flexcan.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265
  1. /*
  2. * flexcan.c - FLEXCAN CAN controller driver
  3. *
  4. * Copyright (c) 2005-2006 Varma Electronics Oy
  5. * Copyright (c) 2009 Sascha Hauer, Pengutronix
  6. * Copyright (c) 2010 Marc Kleine-Budde, Pengutronix
  7. *
  8. * Based on code originally by Andrey Volkov <avolkov@varma-el.com>
  9. *
  10. * LICENCE:
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License as
  13. * published by the Free Software Foundation version 2.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. */
  21. #include <linux/netdevice.h>
  22. #include <linux/can.h>
  23. #include <linux/can/dev.h>
  24. #include <linux/can/error.h>
  25. #include <linux/can/led.h>
  26. #include <linux/clk.h>
  27. #include <linux/delay.h>
  28. #include <linux/if_arp.h>
  29. #include <linux/if_ether.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/io.h>
  32. #include <linux/kernel.h>
  33. #include <linux/list.h>
  34. #include <linux/module.h>
  35. #include <linux/of.h>
  36. #include <linux/of_device.h>
  37. #include <linux/platform_device.h>
  38. #include <linux/regulator/consumer.h>
  39. #define DRV_NAME "flexcan"
  40. /* 8 for RX fifo and 2 error handling */
  41. #define FLEXCAN_NAPI_WEIGHT (8 + 2)
  42. /* FLEXCAN module configuration register (CANMCR) bits */
  43. #define FLEXCAN_MCR_MDIS BIT(31)
  44. #define FLEXCAN_MCR_FRZ BIT(30)
  45. #define FLEXCAN_MCR_FEN BIT(29)
  46. #define FLEXCAN_MCR_HALT BIT(28)
  47. #define FLEXCAN_MCR_NOT_RDY BIT(27)
  48. #define FLEXCAN_MCR_WAK_MSK BIT(26)
  49. #define FLEXCAN_MCR_SOFTRST BIT(25)
  50. #define FLEXCAN_MCR_FRZ_ACK BIT(24)
  51. #define FLEXCAN_MCR_SUPV BIT(23)
  52. #define FLEXCAN_MCR_SLF_WAK BIT(22)
  53. #define FLEXCAN_MCR_WRN_EN BIT(21)
  54. #define FLEXCAN_MCR_LPM_ACK BIT(20)
  55. #define FLEXCAN_MCR_WAK_SRC BIT(19)
  56. #define FLEXCAN_MCR_DOZE BIT(18)
  57. #define FLEXCAN_MCR_SRX_DIS BIT(17)
  58. #define FLEXCAN_MCR_BCC BIT(16)
  59. #define FLEXCAN_MCR_LPRIO_EN BIT(13)
  60. #define FLEXCAN_MCR_AEN BIT(12)
  61. #define FLEXCAN_MCR_MAXMB(x) ((x) & 0x1f)
  62. #define FLEXCAN_MCR_IDAM_A (0 << 8)
  63. #define FLEXCAN_MCR_IDAM_B (1 << 8)
  64. #define FLEXCAN_MCR_IDAM_C (2 << 8)
  65. #define FLEXCAN_MCR_IDAM_D (3 << 8)
  66. /* FLEXCAN control register (CANCTRL) bits */
  67. #define FLEXCAN_CTRL_PRESDIV(x) (((x) & 0xff) << 24)
  68. #define FLEXCAN_CTRL_RJW(x) (((x) & 0x03) << 22)
  69. #define FLEXCAN_CTRL_PSEG1(x) (((x) & 0x07) << 19)
  70. #define FLEXCAN_CTRL_PSEG2(x) (((x) & 0x07) << 16)
  71. #define FLEXCAN_CTRL_BOFF_MSK BIT(15)
  72. #define FLEXCAN_CTRL_ERR_MSK BIT(14)
  73. #define FLEXCAN_CTRL_CLK_SRC BIT(13)
  74. #define FLEXCAN_CTRL_LPB BIT(12)
  75. #define FLEXCAN_CTRL_TWRN_MSK BIT(11)
  76. #define FLEXCAN_CTRL_RWRN_MSK BIT(10)
  77. #define FLEXCAN_CTRL_SMP BIT(7)
  78. #define FLEXCAN_CTRL_BOFF_REC BIT(6)
  79. #define FLEXCAN_CTRL_TSYN BIT(5)
  80. #define FLEXCAN_CTRL_LBUF BIT(4)
  81. #define FLEXCAN_CTRL_LOM BIT(3)
  82. #define FLEXCAN_CTRL_PROPSEG(x) ((x) & 0x07)
  83. #define FLEXCAN_CTRL_ERR_BUS (FLEXCAN_CTRL_ERR_MSK)
  84. #define FLEXCAN_CTRL_ERR_STATE \
  85. (FLEXCAN_CTRL_TWRN_MSK | FLEXCAN_CTRL_RWRN_MSK | \
  86. FLEXCAN_CTRL_BOFF_MSK)
  87. #define FLEXCAN_CTRL_ERR_ALL \
  88. (FLEXCAN_CTRL_ERR_BUS | FLEXCAN_CTRL_ERR_STATE)
  89. /* FLEXCAN error and status register (ESR) bits */
  90. #define FLEXCAN_ESR_TWRN_INT BIT(17)
  91. #define FLEXCAN_ESR_RWRN_INT BIT(16)
  92. #define FLEXCAN_ESR_BIT1_ERR BIT(15)
  93. #define FLEXCAN_ESR_BIT0_ERR BIT(14)
  94. #define FLEXCAN_ESR_ACK_ERR BIT(13)
  95. #define FLEXCAN_ESR_CRC_ERR BIT(12)
  96. #define FLEXCAN_ESR_FRM_ERR BIT(11)
  97. #define FLEXCAN_ESR_STF_ERR BIT(10)
  98. #define FLEXCAN_ESR_TX_WRN BIT(9)
  99. #define FLEXCAN_ESR_RX_WRN BIT(8)
  100. #define FLEXCAN_ESR_IDLE BIT(7)
  101. #define FLEXCAN_ESR_TXRX BIT(6)
  102. #define FLEXCAN_EST_FLT_CONF_SHIFT (4)
  103. #define FLEXCAN_ESR_FLT_CONF_MASK (0x3 << FLEXCAN_EST_FLT_CONF_SHIFT)
  104. #define FLEXCAN_ESR_FLT_CONF_ACTIVE (0x0 << FLEXCAN_EST_FLT_CONF_SHIFT)
  105. #define FLEXCAN_ESR_FLT_CONF_PASSIVE (0x1 << FLEXCAN_EST_FLT_CONF_SHIFT)
  106. #define FLEXCAN_ESR_BOFF_INT BIT(2)
  107. #define FLEXCAN_ESR_ERR_INT BIT(1)
  108. #define FLEXCAN_ESR_WAK_INT BIT(0)
  109. #define FLEXCAN_ESR_ERR_BUS \
  110. (FLEXCAN_ESR_BIT1_ERR | FLEXCAN_ESR_BIT0_ERR | \
  111. FLEXCAN_ESR_ACK_ERR | FLEXCAN_ESR_CRC_ERR | \
  112. FLEXCAN_ESR_FRM_ERR | FLEXCAN_ESR_STF_ERR)
  113. #define FLEXCAN_ESR_ERR_STATE \
  114. (FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | FLEXCAN_ESR_BOFF_INT)
  115. #define FLEXCAN_ESR_ERR_ALL \
  116. (FLEXCAN_ESR_ERR_BUS | FLEXCAN_ESR_ERR_STATE)
  117. #define FLEXCAN_ESR_ALL_INT \
  118. (FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | \
  119. FLEXCAN_ESR_BOFF_INT | FLEXCAN_ESR_ERR_INT)
  120. /* FLEXCAN interrupt flag register (IFLAG) bits */
  121. #define FLEXCAN_TX_BUF_ID 8
  122. #define FLEXCAN_IFLAG_BUF(x) BIT(x)
  123. #define FLEXCAN_IFLAG_RX_FIFO_OVERFLOW BIT(7)
  124. #define FLEXCAN_IFLAG_RX_FIFO_WARN BIT(6)
  125. #define FLEXCAN_IFLAG_RX_FIFO_AVAILABLE BIT(5)
  126. #define FLEXCAN_IFLAG_DEFAULT \
  127. (FLEXCAN_IFLAG_RX_FIFO_OVERFLOW | FLEXCAN_IFLAG_RX_FIFO_AVAILABLE | \
  128. FLEXCAN_IFLAG_BUF(FLEXCAN_TX_BUF_ID))
  129. /* FLEXCAN message buffers */
  130. #define FLEXCAN_MB_CNT_CODE(x) (((x) & 0xf) << 24)
  131. #define FLEXCAN_MB_CNT_SRR BIT(22)
  132. #define FLEXCAN_MB_CNT_IDE BIT(21)
  133. #define FLEXCAN_MB_CNT_RTR BIT(20)
  134. #define FLEXCAN_MB_CNT_LENGTH(x) (((x) & 0xf) << 16)
  135. #define FLEXCAN_MB_CNT_TIMESTAMP(x) ((x) & 0xffff)
  136. #define FLEXCAN_MB_CODE_MASK (0xf0ffffff)
  137. #define FLEXCAN_TIMEOUT_US (50)
  138. /*
  139. * FLEXCAN hardware feature flags
  140. *
  141. * Below is some version info we got:
  142. * SOC Version IP-Version Glitch- [TR]WRN_INT
  143. * Filter? connected?
  144. * MX25 FlexCAN2 03.00.00.00 no no
  145. * MX28 FlexCAN2 03.00.04.00 yes yes
  146. * MX35 FlexCAN2 03.00.00.00 no no
  147. * MX53 FlexCAN2 03.00.00.00 yes no
  148. * MX6s FlexCAN3 10.00.12.00 yes yes
  149. *
  150. * Some SOCs do not have the RX_WARN & TX_WARN interrupt line connected.
  151. */
  152. #define FLEXCAN_HAS_V10_FEATURES BIT(1) /* For core version >= 10 */
  153. #define FLEXCAN_HAS_BROKEN_ERR_STATE BIT(2) /* [TR]WRN_INT not connected */
  154. /* Structure of the message buffer */
  155. struct flexcan_mb {
  156. u32 can_ctrl;
  157. u32 can_id;
  158. u32 data[2];
  159. };
  160. /* Structure of the hardware registers */
  161. struct flexcan_regs {
  162. u32 mcr; /* 0x00 */
  163. u32 ctrl; /* 0x04 */
  164. u32 timer; /* 0x08 */
  165. u32 _reserved1; /* 0x0c */
  166. u32 rxgmask; /* 0x10 */
  167. u32 rx14mask; /* 0x14 */
  168. u32 rx15mask; /* 0x18 */
  169. u32 ecr; /* 0x1c */
  170. u32 esr; /* 0x20 */
  171. u32 imask2; /* 0x24 */
  172. u32 imask1; /* 0x28 */
  173. u32 iflag2; /* 0x2c */
  174. u32 iflag1; /* 0x30 */
  175. u32 crl2; /* 0x34 */
  176. u32 esr2; /* 0x38 */
  177. u32 imeur; /* 0x3c */
  178. u32 lrfr; /* 0x40 */
  179. u32 crcr; /* 0x44 */
  180. u32 rxfgmask; /* 0x48 */
  181. u32 rxfir; /* 0x4c */
  182. u32 _reserved3[12];
  183. struct flexcan_mb cantxfg[64];
  184. };
  185. struct flexcan_devtype_data {
  186. u32 features; /* hardware controller features */
  187. };
  188. struct flexcan_priv {
  189. struct can_priv can;
  190. struct net_device *dev;
  191. struct napi_struct napi;
  192. void __iomem *base;
  193. u32 reg_esr;
  194. u32 reg_ctrl_default;
  195. struct clk *clk_ipg;
  196. struct clk *clk_per;
  197. struct flexcan_platform_data *pdata;
  198. const struct flexcan_devtype_data *devtype_data;
  199. struct regulator *reg_xceiver;
  200. };
  201. static struct flexcan_devtype_data fsl_p1010_devtype_data = {
  202. .features = FLEXCAN_HAS_BROKEN_ERR_STATE,
  203. };
  204. static struct flexcan_devtype_data fsl_imx28_devtype_data;
  205. static struct flexcan_devtype_data fsl_imx6q_devtype_data = {
  206. .features = FLEXCAN_HAS_V10_FEATURES,
  207. };
  208. static const struct can_bittiming_const flexcan_bittiming_const = {
  209. .name = DRV_NAME,
  210. .tseg1_min = 4,
  211. .tseg1_max = 16,
  212. .tseg2_min = 2,
  213. .tseg2_max = 8,
  214. .sjw_max = 4,
  215. .brp_min = 1,
  216. .brp_max = 256,
  217. .brp_inc = 1,
  218. };
  219. /*
  220. * Abstract off the read/write for arm versus ppc. This
  221. * assumes that PPC uses big-endian registers and everything
  222. * else uses little-endian registers, independent of CPU
  223. * endianess.
  224. */
  225. #if defined(CONFIG_PPC)
  226. static inline u32 flexcan_read(void __iomem *addr)
  227. {
  228. return in_be32(addr);
  229. }
  230. static inline void flexcan_write(u32 val, void __iomem *addr)
  231. {
  232. out_be32(addr, val);
  233. }
  234. #else
  235. static inline u32 flexcan_read(void __iomem *addr)
  236. {
  237. return readl(addr);
  238. }
  239. static inline void flexcan_write(u32 val, void __iomem *addr)
  240. {
  241. writel(val, addr);
  242. }
  243. #endif
  244. static inline int flexcan_transceiver_enable(const struct flexcan_priv *priv)
  245. {
  246. if (!priv->reg_xceiver)
  247. return 0;
  248. return regulator_enable(priv->reg_xceiver);
  249. }
  250. static inline int flexcan_transceiver_disable(const struct flexcan_priv *priv)
  251. {
  252. if (!priv->reg_xceiver)
  253. return 0;
  254. return regulator_disable(priv->reg_xceiver);
  255. }
  256. static inline int flexcan_has_and_handle_berr(const struct flexcan_priv *priv,
  257. u32 reg_esr)
  258. {
  259. return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
  260. (reg_esr & FLEXCAN_ESR_ERR_BUS);
  261. }
  262. static int flexcan_chip_enable(struct flexcan_priv *priv)
  263. {
  264. struct flexcan_regs __iomem *regs = priv->base;
  265. unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
  266. u32 reg;
  267. reg = flexcan_read(&regs->mcr);
  268. reg &= ~FLEXCAN_MCR_MDIS;
  269. flexcan_write(reg, &regs->mcr);
  270. while (timeout-- && (flexcan_read(&regs->mcr) & FLEXCAN_MCR_LPM_ACK))
  271. usleep_range(10, 20);
  272. if (flexcan_read(&regs->mcr) & FLEXCAN_MCR_LPM_ACK)
  273. return -ETIMEDOUT;
  274. return 0;
  275. }
  276. static int flexcan_chip_disable(struct flexcan_priv *priv)
  277. {
  278. struct flexcan_regs __iomem *regs = priv->base;
  279. unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
  280. u32 reg;
  281. reg = flexcan_read(&regs->mcr);
  282. reg |= FLEXCAN_MCR_MDIS;
  283. flexcan_write(reg, &regs->mcr);
  284. while (timeout-- && !(flexcan_read(&regs->mcr) & FLEXCAN_MCR_LPM_ACK))
  285. usleep_range(10, 20);
  286. if (!(flexcan_read(&regs->mcr) & FLEXCAN_MCR_LPM_ACK))
  287. return -ETIMEDOUT;
  288. return 0;
  289. }
  290. static int flexcan_chip_freeze(struct flexcan_priv *priv)
  291. {
  292. struct flexcan_regs __iomem *regs = priv->base;
  293. unsigned int timeout = 1000 * 1000 * 10 / priv->can.bittiming.bitrate;
  294. u32 reg;
  295. reg = flexcan_read(&regs->mcr);
  296. reg |= FLEXCAN_MCR_HALT;
  297. flexcan_write(reg, &regs->mcr);
  298. while (timeout-- && !(flexcan_read(&regs->mcr) & FLEXCAN_MCR_FRZ_ACK))
  299. usleep_range(100, 200);
  300. if (!(flexcan_read(&regs->mcr) & FLEXCAN_MCR_FRZ_ACK))
  301. return -ETIMEDOUT;
  302. return 0;
  303. }
  304. static int flexcan_chip_unfreeze(struct flexcan_priv *priv)
  305. {
  306. struct flexcan_regs __iomem *regs = priv->base;
  307. unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
  308. u32 reg;
  309. reg = flexcan_read(&regs->mcr);
  310. reg &= ~FLEXCAN_MCR_HALT;
  311. flexcan_write(reg, &regs->mcr);
  312. while (timeout-- && (flexcan_read(&regs->mcr) & FLEXCAN_MCR_FRZ_ACK))
  313. usleep_range(10, 20);
  314. if (flexcan_read(&regs->mcr) & FLEXCAN_MCR_FRZ_ACK)
  315. return -ETIMEDOUT;
  316. return 0;
  317. }
  318. static int flexcan_chip_softreset(struct flexcan_priv *priv)
  319. {
  320. struct flexcan_regs __iomem *regs = priv->base;
  321. unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
  322. flexcan_write(FLEXCAN_MCR_SOFTRST, &regs->mcr);
  323. while (timeout-- && (flexcan_read(&regs->mcr) & FLEXCAN_MCR_SOFTRST))
  324. usleep_range(10, 20);
  325. if (flexcan_read(&regs->mcr) & FLEXCAN_MCR_SOFTRST)
  326. return -ETIMEDOUT;
  327. return 0;
  328. }
  329. static int flexcan_get_berr_counter(const struct net_device *dev,
  330. struct can_berr_counter *bec)
  331. {
  332. const struct flexcan_priv *priv = netdev_priv(dev);
  333. struct flexcan_regs __iomem *regs = priv->base;
  334. u32 reg = flexcan_read(&regs->ecr);
  335. bec->txerr = (reg >> 0) & 0xff;
  336. bec->rxerr = (reg >> 8) & 0xff;
  337. return 0;
  338. }
  339. static int flexcan_start_xmit(struct sk_buff *skb, struct net_device *dev)
  340. {
  341. const struct flexcan_priv *priv = netdev_priv(dev);
  342. struct flexcan_regs __iomem *regs = priv->base;
  343. struct can_frame *cf = (struct can_frame *)skb->data;
  344. u32 can_id;
  345. u32 ctrl = FLEXCAN_MB_CNT_CODE(0xc) | (cf->can_dlc << 16);
  346. if (can_dropped_invalid_skb(dev, skb))
  347. return NETDEV_TX_OK;
  348. netif_stop_queue(dev);
  349. if (cf->can_id & CAN_EFF_FLAG) {
  350. can_id = cf->can_id & CAN_EFF_MASK;
  351. ctrl |= FLEXCAN_MB_CNT_IDE | FLEXCAN_MB_CNT_SRR;
  352. } else {
  353. can_id = (cf->can_id & CAN_SFF_MASK) << 18;
  354. }
  355. if (cf->can_id & CAN_RTR_FLAG)
  356. ctrl |= FLEXCAN_MB_CNT_RTR;
  357. if (cf->can_dlc > 0) {
  358. u32 data = be32_to_cpup((__be32 *)&cf->data[0]);
  359. flexcan_write(data, &regs->cantxfg[FLEXCAN_TX_BUF_ID].data[0]);
  360. }
  361. if (cf->can_dlc > 3) {
  362. u32 data = be32_to_cpup((__be32 *)&cf->data[4]);
  363. flexcan_write(data, &regs->cantxfg[FLEXCAN_TX_BUF_ID].data[1]);
  364. }
  365. can_put_echo_skb(skb, dev, 0);
  366. flexcan_write(can_id, &regs->cantxfg[FLEXCAN_TX_BUF_ID].can_id);
  367. flexcan_write(ctrl, &regs->cantxfg[FLEXCAN_TX_BUF_ID].can_ctrl);
  368. return NETDEV_TX_OK;
  369. }
  370. static void do_bus_err(struct net_device *dev,
  371. struct can_frame *cf, u32 reg_esr)
  372. {
  373. struct flexcan_priv *priv = netdev_priv(dev);
  374. int rx_errors = 0, tx_errors = 0;
  375. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  376. if (reg_esr & FLEXCAN_ESR_BIT1_ERR) {
  377. netdev_dbg(dev, "BIT1_ERR irq\n");
  378. cf->data[2] |= CAN_ERR_PROT_BIT1;
  379. tx_errors = 1;
  380. }
  381. if (reg_esr & FLEXCAN_ESR_BIT0_ERR) {
  382. netdev_dbg(dev, "BIT0_ERR irq\n");
  383. cf->data[2] |= CAN_ERR_PROT_BIT0;
  384. tx_errors = 1;
  385. }
  386. if (reg_esr & FLEXCAN_ESR_ACK_ERR) {
  387. netdev_dbg(dev, "ACK_ERR irq\n");
  388. cf->can_id |= CAN_ERR_ACK;
  389. cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
  390. tx_errors = 1;
  391. }
  392. if (reg_esr & FLEXCAN_ESR_CRC_ERR) {
  393. netdev_dbg(dev, "CRC_ERR irq\n");
  394. cf->data[2] |= CAN_ERR_PROT_BIT;
  395. cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
  396. rx_errors = 1;
  397. }
  398. if (reg_esr & FLEXCAN_ESR_FRM_ERR) {
  399. netdev_dbg(dev, "FRM_ERR irq\n");
  400. cf->data[2] |= CAN_ERR_PROT_FORM;
  401. rx_errors = 1;
  402. }
  403. if (reg_esr & FLEXCAN_ESR_STF_ERR) {
  404. netdev_dbg(dev, "STF_ERR irq\n");
  405. cf->data[2] |= CAN_ERR_PROT_STUFF;
  406. rx_errors = 1;
  407. }
  408. priv->can.can_stats.bus_error++;
  409. if (rx_errors)
  410. dev->stats.rx_errors++;
  411. if (tx_errors)
  412. dev->stats.tx_errors++;
  413. }
  414. static int flexcan_poll_bus_err(struct net_device *dev, u32 reg_esr)
  415. {
  416. struct sk_buff *skb;
  417. struct can_frame *cf;
  418. skb = alloc_can_err_skb(dev, &cf);
  419. if (unlikely(!skb))
  420. return 0;
  421. do_bus_err(dev, cf, reg_esr);
  422. netif_receive_skb(skb);
  423. dev->stats.rx_packets++;
  424. dev->stats.rx_bytes += cf->can_dlc;
  425. return 1;
  426. }
  427. static void do_state(struct net_device *dev,
  428. struct can_frame *cf, enum can_state new_state)
  429. {
  430. struct flexcan_priv *priv = netdev_priv(dev);
  431. struct can_berr_counter bec;
  432. flexcan_get_berr_counter(dev, &bec);
  433. switch (priv->can.state) {
  434. case CAN_STATE_ERROR_ACTIVE:
  435. /*
  436. * from: ERROR_ACTIVE
  437. * to : ERROR_WARNING, ERROR_PASSIVE, BUS_OFF
  438. * => : there was a warning int
  439. */
  440. if (new_state >= CAN_STATE_ERROR_WARNING &&
  441. new_state <= CAN_STATE_BUS_OFF) {
  442. netdev_dbg(dev, "Error Warning IRQ\n");
  443. priv->can.can_stats.error_warning++;
  444. cf->can_id |= CAN_ERR_CRTL;
  445. cf->data[1] = (bec.txerr > bec.rxerr) ?
  446. CAN_ERR_CRTL_TX_WARNING :
  447. CAN_ERR_CRTL_RX_WARNING;
  448. }
  449. case CAN_STATE_ERROR_WARNING: /* fallthrough */
  450. /*
  451. * from: ERROR_ACTIVE, ERROR_WARNING
  452. * to : ERROR_PASSIVE, BUS_OFF
  453. * => : error passive int
  454. */
  455. if (new_state >= CAN_STATE_ERROR_PASSIVE &&
  456. new_state <= CAN_STATE_BUS_OFF) {
  457. netdev_dbg(dev, "Error Passive IRQ\n");
  458. priv->can.can_stats.error_passive++;
  459. cf->can_id |= CAN_ERR_CRTL;
  460. cf->data[1] = (bec.txerr > bec.rxerr) ?
  461. CAN_ERR_CRTL_TX_PASSIVE :
  462. CAN_ERR_CRTL_RX_PASSIVE;
  463. }
  464. break;
  465. case CAN_STATE_BUS_OFF:
  466. netdev_err(dev, "BUG! "
  467. "hardware recovered automatically from BUS_OFF\n");
  468. break;
  469. default:
  470. break;
  471. }
  472. /* process state changes depending on the new state */
  473. switch (new_state) {
  474. case CAN_STATE_ERROR_WARNING:
  475. netdev_dbg(dev, "Error Warning\n");
  476. cf->can_id |= CAN_ERR_CRTL;
  477. cf->data[1] = (bec.txerr > bec.rxerr) ?
  478. CAN_ERR_CRTL_TX_WARNING :
  479. CAN_ERR_CRTL_RX_WARNING;
  480. break;
  481. case CAN_STATE_ERROR_ACTIVE:
  482. netdev_dbg(dev, "Error Active\n");
  483. cf->can_id |= CAN_ERR_PROT;
  484. cf->data[2] = CAN_ERR_PROT_ACTIVE;
  485. break;
  486. case CAN_STATE_BUS_OFF:
  487. cf->can_id |= CAN_ERR_BUSOFF;
  488. can_bus_off(dev);
  489. break;
  490. default:
  491. break;
  492. }
  493. }
  494. static int flexcan_poll_state(struct net_device *dev, u32 reg_esr)
  495. {
  496. struct flexcan_priv *priv = netdev_priv(dev);
  497. struct sk_buff *skb;
  498. struct can_frame *cf;
  499. enum can_state new_state;
  500. int flt;
  501. flt = reg_esr & FLEXCAN_ESR_FLT_CONF_MASK;
  502. if (likely(flt == FLEXCAN_ESR_FLT_CONF_ACTIVE)) {
  503. if (likely(!(reg_esr & (FLEXCAN_ESR_TX_WRN |
  504. FLEXCAN_ESR_RX_WRN))))
  505. new_state = CAN_STATE_ERROR_ACTIVE;
  506. else
  507. new_state = CAN_STATE_ERROR_WARNING;
  508. } else if (unlikely(flt == FLEXCAN_ESR_FLT_CONF_PASSIVE))
  509. new_state = CAN_STATE_ERROR_PASSIVE;
  510. else
  511. new_state = CAN_STATE_BUS_OFF;
  512. /* state hasn't changed */
  513. if (likely(new_state == priv->can.state))
  514. return 0;
  515. skb = alloc_can_err_skb(dev, &cf);
  516. if (unlikely(!skb))
  517. return 0;
  518. do_state(dev, cf, new_state);
  519. priv->can.state = new_state;
  520. netif_receive_skb(skb);
  521. dev->stats.rx_packets++;
  522. dev->stats.rx_bytes += cf->can_dlc;
  523. return 1;
  524. }
  525. static void flexcan_read_fifo(const struct net_device *dev,
  526. struct can_frame *cf)
  527. {
  528. const struct flexcan_priv *priv = netdev_priv(dev);
  529. struct flexcan_regs __iomem *regs = priv->base;
  530. struct flexcan_mb __iomem *mb = &regs->cantxfg[0];
  531. u32 reg_ctrl, reg_id;
  532. reg_ctrl = flexcan_read(&mb->can_ctrl);
  533. reg_id = flexcan_read(&mb->can_id);
  534. if (reg_ctrl & FLEXCAN_MB_CNT_IDE)
  535. cf->can_id = ((reg_id >> 0) & CAN_EFF_MASK) | CAN_EFF_FLAG;
  536. else
  537. cf->can_id = (reg_id >> 18) & CAN_SFF_MASK;
  538. if (reg_ctrl & FLEXCAN_MB_CNT_RTR)
  539. cf->can_id |= CAN_RTR_FLAG;
  540. cf->can_dlc = get_can_dlc((reg_ctrl >> 16) & 0xf);
  541. *(__be32 *)(cf->data + 0) = cpu_to_be32(flexcan_read(&mb->data[0]));
  542. *(__be32 *)(cf->data + 4) = cpu_to_be32(flexcan_read(&mb->data[1]));
  543. /* mark as read */
  544. flexcan_write(FLEXCAN_IFLAG_RX_FIFO_AVAILABLE, &regs->iflag1);
  545. flexcan_read(&regs->timer);
  546. }
  547. static int flexcan_read_frame(struct net_device *dev)
  548. {
  549. struct net_device_stats *stats = &dev->stats;
  550. struct can_frame *cf;
  551. struct sk_buff *skb;
  552. skb = alloc_can_skb(dev, &cf);
  553. if (unlikely(!skb)) {
  554. stats->rx_dropped++;
  555. return 0;
  556. }
  557. flexcan_read_fifo(dev, cf);
  558. netif_receive_skb(skb);
  559. stats->rx_packets++;
  560. stats->rx_bytes += cf->can_dlc;
  561. can_led_event(dev, CAN_LED_EVENT_RX);
  562. return 1;
  563. }
  564. static int flexcan_poll(struct napi_struct *napi, int quota)
  565. {
  566. struct net_device *dev = napi->dev;
  567. const struct flexcan_priv *priv = netdev_priv(dev);
  568. struct flexcan_regs __iomem *regs = priv->base;
  569. u32 reg_iflag1, reg_esr;
  570. int work_done = 0;
  571. /*
  572. * The error bits are cleared on read,
  573. * use saved value from irq handler.
  574. */
  575. reg_esr = flexcan_read(&regs->esr) | priv->reg_esr;
  576. /* handle state changes */
  577. work_done += flexcan_poll_state(dev, reg_esr);
  578. /* handle RX-FIFO */
  579. reg_iflag1 = flexcan_read(&regs->iflag1);
  580. while (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE &&
  581. work_done < quota) {
  582. work_done += flexcan_read_frame(dev);
  583. reg_iflag1 = flexcan_read(&regs->iflag1);
  584. }
  585. /* report bus errors */
  586. if (flexcan_has_and_handle_berr(priv, reg_esr) && work_done < quota)
  587. work_done += flexcan_poll_bus_err(dev, reg_esr);
  588. if (work_done < quota) {
  589. napi_complete(napi);
  590. /* enable IRQs */
  591. flexcan_write(FLEXCAN_IFLAG_DEFAULT, &regs->imask1);
  592. flexcan_write(priv->reg_ctrl_default, &regs->ctrl);
  593. }
  594. return work_done;
  595. }
  596. static irqreturn_t flexcan_irq(int irq, void *dev_id)
  597. {
  598. struct net_device *dev = dev_id;
  599. struct net_device_stats *stats = &dev->stats;
  600. struct flexcan_priv *priv = netdev_priv(dev);
  601. struct flexcan_regs __iomem *regs = priv->base;
  602. u32 reg_iflag1, reg_esr;
  603. reg_iflag1 = flexcan_read(&regs->iflag1);
  604. reg_esr = flexcan_read(&regs->esr);
  605. /* ACK all bus error and state change IRQ sources */
  606. if (reg_esr & FLEXCAN_ESR_ALL_INT)
  607. flexcan_write(reg_esr & FLEXCAN_ESR_ALL_INT, &regs->esr);
  608. /*
  609. * schedule NAPI in case of:
  610. * - rx IRQ
  611. * - state change IRQ
  612. * - bus error IRQ and bus error reporting is activated
  613. */
  614. if ((reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE) ||
  615. (reg_esr & FLEXCAN_ESR_ERR_STATE) ||
  616. flexcan_has_and_handle_berr(priv, reg_esr)) {
  617. /*
  618. * The error bits are cleared on read,
  619. * save them for later use.
  620. */
  621. priv->reg_esr = reg_esr & FLEXCAN_ESR_ERR_BUS;
  622. flexcan_write(FLEXCAN_IFLAG_DEFAULT &
  623. ~FLEXCAN_IFLAG_RX_FIFO_AVAILABLE, &regs->imask1);
  624. flexcan_write(priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_ALL,
  625. &regs->ctrl);
  626. napi_schedule(&priv->napi);
  627. }
  628. /* FIFO overflow */
  629. if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_OVERFLOW) {
  630. flexcan_write(FLEXCAN_IFLAG_RX_FIFO_OVERFLOW, &regs->iflag1);
  631. dev->stats.rx_over_errors++;
  632. dev->stats.rx_errors++;
  633. }
  634. /* transmission complete interrupt */
  635. if (reg_iflag1 & (1 << FLEXCAN_TX_BUF_ID)) {
  636. stats->tx_bytes += can_get_echo_skb(dev, 0);
  637. stats->tx_packets++;
  638. can_led_event(dev, CAN_LED_EVENT_TX);
  639. flexcan_write((1 << FLEXCAN_TX_BUF_ID), &regs->iflag1);
  640. netif_wake_queue(dev);
  641. }
  642. return IRQ_HANDLED;
  643. }
  644. static void flexcan_set_bittiming(struct net_device *dev)
  645. {
  646. const struct flexcan_priv *priv = netdev_priv(dev);
  647. const struct can_bittiming *bt = &priv->can.bittiming;
  648. struct flexcan_regs __iomem *regs = priv->base;
  649. u32 reg;
  650. reg = flexcan_read(&regs->ctrl);
  651. reg &= ~(FLEXCAN_CTRL_PRESDIV(0xff) |
  652. FLEXCAN_CTRL_RJW(0x3) |
  653. FLEXCAN_CTRL_PSEG1(0x7) |
  654. FLEXCAN_CTRL_PSEG2(0x7) |
  655. FLEXCAN_CTRL_PROPSEG(0x7) |
  656. FLEXCAN_CTRL_LPB |
  657. FLEXCAN_CTRL_SMP |
  658. FLEXCAN_CTRL_LOM);
  659. reg |= FLEXCAN_CTRL_PRESDIV(bt->brp - 1) |
  660. FLEXCAN_CTRL_PSEG1(bt->phase_seg1 - 1) |
  661. FLEXCAN_CTRL_PSEG2(bt->phase_seg2 - 1) |
  662. FLEXCAN_CTRL_RJW(bt->sjw - 1) |
  663. FLEXCAN_CTRL_PROPSEG(bt->prop_seg - 1);
  664. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
  665. reg |= FLEXCAN_CTRL_LPB;
  666. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  667. reg |= FLEXCAN_CTRL_LOM;
  668. if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
  669. reg |= FLEXCAN_CTRL_SMP;
  670. netdev_info(dev, "writing ctrl=0x%08x\n", reg);
  671. flexcan_write(reg, &regs->ctrl);
  672. /* print chip status */
  673. netdev_dbg(dev, "%s: mcr=0x%08x ctrl=0x%08x\n", __func__,
  674. flexcan_read(&regs->mcr), flexcan_read(&regs->ctrl));
  675. }
  676. /*
  677. * flexcan_chip_start
  678. *
  679. * this functions is entered with clocks enabled
  680. *
  681. */
  682. static int flexcan_chip_start(struct net_device *dev)
  683. {
  684. struct flexcan_priv *priv = netdev_priv(dev);
  685. struct flexcan_regs __iomem *regs = priv->base;
  686. int err;
  687. u32 reg_mcr, reg_ctrl;
  688. /* enable module */
  689. err = flexcan_chip_enable(priv);
  690. if (err)
  691. return err;
  692. /* soft reset */
  693. err = flexcan_chip_softreset(priv);
  694. if (err)
  695. goto out_chip_disable;
  696. flexcan_set_bittiming(dev);
  697. /*
  698. * MCR
  699. *
  700. * enable freeze
  701. * enable fifo
  702. * halt now
  703. * only supervisor access
  704. * enable warning int
  705. * choose format C
  706. * disable local echo
  707. *
  708. */
  709. reg_mcr = flexcan_read(&regs->mcr);
  710. reg_mcr &= ~FLEXCAN_MCR_MAXMB(0xff);
  711. reg_mcr |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_FEN | FLEXCAN_MCR_HALT |
  712. FLEXCAN_MCR_SUPV | FLEXCAN_MCR_WRN_EN |
  713. FLEXCAN_MCR_IDAM_C | FLEXCAN_MCR_SRX_DIS |
  714. FLEXCAN_MCR_MAXMB(FLEXCAN_TX_BUF_ID);
  715. netdev_dbg(dev, "%s: writing mcr=0x%08x", __func__, reg_mcr);
  716. flexcan_write(reg_mcr, &regs->mcr);
  717. /*
  718. * CTRL
  719. *
  720. * disable timer sync feature
  721. *
  722. * disable auto busoff recovery
  723. * transmit lowest buffer first
  724. *
  725. * enable tx and rx warning interrupt
  726. * enable bus off interrupt
  727. * (== FLEXCAN_CTRL_ERR_STATE)
  728. */
  729. reg_ctrl = flexcan_read(&regs->ctrl);
  730. reg_ctrl &= ~FLEXCAN_CTRL_TSYN;
  731. reg_ctrl |= FLEXCAN_CTRL_BOFF_REC | FLEXCAN_CTRL_LBUF |
  732. FLEXCAN_CTRL_ERR_STATE;
  733. /*
  734. * enable the "error interrupt" (FLEXCAN_CTRL_ERR_MSK),
  735. * on most Flexcan cores, too. Otherwise we don't get
  736. * any error warning or passive interrupts.
  737. */
  738. if (priv->devtype_data->features & FLEXCAN_HAS_BROKEN_ERR_STATE ||
  739. priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
  740. reg_ctrl |= FLEXCAN_CTRL_ERR_MSK;
  741. else
  742. reg_ctrl &= ~FLEXCAN_CTRL_ERR_MSK;
  743. /* save for later use */
  744. priv->reg_ctrl_default = reg_ctrl;
  745. netdev_dbg(dev, "%s: writing ctrl=0x%08x", __func__, reg_ctrl);
  746. flexcan_write(reg_ctrl, &regs->ctrl);
  747. /* Abort any pending TX, mark Mailbox as INACTIVE */
  748. flexcan_write(FLEXCAN_MB_CNT_CODE(0x4),
  749. &regs->cantxfg[FLEXCAN_TX_BUF_ID].can_ctrl);
  750. /* acceptance mask/acceptance code (accept everything) */
  751. flexcan_write(0x0, &regs->rxgmask);
  752. flexcan_write(0x0, &regs->rx14mask);
  753. flexcan_write(0x0, &regs->rx15mask);
  754. if (priv->devtype_data->features & FLEXCAN_HAS_V10_FEATURES)
  755. flexcan_write(0x0, &regs->rxfgmask);
  756. err = flexcan_transceiver_enable(priv);
  757. if (err)
  758. goto out_chip_disable;
  759. /* synchronize with the can bus */
  760. err = flexcan_chip_unfreeze(priv);
  761. if (err)
  762. goto out_transceiver_disable;
  763. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  764. /* enable FIFO interrupts */
  765. flexcan_write(FLEXCAN_IFLAG_DEFAULT, &regs->imask1);
  766. /* print chip status */
  767. netdev_dbg(dev, "%s: reading mcr=0x%08x ctrl=0x%08x\n", __func__,
  768. flexcan_read(&regs->mcr), flexcan_read(&regs->ctrl));
  769. return 0;
  770. out_transceiver_disable:
  771. flexcan_transceiver_disable(priv);
  772. out_chip_disable:
  773. flexcan_chip_disable(priv);
  774. return err;
  775. }
  776. /*
  777. * flexcan_chip_stop
  778. *
  779. * this functions is entered with clocks enabled
  780. *
  781. */
  782. static void flexcan_chip_stop(struct net_device *dev)
  783. {
  784. struct flexcan_priv *priv = netdev_priv(dev);
  785. struct flexcan_regs __iomem *regs = priv->base;
  786. /* freeze + disable module */
  787. flexcan_chip_freeze(priv);
  788. flexcan_chip_disable(priv);
  789. /* Disable all interrupts */
  790. flexcan_write(0, &regs->imask1);
  791. flexcan_write(priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_ALL,
  792. &regs->ctrl);
  793. flexcan_transceiver_disable(priv);
  794. priv->can.state = CAN_STATE_STOPPED;
  795. return;
  796. }
  797. static int flexcan_open(struct net_device *dev)
  798. {
  799. struct flexcan_priv *priv = netdev_priv(dev);
  800. int err;
  801. err = clk_prepare_enable(priv->clk_ipg);
  802. if (err)
  803. return err;
  804. err = clk_prepare_enable(priv->clk_per);
  805. if (err)
  806. goto out_disable_ipg;
  807. err = open_candev(dev);
  808. if (err)
  809. goto out_disable_per;
  810. err = request_irq(dev->irq, flexcan_irq, IRQF_SHARED, dev->name, dev);
  811. if (err)
  812. goto out_close;
  813. /* start chip and queuing */
  814. err = flexcan_chip_start(dev);
  815. if (err)
  816. goto out_free_irq;
  817. can_led_event(dev, CAN_LED_EVENT_OPEN);
  818. napi_enable(&priv->napi);
  819. netif_start_queue(dev);
  820. return 0;
  821. out_free_irq:
  822. free_irq(dev->irq, dev);
  823. out_close:
  824. close_candev(dev);
  825. out_disable_per:
  826. clk_disable_unprepare(priv->clk_per);
  827. out_disable_ipg:
  828. clk_disable_unprepare(priv->clk_ipg);
  829. return err;
  830. }
  831. static int flexcan_close(struct net_device *dev)
  832. {
  833. struct flexcan_priv *priv = netdev_priv(dev);
  834. netif_stop_queue(dev);
  835. napi_disable(&priv->napi);
  836. flexcan_chip_stop(dev);
  837. free_irq(dev->irq, dev);
  838. clk_disable_unprepare(priv->clk_per);
  839. clk_disable_unprepare(priv->clk_ipg);
  840. close_candev(dev);
  841. can_led_event(dev, CAN_LED_EVENT_STOP);
  842. return 0;
  843. }
  844. static int flexcan_set_mode(struct net_device *dev, enum can_mode mode)
  845. {
  846. int err;
  847. switch (mode) {
  848. case CAN_MODE_START:
  849. err = flexcan_chip_start(dev);
  850. if (err)
  851. return err;
  852. netif_wake_queue(dev);
  853. break;
  854. default:
  855. return -EOPNOTSUPP;
  856. }
  857. return 0;
  858. }
  859. static const struct net_device_ops flexcan_netdev_ops = {
  860. .ndo_open = flexcan_open,
  861. .ndo_stop = flexcan_close,
  862. .ndo_start_xmit = flexcan_start_xmit,
  863. .ndo_change_mtu = can_change_mtu,
  864. };
  865. static int register_flexcandev(struct net_device *dev)
  866. {
  867. struct flexcan_priv *priv = netdev_priv(dev);
  868. struct flexcan_regs __iomem *regs = priv->base;
  869. u32 reg, err;
  870. err = clk_prepare_enable(priv->clk_ipg);
  871. if (err)
  872. return err;
  873. err = clk_prepare_enable(priv->clk_per);
  874. if (err)
  875. goto out_disable_ipg;
  876. /* select "bus clock", chip must be disabled */
  877. err = flexcan_chip_disable(priv);
  878. if (err)
  879. goto out_disable_per;
  880. reg = flexcan_read(&regs->ctrl);
  881. reg |= FLEXCAN_CTRL_CLK_SRC;
  882. flexcan_write(reg, &regs->ctrl);
  883. err = flexcan_chip_enable(priv);
  884. if (err)
  885. goto out_chip_disable;
  886. /* set freeze, halt and activate FIFO, restrict register access */
  887. reg = flexcan_read(&regs->mcr);
  888. reg |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_HALT |
  889. FLEXCAN_MCR_FEN | FLEXCAN_MCR_SUPV;
  890. flexcan_write(reg, &regs->mcr);
  891. /*
  892. * Currently we only support newer versions of this core
  893. * featuring a RX FIFO. Older cores found on some Coldfire
  894. * derivates are not yet supported.
  895. */
  896. reg = flexcan_read(&regs->mcr);
  897. if (!(reg & FLEXCAN_MCR_FEN)) {
  898. netdev_err(dev, "Could not enable RX FIFO, unsupported core\n");
  899. err = -ENODEV;
  900. goto out_chip_disable;
  901. }
  902. err = register_candev(dev);
  903. /* disable core and turn off clocks */
  904. out_chip_disable:
  905. flexcan_chip_disable(priv);
  906. out_disable_per:
  907. clk_disable_unprepare(priv->clk_per);
  908. out_disable_ipg:
  909. clk_disable_unprepare(priv->clk_ipg);
  910. return err;
  911. }
  912. static void unregister_flexcandev(struct net_device *dev)
  913. {
  914. unregister_candev(dev);
  915. }
  916. static const struct of_device_id flexcan_of_match[] = {
  917. { .compatible = "fsl,imx6q-flexcan", .data = &fsl_imx6q_devtype_data, },
  918. { .compatible = "fsl,imx28-flexcan", .data = &fsl_imx28_devtype_data, },
  919. { .compatible = "fsl,p1010-flexcan", .data = &fsl_p1010_devtype_data, },
  920. { /* sentinel */ },
  921. };
  922. MODULE_DEVICE_TABLE(of, flexcan_of_match);
  923. static const struct platform_device_id flexcan_id_table[] = {
  924. { .name = "flexcan", .driver_data = (kernel_ulong_t)&fsl_p1010_devtype_data, },
  925. { /* sentinel */ },
  926. };
  927. MODULE_DEVICE_TABLE(platform, flexcan_id_table);
  928. static int flexcan_probe(struct platform_device *pdev)
  929. {
  930. const struct of_device_id *of_id;
  931. const struct flexcan_devtype_data *devtype_data;
  932. struct net_device *dev;
  933. struct flexcan_priv *priv;
  934. struct resource *mem;
  935. struct clk *clk_ipg = NULL, *clk_per = NULL;
  936. void __iomem *base;
  937. int err, irq;
  938. u32 clock_freq = 0;
  939. if (pdev->dev.of_node)
  940. of_property_read_u32(pdev->dev.of_node,
  941. "clock-frequency", &clock_freq);
  942. if (!clock_freq) {
  943. clk_ipg = devm_clk_get(&pdev->dev, "ipg");
  944. if (IS_ERR(clk_ipg)) {
  945. dev_err(&pdev->dev, "no ipg clock defined\n");
  946. return PTR_ERR(clk_ipg);
  947. }
  948. clk_per = devm_clk_get(&pdev->dev, "per");
  949. if (IS_ERR(clk_per)) {
  950. dev_err(&pdev->dev, "no per clock defined\n");
  951. return PTR_ERR(clk_per);
  952. }
  953. clock_freq = clk_get_rate(clk_per);
  954. }
  955. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  956. irq = platform_get_irq(pdev, 0);
  957. if (irq <= 0)
  958. return -ENODEV;
  959. base = devm_ioremap_resource(&pdev->dev, mem);
  960. if (IS_ERR(base))
  961. return PTR_ERR(base);
  962. of_id = of_match_device(flexcan_of_match, &pdev->dev);
  963. if (of_id) {
  964. devtype_data = of_id->data;
  965. } else if (platform_get_device_id(pdev)->driver_data) {
  966. devtype_data = (struct flexcan_devtype_data *)
  967. platform_get_device_id(pdev)->driver_data;
  968. } else {
  969. return -ENODEV;
  970. }
  971. dev = alloc_candev(sizeof(struct flexcan_priv), 1);
  972. if (!dev)
  973. return -ENOMEM;
  974. dev->netdev_ops = &flexcan_netdev_ops;
  975. dev->irq = irq;
  976. dev->flags |= IFF_ECHO;
  977. priv = netdev_priv(dev);
  978. priv->can.clock.freq = clock_freq;
  979. priv->can.bittiming_const = &flexcan_bittiming_const;
  980. priv->can.do_set_mode = flexcan_set_mode;
  981. priv->can.do_get_berr_counter = flexcan_get_berr_counter;
  982. priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
  983. CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_3_SAMPLES |
  984. CAN_CTRLMODE_BERR_REPORTING;
  985. priv->base = base;
  986. priv->dev = dev;
  987. priv->clk_ipg = clk_ipg;
  988. priv->clk_per = clk_per;
  989. priv->pdata = dev_get_platdata(&pdev->dev);
  990. priv->devtype_data = devtype_data;
  991. priv->reg_xceiver = devm_regulator_get(&pdev->dev, "xceiver");
  992. if (IS_ERR(priv->reg_xceiver))
  993. priv->reg_xceiver = NULL;
  994. netif_napi_add(dev, &priv->napi, flexcan_poll, FLEXCAN_NAPI_WEIGHT);
  995. platform_set_drvdata(pdev, dev);
  996. SET_NETDEV_DEV(dev, &pdev->dev);
  997. err = register_flexcandev(dev);
  998. if (err) {
  999. dev_err(&pdev->dev, "registering netdev failed\n");
  1000. goto failed_register;
  1001. }
  1002. devm_can_led_init(dev);
  1003. dev_info(&pdev->dev, "device registered (reg_base=%p, irq=%d)\n",
  1004. priv->base, dev->irq);
  1005. return 0;
  1006. failed_register:
  1007. free_candev(dev);
  1008. return err;
  1009. }
  1010. static int flexcan_remove(struct platform_device *pdev)
  1011. {
  1012. struct net_device *dev = platform_get_drvdata(pdev);
  1013. struct flexcan_priv *priv = netdev_priv(dev);
  1014. unregister_flexcandev(dev);
  1015. netif_napi_del(&priv->napi);
  1016. free_candev(dev);
  1017. return 0;
  1018. }
  1019. static int __maybe_unused flexcan_suspend(struct device *device)
  1020. {
  1021. struct net_device *dev = dev_get_drvdata(device);
  1022. struct flexcan_priv *priv = netdev_priv(dev);
  1023. int err;
  1024. err = flexcan_chip_disable(priv);
  1025. if (err)
  1026. return err;
  1027. if (netif_running(dev)) {
  1028. netif_stop_queue(dev);
  1029. netif_device_detach(dev);
  1030. }
  1031. priv->can.state = CAN_STATE_SLEEPING;
  1032. return 0;
  1033. }
  1034. static int __maybe_unused flexcan_resume(struct device *device)
  1035. {
  1036. struct net_device *dev = dev_get_drvdata(device);
  1037. struct flexcan_priv *priv = netdev_priv(dev);
  1038. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  1039. if (netif_running(dev)) {
  1040. netif_device_attach(dev);
  1041. netif_start_queue(dev);
  1042. }
  1043. return flexcan_chip_enable(priv);
  1044. }
  1045. static SIMPLE_DEV_PM_OPS(flexcan_pm_ops, flexcan_suspend, flexcan_resume);
  1046. static struct platform_driver flexcan_driver = {
  1047. .driver = {
  1048. .name = DRV_NAME,
  1049. .owner = THIS_MODULE,
  1050. .pm = &flexcan_pm_ops,
  1051. .of_match_table = flexcan_of_match,
  1052. },
  1053. .probe = flexcan_probe,
  1054. .remove = flexcan_remove,
  1055. .id_table = flexcan_id_table,
  1056. };
  1057. module_platform_driver(flexcan_driver);
  1058. MODULE_AUTHOR("Sascha Hauer <kernel@pengutronix.de>, "
  1059. "Marc Kleine-Budde <kernel@pengutronix.de>");
  1060. MODULE_LICENSE("GPL v2");
  1061. MODULE_DESCRIPTION("CAN port driver for flexcan based chip");