ADVERTISE_10HALF) {
  1057. bp->line_speed = SPEED_10;
  1058. bp->duplex = DUPLEX_HALF;
  1059. }
  1060. else {
  1061. bp->line_speed = 0;
  1062. bp->link_up = 0;
  1063. }
  1064. }
  1065. }
  1066. else {
  1067. if (bmcr & BMCR_SPEED100) {
  1068. bp->line_speed = SPEED_100;
  1069. }
  1070. else {
  1071. bp->line_speed = SPEED_10;
  1072. }
  1073. if (bmcr & BMCR_FULLDPLX) {
  1074. bp->duplex = DUPLEX_FULL;
  1075. }
  1076. else {
  1077. bp->duplex = DUPLEX_HALF;
  1078. }
  1079. }
  1080. if (bp->link_up) {
  1081. u32 ext_status;
  1082. bnx2_read_phy(bp, MII_BNX2_EXT_STATUS, &ext_status);
  1083. if (ext_status & EXT_STATUS_MDIX)
  1084. bp->phy_flags |= BNX2_PHY_FLAG_MDIX;
  1085. }
  1086. return 0;
  1087. }
  1088. static void
  1089. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1090. {
  1091. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1092. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1093. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1094. val |= 0x02 << 8;
  1095. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1096. val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
  1097. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1098. }
  1099. static void
  1100. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1101. {
  1102. int i;
  1103. u32 cid;
  1104. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1105. if (i == 1)
  1106. cid = RX_RSS_CID;
  1107. bnx2_init_rx_context(bp, cid);
  1108. }
  1109. }
  1110. static void
  1111. bnx2_set_mac_link(struct bnx2 *bp)
  1112. {
  1113. u32 val;
  1114. BNX2_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1115. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1116. (bp->duplex == DUPLEX_HALF)) {
  1117. BNX2_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1118. }
  1119. /* Configure the EMAC mode register. */
  1120. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  1121. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1122. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1123. BNX2_EMAC_MODE_25G_MODE);
  1124. if (bp->link_up) {
  1125. switch (bp->line_speed) {
  1126. case SPEED_10:
  1127. if (BNX2_CHIP(bp) != BNX2_CHIP_5706) {
  1128. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1129. break;
  1130. }
  1131. /* fall through */
  1132. case SPEED_100:
  1133. val |= BNX2_EMAC_MODE_PORT_MII;
  1134. break;
  1135. case SPEED_2500:
  1136. val |= BNX2_EMAC_MODE_25G_MODE;
  1137. /* fall through */
  1138. case SPEED_1000:
  1139. val |= BNX2_EMAC_MODE_PORT_GMII;
  1140. break;
  1141. }
  1142. }
  1143. else {
  1144. val |= BNX2_EMAC_MODE_PORT_GMII;
  1145. }
  1146. /* Set the MAC to operate in the appropriate duplex mode. */
  1147. if (bp->duplex == DUPLEX_HALF)
  1148. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1149. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  1150. /* Enable/disable rx PAUSE. */
  1151. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1152. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1153. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1154. BNX2_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1155. /* Enable/disable tx PAUSE. */
  1156. val = BNX2_RD(bp, BNX2_EMAC_TX_MODE);
  1157. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1158. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1159. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1160. BNX2_WR(bp, BNX2_EMAC_TX_MODE, val);
  1161. /* Acknowledge the interrupt. */
  1162. BNX2_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1163. bnx2_init_all_rx_contexts(bp);
  1164. }
  1165. static void
  1166. bnx2_enable_bmsr1(struct bnx2 *bp)
  1167. {
  1168. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1169. (BNX2_CHIP(bp) == BNX2_CHIP_5709))
  1170. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1171. MII_BNX2_BLK_ADDR_GP_STATUS);
  1172. }
  1173. static void
  1174. bnx2_disable_bmsr1(struct bnx2 *bp)
  1175. {
  1176. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1177. (BNX2_CHIP(bp) == BNX2_CHIP_5709))
  1178. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1179. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1180. }
  1181. static int
  1182. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1183. {
  1184. u32 up1;
  1185. int ret = 1;
  1186. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1187. return 0;
  1188. if (bp->autoneg & AUTONEG_SPEED)
  1189. bp->advertising |= ADVERTISED_2500baseX_Full;
  1190. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1191. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1192. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1193. if (!(up1 & BCM5708S_UP1_2G5)) {
  1194. up1 |= BCM5708S_UP1_2G5;
  1195. bnx2_write_phy(bp, bp->mii_up1, up1);
  1196. ret = 0;
  1197. }
  1198. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1199. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1200. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1201. return ret;
  1202. }
  1203. static int
  1204. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1205. {
  1206. u32 up1;
  1207. int ret = 0;
  1208. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1209. return 0;
  1210. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1211. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1212. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1213. if (up1 & BCM5708S_UP1_2G5) {
  1214. up1 &= ~BCM5708S_UP1_2G5;
  1215. bnx2_write_phy(bp, bp->mii_up1, up1);
  1216. ret = 1;
  1217. }
  1218. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1219. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1220. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1221. return ret;
  1222. }
  1223. static void
  1224. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1225. {
  1226. u32 uninitialized_var(bmcr);
  1227. int err;
  1228. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1229. return;
  1230. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1231. u32 val;
  1232. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1233. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1234. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1235. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1236. val |= MII_BNX2_SD_MISC1_FORCE |
  1237. MII_BNX2_SD_MISC1_FORCE_2_5G;
  1238. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1239. }
  1240. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1241. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1242. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1243. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1244. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1245. if (!err)
  1246. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1247. } else {
  1248. return;
  1249. }
  1250. if (err)
  1251. return;
  1252. if (bp->autoneg & AUTONEG_SPEED) {
  1253. bmcr &= ~BMCR_ANENABLE;
  1254. if (bp->req_duplex == DUPLEX_FULL)
  1255. bmcr |= BMCR_FULLDPLX;
  1256. }
  1257. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1258. }
  1259. static void
  1260. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1261. {
  1262. u32 uninitialized_var(bmcr);
  1263. int err;
  1264. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1265. return;
  1266. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1267. u32 val;
  1268. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1269. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1270. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1271. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1272. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1273. }
  1274. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1275. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1276. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1277. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1278. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1279. if (!err)
  1280. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1281. } else {
  1282. return;
  1283. }
  1284. if (err)
  1285. return;
  1286. if (bp->autoneg & AUTONEG_SPEED)
  1287. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1288. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1289. }
  1290. static void
  1291. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1292. {
  1293. u32 val;
  1294. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1295. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1296. if (start)
  1297. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1298. else
  1299. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1300. }
  1301. static int
  1302. bnx2_set_link(struct bnx2 *bp)
  1303. {
  1304. u32 bmsr;
  1305. u8 link_up;
  1306. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1307. bp->link_up = 1;
  1308. return 0;
  1309. }
  1310. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1311. return 0;
  1312. link_up = bp->link_up;
  1313. bnx2_enable_bmsr1(bp);
  1314. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1315. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1316. bnx2_disable_bmsr1(bp);
  1317. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1318. (BNX2_CHIP(bp) == BNX2_CHIP_5706)) {
  1319. u32 val, an_dbg;
  1320. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1321. bnx2_5706s_force_link_dn(bp, 0);
  1322. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1323. }
  1324. val = BNX2_RD(bp, BNX2_EMAC_STATUS);
  1325. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1326. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1327. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1328. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1329. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1330. bmsr |= BMSR_LSTATUS;
  1331. else
  1332. bmsr &= ~BMSR_LSTATUS;
  1333. }
  1334. if (bmsr & BMSR_LSTATUS) {
  1335. bp->link_up = 1;
  1336. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1337. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  1338. bnx2_5706s_linkup(bp);
  1339. else if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  1340. bnx2_5708s_linkup(bp);
  1341. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1342. bnx2_5709s_linkup(bp);
  1343. }
  1344. else {
  1345. bnx2_copper_linkup(bp);
  1346. }
  1347. bnx2_resolve_flow_ctrl(bp);
  1348. }
  1349. else {
  1350. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1351. (bp->autoneg & AUTONEG_SPEED))
  1352. bnx2_disable_forced_2g5(bp);
  1353. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1354. u32 bmcr;
  1355. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1356. bmcr |= BMCR_ANENABLE;
  1357. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1358. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1359. }
  1360. bp->link_up = 0;
  1361. }
  1362. if (bp->link_up != link_up) {
  1363. bnx2_report_link(bp);
  1364. }
  1365. bnx2_set_mac_link(bp);
  1366. return 0;
  1367. }
  1368. static int
  1369. bnx2_reset_phy(struct bnx2 *bp)
  1370. {
  1371. int i;
  1372. u32 reg;
  1373. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1374. #define PHY_RESET_MAX_WAIT 100
  1375. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1376. udelay(10);
  1377. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1378. if (!(reg & BMCR_RESET)) {
  1379. udelay(20);
  1380. break;
  1381. }
  1382. }
  1383. if (i == PHY_RESET_MAX_WAIT) {
  1384. return -EBUSY;
  1385. }
  1386. return 0;
  1387. }
  1388. static u32
  1389. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1390. {
  1391. u32 adv = 0;
  1392. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1393. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1394. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1395. adv = ADVERTISE_1000XPAUSE;
  1396. }
  1397. else {
  1398. adv = ADVERTISE_PAUSE_CAP;
  1399. }
  1400. }
  1401. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1402. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1403. adv = ADVERTISE_1000XPSE_ASYM;
  1404. }
  1405. else {
  1406. adv = ADVERTISE_PAUSE_ASYM;
  1407. }
  1408. }
  1409. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1410. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1411. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1412. }
  1413. else {
  1414. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1415. }
  1416. }
  1417. return adv;
  1418. }
  1419. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1420. static int
  1421. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1422. __releases(&bp->phy_lock)
  1423. __acquires(&bp->phy_lock)
  1424. {
  1425. u32 speed_arg = 0, pause_adv;
  1426. pause_adv = bnx2_phy_get_pause_adv(bp);
  1427. if (bp->autoneg & AUTONEG_SPEED) {
  1428. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1429. if (bp->advertising & ADVERTISED_10baseT_Half)
  1430. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1431. if (bp->advertising & ADVERTISED_10baseT_Full)
  1432. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1433. if (bp->advertising & ADVERTISED_100baseT_Half)
  1434. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1435. if (bp->advertising & ADVERTISED_100baseT_Full)
  1436. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1437. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1438. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1439. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1440. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1441. } else {
  1442. if (bp->req_line_speed == SPEED_2500)
  1443. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1444. else if (bp->req_line_speed == SPEED_1000)
  1445. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1446. else if (bp->req_line_speed == SPEED_100) {
  1447. if (bp->req_duplex == DUPLEX_FULL)
  1448. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1449. else
  1450. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1451. } else if (bp->req_line_speed == SPEED_10) {
  1452. if (bp->req_duplex == DUPLEX_FULL)
  1453. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1454. else
  1455. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1456. }
  1457. }
  1458. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1459. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1460. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1461. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1462. if (port == PORT_TP)
  1463. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1464. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1465. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1466. spin_unlock_bh(&bp->phy_lock);
  1467. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1468. spin_lock_bh(&bp->phy_lock);
  1469. return 0;
  1470. }
  1471. static int
  1472. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1473. __releases(&bp->phy_lock)
  1474. __acquires(&bp->phy_lock)
  1475. {
  1476. u32 adv, bmcr;
  1477. u32 new_adv = 0;
  1478. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1479. return bnx2_setup_remote_phy(bp, port);
  1480. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1481. u32 new_bmcr;
  1482. int force_link_down = 0;
  1483. if (bp->req_line_speed == SPEED_2500) {
  1484. if (!bnx2_test_and_enable_2g5(bp))
  1485. force_link_down = 1;
  1486. } else if (bp->req_line_speed == SPEED_1000) {
  1487. if (bnx2_test_and_disable_2g5(bp))
  1488. force_link_down = 1;
  1489. }
  1490. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1491. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1492. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1493. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1494. new_bmcr |= BMCR_SPEED1000;
  1495. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1496. if (bp->req_line_speed == SPEED_2500)
  1497. bnx2_enable_forced_2g5(bp);
  1498. else if (bp->req_line_speed == SPEED_1000) {
  1499. bnx2_disable_forced_2g5(bp);
  1500. new_bmcr &= ~0x2000;
  1501. }
  1502. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1503. if (bp->req_line_speed == SPEED_2500)
  1504. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1505. else
  1506. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1507. }
  1508. if (bp->req_duplex == DUPLEX_FULL) {
  1509. adv |= ADVERTISE_1000XFULL;
  1510. new_bmcr |= BMCR_FULLDPLX;
  1511. }
  1512. else {
  1513. adv |= ADVERTISE_1000XHALF;
  1514. new_bmcr &= ~BMCR_FULLDPLX;
  1515. }
  1516. if ((new_bmcr != bmcr) || (force_link_down)) {
  1517. /* Force a link down visible on the other side */
  1518. if (bp->link_up) {
  1519. bnx2_write_phy(bp, bp->mii_adv, adv &
  1520. ~(ADVERTISE_1000XFULL |
  1521. ADVERTISE_1000XHALF));
  1522. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1523. BMCR_ANRESTART | BMCR_ANENABLE);
  1524. bp->link_up = 0;
  1525. netif_carrier_off(bp->dev);
  1526. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1527. bnx2_report_link(bp);
  1528. }
  1529. bnx2_write_phy(bp, bp->mii_adv, adv);
  1530. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1531. } else {
  1532. bnx2_resolve_flow_ctrl(bp);
  1533. bnx2_set_mac_link(bp);
  1534. }
  1535. return 0;
  1536. }
  1537. bnx2_test_and_enable_2g5(bp);
  1538. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1539. new_adv |= ADVERTISE_1000XFULL;
  1540. new_adv |= bnx2_phy_get_pause_adv(bp);
  1541. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1542. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1543. bp->serdes_an_pending = 0;
  1544. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1545. /* Force a link down visible on the other side */
  1546. if (bp->link_up) {
  1547. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1548. spin_unlock_bh(&bp->phy_lock);
  1549. msleep(20);
  1550. spin_lock_bh(&bp->phy_lock);
  1551. }
  1552. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1553. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1554. BMCR_ANENABLE);
  1555. /* Speed up link-up time when the link partner
  1556. * does not autonegotiate which is very common
  1557. * in blade servers. Some blade servers use
  1558. * IPMI for kerboard input and it's important
  1559. * to minimize link disruptions. Autoneg. involves
  1560. * exchanging base pages plus 3 next pages and
  1561. * normally completes in about 120 msec.
  1562. */
  1563. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1564. bp->serdes_an_pending = 1;
  1565. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1566. } else {
  1567. bnx2_resolve_flow_ctrl(bp);
  1568. bnx2_set_mac_link(bp);
  1569. }
  1570. return 0;
  1571. }
  1572. #define ETHTOOL_ALL_FIBRE_SPEED \
  1573. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1574. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1575. (ADVERTISED_1000baseT_Full)
  1576. #define ETHTOOL_ALL_COPPER_SPEED \
  1577. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1578. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1579. ADVERTISED_1000baseT_Full)
  1580. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1581. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1582. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1583. static void
  1584. bnx2_set_default_remote_link(struct bnx2 *bp)
  1585. {
  1586. u32 link;
  1587. if (bp->phy_port == PORT_TP)
  1588. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1589. else
  1590. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1591. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1592. bp->req_line_speed = 0;
  1593. bp->autoneg |= AUTONEG_SPEED;
  1594. bp->advertising = ADVERTISED_Autoneg;
  1595. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1596. bp->advertising |= ADVERTISED_10baseT_Half;
  1597. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1598. bp->advertising |= ADVERTISED_10baseT_Full;
  1599. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1600. bp->advertising |= ADVERTISED_100baseT_Half;
  1601. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1602. bp->advertising |= ADVERTISED_100baseT_Full;
  1603. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1604. bp->advertising |= ADVERTISED_1000baseT_Full;
  1605. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1606. bp->advertising |= ADVERTISED_2500baseX_Full;
  1607. } else {
  1608. bp->autoneg = 0;
  1609. bp->advertising = 0;
  1610. bp->req_duplex = DUPLEX_FULL;
  1611. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1612. bp->req_line_speed = SPEED_10;
  1613. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1614. bp->req_duplex = DUPLEX_HALF;
  1615. }
  1616. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1617. bp->req_line_speed = SPEED_100;
  1618. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1619. bp->req_duplex = DUPLEX_HALF;
  1620. }
  1621. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1622. bp->req_line_speed = SPEED_1000;
  1623. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1624. bp->req_line_speed = SPEED_2500;
  1625. }
  1626. }
  1627. static void
  1628. bnx2_set_default_link(struct bnx2 *bp)
  1629. {
  1630. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1631. bnx2_set_default_remote_link(bp);
  1632. return;
  1633. }
  1634. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1635. bp->req_line_speed = 0;
  1636. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1637. u32 reg;
  1638. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1639. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1640. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1641. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1642. bp->autoneg = 0;
  1643. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1644. bp->req_duplex = DUPLEX_FULL;
  1645. }
  1646. } else
  1647. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1648. }
  1649. static void
  1650. bnx2_send_heart_beat(struct bnx2 *bp)
  1651. {
  1652. u32 msg;
  1653. u32 addr;
  1654. spin_lock(&bp->indirect_lock);
  1655. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1656. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1657. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1658. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1659. spin_unlock(&bp->indirect_lock);
  1660. }
  1661. static void
  1662. bnx2_remote_phy_event(struct bnx2 *bp)
  1663. {
  1664. u32 msg;
  1665. u8 link_up = bp->link_up;
  1666. u8 old_port;
  1667. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1668. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1669. bnx2_send_heart_beat(bp);
  1670. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1671. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1672. bp->link_up = 0;
  1673. else {
  1674. u32 speed;
  1675. bp->link_up = 1;
  1676. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1677. bp->duplex = DUPLEX_FULL;
  1678. switch (speed) {
  1679. case BNX2_LINK_STATUS_10HALF:
  1680. bp->duplex = DUPLEX_HALF;
  1681. /* fall through */
  1682. case BNX2_LINK_STATUS_10FULL:
  1683. bp->line_speed = SPEED_10;
  1684. break;
  1685. case BNX2_LINK_STATUS_100HALF:
  1686. bp->duplex = DUPLEX_HALF;
  1687. /* fall through */
  1688. case BNX2_LINK_STATUS_100BASE_T4:
  1689. case BNX2_LINK_STATUS_100FULL:
  1690. bp->line_speed = SPEED_100;
  1691. break;
  1692. case BNX2_LINK_STATUS_1000HALF:
  1693. bp->duplex = DUPLEX_HALF;
  1694. /* fall through */
  1695. case BNX2_LINK_STATUS_1000FULL:
  1696. bp->line_speed = SPEED_1000;
  1697. break;
  1698. case BNX2_LINK_STATUS_2500HALF:
  1699. bp->duplex = DUPLEX_HALF;
  1700. /* fall through */
  1701. case BNX2_LINK_STATUS_2500FULL:
  1702. bp->line_speed = SPEED_2500;
  1703. break;
  1704. default:
  1705. bp->line_speed = 0;
  1706. break;
  1707. }
  1708. bp->flow_ctrl = 0;
  1709. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1710. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1711. if (bp->duplex == DUPLEX_FULL)
  1712. bp->flow_ctrl = bp->req_flow_ctrl;
  1713. } else {
  1714. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1715. bp->flow_ctrl |= FLOW_CTRL_TX;
  1716. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1717. bp->flow_ctrl |= FLOW_CTRL_RX;
  1718. }
  1719. old_port = bp->phy_port;
  1720. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1721. bp->phy_port = PORT_FIBRE;
  1722. else
  1723. bp->phy_port = PORT_TP;
  1724. if (old_port != bp->phy_port)
  1725. bnx2_set_default_link(bp);
  1726. }
  1727. if (bp->link_up != link_up)
  1728. bnx2_report_link(bp);
  1729. bnx2_set_mac_link(bp);
  1730. }
  1731. static int
  1732. bnx2_set_remote_link(struct bnx2 *bp)
  1733. {
  1734. u32 evt_code;
  1735. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1736. switch (evt_code) {
  1737. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1738. bnx2_remote_phy_event(bp);
  1739. break;
  1740. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1741. default:
  1742. bnx2_send_heart_beat(bp);
  1743. break;
  1744. }
  1745. return 0;
  1746. }
  1747. static int
  1748. bnx2_setup_copper_phy(struct bnx2 *bp)
  1749. __releases(&bp->phy_lock)
  1750. __acquires(&bp->phy_lock)
  1751. {
  1752. u32 bmcr, adv_reg, new_adv = 0;
  1753. u32 new_bmcr;
  1754. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1755. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1756. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1757. ADVERTISE_PAUSE_ASYM);
  1758. new_adv = ADVERTISE_CSMA | ethtool_adv_to_mii_adv_t(bp->advertising);
  1759. if (bp->autoneg & AUTONEG_SPEED) {
  1760. u32 adv1000_reg;
  1761. u32 new_adv1000 = 0;
  1762. new_adv |= bnx2_phy_get_pause_adv(bp);
  1763. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1764. adv1000_reg &= PHY_ALL_1000_SPEED;
  1765. new_adv1000 |= ethtool_adv_to_mii_ctrl1000_t(bp->advertising);
  1766. if ((adv1000_reg != new_adv1000) ||
  1767. (adv_reg != new_adv) ||
  1768. ((bmcr & BMCR_ANENABLE) == 0)) {
  1769. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1770. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000);
  1771. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1772. BMCR_ANENABLE);
  1773. }
  1774. else if (bp->link_up) {
  1775. /* Flow ctrl may have changed from auto to forced */
  1776. /* or vice-versa. */
  1777. bnx2_resolve_flow_ctrl(bp);
  1778. bnx2_set_mac_link(bp);
  1779. }
  1780. return 0;
  1781. }
  1782. /* advertise nothing when forcing speed */
  1783. if (adv_reg != new_adv)
  1784. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1785. new_bmcr = 0;
  1786. if (bp->req_line_speed == SPEED_100) {
  1787. new_bmcr |= BMCR_SPEED100;
  1788. }
  1789. if (bp->req_duplex == DUPLEX_FULL) {
  1790. new_bmcr |= BMCR_FULLDPLX;
  1791. }
  1792. if (new_bmcr != bmcr) {
  1793. u32 bmsr;
  1794. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1795. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1796. if (bmsr & BMSR_LSTATUS) {
  1797. /* Force link down */
  1798. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1799. spin_unlock_bh(&bp->phy_lock);
  1800. msleep(50);
  1801. spin_lock_bh(&bp->phy_lock);
  1802. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1803. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1804. }
  1805. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1806. /* Normally, the new speed is setup after the link has
  1807. * gone down and up again. In some cases, link will not go
  1808. * down so we need to set up the new speed here.
  1809. */
  1810. if (bmsr & BMSR_LSTATUS) {
  1811. bp->line_speed = bp->req_line_speed;
  1812. bp->duplex = bp->req_duplex;
  1813. bnx2_resolve_flow_ctrl(bp);
  1814. bnx2_set_mac_link(bp);
  1815. }
  1816. } else {
  1817. bnx2_resolve_flow_ctrl(bp);
  1818. bnx2_set_mac_link(bp);
  1819. }
  1820. return 0;
  1821. }
  1822. static int
  1823. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1824. __releases(&bp->phy_lock)
  1825. __acquires(&bp->phy_lock)
  1826. {
  1827. if (bp->loopback == MAC_LOOPBACK)
  1828. return 0;
  1829. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1830. return bnx2_setup_serdes_phy(bp, port);
  1831. }
  1832. else {
  1833. return bnx2_setup_copper_phy(bp);
  1834. }
  1835. }
  1836. static int
  1837. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1838. {
  1839. u32 val;
  1840. bp->mii_bmcr = MII_BMCR + 0x10;
  1841. bp->mii_bmsr = MII_BMSR + 0x10;
  1842. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1843. bp->mii_adv = MII_ADVERTISE + 0x10;
  1844. bp->mii_lpa = MII_LPA + 0x10;
  1845. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1846. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1847. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1848. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1849. if (reset_phy)
  1850. bnx2_reset_phy(bp);
  1851. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1852. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1853. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1854. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1855. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1856. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1857. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1858. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1859. val |= BCM5708S_UP1_2G5;
  1860. else
  1861. val &= ~BCM5708S_UP1_2G5;
  1862. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1863. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1864. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1865. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1866. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1867. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1868. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1869. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1870. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1871. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1872. return 0;
  1873. }
  1874. static int
  1875. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1876. {
  1877. u32 val;
  1878. if (reset_phy)
  1879. bnx2_reset_phy(bp);
  1880. bp->mii_up1 = BCM5708S_UP1;
  1881. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1882. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1883. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1884. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1885. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1886. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1887. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1888. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1889. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1890. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1891. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1892. val |= BCM5708S_UP1_2G5;
  1893. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1894. }
  1895. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0) ||
  1896. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B0) ||
  1897. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B1)) {
  1898. /* increase tx signal amplitude */
  1899. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1900. BCM5708S_BLK_ADDR_TX_MISC);
  1901. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1902. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1903. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1904. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1905. }
  1906. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1907. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1908. if (val) {
  1909. u32 is_backplane;
  1910. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1911. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1912. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1913. BCM5708S_BLK_ADDR_TX_MISC);
  1914. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1915. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1916. BCM5708S_BLK_ADDR_DIG);
  1917. }
  1918. }
  1919. return 0;
  1920. }
  1921. static int
  1922. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1923. {
  1924. if (reset_phy)
  1925. bnx2_reset_phy(bp);
  1926. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1927. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  1928. BNX2_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1929. if (bp->dev->mtu > 1500) {
  1930. u32 val;
  1931. /* Set extended packet length bit */
  1932. bnx2_write_phy(bp, 0x18, 0x7);
  1933. bnx2_read_phy(bp, 0x18, &val);
  1934. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1935. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1936. bnx2_read_phy(bp, 0x1c, &val);
  1937. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1938. }
  1939. else {
  1940. u32 val;
  1941. bnx2_write_phy(bp, 0x18, 0x7);
  1942. bnx2_read_phy(bp, 0x18, &val);
  1943. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1944. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1945. bnx2_read_phy(bp, 0x1c, &val);
  1946. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1947. }
  1948. return 0;
  1949. }
  1950. static int
  1951. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1952. {
  1953. u32 val;
  1954. if (reset_phy)
  1955. bnx2_reset_phy(bp);
  1956. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1957. bnx2_write_phy(bp, 0x18, 0x0c00);
  1958. bnx2_write_phy(bp, 0x17, 0x000a);
  1959. bnx2_write_phy(bp, 0x15, 0x310b);
  1960. bnx2_write_phy(bp, 0x17, 0x201f);
  1961. bnx2_write_phy(bp, 0x15, 0x9506);
  1962. bnx2_write_phy(bp, 0x17, 0x401f);
  1963. bnx2_write_phy(bp, 0x15, 0x14e2);
  1964. bnx2_write_phy(bp, 0x18, 0x0400);
  1965. }
  1966. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1967. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1968. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1969. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1970. val &= ~(1 << 8);
  1971. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1972. }
  1973. if (bp->dev->mtu > 1500) {
  1974. /* Set extended packet length bit */
  1975. bnx2_write_phy(bp, 0x18, 0x7);
  1976. bnx2_read_phy(bp, 0x18, &val);
  1977. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1978. bnx2_read_phy(bp, 0x10, &val);
  1979. bnx2_write_phy(bp, 0x10, val | 0x1);
  1980. }
  1981. else {
  1982. bnx2_write_phy(bp, 0x18, 0x7);
  1983. bnx2_read_phy(bp, 0x18, &val);
  1984. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1985. bnx2_read_phy(bp, 0x10, &val);
  1986. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1987. }
  1988. /* ethernet@wirespeed */
  1989. bnx2_write_phy(bp, MII_BNX2_AUX_CTL, AUX_CTL_MISC_CTL);
  1990. bnx2_read_phy(bp, MII_BNX2_AUX_CTL, &val);
  1991. val |= AUX_CTL_MISC_CTL_WR | AUX_CTL_MISC_CTL_WIRESPEED;
  1992. /* auto-mdix */
  1993. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1994. val |= AUX_CTL_MISC_CTL_AUTOMDIX;
  1995. bnx2_write_phy(bp, MII_BNX2_AUX_CTL, val);
  1996. return 0;
  1997. }
  1998. static int
  1999. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  2000. __releases(&bp->phy_lock)
  2001. __acquires(&bp->phy_lock)
  2002. {
  2003. u32 val;
  2004. int rc = 0;
  2005. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  2006. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  2007. bp->mii_bmcr = MII_BMCR;
  2008. bp->mii_bmsr = MII_BMSR;
  2009. bp->mii_bmsr1 = MII_BMSR;
  2010. bp->mii_adv = MII_ADVERTISE;
  2011. bp->mii_lpa = MII_LPA;
  2012. BNX2_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2013. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2014. goto setup_phy;
  2015. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2016. bp->phy_id = val << 16;
  2017. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2018. bp->phy_id |= val & 0xffff;
  2019. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2020. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  2021. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2022. else if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  2023. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2024. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  2025. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2026. }
  2027. else {
  2028. rc = bnx2_init_copper_phy(bp, reset_phy);
  2029. }
  2030. setup_phy:
  2031. if (!rc)
  2032. rc = bnx2_setup_phy(bp, bp->phy_port);
  2033. return rc;
  2034. }
  2035. static int
  2036. bnx2_set_mac_loopback(struct bnx2 *bp)
  2037. {
  2038. u32 mac_mode;
  2039. mac_mode = BNX2_RD(bp, BNX2_EMAC_MODE);
  2040. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2041. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2042. BNX2_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2043. bp->link_up = 1;
  2044. return 0;
  2045. }
  2046. static int bnx2_test_link(struct bnx2 *);
  2047. static int
  2048. bnx2_set_phy_loopback(struct bnx2 *bp)
  2049. {
  2050. u32 mac_mode;
  2051. int rc, i;
  2052. spin_lock_bh(&bp->phy_lock);
  2053. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2054. BMCR_SPEED1000);
  2055. spin_unlock_bh(&bp->phy_lock);
  2056. if (rc)
  2057. return rc;
  2058. for (i = 0; i < 10; i++) {
  2059. if (bnx2_test_link(bp) == 0)
  2060. break;
  2061. msleep(100);
  2062. }
  2063. mac_mode = BNX2_RD(bp, BNX2_EMAC_MODE);
  2064. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2065. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2066. BNX2_EMAC_MODE_25G_MODE);
  2067. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2068. BNX2_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2069. bp->link_up = 1;
  2070. return 0;
  2071. }
  2072. static void
  2073. bnx2_dump_mcp_state(struct bnx2 *bp)
  2074. {
  2075. struct net_device *dev = bp->dev;
  2076. u32 mcp_p0, mcp_p1;
  2077. netdev_err(dev, "<--- start MCP states dump --->\n");
  2078. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  2079. mcp_p0 = BNX2_MCP_STATE_P0;
  2080. mcp_p1 = BNX2_MCP_STATE_P1;
  2081. } else {
  2082. mcp_p0 = BNX2_MCP_STATE_P0_5708;
  2083. mcp_p1 = BNX2_MCP_STATE_P1_5708;
  2084. }
  2085. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  2086. bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
  2087. netdev_err(dev, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
  2088. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_MODE),
  2089. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_STATE),
  2090. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_EVENT_MASK));
  2091. netdev_err(dev, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
  2092. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2093. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2094. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_INSTRUCTION));
  2095. netdev_err(dev, "DEBUG: shmem states:\n");
  2096. netdev_err(dev, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
  2097. bnx2_shmem_rd(bp, BNX2_DRV_MB),
  2098. bnx2_shmem_rd(bp, BNX2_FW_MB),
  2099. bnx2_shmem_rd(bp, BNX2_LINK_STATUS));
  2100. pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp, BNX2_DRV_PULSE_MB));
  2101. netdev_err(dev, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
  2102. bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE),
  2103. bnx2_shmem_rd(bp, BNX2_BC_STATE_RESET_TYPE));
  2104. pr_cont(" condition[%08x]\n",
  2105. bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION));
  2106. DP_SHMEM_LINE(bp, BNX2_BC_RESET_TYPE);
  2107. DP_SHMEM_LINE(bp, 0x3cc);
  2108. DP_SHMEM_LINE(bp, 0x3dc);
  2109. DP_SHMEM_LINE(bp, 0x3ec);
  2110. netdev_err(dev, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp, 0x3fc));
  2111. netdev_err(dev, "<--- end MCP states dump --->\n");
  2112. }
  2113. static int
  2114. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2115. {
  2116. int i;
  2117. u32 val;
  2118. bp->fw_wr_seq++;
  2119. msg_data |= bp->fw_wr_seq;
  2120. bp->fw_last_msg = msg_data;
  2121. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2122. if (!ack)
  2123. return 0;
  2124. /* wait for an acknowledgement. */
  2125. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2126. msleep(10);
  2127. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2128. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2129. break;
  2130. }
  2131. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2132. return 0;
  2133. /* If we timed out, inform the firmware that this is the case. */
  2134. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2135. msg_data &= ~BNX2_DRV_MSG_CODE;
  2136. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2137. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2138. if (!silent) {
  2139. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2140. bnx2_dump_mcp_state(bp);
  2141. }
  2142. return -EBUSY;
  2143. }
  2144. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2145. return -EIO;
  2146. return 0;
  2147. }
  2148. static int
  2149. bnx2_init_5709_context(struct bnx2 *bp)
  2150. {
  2151. int i, ret = 0;
  2152. u32 val;
  2153. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2154. val |= (BNX2_PAGE_BITS - 8) << 16;
  2155. BNX2_WR(bp, BNX2_CTX_COMMAND, val);
  2156. for (i = 0; i < 10; i++) {
  2157. val = BNX2_RD(bp, BNX2_CTX_COMMAND);
  2158. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2159. break;
  2160. udelay(2);
  2161. }
  2162. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2163. return -EBUSY;
  2164. for (i = 0; i < bp->ctx_pages; i++) {
  2165. int j;
  2166. if (bp->ctx_blk[i])
  2167. memset(bp->ctx_blk[i], 0, BNX2_PAGE_SIZE);
  2168. else
  2169. return -ENOMEM;
  2170. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2171. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2172. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2173. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2174. (u64) bp->ctx_blk_mapping[i] >> 32);
  2175. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2176. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2177. for (j = 0; j < 10; j++) {
  2178. val = BNX2_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2179. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2180. break;
  2181. udelay(5);
  2182. }
  2183. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2184. ret = -EBUSY;
  2185. break;
  2186. }
  2187. }
  2188. return ret;
  2189. }
  2190. static void
  2191. bnx2_init_context(struct bnx2 *bp)
  2192. {
  2193. u32 vcid;
  2194. vcid = 96;
  2195. while (vcid) {
  2196. u32 vcid_addr, pcid_addr, offset;
  2197. int i;
  2198. vcid--;
  2199. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  2200. u32 new_vcid;
  2201. vcid_addr = GET_PCID_ADDR(vcid);
  2202. if (vcid & 0x8) {
  2203. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2204. }
  2205. else {
  2206. new_vcid = vcid;
  2207. }
  2208. pcid_addr = GET_PCID_ADDR(new_vcid);
  2209. }
  2210. else {
  2211. vcid_addr = GET_CID_ADDR(vcid);
  2212. pcid_addr = vcid_addr;
  2213. }
  2214. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2215. vcid_addr += (i << PHY_CTX_SHIFT);
  2216. pcid_addr += (i << PHY_CTX_SHIFT);
  2217. BNX2_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2218. BNX2_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2219. /* Zero out the context. */
  2220. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2221. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2222. }
  2223. }
  2224. }
  2225. static int
  2226. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2227. {
  2228. u16 *good_mbuf;
  2229. u32 good_mbuf_cnt;
  2230. u32 val;
  2231. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2232. if (good_mbuf == NULL)
  2233. return -ENOMEM;
  2234. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2235. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2236. good_mbuf_cnt = 0;
  2237. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2238. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2239. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2240. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2241. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2242. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2243. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2244. /* The addresses with Bit 9 set are bad memory blocks. */
  2245. if (!(val & (1 << 9))) {
  2246. good_mbuf[good_mbuf_cnt] = (u16) val;
  2247. good_mbuf_cnt++;
  2248. }
  2249. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2250. }
  2251. /* Free the good ones back to the mbuf pool thus discarding
  2252. * all the bad ones. */
  2253. while (good_mbuf_cnt) {
  2254. good_mbuf_cnt--;
  2255. val = good_mbuf[good_mbuf_cnt];
  2256. val = (val << 9) | val | 1;
  2257. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2258. }
  2259. kfree(good_mbuf);
  2260. return 0;
  2261. }
  2262. static void
  2263. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2264. {
  2265. u32 val;
  2266. val = (mac_addr[0] << 8) | mac_addr[1];
  2267. BNX2_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2268. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2269. (mac_addr[4] << 8) | mac_addr[5];
  2270. BNX2_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2271. }
  2272. static inline int
  2273. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2274. {
  2275. dma_addr_t mapping;
  2276. struct bnx2_sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2277. struct bnx2_rx_bd *rxbd =
  2278. &rxr->rx_pg_desc_ring[BNX2_RX_RING(index)][BNX2_RX_IDX(index)];
  2279. struct page *page = alloc_page(gfp);
  2280. if (!page)
  2281. return -ENOMEM;
  2282. mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
  2283. PCI_DMA_FROMDEVICE);
  2284. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2285. __free_page(page);
  2286. return -EIO;
  2287. }
  2288. rx_pg->page = page;
  2289. dma_unmap_addr_set(rx_pg, mapping, mapping);
  2290. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2291. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2292. return 0;
  2293. }
  2294. static void
  2295. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2296. {
  2297. struct bnx2_sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2298. struct page *page = rx_pg->page;
  2299. if (!page)
  2300. return;
  2301. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
  2302. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2303. __free_page(page);
  2304. rx_pg->page = NULL;
  2305. }
  2306. static inline int
  2307. bnx2_alloc_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2308. {
  2309. u8 *data;
  2310. struct bnx2_sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2311. dma_addr_t mapping;
  2312. struct bnx2_rx_bd *rxbd =
  2313. &rxr->rx_desc_ring[BNX2_RX_RING(index)][BNX2_RX_IDX(index)];
  2314. data = kmalloc(bp->rx_buf_size, gfp);
  2315. if (!data)
  2316. return -ENOMEM;
  2317. mapping = dma_map_single(&bp->pdev->dev,
  2318. get_l2_fhdr(data),
  2319. bp->rx_buf_use_size,
  2320. PCI_DMA_FROMDEVICE);
  2321. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2322. kfree(data);
  2323. return -EIO;
  2324. }
  2325. rx_buf->data = data;
  2326. dma_unmap_addr_set(rx_buf, mapping, mapping);
  2327. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2328. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2329. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2330. return 0;
  2331. }
  2332. static int
  2333. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2334. {
  2335. struct status_block *sblk = bnapi->status_blk.msi;
  2336. u32 new_link_state, old_link_state;
  2337. int is_set = 1;
  2338. new_link_state = sblk->status_attn_bits & event;
  2339. old_link_state = sblk->status_attn_bits_ack & event;
  2340. if (new_link_state != old_link_state) {
  2341. if (new_link_state)
  2342. BNX2_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2343. else
  2344. BNX2_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2345. } else
  2346. is_set = 0;
  2347. return is_set;
  2348. }
  2349. static void
  2350. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2351. {
  2352. spin_lock(&bp->phy_lock);
  2353. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2354. bnx2_set_link(bp);
  2355. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2356. bnx2_set_remote_link(bp);
  2357. spin_unlock(&bp->phy_lock);
  2358. }
  2359. static inline u16
  2360. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2361. {
  2362. u16 cons;
  2363. /* Tell compiler that status block fields can change. */
  2364. barrier();
  2365. cons = *bnapi->hw_tx_cons_ptr;
  2366. barrier();
  2367. if (unlikely((cons & BNX2_MAX_TX_DESC_CNT) == BNX2_MAX_TX_DESC_CNT))
  2368. cons++;
  2369. return cons;
  2370. }
  2371. static int
  2372. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2373. {
  2374. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2375. u16 hw_cons, sw_cons, sw_ring_cons;
  2376. int tx_pkt = 0, index;
  2377. unsigned int tx_bytes = 0;
  2378. struct netdev_queue *txq;
  2379. index = (bnapi - bp->bnx2_napi);
  2380. txq = netdev_get_tx_queue(bp->dev, index);
  2381. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2382. sw_cons = txr->tx_cons;
  2383. while (sw_cons != hw_cons) {
  2384. struct bnx2_sw_tx_bd *tx_buf;
  2385. struct sk_buff *skb;
  2386. int i, last;
  2387. sw_ring_cons = BNX2_TX_RING_IDX(sw_cons);
  2388. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2389. skb = tx_buf->skb;
  2390. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2391. prefetch(&skb->end);
  2392. /* partial BD completions possible with TSO packets */
  2393. if (tx_buf->is_gso) {
  2394. u16 last_idx, last_ring_idx;
  2395. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2396. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2397. if (unlikely(last_ring_idx >= BNX2_MAX_TX_DESC_CNT)) {
  2398. last_idx++;
  2399. }
  2400. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2401. break;
  2402. }
  2403. }
  2404. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  2405. skb_headlen(skb), PCI_DMA_TODEVICE);
  2406. tx_buf->skb = NULL;
  2407. last = tx_buf->nr_frags;
  2408. for (i = 0; i < last; i++) {
  2409. struct bnx2_sw_tx_bd *tx_buf;
  2410. sw_cons = BNX2_NEXT_TX_BD(sw_cons);
  2411. tx_buf = &txr->tx_buf_ring[BNX2_TX_RING_IDX(sw_cons)];
  2412. dma_unmap_page(&bp->pdev->dev,
  2413. dma_unmap_addr(tx_buf, mapping),
  2414. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2415. PCI_DMA_TODEVICE);
  2416. }
  2417. sw_cons = BNX2_NEXT_TX_BD(sw_cons);
  2418. tx_bytes += skb->len;
  2419. dev_kfree_skb_any(skb);
  2420. tx_pkt++;
  2421. if (tx_pkt == budget)
  2422. break;
  2423. if (hw_cons == sw_cons)
  2424. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2425. }
  2426. netdev_tx_completed_queue(txq, tx_pkt, tx_bytes);
  2427. txr->hw_tx_cons = hw_cons;
  2428. txr->tx_cons = sw_cons;
  2429. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2430. * before checking for netif_tx_queue_stopped(). Without the
  2431. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2432. * will miss it and cause the queue to be stopped forever.
  2433. */
  2434. smp_mb();
  2435. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2436. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2437. __netif_tx_lock(txq, smp_processor_id());
  2438. if ((netif_tx_queue_stopped(txq)) &&
  2439. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2440. netif_tx_wake_queue(txq);
  2441. __netif_tx_unlock(txq);
  2442. }
  2443. return tx_pkt;
  2444. }
  2445. static void
  2446. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2447. struct sk_buff *skb, int count)
  2448. {
  2449. struct bnx2_sw_pg *cons_rx_pg, *prod_rx_pg;
  2450. struct bnx2_rx_bd *cons_bd, *prod_bd;
  2451. int i;
  2452. u16 hw_prod, prod;
  2453. u16 cons = rxr->rx_pg_cons;
  2454. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2455. /* The caller was unable to allocate a new page to replace the
  2456. * last one in the frags array, so we need to recycle that page
  2457. * and then free the skb.
  2458. */
  2459. if (skb) {
  2460. struct page *page;
  2461. struct skb_shared_info *shinfo;
  2462. shinfo = skb_shinfo(skb);
  2463. shinfo->nr_frags--;
  2464. page = skb_frag_page(&shinfo->frags[shinfo->nr_frags]);
  2465. __skb_frag_set_page(&shinfo->frags[shinfo->nr_frags], NULL);
  2466. cons_rx_pg->page = page;
  2467. dev_kfree_skb(skb);
  2468. }
  2469. hw_prod = rxr->rx_pg_prod;
  2470. for (i = 0; i < count; i++) {
  2471. prod = BNX2_RX_PG_RING_IDX(hw_prod);
  2472. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2473. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2474. cons_bd = &rxr->rx_pg_desc_ring[BNX2_RX_RING(cons)]
  2475. [BNX2_RX_IDX(cons)];
  2476. prod_bd = &rxr->rx_pg_desc_ring[BNX2_RX_RING(prod)]
  2477. [BNX2_RX_IDX(prod)];
  2478. if (prod != cons) {
  2479. prod_rx_pg->page = cons_rx_pg->page;
  2480. cons_rx_pg->page = NULL;
  2481. dma_unmap_addr_set(prod_rx_pg, mapping,
  2482. dma_unmap_addr(cons_rx_pg, mapping));
  2483. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2484. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2485. }
  2486. cons = BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(cons));
  2487. hw_prod = BNX2_NEXT_RX_BD(hw_prod);
  2488. }
  2489. rxr->rx_pg_prod = hw_prod;
  2490. rxr->rx_pg_cons = cons;
  2491. }
  2492. static inline void
  2493. bnx2_reuse_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2494. u8 *data, u16 cons, u16 prod)
  2495. {
  2496. struct bnx2_sw_bd *cons_rx_buf, *prod_rx_buf;
  2497. struct bnx2_rx_bd *cons_bd, *prod_bd;
  2498. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2499. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2500. dma_sync_single_for_device(&bp->pdev->dev,
  2501. dma_unmap_addr(cons_rx_buf, mapping),
  2502. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2503. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2504. prod_rx_buf->data = data;
  2505. if (cons == prod)
  2506. return;
  2507. dma_unmap_addr_set(prod_rx_buf, mapping,
  2508. dma_unmap_addr(cons_rx_buf, mapping));
  2509. cons_bd = &rxr->rx_desc_ring[BNX2_RX_RING(cons)][BNX2_RX_IDX(cons)];
  2510. prod_bd = &rxr->rx_desc_ring[BNX2_RX_RING(prod)][BNX2_RX_IDX(prod)];
  2511. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2512. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2513. }
  2514. static struct sk_buff *
  2515. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u8 *data,
  2516. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2517. u32 ring_idx)
  2518. {
  2519. int err;
  2520. u16 prod = ring_idx & 0xffff;
  2521. struct sk_buff *skb;
  2522. err = bnx2_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
  2523. if (unlikely(err)) {
  2524. bnx2_reuse_rx_data(bp, rxr, data, (u16) (ring_idx >> 16), prod);
  2525. error:
  2526. if (hdr_len) {
  2527. unsigned int raw_len = len + 4;
  2528. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2529. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2530. }
  2531. return NULL;
  2532. }
  2533. dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
  2534. PCI_DMA_FROMDEVICE);
  2535. skb = build_skb(data, 0);
  2536. if (!skb) {
  2537. kfree(data);
  2538. goto error;
  2539. }
  2540. skb_reserve(skb, ((u8 *)get_l2_fhdr(data) - data) + BNX2_RX_OFFSET);
  2541. if (hdr_len == 0) {
  2542. skb_put(skb, len);
  2543. return skb;
  2544. } else {
  2545. unsigned int i, frag_len, frag_size, pages;
  2546. struct bnx2_sw_pg *rx_pg;
  2547. u16 pg_cons = rxr->rx_pg_cons;
  2548. u16 pg_prod = rxr->rx_pg_prod;
  2549. frag_size = len + 4 - hdr_len;
  2550. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2551. skb_put(skb, hdr_len);
  2552. for (i = 0; i < pages; i++) {
  2553. dma_addr_t mapping_old;
  2554. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2555. if (unlikely(frag_len <= 4)) {
  2556. unsigned int tail = 4 - frag_len;
  2557. rxr->rx_pg_cons = pg_cons;
  2558. rxr->rx_pg_prod = pg_prod;
  2559. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2560. pages - i);
  2561. skb->len -= tail;
  2562. if (i == 0) {
  2563. skb->tail -= tail;
  2564. } else {
  2565. skb_frag_t *frag =
  2566. &skb_shinfo(skb)->frags[i - 1];
  2567. skb_frag_size_sub(frag, tail);
  2568. skb->data_len -= tail;
  2569. }
  2570. return skb;
  2571. }
  2572. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2573. /* Don't unmap yet. If we're unable to allocate a new
  2574. * page, we need to recycle the page and the DMA addr.
  2575. */
  2576. mapping_old = dma_unmap_addr(rx_pg, mapping);
  2577. if (i == pages - 1)
  2578. frag_len -= 4;
  2579. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2580. rx_pg->page = NULL;
  2581. err = bnx2_alloc_rx_page(bp, rxr,
  2582. BNX2_RX_PG_RING_IDX(pg_prod),
  2583. GFP_ATOMIC);
  2584. if (unlikely(err)) {
  2585. rxr->rx_pg_cons = pg_cons;
  2586. rxr->rx_pg_prod = pg_prod;
  2587. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2588. pages - i);
  2589. return NULL;
  2590. }
  2591. dma_unmap_page(&bp->pdev->dev, mapping_old,
  2592. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2593. frag_size -= frag_len;
  2594. skb->data_len += frag_len;
  2595. skb->truesize += PAGE_SIZE;
  2596. skb->len += frag_len;
  2597. pg_prod = BNX2_NEXT_RX_BD(pg_prod);
  2598. pg_cons = BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(pg_cons));
  2599. }
  2600. rxr->rx_pg_prod = pg_prod;
  2601. rxr->rx_pg_cons = pg_cons;
  2602. }
  2603. return skb;
  2604. }
  2605. static inline u16
  2606. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2607. {
  2608. u16 cons;
  2609. /* Tell compiler that status block fields can change. */
  2610. barrier();
  2611. cons = *bnapi->hw_rx_cons_ptr;
  2612. barrier();
  2613. if (unlikely((cons & BNX2_MAX_RX_DESC_CNT) == BNX2_MAX_RX_DESC_CNT))
  2614. cons++;
  2615. return cons;
  2616. }
  2617. static int
  2618. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2619. {
  2620. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2621. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2622. struct l2_fhdr *rx_hdr;
  2623. int rx_pkt = 0, pg_ring_used = 0;
  2624. if (budget <= 0)
  2625. return rx_pkt;
  2626. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2627. sw_cons = rxr->rx_cons;
  2628. sw_prod = rxr->rx_prod;
  2629. /* Memory barrier necessary as speculative reads of the rx
  2630. * buffer can be ahead of the index in the status block
  2631. */
  2632. rmb();
  2633. while (sw_cons != hw_cons) {
  2634. unsigned int len, hdr_len;
  2635. u32 status;
  2636. struct bnx2_sw_bd *rx_buf, *next_rx_buf;
  2637. struct sk_buff *skb;
  2638. dma_addr_t dma_addr;
  2639. u8 *data;
  2640. u16 next_ring_idx;
  2641. sw_ring_cons = BNX2_RX_RING_IDX(sw_cons);
  2642. sw_ring_prod = BNX2_RX_RING_IDX(sw_prod);
  2643. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2644. data = rx_buf->data;
  2645. rx_buf->data = NULL;
  2646. rx_hdr = get_l2_fhdr(data);
  2647. prefetch(rx_hdr);
  2648. dma_addr = dma_unmap_addr(rx_buf, mapping);
  2649. dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
  2650. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2651. PCI_DMA_FROMDEVICE);
  2652. next_ring_idx = BNX2_RX_RING_IDX(BNX2_NEXT_RX_BD(sw_cons));
  2653. next_rx_buf = &rxr->rx_buf_ring[next_ring_idx];
  2654. prefetch(get_l2_fhdr(next_rx_buf->data));
  2655. len = rx_hdr->l2_fhdr_pkt_len;
  2656. status = rx_hdr->l2_fhdr_status;
  2657. hdr_len = 0;
  2658. if (status & L2_FHDR_STATUS_SPLIT) {
  2659. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2660. pg_ring_used = 1;
  2661. } else if (len > bp->rx_jumbo_thresh) {
  2662. hdr_len = bp->rx_jumbo_thresh;
  2663. pg_ring_used = 1;
  2664. }
  2665. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2666. L2_FHDR_ERRORS_PHY_DECODE |
  2667. L2_FHDR_ERRORS_ALIGNMENT |
  2668. L2_FHDR_ERRORS_TOO_SHORT |
  2669. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2670. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2671. sw_ring_prod);
  2672. if (pg_ring_used) {
  2673. int pages;
  2674. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2675. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2676. }
  2677. goto next_rx;
  2678. }
  2679. len -= 4;
  2680. if (len <= bp->rx_copy_thresh) {
  2681. skb = netdev_alloc_skb(bp->dev, len + 6);
  2682. if (skb == NULL) {
  2683. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2684. sw_ring_prod);
  2685. goto next_rx;
  2686. }
  2687. /* aligned copy */
  2688. memcpy(skb->data,
  2689. (u8 *)rx_hdr + BNX2_RX_OFFSET - 6,
  2690. len + 6);
  2691. skb_reserve(skb, 6);
  2692. skb_put(skb, len);
  2693. bnx2_reuse_rx_data(bp, rxr, data,
  2694. sw_ring_cons, sw_ring_prod);
  2695. } else {
  2696. skb = bnx2_rx_skb(bp, rxr, data, len, hdr_len, dma_addr,
  2697. (sw_ring_cons << 16) | sw_ring_prod);
  2698. if (!skb)
  2699. goto next_rx;
  2700. }
  2701. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2702. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
  2703. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), rx_hdr->l2_fhdr_vlan_tag);
  2704. skb->protocol = eth_type_trans(skb, bp->dev);
  2705. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2706. (ntohs(skb->protocol) != 0x8100)) {
  2707. dev_kfree_skb(skb);
  2708. goto next_rx;
  2709. }
  2710. skb_checksum_none_assert(skb);
  2711. if ((bp->dev->features & NETIF_F_RXCSUM) &&
  2712. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2713. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2714. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2715. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2716. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2717. }
  2718. if ((bp->dev->features & NETIF_F_RXHASH) &&
  2719. ((status & L2_FHDR_STATUS_USE_RXHASH) ==
  2720. L2_FHDR_STATUS_USE_RXHASH))
  2721. skb_set_hash(skb, rx_hdr->l2_fhdr_hash,
  2722. PKT_HASH_TYPE_L3);
  2723. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2724. napi_gro_receive(&bnapi->napi, skb);
  2725. rx_pkt++;
  2726. next_rx:
  2727. sw_cons = BNX2_NEXT_RX_BD(sw_cons);
  2728. sw_prod = BNX2_NEXT_RX_BD(sw_prod);
  2729. if ((rx_pkt == budget))
  2730. break;
  2731. /* Refresh hw_cons to see if there is new work */
  2732. if (sw_cons == hw_cons) {
  2733. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2734. rmb();
  2735. }
  2736. }
  2737. rxr->rx_cons = sw_cons;
  2738. rxr->rx_prod = sw_prod;
  2739. if (pg_ring_used)
  2740. BNX2_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2741. BNX2_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2742. BNX2_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2743. mmiowb();
  2744. return rx_pkt;
  2745. }
  2746. /* MSI ISR - The only difference between this and the INTx ISR
  2747. * is that the MSI interrupt is always serviced.
  2748. */
  2749. static irqreturn_t
  2750. bnx2_msi(int irq, void *dev_instance)
  2751. {
  2752. struct bnx2_napi *bnapi = dev_instance;
  2753. struct bnx2 *bp = bnapi->bp;
  2754. prefetch(bnapi->status_blk.msi);
  2755. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2756. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2757. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2758. /* Return here if interrupt is disabled. */
  2759. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2760. return IRQ_HANDLED;
  2761. napi_schedule(&bnapi->napi);
  2762. return IRQ_HANDLED;
  2763. }
  2764. static irqreturn_t
  2765. bnx2_msi_1shot(int irq, void *dev_instance)
  2766. {
  2767. struct bnx2_napi *bnapi = dev_instance;
  2768. struct bnx2 *bp = bnapi->bp;
  2769. prefetch(bnapi->status_blk.msi);
  2770. /* Return here if interrupt is disabled. */
  2771. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2772. return IRQ_HANDLED;
  2773. napi_schedule(&bnapi->napi);
  2774. return IRQ_HANDLED;
  2775. }
  2776. static irqreturn_t
  2777. bnx2_interrupt(int irq, void *dev_instance)
  2778. {
  2779. struct bnx2_napi *bnapi = dev_instance;
  2780. struct bnx2 *bp = bnapi->bp;
  2781. struct status_block *sblk = bnapi->status_blk.msi;
  2782. /* When using INTx, it is possible for the interrupt to arrive
  2783. * at the CPU before the status block posted prior to the
  2784. * interrupt. Reading a register will flush the status block.
  2785. * When using MSI, the MSI message will always complete after
  2786. * the status block write.
  2787. */
  2788. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2789. (BNX2_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2790. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2791. return IRQ_NONE;
  2792. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2793. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2794. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2795. /* Read back to deassert IRQ immediately to avoid too many
  2796. * spurious interrupts.
  2797. */
  2798. BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2799. /* Return here if interrupt is shared and is disabled. */
  2800. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2801. return IRQ_HANDLED;
  2802. if (napi_schedule_prep(&bnapi->napi)) {
  2803. bnapi->last_status_idx = sblk->status_idx;
  2804. __napi_schedule(&bnapi->napi);
  2805. }
  2806. return IRQ_HANDLED;
  2807. }
  2808. static inline int
  2809. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2810. {
  2811. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2812. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2813. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2814. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2815. return 1;
  2816. return 0;
  2817. }
  2818. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2819. STATUS_ATTN_BITS_TIMER_ABORT)
  2820. static inline int
  2821. bnx2_has_work(struct bnx2_napi *bnapi)
  2822. {
  2823. struct status_block *sblk = bnapi->status_blk.msi;
  2824. if (bnx2_has_fast_work(bnapi))
  2825. return 1;
  2826. #ifdef BCM_CNIC
  2827. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2828. return 1;
  2829. #endif
  2830. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2831. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2832. return 1;
  2833. return 0;
  2834. }
  2835. static void
  2836. bnx2_chk_missed_msi(struct bnx2 *bp)
  2837. {
  2838. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2839. u32 msi_ctrl;
  2840. if (bnx2_has_work(bnapi)) {
  2841. msi_ctrl = BNX2_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2842. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2843. return;
  2844. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2845. BNX2_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2846. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2847. BNX2_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2848. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2849. }
  2850. }
  2851. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2852. }
  2853. #ifdef BCM_CNIC
  2854. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2855. {
  2856. struct cnic_ops *c_ops;
  2857. if (!bnapi->cnic_present)
  2858. return;
  2859. rcu_read_lock();
  2860. c_ops = rcu_dereference(bp->cnic_ops);
  2861. if (c_ops)
  2862. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2863. bnapi->status_blk.msi);
  2864. rcu_read_unlock();
  2865. }
  2866. #endif
  2867. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2868. {
  2869. struct status_block *sblk = bnapi->status_blk.msi;
  2870. u32 status_attn_bits = sblk->status_attn_bits;
  2871. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2872. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2873. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2874. bnx2_phy_int(bp, bnapi);
  2875. /* This is needed to take care of transient status
  2876. * during link changes.
  2877. */
  2878. BNX2_WR(bp, BNX2_HC_COMMAND,
  2879. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2880. BNX2_RD(bp, BNX2_HC_COMMAND);
  2881. }
  2882. }
  2883. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2884. int work_done, int budget)
  2885. {
  2886. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2887. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2888. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2889. bnx2_tx_int(bp, bnapi, 0);
  2890. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2891. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2892. return work_done;
  2893. }
  2894. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2895. {
  2896. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2897. struct bnx2 *bp = bnapi->bp;
  2898. int work_done = 0;
  2899. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2900. while (1) {
  2901. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2902. if (unlikely(work_done >= budget))
  2903. break;
  2904. bnapi->last_status_idx = sblk->status_idx;
  2905. /* status idx must be read before checking for more work. */
  2906. rmb();
  2907. if (likely(!bnx2_has_fast_work(bnapi))) {
  2908. napi_complete(napi);
  2909. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2910. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2911. bnapi->last_status_idx);
  2912. break;
  2913. }
  2914. }
  2915. return work_done;
  2916. }
  2917. static int bnx2_poll(struct napi_struct *napi, int budget)
  2918. {
  2919. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2920. struct bnx2 *bp = bnapi->bp;
  2921. int work_done = 0;
  2922. struct status_block *sblk = bnapi->status_blk.msi;
  2923. while (1) {
  2924. bnx2_poll_link(bp, bnapi);
  2925. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2926. #ifdef BCM_CNIC
  2927. bnx2_poll_cnic(bp, bnapi);
  2928. #endif
  2929. /* bnapi->last_status_idx is used below to tell the hw how
  2930. * much work has been processed, so we must read it before
  2931. * checking for more work.
  2932. */
  2933. bnapi->last_status_idx = sblk->status_idx;
  2934. if (unlikely(work_done >= budget))
  2935. break;
  2936. rmb();
  2937. if (likely(!bnx2_has_work(bnapi))) {
  2938. napi_complete(napi);
  2939. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2940. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2941. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2942. bnapi->last_status_idx);
  2943. break;
  2944. }
  2945. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2946. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2947. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2948. bnapi->last_status_idx);
  2949. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2950. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2951. bnapi->last_status_idx);
  2952. break;
  2953. }
  2954. }
  2955. return work_done;
  2956. }
  2957. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2958. * from set_multicast.
  2959. */
  2960. static void
  2961. bnx2_set_rx_mode(struct net_device *dev)
  2962. {
  2963. struct bnx2 *bp = netdev_priv(dev);
  2964. u32 rx_mode, sort_mode;
  2965. struct netdev_hw_addr *ha;
  2966. int i;
  2967. if (!netif_running(dev))
  2968. return;
  2969. spin_lock_bh(&bp->phy_lock);
  2970. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2971. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2972. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2973. if (!(dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
  2974. (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2975. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2976. if (dev->flags & IFF_PROMISC) {
  2977. /* Promiscuous mode. */
  2978. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2979. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2980. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2981. }
  2982. else if (dev->flags & IFF_ALLMULTI) {
  2983. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2984. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2985. 0xffffffff);
  2986. }
  2987. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2988. }
  2989. else {
  2990. /* Accept one or more multicast(s). */
  2991. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2992. u32 regidx;
  2993. u32 bit;
  2994. u32 crc;
  2995. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2996. netdev_for_each_mc_addr(ha, dev) {
  2997. crc = ether_crc_le(ETH_ALEN, ha->addr);
  2998. bit = crc & 0xff;
  2999. regidx = (bit & 0xe0) >> 5;
  3000. bit &= 0x1f;
  3001. mc_filter[regidx] |= (1 << bit);
  3002. }
  3003. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3004. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3005. mc_filter[i]);
  3006. }
  3007. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  3008. }
  3009. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  3010. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  3011. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  3012. BNX2_RPM_SORT_USER0_PROM_VLAN;
  3013. } else if (!(dev->flags & IFF_PROMISC)) {
  3014. /* Add all entries into to the match filter list */
  3015. i = 0;
  3016. netdev_for_each_uc_addr(ha, dev) {
  3017. bnx2_set_mac_addr(bp, ha->addr,
  3018. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  3019. sort_mode |= (1 <<
  3020. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  3021. i++;
  3022. }
  3023. }
  3024. if (rx_mode != bp->rx_mode) {
  3025. bp->rx_mode = rx_mode;
  3026. BNX2_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  3027. }
  3028. BNX2_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3029. BNX2_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  3030. BNX2_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  3031. spin_unlock_bh(&bp->phy_lock);
  3032. }
  3033. static int
  3034. check_fw_section(const struct firmware *fw,
  3035. const struct bnx2_fw_file_section *section,
  3036. u32 alignment, bool non_empty)
  3037. {
  3038. u32 offset = be32_to_cpu(section->offset);
  3039. u32 len = be32_to_cpu(section->len);
  3040. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  3041. return -EINVAL;
  3042. if ((non_empty && len == 0) || len > fw->size - offset ||
  3043. len & (alignment - 1))
  3044. return -EINVAL;
  3045. return 0;
  3046. }
  3047. static int
  3048. check_mips_fw_entry(const struct firmware *fw,
  3049. const struct bnx2_mips_fw_file_entry *entry)
  3050. {
  3051. if (check_fw_section(fw, &entry->text, 4, true) ||
  3052. check_fw_section(fw, &entry->data, 4, false) ||
  3053. check_fw_section(fw, &entry->rodata, 4, false))
  3054. return -EINVAL;
  3055. return 0;
  3056. }
  3057. static void bnx2_release_firmware(struct bnx2 *bp)
  3058. {
  3059. if (bp->rv2p_firmware) {
  3060. release_firmware(bp->mips_firmware);
  3061. release_firmware(bp->rv2p_firmware);
  3062. bp->rv2p_firmware = NULL;
  3063. }
  3064. }
  3065. static int bnx2_request_uncached_firmware(struct bnx2 *bp)
  3066. {
  3067. const char *mips_fw_file, *rv2p_fw_file;
  3068. const struct bnx2_mips_fw_file *mips_fw;
  3069. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3070. int rc;
  3071. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3072. mips_fw_file = FW_MIPS_FILE_09;
  3073. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5709_A0) ||
  3074. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5709_A1))
  3075. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3076. else
  3077. rv2p_fw_file = FW_RV2P_FILE_09;
  3078. } else {
  3079. mips_fw_file = FW_MIPS_FILE_06;
  3080. rv2p_fw_file = FW_RV2P_FILE_06;
  3081. }
  3082. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3083. if (rc) {
  3084. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3085. goto out;
  3086. }
  3087. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3088. if (rc) {
  3089. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3090. goto err_release_mips_firmware;
  3091. }
  3092. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3093. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3094. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3095. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3096. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3097. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3098. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3099. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3100. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3101. rc = -EINVAL;
  3102. goto err_release_firmware;
  3103. }
  3104. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3105. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3106. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3107. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3108. rc = -EINVAL;
  3109. goto err_release_firmware;
  3110. }
  3111. out:
  3112. return rc;
  3113. err_release_firmware:
  3114. release_firmware(bp->rv2p_firmware);
  3115. bp->rv2p_firmware = NULL;
  3116. err_release_mips_firmware:
  3117. release_firmware(bp->mips_firmware);
  3118. goto out;
  3119. }
  3120. static int bnx2_request_firmware(struct bnx2 *bp)
  3121. {
  3122. return bp->rv2p_firmware ? 0 : bnx2_request_uncached_firmware(bp);
  3123. }
  3124. static u32
  3125. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3126. {
  3127. switch (idx) {
  3128. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3129. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3130. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3131. break;
  3132. }
  3133. return rv2p_code;
  3134. }
  3135. static int
  3136. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3137. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3138. {
  3139. u32 rv2p_code_len, file_offset;
  3140. __be32 *rv2p_code;
  3141. int i;
  3142. u32 val, cmd, addr;
  3143. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3144. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3145. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3146. if (rv2p_proc == RV2P_PROC1) {
  3147. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3148. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3149. } else {
  3150. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3151. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3152. }
  3153. for (i = 0; i < rv2p_code_len; i += 8) {
  3154. BNX2_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3155. rv2p_code++;
  3156. BNX2_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3157. rv2p_code++;
  3158. val = (i / 8) | cmd;
  3159. BNX2_WR(bp, addr, val);
  3160. }
  3161. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3162. for (i = 0; i < 8; i++) {
  3163. u32 loc, code;
  3164. loc = be32_to_cpu(fw_entry->fixup[i]);
  3165. if (loc && ((loc * 4) < rv2p_code_len)) {
  3166. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3167. BNX2_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3168. code = be32_to_cpu(*(rv2p_code + loc));
  3169. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3170. BNX2_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3171. val = (loc / 2) | cmd;
  3172. BNX2_WR(bp, addr, val);
  3173. }
  3174. }
  3175. /* Reset the processor, un-stall is done later. */
  3176. if (rv2p_proc == RV2P_PROC1) {
  3177. BNX2_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3178. }
  3179. else {
  3180. BNX2_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3181. }
  3182. return 0;
  3183. }
  3184. static int
  3185. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3186. const struct bnx2_mips_fw_file_entry *fw_entry)
  3187. {
  3188. u32 addr, len, file_offset;
  3189. __be32 *data;
  3190. u32 offset;
  3191. u32 val;
  3192. /* Halt the CPU. */
  3193. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3194. val |= cpu_reg->mode_value_halt;
  3195. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3196. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3197. /* Load the Text area. */
  3198. addr = be32_to_cpu(fw_entry->text.addr);
  3199. len = be32_to_cpu(fw_entry->text.len);
  3200. file_offset = be32_to_cpu(fw_entry->text.offset);
  3201. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3202. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3203. if (len) {
  3204. int j;
  3205. for (j = 0; j < (len / 4); j++, offset += 4)
  3206. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3207. }
  3208. /* Load the Data area. */
  3209. addr = be32_to_cpu(fw_entry->data.addr);
  3210. len = be32_to_cpu(fw_entry->data.len);
  3211. file_offset = be32_to_cpu(fw_entry->data.offset);
  3212. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3213. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3214. if (len) {
  3215. int j;
  3216. for (j = 0; j < (len / 4); j++, offset += 4)
  3217. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3218. }
  3219. /* Load the Read-Only area. */
  3220. addr = be32_to_cpu(fw_entry->rodata.addr);
  3221. len = be32_to_cpu(fw_entry->rodata.len);
  3222. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3223. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3224. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3225. if (len) {
  3226. int j;
  3227. for (j = 0; j < (len / 4); j++, offset += 4)
  3228. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3229. }
  3230. /* Clear the pre-fetch instruction. */
  3231. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3232. val = be32_to_cpu(fw_entry->start_addr);
  3233. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3234. /* Start the CPU. */
  3235. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3236. val &= ~cpu_reg->mode_value_halt;
  3237. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3238. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3239. return 0;
  3240. }
  3241. static int
  3242. bnx2_init_cpus(struct bnx2 *bp)
  3243. {
  3244. const struct bnx2_mips_fw_file *mips_fw =
  3245. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3246. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3247. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3248. int rc;
  3249. /* Initialize the RV2P processor. */
  3250. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3251. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3252. /* Initialize the RX Processor. */
  3253. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3254. if (rc)
  3255. goto init_cpu_err;
  3256. /* Initialize the TX Processor. */
  3257. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3258. if (rc)
  3259. goto init_cpu_err;
  3260. /* Initialize the TX Patch-up Processor. */
  3261. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3262. if (rc)
  3263. goto init_cpu_err;
  3264. /* Initialize the Completion Processor. */
  3265. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3266. if (rc)
  3267. goto init_cpu_err;
  3268. /* Initialize the Command Processor. */
  3269. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3270. init_cpu_err:
  3271. return rc;
  3272. }
  3273. static void
  3274. bnx2_setup_wol(struct bnx2 *bp)
  3275. {
  3276. int i;
  3277. u32 val, wol_msg;
  3278. if (bp->wol) {
  3279. u32 advertising;
  3280. u8 autoneg;
  3281. autoneg = bp->autoneg;
  3282. advertising = bp->advertising;
  3283. if (bp->phy_port == PORT_TP) {
  3284. bp->autoneg = AUTONEG_SPEED;
  3285. bp->advertising = ADVERTISED_10baseT_Half |
  3286. ADVERTISED_10baseT_Full |
  3287. ADVERTISED_100baseT_Half |
  3288. ADVERTISED_100baseT_Full |
  3289. ADVERTISED_Autoneg;
  3290. }
  3291. spin_lock_bh(&bp->phy_lock);
  3292. bnx2_setup_phy(bp, bp->phy_port);
  3293. spin_unlock_bh(&bp->phy_lock);
  3294. bp->autoneg = autoneg;
  3295. bp->advertising = advertising;
  3296. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3297. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  3298. /* Enable port mode. */
  3299. val &= ~BNX2_EMAC_MODE_PORT;
  3300. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3301. BNX2_EMAC_MODE_ACPI_RCVD |
  3302. BNX2_EMAC_MODE_MPKT;
  3303. if (bp->phy_port == PORT_TP) {
  3304. val |= BNX2_EMAC_MODE_PORT_MII;
  3305. } else {
  3306. val |= BNX2_EMAC_MODE_PORT_GMII;
  3307. if (bp->line_speed == SPEED_2500)
  3308. val |= BNX2_EMAC_MODE_25G_MODE;
  3309. }
  3310. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  3311. /* receive all multicast */
  3312. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3313. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3314. 0xffffffff);
  3315. }
  3316. BNX2_WR(bp, BNX2_EMAC_RX_MODE, BNX2_EMAC_RX_MODE_SORT_MODE);
  3317. val = 1 | BNX2_RPM_SORT_USER0_BC_EN | BNX2_RPM_SORT_USER0_MC_EN;
  3318. BNX2_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3319. BNX2_WR(bp, BNX2_RPM_SORT_USER0, val);
  3320. BNX2_WR(bp, BNX2_RPM_SORT_USER0, val | BNX2_RPM_SORT_USER0_ENA);
  3321. /* Need to enable EMAC and RPM for WOL. */
  3322. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3323. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3324. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3325. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3326. val = BNX2_RD(bp, BNX2_RPM_CONFIG);
  3327. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3328. BNX2_WR(bp, BNX2_RPM_CONFIG, val);
  3329. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3330. } else {
  3331. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3332. }
  3333. if (!(bp->flags & BNX2_FLAG_NO_WOL)) {
  3334. u32 val;
  3335. wol_msg |= BNX2_DRV_MSG_DATA_WAIT3;
  3336. if (bp->fw_last_msg || BNX2_CHIP(bp) != BNX2_CHIP_5709) {
  3337. bnx2_fw_sync(bp, wol_msg, 1, 0);
  3338. return;
  3339. }
  3340. /* Tell firmware not to power down the PHY yet, otherwise
  3341. * the chip will take a long time to respond to MMIO reads.
  3342. */
  3343. val = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  3344. bnx2_shmem_wr(bp, BNX2_PORT_FEATURE,
  3345. val | BNX2_PORT_FEATURE_ASF_ENABLED);
  3346. bnx2_fw_sync(bp, wol_msg, 1, 0);
  3347. bnx2_shmem_wr(bp, BNX2_PORT_FEATURE, val);
  3348. }
  3349. }
  3350. static int
  3351. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3352. {
  3353. switch (state) {
  3354. case PCI_D0: {
  3355. u32 val;
  3356. pci_enable_wake(bp->pdev, PCI_D0, false);
  3357. pci_set_power_state(bp->pdev, PCI_D0);
  3358. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  3359. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3360. val &= ~BNX2_EMAC_MODE_MPKT;
  3361. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  3362. val = BNX2_RD(bp, BNX2_RPM_CONFIG);
  3363. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3364. BNX2_WR(bp, BNX2_RPM_CONFIG, val);
  3365. break;
  3366. }
  3367. case PCI_D3hot: {
  3368. bnx2_setup_wol(bp);
  3369. pci_wake_from_d3(bp->pdev, bp->wol);
  3370. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  3371. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1)) {
  3372. if (bp->wol)
  3373. pci_set_power_state(bp->pdev, PCI_D3hot);
  3374. break;
  3375. }
  3376. if (!bp->fw_last_msg && BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3377. u32 val;
  3378. /* Tell firmware not to power down the PHY yet,
  3379. * otherwise the other port may not respond to
  3380. * MMIO reads.
  3381. */
  3382. val = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  3383. val &= ~BNX2_CONDITION_PM_STATE_MASK;
  3384. val |= BNX2_CONDITION_PM_STATE_UNPREP;
  3385. bnx2_shmem_wr(bp, BNX2_BC_STATE_CONDITION, val);
  3386. }
  3387. pci_set_power_state(bp->pdev, PCI_D3hot);
  3388. /* No more memory access after this point until
  3389. * device is brought back to D0.
  3390. */
  3391. break;
  3392. }
  3393. default:
  3394. return -EINVAL;
  3395. }
  3396. return 0;
  3397. }
  3398. static int
  3399. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3400. {
  3401. u32 val;
  3402. int j;
  3403. /* Request access to the flash interface. */
  3404. BNX2_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3405. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3406. val = BNX2_RD(bp, BNX2_NVM_SW_ARB);
  3407. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3408. break;
  3409. udelay(5);
  3410. }
  3411. if (j >= NVRAM_TIMEOUT_COUNT)
  3412. return -EBUSY;
  3413. return 0;
  3414. }
  3415. static int
  3416. bnx2_release_nvram_lock(struct bnx2 *bp)
  3417. {
  3418. int j;
  3419. u32 val;
  3420. /* Relinquish nvram interface. */
  3421. BNX2_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3422. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3423. val = BNX2_RD(bp, BNX2_NVM_SW_ARB);
  3424. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3425. break;
  3426. udelay(5);
  3427. }
  3428. if (j >= NVRAM_TIMEOUT_COUNT)
  3429. return -EBUSY;
  3430. return 0;
  3431. }
  3432. static int
  3433. bnx2_enable_nvram_write(struct bnx2 *bp)
  3434. {
  3435. u32 val;
  3436. val = BNX2_RD(bp, BNX2_MISC_CFG);
  3437. BNX2_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3438. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3439. int j;
  3440. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3441. BNX2_WR(bp, BNX2_NVM_COMMAND,
  3442. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3443. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3444. udelay(5);
  3445. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3446. if (val & BNX2_NVM_COMMAND_DONE)
  3447. break;
  3448. }
  3449. if (j >= NVRAM_TIMEOUT_COUNT)
  3450. return -EBUSY;
  3451. }
  3452. return 0;
  3453. }
  3454. static void
  3455. bnx2_disable_nvram_write(struct bnx2 *bp)
  3456. {
  3457. u32 val;
  3458. val = BNX2_RD(bp, BNX2_MISC_CFG);
  3459. BNX2_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3460. }
  3461. static void
  3462. bnx2_enable_nvram_access(struct bnx2 *bp)
  3463. {
  3464. u32 val;
  3465. val = BNX2_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3466. /* Enable both bits, even on read. */
  3467. BNX2_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3468. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3469. }
  3470. static void
  3471. bnx2_disable_nvram_access(struct bnx2 *bp)
  3472. {
  3473. u32 val;
  3474. val = BNX2_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3475. /* Disable both bits, even after read. */
  3476. BNX2_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3477. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3478. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3479. }
  3480. static int
  3481. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3482. {
  3483. u32 cmd;
  3484. int j;
  3485. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3486. /* Buffered flash, no erase needed */
  3487. return 0;
  3488. /* Build an erase command */
  3489. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3490. BNX2_NVM_COMMAND_DOIT;
  3491. /* Need to clear DONE bit separately. */
  3492. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3493. /* Address of the NVRAM to read from. */
  3494. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3495. /* Issue an erase command. */
  3496. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3497. /* Wait for completion. */
  3498. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3499. u32 val;
  3500. udelay(5);
  3501. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3502. if (val & BNX2_NVM_COMMAND_DONE)
  3503. break;
  3504. }
  3505. if (j >= NVRAM_TIMEOUT_COUNT)
  3506. return -EBUSY;
  3507. return 0;
  3508. }
  3509. static int
  3510. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3511. {
  3512. u32 cmd;
  3513. int j;
  3514. /* Build the command word. */
  3515. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3516. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3517. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3518. offset = ((offset / bp->flash_info->page_size) <<
  3519. bp->flash_info->page_bits) +
  3520. (offset % bp->flash_info->page_size);
  3521. }
  3522. /* Need to clear DONE bit separately. */
  3523. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3524. /* Address of the NVRAM to read from. */
  3525. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3526. /* Issue a read command. */
  3527. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3528. /* Wait for completion. */
  3529. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3530. u32 val;
  3531. udelay(5);
  3532. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3533. if (val & BNX2_NVM_COMMAND_DONE) {
  3534. __be32 v = cpu_to_be32(BNX2_RD(bp, BNX2_NVM_READ));
  3535. memcpy(ret_val, &v, 4);
  3536. break;
  3537. }
  3538. }
  3539. if (j >= NVRAM_TIMEOUT_COUNT)
  3540. return -EBUSY;
  3541. return 0;
  3542. }
  3543. static int
  3544. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3545. {
  3546. u32 cmd;
  3547. __be32 val32;
  3548. int j;
  3549. /* Build the command word. */
  3550. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3551. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3552. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3553. offset = ((offset / bp->flash_info->page_size) <<
  3554. bp->flash_info->page_bits) +
  3555. (offset % bp->flash_info->page_size);
  3556. }
  3557. /* Need to clear DONE bit separately. */
  3558. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3559. memcpy(&val32, val, 4);
  3560. /* Write the data. */
  3561. BNX2_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3562. /* Address of the NVRAM to write to. */
  3563. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3564. /* Issue the write command. */
  3565. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3566. /* Wait for completion. */
  3567. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3568. udelay(5);
  3569. if (BNX2_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3570. break;
  3571. }
  3572. if (j >= NVRAM_TIMEOUT_COUNT)
  3573. return -EBUSY;
  3574. return 0;
  3575. }
  3576. static int
  3577. bnx2_init_nvram(struct bnx2 *bp)
  3578. {
  3579. u32 val;
  3580. int j, entry_count, rc = 0;
  3581. const struct flash_spec *flash;
  3582. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3583. bp->flash_info = &flash_5709;
  3584. goto get_flash_size;
  3585. }
  3586. /* Determine the selected interface. */
  3587. val = BNX2_RD(bp, BNX2_NVM_CFG1);
  3588. entry_count = ARRAY_SIZE(flash_table);
  3589. if (val & 0x40000000) {
  3590. /* Flash interface has been reconfigured */
  3591. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3592. j++, flash++) {
  3593. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3594. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3595. bp->flash_info = flash;
  3596. break;
  3597. }
  3598. }
  3599. }
  3600. else {
  3601. u32 mask;
  3602. /* Not yet been reconfigured */
  3603. if (val & (1 << 23))
  3604. mask = FLASH_BACKUP_STRAP_MASK;
  3605. else
  3606. mask = FLASH_STRAP_MASK;
  3607. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3608. j++, flash++) {
  3609. if ((val & mask) == (flash->strapping & mask)) {
  3610. bp->flash_info = flash;
  3611. /* Request access to the flash interface. */
  3612. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3613. return rc;
  3614. /* Enable access to flash interface */
  3615. bnx2_enable_nvram_access(bp);
  3616. /* Reconfigure the flash interface */
  3617. BNX2_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3618. BNX2_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3619. BNX2_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3620. BNX2_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3621. /* Disable access to flash interface */
  3622. bnx2_disable_nvram_access(bp);
  3623. bnx2_release_nvram_lock(bp);
  3624. break;
  3625. }
  3626. }
  3627. } /* if (val & 0x40000000) */
  3628. if (j == entry_count) {
  3629. bp->flash_info = NULL;
  3630. pr_alert("Unknown flash/EEPROM type\n");
  3631. return -ENODEV;
  3632. }
  3633. get_flash_size:
  3634. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3635. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3636. if (val)
  3637. bp->flash_size = val;
  3638. else
  3639. bp->flash_size = bp->flash_info->total_size;
  3640. return rc;
  3641. }
  3642. static int
  3643. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3644. int buf_size)
  3645. {
  3646. int rc = 0;
  3647. u32 cmd_flags, offset32, len32, extra;
  3648. if (buf_size == 0)
  3649. return 0;
  3650. /* Request access to the flash interface. */
  3651. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3652. return rc;
  3653. /* Enable access to flash interface */
  3654. bnx2_enable_nvram_access(bp);
  3655. len32 = buf_size;
  3656. offset32 = offset;
  3657. extra = 0;
  3658. cmd_flags = 0;
  3659. if (offset32 & 3) {
  3660. u8 buf[4];
  3661. u32 pre_len;
  3662. offset32 &= ~3;
  3663. pre_len = 4 - (offset & 3);
  3664. if (pre_len >= len32) {
  3665. pre_len = len32;
  3666. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3667. BNX2_NVM_COMMAND_LAST;
  3668. }
  3669. else {
  3670. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3671. }
  3672. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3673. if (rc)
  3674. return rc;
  3675. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3676. offset32 += 4;
  3677. ret_buf += pre_len;
  3678. len32 -= pre_len;
  3679. }
  3680. if (len32 & 3) {
  3681. extra = 4 - (len32 & 3);
  3682. len32 = (len32 + 4) & ~3;
  3683. }
  3684. if (len32 == 4) {
  3685. u8 buf[4];
  3686. if (cmd_flags)
  3687. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3688. else
  3689. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3690. BNX2_NVM_COMMAND_LAST;
  3691. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3692. memcpy(ret_buf, buf, 4 - extra);
  3693. }
  3694. else if (len32 > 0) {
  3695. u8 buf[4];
  3696. /* Read the first word. */
  3697. if (cmd_flags)
  3698. cmd_flags = 0;
  3699. else
  3700. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3701. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3702. /* Advance to the next dword. */
  3703. offset32 += 4;
  3704. ret_buf += 4;
  3705. len32 -= 4;
  3706. while (len32 > 4 && rc == 0) {
  3707. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3708. /* Advance to the next dword. */
  3709. offset32 += 4;
  3710. ret_buf += 4;
  3711. len32 -= 4;
  3712. }
  3713. if (rc)
  3714. return rc;
  3715. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3716. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3717. memcpy(ret_buf, buf, 4 - extra);
  3718. }
  3719. /* Disable access to flash interface */
  3720. bnx2_disable_nvram_access(bp);
  3721. bnx2_release_nvram_lock(bp);
  3722. return rc;
  3723. }
  3724. static int
  3725. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3726. int buf_size)
  3727. {
  3728. u32 written, offset32, len32;
  3729. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3730. int rc = 0;
  3731. int align_start, align_end;
  3732. buf = data_buf;
  3733. offset32 = offset;
  3734. len32 = buf_size;
  3735. align_start = align_end = 0;
  3736. if ((align_start = (offset32 & 3))) {
  3737. offset32 &= ~3;
  3738. len32 += align_start;
  3739. if (len32 < 4)
  3740. len32 = 4;
  3741. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3742. return rc;
  3743. }
  3744. if (len32 & 3) {
  3745. align_end = 4 - (len32 & 3);
  3746. len32 += align_end;
  3747. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3748. return rc;
  3749. }
  3750. if (align_start || align_end) {
  3751. align_buf = kmalloc(len32, GFP_KERNEL);
  3752. if (align_buf == NULL)
  3753. return -ENOMEM;
  3754. if (align_start) {
  3755. memcpy(align_buf, start, 4);
  3756. }
  3757. if (align_end) {
  3758. memcpy(align_buf + len32 - 4, end, 4);
  3759. }
  3760. memcpy(align_buf + align_start, data_buf, buf_size);
  3761. buf = align_buf;
  3762. }
  3763. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3764. flash_buffer = kmalloc(264, GFP_KERNEL);
  3765. if (flash_buffer == NULL) {
  3766. rc = -ENOMEM;
  3767. goto nvram_write_end;
  3768. }
  3769. }
  3770. written = 0;
  3771. while ((written < len32) && (rc == 0)) {
  3772. u32 page_start, page_end, data_start, data_end;
  3773. u32 addr, cmd_flags;
  3774. int i;
  3775. /* Find the page_start addr */
  3776. page_start = offset32 + written;
  3777. page_start -= (page_start % bp->flash_info->page_size);
  3778. /* Find the page_end addr */
  3779. page_end = page_start + bp->flash_info->page_size;
  3780. /* Find the data_start addr */
  3781. data_start = (written == 0) ? offset32 : page_start;
  3782. /* Find the data_end addr */
  3783. data_end = (page_end > offset32 + len32) ?
  3784. (offset32 + len32) : page_end;
  3785. /* Request access to the flash interface. */
  3786. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3787. goto nvram_write_end;
  3788. /* Enable access to flash interface */
  3789. bnx2_enable_nvram_access(bp);
  3790. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3791. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3792. int j;
  3793. /* Read the whole page into the buffer
  3794. * (non-buffer flash only) */
  3795. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3796. if (j == (bp->flash_info->page_size - 4)) {
  3797. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3798. }
  3799. rc = bnx2_nvram_read_dword(bp,
  3800. page_start + j,
  3801. &flash_buffer[j],
  3802. cmd_flags);
  3803. if (rc)
  3804. goto nvram_write_end;
  3805. cmd_flags = 0;
  3806. }
  3807. }
  3808. /* Enable writes to flash interface (unlock write-protect) */
  3809. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3810. goto nvram_write_end;
  3811. /* Loop to write back the buffer data from page_start to
  3812. * data_start */
  3813. i = 0;
  3814. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3815. /* Erase the page */
  3816. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3817. goto nvram_write_end;
  3818. /* Re-enable the write again for the actual write */
  3819. bnx2_enable_nvram_write(bp);
  3820. for (addr = page_start; addr < data_start;
  3821. addr += 4, i += 4) {
  3822. rc = bnx2_nvram_write_dword(bp, addr,
  3823. &flash_buffer[i], cmd_flags);
  3824. if (rc != 0)
  3825. goto nvram_write_end;
  3826. cmd_flags = 0;
  3827. }
  3828. }
  3829. /* Loop to write the new data from data_start to data_end */
  3830. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3831. if ((addr == page_end - 4) ||
  3832. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3833. (addr == data_end - 4))) {
  3834. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3835. }
  3836. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3837. cmd_flags);
  3838. if (rc != 0)
  3839. goto nvram_write_end;
  3840. cmd_flags = 0;
  3841. buf += 4;
  3842. }
  3843. /* Loop to write back the buffer data from data_end
  3844. * to page_end */
  3845. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3846. for (addr = data_end; addr < page_end;
  3847. addr += 4, i += 4) {
  3848. if (addr == page_end-4) {
  3849. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3850. }
  3851. rc = bnx2_nvram_write_dword(bp, addr,
  3852. &flash_buffer[i], cmd_flags);
  3853. if (rc != 0)
  3854. goto nvram_write_end;
  3855. cmd_flags = 0;
  3856. }
  3857. }
  3858. /* Disable writes to flash interface (lock write-protect) */
  3859. bnx2_disable_nvram_write(bp);
  3860. /* Disable access to flash interface */
  3861. bnx2_disable_nvram_access(bp);
  3862. bnx2_release_nvram_lock(bp);
  3863. /* Increment written */
  3864. written += data_end - data_start;
  3865. }
  3866. nvram_write_end:
  3867. kfree(flash_buffer);
  3868. kfree(align_buf);
  3869. return rc;
  3870. }
  3871. static void
  3872. bnx2_init_fw_cap(struct bnx2 *bp)
  3873. {
  3874. u32 val, sig = 0;
  3875. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3876. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3877. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3878. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3879. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3880. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3881. return;
  3882. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3883. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3884. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3885. }
  3886. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3887. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3888. u32 link;
  3889. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3890. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3891. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3892. bp->phy_port = PORT_FIBRE;
  3893. else
  3894. bp->phy_port = PORT_TP;
  3895. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3896. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3897. }
  3898. if (netif_running(bp->dev) && sig)
  3899. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3900. }
  3901. static void
  3902. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3903. {
  3904. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3905. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3906. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3907. }
  3908. static int
  3909. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3910. {
  3911. u32 val;
  3912. int i, rc = 0;
  3913. u8 old_port;
  3914. /* Wait for the current PCI transaction to complete before
  3915. * issuing a reset. */
  3916. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) ||
  3917. (BNX2_CHIP(bp) == BNX2_CHIP_5708)) {
  3918. BNX2_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3919. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3920. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3921. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3922. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3923. val = BNX2_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3924. udelay(5);
  3925. } else { /* 5709 */
  3926. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3927. val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3928. BNX2_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3929. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3930. for (i = 0; i < 100; i++) {
  3931. msleep(1);
  3932. val = BNX2_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
  3933. if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
  3934. break;
  3935. }
  3936. }
  3937. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3938. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3939. /* Deposit a driver reset signature so the firmware knows that
  3940. * this is a soft reset. */
  3941. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3942. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3943. /* Do a dummy read to force the chip to complete all current transaction
  3944. * before we issue a reset. */
  3945. val = BNX2_RD(bp, BNX2_MISC_ID);
  3946. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3947. BNX2_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3948. BNX2_RD(bp, BNX2_MISC_COMMAND);
  3949. udelay(5);
  3950. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3951. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3952. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3953. } else {
  3954. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3955. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3956. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3957. /* Chip reset. */
  3958. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3959. /* Reading back any register after chip reset will hang the
  3960. * bus on 5706 A0 and A1. The msleep below provides plenty
  3961. * of margin for write posting.
  3962. */
  3963. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  3964. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1))
  3965. msleep(20);
  3966. /* Reset takes approximate 30 usec */
  3967. for (i = 0; i < 10; i++) {
  3968. val = BNX2_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3969. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3970. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3971. break;
  3972. udelay(10);
  3973. }
  3974. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3975. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3976. pr_err("Chip reset did not complete\n");
  3977. return -EBUSY;
  3978. }
  3979. }
  3980. /* Make sure byte swapping is properly configured. */
  3981. val = BNX2_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3982. if (val != 0x01020304) {
  3983. pr_err("Chip not in correct endian mode\n");
  3984. return -ENODEV;
  3985. }
  3986. /* Wait for the firmware to finish its initialization. */
  3987. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3988. if (rc)
  3989. return rc;
  3990. spin_lock_bh(&bp->phy_lock);
  3991. old_port = bp->phy_port;
  3992. bnx2_init_fw_cap(bp);
  3993. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3994. old_port != bp->phy_port)
  3995. bnx2_set_default_remote_link(bp);
  3996. spin_unlock_bh(&bp->phy_lock);
  3997. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  3998. /* Adjust the voltage regular to two steps lower. The default
  3999. * of this register is 0x0000000e. */
  4000. BNX2_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  4001. /* Remove bad rbuf memory from the free pool. */
  4002. rc = bnx2_alloc_bad_rbuf(bp);
  4003. }
  4004. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4005. bnx2_setup_msix_tbl(bp);
  4006. /* Prevent MSIX table reads and write from timing out */
  4007. BNX2_WR(bp, BNX2_MISC_ECO_HW_CTL,
  4008. BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
  4009. }
  4010. return rc;
  4011. }
  4012. static int
  4013. bnx2_init_chip(struct bnx2 *bp)
  4014. {
  4015. u32 val, mtu;
  4016. int rc, i;
  4017. /* Make sure the interrupt is not active. */
  4018. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  4019. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  4020. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  4021. #ifdef __BIG_ENDIAN
  4022. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  4023. #endif
  4024. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  4025. DMA_READ_CHANS << 12 |
  4026. DMA_WRITE_CHANS << 16;
  4027. val |= (0x2 << 20) | (1 << 11);
  4028. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  4029. val |= (1 << 23);
  4030. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) &&
  4031. (BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A0) &&
  4032. !(bp->flags & BNX2_FLAG_PCIX))
  4033. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  4034. BNX2_WR(bp, BNX2_DMA_CONFIG, val);
  4035. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  4036. val = BNX2_RD(bp, BNX2_TDMA_CONFIG);
  4037. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  4038. BNX2_WR(bp, BNX2_TDMA_CONFIG, val);
  4039. }
  4040. if (bp->flags & BNX2_FLAG_PCIX) {
  4041. u16 val16;
  4042. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4043. &val16);
  4044. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4045. val16 & ~PCI_X_CMD_ERO);
  4046. }
  4047. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  4048. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  4049. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  4050. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  4051. /* Initialize context mapping and zero out the quick contexts. The
  4052. * context block must have already been enabled. */
  4053. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4054. rc = bnx2_init_5709_context(bp);
  4055. if (rc)
  4056. return rc;
  4057. } else
  4058. bnx2_init_context(bp);
  4059. if ((rc = bnx2_init_cpus(bp)) != 0)
  4060. return rc;
  4061. bnx2_init_nvram(bp);
  4062. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  4063. val = BNX2_RD(bp, BNX2_MQ_CONFIG);
  4064. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  4065. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  4066. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4067. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  4068. if (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax)
  4069. val |= BNX2_MQ_CONFIG_HALT_DIS;
  4070. }
  4071. BNX2_WR(bp, BNX2_MQ_CONFIG, val);
  4072. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  4073. BNX2_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  4074. BNX2_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  4075. val = (BNX2_PAGE_BITS - 8) << 24;
  4076. BNX2_WR(bp, BNX2_RV2P_CONFIG, val);
  4077. /* Configure page size. */
  4078. val = BNX2_RD(bp, BNX2_TBDR_CONFIG);
  4079. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  4080. val |= (BNX2_PAGE_BITS - 8) << 24 | 0x40;
  4081. BNX2_WR(bp, BNX2_TBDR_CONFIG, val);
  4082. val = bp->mac_addr[0] +
  4083. (bp->mac_addr[1] << 8) +
  4084. (bp->mac_addr[2] << 16) +
  4085. bp->mac_addr[3] +
  4086. (bp->mac_addr[4] << 8) +
  4087. (bp->mac_addr[5] << 16);
  4088. BNX2_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  4089. /* Program the MTU. Also include 4 bytes for CRC32. */
  4090. mtu = bp->dev->mtu;
  4091. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  4092. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  4093. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  4094. BNX2_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  4095. if (mtu < 1500)
  4096. mtu = 1500;
  4097. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  4098. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4099. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4100. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4101. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4102. bp->bnx2_napi[i].last_status_idx = 0;
  4103. bp->idle_chk_status_idx = 0xffff;
  4104. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4105. /* Set up how to generate a link change interrupt. */
  4106. BNX2_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4107. BNX2_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4108. (u64) bp->status_blk_mapping & 0xffffffff);
  4109. BNX2_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4110. BNX2_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4111. (u64) bp->stats_blk_mapping & 0xffffffff);
  4112. BNX2_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4113. (u64) bp->stats_blk_mapping >> 32);
  4114. BNX2_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4115. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4116. BNX2_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4117. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4118. BNX2_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4119. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4120. BNX2_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4121. BNX2_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4122. BNX2_WR(bp, BNX2_HC_COM_TICKS,
  4123. (bp->com_ticks_int << 16) | bp->com_ticks);
  4124. BNX2_WR(bp, BNX2_HC_CMD_TICKS,
  4125. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4126. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4127. BNX2_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4128. else
  4129. BNX2_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4130. BNX2_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4131. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1)
  4132. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4133. else {
  4134. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4135. BNX2_HC_CONFIG_COLLECT_STATS;
  4136. }
  4137. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4138. BNX2_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4139. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4140. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4141. }
  4142. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4143. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4144. BNX2_WR(bp, BNX2_HC_CONFIG, val);
  4145. if (bp->rx_ticks < 25)
  4146. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
  4147. else
  4148. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
  4149. for (i = 1; i < bp->irq_nvecs; i++) {
  4150. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4151. BNX2_HC_SB_CONFIG_1;
  4152. BNX2_WR(bp, base,
  4153. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4154. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4155. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4156. BNX2_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4157. (bp->tx_quick_cons_trip_int << 16) |
  4158. bp->tx_quick_cons_trip);
  4159. BNX2_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4160. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4161. BNX2_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4162. (bp->rx_quick_cons_trip_int << 16) |
  4163. bp->rx_quick_cons_trip);
  4164. BNX2_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4165. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4166. }
  4167. /* Clear internal stats counters. */
  4168. BNX2_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4169. BNX2_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4170. /* Initialize the receive filter. */
  4171. bnx2_set_rx_mode(bp->dev);
  4172. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4173. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4174. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4175. BNX2_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4176. }
  4177. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4178. 1, 0);
  4179. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4180. BNX2_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4181. udelay(20);
  4182. bp->hc_cmd = BNX2_RD(bp, BNX2_HC_COMMAND);
  4183. return rc;
  4184. }
  4185. static void
  4186. bnx2_clear_ring_states(struct bnx2 *bp)
  4187. {
  4188. struct bnx2_napi *bnapi;
  4189. struct bnx2_tx_ring_info *txr;
  4190. struct bnx2_rx_ring_info *rxr;
  4191. int i;
  4192. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4193. bnapi = &bp->bnx2_napi[i];
  4194. txr = &bnapi->tx_ring;
  4195. rxr = &bnapi->rx_ring;
  4196. txr->tx_cons = 0;
  4197. txr->hw_tx_cons = 0;
  4198. rxr->rx_prod_bseq = 0;
  4199. rxr->rx_prod = 0;
  4200. rxr->rx_cons = 0;
  4201. rxr->rx_pg_prod = 0;
  4202. rxr->rx_pg_cons = 0;
  4203. }
  4204. }
  4205. static void
  4206. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4207. {
  4208. u32 val, offset0, offset1, offset2, offset3;
  4209. u32 cid_addr = GET_CID_ADDR(cid);
  4210. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4211. offset0 = BNX2_L2CTX_TYPE_XI;
  4212. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4213. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4214. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4215. } else {
  4216. offset0 = BNX2_L2CTX_TYPE;
  4217. offset1 = BNX2_L2CTX_CMD_TYPE;
  4218. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4219. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4220. }
  4221. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4222. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4223. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4224. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4225. val = (u64) txr->tx_desc_mapping >> 32;
  4226. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4227. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4228. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4229. }
  4230. static void
  4231. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4232. {
  4233. struct bnx2_tx_bd *txbd;
  4234. u32 cid = TX_CID;
  4235. struct bnx2_napi *bnapi;
  4236. struct bnx2_tx_ring_info *txr;
  4237. bnapi = &bp->bnx2_napi[ring_num];
  4238. txr = &bnapi->tx_ring;
  4239. if (ring_num == 0)
  4240. cid = TX_CID;
  4241. else
  4242. cid = TX_TSS_CID + ring_num - 1;
  4243. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4244. txbd = &txr->tx_desc_ring[BNX2_MAX_TX_DESC_CNT];
  4245. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4246. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4247. txr->tx_prod = 0;
  4248. txr->tx_prod_bseq = 0;
  4249. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4250. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4251. bnx2_init_tx_context(bp, cid, txr);
  4252. }
  4253. static void
  4254. bnx2_init_rxbd_rings(struct bnx2_rx_bd *rx_ring[], dma_addr_t dma[],
  4255. u32 buf_size, int num_rings)
  4256. {
  4257. int i;
  4258. struct bnx2_rx_bd *rxbd;
  4259. for (i = 0; i < num_rings; i++) {
  4260. int j;
  4261. rxbd = &rx_ring[i][0];
  4262. for (j = 0; j < BNX2_MAX_RX_DESC_CNT; j++, rxbd++) {
  4263. rxbd->rx_bd_len = buf_size;
  4264. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4265. }
  4266. if (i == (num_rings - 1))
  4267. j = 0;
  4268. else
  4269. j = i + 1;
  4270. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4271. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4272. }
  4273. }
  4274. static void
  4275. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4276. {
  4277. int i;
  4278. u16 prod, ring_prod;
  4279. u32 cid, rx_cid_addr, val;
  4280. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4281. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4282. if (ring_num == 0)
  4283. cid = RX_CID;
  4284. else
  4285. cid = RX_RSS_CID + ring_num - 1;
  4286. rx_cid_addr = GET_CID_ADDR(cid);
  4287. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4288. bp->rx_buf_use_size, bp->rx_max_ring);
  4289. bnx2_init_rx_context(bp, cid);
  4290. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4291. val = BNX2_RD(bp, BNX2_MQ_MAP_L2_5);
  4292. BNX2_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4293. }
  4294. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4295. if (bp->rx_pg_ring_size) {
  4296. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4297. rxr->rx_pg_desc_mapping,
  4298. PAGE_SIZE, bp->rx_max_pg_ring);
  4299. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4300. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4301. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4302. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4303. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4304. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4305. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4306. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4307. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4308. BNX2_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4309. }
  4310. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4311. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4312. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4313. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4314. ring_prod = prod = rxr->rx_pg_prod;
  4315. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4316. if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4317. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4318. ring_num, i, bp->rx_pg_ring_size);
  4319. break;
  4320. }
  4321. prod = BNX2_NEXT_RX_BD(prod);
  4322. ring_prod = BNX2_RX_PG_RING_IDX(prod);
  4323. }
  4324. rxr->rx_pg_prod = prod;
  4325. ring_prod = prod = rxr->rx_prod;
  4326. for (i = 0; i < bp->rx_ring_size; i++) {
  4327. if (bnx2_alloc_rx_data(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4328. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4329. ring_num, i, bp->rx_ring_size);
  4330. break;
  4331. }
  4332. prod = BNX2_NEXT_RX_BD(prod);
  4333. ring_prod = BNX2_RX_RING_IDX(prod);
  4334. }
  4335. rxr->rx_prod = prod;
  4336. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4337. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4338. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4339. BNX2_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4340. BNX2_WR16(bp, rxr->rx_bidx_addr, prod);
  4341. BNX2_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4342. }
  4343. static void
  4344. bnx2_init_all_rings(struct bnx2 *bp)
  4345. {
  4346. int i;
  4347. u32 val;
  4348. bnx2_clear_ring_states(bp);
  4349. BNX2_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4350. for (i = 0; i < bp->num_tx_rings; i++)
  4351. bnx2_init_tx_ring(bp, i);
  4352. if (bp->num_tx_rings > 1)
  4353. BNX2_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4354. (TX_TSS_CID << 7));
  4355. BNX2_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4356. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4357. for (i = 0; i < bp->num_rx_rings; i++)
  4358. bnx2_init_rx_ring(bp, i);
  4359. if (bp->num_rx_rings > 1) {
  4360. u32 tbl_32 = 0;
  4361. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4362. int shift = (i % 8) << 2;
  4363. tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
  4364. if ((i % 8) == 7) {
  4365. BNX2_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
  4366. BNX2_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
  4367. BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
  4368. BNX2_RLUP_RSS_COMMAND_WRITE |
  4369. BNX2_RLUP_RSS_COMMAND_HASH_MASK);
  4370. tbl_32 = 0;
  4371. }
  4372. }
  4373. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4374. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4375. BNX2_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4376. }
  4377. }
  4378. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4379. {
  4380. u32 max, num_rings = 1;
  4381. while (ring_size > BNX2_MAX_RX_DESC_CNT) {
  4382. ring_size -= BNX2_MAX_RX_DESC_CNT;
  4383. num_rings++;
  4384. }
  4385. /* round to next power of 2 */
  4386. max = max_size;
  4387. while ((max & num_rings) == 0)
  4388. max >>= 1;
  4389. if (num_rings != max)
  4390. max <<= 1;
  4391. return max;
  4392. }
  4393. static void
  4394. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4395. {
  4396. u32 rx_size, rx_space, jumbo_size;
  4397. /* 8 for CRC and VLAN */
  4398. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4399. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4400. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4401. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4402. bp->rx_pg_ring_size = 0;
  4403. bp->rx_max_pg_ring = 0;
  4404. bp->rx_max_pg_ring_idx = 0;
  4405. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4406. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4407. jumbo_size = size * pages;
  4408. if (jumbo_size > BNX2_MAX_TOTAL_RX_PG_DESC_CNT)
  4409. jumbo_size = BNX2_MAX_TOTAL_RX_PG_DESC_CNT;
  4410. bp->rx_pg_ring_size = jumbo_size;
  4411. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4412. BNX2_MAX_RX_PG_RINGS);
  4413. bp->rx_max_pg_ring_idx =
  4414. (bp->rx_max_pg_ring * BNX2_RX_DESC_CNT) - 1;
  4415. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4416. bp->rx_copy_thresh = 0;
  4417. }
  4418. bp->rx_buf_use_size = rx_size;
  4419. /* hw alignment + build_skb() overhead*/
  4420. bp->rx_buf_size = SKB_DATA_ALIGN(bp->rx_buf_use_size + BNX2_RX_ALIGN) +
  4421. NET_SKB_PAD + SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4422. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4423. bp->rx_ring_size = size;
  4424. bp->rx_max_ring = bnx2_find_max_ring(size, BNX2_MAX_RX_RINGS);
  4425. bp->rx_max_ring_idx = (bp->rx_max_ring * BNX2_RX_DESC_CNT) - 1;
  4426. }
  4427. static void
  4428. bnx2_free_tx_skbs(struct bnx2 *bp)
  4429. {
  4430. int i;
  4431. for (i = 0; i < bp->num_tx_rings; i++) {
  4432. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4433. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4434. int j;
  4435. if (txr->tx_buf_ring == NULL)
  4436. continue;
  4437. for (j = 0; j < BNX2_TX_DESC_CNT; ) {
  4438. struct bnx2_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4439. struct sk_buff *skb = tx_buf->skb;
  4440. int k, last;
  4441. if (skb == NULL) {
  4442. j = BNX2_NEXT_TX_BD(j);
  4443. continue;
  4444. }
  4445. dma_unmap_single(&bp->pdev->dev,
  4446. dma_unmap_addr(tx_buf, mapping),
  4447. skb_headlen(skb),
  4448. PCI_DMA_TODEVICE);
  4449. tx_buf->skb = NULL;
  4450. last = tx_buf->nr_frags;
  4451. j = BNX2_NEXT_TX_BD(j);
  4452. for (k = 0; k < last; k++, j = BNX2_NEXT_TX_BD(j)) {
  4453. tx_buf = &txr->tx_buf_ring[BNX2_TX_RING_IDX(j)];
  4454. dma_unmap_page(&bp->pdev->dev,
  4455. dma_unmap_addr(tx_buf, mapping),
  4456. skb_frag_size(&skb_shinfo(skb)->frags[k]),
  4457. PCI_DMA_TODEVICE);
  4458. }
  4459. dev_kfree_skb(skb);
  4460. }
  4461. netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
  4462. }
  4463. }
  4464. static void
  4465. bnx2_free_rx_skbs(struct bnx2 *bp)
  4466. {
  4467. int i;
  4468. for (i = 0; i < bp->num_rx_rings; i++) {
  4469. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4470. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4471. int j;
  4472. if (rxr->rx_buf_ring == NULL)
  4473. return;
  4474. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4475. struct bnx2_sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4476. u8 *data = rx_buf->data;
  4477. if (data == NULL)
  4478. continue;
  4479. dma_unmap_single(&bp->pdev->dev,
  4480. dma_unmap_addr(rx_buf, mapping),
  4481. bp->rx_buf_use_size,
  4482. PCI_DMA_FROMDEVICE);
  4483. rx_buf->data = NULL;
  4484. kfree(data);
  4485. }
  4486. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4487. bnx2_free_rx_page(bp, rxr, j);
  4488. }
  4489. }
  4490. static void
  4491. bnx2_free_skbs(struct bnx2 *bp)
  4492. {
  4493. bnx2_free_tx_skbs(bp);
  4494. bnx2_free_rx_skbs(bp);
  4495. }
  4496. static int
  4497. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4498. {
  4499. int rc;
  4500. rc = bnx2_reset_chip(bp, reset_code);
  4501. bnx2_free_skbs(bp);
  4502. if (rc)
  4503. return rc;
  4504. if ((rc = bnx2_init_chip(bp)) != 0)
  4505. return rc;
  4506. bnx2_init_all_rings(bp);
  4507. return 0;
  4508. }
  4509. static int
  4510. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4511. {
  4512. int rc;
  4513. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4514. return rc;
  4515. spin_lock_bh(&bp->phy_lock);
  4516. bnx2_init_phy(bp, reset_phy);
  4517. bnx2_set_link(bp);
  4518. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4519. bnx2_remote_phy_event(bp);
  4520. spin_unlock_bh(&bp->phy_lock);
  4521. return 0;
  4522. }
  4523. static int
  4524. bnx2_shutdown_chip(struct bnx2 *bp)
  4525. {
  4526. u32 reset_code;
  4527. if (bp->flags & BNX2_FLAG_NO_WOL)
  4528. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4529. else if (bp->wol)
  4530. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4531. else
  4532. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4533. return bnx2_reset_chip(bp, reset_code);
  4534. }
  4535. static int
  4536. bnx2_test_registers(struct bnx2 *bp)
  4537. {
  4538. int ret;
  4539. int i, is_5709;
  4540. static const struct {
  4541. u16 offset;
  4542. u16 flags;
  4543. #define BNX2_FL_NOT_5709 1
  4544. u32 rw_mask;
  4545. u32 ro_mask;
  4546. } reg_tbl[] = {
  4547. { 0x006c, 0, 0x00000000, 0x0000003f },
  4548. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4549. { 0x0094, 0, 0x00000000, 0x00000000 },
  4550. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4551. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4552. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4553. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4554. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4555. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4556. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4557. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4558. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4559. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4560. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4561. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4562. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4563. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4564. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4565. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4566. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4567. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4568. { 0x1000, 0, 0x00000000, 0x00000001 },
  4569. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4570. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4571. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4572. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4573. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4574. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4575. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4576. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4577. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4578. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4579. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4580. { 0x1800, 0, 0x00000000, 0x00000001 },
  4581. { 0x1804, 0, 0x00000000, 0x00000003 },
  4582. { 0x2800, 0, 0x00000000, 0x00000001 },
  4583. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4584. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4585. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4586. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4587. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4588. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4589. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4590. { 0x2840, 0, 0x00000000, 0xffffffff },
  4591. { 0x2844, 0, 0x00000000, 0xffffffff },
  4592. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4593. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4594. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4595. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4596. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4597. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4598. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4599. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4600. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4601. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4602. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4603. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4604. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4605. { 0x5004, 0, 0x00000000, 0x0000007f },
  4606. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4607. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4608. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4609. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4610. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4611. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4612. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4613. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4614. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4615. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4616. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4617. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4618. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4619. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4620. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4621. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4622. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4623. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4624. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4625. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4626. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4627. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4628. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4629. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4630. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4631. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4632. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4633. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4634. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4635. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4636. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4637. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4638. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4639. { 0xffff, 0, 0x00000000, 0x00000000 },
  4640. };
  4641. ret = 0;
  4642. is_5709 = 0;
  4643. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4644. is_5709 = 1;
  4645. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4646. u32 offset, rw_mask, ro_mask, save_val, val;
  4647. u16 flags = reg_tbl[i].flags;
  4648. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4649. continue;
  4650. offset = (u32) reg_tbl[i].offset;
  4651. rw_mask = reg_tbl[i].rw_mask;
  4652. ro_mask = reg_tbl[i].ro_mask;
  4653. save_val = readl(bp->regview + offset);
  4654. writel(0, bp->regview + offset);
  4655. val = readl(bp->regview + offset);
  4656. if ((val & rw_mask) != 0) {
  4657. goto reg_test_err;
  4658. }
  4659. if ((val & ro_mask) != (save_val & ro_mask)) {
  4660. goto reg_test_err;
  4661. }
  4662. writel(0xffffffff, bp->regview + offset);
  4663. val = readl(bp->regview + offset);
  4664. if ((val & rw_mask) != rw_mask) {
  4665. goto reg_test_err;
  4666. }
  4667. if ((val & ro_mask) != (save_val & ro_mask)) {
  4668. goto reg_test_err;
  4669. }
  4670. writel(save_val, bp->regview + offset);
  4671. continue;
  4672. reg_test_err:
  4673. writel(save_val, bp->regview + offset);
  4674. ret = -ENODEV;
  4675. break;
  4676. }
  4677. return ret;
  4678. }
  4679. static int
  4680. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4681. {
  4682. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4683. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4684. int i;
  4685. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4686. u32 offset;
  4687. for (offset = 0; offset < size; offset += 4) {
  4688. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4689. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4690. test_pattern[i]) {
  4691. return -ENODEV;
  4692. }
  4693. }
  4694. }
  4695. return 0;
  4696. }
  4697. static int
  4698. bnx2_test_memory(struct bnx2 *bp)
  4699. {
  4700. int ret = 0;
  4701. int i;
  4702. static struct mem_entry {
  4703. u32 offset;
  4704. u32 len;
  4705. } mem_tbl_5706[] = {
  4706. { 0x60000, 0x4000 },
  4707. { 0xa0000, 0x3000 },
  4708. { 0xe0000, 0x4000 },
  4709. { 0x120000, 0x4000 },
  4710. { 0x1a0000, 0x4000 },
  4711. { 0x160000, 0x4000 },
  4712. { 0xffffffff, 0 },
  4713. },
  4714. mem_tbl_5709[] = {
  4715. { 0x60000, 0x4000 },
  4716. { 0xa0000, 0x3000 },
  4717. { 0xe0000, 0x4000 },
  4718. { 0x120000, 0x4000 },
  4719. { 0x1a0000, 0x4000 },
  4720. { 0xffffffff, 0 },
  4721. };
  4722. struct mem_entry *mem_tbl;
  4723. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4724. mem_tbl = mem_tbl_5709;
  4725. else
  4726. mem_tbl = mem_tbl_5706;
  4727. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4728. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4729. mem_tbl[i].len)) != 0) {
  4730. return ret;
  4731. }
  4732. }
  4733. return ret;
  4734. }
  4735. #define BNX2_MAC_LOOPBACK 0
  4736. #define BNX2_PHY_LOOPBACK 1
  4737. static int
  4738. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4739. {
  4740. unsigned int pkt_size, num_pkts, i;
  4741. struct sk_buff *skb;
  4742. u8 *data;
  4743. unsigned char *packet;
  4744. u16 rx_start_idx, rx_idx;
  4745. dma_addr_t map;
  4746. struct bnx2_tx_bd *txbd;
  4747. struct bnx2_sw_bd *rx_buf;
  4748. struct l2_fhdr *rx_hdr;
  4749. int ret = -ENODEV;
  4750. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4751. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4752. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4753. tx_napi = bnapi;
  4754. txr = &tx_napi->tx_ring;
  4755. rxr = &bnapi->rx_ring;
  4756. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4757. bp->loopback = MAC_LOOPBACK;
  4758. bnx2_set_mac_loopback(bp);
  4759. }
  4760. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4761. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4762. return 0;
  4763. bp->loopback = PHY_LOOPBACK;
  4764. bnx2_set_phy_loopback(bp);
  4765. }
  4766. else
  4767. return -EINVAL;
  4768. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4769. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4770. if (!skb)
  4771. return -ENOMEM;
  4772. packet = skb_put(skb, pkt_size);
  4773. memcpy(packet, bp->dev->dev_addr, ETH_ALEN);
  4774. memset(packet + ETH_ALEN, 0x0, 8);
  4775. for (i = 14; i < pkt_size; i++)
  4776. packet[i] = (unsigned char) (i & 0xff);
  4777. map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
  4778. PCI_DMA_TODEVICE);
  4779. if (dma_mapping_error(&bp->pdev->dev, map)) {
  4780. dev_kfree_skb(skb);
  4781. return -EIO;
  4782. }
  4783. BNX2_WR(bp, BNX2_HC_COMMAND,
  4784. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4785. BNX2_RD(bp, BNX2_HC_COMMAND);
  4786. udelay(5);
  4787. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4788. num_pkts = 0;
  4789. txbd = &txr->tx_desc_ring[BNX2_TX_RING_IDX(txr->tx_prod)];
  4790. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4791. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4792. txbd->tx_bd_mss_nbytes = pkt_size;
  4793. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4794. num_pkts++;
  4795. txr->tx_prod = BNX2_NEXT_TX_BD(txr->tx_prod);
  4796. txr->tx_prod_bseq += pkt_size;
  4797. BNX2_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4798. BNX2_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4799. udelay(100);
  4800. BNX2_WR(bp, BNX2_HC_COMMAND,
  4801. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4802. BNX2_RD(bp, BNX2_HC_COMMAND);
  4803. udelay(5);
  4804. dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
  4805. dev_kfree_skb(skb);
  4806. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4807. goto loopback_test_done;
  4808. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4809. if (rx_idx != rx_start_idx + num_pkts) {
  4810. goto loopback_test_done;
  4811. }
  4812. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4813. data = rx_buf->data;
  4814. rx_hdr = get_l2_fhdr(data);
  4815. data = (u8 *)rx_hdr + BNX2_RX_OFFSET;
  4816. dma_sync_single_for_cpu(&bp->pdev->dev,
  4817. dma_unmap_addr(rx_buf, mapping),
  4818. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  4819. if (rx_hdr->l2_fhdr_status &
  4820. (L2_FHDR_ERRORS_BAD_CRC |
  4821. L2_FHDR_ERRORS_PHY_DECODE |
  4822. L2_FHDR_ERRORS_ALIGNMENT |
  4823. L2_FHDR_ERRORS_TOO_SHORT |
  4824. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4825. goto loopback_test_done;
  4826. }
  4827. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4828. goto loopback_test_done;
  4829. }
  4830. for (i = 14; i < pkt_size; i++) {
  4831. if (*(data + i) != (unsigned char) (i & 0xff)) {
  4832. goto loopback_test_done;
  4833. }
  4834. }
  4835. ret = 0;
  4836. loopback_test_done:
  4837. bp->loopback = 0;
  4838. return ret;
  4839. }
  4840. #define BNX2_MAC_LOOPBACK_FAILED 1
  4841. #define BNX2_PHY_LOOPBACK_FAILED 2
  4842. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4843. BNX2_PHY_LOOPBACK_FAILED)
  4844. static int
  4845. bnx2_test_loopback(struct bnx2 *bp)
  4846. {
  4847. int rc = 0;
  4848. if (!netif_running(bp->dev))
  4849. return BNX2_LOOPBACK_FAILED;
  4850. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4851. spin_lock_bh(&bp->phy_lock);
  4852. bnx2_init_phy(bp, 1);
  4853. spin_unlock_bh(&bp->phy_lock);
  4854. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4855. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4856. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4857. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4858. return rc;
  4859. }
  4860. #define NVRAM_SIZE 0x200
  4861. #define CRC32_RESIDUAL 0xdebb20e3
  4862. static int
  4863. bnx2_test_nvram(struct bnx2 *bp)
  4864. {
  4865. __be32 buf[NVRAM_SIZE / 4];
  4866. u8 *data = (u8 *) buf;
  4867. int rc = 0;
  4868. u32 magic, csum;
  4869. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4870. goto test_nvram_done;
  4871. magic = be32_to_cpu(buf[0]);
  4872. if (magic != 0x669955aa) {
  4873. rc = -ENODEV;
  4874. goto test_nvram_done;
  4875. }
  4876. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4877. goto test_nvram_done;
  4878. csum = ether_crc_le(0x100, data);
  4879. if (csum != CRC32_RESIDUAL) {
  4880. rc = -ENODEV;
  4881. goto test_nvram_done;
  4882. }
  4883. csum = ether_crc_le(0x100, data + 0x100);
  4884. if (csum != CRC32_RESIDUAL) {
  4885. rc = -ENODEV;
  4886. }
  4887. test_nvram_done:
  4888. return rc;
  4889. }
  4890. static int
  4891. bnx2_test_link(struct bnx2 *bp)
  4892. {
  4893. u32 bmsr;
  4894. if (!netif_running(bp->dev))
  4895. return -ENODEV;
  4896. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4897. if (bp->link_up)
  4898. return 0;
  4899. return -ENODEV;
  4900. }
  4901. spin_lock_bh(&bp->phy_lock);
  4902. bnx2_enable_bmsr1(bp);
  4903. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4904. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4905. bnx2_disable_bmsr1(bp);
  4906. spin_unlock_bh(&bp->phy_lock);
  4907. if (bmsr & BMSR_LSTATUS) {
  4908. return 0;
  4909. }
  4910. return -ENODEV;
  4911. }
  4912. static int
  4913. bnx2_test_intr(struct bnx2 *bp)
  4914. {
  4915. int i;
  4916. u16 status_idx;
  4917. if (!netif_running(bp->dev))
  4918. return -ENODEV;
  4919. status_idx = BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4920. /* This register is not touched during run-time. */
  4921. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4922. BNX2_RD(bp, BNX2_HC_COMMAND);
  4923. for (i = 0; i < 10; i++) {
  4924. if ((BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4925. status_idx) {
  4926. break;
  4927. }
  4928. msleep_interruptible(10);
  4929. }
  4930. if (i < 10)
  4931. return 0;
  4932. return -ENODEV;
  4933. }
  4934. /* Determining link for parallel detection. */
  4935. static int
  4936. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4937. {
  4938. u32 mode_ctl, an_dbg, exp;
  4939. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4940. return 0;
  4941. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4942. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4943. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4944. return 0;
  4945. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4946. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4947. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4948. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4949. return 0;
  4950. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4951. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4952. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4953. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4954. return 0;
  4955. return 1;
  4956. }
  4957. static void
  4958. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4959. {
  4960. int check_link = 1;
  4961. spin_lock(&bp->phy_lock);
  4962. if (bp->serdes_an_pending) {
  4963. bp->serdes_an_pending--;
  4964. check_link = 0;
  4965. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4966. u32 bmcr;
  4967. bp->current_interval = BNX2_TIMER_INTERVAL;
  4968. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4969. if (bmcr & BMCR_ANENABLE) {
  4970. if (bnx2_5706_serdes_has_link(bp)) {
  4971. bmcr &= ~BMCR_ANENABLE;
  4972. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4973. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4974. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4975. }
  4976. }
  4977. }
  4978. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4979. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4980. u32 phy2;
  4981. bnx2_write_phy(bp, 0x17, 0x0f01);
  4982. bnx2_read_phy(bp, 0x15, &phy2);
  4983. if (phy2 & 0x20) {
  4984. u32 bmcr;
  4985. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4986. bmcr |= BMCR_ANENABLE;
  4987. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4988. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4989. }
  4990. } else
  4991. bp->current_interval = BNX2_TIMER_INTERVAL;
  4992. if (check_link) {
  4993. u32 val;
  4994. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4995. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4996. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4997. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4998. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4999. bnx2_5706s_force_link_dn(bp, 1);
  5000. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  5001. } else
  5002. bnx2_set_link(bp);
  5003. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  5004. bnx2_set_link(bp);
  5005. }
  5006. spin_unlock(&bp->phy_lock);
  5007. }
  5008. static void
  5009. bnx2_5708_serdes_timer(struct bnx2 *bp)
  5010. {
  5011. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  5012. return;
  5013. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  5014. bp->serdes_an_pending = 0;
  5015. return;
  5016. }
  5017. spin_lock(&bp->phy_lock);
  5018. if (bp->serdes_an_pending)
  5019. bp->serdes_an_pending--;
  5020. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  5021. u32 bmcr;
  5022. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5023. if (bmcr & BMCR_ANENABLE) {
  5024. bnx2_enable_forced_2g5(bp);
  5025. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  5026. } else {
  5027. bnx2_disable_forced_2g5(bp);
  5028. bp->serdes_an_pending = 2;
  5029. bp->current_interval = BNX2_TIMER_INTERVAL;
  5030. }
  5031. } else
  5032. bp->current_interval = BNX2_TIMER_INTERVAL;
  5033. spin_unlock(&bp->phy_lock);
  5034. }
  5035. static void
  5036. bnx2_timer(unsigned long data)
  5037. {
  5038. struct bnx2 *bp = (struct bnx2 *) data;
  5039. if (!netif_running(bp->dev))
  5040. return;
  5041. if (atomic_read(&bp->intr_sem) != 0)
  5042. goto bnx2_restart_timer;
  5043. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  5044. BNX2_FLAG_USING_MSI)
  5045. bnx2_chk_missed_msi(bp);
  5046. bnx2_send_heart_beat(bp);
  5047. bp->stats_blk->stat_FwRxDrop =
  5048. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  5049. /* workaround occasional corrupted counters */
  5050. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  5051. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  5052. BNX2_HC_COMMAND_STATS_NOW);
  5053. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5054. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  5055. bnx2_5706_serdes_timer(bp);
  5056. else
  5057. bnx2_5708_serdes_timer(bp);
  5058. }
  5059. bnx2_restart_timer:
  5060. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5061. }
  5062. static int
  5063. bnx2_request_irq(struct bnx2 *bp)
  5064. {
  5065. unsigned long flags;
  5066. struct bnx2_irq *irq;
  5067. int rc = 0, i;
  5068. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  5069. flags = 0;
  5070. else
  5071. flags = IRQF_SHARED;
  5072. for (i = 0; i < bp->irq_nvecs; i++) {
  5073. irq = &bp->irq_tbl[i];
  5074. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  5075. &bp->bnx2_napi[i]);
  5076. if (rc)
  5077. break;
  5078. irq->requested = 1;
  5079. }
  5080. return rc;
  5081. }
  5082. static void
  5083. __bnx2_free_irq(struct bnx2 *bp)
  5084. {
  5085. struct bnx2_irq *irq;
  5086. int i;
  5087. for (i = 0; i < bp->irq_nvecs; i++) {
  5088. irq = &bp->irq_tbl[i];
  5089. if (irq->requested)
  5090. free_irq(irq->vector, &bp->bnx2_napi[i]);
  5091. irq->requested = 0;
  5092. }
  5093. }
  5094. static void
  5095. bnx2_free_irq(struct bnx2 *bp)
  5096. {
  5097. __bnx2_free_irq(bp);
  5098. if (bp->flags & BNX2_FLAG_USING_MSI)
  5099. pci_disable_msi(bp->pdev);
  5100. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5101. pci_disable_msix(bp->pdev);
  5102. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  5103. }
  5104. static void
  5105. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5106. {
  5107. int i, total_vecs;
  5108. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5109. struct net_device *dev = bp->dev;
  5110. const int len = sizeof(bp->irq_tbl[0].name);
  5111. bnx2_setup_msix_tbl(bp);
  5112. BNX2_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5113. BNX2_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5114. BNX2_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5115. /* Need to flush the previous three writes to ensure MSI-X
  5116. * is setup properly */
  5117. BNX2_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5118. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5119. msix_ent[i].entry = i;
  5120. msix_ent[i].vector = 0;
  5121. }
  5122. total_vecs = msix_vecs;
  5123. #ifdef BCM_CNIC
  5124. total_vecs++;
  5125. #endif
  5126. total_vecs = pci_enable_msix_range(bp->pdev, msix_ent,
  5127. BNX2_MIN_MSIX_VEC, total_vecs);
  5128. if (total_vecs < 0)
  5129. return;
  5130. msix_vecs = total_vecs;
  5131. #ifdef BCM_CNIC
  5132. msix_vecs--;
  5133. #endif
  5134. bp->irq_nvecs = msix_vecs;
  5135. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5136. for (i = 0; i < total_vecs; i++) {
  5137. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5138. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5139. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5140. }
  5141. }
  5142. static int
  5143. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5144. {
  5145. int cpus = netif_get_num_default_rss_queues();
  5146. int msix_vecs;
  5147. if (!bp->num_req_rx_rings)
  5148. msix_vecs = max(cpus + 1, bp->num_req_tx_rings);
  5149. else if (!bp->num_req_tx_rings)
  5150. msix_vecs = max(cpus, bp->num_req_rx_rings);
  5151. else
  5152. msix_vecs = max(bp->num_req_rx_rings, bp->num_req_tx_rings);
  5153. msix_vecs = min(msix_vecs, RX_MAX_RINGS);
  5154. bp->irq_tbl[0].handler = bnx2_interrupt;
  5155. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5156. bp->irq_nvecs = 1;
  5157. bp->irq_tbl[0].vector = bp->pdev->irq;
  5158. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
  5159. bnx2_enable_msix(bp, msix_vecs);
  5160. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5161. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5162. if (pci_enable_msi(bp->pdev) == 0) {
  5163. bp->flags |= BNX2_FLAG_USING_MSI;
  5164. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  5165. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5166. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5167. } else
  5168. bp->irq_tbl[0].handler = bnx2_msi;
  5169. bp->irq_tbl[0].vector = bp->pdev->irq;
  5170. }
  5171. }
  5172. if (!bp->num_req_tx_rings)
  5173. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5174. else
  5175. bp->num_tx_rings = min(bp->irq_nvecs, bp->num_req_tx_rings);
  5176. if (!bp->num_req_rx_rings)
  5177. bp->num_rx_rings = bp->irq_nvecs;
  5178. else
  5179. bp->num_rx_rings = min(bp->irq_nvecs, bp->num_req_rx_rings);
  5180. netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
  5181. return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
  5182. }
  5183. /* Called with rtnl_lock */
  5184. static int
  5185. bnx2_open(struct net_device *dev)
  5186. {
  5187. struct bnx2 *bp = netdev_priv(dev);
  5188. int rc;
  5189. rc = bnx2_request_firmware(bp);
  5190. if (rc < 0)
  5191. goto out;
  5192. netif_carrier_off(dev);
  5193. bnx2_disable_int(bp);
  5194. rc = bnx2_setup_int_mode(bp, disable_msi);
  5195. if (rc)
  5196. goto open_err;
  5197. bnx2_init_napi(bp);
  5198. bnx2_napi_enable(bp);
  5199. rc = bnx2_alloc_mem(bp);
  5200. if (rc)
  5201. goto open_err;
  5202. rc = bnx2_request_irq(bp);
  5203. if (rc)
  5204. goto open_err;
  5205. rc = bnx2_init_nic(bp, 1);
  5206. if (rc)
  5207. goto open_err;
  5208. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5209. atomic_set(&bp->intr_sem, 0);
  5210. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5211. bnx2_enable_int(bp);
  5212. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5213. /* Test MSI to make sure it is working
  5214. * If MSI test fails, go back to INTx mode
  5215. */
  5216. if (bnx2_test_intr(bp) != 0) {
  5217. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5218. bnx2_disable_int(bp);
  5219. bnx2_free_irq(bp);
  5220. bnx2_setup_int_mode(bp, 1);
  5221. rc = bnx2_init_nic(bp, 0);
  5222. if (!rc)
  5223. rc = bnx2_request_irq(bp);
  5224. if (rc) {
  5225. del_timer_sync(&bp->timer);
  5226. goto open_err;
  5227. }
  5228. bnx2_enable_int(bp);
  5229. }
  5230. }
  5231. if (bp->flags & BNX2_FLAG_USING_MSI)
  5232. netdev_info(dev, "using MSI\n");
  5233. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5234. netdev_info(dev, "using MSIX\n");
  5235. netif_tx_start_all_queues(dev);
  5236. out:
  5237. return rc;
  5238. open_err:
  5239. bnx2_napi_disable(bp);
  5240. bnx2_free_skbs(bp);
  5241. bnx2_free_irq(bp);
  5242. bnx2_free_mem(bp);
  5243. bnx2_del_napi(bp);
  5244. bnx2_release_firmware(bp);
  5245. goto out;
  5246. }
  5247. static void
  5248. bnx2_reset_task(struct work_struct *work)
  5249. {
  5250. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5251. int rc;
  5252. u16 pcicmd;
  5253. rtnl_lock();
  5254. if (!netif_running(bp->dev)) {
  5255. rtnl_unlock();
  5256. return;
  5257. }
  5258. bnx2_netif_stop(bp, true);
  5259. pci_read_config_word(bp->pdev, PCI_COMMAND, &pcicmd);
  5260. if (!(pcicmd & PCI_COMMAND_MEMORY)) {
  5261. /* in case PCI block has reset */
  5262. pci_restore_state(bp->pdev);
  5263. pci_save_state(bp->pdev);
  5264. }
  5265. rc = bnx2_init_nic(bp, 1);
  5266. if (rc) {
  5267. netdev_err(bp->dev, "failed to reset NIC, closing\n");
  5268. bnx2_napi_enable(bp);
  5269. dev_close(bp->dev);
  5270. rtnl_unlock();
  5271. return;
  5272. }
  5273. atomic_set(&bp->intr_sem, 1);
  5274. bnx2_netif_start(bp, true);
  5275. rtnl_unlock();
  5276. }
  5277. #define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL }
  5278. static void
  5279. bnx2_dump_ftq(struct bnx2 *bp)
  5280. {
  5281. int i;
  5282. u32 reg, bdidx, cid, valid;
  5283. struct net_device *dev = bp->dev;
  5284. static const struct ftq_reg {
  5285. char *name;
  5286. u32 off;
  5287. } ftq_arr[] = {
  5288. BNX2_FTQ_ENTRY(RV2P_P),
  5289. BNX2_FTQ_ENTRY(RV2P_T),
  5290. BNX2_FTQ_ENTRY(RV2P_M),
  5291. BNX2_FTQ_ENTRY(TBDR_),
  5292. BNX2_FTQ_ENTRY(TDMA_),
  5293. BNX2_FTQ_ENTRY(TXP_),
  5294. BNX2_FTQ_ENTRY(TXP_),
  5295. BNX2_FTQ_ENTRY(TPAT_),
  5296. BNX2_FTQ_ENTRY(RXP_C),
  5297. BNX2_FTQ_ENTRY(RXP_),
  5298. BNX2_FTQ_ENTRY(COM_COMXQ_),
  5299. BNX2_FTQ_ENTRY(COM_COMTQ_),
  5300. BNX2_FTQ_ENTRY(COM_COMQ_),
  5301. BNX2_FTQ_ENTRY(CP_CPQ_),
  5302. };
  5303. netdev_err(dev, "<--- start FTQ dump --->\n");
  5304. for (i = 0; i < ARRAY_SIZE(ftq_arr); i++)
  5305. netdev_err(dev, "%s %08x\n", ftq_arr[i].name,
  5306. bnx2_reg_rd_ind(bp, ftq_arr[i].off));
  5307. netdev_err(dev, "CPU states:\n");
  5308. for (reg = BNX2_TXP_CPU_MODE; reg <= BNX2_CP_CPU_MODE; reg += 0x40000)
  5309. netdev_err(dev, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n",
  5310. reg, bnx2_reg_rd_ind(bp, reg),
  5311. bnx2_reg_rd_ind(bp, reg + 4),
  5312. bnx2_reg_rd_ind(bp, reg + 8),
  5313. bnx2_reg_rd_ind(bp, reg + 0x1c),
  5314. bnx2_reg_rd_ind(bp, reg + 0x1c),
  5315. bnx2_reg_rd_ind(bp, reg + 0x20));
  5316. netdev_err(dev, "<--- end FTQ dump --->\n");
  5317. netdev_err(dev, "<--- start TBDC dump --->\n");
  5318. netdev_err(dev, "TBDC free cnt: %ld\n",
  5319. BNX2_RD(bp, BNX2_TBDC_STATUS) & BNX2_TBDC_STATUS_FREE_CNT);
  5320. netdev_err(dev, "LINE CID BIDX CMD VALIDS\n");
  5321. for (i = 0; i < 0x20; i++) {
  5322. int j = 0;
  5323. BNX2_WR(bp, BNX2_TBDC_BD_ADDR, i);
  5324. BNX2_WR(bp, BNX2_TBDC_CAM_OPCODE,
  5325. BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ);
  5326. BNX2_WR(bp, BNX2_TBDC_COMMAND, BNX2_TBDC_COMMAND_CMD_REG_ARB);
  5327. while ((BNX2_RD(bp, BNX2_TBDC_COMMAND) &
  5328. BNX2_TBDC_COMMAND_CMD_REG_ARB) && j < 100)
  5329. j++;
  5330. cid = BNX2_RD(bp, BNX2_TBDC_CID);
  5331. bdidx = BNX2_RD(bp, BNX2_TBDC_BIDX);
  5332. valid = BNX2_RD(bp, BNX2_TBDC_CAM_OPCODE);
  5333. netdev_err(dev, "%02x %06x %04lx %02x [%x]\n",
  5334. i, cid, bdidx & BNX2_TBDC_BDIDX_BDIDX,
  5335. bdidx >> 24, (valid >> 8) & 0x0ff);
  5336. }
  5337. netdev_err(dev, "<--- end TBDC dump --->\n");
  5338. }
  5339. static void
  5340. bnx2_dump_state(struct bnx2 *bp)
  5341. {
  5342. struct net_device *dev = bp->dev;
  5343. u32 val1, val2;
  5344. pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
  5345. netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
  5346. atomic_read(&bp->intr_sem), val1);
  5347. pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
  5348. pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
  5349. netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
  5350. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
  5351. BNX2_RD(bp, BNX2_EMAC_TX_STATUS),
  5352. BNX2_RD(bp, BNX2_EMAC_RX_STATUS));
  5353. netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
  5354. BNX2_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5355. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5356. BNX2_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5357. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5358. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5359. BNX2_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5360. }
  5361. static void
  5362. bnx2_tx_timeout(struct net_device *dev)
  5363. {
  5364. struct bnx2 *bp = netdev_priv(dev);
  5365. bnx2_dump_ftq(bp);
  5366. bnx2_dump_state(bp);
  5367. bnx2_dump_mcp_state(bp);
  5368. /* This allows the netif to be shutdown gracefully before resetting */
  5369. schedule_work(&bp->reset_task);
  5370. }
  5371. /* Called with netif_tx_lock.
  5372. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5373. * netif_wake_queue().
  5374. */
  5375. static netdev_tx_t
  5376. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5377. {
  5378. struct bnx2 *bp = netdev_priv(dev);
  5379. dma_addr_t mapping;
  5380. struct bnx2_tx_bd *txbd;
  5381. struct bnx2_sw_tx_bd *tx_buf;
  5382. u32 len, vlan_tag_flags, last_frag, mss;
  5383. u16 prod, ring_prod;
  5384. int i;
  5385. struct bnx2_napi *bnapi;
  5386. struct bnx2_tx_ring_info *txr;
  5387. struct netdev_queue *txq;
  5388. /* Determine which tx ring we will be placed on */
  5389. i = skb_get_queue_mapping(skb);
  5390. bnapi = &bp->bnx2_napi[i];
  5391. txr = &bnapi->tx_ring;
  5392. txq = netdev_get_tx_queue(dev, i);
  5393. if (unlikely(bnx2_tx_avail(bp, txr) <
  5394. (skb_shinfo(skb)->nr_frags + 1))) {
  5395. netif_tx_stop_queue(txq);
  5396. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5397. return NETDEV_TX_BUSY;
  5398. }
  5399. len = skb_headlen(skb);
  5400. prod = txr->tx_prod;
  5401. ring_prod = BNX2_TX_RING_IDX(prod);
  5402. vlan_tag_flags = 0;
  5403. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5404. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5405. }
  5406. if (vlan_tx_tag_present(skb)) {
  5407. vlan_tag_flags |=
  5408. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5409. }
  5410. if ((mss = skb_shinfo(skb)->gso_size)) {
  5411. u32 tcp_opt_len;
  5412. struct iphdr *iph;
  5413. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5414. tcp_opt_len = tcp_optlen(skb);
  5415. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5416. u32 tcp_off = skb_transport_offset(skb) -
  5417. sizeof(struct ipv6hdr) - ETH_HLEN;
  5418. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5419. TX_BD_FLAGS_SW_FLAGS;
  5420. if (likely(tcp_off == 0))
  5421. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5422. else {
  5423. tcp_off >>= 3;
  5424. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5425. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5426. ((tcp_off & 0x10) <<
  5427. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5428. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5429. }
  5430. } else {
  5431. iph = ip_hdr(skb);
  5432. if (tcp_opt_len || (iph->ihl > 5)) {
  5433. vlan_tag_flags |= ((iph->ihl - 5) +
  5434. (tcp_opt_len >> 2)) << 8;
  5435. }
  5436. }
  5437. } else
  5438. mss = 0;
  5439. mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
  5440. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  5441. dev_kfree_skb_any(skb);
  5442. return NETDEV_TX_OK;
  5443. }
  5444. tx_buf = &txr->tx_buf_ring[ring_prod];
  5445. tx_buf->skb = skb;
  5446. dma_unmap_addr_set(tx_buf, mapping, mapping);
  5447. txbd = &txr->tx_desc_ring[ring_prod];
  5448. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5449. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5450. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5451. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5452. last_frag = skb_shinfo(skb)->nr_frags;
  5453. tx_buf->nr_frags = last_frag;
  5454. tx_buf->is_gso = skb_is_gso(skb);
  5455. for (i = 0; i < last_frag; i++) {
  5456. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5457. prod = BNX2_NEXT_TX_BD(prod);
  5458. ring_prod = BNX2_TX_RING_IDX(prod);
  5459. txbd = &txr->tx_desc_ring[ring_prod];
  5460. len = skb_frag_size(frag);
  5461. mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, len,
  5462. DMA_TO_DEVICE);
  5463. if (dma_mapping_error(&bp->pdev->dev, mapping))
  5464. goto dma_error;
  5465. dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5466. mapping);
  5467. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5468. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5469. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5470. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5471. }
  5472. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5473. /* Sync BD data before updating TX mailbox */
  5474. wmb();
  5475. netdev_tx_sent_queue(txq, skb->len);
  5476. prod = BNX2_NEXT_TX_BD(prod);
  5477. txr->tx_prod_bseq += skb->len;
  5478. BNX2_WR16(bp, txr->tx_bidx_addr, prod);
  5479. BNX2_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5480. mmiowb();
  5481. txr->tx_prod = prod;
  5482. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5483. netif_tx_stop_queue(txq);
  5484. /* netif_tx_stop_queue() must be done before checking
  5485. * tx index in bnx2_tx_avail() below, because in
  5486. * bnx2_tx_int(), we update tx index before checking for
  5487. * netif_tx_queue_stopped().
  5488. */
  5489. smp_mb();
  5490. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5491. netif_tx_wake_queue(txq);
  5492. }
  5493. return NETDEV_TX_OK;
  5494. dma_error:
  5495. /* save value of frag that failed */
  5496. last_frag = i;
  5497. /* start back at beginning and unmap skb */
  5498. prod = txr->tx_prod;
  5499. ring_prod = BNX2_TX_RING_IDX(prod);
  5500. tx_buf = &txr->tx_buf_ring[ring_prod];
  5501. tx_buf->skb = NULL;
  5502. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5503. skb_headlen(skb), PCI_DMA_TODEVICE);
  5504. /* unmap remaining mapped pages */
  5505. for (i = 0; i < last_frag; i++) {
  5506. prod = BNX2_NEXT_TX_BD(prod);
  5507. ring_prod = BNX2_TX_RING_IDX(prod);
  5508. tx_buf = &txr->tx_buf_ring[ring_prod];
  5509. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5510. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  5511. PCI_DMA_TODEVICE);
  5512. }
  5513. dev_kfree_skb_any(skb);
  5514. return NETDEV_TX_OK;
  5515. }
  5516. /* Called with rtnl_lock */
  5517. static int
  5518. bnx2_close(struct net_device *dev)
  5519. {
  5520. struct bnx2 *bp = netdev_priv(dev);
  5521. bnx2_disable_int_sync(bp);
  5522. bnx2_napi_disable(bp);
  5523. netif_tx_disable(dev);
  5524. del_timer_sync(&bp->timer);
  5525. bnx2_shutdown_chip(bp);
  5526. bnx2_free_irq(bp);
  5527. bnx2_free_skbs(bp);
  5528. bnx2_free_mem(bp);
  5529. bnx2_del_napi(bp);
  5530. bp->link_up = 0;
  5531. netif_carrier_off(bp->dev);
  5532. return 0;
  5533. }
  5534. static void
  5535. bnx2_save_stats(struct bnx2 *bp)
  5536. {
  5537. u32 *hw_stats = (u32 *) bp->stats_blk;
  5538. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5539. int i;
  5540. /* The 1st 10 counters are 64-bit counters */
  5541. for (i = 0; i < 20; i += 2) {
  5542. u32 hi;
  5543. u64 lo;
  5544. hi = temp_stats[i] + hw_stats[i];
  5545. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5546. if (lo > 0xffffffff)
  5547. hi++;
  5548. temp_stats[i] = hi;
  5549. temp_stats[i + 1] = lo & 0xffffffff;
  5550. }
  5551. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5552. temp_stats[i] += hw_stats[i];
  5553. }
  5554. #define GET_64BIT_NET_STATS64(ctr) \
  5555. (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
  5556. #define GET_64BIT_NET_STATS(ctr) \
  5557. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5558. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5559. #define GET_32BIT_NET_STATS(ctr) \
  5560. (unsigned long) (bp->stats_blk->ctr + \
  5561. bp->temp_stats_blk->ctr)
  5562. static struct rtnl_link_stats64 *
  5563. bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
  5564. {
  5565. struct bnx2 *bp = netdev_priv(dev);
  5566. if (bp->stats_blk == NULL)
  5567. return net_stats;
  5568. net_stats->rx_packets =
  5569. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5570. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5571. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5572. net_stats->tx_packets =
  5573. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5574. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5575. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5576. net_stats->rx_bytes =
  5577. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5578. net_stats->tx_bytes =
  5579. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5580. net_stats->multicast =
  5581. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
  5582. net_stats->collisions =
  5583. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5584. net_stats->rx_length_errors =
  5585. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5586. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5587. net_stats->rx_over_errors =
  5588. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5589. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5590. net_stats->rx_frame_errors =
  5591. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5592. net_stats->rx_crc_errors =
  5593. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5594. net_stats->rx_errors = net_stats->rx_length_errors +
  5595. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5596. net_stats->rx_crc_errors;
  5597. net_stats->tx_aborted_errors =
  5598. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5599. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5600. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) ||
  5601. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0))
  5602. net_stats->tx_carrier_errors = 0;
  5603. else {
  5604. net_stats->tx_carrier_errors =
  5605. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5606. }
  5607. net_stats->tx_errors =
  5608. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5609. net_stats->tx_aborted_errors +
  5610. net_stats->tx_carrier_errors;
  5611. net_stats->rx_missed_errors =
  5612. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5613. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5614. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5615. return net_stats;
  5616. }
  5617. /* All ethtool functions called with rtnl_lock */
  5618. static int
  5619. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5620. {
  5621. struct bnx2 *bp = netdev_priv(dev);
  5622. int support_serdes = 0, support_copper = 0;
  5623. cmd->supported = SUPPORTED_Autoneg;
  5624. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5625. support_serdes = 1;
  5626. support_copper = 1;
  5627. } else if (bp->phy_port == PORT_FIBRE)
  5628. support_serdes = 1;
  5629. else
  5630. support_copper = 1;
  5631. if (support_serdes) {
  5632. cmd->supported |= SUPPORTED_1000baseT_Full |
  5633. SUPPORTED_FIBRE;
  5634. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5635. cmd->supported |= SUPPORTED_2500baseX_Full;
  5636. }
  5637. if (support_copper) {
  5638. cmd->supported |= SUPPORTED_10baseT_Half |
  5639. SUPPORTED_10baseT_Full |
  5640. SUPPORTED_100baseT_Half |
  5641. SUPPORTED_100baseT_Full |
  5642. SUPPORTED_1000baseT_Full |
  5643. SUPPORTED_TP;
  5644. }
  5645. spin_lock_bh(&bp->phy_lock);
  5646. cmd->port = bp->phy_port;
  5647. cmd->advertising = bp->advertising;
  5648. if (bp->autoneg & AUTONEG_SPEED) {
  5649. cmd->autoneg = AUTONEG_ENABLE;
  5650. } else {
  5651. cmd->autoneg = AUTONEG_DISABLE;
  5652. }
  5653. if (netif_carrier_ok(dev)) {
  5654. ethtool_cmd_speed_set(cmd, bp->line_speed);
  5655. cmd->duplex = bp->duplex;
  5656. if (!(bp->phy_flags & BNX2_PHY_FLAG_SERDES)) {
  5657. if (bp->phy_flags & BNX2_PHY_FLAG_MDIX)
  5658. cmd->eth_tp_mdix = ETH_TP_MDI_X;
  5659. else
  5660. cmd->eth_tp_mdix = ETH_TP_MDI;
  5661. }
  5662. }
  5663. else {
  5664. ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
  5665. cmd->duplex = DUPLEX_UNKNOWN;
  5666. }
  5667. spin_unlock_bh(&bp->phy_lock);
  5668. cmd->transceiver = XCVR_INTERNAL;
  5669. cmd->phy_address = bp->phy_addr;
  5670. return 0;
  5671. }
  5672. static int
  5673. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5674. {
  5675. struct bnx2 *bp = netdev_priv(dev);
  5676. u8 autoneg = bp->autoneg;
  5677. u8 req_duplex = bp->req_duplex;
  5678. u16 req_line_speed = bp->req_line_speed;
  5679. u32 advertising = bp->advertising;
  5680. int err = -EINVAL;
  5681. spin_lock_bh(&bp->phy_lock);
  5682. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5683. goto err_out_unlock;
  5684. if (cmd->port != bp->phy_port &&
  5685. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5686. goto err_out_unlock;
  5687. /* If device is down, we can store the settings only if the user
  5688. * is setting the currently active port.
  5689. */
  5690. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5691. goto err_out_unlock;
  5692. if (cmd->autoneg == AUTONEG_ENABLE) {
  5693. autoneg |= AUTONEG_SPEED;
  5694. advertising = cmd->advertising;
  5695. if (cmd->port == PORT_TP) {
  5696. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5697. if (!advertising)
  5698. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5699. } else {
  5700. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5701. if (!advertising)
  5702. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5703. }
  5704. advertising |= ADVERTISED_Autoneg;
  5705. }
  5706. else {
  5707. u32 speed = ethtool_cmd_speed(cmd);
  5708. if (cmd->port == PORT_FIBRE) {
  5709. if ((speed != SPEED_1000 &&
  5710. speed != SPEED_2500) ||
  5711. (cmd->duplex != DUPLEX_FULL))
  5712. goto err_out_unlock;
  5713. if (speed == SPEED_2500 &&
  5714. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5715. goto err_out_unlock;
  5716. } else if (speed == SPEED_1000 || speed == SPEED_2500)
  5717. goto err_out_unlock;
  5718. autoneg &= ~AUTONEG_SPEED;
  5719. req_line_speed = speed;
  5720. req_duplex = cmd->duplex;
  5721. advertising = 0;
  5722. }
  5723. bp->autoneg = autoneg;
  5724. bp->advertising = advertising;
  5725. bp->req_line_speed = req_line_speed;
  5726. bp->req_duplex = req_duplex;
  5727. err = 0;
  5728. /* If device is down, the new settings will be picked up when it is
  5729. * brought up.
  5730. */
  5731. if (netif_running(dev))
  5732. err = bnx2_setup_phy(bp, cmd->port);
  5733. err_out_unlock:
  5734. spin_unlock_bh(&bp->phy_lock);
  5735. return err;
  5736. }
  5737. static void
  5738. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5739. {
  5740. struct bnx2 *bp = netdev_priv(dev);
  5741. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5742. strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5743. strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info));
  5744. strlcpy(info->fw_version, bp->fw_version, sizeof(info->fw_version));
  5745. }
  5746. #define BNX2_REGDUMP_LEN (32 * 1024)
  5747. static int
  5748. bnx2_get_regs_len(struct net_device *dev)
  5749. {
  5750. return BNX2_REGDUMP_LEN;
  5751. }
  5752. static void
  5753. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5754. {
  5755. u32 *p = _p, i, offset;
  5756. u8 *orig_p = _p;
  5757. struct bnx2 *bp = netdev_priv(dev);
  5758. static const u32 reg_boundaries[] = {
  5759. 0x0000, 0x0098, 0x0400, 0x045c,
  5760. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5761. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5762. 0x1040, 0x1048, 0x1080, 0x10a4,
  5763. 0x1400, 0x1490, 0x1498, 0x14f0,
  5764. 0x1500, 0x155c, 0x1580, 0x15dc,
  5765. 0x1600, 0x1658, 0x1680, 0x16d8,
  5766. 0x1800, 0x1820, 0x1840, 0x1854,
  5767. 0x1880, 0x1894, 0x1900, 0x1984,
  5768. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5769. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5770. 0x2000, 0x2030, 0x23c0, 0x2400,
  5771. 0x2800, 0x2820, 0x2830, 0x2850,
  5772. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5773. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5774. 0x4080, 0x4090, 0x43c0, 0x4458,
  5775. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5776. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5777. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5778. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5779. 0x6800, 0x6848, 0x684c, 0x6860,
  5780. 0x6888, 0x6910, 0x8000
  5781. };
  5782. regs->version = 0;
  5783. memset(p, 0, BNX2_REGDUMP_LEN);
  5784. if (!netif_running(bp->dev))
  5785. return;
  5786. i = 0;
  5787. offset = reg_boundaries[0];
  5788. p += offset;
  5789. while (offset < BNX2_REGDUMP_LEN) {
  5790. *p++ = BNX2_RD(bp, offset);
  5791. offset += 4;
  5792. if (offset == reg_boundaries[i + 1]) {
  5793. offset = reg_boundaries[i + 2];
  5794. p = (u32 *) (orig_p + offset);
  5795. i += 2;
  5796. }
  5797. }
  5798. }
  5799. static void
  5800. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5801. {
  5802. struct bnx2 *bp = netdev_priv(dev);
  5803. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5804. wol->supported = 0;
  5805. wol->wolopts = 0;
  5806. }
  5807. else {
  5808. wol->supported = WAKE_MAGIC;
  5809. if (bp->wol)
  5810. wol->wolopts = WAKE_MAGIC;
  5811. else
  5812. wol->wolopts = 0;
  5813. }
  5814. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5815. }
  5816. static int
  5817. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5818. {
  5819. struct bnx2 *bp = netdev_priv(dev);
  5820. if (wol->wolopts & ~WAKE_MAGIC)
  5821. return -EINVAL;
  5822. if (wol->wolopts & WAKE_MAGIC) {
  5823. if (bp->flags & BNX2_FLAG_NO_WOL)
  5824. return -EINVAL;
  5825. bp->wol = 1;
  5826. }
  5827. else {
  5828. bp->wol = 0;
  5829. }
  5830. device_set_wakeup_enable(&bp->pdev->dev, bp->wol);
  5831. return 0;
  5832. }
  5833. static int
  5834. bnx2_nway_reset(struct net_device *dev)
  5835. {
  5836. struct bnx2 *bp = netdev_priv(dev);
  5837. u32 bmcr;
  5838. if (!netif_running(dev))
  5839. return -EAGAIN;
  5840. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5841. return -EINVAL;
  5842. }
  5843. spin_lock_bh(&bp->phy_lock);
  5844. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5845. int rc;
  5846. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5847. spin_unlock_bh(&bp->phy_lock);
  5848. return rc;
  5849. }
  5850. /* Force a link down visible on the other side */
  5851. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5852. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5853. spin_unlock_bh(&bp->phy_lock);
  5854. msleep(20);
  5855. spin_lock_bh(&bp->phy_lock);
  5856. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5857. bp->serdes_an_pending = 1;
  5858. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5859. }
  5860. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5861. bmcr &= ~BMCR_LOOPBACK;
  5862. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5863. spin_unlock_bh(&bp->phy_lock);
  5864. return 0;
  5865. }
  5866. static u32
  5867. bnx2_get_link(struct net_device *dev)
  5868. {
  5869. struct bnx2 *bp = netdev_priv(dev);
  5870. return bp->link_up;
  5871. }
  5872. static int
  5873. bnx2_get_eeprom_len(struct net_device *dev)
  5874. {
  5875. struct bnx2 *bp = netdev_priv(dev);
  5876. if (bp->flash_info == NULL)
  5877. return 0;
  5878. return (int) bp->flash_size;
  5879. }
  5880. static int
  5881. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5882. u8 *eebuf)
  5883. {
  5884. struct bnx2 *bp = netdev_priv(dev);
  5885. int rc;
  5886. /* parameters already validated in ethtool_get_eeprom */
  5887. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5888. return rc;
  5889. }
  5890. static int
  5891. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5892. u8 *eebuf)
  5893. {
  5894. struct bnx2 *bp = netdev_priv(dev);
  5895. int rc;
  5896. /* parameters already validated in ethtool_set_eeprom */
  5897. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5898. return rc;
  5899. }
  5900. static int
  5901. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5902. {
  5903. struct bnx2 *bp = netdev_priv(dev);
  5904. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5905. coal->rx_coalesce_usecs = bp->rx_ticks;
  5906. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5907. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5908. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5909. coal->tx_coalesce_usecs = bp->tx_ticks;
  5910. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5911. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5912. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5913. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5914. return 0;
  5915. }
  5916. static int
  5917. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5918. {
  5919. struct bnx2 *bp = netdev_priv(dev);
  5920. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5921. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5922. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5923. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5924. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5925. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5926. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5927. if (bp->rx_quick_cons_trip_int > 0xff)
  5928. bp->rx_quick_cons_trip_int = 0xff;
  5929. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5930. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5931. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5932. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5933. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5934. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5935. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5936. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5937. 0xff;
  5938. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5939. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5940. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5941. bp->stats_ticks = USEC_PER_SEC;
  5942. }
  5943. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5944. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5945. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5946. if (netif_running(bp->dev)) {
  5947. bnx2_netif_stop(bp, true);
  5948. bnx2_init_nic(bp, 0);
  5949. bnx2_netif_start(bp, true);
  5950. }
  5951. return 0;
  5952. }
  5953. static void
  5954. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5955. {
  5956. struct bnx2 *bp = netdev_priv(dev);
  5957. ering->rx_max_pending = BNX2_MAX_TOTAL_RX_DESC_CNT;
  5958. ering->rx_jumbo_max_pending = BNX2_MAX_TOTAL_RX_PG_DESC_CNT;
  5959. ering->rx_pending = bp->rx_ring_size;
  5960. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5961. ering->tx_max_pending = BNX2_MAX_TX_DESC_CNT;
  5962. ering->tx_pending = bp->tx_ring_size;
  5963. }
  5964. static int
  5965. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx, bool reset_irq)
  5966. {
  5967. if (netif_running(bp->dev)) {
  5968. /* Reset will erase chipset stats; save them */
  5969. bnx2_save_stats(bp);
  5970. bnx2_netif_stop(bp, true);
  5971. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5972. if (reset_irq) {
  5973. bnx2_free_irq(bp);
  5974. bnx2_del_napi(bp);
  5975. } else {
  5976. __bnx2_free_irq(bp);
  5977. }
  5978. bnx2_free_skbs(bp);
  5979. bnx2_free_mem(bp);
  5980. }
  5981. bnx2_set_rx_ring_size(bp, rx);
  5982. bp->tx_ring_size = tx;
  5983. if (netif_running(bp->dev)) {
  5984. int rc = 0;
  5985. if (reset_irq) {
  5986. rc = bnx2_setup_int_mode(bp, disable_msi);
  5987. bnx2_init_napi(bp);
  5988. }
  5989. if (!rc)
  5990. rc = bnx2_alloc_mem(bp);
  5991. if (!rc)
  5992. rc = bnx2_request_irq(bp);
  5993. if (!rc)
  5994. rc = bnx2_init_nic(bp, 0);
  5995. if (rc) {
  5996. bnx2_napi_enable(bp);
  5997. dev_close(bp->dev);
  5998. return rc;
  5999. }
  6000. #ifdef BCM_CNIC
  6001. mutex_lock(&bp->cnic_lock);
  6002. /* Let cnic know about the new status block. */
  6003. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  6004. bnx2_setup_cnic_irq_info(bp);
  6005. mutex_unlock(&bp->cnic_lock);
  6006. #endif
  6007. bnx2_netif_start(bp, true);
  6008. }
  6009. return 0;
  6010. }
  6011. static int
  6012. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  6013. {
  6014. struct bnx2 *bp = netdev_priv(dev);
  6015. int rc;
  6016. if ((ering->rx_pending > BNX2_MAX_TOTAL_RX_DESC_CNT) ||
  6017. (ering->tx_pending > BNX2_MAX_TX_DESC_CNT) ||
  6018. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  6019. return -EINVAL;
  6020. }
  6021. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending,
  6022. false);
  6023. return rc;
  6024. }
  6025. static void
  6026. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  6027. {
  6028. struct bnx2 *bp = netdev_priv(dev);
  6029. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  6030. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  6031. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  6032. }
  6033. static int
  6034. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  6035. {
  6036. struct bnx2 *bp = netdev_priv(dev);
  6037. bp->req_flow_ctrl = 0;
  6038. if (epause->rx_pause)
  6039. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  6040. if (epause->tx_pause)
  6041. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  6042. if (epause->autoneg) {
  6043. bp->autoneg |= AUTONEG_FLOW_CTRL;
  6044. }
  6045. else {
  6046. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  6047. }
  6048. if (netif_running(dev)) {
  6049. spin_lock_bh(&bp->phy_lock);
  6050. bnx2_setup_phy(bp, bp->phy_port);
  6051. spin_unlock_bh(&bp->phy_lock);
  6052. }
  6053. return 0;
  6054. }
  6055. static struct {
  6056. char string[ETH_GSTRING_LEN];
  6057. } bnx2_stats_str_arr[] = {
  6058. { "rx_bytes" },
  6059. { "rx_error_bytes" },
  6060. { "tx_bytes" },
  6061. { "tx_error_bytes" },
  6062. { "rx_ucast_packets" },
  6063. { "rx_mcast_packets" },
  6064. { "rx_bcast_packets" },
  6065. { "tx_ucast_packets" },
  6066. { "tx_mcast_packets" },
  6067. { "tx_bcast_packets" },
  6068. { "tx_mac_errors" },
  6069. { "tx_carrier_errors" },
  6070. { "rx_crc_errors" },
  6071. { "rx_align_errors" },
  6072. { "tx_single_collisions" },
  6073. { "tx_multi_collisions" },
  6074. { "tx_deferred" },
  6075. { "tx_excess_collisions" },
  6076. { "tx_late_collisions" },
  6077. { "tx_total_collisions" },
  6078. { "rx_fragments" },
  6079. { "rx_jabbers" },
  6080. { "rx_undersize_packets" },
  6081. { "rx_oversize_packets" },
  6082. { "rx_64_byte_packets" },
  6083. { "rx_65_to_127_byte_packets" },
  6084. { "rx_128_to_255_byte_packets" },
  6085. { "rx_256_to_511_byte_packets" },
  6086. { "rx_512_to_1023_byte_packets" },
  6087. { "rx_1024_to_1522_byte_packets" },
  6088. { "rx_1523_to_9022_byte_packets" },
  6089. { "tx_64_byte_packets" },
  6090. { "tx_65_to_127_byte_packets" },
  6091. { "tx_128_to_255_byte_packets" },
  6092. { "tx_256_to_511_byte_packets" },
  6093. { "tx_512_to_1023_byte_packets" },
  6094. { "tx_1024_to_1522_byte_packets" },
  6095. { "tx_1523_to_9022_byte_packets" },
  6096. { "rx_xon_frames" },
  6097. { "rx_xoff_frames" },
  6098. { "tx_xon_frames" },
  6099. { "tx_xoff_frames" },
  6100. { "rx_mac_ctrl_frames" },
  6101. { "rx_filtered_packets" },
  6102. { "rx_ftq_discards" },
  6103. { "rx_discards" },
  6104. { "rx_fw_discards" },
  6105. };
  6106. #define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr)
  6107. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  6108. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  6109. STATS_OFFSET32(stat_IfHCInOctets_hi),
  6110. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  6111. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  6112. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  6113. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  6114. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  6115. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  6116. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  6117. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  6118. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  6119. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  6120. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  6121. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  6122. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  6123. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  6124. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  6125. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  6126. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  6127. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  6128. STATS_OFFSET32(stat_EtherStatsCollisions),
  6129. STATS_OFFSET32(stat_EtherStatsFragments),
  6130. STATS_OFFSET32(stat_EtherStatsJabbers),
  6131. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  6132. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  6133. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  6134. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  6135. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  6136. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  6137. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  6138. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  6139. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  6140. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  6141. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  6142. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  6143. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  6144. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  6145. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  6146. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  6147. STATS_OFFSET32(stat_XonPauseFramesReceived),
  6148. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  6149. STATS_OFFSET32(stat_OutXonSent),
  6150. STATS_OFFSET32(stat_OutXoffSent),
  6151. STATS_OFFSET32(stat_MacControlFramesReceived),
  6152. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  6153. STATS_OFFSET32(stat_IfInFTQDiscards),
  6154. STATS_OFFSET32(stat_IfInMBUFDiscards),
  6155. STATS_OFFSET32(stat_FwRxDrop),
  6156. };
  6157. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  6158. * skipped because of errata.
  6159. */
  6160. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  6161. 8,0,8,8,8,8,8,8,8,8,
  6162. 4,0,4,4,4,4,4,4,4,4,
  6163. 4,4,4,4,4,4,4,4,4,4,
  6164. 4,4,4,4,4,4,4,4,4,4,
  6165. 4,4,4,4,4,4,4,
  6166. };
  6167. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  6168. 8,0,8,8,8,8,8,8,8,8,
  6169. 4,4,4,4,4,4,4,4,4,4,
  6170. 4,4,4,4,4,4,4,4,4,4,
  6171. 4,4,4,4,4,4,4,4,4,4,
  6172. 4,4,4,4,4,4,4,
  6173. };
  6174. #define BNX2_NUM_TESTS 6
  6175. static struct {
  6176. char string[ETH_GSTRING_LEN];
  6177. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  6178. { "register_test (offline)" },
  6179. { "memory_test (offline)" },
  6180. { "loopback_test (offline)" },
  6181. { "nvram_test (online)" },
  6182. { "interrupt_test (online)" },
  6183. { "link_test (online)" },
  6184. };
  6185. static int
  6186. bnx2_get_sset_count(struct net_device *dev, int sset)
  6187. {
  6188. switch (sset) {
  6189. case ETH_SS_TEST:
  6190. return BNX2_NUM_TESTS;
  6191. case ETH_SS_STATS:
  6192. return BNX2_NUM_STATS;
  6193. default:
  6194. return -EOPNOTSUPP;
  6195. }
  6196. }
  6197. static void
  6198. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6199. {
  6200. struct bnx2 *bp = netdev_priv(dev);
  6201. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6202. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6203. int i;
  6204. bnx2_netif_stop(bp, true);
  6205. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6206. bnx2_free_skbs(bp);
  6207. if (bnx2_test_registers(bp) != 0) {
  6208. buf[0] = 1;
  6209. etest->flags |= ETH_TEST_FL_FAILED;
  6210. }
  6211. if (bnx2_test_memory(bp) != 0) {
  6212. buf[1] = 1;
  6213. etest->flags |= ETH_TEST_FL_FAILED;
  6214. }
  6215. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6216. etest->flags |= ETH_TEST_FL_FAILED;
  6217. if (!netif_running(bp->dev))
  6218. bnx2_shutdown_chip(bp);
  6219. else {
  6220. bnx2_init_nic(bp, 1);
  6221. bnx2_netif_start(bp, true);
  6222. }
  6223. /* wait for link up */
  6224. for (i = 0; i < 7; i++) {
  6225. if (bp->link_up)
  6226. break;
  6227. msleep_interruptible(1000);
  6228. }
  6229. }
  6230. if (bnx2_test_nvram(bp) != 0) {
  6231. buf[3] = 1;
  6232. etest->flags |= ETH_TEST_FL_FAILED;
  6233. }
  6234. if (bnx2_test_intr(bp) != 0) {
  6235. buf[4] = 1;
  6236. etest->flags |= ETH_TEST_FL_FAILED;
  6237. }
  6238. if (bnx2_test_link(bp) != 0) {
  6239. buf[5] = 1;
  6240. etest->flags |= ETH_TEST_FL_FAILED;
  6241. }
  6242. }
  6243. static void
  6244. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6245. {
  6246. switch (stringset) {
  6247. case ETH_SS_STATS:
  6248. memcpy(buf, bnx2_stats_str_arr,
  6249. sizeof(bnx2_stats_str_arr));
  6250. break;
  6251. case ETH_SS_TEST:
  6252. memcpy(buf, bnx2_tests_str_arr,
  6253. sizeof(bnx2_tests_str_arr));
  6254. break;
  6255. }
  6256. }
  6257. static void
  6258. bnx2_get_ethtool_stats(struct net_device *dev,
  6259. struct ethtool_stats *stats, u64 *buf)
  6260. {
  6261. struct bnx2 *bp = netdev_priv(dev);
  6262. int i;
  6263. u32 *hw_stats = (u32 *) bp->stats_blk;
  6264. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6265. u8 *stats_len_arr = NULL;
  6266. if (hw_stats == NULL) {
  6267. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6268. return;
  6269. }
  6270. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  6271. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1) ||
  6272. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A2) ||
  6273. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0))
  6274. stats_len_arr = bnx2_5706_stats_len_arr;
  6275. else
  6276. stats_len_arr = bnx2_5708_stats_len_arr;
  6277. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6278. unsigned long offset;
  6279. if (stats_len_arr[i] == 0) {
  6280. /* skip this counter */
  6281. buf[i] = 0;
  6282. continue;
  6283. }
  6284. offset = bnx2_stats_offset_arr[i];
  6285. if (stats_len_arr[i] == 4) {
  6286. /* 4-byte counter */
  6287. buf[i] = (u64) *(hw_stats + offset) +
  6288. *(temp_stats + offset);
  6289. continue;
  6290. }
  6291. /* 8-byte counter */
  6292. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6293. *(hw_stats + offset + 1) +
  6294. (((u64) *(temp_stats + offset)) << 32) +
  6295. *(temp_stats + offset + 1);
  6296. }
  6297. }
  6298. static int
  6299. bnx2_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state)
  6300. {
  6301. struct bnx2 *bp = netdev_priv(dev);
  6302. switch (state) {
  6303. case ETHTOOL_ID_ACTIVE:
  6304. bp->leds_save = BNX2_RD(bp, BNX2_MISC_CFG);
  6305. BNX2_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6306. return 1; /* cycle on/off once per second */
  6307. case ETHTOOL_ID_ON:
  6308. BNX2_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6309. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6310. BNX2_EMAC_LED_100MB_OVERRIDE |
  6311. BNX2_EMAC_LED_10MB_OVERRIDE |
  6312. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6313. BNX2_EMAC_LED_TRAFFIC);
  6314. break;
  6315. case ETHTOOL_ID_OFF:
  6316. BNX2_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6317. break;
  6318. case ETHTOOL_ID_INACTIVE:
  6319. BNX2_WR(bp, BNX2_EMAC_LED, 0);
  6320. BNX2_WR(bp, BNX2_MISC_CFG, bp->leds_save);
  6321. break;
  6322. }
  6323. return 0;
  6324. }
  6325. static netdev_features_t
  6326. bnx2_fix_features(struct net_device *dev, netdev_features_t features)
  6327. {
  6328. struct bnx2 *bp = netdev_priv(dev);
  6329. if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  6330. features |= NETIF_F_HW_VLAN_CTAG_RX;
  6331. return features;
  6332. }
  6333. static int
  6334. bnx2_set_features(struct net_device *dev, netdev_features_t features)
  6335. {
  6336. struct bnx2 *bp = netdev_priv(dev);
  6337. /* TSO with VLAN tag won't work with current firmware */
  6338. if (features & NETIF_F_HW_VLAN_CTAG_TX)
  6339. dev->vlan_features |= (dev->hw_features & NETIF_F_ALL_TSO);
  6340. else
  6341. dev->vlan_features &= ~NETIF_F_ALL_TSO;
  6342. if ((!!(features & NETIF_F_HW_VLAN_CTAG_RX) !=
  6343. !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
  6344. netif_running(dev)) {
  6345. bnx2_netif_stop(bp, false);
  6346. dev->features = features;
  6347. bnx2_set_rx_mode(dev);
  6348. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  6349. bnx2_netif_start(bp, false);
  6350. return 1;
  6351. }
  6352. return 0;
  6353. }
  6354. static void bnx2_get_channels(struct net_device *dev,
  6355. struct ethtool_channels *channels)
  6356. {
  6357. struct bnx2 *bp = netdev_priv(dev);
  6358. u32 max_rx_rings = 1;
  6359. u32 max_tx_rings = 1;
  6360. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
  6361. max_rx_rings = RX_MAX_RINGS;
  6362. max_tx_rings = TX_MAX_RINGS;
  6363. }
  6364. channels->max_rx = max_rx_rings;
  6365. channels->max_tx = max_tx_rings;
  6366. channels->max_other = 0;
  6367. channels->max_combined = 0;
  6368. channels->rx_count = bp->num_rx_rings;
  6369. channels->tx_count = bp->num_tx_rings;
  6370. channels->other_count = 0;
  6371. channels->combined_count = 0;
  6372. }
  6373. static int bnx2_set_channels(struct net_device *dev,
  6374. struct ethtool_channels *channels)
  6375. {
  6376. struct bnx2 *bp = netdev_priv(dev);
  6377. u32 max_rx_rings = 1;
  6378. u32 max_tx_rings = 1;
  6379. int rc = 0;
  6380. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
  6381. max_rx_rings = RX_MAX_RINGS;
  6382. max_tx_rings = TX_MAX_RINGS;
  6383. }
  6384. if (channels->rx_count > max_rx_rings ||
  6385. channels->tx_count > max_tx_rings)
  6386. return -EINVAL;
  6387. bp->num_req_rx_rings = channels->rx_count;
  6388. bp->num_req_tx_rings = channels->tx_count;
  6389. if (netif_running(dev))
  6390. rc = bnx2_change_ring_size(bp, bp->rx_ring_size,
  6391. bp->tx_ring_size, true);
  6392. return rc;
  6393. }
  6394. static const struct ethtool_ops bnx2_ethtool_ops = {
  6395. .get_settings = bnx2_get_settings,
  6396. .set_settings = bnx2_set_settings,
  6397. .get_drvinfo = bnx2_get_drvinfo,
  6398. .get_regs_len = bnx2_get_regs_len,
  6399. .get_regs = bnx2_get_regs,
  6400. .get_wol = bnx2_get_wol,
  6401. .set_wol = bnx2_set_wol,
  6402. .nway_reset = bnx2_nway_reset,
  6403. .get_link = bnx2_get_link,
  6404. .get_eeprom_len = bnx2_get_eeprom_len,
  6405. .get_eeprom = bnx2_get_eeprom,
  6406. .set_eeprom = bnx2_set_eeprom,
  6407. .get_coalesce = bnx2_get_coalesce,
  6408. .set_coalesce = bnx2_set_coalesce,
  6409. .get_ringparam = bnx2_get_ringparam,
  6410. .set_ringparam = bnx2_set_ringparam,
  6411. .get_pauseparam = bnx2_get_pauseparam,
  6412. .set_pauseparam = bnx2_set_pauseparam,
  6413. .self_test = bnx2_self_test,
  6414. .get_strings = bnx2_get_strings,
  6415. .set_phys_id = bnx2_set_phys_id,
  6416. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6417. .get_sset_count = bnx2_get_sset_count,
  6418. .get_channels = bnx2_get_channels,
  6419. .set_channels = bnx2_set_channels,
  6420. };
  6421. /* Called with rtnl_lock */
  6422. static int
  6423. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6424. {
  6425. struct mii_ioctl_data *data = if_mii(ifr);
  6426. struct bnx2 *bp = netdev_priv(dev);
  6427. int err;
  6428. switch(cmd) {
  6429. case SIOCGMIIPHY:
  6430. data->phy_id = bp->phy_addr;
  6431. /* fallthru */
  6432. case SIOCGMIIREG: {
  6433. u32 mii_regval;
  6434. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6435. return -EOPNOTSUPP;
  6436. if (!netif_running(dev))
  6437. return -EAGAIN;
  6438. spin_lock_bh(&bp->phy_lock);
  6439. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6440. spin_unlock_bh(&bp->phy_lock);
  6441. data->val_out = mii_regval;
  6442. return err;
  6443. }
  6444. case SIOCSMIIREG:
  6445. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6446. return -EOPNOTSUPP;
  6447. if (!netif_running(dev))
  6448. return -EAGAIN;
  6449. spin_lock_bh(&bp->phy_lock);
  6450. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6451. spin_unlock_bh(&bp->phy_lock);
  6452. return err;
  6453. default:
  6454. /* do nothing */
  6455. break;
  6456. }
  6457. return -EOPNOTSUPP;
  6458. }
  6459. /* Called with rtnl_lock */
  6460. static int
  6461. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6462. {
  6463. struct sockaddr *addr = p;
  6464. struct bnx2 *bp = netdev_priv(dev);
  6465. if (!is_valid_ether_addr(addr->sa_data))
  6466. return -EADDRNOTAVAIL;
  6467. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6468. if (netif_running(dev))
  6469. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6470. return 0;
  6471. }
  6472. /* Called with rtnl_lock */
  6473. static int
  6474. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6475. {
  6476. struct bnx2 *bp = netdev_priv(dev);
  6477. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6478. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6479. return -EINVAL;
  6480. dev->mtu = new_mtu;
  6481. return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size,
  6482. false);
  6483. }
  6484. #ifdef CONFIG_NET_POLL_CONTROLLER
  6485. static void
  6486. poll_bnx2(struct net_device *dev)
  6487. {
  6488. struct bnx2 *bp = netdev_priv(dev);
  6489. int i;
  6490. for (i = 0; i < bp->irq_nvecs; i++) {
  6491. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6492. disable_irq(irq->vector);
  6493. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6494. enable_irq(irq->vector);
  6495. }
  6496. }
  6497. #endif
  6498. static void
  6499. bnx2_get_5709_media(struct bnx2 *bp)
  6500. {
  6501. u32 val = BNX2_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6502. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6503. u32 strap;
  6504. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6505. return;
  6506. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6507. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6508. return;
  6509. }
  6510. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6511. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6512. else
  6513. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6514. if (bp->func == 0) {
  6515. switch (strap) {
  6516. case 0x4:
  6517. case 0x5:
  6518. case 0x6:
  6519. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6520. return;
  6521. }
  6522. } else {
  6523. switch (strap) {
  6524. case 0x1:
  6525. case 0x2:
  6526. case 0x4:
  6527. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6528. return;
  6529. }
  6530. }
  6531. }
  6532. static void
  6533. bnx2_get_pci_speed(struct bnx2 *bp)
  6534. {
  6535. u32 reg;
  6536. reg = BNX2_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6537. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6538. u32 clkreg;
  6539. bp->flags |= BNX2_FLAG_PCIX;
  6540. clkreg = BNX2_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6541. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6542. switch (clkreg) {
  6543. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6544. bp->bus_speed_mhz = 133;
  6545. break;
  6546. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6547. bp->bus_speed_mhz = 100;
  6548. break;
  6549. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6550. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6551. bp->bus_speed_mhz = 66;
  6552. break;
  6553. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6554. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6555. bp->bus_speed_mhz = 50;
  6556. break;
  6557. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6558. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6559. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6560. bp->bus_speed_mhz = 33;
  6561. break;
  6562. }
  6563. }
  6564. else {
  6565. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6566. bp->bus_speed_mhz = 66;
  6567. else
  6568. bp->bus_speed_mhz = 33;
  6569. }
  6570. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6571. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6572. }
  6573. static void
  6574. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6575. {
  6576. int rc, i, j;
  6577. u8 *data;
  6578. unsigned int block_end, rosize, len;
  6579. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6580. #define BNX2_VPD_LEN 128
  6581. #define BNX2_MAX_VER_SLEN 30
  6582. data = kmalloc(256, GFP_KERNEL);
  6583. if (!data)
  6584. return;
  6585. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6586. BNX2_VPD_LEN);
  6587. if (rc)
  6588. goto vpd_done;
  6589. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6590. data[i] = data[i + BNX2_VPD_LEN + 3];
  6591. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6592. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6593. data[i + 3] = data[i + BNX2_VPD_LEN];
  6594. }
  6595. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6596. if (i < 0)
  6597. goto vpd_done;
  6598. rosize = pci_vpd_lrdt_size(&data[i]);
  6599. i += PCI_VPD_LRDT_TAG_SIZE;
  6600. block_end = i + rosize;
  6601. if (block_end > BNX2_VPD_LEN)
  6602. goto vpd_done;
  6603. j = pci_vpd_find_info_keyword(data, i, rosize,
  6604. PCI_VPD_RO_KEYWORD_MFR_ID);
  6605. if (j < 0)
  6606. goto vpd_done;
  6607. len = pci_vpd_info_field_size(&data[j]);
  6608. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6609. if (j + len > block_end || len != 4 ||
  6610. memcmp(&data[j], "1028", 4))
  6611. goto vpd_done;
  6612. j = pci_vpd_find_info_keyword(data, i, rosize,
  6613. PCI_VPD_RO_KEYWORD_VENDOR0);
  6614. if (j < 0)
  6615. goto vpd_done;
  6616. len = pci_vpd_info_field_size(&data[j]);
  6617. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6618. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6619. goto vpd_done;
  6620. memcpy(bp->fw_version, &data[j], len);
  6621. bp->fw_version[len] = ' ';
  6622. vpd_done:
  6623. kfree(data);
  6624. }
  6625. static int
  6626. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6627. {
  6628. struct bnx2 *bp;
  6629. int rc, i, j;
  6630. u32 reg;
  6631. u64 dma_mask, persist_dma_mask;
  6632. int err;
  6633. SET_NETDEV_DEV(dev, &pdev->dev);
  6634. bp = netdev_priv(dev);
  6635. bp->flags = 0;
  6636. bp->phy_flags = 0;
  6637. bp->temp_stats_blk =
  6638. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6639. if (bp->temp_stats_blk == NULL) {
  6640. rc = -ENOMEM;
  6641. goto err_out;
  6642. }
  6643. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6644. rc = pci_enable_device(pdev);
  6645. if (rc) {
  6646. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6647. goto err_out;
  6648. }
  6649. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6650. dev_err(&pdev->dev,
  6651. "Cannot find PCI device base address, aborting\n");
  6652. rc = -ENODEV;
  6653. goto err_out_disable;
  6654. }
  6655. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6656. if (rc) {
  6657. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6658. goto err_out_disable;
  6659. }
  6660. pci_set_master(pdev);
  6661. bp->pm_cap = pdev->pm_cap;
  6662. if (bp->pm_cap == 0) {
  6663. dev_err(&pdev->dev,
  6664. "Cannot find power management capability, aborting\n");
  6665. rc = -EIO;
  6666. goto err_out_release;
  6667. }
  6668. bp->dev = dev;
  6669. bp->pdev = pdev;
  6670. spin_lock_init(&bp->phy_lock);
  6671. spin_lock_init(&bp->indirect_lock);
  6672. #ifdef BCM_CNIC
  6673. mutex_init(&bp->cnic_lock);
  6674. #endif
  6675. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6676. bp->regview = pci_iomap(pdev, 0, MB_GET_CID_ADDR(TX_TSS_CID +
  6677. TX_MAX_TSS_RINGS + 1));
  6678. if (!bp->regview) {
  6679. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6680. rc = -ENOMEM;
  6681. goto err_out_release;
  6682. }
  6683. /* Configure byte swap and enable write to the reg_window registers.
  6684. * Rely on CPU to do target byte swapping on big endian systems
  6685. * The chip's target access swapping will not swap all accesses
  6686. */
  6687. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG,
  6688. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6689. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6690. bp->chip_id = BNX2_RD(bp, BNX2_MISC_ID);
  6691. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  6692. if (!pci_is_pcie(pdev)) {
  6693. dev_err(&pdev->dev, "Not PCIE, aborting\n");
  6694. rc = -EIO;
  6695. goto err_out_unmap;
  6696. }
  6697. bp->flags |= BNX2_FLAG_PCIE;
  6698. if (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax)
  6699. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6700. /* AER (Advanced Error Reporting) hooks */
  6701. err = pci_enable_pcie_error_reporting(pdev);
  6702. if (!err)
  6703. bp->flags |= BNX2_FLAG_AER_ENABLED;
  6704. } else {
  6705. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6706. if (bp->pcix_cap == 0) {
  6707. dev_err(&pdev->dev,
  6708. "Cannot find PCIX capability, aborting\n");
  6709. rc = -EIO;
  6710. goto err_out_unmap;
  6711. }
  6712. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6713. }
  6714. if (BNX2_CHIP(bp) == BNX2_CHIP_5709 &&
  6715. BNX2_CHIP_REV(bp) != BNX2_CHIP_REV_Ax) {
  6716. if (pdev->msix_cap)
  6717. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6718. }
  6719. if (BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A0 &&
  6720. BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A1) {
  6721. if (pdev->msi_cap)
  6722. bp->flags |= BNX2_FLAG_MSI_CAP;
  6723. }
  6724. /* 5708 cannot support DMA addresses > 40-bit. */
  6725. if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  6726. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6727. else
  6728. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6729. /* Configure DMA attributes. */
  6730. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6731. dev->features |= NETIF_F_HIGHDMA;
  6732. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6733. if (rc) {
  6734. dev_err(&pdev->dev,
  6735. "pci_set_consistent_dma_mask failed, aborting\n");
  6736. goto err_out_unmap;
  6737. }
  6738. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6739. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6740. goto err_out_unmap;
  6741. }
  6742. if (!(bp->flags & BNX2_FLAG_PCIE))
  6743. bnx2_get_pci_speed(bp);
  6744. /* 5706A0 may falsely detect SERR and PERR. */
  6745. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  6746. reg = BNX2_RD(bp, PCI_COMMAND);
  6747. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6748. BNX2_WR(bp, PCI_COMMAND, reg);
  6749. } else if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1) &&
  6750. !(bp->flags & BNX2_FLAG_PCIX)) {
  6751. dev_err(&pdev->dev,
  6752. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6753. goto err_out_unmap;
  6754. }
  6755. bnx2_init_nvram(bp);
  6756. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6757. if (bnx2_reg_rd_ind(bp, BNX2_MCP_TOE_ID) & BNX2_MCP_TOE_ID_FUNCTION_ID)
  6758. bp->func = 1;
  6759. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6760. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6761. u32 off = bp->func << 2;
  6762. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6763. } else
  6764. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6765. /* Get the permanent MAC address. First we need to make sure the
  6766. * firmware is actually running.
  6767. */
  6768. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6769. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6770. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6771. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6772. rc = -ENODEV;
  6773. goto err_out_unmap;
  6774. }
  6775. bnx2_read_vpd_fw_ver(bp);
  6776. j = strlen(bp->fw_version);
  6777. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6778. for (i = 0; i < 3 && j < 24; i++) {
  6779. u8 num, k, skip0;
  6780. if (i == 0) {
  6781. bp->fw_version[j++] = 'b';
  6782. bp->fw_version[j++] = 'c';
  6783. bp->fw_version[j++] = ' ';
  6784. }
  6785. num = (u8) (reg >> (24 - (i * 8)));
  6786. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6787. if (num >= k || !skip0 || k == 1) {
  6788. bp->fw_version[j++] = (num / k) + '0';
  6789. skip0 = 0;
  6790. }
  6791. }
  6792. if (i != 2)
  6793. bp->fw_version[j++] = '.';
  6794. }
  6795. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6796. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6797. bp->wol = 1;
  6798. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6799. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6800. for (i = 0; i < 30; i++) {
  6801. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6802. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6803. break;
  6804. msleep(10);
  6805. }
  6806. }
  6807. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6808. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6809. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6810. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6811. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6812. if (j < 32)
  6813. bp->fw_version[j++] = ' ';
  6814. for (i = 0; i < 3 && j < 28; i++) {
  6815. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6816. reg = be32_to_cpu(reg);
  6817. memcpy(&bp->fw_version[j], &reg, 4);
  6818. j += 4;
  6819. }
  6820. }
  6821. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6822. bp->mac_addr[0] = (u8) (reg >> 8);
  6823. bp->mac_addr[1] = (u8) reg;
  6824. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6825. bp->mac_addr[2] = (u8) (reg >> 24);
  6826. bp->mac_addr[3] = (u8) (reg >> 16);
  6827. bp->mac_addr[4] = (u8) (reg >> 8);
  6828. bp->mac_addr[5] = (u8) reg;
  6829. bp->tx_ring_size = BNX2_MAX_TX_DESC_CNT;
  6830. bnx2_set_rx_ring_size(bp, 255);
  6831. bp->tx_quick_cons_trip_int = 2;
  6832. bp->tx_quick_cons_trip = 20;
  6833. bp->tx_ticks_int = 18;
  6834. bp->tx_ticks = 80;
  6835. bp->rx_quick_cons_trip_int = 2;
  6836. bp->rx_quick_cons_trip = 12;
  6837. bp->rx_ticks_int = 18;
  6838. bp->rx_ticks = 18;
  6839. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6840. bp->current_interval = BNX2_TIMER_INTERVAL;
  6841. bp->phy_addr = 1;
  6842. /* Disable WOL support if we are running on a SERDES chip. */
  6843. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  6844. bnx2_get_5709_media(bp);
  6845. else if (BNX2_CHIP_BOND(bp) & BNX2_CHIP_BOND_SERDES_BIT)
  6846. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6847. bp->phy_port = PORT_TP;
  6848. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6849. bp->phy_port = PORT_FIBRE;
  6850. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6851. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6852. bp->flags |= BNX2_FLAG_NO_WOL;
  6853. bp->wol = 0;
  6854. }
  6855. if (BNX2_CHIP(bp) == BNX2_CHIP_5706) {
  6856. /* Don't do parallel detect on this board because of
  6857. * some board problems. The link will not go down
  6858. * if we do parallel detect.
  6859. */
  6860. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6861. pdev->subsystem_device == 0x310c)
  6862. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6863. } else {
  6864. bp->phy_addr = 2;
  6865. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6866. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6867. }
  6868. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5706 ||
  6869. BNX2_CHIP(bp) == BNX2_CHIP_5708)
  6870. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6871. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709 &&
  6872. (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax ||
  6873. BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Bx))
  6874. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6875. bnx2_init_fw_cap(bp);
  6876. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0) ||
  6877. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B0) ||
  6878. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B1) ||
  6879. !(BNX2_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6880. bp->flags |= BNX2_FLAG_NO_WOL;
  6881. bp->wol = 0;
  6882. }
  6883. if (bp->flags & BNX2_FLAG_NO_WOL)
  6884. device_set_wakeup_capable(&bp->pdev->dev, false);
  6885. else
  6886. device_set_wakeup_enable(&bp->pdev->dev, bp->wol);
  6887. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  6888. bp->tx_quick_cons_trip_int =
  6889. bp->tx_quick_cons_trip;
  6890. bp->tx_ticks_int = bp->tx_ticks;
  6891. bp->rx_quick_cons_trip_int =
  6892. bp->rx_quick_cons_trip;
  6893. bp->rx_ticks_int = bp->rx_ticks;
  6894. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6895. bp->com_ticks_int = bp->com_ticks;
  6896. bp->cmd_ticks_int = bp->cmd_ticks;
  6897. }
  6898. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6899. *
  6900. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6901. * with byte enables disabled on the unused 32-bit word. This is legal
  6902. * but causes problems on the AMD 8132 which will eventually stop
  6903. * responding after a while.
  6904. *
  6905. * AMD believes this incompatibility is unique to the 5706, and
  6906. * prefers to locally disable MSI rather than globally disabling it.
  6907. */
  6908. if (BNX2_CHIP(bp) == BNX2_CHIP_5706 && disable_msi == 0) {
  6909. struct pci_dev *amd_8132 = NULL;
  6910. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6911. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6912. amd_8132))) {
  6913. if (amd_8132->revision >= 0x10 &&
  6914. amd_8132->revision <= 0x13) {
  6915. disable_msi = 1;
  6916. pci_dev_put(amd_8132);
  6917. break;
  6918. }
  6919. }
  6920. }
  6921. bnx2_set_default_link(bp);
  6922. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6923. init_timer(&bp->timer);
  6924. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6925. bp->timer.data = (unsigned long) bp;
  6926. bp->timer.function = bnx2_timer;
  6927. #ifdef BCM_CNIC
  6928. if (bnx2_shmem_rd(bp, BNX2_ISCSI_INITIATOR) & BNX2_ISCSI_INITIATOR_EN)
  6929. bp->cnic_eth_dev.max_iscsi_conn =
  6930. (bnx2_shmem_rd(bp, BNX2_ISCSI_MAX_CONN) &
  6931. BNX2_ISCSI_MAX_CONN_MASK) >> BNX2_ISCSI_MAX_CONN_SHIFT;
  6932. bp->cnic_probe = bnx2_cnic_probe;
  6933. #endif
  6934. pci_save_state(pdev);
  6935. return 0;
  6936. err_out_unmap:
  6937. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  6938. pci_disable_pcie_error_reporting(pdev);
  6939. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  6940. }
  6941. pci_iounmap(pdev, bp->regview);
  6942. bp->regview = NULL;
  6943. err_out_release:
  6944. pci_release_regions(pdev);
  6945. err_out_disable:
  6946. pci_disable_device(pdev);
  6947. err_out:
  6948. return rc;
  6949. }
  6950. static char *
  6951. bnx2_bus_string(struct bnx2 *bp, char *str)
  6952. {
  6953. char *s = str;
  6954. if (bp->flags & BNX2_FLAG_PCIE) {
  6955. s += sprintf(s, "PCI Express");
  6956. } else {
  6957. s += sprintf(s, "PCI");
  6958. if (bp->flags & BNX2_FLAG_PCIX)
  6959. s += sprintf(s, "-X");
  6960. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6961. s += sprintf(s, " 32-bit");
  6962. else
  6963. s += sprintf(s, " 64-bit");
  6964. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6965. }
  6966. return str;
  6967. }
  6968. static void
  6969. bnx2_del_napi(struct bnx2 *bp)
  6970. {
  6971. int i;
  6972. for (i = 0; i < bp->irq_nvecs; i++)
  6973. netif_napi_del(&bp->bnx2_napi[i].napi);
  6974. }
  6975. static void
  6976. bnx2_init_napi(struct bnx2 *bp)
  6977. {
  6978. int i;
  6979. for (i = 0; i < bp->irq_nvecs; i++) {
  6980. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6981. int (*poll)(struct napi_struct *, int);
  6982. if (i == 0)
  6983. poll = bnx2_poll;
  6984. else
  6985. poll = bnx2_poll_msix;
  6986. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6987. bnapi->bp = bp;
  6988. }
  6989. }
  6990. static const struct net_device_ops bnx2_netdev_ops = {
  6991. .ndo_open = bnx2_open,
  6992. .ndo_start_xmit = bnx2_start_xmit,
  6993. .ndo_stop = bnx2_close,
  6994. .ndo_get_stats64 = bnx2_get_stats64,
  6995. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6996. .ndo_do_ioctl = bnx2_ioctl,
  6997. .ndo_validate_addr = eth_validate_addr,
  6998. .ndo_set_mac_address = bnx2_change_mac_addr,
  6999. .ndo_change_mtu = bnx2_change_mtu,
  7000. .ndo_fix_features = bnx2_fix_features,
  7001. .ndo_set_features = bnx2_set_features,
  7002. .ndo_tx_timeout = bnx2_tx_timeout,
  7003. #ifdef CONFIG_NET_POLL_CONTROLLER
  7004. .ndo_poll_controller = poll_bnx2,
  7005. #endif
  7006. };
  7007. static int
  7008. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  7009. {
  7010. static int version_printed = 0;
  7011. struct net_device *dev;
  7012. struct bnx2 *bp;
  7013. int rc;
  7014. char str[40];
  7015. if (version_printed++ == 0)
  7016. pr_info("%s", version);
  7017. /* dev zeroed in init_etherdev */
  7018. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  7019. if (!dev)
  7020. return -ENOMEM;
  7021. rc = bnx2_init_board(pdev, dev);
  7022. if (rc < 0)
  7023. goto err_free;
  7024. dev->netdev_ops = &bnx2_netdev_ops;
  7025. dev->watchdog_timeo = TX_TIMEOUT;
  7026. dev->ethtool_ops = &bnx2_ethtool_ops;
  7027. bp = netdev_priv(dev);
  7028. pci_set_drvdata(pdev, dev);
  7029. memcpy(dev->dev_addr, bp->mac_addr, ETH_ALEN);
  7030. dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  7031. NETIF_F_TSO | NETIF_F_TSO_ECN |
  7032. NETIF_F_RXHASH | NETIF_F_RXCSUM;
  7033. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  7034. dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
  7035. dev->vlan_features = dev->hw_features;
  7036. dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
  7037. dev->features |= dev->hw_features;
  7038. dev->priv_flags |= IFF_UNICAST_FLT;
  7039. if ((rc = register_netdev(dev))) {
  7040. dev_err(&pdev->dev, "Cannot register net device\n");
  7041. goto error;
  7042. }
  7043. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, "
  7044. "node addr %pM\n", board_info[ent->driver_data].name,
  7045. ((BNX2_CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  7046. ((BNX2_CHIP_ID(bp) & 0x0ff0) >> 4),
  7047. bnx2_bus_string(bp, str), (long)pci_resource_start(pdev, 0),
  7048. pdev->irq, dev->dev_addr);
  7049. return 0;
  7050. error:
  7051. pci_iounmap(pdev, bp->regview);
  7052. pci_release_regions(pdev);
  7053. pci_disable_device(pdev);
  7054. err_free:
  7055. free_netdev(dev);
  7056. return rc;
  7057. }
  7058. static void
  7059. bnx2_remove_one(struct pci_dev *pdev)
  7060. {
  7061. struct net_device *dev = pci_get_drvdata(pdev);
  7062. struct bnx2 *bp = netdev_priv(dev);
  7063. unregister_netdev(dev);
  7064. del_timer_sync(&bp->timer);
  7065. cancel_work_sync(&bp->reset_task);
  7066. pci_iounmap(bp->pdev, bp->regview);
  7067. kfree(bp->temp_stats_blk);
  7068. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  7069. pci_disable_pcie_error_reporting(pdev);
  7070. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  7071. }
  7072. bnx2_release_firmware(bp);
  7073. free_netdev(dev);
  7074. pci_release_regions(pdev);
  7075. pci_disable_device(pdev);
  7076. }
  7077. #ifdef CONFIG_PM_SLEEP
  7078. static int
  7079. bnx2_suspend(struct device *device)
  7080. {
  7081. struct pci_dev *pdev = to_pci_dev(device);
  7082. struct net_device *dev = pci_get_drvdata(pdev);
  7083. struct bnx2 *bp = netdev_priv(dev);
  7084. if (netif_running(dev)) {
  7085. cancel_work_sync(&bp->reset_task);
  7086. bnx2_netif_stop(bp, true);
  7087. netif_device_detach(dev);
  7088. del_timer_sync(&bp->timer);
  7089. bnx2_shutdown_chip(bp);
  7090. __bnx2_free_irq(bp);
  7091. bnx2_free_skbs(bp);
  7092. }
  7093. bnx2_setup_wol(bp);
  7094. return 0;
  7095. }
  7096. static int
  7097. bnx2_resume(struct device *device)
  7098. {
  7099. struct pci_dev *pdev = to_pci_dev(device);
  7100. struct net_device *dev = pci_get_drvdata(pdev);
  7101. struct bnx2 *bp = netdev_priv(dev);
  7102. if (!netif_running(dev))
  7103. return 0;
  7104. bnx2_set_power_state(bp, PCI_D0);
  7105. netif_device_attach(dev);
  7106. bnx2_request_irq(bp);
  7107. bnx2_init_nic(bp, 1);
  7108. bnx2_netif_start(bp, true);
  7109. return 0;
  7110. }
  7111. static SIMPLE_DEV_PM_OPS(bnx2_pm_ops, bnx2_suspend, bnx2_resume);
  7112. #define BNX2_PM_OPS (&bnx2_pm_ops)
  7113. #else
  7114. #define BNX2_PM_OPS NULL
  7115. #endif /* CONFIG_PM_SLEEP */
  7116. /**
  7117. * bnx2_io_error_detected - called when PCI error is detected
  7118. * @pdev: Pointer to PCI device
  7119. * @state: The current pci connection state
  7120. *
  7121. * This function is called after a PCI bus error affecting
  7122. * this device has been detected.
  7123. */
  7124. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  7125. pci_channel_state_t state)
  7126. {
  7127. struct net_device *dev = pci_get_drvdata(pdev);
  7128. struct bnx2 *bp = netdev_priv(dev);
  7129. rtnl_lock();
  7130. netif_device_detach(dev);
  7131. if (state == pci_channel_io_perm_failure) {
  7132. rtnl_unlock();
  7133. return PCI_ERS_RESULT_DISCONNECT;
  7134. }
  7135. if (netif_running(dev)) {
  7136. bnx2_netif_stop(bp, true);
  7137. del_timer_sync(&bp->timer);
  7138. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  7139. }
  7140. pci_disable_device(pdev);
  7141. rtnl_unlock();
  7142. /* Request a slot slot reset. */
  7143. return PCI_ERS_RESULT_NEED_RESET;
  7144. }
  7145. /**
  7146. * bnx2_io_slot_reset - called after the pci bus has been reset.
  7147. * @pdev: Pointer to PCI device
  7148. *
  7149. * Restart the card from scratch, as if from a cold-boot.
  7150. */
  7151. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  7152. {
  7153. struct net_device *dev = pci_get_drvdata(pdev);
  7154. struct bnx2 *bp = netdev_priv(dev);
  7155. pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
  7156. int err = 0;
  7157. rtnl_lock();
  7158. if (pci_enable_device(pdev)) {
  7159. dev_err(&pdev->dev,
  7160. "Cannot re-enable PCI device after reset\n");
  7161. } else {
  7162. pci_set_master(pdev);
  7163. pci_restore_state(pdev);
  7164. pci_save_state(pdev);
  7165. if (netif_running(dev))
  7166. err = bnx2_init_nic(bp, 1);
  7167. if (!err)
  7168. result = PCI_ERS_RESULT_RECOVERED;
  7169. }
  7170. if (result != PCI_ERS_RESULT_RECOVERED && netif_running(dev)) {
  7171. bnx2_napi_enable(bp);
  7172. dev_close(dev);
  7173. }
  7174. rtnl_unlock();
  7175. if (!(bp->flags & BNX2_FLAG_AER_ENABLED))
  7176. return result;
  7177. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  7178. if (err) {
  7179. dev_err(&pdev->dev,
  7180. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  7181. err); /* non-fatal, continue */
  7182. }
  7183. return result;
  7184. }
  7185. /**
  7186. * bnx2_io_resume - called when traffic can start flowing again.
  7187. * @pdev: Pointer to PCI device
  7188. *
  7189. * This callback is called when the error recovery driver tells us that
  7190. * its OK to resume normal operation.
  7191. */
  7192. static void bnx2_io_resume(struct pci_dev *pdev)
  7193. {
  7194. struct net_device *dev = pci_get_drvdata(pdev);
  7195. struct bnx2 *bp = netdev_priv(dev);
  7196. rtnl_lock();
  7197. if (netif_running(dev))
  7198. bnx2_netif_start(bp, true);
  7199. netif_device_attach(dev);
  7200. rtnl_unlock();
  7201. }
  7202. static void bnx2_shutdown(struct pci_dev *pdev)
  7203. {
  7204. struct net_device *dev = pci_get_drvdata(pdev);
  7205. struct bnx2 *bp;
  7206. if (!dev)
  7207. return;
  7208. bp = netdev_priv(dev);
  7209. if (!bp)
  7210. return;
  7211. rtnl_lock();
  7212. if (netif_running(dev))
  7213. dev_close(bp->dev);
  7214. if (system_state == SYSTEM_POWER_OFF)
  7215. bnx2_set_power_state(bp, PCI_D3hot);
  7216. rtnl_unlock();
  7217. }
  7218. static const struct pci_error_handlers bnx2_err_handler = {
  7219. .error_detected = bnx2_io_error_detected,
  7220. .slot_reset = bnx2_io_slot_reset,
  7221. .resume = bnx2_io_resume,
  7222. };
  7223. static struct pci_driver bnx2_pci_driver = {
  7224. .name = DRV_MODULE_NAME,
  7225. .id_table = bnx2_pci_tbl,
  7226. .probe = bnx2_init_one,
  7227. .remove = bnx2_remove_one,
  7228. .driver.pm = BNX2_PM_OPS,
  7229. .err_handler = &bnx2_err_handler,
  7230. .shutdown = bnx2_shutdown,
  7231. };
  7232. module_pci_driver(bnx2_pci_driver);