ttm_page_alloc.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936
  1. /*
  2. * Copyright (c) Red Hat Inc.
  3. * Permission is hereby granted, free of charge, to any person obtaining a
  4. * copy of this software and associated documentation files (the "Software"),
  5. * to deal in the Software without restriction, including without limitation
  6. * the rights to use, copy, modify, merge, publish, distribute, sub license,
  7. * and/or sell copies of the Software, and to permit persons to whom the
  8. * Software is furnished to do so, subject to the following conditions:
  9. *
  10. * The above copyright notice and this permission notice (including the
  11. * next paragraph) shall be included in all copies or substantial portions
  12. * of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  17. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  20. * DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Dave Airlie <airlied@redhat.com>
  23. * Jerome Glisse <jglisse@redhat.com>
  24. * Pauli Nieminen <suokkos@gmail.com>
  25. */
  26. /* simple list based uncached page pool
  27. * - Pool collects resently freed pages for reuse
  28. * - Use page->lru to keep a free list
  29. * - doesn't track currently in use pages
  30. */
  31. #define pr_fmt(fmt) "[TTM] " fmt
  32. #include <linux/list.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/highmem.h>
  35. #include <linux/mm_types.h>
  36. #include <linux/module.h>
  37. #include <linux/mm.h>
  38. #include <linux/seq_file.h> /* for seq_printf */
  39. #include <linux/slab.h>
  40. #include <linux/dma-mapping.h>
  41. #include <linux/atomic.h>
  42. #include <drm/ttm/ttm_bo_driver.h>
  43. #include <drm/ttm/ttm_page_alloc.h>
  44. #ifdef TTM_HAS_AGP
  45. #include <asm/agp.h>
  46. #endif
  47. #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
  48. #define SMALL_ALLOCATION 16
  49. #define FREE_ALL_PAGES (~0U)
  50. /* times are in msecs */
  51. #define PAGE_FREE_INTERVAL 1000
  52. /**
  53. * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
  54. *
  55. * @lock: Protects the shared pool from concurrnet access. Must be used with
  56. * irqsave/irqrestore variants because pool allocator maybe called from
  57. * delayed work.
  58. * @fill_lock: Prevent concurrent calls to fill.
  59. * @list: Pool of free uc/wc pages for fast reuse.
  60. * @gfp_flags: Flags to pass for alloc_page.
  61. * @npages: Number of pages in pool.
  62. */
  63. struct ttm_page_pool {
  64. spinlock_t lock;
  65. bool fill_lock;
  66. struct list_head list;
  67. gfp_t gfp_flags;
  68. unsigned npages;
  69. char *name;
  70. unsigned long nfrees;
  71. unsigned long nrefills;
  72. };
  73. /**
  74. * Limits for the pool. They are handled without locks because only place where
  75. * they may change is in sysfs store. They won't have immediate effect anyway
  76. * so forcing serialization to access them is pointless.
  77. */
  78. struct ttm_pool_opts {
  79. unsigned alloc_size;
  80. unsigned max_size;
  81. unsigned small;
  82. };
  83. #define NUM_POOLS 4
  84. /**
  85. * struct ttm_pool_manager - Holds memory pools for fst allocation
  86. *
  87. * Manager is read only object for pool code so it doesn't need locking.
  88. *
  89. * @free_interval: minimum number of jiffies between freeing pages from pool.
  90. * @page_alloc_inited: reference counting for pool allocation.
  91. * @work: Work that is used to shrink the pool. Work is only run when there is
  92. * some pages to free.
  93. * @small_allocation: Limit in number of pages what is small allocation.
  94. *
  95. * @pools: All pool objects in use.
  96. **/
  97. struct ttm_pool_manager {
  98. struct kobject kobj;
  99. struct shrinker mm_shrink;
  100. struct ttm_pool_opts options;
  101. union {
  102. struct ttm_page_pool pools[NUM_POOLS];
  103. struct {
  104. struct ttm_page_pool wc_pool;
  105. struct ttm_page_pool uc_pool;
  106. struct ttm_page_pool wc_pool_dma32;
  107. struct ttm_page_pool uc_pool_dma32;
  108. } ;
  109. };
  110. };
  111. static struct attribute ttm_page_pool_max = {
  112. .name = "pool_max_size",
  113. .mode = S_IRUGO | S_IWUSR
  114. };
  115. static struct attribute ttm_page_pool_small = {
  116. .name = "pool_small_allocation",
  117. .mode = S_IRUGO | S_IWUSR
  118. };
  119. static struct attribute ttm_page_pool_alloc_size = {
  120. .name = "pool_allocation_size",
  121. .mode = S_IRUGO | S_IWUSR
  122. };
  123. static struct attribute *ttm_pool_attrs[] = {
  124. &ttm_page_pool_max,
  125. &ttm_page_pool_small,
  126. &ttm_page_pool_alloc_size,
  127. NULL
  128. };
  129. static void ttm_pool_kobj_release(struct kobject *kobj)
  130. {
  131. struct ttm_pool_manager *m =
  132. container_of(kobj, struct ttm_pool_manager, kobj);
  133. kfree(m);
  134. }
  135. static ssize_t ttm_pool_store(struct kobject *kobj,
  136. struct attribute *attr, const char *buffer, size_t size)
  137. {
  138. struct ttm_pool_manager *m =
  139. container_of(kobj, struct ttm_pool_manager, kobj);
  140. int chars;
  141. unsigned val;
  142. chars = sscanf(buffer, "%u", &val);
  143. if (chars == 0)
  144. return size;
  145. /* Convert kb to number of pages */
  146. val = val / (PAGE_SIZE >> 10);
  147. if (attr == &ttm_page_pool_max)
  148. m->options.max_size = val;
  149. else if (attr == &ttm_page_pool_small)
  150. m->options.small = val;
  151. else if (attr == &ttm_page_pool_alloc_size) {
  152. if (val > NUM_PAGES_TO_ALLOC*8) {
  153. pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
  154. NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
  155. NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
  156. return size;
  157. } else if (val > NUM_PAGES_TO_ALLOC) {
  158. pr_warn("Setting allocation size to larger than %lu is not recommended\n",
  159. NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
  160. }
  161. m->options.alloc_size = val;
  162. }
  163. return size;
  164. }
  165. static ssize_t ttm_pool_show(struct kobject *kobj,
  166. struct attribute *attr, char *buffer)
  167. {
  168. struct ttm_pool_manager *m =
  169. container_of(kobj, struct ttm_pool_manager, kobj);
  170. unsigned val = 0;
  171. if (attr == &ttm_page_pool_max)
  172. val = m->options.max_size;
  173. else if (attr == &ttm_page_pool_small)
  174. val = m->options.small;
  175. else if (attr == &ttm_page_pool_alloc_size)
  176. val = m->options.alloc_size;
  177. val = val * (PAGE_SIZE >> 10);
  178. return snprintf(buffer, PAGE_SIZE, "%u\n", val);
  179. }
  180. static const struct sysfs_ops ttm_pool_sysfs_ops = {
  181. .show = &ttm_pool_show,
  182. .store = &ttm_pool_store,
  183. };
  184. static struct kobj_type ttm_pool_kobj_type = {
  185. .release = &ttm_pool_kobj_release,
  186. .sysfs_ops = &ttm_pool_sysfs_ops,
  187. .default_attrs = ttm_pool_attrs,
  188. };
  189. static struct ttm_pool_manager *_manager;
  190. #ifndef CONFIG_X86
  191. static int set_pages_array_wb(struct page **pages, int addrinarray)
  192. {
  193. #ifdef TTM_HAS_AGP
  194. int i;
  195. for (i = 0; i < addrinarray; i++)
  196. unmap_page_from_agp(pages[i]);
  197. #endif
  198. return 0;
  199. }
  200. static int set_pages_array_wc(struct page **pages, int addrinarray)
  201. {
  202. #ifdef TTM_HAS_AGP
  203. int i;
  204. for (i = 0; i < addrinarray; i++)
  205. map_page_into_agp(pages[i]);
  206. #endif
  207. return 0;
  208. }
  209. static int set_pages_array_uc(struct page **pages, int addrinarray)
  210. {
  211. #ifdef TTM_HAS_AGP
  212. int i;
  213. for (i = 0; i < addrinarray; i++)
  214. map_page_into_agp(pages[i]);
  215. #endif
  216. return 0;
  217. }
  218. #endif
  219. /**
  220. * Select the right pool or requested caching state and ttm flags. */
  221. static struct ttm_page_pool *ttm_get_pool(int flags,
  222. enum ttm_caching_state cstate)
  223. {
  224. int pool_index;
  225. if (cstate == tt_cached)
  226. return NULL;
  227. if (cstate == tt_wc)
  228. pool_index = 0x0;
  229. else
  230. pool_index = 0x1;
  231. if (flags & TTM_PAGE_FLAG_DMA32)
  232. pool_index |= 0x2;
  233. return &_manager->pools[pool_index];
  234. }
  235. /* set memory back to wb and free the pages. */
  236. static void ttm_pages_put(struct page *pages[], unsigned npages)
  237. {
  238. unsigned i;
  239. if (set_pages_array_wb(pages, npages))
  240. pr_err("Failed to set %d pages to wb!\n", npages);
  241. for (i = 0; i < npages; ++i)
  242. __free_page(pages[i]);
  243. }
  244. static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
  245. unsigned freed_pages)
  246. {
  247. pool->npages -= freed_pages;
  248. pool->nfrees += freed_pages;
  249. }
  250. /**
  251. * Free pages from pool.
  252. *
  253. * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
  254. * number of pages in one go.
  255. *
  256. * @pool: to free the pages from
  257. * @free_all: If set to true will free all pages in pool
  258. * @gfp: GFP flags.
  259. **/
  260. static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free,
  261. gfp_t gfp)
  262. {
  263. unsigned long irq_flags;
  264. struct page *p;
  265. struct page **pages_to_free;
  266. unsigned freed_pages = 0,
  267. npages_to_free = nr_free;
  268. if (NUM_PAGES_TO_ALLOC < nr_free)
  269. npages_to_free = NUM_PAGES_TO_ALLOC;
  270. pages_to_free = kmalloc(npages_to_free * sizeof(struct page *), gfp);
  271. if (!pages_to_free) {
  272. pr_err("Failed to allocate memory for pool free operation\n");
  273. return 0;
  274. }
  275. restart:
  276. spin_lock_irqsave(&pool->lock, irq_flags);
  277. list_for_each_entry_reverse(p, &pool->list, lru) {
  278. if (freed_pages >= npages_to_free)
  279. break;
  280. pages_to_free[freed_pages++] = p;
  281. /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
  282. if (freed_pages >= NUM_PAGES_TO_ALLOC) {
  283. /* remove range of pages from the pool */
  284. __list_del(p->lru.prev, &pool->list);
  285. ttm_pool_update_free_locked(pool, freed_pages);
  286. /**
  287. * Because changing page caching is costly
  288. * we unlock the pool to prevent stalling.
  289. */
  290. spin_unlock_irqrestore(&pool->lock, irq_flags);
  291. ttm_pages_put(pages_to_free, freed_pages);
  292. if (likely(nr_free != FREE_ALL_PAGES))
  293. nr_free -= freed_pages;
  294. if (NUM_PAGES_TO_ALLOC >= nr_free)
  295. npages_to_free = nr_free;
  296. else
  297. npages_to_free = NUM_PAGES_TO_ALLOC;
  298. freed_pages = 0;
  299. /* free all so restart the processing */
  300. if (nr_free)
  301. goto restart;
  302. /* Not allowed to fall through or break because
  303. * following context is inside spinlock while we are
  304. * outside here.
  305. */
  306. goto out;
  307. }
  308. }
  309. /* remove range of pages from the pool */
  310. if (freed_pages) {
  311. __list_del(&p->lru, &pool->list);
  312. ttm_pool_update_free_locked(pool, freed_pages);
  313. nr_free -= freed_pages;
  314. }
  315. spin_unlock_irqrestore(&pool->lock, irq_flags);
  316. if (freed_pages)
  317. ttm_pages_put(pages_to_free, freed_pages);
  318. out:
  319. kfree(pages_to_free);
  320. return nr_free;
  321. }
  322. /**
  323. * Callback for mm to request pool to reduce number of page held.
  324. *
  325. * XXX: (dchinner) Deadlock warning!
  326. *
  327. * We need to pass sc->gfp_mask to ttm_page_pool_free().
  328. *
  329. * This code is crying out for a shrinker per pool....
  330. */
  331. static unsigned long
  332. ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
  333. {
  334. static DEFINE_MUTEX(lock);
  335. static unsigned start_pool;
  336. unsigned i;
  337. unsigned pool_offset;
  338. struct ttm_page_pool *pool;
  339. int shrink_pages = sc->nr_to_scan;
  340. unsigned long freed = 0;
  341. if (!mutex_trylock(&lock))
  342. return SHRINK_STOP;
  343. pool_offset = ++start_pool % NUM_POOLS;
  344. /* select start pool in round robin fashion */
  345. for (i = 0; i < NUM_POOLS; ++i) {
  346. unsigned nr_free = shrink_pages;
  347. if (shrink_pages == 0)
  348. break;
  349. pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
  350. shrink_pages = ttm_page_pool_free(pool, nr_free,
  351. sc->gfp_mask);
  352. freed += nr_free - shrink_pages;
  353. }
  354. mutex_unlock(&lock);
  355. return freed;
  356. }
  357. static unsigned long
  358. ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
  359. {
  360. unsigned i;
  361. unsigned long count = 0;
  362. for (i = 0; i < NUM_POOLS; ++i)
  363. count += _manager->pools[i].npages;
  364. return count;
  365. }
  366. static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
  367. {
  368. manager->mm_shrink.count_objects = ttm_pool_shrink_count;
  369. manager->mm_shrink.scan_objects = ttm_pool_shrink_scan;
  370. manager->mm_shrink.seeks = 1;
  371. register_shrinker(&manager->mm_shrink);
  372. }
  373. static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
  374. {
  375. unregister_shrinker(&manager->mm_shrink);
  376. }
  377. static int ttm_set_pages_caching(struct page **pages,
  378. enum ttm_caching_state cstate, unsigned cpages)
  379. {
  380. int r = 0;
  381. /* Set page caching */
  382. switch (cstate) {
  383. case tt_uncached:
  384. r = set_pages_array_uc(pages, cpages);
  385. if (r)
  386. pr_err("Failed to set %d pages to uc!\n", cpages);
  387. break;
  388. case tt_wc:
  389. r = set_pages_array_wc(pages, cpages);
  390. if (r)
  391. pr_err("Failed to set %d pages to wc!\n", cpages);
  392. break;
  393. default:
  394. break;
  395. }
  396. return r;
  397. }
  398. /**
  399. * Free pages the pages that failed to change the caching state. If there is
  400. * any pages that have changed their caching state already put them to the
  401. * pool.
  402. */
  403. static void ttm_handle_caching_state_failure(struct list_head *pages,
  404. int ttm_flags, enum ttm_caching_state cstate,
  405. struct page **failed_pages, unsigned cpages)
  406. {
  407. unsigned i;
  408. /* Failed pages have to be freed */
  409. for (i = 0; i < cpages; ++i) {
  410. list_del(&failed_pages[i]->lru);
  411. __free_page(failed_pages[i]);
  412. }
  413. }
  414. /**
  415. * Allocate new pages with correct caching.
  416. *
  417. * This function is reentrant if caller updates count depending on number of
  418. * pages returned in pages array.
  419. */
  420. static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
  421. int ttm_flags, enum ttm_caching_state cstate, unsigned count)
  422. {
  423. struct page **caching_array;
  424. struct page *p;
  425. int r = 0;
  426. unsigned i, cpages;
  427. unsigned max_cpages = min(count,
  428. (unsigned)(PAGE_SIZE/sizeof(struct page *)));
  429. /* allocate array for page caching change */
  430. caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
  431. if (!caching_array) {
  432. pr_err("Unable to allocate table for new pages\n");
  433. return -ENOMEM;
  434. }
  435. for (i = 0, cpages = 0; i < count; ++i) {
  436. p = alloc_page(gfp_flags);
  437. if (!p) {
  438. pr_err("Unable to get page %u\n", i);
  439. /* store already allocated pages in the pool after
  440. * setting the caching state */
  441. if (cpages) {
  442. r = ttm_set_pages_caching(caching_array,
  443. cstate, cpages);
  444. if (r)
  445. ttm_handle_caching_state_failure(pages,
  446. ttm_flags, cstate,
  447. caching_array, cpages);
  448. }
  449. r = -ENOMEM;
  450. goto out;
  451. }
  452. #ifdef CONFIG_HIGHMEM
  453. /* gfp flags of highmem page should never be dma32 so we
  454. * we should be fine in such case
  455. */
  456. if (!PageHighMem(p))
  457. #endif
  458. {
  459. caching_array[cpages++] = p;
  460. if (cpages == max_cpages) {
  461. r = ttm_set_pages_caching(caching_array,
  462. cstate, cpages);
  463. if (r) {
  464. ttm_handle_caching_state_failure(pages,
  465. ttm_flags, cstate,
  466. caching_array, cpages);
  467. goto out;
  468. }
  469. cpages = 0;
  470. }
  471. }
  472. list_add(&p->lru, pages);
  473. }
  474. if (cpages) {
  475. r = ttm_set_pages_caching(caching_array, cstate, cpages);
  476. if (r)
  477. ttm_handle_caching_state_failure(pages,
  478. ttm_flags, cstate,
  479. caching_array, cpages);
  480. }
  481. out:
  482. kfree(caching_array);
  483. return r;
  484. }
  485. /**
  486. * Fill the given pool if there aren't enough pages and the requested number of
  487. * pages is small.
  488. */
  489. static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool,
  490. int ttm_flags, enum ttm_caching_state cstate, unsigned count,
  491. unsigned long *irq_flags)
  492. {
  493. struct page *p;
  494. int r;
  495. unsigned cpages = 0;
  496. /**
  497. * Only allow one pool fill operation at a time.
  498. * If pool doesn't have enough pages for the allocation new pages are
  499. * allocated from outside of pool.
  500. */
  501. if (pool->fill_lock)
  502. return;
  503. pool->fill_lock = true;
  504. /* If allocation request is small and there are not enough
  505. * pages in a pool we fill the pool up first. */
  506. if (count < _manager->options.small
  507. && count > pool->npages) {
  508. struct list_head new_pages;
  509. unsigned alloc_size = _manager->options.alloc_size;
  510. /**
  511. * Can't change page caching if in irqsave context. We have to
  512. * drop the pool->lock.
  513. */
  514. spin_unlock_irqrestore(&pool->lock, *irq_flags);
  515. INIT_LIST_HEAD(&new_pages);
  516. r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
  517. cstate, alloc_size);
  518. spin_lock_irqsave(&pool->lock, *irq_flags);
  519. if (!r) {
  520. list_splice(&new_pages, &pool->list);
  521. ++pool->nrefills;
  522. pool->npages += alloc_size;
  523. } else {
  524. pr_err("Failed to fill pool (%p)\n", pool);
  525. /* If we have any pages left put them to the pool. */
  526. list_for_each_entry(p, &pool->list, lru) {
  527. ++cpages;
  528. }
  529. list_splice(&new_pages, &pool->list);
  530. pool->npages += cpages;
  531. }
  532. }
  533. pool->fill_lock = false;
  534. }
  535. /**
  536. * Cut 'count' number of pages from the pool and put them on the return list.
  537. *
  538. * @return count of pages still required to fulfill the request.
  539. */
  540. static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool,
  541. struct list_head *pages,
  542. int ttm_flags,
  543. enum ttm_caching_state cstate,
  544. unsigned count)
  545. {
  546. unsigned long irq_flags;
  547. struct list_head *p;
  548. unsigned i;
  549. spin_lock_irqsave(&pool->lock, irq_flags);
  550. ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count, &irq_flags);
  551. if (count >= pool->npages) {
  552. /* take all pages from the pool */
  553. list_splice_init(&pool->list, pages);
  554. count -= pool->npages;
  555. pool->npages = 0;
  556. goto out;
  557. }
  558. /* find the last pages to include for requested number of pages. Split
  559. * pool to begin and halve it to reduce search space. */
  560. if (count <= pool->npages/2) {
  561. i = 0;
  562. list_for_each(p, &pool->list) {
  563. if (++i == count)
  564. break;
  565. }
  566. } else {
  567. i = pool->npages + 1;
  568. list_for_each_prev(p, &pool->list) {
  569. if (--i == count)
  570. break;
  571. }
  572. }
  573. /* Cut 'count' number of pages from the pool */
  574. list_cut_position(pages, &pool->list, p);
  575. pool->npages -= count;
  576. count = 0;
  577. out:
  578. spin_unlock_irqrestore(&pool->lock, irq_flags);
  579. return count;
  580. }
  581. /* Put all pages in pages list to correct pool to wait for reuse */
  582. static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
  583. enum ttm_caching_state cstate)
  584. {
  585. unsigned long irq_flags;
  586. struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
  587. unsigned i;
  588. if (pool == NULL) {
  589. /* No pool for this memory type so free the pages */
  590. for (i = 0; i < npages; i++) {
  591. if (pages[i]) {
  592. if (page_count(pages[i]) != 1)
  593. pr_err("Erroneous page count. Leaking pages.\n");
  594. __free_page(pages[i]);
  595. pages[i] = NULL;
  596. }
  597. }
  598. return;
  599. }
  600. spin_lock_irqsave(&pool->lock, irq_flags);
  601. for (i = 0; i < npages; i++) {
  602. if (pages[i]) {
  603. if (page_count(pages[i]) != 1)
  604. pr_err("Erroneous page count. Leaking pages.\n");
  605. list_add_tail(&pages[i]->lru, &pool->list);
  606. pages[i] = NULL;
  607. pool->npages++;
  608. }
  609. }
  610. /* Check that we don't go over the pool limit */
  611. npages = 0;
  612. if (pool->npages > _manager->options.max_size) {
  613. npages = pool->npages - _manager->options.max_size;
  614. /* free at least NUM_PAGES_TO_ALLOC number of pages
  615. * to reduce calls to set_memory_wb */
  616. if (npages < NUM_PAGES_TO_ALLOC)
  617. npages = NUM_PAGES_TO_ALLOC;
  618. }
  619. spin_unlock_irqrestore(&pool->lock, irq_flags);
  620. if (npages)
  621. ttm_page_pool_free(pool, npages, GFP_KERNEL);
  622. }
  623. /*
  624. * On success pages list will hold count number of correctly
  625. * cached pages.
  626. */
  627. static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
  628. enum ttm_caching_state cstate)
  629. {
  630. struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
  631. struct list_head plist;
  632. struct page *p = NULL;
  633. gfp_t gfp_flags = GFP_USER;
  634. unsigned count;
  635. int r;
  636. /* set zero flag for page allocation if required */
  637. if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
  638. gfp_flags |= __GFP_ZERO;
  639. /* No pool for cached pages */
  640. if (pool == NULL) {
  641. if (flags & TTM_PAGE_FLAG_DMA32)
  642. gfp_flags |= GFP_DMA32;
  643. else
  644. gfp_flags |= GFP_HIGHUSER;
  645. for (r = 0; r < npages; ++r) {
  646. p = alloc_page(gfp_flags);
  647. if (!p) {
  648. pr_err("Unable to allocate page\n");
  649. return -ENOMEM;
  650. }
  651. pages[r] = p;
  652. }
  653. return 0;
  654. }
  655. /* combine zero flag to pool flags */
  656. gfp_flags |= pool->gfp_flags;
  657. /* First we take pages from the pool */
  658. INIT_LIST_HEAD(&plist);
  659. npages = ttm_page_pool_get_pages(pool, &plist, flags, cstate, npages);
  660. count = 0;
  661. list_for_each_entry(p, &plist, lru) {
  662. pages[count++] = p;
  663. }
  664. /* clear the pages coming from the pool if requested */
  665. if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
  666. list_for_each_entry(p, &plist, lru) {
  667. if (PageHighMem(p))
  668. clear_highpage(p);
  669. else
  670. clear_page(page_address(p));
  671. }
  672. }
  673. /* If pool didn't have enough pages allocate new one. */
  674. if (npages > 0) {
  675. /* ttm_alloc_new_pages doesn't reference pool so we can run
  676. * multiple requests in parallel.
  677. **/
  678. INIT_LIST_HEAD(&plist);
  679. r = ttm_alloc_new_pages(&plist, gfp_flags, flags, cstate, npages);
  680. list_for_each_entry(p, &plist, lru) {
  681. pages[count++] = p;
  682. }
  683. if (r) {
  684. /* If there is any pages in the list put them back to
  685. * the pool. */
  686. pr_err("Failed to allocate extra pages for large request\n");
  687. ttm_put_pages(pages, count, flags, cstate);
  688. return r;
  689. }
  690. }
  691. return 0;
  692. }
  693. static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags,
  694. char *name)
  695. {
  696. spin_lock_init(&pool->lock);
  697. pool->fill_lock = false;
  698. INIT_LIST_HEAD(&pool->list);
  699. pool->npages = pool->nfrees = 0;
  700. pool->gfp_flags = flags;
  701. pool->name = name;
  702. }
  703. int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
  704. {
  705. int ret;
  706. WARN_ON(_manager);
  707. pr_info("Initializing pool allocator\n");
  708. _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
  709. ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc");
  710. ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc");
  711. ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
  712. GFP_USER | GFP_DMA32, "wc dma");
  713. ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
  714. GFP_USER | GFP_DMA32, "uc dma");
  715. _manager->options.max_size = max_pages;
  716. _manager->options.small = SMALL_ALLOCATION;
  717. _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
  718. ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
  719. &glob->kobj, "pool");
  720. if (unlikely(ret != 0)) {
  721. kobject_put(&_manager->kobj);
  722. _manager = NULL;
  723. return ret;
  724. }
  725. ttm_pool_mm_shrink_init(_manager);
  726. return 0;
  727. }
  728. void ttm_page_alloc_fini(void)
  729. {
  730. int i;
  731. pr_info("Finalizing pool allocator\n");
  732. ttm_pool_mm_shrink_fini(_manager);
  733. for (i = 0; i < NUM_POOLS; ++i)
  734. ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES,
  735. GFP_KERNEL);
  736. kobject_put(&_manager->kobj);
  737. _manager = NULL;
  738. }
  739. int ttm_pool_populate(struct ttm_tt *ttm)
  740. {
  741. struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
  742. unsigned i;
  743. int ret;
  744. if (ttm->state != tt_unpopulated)
  745. return 0;
  746. for (i = 0; i < ttm->num_pages; ++i) {
  747. ret = ttm_get_pages(&ttm->pages[i], 1,
  748. ttm->page_flags,
  749. ttm->caching_state);
  750. if (ret != 0) {
  751. ttm_pool_unpopulate(ttm);
  752. return -ENOMEM;
  753. }
  754. ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
  755. false, false);
  756. if (unlikely(ret != 0)) {
  757. ttm_pool_unpopulate(ttm);
  758. return -ENOMEM;
  759. }
  760. }
  761. if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
  762. ret = ttm_tt_swapin(ttm);
  763. if (unlikely(ret != 0)) {
  764. ttm_pool_unpopulate(ttm);
  765. return ret;
  766. }
  767. }
  768. ttm->state = tt_unbound;
  769. return 0;
  770. }
  771. EXPORT_SYMBOL(ttm_pool_populate);
  772. void ttm_pool_unpopulate(struct ttm_tt *ttm)
  773. {
  774. unsigned i;
  775. for (i = 0; i < ttm->num_pages; ++i) {
  776. if (ttm->pages[i]) {
  777. ttm_mem_global_free_page(ttm->glob->mem_glob,
  778. ttm->pages[i]);
  779. ttm_put_pages(&ttm->pages[i], 1,
  780. ttm->page_flags,
  781. ttm->caching_state);
  782. }
  783. }
  784. ttm->state = tt_unpopulated;
  785. }
  786. EXPORT_SYMBOL(ttm_pool_unpopulate);
  787. int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
  788. {
  789. struct ttm_page_pool *p;
  790. unsigned i;
  791. char *h[] = {"pool", "refills", "pages freed", "size"};
  792. if (!_manager) {
  793. seq_printf(m, "No pool allocator running.\n");
  794. return 0;
  795. }
  796. seq_printf(m, "%6s %12s %13s %8s\n",
  797. h[0], h[1], h[2], h[3]);
  798. for (i = 0; i < NUM_POOLS; ++i) {
  799. p = &_manager->pools[i];
  800. seq_printf(m, "%6s %12ld %13ld %8d\n",
  801. p->name, p->nrefills,
  802. p->nfrees, p->npages);
  803. }
  804. return 0;
  805. }
  806. EXPORT_SYMBOL(ttm_page_alloc_debugfs);