mtdcore.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293
  1. /*
  2. * Core registration and callback routines for MTD
  3. * drivers and users.
  4. *
  5. * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
  6. * Copyright © 2006 Red Hat UK Limited
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/string.h>
  28. #include <linux/timer.h>
  29. #include <linux/major.h>
  30. #include <linux/fs.h>
  31. #include <linux/err.h>
  32. #include <linux/ioctl.h>
  33. #include <linux/init.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/idr.h>
  36. #include <linux/backing-dev.h>
  37. #include <linux/gfp.h>
  38. #include <linux/slab.h>
  39. #include <linux/mtd/mtd.h>
  40. #include <linux/mtd/partitions.h>
  41. #include "mtdcore.h"
  42. /*
  43. * backing device capabilities for non-mappable devices (such as NAND flash)
  44. * - permits private mappings, copies are taken of the data
  45. */
  46. static struct backing_dev_info mtd_bdi_unmappable = {
  47. .capabilities = BDI_CAP_MAP_COPY,
  48. };
  49. /*
  50. * backing device capabilities for R/O mappable devices (such as ROM)
  51. * - permits private mappings, copies are taken of the data
  52. * - permits non-writable shared mappings
  53. */
  54. static struct backing_dev_info mtd_bdi_ro_mappable = {
  55. .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
  56. BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
  57. };
  58. /*
  59. * backing device capabilities for writable mappable devices (such as RAM)
  60. * - permits private mappings, copies are taken of the data
  61. * - permits non-writable shared mappings
  62. */
  63. static struct backing_dev_info mtd_bdi_rw_mappable = {
  64. .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
  65. BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
  66. BDI_CAP_WRITE_MAP),
  67. };
  68. static int mtd_cls_suspend(struct device *dev, pm_message_t state);
  69. static int mtd_cls_resume(struct device *dev);
  70. static struct class mtd_class = {
  71. .name = "mtd",
  72. .owner = THIS_MODULE,
  73. .suspend = mtd_cls_suspend,
  74. .resume = mtd_cls_resume,
  75. };
  76. static DEFINE_IDR(mtd_idr);
  77. /* These are exported solely for the purpose of mtd_blkdevs.c. You
  78. should not use them for _anything_ else */
  79. DEFINE_MUTEX(mtd_table_mutex);
  80. EXPORT_SYMBOL_GPL(mtd_table_mutex);
  81. struct mtd_info *__mtd_next_device(int i)
  82. {
  83. return idr_get_next(&mtd_idr, &i);
  84. }
  85. EXPORT_SYMBOL_GPL(__mtd_next_device);
  86. static LIST_HEAD(mtd_notifiers);
  87. #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
  88. /* REVISIT once MTD uses the driver model better, whoever allocates
  89. * the mtd_info will probably want to use the release() hook...
  90. */
  91. static void mtd_release(struct device *dev)
  92. {
  93. struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
  94. dev_t index = MTD_DEVT(mtd->index);
  95. /* remove /dev/mtdXro node if needed */
  96. if (index)
  97. device_destroy(&mtd_class, index + 1);
  98. }
  99. static int mtd_cls_suspend(struct device *dev, pm_message_t state)
  100. {
  101. struct mtd_info *mtd = dev_get_drvdata(dev);
  102. return mtd ? mtd_suspend(mtd) : 0;
  103. }
  104. static int mtd_cls_resume(struct device *dev)
  105. {
  106. struct mtd_info *mtd = dev_get_drvdata(dev);
  107. if (mtd)
  108. mtd_resume(mtd);
  109. return 0;
  110. }
  111. static ssize_t mtd_type_show(struct device *dev,
  112. struct device_attribute *attr, char *buf)
  113. {
  114. struct mtd_info *mtd = dev_get_drvdata(dev);
  115. char *type;
  116. switch (mtd->type) {
  117. case MTD_ABSENT:
  118. type = "absent";
  119. break;
  120. case MTD_RAM:
  121. type = "ram";
  122. break;
  123. case MTD_ROM:
  124. type = "rom";
  125. break;
  126. case MTD_NORFLASH:
  127. type = "nor";
  128. break;
  129. case MTD_NANDFLASH:
  130. type = "nand";
  131. break;
  132. case MTD_DATAFLASH:
  133. type = "dataflash";
  134. break;
  135. case MTD_UBIVOLUME:
  136. type = "ubi";
  137. break;
  138. case MTD_MLCNANDFLASH:
  139. type = "mlc-nand";
  140. break;
  141. default:
  142. type = "unknown";
  143. }
  144. return snprintf(buf, PAGE_SIZE, "%s\n", type);
  145. }
  146. static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
  147. static ssize_t mtd_flags_show(struct device *dev,
  148. struct device_attribute *attr, char *buf)
  149. {
  150. struct mtd_info *mtd = dev_get_drvdata(dev);
  151. return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
  152. }
  153. static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
  154. static ssize_t mtd_size_show(struct device *dev,
  155. struct device_attribute *attr, char *buf)
  156. {
  157. struct mtd_info *mtd = dev_get_drvdata(dev);
  158. return snprintf(buf, PAGE_SIZE, "%llu\n",
  159. (unsigned long long)mtd->size);
  160. }
  161. static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
  162. static ssize_t mtd_erasesize_show(struct device *dev,
  163. struct device_attribute *attr, char *buf)
  164. {
  165. struct mtd_info *mtd = dev_get_drvdata(dev);
  166. return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
  167. }
  168. static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
  169. static ssize_t mtd_writesize_show(struct device *dev,
  170. struct device_attribute *attr, char *buf)
  171. {
  172. struct mtd_info *mtd = dev_get_drvdata(dev);
  173. return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
  174. }
  175. static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
  176. static ssize_t mtd_subpagesize_show(struct device *dev,
  177. struct device_attribute *attr, char *buf)
  178. {
  179. struct mtd_info *mtd = dev_get_drvdata(dev);
  180. unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
  181. return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
  182. }
  183. static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
  184. static ssize_t mtd_oobsize_show(struct device *dev,
  185. struct device_attribute *attr, char *buf)
  186. {
  187. struct mtd_info *mtd = dev_get_drvdata(dev);
  188. return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
  189. }
  190. static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
  191. static ssize_t mtd_numeraseregions_show(struct device *dev,
  192. struct device_attribute *attr, char *buf)
  193. {
  194. struct mtd_info *mtd = dev_get_drvdata(dev);
  195. return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
  196. }
  197. static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
  198. NULL);
  199. static ssize_t mtd_name_show(struct device *dev,
  200. struct device_attribute *attr, char *buf)
  201. {
  202. struct mtd_info *mtd = dev_get_drvdata(dev);
  203. return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
  204. }
  205. static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
  206. static ssize_t mtd_ecc_strength_show(struct device *dev,
  207. struct device_attribute *attr, char *buf)
  208. {
  209. struct mtd_info *mtd = dev_get_drvdata(dev);
  210. return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
  211. }
  212. static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
  213. static ssize_t mtd_bitflip_threshold_show(struct device *dev,
  214. struct device_attribute *attr,
  215. char *buf)
  216. {
  217. struct mtd_info *mtd = dev_get_drvdata(dev);
  218. return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
  219. }
  220. static ssize_t mtd_bitflip_threshold_store(struct device *dev,
  221. struct device_attribute *attr,
  222. const char *buf, size_t count)
  223. {
  224. struct mtd_info *mtd = dev_get_drvdata(dev);
  225. unsigned int bitflip_threshold;
  226. int retval;
  227. retval = kstrtouint(buf, 0, &bitflip_threshold);
  228. if (retval)
  229. return retval;
  230. mtd->bitflip_threshold = bitflip_threshold;
  231. return count;
  232. }
  233. static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
  234. mtd_bitflip_threshold_show,
  235. mtd_bitflip_threshold_store);
  236. static ssize_t mtd_ecc_step_size_show(struct device *dev,
  237. struct device_attribute *attr, char *buf)
  238. {
  239. struct mtd_info *mtd = dev_get_drvdata(dev);
  240. return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
  241. }
  242. static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
  243. static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
  244. struct device_attribute *attr, char *buf)
  245. {
  246. struct mtd_info *mtd = dev_get_drvdata(dev);
  247. struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
  248. return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
  249. }
  250. static DEVICE_ATTR(corrected_bits, S_IRUGO,
  251. mtd_ecc_stats_corrected_show, NULL);
  252. static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
  253. struct device_attribute *attr, char *buf)
  254. {
  255. struct mtd_info *mtd = dev_get_drvdata(dev);
  256. struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
  257. return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
  258. }
  259. static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
  260. static ssize_t mtd_badblocks_show(struct device *dev,
  261. struct device_attribute *attr, char *buf)
  262. {
  263. struct mtd_info *mtd = dev_get_drvdata(dev);
  264. struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
  265. return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
  266. }
  267. static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
  268. static ssize_t mtd_bbtblocks_show(struct device *dev,
  269. struct device_attribute *attr, char *buf)
  270. {
  271. struct mtd_info *mtd = dev_get_drvdata(dev);
  272. struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
  273. return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
  274. }
  275. static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
  276. static struct attribute *mtd_attrs[] = {
  277. &dev_attr_type.attr,
  278. &dev_attr_flags.attr,
  279. &dev_attr_size.attr,
  280. &dev_attr_erasesize.attr,
  281. &dev_attr_writesize.attr,
  282. &dev_attr_subpagesize.attr,
  283. &dev_attr_oobsize.attr,
  284. &dev_attr_numeraseregions.attr,
  285. &dev_attr_name.attr,
  286. &dev_attr_ecc_strength.attr,
  287. &dev_attr_ecc_step_size.attr,
  288. &dev_attr_corrected_bits.attr,
  289. &dev_attr_ecc_failures.attr,
  290. &dev_attr_bad_blocks.attr,
  291. &dev_attr_bbt_blocks.attr,
  292. &dev_attr_bitflip_threshold.attr,
  293. NULL,
  294. };
  295. ATTRIBUTE_GROUPS(mtd);
  296. static struct device_type mtd_devtype = {
  297. .name = "mtd",
  298. .groups = mtd_groups,
  299. .release = mtd_release,
  300. };
  301. /**
  302. * add_mtd_device - register an MTD device
  303. * @mtd: pointer to new MTD device info structure
  304. *
  305. * Add a device to the list of MTD devices present in the system, and
  306. * notify each currently active MTD 'user' of its arrival. Returns
  307. * zero on success or 1 on failure, which currently will only happen
  308. * if there is insufficient memory or a sysfs error.
  309. */
  310. int add_mtd_device(struct mtd_info *mtd)
  311. {
  312. struct mtd_notifier *not;
  313. int i, error;
  314. if (!mtd->backing_dev_info) {
  315. switch (mtd->type) {
  316. case MTD_RAM:
  317. mtd->backing_dev_info = &mtd_bdi_rw_mappable;
  318. break;
  319. case MTD_ROM:
  320. mtd->backing_dev_info = &mtd_bdi_ro_mappable;
  321. break;
  322. default:
  323. mtd->backing_dev_info = &mtd_bdi_unmappable;
  324. break;
  325. }
  326. }
  327. BUG_ON(mtd->writesize == 0);
  328. mutex_lock(&mtd_table_mutex);
  329. i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
  330. if (i < 0)
  331. goto fail_locked;
  332. mtd->index = i;
  333. mtd->usecount = 0;
  334. /* default value if not set by driver */
  335. if (mtd->bitflip_threshold == 0)
  336. mtd->bitflip_threshold = mtd->ecc_strength;
  337. if (is_power_of_2(mtd->erasesize))
  338. mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
  339. else
  340. mtd->erasesize_shift = 0;
  341. if (is_power_of_2(mtd->writesize))
  342. mtd->writesize_shift = ffs(mtd->writesize) - 1;
  343. else
  344. mtd->writesize_shift = 0;
  345. mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
  346. mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
  347. /* Some chips always power up locked. Unlock them now */
  348. if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
  349. error = mtd_unlock(mtd, 0, mtd->size);
  350. if (error && error != -EOPNOTSUPP)
  351. printk(KERN_WARNING
  352. "%s: unlock failed, writes may not work\n",
  353. mtd->name);
  354. }
  355. /* Caller should have set dev.parent to match the
  356. * physical device.
  357. */
  358. mtd->dev.type = &mtd_devtype;
  359. mtd->dev.class = &mtd_class;
  360. mtd->dev.devt = MTD_DEVT(i);
  361. dev_set_name(&mtd->dev, "mtd%d", i);
  362. dev_set_drvdata(&mtd->dev, mtd);
  363. if (device_register(&mtd->dev) != 0)
  364. goto fail_added;
  365. if (MTD_DEVT(i))
  366. device_create(&mtd_class, mtd->dev.parent,
  367. MTD_DEVT(i) + 1,
  368. NULL, "mtd%dro", i);
  369. pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
  370. /* No need to get a refcount on the module containing
  371. the notifier, since we hold the mtd_table_mutex */
  372. list_for_each_entry(not, &mtd_notifiers, list)
  373. not->add(mtd);
  374. mutex_unlock(&mtd_table_mutex);
  375. /* We _know_ we aren't being removed, because
  376. our caller is still holding us here. So none
  377. of this try_ nonsense, and no bitching about it
  378. either. :) */
  379. __module_get(THIS_MODULE);
  380. return 0;
  381. fail_added:
  382. idr_remove(&mtd_idr, i);
  383. fail_locked:
  384. mutex_unlock(&mtd_table_mutex);
  385. return 1;
  386. }
  387. /**
  388. * del_mtd_device - unregister an MTD device
  389. * @mtd: pointer to MTD device info structure
  390. *
  391. * Remove a device from the list of MTD devices present in the system,
  392. * and notify each currently active MTD 'user' of its departure.
  393. * Returns zero on success or 1 on failure, which currently will happen
  394. * if the requested device does not appear to be present in the list.
  395. */
  396. int del_mtd_device(struct mtd_info *mtd)
  397. {
  398. int ret;
  399. struct mtd_notifier *not;
  400. mutex_lock(&mtd_table_mutex);
  401. if (idr_find(&mtd_idr, mtd->index) != mtd) {
  402. ret = -ENODEV;
  403. goto out_error;
  404. }
  405. /* No need to get a refcount on the module containing
  406. the notifier, since we hold the mtd_table_mutex */
  407. list_for_each_entry(not, &mtd_notifiers, list)
  408. not->remove(mtd);
  409. if (mtd->usecount) {
  410. printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
  411. mtd->index, mtd->name, mtd->usecount);
  412. ret = -EBUSY;
  413. } else {
  414. device_unregister(&mtd->dev);
  415. idr_remove(&mtd_idr, mtd->index);
  416. module_put(THIS_MODULE);
  417. ret = 0;
  418. }
  419. out_error:
  420. mutex_unlock(&mtd_table_mutex);
  421. return ret;
  422. }
  423. /**
  424. * mtd_device_parse_register - parse partitions and register an MTD device.
  425. *
  426. * @mtd: the MTD device to register
  427. * @types: the list of MTD partition probes to try, see
  428. * 'parse_mtd_partitions()' for more information
  429. * @parser_data: MTD partition parser-specific data
  430. * @parts: fallback partition information to register, if parsing fails;
  431. * only valid if %nr_parts > %0
  432. * @nr_parts: the number of partitions in parts, if zero then the full
  433. * MTD device is registered if no partition info is found
  434. *
  435. * This function aggregates MTD partitions parsing (done by
  436. * 'parse_mtd_partitions()') and MTD device and partitions registering. It
  437. * basically follows the most common pattern found in many MTD drivers:
  438. *
  439. * * It first tries to probe partitions on MTD device @mtd using parsers
  440. * specified in @types (if @types is %NULL, then the default list of parsers
  441. * is used, see 'parse_mtd_partitions()' for more information). If none are
  442. * found this functions tries to fallback to information specified in
  443. * @parts/@nr_parts.
  444. * * If any partitioning info was found, this function registers the found
  445. * partitions.
  446. * * If no partitions were found this function just registers the MTD device
  447. * @mtd and exits.
  448. *
  449. * Returns zero in case of success and a negative error code in case of failure.
  450. */
  451. int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
  452. struct mtd_part_parser_data *parser_data,
  453. const struct mtd_partition *parts,
  454. int nr_parts)
  455. {
  456. int err;
  457. struct mtd_partition *real_parts;
  458. err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
  459. if (err <= 0 && nr_parts && parts) {
  460. real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
  461. GFP_KERNEL);
  462. if (!real_parts)
  463. err = -ENOMEM;
  464. else
  465. err = nr_parts;
  466. }
  467. if (err > 0) {
  468. err = add_mtd_partitions(mtd, real_parts, err);
  469. kfree(real_parts);
  470. } else if (err == 0) {
  471. err = add_mtd_device(mtd);
  472. if (err == 1)
  473. err = -ENODEV;
  474. }
  475. return err;
  476. }
  477. EXPORT_SYMBOL_GPL(mtd_device_parse_register);
  478. /**
  479. * mtd_device_unregister - unregister an existing MTD device.
  480. *
  481. * @master: the MTD device to unregister. This will unregister both the master
  482. * and any partitions if registered.
  483. */
  484. int mtd_device_unregister(struct mtd_info *master)
  485. {
  486. int err;
  487. err = del_mtd_partitions(master);
  488. if (err)
  489. return err;
  490. if (!device_is_registered(&master->dev))
  491. return 0;
  492. return del_mtd_device(master);
  493. }
  494. EXPORT_SYMBOL_GPL(mtd_device_unregister);
  495. /**
  496. * register_mtd_user - register a 'user' of MTD devices.
  497. * @new: pointer to notifier info structure
  498. *
  499. * Registers a pair of callbacks function to be called upon addition
  500. * or removal of MTD devices. Causes the 'add' callback to be immediately
  501. * invoked for each MTD device currently present in the system.
  502. */
  503. void register_mtd_user (struct mtd_notifier *new)
  504. {
  505. struct mtd_info *mtd;
  506. mutex_lock(&mtd_table_mutex);
  507. list_add(&new->list, &mtd_notifiers);
  508. __module_get(THIS_MODULE);
  509. mtd_for_each_device(mtd)
  510. new->add(mtd);
  511. mutex_unlock(&mtd_table_mutex);
  512. }
  513. EXPORT_SYMBOL_GPL(register_mtd_user);
  514. /**
  515. * unregister_mtd_user - unregister a 'user' of MTD devices.
  516. * @old: pointer to notifier info structure
  517. *
  518. * Removes a callback function pair from the list of 'users' to be
  519. * notified upon addition or removal of MTD devices. Causes the
  520. * 'remove' callback to be immediately invoked for each MTD device
  521. * currently present in the system.
  522. */
  523. int unregister_mtd_user (struct mtd_notifier *old)
  524. {
  525. struct mtd_info *mtd;
  526. mutex_lock(&mtd_table_mutex);
  527. module_put(THIS_MODULE);
  528. mtd_for_each_device(mtd)
  529. old->remove(mtd);
  530. list_del(&old->list);
  531. mutex_unlock(&mtd_table_mutex);
  532. return 0;
  533. }
  534. EXPORT_SYMBOL_GPL(unregister_mtd_user);
  535. /**
  536. * get_mtd_device - obtain a validated handle for an MTD device
  537. * @mtd: last known address of the required MTD device
  538. * @num: internal device number of the required MTD device
  539. *
  540. * Given a number and NULL address, return the num'th entry in the device
  541. * table, if any. Given an address and num == -1, search the device table
  542. * for a device with that address and return if it's still present. Given
  543. * both, return the num'th driver only if its address matches. Return
  544. * error code if not.
  545. */
  546. struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
  547. {
  548. struct mtd_info *ret = NULL, *other;
  549. int err = -ENODEV;
  550. mutex_lock(&mtd_table_mutex);
  551. if (num == -1) {
  552. mtd_for_each_device(other) {
  553. if (other == mtd) {
  554. ret = mtd;
  555. break;
  556. }
  557. }
  558. } else if (num >= 0) {
  559. ret = idr_find(&mtd_idr, num);
  560. if (mtd && mtd != ret)
  561. ret = NULL;
  562. }
  563. if (!ret) {
  564. ret = ERR_PTR(err);
  565. goto out;
  566. }
  567. err = __get_mtd_device(ret);
  568. if (err)
  569. ret = ERR_PTR(err);
  570. out:
  571. mutex_unlock(&mtd_table_mutex);
  572. return ret;
  573. }
  574. EXPORT_SYMBOL_GPL(get_mtd_device);
  575. int __get_mtd_device(struct mtd_info *mtd)
  576. {
  577. int err;
  578. if (!try_module_get(mtd->owner))
  579. return -ENODEV;
  580. if (mtd->_get_device) {
  581. err = mtd->_get_device(mtd);
  582. if (err) {
  583. module_put(mtd->owner);
  584. return err;
  585. }
  586. }
  587. mtd->usecount++;
  588. return 0;
  589. }
  590. EXPORT_SYMBOL_GPL(__get_mtd_device);
  591. /**
  592. * get_mtd_device_nm - obtain a validated handle for an MTD device by
  593. * device name
  594. * @name: MTD device name to open
  595. *
  596. * This function returns MTD device description structure in case of
  597. * success and an error code in case of failure.
  598. */
  599. struct mtd_info *get_mtd_device_nm(const char *name)
  600. {
  601. int err = -ENODEV;
  602. struct mtd_info *mtd = NULL, *other;
  603. mutex_lock(&mtd_table_mutex);
  604. mtd_for_each_device(other) {
  605. if (!strcmp(name, other->name)) {
  606. mtd = other;
  607. break;
  608. }
  609. }
  610. if (!mtd)
  611. goto out_unlock;
  612. err = __get_mtd_device(mtd);
  613. if (err)
  614. goto out_unlock;
  615. mutex_unlock(&mtd_table_mutex);
  616. return mtd;
  617. out_unlock:
  618. mutex_unlock(&mtd_table_mutex);
  619. return ERR_PTR(err);
  620. }
  621. EXPORT_SYMBOL_GPL(get_mtd_device_nm);
  622. void put_mtd_device(struct mtd_info *mtd)
  623. {
  624. mutex_lock(&mtd_table_mutex);
  625. __put_mtd_device(mtd);
  626. mutex_unlock(&mtd_table_mutex);
  627. }
  628. EXPORT_SYMBOL_GPL(put_mtd_device);
  629. void __put_mtd_device(struct mtd_info *mtd)
  630. {
  631. --mtd->usecount;
  632. BUG_ON(mtd->usecount < 0);
  633. if (mtd->_put_device)
  634. mtd->_put_device(mtd);
  635. module_put(mtd->owner);
  636. }
  637. EXPORT_SYMBOL_GPL(__put_mtd_device);
  638. /*
  639. * Erase is an asynchronous operation. Device drivers are supposed
  640. * to call instr->callback() whenever the operation completes, even
  641. * if it completes with a failure.
  642. * Callers are supposed to pass a callback function and wait for it
  643. * to be called before writing to the block.
  644. */
  645. int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
  646. {
  647. if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
  648. return -EINVAL;
  649. if (!(mtd->flags & MTD_WRITEABLE))
  650. return -EROFS;
  651. instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
  652. if (!instr->len) {
  653. instr->state = MTD_ERASE_DONE;
  654. mtd_erase_callback(instr);
  655. return 0;
  656. }
  657. return mtd->_erase(mtd, instr);
  658. }
  659. EXPORT_SYMBOL_GPL(mtd_erase);
  660. /*
  661. * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
  662. */
  663. int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
  664. void **virt, resource_size_t *phys)
  665. {
  666. *retlen = 0;
  667. *virt = NULL;
  668. if (phys)
  669. *phys = 0;
  670. if (!mtd->_point)
  671. return -EOPNOTSUPP;
  672. if (from < 0 || from > mtd->size || len > mtd->size - from)
  673. return -EINVAL;
  674. if (!len)
  675. return 0;
  676. return mtd->_point(mtd, from, len, retlen, virt, phys);
  677. }
  678. EXPORT_SYMBOL_GPL(mtd_point);
  679. /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
  680. int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  681. {
  682. if (!mtd->_point)
  683. return -EOPNOTSUPP;
  684. if (from < 0 || from > mtd->size || len > mtd->size - from)
  685. return -EINVAL;
  686. if (!len)
  687. return 0;
  688. return mtd->_unpoint(mtd, from, len);
  689. }
  690. EXPORT_SYMBOL_GPL(mtd_unpoint);
  691. /*
  692. * Allow NOMMU mmap() to directly map the device (if not NULL)
  693. * - return the address to which the offset maps
  694. * - return -ENOSYS to indicate refusal to do the mapping
  695. */
  696. unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
  697. unsigned long offset, unsigned long flags)
  698. {
  699. if (!mtd->_get_unmapped_area)
  700. return -EOPNOTSUPP;
  701. if (offset > mtd->size || len > mtd->size - offset)
  702. return -EINVAL;
  703. return mtd->_get_unmapped_area(mtd, len, offset, flags);
  704. }
  705. EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
  706. int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
  707. u_char *buf)
  708. {
  709. int ret_code;
  710. *retlen = 0;
  711. if (from < 0 || from > mtd->size || len > mtd->size - from)
  712. return -EINVAL;
  713. if (!len)
  714. return 0;
  715. /*
  716. * In the absence of an error, drivers return a non-negative integer
  717. * representing the maximum number of bitflips that were corrected on
  718. * any one ecc region (if applicable; zero otherwise).
  719. */
  720. ret_code = mtd->_read(mtd, from, len, retlen, buf);
  721. if (unlikely(ret_code < 0))
  722. return ret_code;
  723. if (mtd->ecc_strength == 0)
  724. return 0; /* device lacks ecc */
  725. return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
  726. }
  727. EXPORT_SYMBOL_GPL(mtd_read);
  728. int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
  729. const u_char *buf)
  730. {
  731. *retlen = 0;
  732. if (to < 0 || to > mtd->size || len > mtd->size - to)
  733. return -EINVAL;
  734. if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
  735. return -EROFS;
  736. if (!len)
  737. return 0;
  738. return mtd->_write(mtd, to, len, retlen, buf);
  739. }
  740. EXPORT_SYMBOL_GPL(mtd_write);
  741. /*
  742. * In blackbox flight recorder like scenarios we want to make successful writes
  743. * in interrupt context. panic_write() is only intended to be called when its
  744. * known the kernel is about to panic and we need the write to succeed. Since
  745. * the kernel is not going to be running for much longer, this function can
  746. * break locks and delay to ensure the write succeeds (but not sleep).
  747. */
  748. int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
  749. const u_char *buf)
  750. {
  751. *retlen = 0;
  752. if (!mtd->_panic_write)
  753. return -EOPNOTSUPP;
  754. if (to < 0 || to > mtd->size || len > mtd->size - to)
  755. return -EINVAL;
  756. if (!(mtd->flags & MTD_WRITEABLE))
  757. return -EROFS;
  758. if (!len)
  759. return 0;
  760. return mtd->_panic_write(mtd, to, len, retlen, buf);
  761. }
  762. EXPORT_SYMBOL_GPL(mtd_panic_write);
  763. int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
  764. {
  765. int ret_code;
  766. ops->retlen = ops->oobretlen = 0;
  767. if (!mtd->_read_oob)
  768. return -EOPNOTSUPP;
  769. /*
  770. * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
  771. * similar to mtd->_read(), returning a non-negative integer
  772. * representing max bitflips. In other cases, mtd->_read_oob() may
  773. * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
  774. */
  775. ret_code = mtd->_read_oob(mtd, from, ops);
  776. if (unlikely(ret_code < 0))
  777. return ret_code;
  778. if (mtd->ecc_strength == 0)
  779. return 0; /* device lacks ecc */
  780. return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
  781. }
  782. EXPORT_SYMBOL_GPL(mtd_read_oob);
  783. /*
  784. * Method to access the protection register area, present in some flash
  785. * devices. The user data is one time programmable but the factory data is read
  786. * only.
  787. */
  788. int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
  789. struct otp_info *buf)
  790. {
  791. if (!mtd->_get_fact_prot_info)
  792. return -EOPNOTSUPP;
  793. if (!len)
  794. return 0;
  795. return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
  796. }
  797. EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
  798. int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
  799. size_t *retlen, u_char *buf)
  800. {
  801. *retlen = 0;
  802. if (!mtd->_read_fact_prot_reg)
  803. return -EOPNOTSUPP;
  804. if (!len)
  805. return 0;
  806. return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
  807. }
  808. EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
  809. int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
  810. struct otp_info *buf)
  811. {
  812. if (!mtd->_get_user_prot_info)
  813. return -EOPNOTSUPP;
  814. if (!len)
  815. return 0;
  816. return mtd->_get_user_prot_info(mtd, len, retlen, buf);
  817. }
  818. EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
  819. int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
  820. size_t *retlen, u_char *buf)
  821. {
  822. *retlen = 0;
  823. if (!mtd->_read_user_prot_reg)
  824. return -EOPNOTSUPP;
  825. if (!len)
  826. return 0;
  827. return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
  828. }
  829. EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
  830. int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
  831. size_t *retlen, u_char *buf)
  832. {
  833. int ret;
  834. *retlen = 0;
  835. if (!mtd->_write_user_prot_reg)
  836. return -EOPNOTSUPP;
  837. if (!len)
  838. return 0;
  839. ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
  840. if (ret)
  841. return ret;
  842. /*
  843. * If no data could be written at all, we are out of memory and
  844. * must return -ENOSPC.
  845. */
  846. return (*retlen) ? 0 : -ENOSPC;
  847. }
  848. EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
  849. int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
  850. {
  851. if (!mtd->_lock_user_prot_reg)
  852. return -EOPNOTSUPP;
  853. if (!len)
  854. return 0;
  855. return mtd->_lock_user_prot_reg(mtd, from, len);
  856. }
  857. EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
  858. /* Chip-supported device locking */
  859. int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  860. {
  861. if (!mtd->_lock)
  862. return -EOPNOTSUPP;
  863. if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
  864. return -EINVAL;
  865. if (!len)
  866. return 0;
  867. return mtd->_lock(mtd, ofs, len);
  868. }
  869. EXPORT_SYMBOL_GPL(mtd_lock);
  870. int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  871. {
  872. if (!mtd->_unlock)
  873. return -EOPNOTSUPP;
  874. if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
  875. return -EINVAL;
  876. if (!len)
  877. return 0;
  878. return mtd->_unlock(mtd, ofs, len);
  879. }
  880. EXPORT_SYMBOL_GPL(mtd_unlock);
  881. int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  882. {
  883. if (!mtd->_is_locked)
  884. return -EOPNOTSUPP;
  885. if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
  886. return -EINVAL;
  887. if (!len)
  888. return 0;
  889. return mtd->_is_locked(mtd, ofs, len);
  890. }
  891. EXPORT_SYMBOL_GPL(mtd_is_locked);
  892. int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
  893. {
  894. if (ofs < 0 || ofs > mtd->size)
  895. return -EINVAL;
  896. if (!mtd->_block_isreserved)
  897. return 0;
  898. return mtd->_block_isreserved(mtd, ofs);
  899. }
  900. EXPORT_SYMBOL_GPL(mtd_block_isreserved);
  901. int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
  902. {
  903. if (ofs < 0 || ofs > mtd->size)
  904. return -EINVAL;
  905. if (!mtd->_block_isbad)
  906. return 0;
  907. return mtd->_block_isbad(mtd, ofs);
  908. }
  909. EXPORT_SYMBOL_GPL(mtd_block_isbad);
  910. int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
  911. {
  912. if (!mtd->_block_markbad)
  913. return -EOPNOTSUPP;
  914. if (ofs < 0 || ofs > mtd->size)
  915. return -EINVAL;
  916. if (!(mtd->flags & MTD_WRITEABLE))
  917. return -EROFS;
  918. return mtd->_block_markbad(mtd, ofs);
  919. }
  920. EXPORT_SYMBOL_GPL(mtd_block_markbad);
  921. /*
  922. * default_mtd_writev - the default writev method
  923. * @mtd: mtd device description object pointer
  924. * @vecs: the vectors to write
  925. * @count: count of vectors in @vecs
  926. * @to: the MTD device offset to write to
  927. * @retlen: on exit contains the count of bytes written to the MTD device.
  928. *
  929. * This function returns zero in case of success and a negative error code in
  930. * case of failure.
  931. */
  932. static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
  933. unsigned long count, loff_t to, size_t *retlen)
  934. {
  935. unsigned long i;
  936. size_t totlen = 0, thislen;
  937. int ret = 0;
  938. for (i = 0; i < count; i++) {
  939. if (!vecs[i].iov_len)
  940. continue;
  941. ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
  942. vecs[i].iov_base);
  943. totlen += thislen;
  944. if (ret || thislen != vecs[i].iov_len)
  945. break;
  946. to += vecs[i].iov_len;
  947. }
  948. *retlen = totlen;
  949. return ret;
  950. }
  951. /*
  952. * mtd_writev - the vector-based MTD write method
  953. * @mtd: mtd device description object pointer
  954. * @vecs: the vectors to write
  955. * @count: count of vectors in @vecs
  956. * @to: the MTD device offset to write to
  957. * @retlen: on exit contains the count of bytes written to the MTD device.
  958. *
  959. * This function returns zero in case of success and a negative error code in
  960. * case of failure.
  961. */
  962. int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
  963. unsigned long count, loff_t to, size_t *retlen)
  964. {
  965. *retlen = 0;
  966. if (!(mtd->flags & MTD_WRITEABLE))
  967. return -EROFS;
  968. if (!mtd->_writev)
  969. return default_mtd_writev(mtd, vecs, count, to, retlen);
  970. return mtd->_writev(mtd, vecs, count, to, retlen);
  971. }
  972. EXPORT_SYMBOL_GPL(mtd_writev);
  973. /**
  974. * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
  975. * @mtd: mtd device description object pointer
  976. * @size: a pointer to the ideal or maximum size of the allocation, points
  977. * to the actual allocation size on success.
  978. *
  979. * This routine attempts to allocate a contiguous kernel buffer up to
  980. * the specified size, backing off the size of the request exponentially
  981. * until the request succeeds or until the allocation size falls below
  982. * the system page size. This attempts to make sure it does not adversely
  983. * impact system performance, so when allocating more than one page, we
  984. * ask the memory allocator to avoid re-trying, swapping, writing back
  985. * or performing I/O.
  986. *
  987. * Note, this function also makes sure that the allocated buffer is aligned to
  988. * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
  989. *
  990. * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
  991. * to handle smaller (i.e. degraded) buffer allocations under low- or
  992. * fragmented-memory situations where such reduced allocations, from a
  993. * requested ideal, are allowed.
  994. *
  995. * Returns a pointer to the allocated buffer on success; otherwise, NULL.
  996. */
  997. void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
  998. {
  999. gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
  1000. __GFP_NORETRY | __GFP_NO_KSWAPD;
  1001. size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
  1002. void *kbuf;
  1003. *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
  1004. while (*size > min_alloc) {
  1005. kbuf = kmalloc(*size, flags);
  1006. if (kbuf)
  1007. return kbuf;
  1008. *size >>= 1;
  1009. *size = ALIGN(*size, mtd->writesize);
  1010. }
  1011. /*
  1012. * For the last resort allocation allow 'kmalloc()' to do all sorts of
  1013. * things (write-back, dropping caches, etc) by using GFP_KERNEL.
  1014. */
  1015. return kmalloc(*size, GFP_KERNEL);
  1016. }
  1017. EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
  1018. #ifdef CONFIG_PROC_FS
  1019. /*====================================================================*/
  1020. /* Support for /proc/mtd */
  1021. static int mtd_proc_show(struct seq_file *m, void *v)
  1022. {
  1023. struct mtd_info *mtd;
  1024. seq_puts(m, "dev: size erasesize name\n");
  1025. mutex_lock(&mtd_table_mutex);
  1026. mtd_for_each_device(mtd) {
  1027. seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
  1028. mtd->index, (unsigned long long)mtd->size,
  1029. mtd->erasesize, mtd->name);
  1030. }
  1031. mutex_unlock(&mtd_table_mutex);
  1032. return 0;
  1033. }
  1034. static int mtd_proc_open(struct inode *inode, struct file *file)
  1035. {
  1036. return single_open(file, mtd_proc_show, NULL);
  1037. }
  1038. static const struct file_operations mtd_proc_ops = {
  1039. .open = mtd_proc_open,
  1040. .read = seq_read,
  1041. .llseek = seq_lseek,
  1042. .release = single_release,
  1043. };
  1044. #endif /* CONFIG_PROC_FS */
  1045. /*====================================================================*/
  1046. /* Init code */
  1047. static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
  1048. {
  1049. int ret;
  1050. ret = bdi_init(bdi);
  1051. if (!ret)
  1052. ret = bdi_register(bdi, NULL, "%s", name);
  1053. if (ret)
  1054. bdi_destroy(bdi);
  1055. return ret;
  1056. }
  1057. static struct proc_dir_entry *proc_mtd;
  1058. static int __init init_mtd(void)
  1059. {
  1060. int ret;
  1061. ret = class_register(&mtd_class);
  1062. if (ret)
  1063. goto err_reg;
  1064. ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
  1065. if (ret)
  1066. goto err_bdi1;
  1067. ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
  1068. if (ret)
  1069. goto err_bdi2;
  1070. ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
  1071. if (ret)
  1072. goto err_bdi3;
  1073. proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
  1074. ret = init_mtdchar();
  1075. if (ret)
  1076. goto out_procfs;
  1077. return 0;
  1078. out_procfs:
  1079. if (proc_mtd)
  1080. remove_proc_entry("mtd", NULL);
  1081. err_bdi3:
  1082. bdi_destroy(&mtd_bdi_ro_mappable);
  1083. err_bdi2:
  1084. bdi_destroy(&mtd_bdi_unmappable);
  1085. err_bdi1:
  1086. class_unregister(&mtd_class);
  1087. err_reg:
  1088. pr_err("Error registering mtd class or bdi: %d\n", ret);
  1089. return ret;
  1090. }
  1091. static void __exit cleanup_mtd(void)
  1092. {
  1093. cleanup_mtdchar();
  1094. if (proc_mtd)
  1095. remove_proc_entry("mtd", NULL);
  1096. class_unregister(&mtd_class);
  1097. bdi_destroy(&mtd_bdi_unmappable);
  1098. bdi_destroy(&mtd_bdi_ro_mappable);
  1099. bdi_destroy(&mtd_bdi_rw_mappable);
  1100. }
  1101. module_init(init_mtd);
  1102. module_exit(cleanup_mtd);
  1103. MODULE_LICENSE("GPL");
  1104. MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
  1105. MODULE_DESCRIPTION("Core MTD registration and access routines");