intel_pm.c 196 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/i915_powerwell.h>
  34. #include <linux/pm_runtime.h>
  35. /**
  36. * RC6 is a special power stage which allows the GPU to enter an very
  37. * low-voltage mode when idle, using down to 0V while at this stage. This
  38. * stage is entered automatically when the GPU is idle when RC6 support is
  39. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  40. *
  41. * There are different RC6 modes available in Intel GPU, which differentiate
  42. * among each other with the latency required to enter and leave RC6 and
  43. * voltage consumed by the GPU in different states.
  44. *
  45. * The combination of the following flags define which states GPU is allowed
  46. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  47. * RC6pp is deepest RC6. Their support by hardware varies according to the
  48. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  49. * which brings the most power savings; deeper states save more power, but
  50. * require higher latency to switch to and wake up.
  51. */
  52. #define INTEL_RC6_ENABLE (1<<0)
  53. #define INTEL_RC6p_ENABLE (1<<1)
  54. #define INTEL_RC6pp_ENABLE (1<<2)
  55. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  56. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  57. * during in-memory transfers and, therefore, reduce the power packet.
  58. *
  59. * The benefits of FBC are mostly visible with solid backgrounds and
  60. * variation-less patterns.
  61. *
  62. * FBC-related functionality can be enabled by the means of the
  63. * i915.i915_enable_fbc parameter
  64. */
  65. static void i8xx_disable_fbc(struct drm_device *dev)
  66. {
  67. struct drm_i915_private *dev_priv = dev->dev_private;
  68. u32 fbc_ctl;
  69. /* Disable compression */
  70. fbc_ctl = I915_READ(FBC_CONTROL);
  71. if ((fbc_ctl & FBC_CTL_EN) == 0)
  72. return;
  73. fbc_ctl &= ~FBC_CTL_EN;
  74. I915_WRITE(FBC_CONTROL, fbc_ctl);
  75. /* Wait for compressing bit to clear */
  76. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  77. DRM_DEBUG_KMS("FBC idle timed out\n");
  78. return;
  79. }
  80. DRM_DEBUG_KMS("disabled FBC\n");
  81. }
  82. static void i8xx_enable_fbc(struct drm_crtc *crtc)
  83. {
  84. struct drm_device *dev = crtc->dev;
  85. struct drm_i915_private *dev_priv = dev->dev_private;
  86. struct drm_framebuffer *fb = crtc->primary->fb;
  87. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  88. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  89. int cfb_pitch;
  90. int i;
  91. u32 fbc_ctl;
  92. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  93. if (fb->pitches[0] < cfb_pitch)
  94. cfb_pitch = fb->pitches[0];
  95. /* FBC_CTL wants 32B or 64B units */
  96. if (IS_GEN2(dev))
  97. cfb_pitch = (cfb_pitch / 32) - 1;
  98. else
  99. cfb_pitch = (cfb_pitch / 64) - 1;
  100. /* Clear old tags */
  101. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  102. I915_WRITE(FBC_TAG + (i * 4), 0);
  103. if (IS_GEN4(dev)) {
  104. u32 fbc_ctl2;
  105. /* Set it up... */
  106. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  107. fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
  108. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  109. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  110. }
  111. /* enable it... */
  112. fbc_ctl = I915_READ(FBC_CONTROL);
  113. fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
  114. fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
  115. if (IS_I945GM(dev))
  116. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  117. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  118. fbc_ctl |= obj->fence_reg;
  119. I915_WRITE(FBC_CONTROL, fbc_ctl);
  120. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
  121. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  122. }
  123. static bool i8xx_fbc_enabled(struct drm_device *dev)
  124. {
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  127. }
  128. static void g4x_enable_fbc(struct drm_crtc *crtc)
  129. {
  130. struct drm_device *dev = crtc->dev;
  131. struct drm_i915_private *dev_priv = dev->dev_private;
  132. struct drm_framebuffer *fb = crtc->primary->fb;
  133. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  134. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  135. u32 dpfc_ctl;
  136. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
  137. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  138. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  139. else
  140. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  141. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  142. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  143. /* enable it... */
  144. I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  145. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  146. }
  147. static void g4x_disable_fbc(struct drm_device *dev)
  148. {
  149. struct drm_i915_private *dev_priv = dev->dev_private;
  150. u32 dpfc_ctl;
  151. /* Disable compression */
  152. dpfc_ctl = I915_READ(DPFC_CONTROL);
  153. if (dpfc_ctl & DPFC_CTL_EN) {
  154. dpfc_ctl &= ~DPFC_CTL_EN;
  155. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  156. DRM_DEBUG_KMS("disabled FBC\n");
  157. }
  158. }
  159. static bool g4x_fbc_enabled(struct drm_device *dev)
  160. {
  161. struct drm_i915_private *dev_priv = dev->dev_private;
  162. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  163. }
  164. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  165. {
  166. struct drm_i915_private *dev_priv = dev->dev_private;
  167. u32 blt_ecoskpd;
  168. /* Make sure blitter notifies FBC of writes */
  169. /* Blitter is part of Media powerwell on VLV. No impact of
  170. * his param in other platforms for now */
  171. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
  172. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  173. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  174. GEN6_BLITTER_LOCK_SHIFT;
  175. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  176. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  177. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  178. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  179. GEN6_BLITTER_LOCK_SHIFT);
  180. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  181. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  182. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
  183. }
  184. static void ironlake_enable_fbc(struct drm_crtc *crtc)
  185. {
  186. struct drm_device *dev = crtc->dev;
  187. struct drm_i915_private *dev_priv = dev->dev_private;
  188. struct drm_framebuffer *fb = crtc->primary->fb;
  189. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  190. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  191. u32 dpfc_ctl;
  192. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
  193. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  194. dev_priv->fbc.threshold++;
  195. switch (dev_priv->fbc.threshold) {
  196. case 4:
  197. case 3:
  198. dpfc_ctl |= DPFC_CTL_LIMIT_4X;
  199. break;
  200. case 2:
  201. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  202. break;
  203. case 1:
  204. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  205. break;
  206. }
  207. dpfc_ctl |= DPFC_CTL_FENCE_EN;
  208. if (IS_GEN5(dev))
  209. dpfc_ctl |= obj->fence_reg;
  210. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  211. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  212. /* enable it... */
  213. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  214. if (IS_GEN6(dev)) {
  215. I915_WRITE(SNB_DPFC_CTL_SA,
  216. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  217. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  218. sandybridge_blit_fbc_update(dev);
  219. }
  220. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  221. }
  222. static void ironlake_disable_fbc(struct drm_device *dev)
  223. {
  224. struct drm_i915_private *dev_priv = dev->dev_private;
  225. u32 dpfc_ctl;
  226. /* Disable compression */
  227. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  228. if (dpfc_ctl & DPFC_CTL_EN) {
  229. dpfc_ctl &= ~DPFC_CTL_EN;
  230. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  231. DRM_DEBUG_KMS("disabled FBC\n");
  232. }
  233. }
  234. static bool ironlake_fbc_enabled(struct drm_device *dev)
  235. {
  236. struct drm_i915_private *dev_priv = dev->dev_private;
  237. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  238. }
  239. static void gen7_enable_fbc(struct drm_crtc *crtc)
  240. {
  241. struct drm_device *dev = crtc->dev;
  242. struct drm_i915_private *dev_priv = dev->dev_private;
  243. struct drm_framebuffer *fb = crtc->primary->fb;
  244. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  245. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  246. u32 dpfc_ctl;
  247. dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
  248. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  249. dev_priv->fbc.threshold++;
  250. switch (dev_priv->fbc.threshold) {
  251. case 4:
  252. case 3:
  253. dpfc_ctl |= DPFC_CTL_LIMIT_4X;
  254. break;
  255. case 2:
  256. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  257. break;
  258. case 1:
  259. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  260. break;
  261. }
  262. dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
  263. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  264. if (IS_IVYBRIDGE(dev)) {
  265. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  266. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  267. I915_READ(ILK_DISPLAY_CHICKEN1) |
  268. ILK_FBCQ_DIS);
  269. } else {
  270. /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
  271. I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
  272. I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
  273. HSW_FBCQ_DIS);
  274. }
  275. I915_WRITE(SNB_DPFC_CTL_SA,
  276. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  277. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  278. sandybridge_blit_fbc_update(dev);
  279. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  280. }
  281. bool intel_fbc_enabled(struct drm_device *dev)
  282. {
  283. struct drm_i915_private *dev_priv = dev->dev_private;
  284. if (!dev_priv->display.fbc_enabled)
  285. return false;
  286. return dev_priv->display.fbc_enabled(dev);
  287. }
  288. static void intel_fbc_work_fn(struct work_struct *__work)
  289. {
  290. struct intel_fbc_work *work =
  291. container_of(to_delayed_work(__work),
  292. struct intel_fbc_work, work);
  293. struct drm_device *dev = work->crtc->dev;
  294. struct drm_i915_private *dev_priv = dev->dev_private;
  295. mutex_lock(&dev->struct_mutex);
  296. if (work == dev_priv->fbc.fbc_work) {
  297. /* Double check that we haven't switched fb without cancelling
  298. * the prior work.
  299. */
  300. if (work->crtc->primary->fb == work->fb) {
  301. dev_priv->display.enable_fbc(work->crtc);
  302. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  303. dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
  304. dev_priv->fbc.y = work->crtc->y;
  305. }
  306. dev_priv->fbc.fbc_work = NULL;
  307. }
  308. mutex_unlock(&dev->struct_mutex);
  309. kfree(work);
  310. }
  311. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  312. {
  313. if (dev_priv->fbc.fbc_work == NULL)
  314. return;
  315. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  316. /* Synchronisation is provided by struct_mutex and checking of
  317. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  318. * entirely asynchronously.
  319. */
  320. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  321. /* tasklet was killed before being run, clean up */
  322. kfree(dev_priv->fbc.fbc_work);
  323. /* Mark the work as no longer wanted so that if it does
  324. * wake-up (because the work was already running and waiting
  325. * for our mutex), it will discover that is no longer
  326. * necessary to run.
  327. */
  328. dev_priv->fbc.fbc_work = NULL;
  329. }
  330. static void intel_enable_fbc(struct drm_crtc *crtc)
  331. {
  332. struct intel_fbc_work *work;
  333. struct drm_device *dev = crtc->dev;
  334. struct drm_i915_private *dev_priv = dev->dev_private;
  335. if (!dev_priv->display.enable_fbc)
  336. return;
  337. intel_cancel_fbc_work(dev_priv);
  338. work = kzalloc(sizeof(*work), GFP_KERNEL);
  339. if (work == NULL) {
  340. DRM_ERROR("Failed to allocate FBC work structure\n");
  341. dev_priv->display.enable_fbc(crtc);
  342. return;
  343. }
  344. work->crtc = crtc;
  345. work->fb = crtc->primary->fb;
  346. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  347. dev_priv->fbc.fbc_work = work;
  348. /* Delay the actual enabling to let pageflipping cease and the
  349. * display to settle before starting the compression. Note that
  350. * this delay also serves a second purpose: it allows for a
  351. * vblank to pass after disabling the FBC before we attempt
  352. * to modify the control registers.
  353. *
  354. * A more complicated solution would involve tracking vblanks
  355. * following the termination of the page-flipping sequence
  356. * and indeed performing the enable as a co-routine and not
  357. * waiting synchronously upon the vblank.
  358. *
  359. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  360. */
  361. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  362. }
  363. void intel_disable_fbc(struct drm_device *dev)
  364. {
  365. struct drm_i915_private *dev_priv = dev->dev_private;
  366. intel_cancel_fbc_work(dev_priv);
  367. if (!dev_priv->display.disable_fbc)
  368. return;
  369. dev_priv->display.disable_fbc(dev);
  370. dev_priv->fbc.plane = -1;
  371. }
  372. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  373. enum no_fbc_reason reason)
  374. {
  375. if (dev_priv->fbc.no_fbc_reason == reason)
  376. return false;
  377. dev_priv->fbc.no_fbc_reason = reason;
  378. return true;
  379. }
  380. /**
  381. * intel_update_fbc - enable/disable FBC as needed
  382. * @dev: the drm_device
  383. *
  384. * Set up the framebuffer compression hardware at mode set time. We
  385. * enable it if possible:
  386. * - plane A only (on pre-965)
  387. * - no pixel mulitply/line duplication
  388. * - no alpha buffer discard
  389. * - no dual wide
  390. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  391. *
  392. * We can't assume that any compression will take place (worst case),
  393. * so the compressed buffer has to be the same size as the uncompressed
  394. * one. It also must reside (along with the line length buffer) in
  395. * stolen memory.
  396. *
  397. * We need to enable/disable FBC on a global basis.
  398. */
  399. void intel_update_fbc(struct drm_device *dev)
  400. {
  401. struct drm_i915_private *dev_priv = dev->dev_private;
  402. struct drm_crtc *crtc = NULL, *tmp_crtc;
  403. struct intel_crtc *intel_crtc;
  404. struct drm_framebuffer *fb;
  405. struct drm_i915_gem_object *obj;
  406. const struct drm_display_mode *adjusted_mode;
  407. unsigned int max_width, max_height;
  408. if (!HAS_FBC(dev)) {
  409. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  410. return;
  411. }
  412. if (!i915.powersave) {
  413. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  414. DRM_DEBUG_KMS("fbc disabled per module param\n");
  415. return;
  416. }
  417. /*
  418. * If FBC is already on, we just have to verify that we can
  419. * keep it that way...
  420. * Need to disable if:
  421. * - more than one pipe is active
  422. * - changing FBC params (stride, fence, mode)
  423. * - new fb is too large to fit in compressed buffer
  424. * - going to an unsupported config (interlace, pixel multiply, etc.)
  425. */
  426. for_each_crtc(dev, tmp_crtc) {
  427. if (intel_crtc_active(tmp_crtc) &&
  428. to_intel_crtc(tmp_crtc)->primary_enabled) {
  429. if (crtc) {
  430. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  431. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  432. goto out_disable;
  433. }
  434. crtc = tmp_crtc;
  435. }
  436. }
  437. if (!crtc || crtc->primary->fb == NULL) {
  438. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  439. DRM_DEBUG_KMS("no output, disabling\n");
  440. goto out_disable;
  441. }
  442. intel_crtc = to_intel_crtc(crtc);
  443. fb = crtc->primary->fb;
  444. obj = intel_fb_obj(fb);
  445. adjusted_mode = &intel_crtc->config.adjusted_mode;
  446. if (i915.enable_fbc < 0) {
  447. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  448. DRM_DEBUG_KMS("disabled per chip default\n");
  449. goto out_disable;
  450. }
  451. if (!i915.enable_fbc) {
  452. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  453. DRM_DEBUG_KMS("fbc disabled per module param\n");
  454. goto out_disable;
  455. }
  456. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  457. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  458. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  459. DRM_DEBUG_KMS("mode incompatible with compression, "
  460. "disabling\n");
  461. goto out_disable;
  462. }
  463. if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
  464. max_width = 4096;
  465. max_height = 4096;
  466. } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  467. max_width = 4096;
  468. max_height = 2048;
  469. } else {
  470. max_width = 2048;
  471. max_height = 1536;
  472. }
  473. if (intel_crtc->config.pipe_src_w > max_width ||
  474. intel_crtc->config.pipe_src_h > max_height) {
  475. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  476. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  477. goto out_disable;
  478. }
  479. if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
  480. intel_crtc->plane != PLANE_A) {
  481. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  482. DRM_DEBUG_KMS("plane not A, disabling compression\n");
  483. goto out_disable;
  484. }
  485. /* The use of a CPU fence is mandatory in order to detect writes
  486. * by the CPU to the scanout and trigger updates to the FBC.
  487. */
  488. if (obj->tiling_mode != I915_TILING_X ||
  489. obj->fence_reg == I915_FENCE_REG_NONE) {
  490. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  491. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  492. goto out_disable;
  493. }
  494. /* If the kernel debugger is active, always disable compression */
  495. if (in_dbg_master())
  496. goto out_disable;
  497. if (i915_gem_stolen_setup_compression(dev, obj->base.size,
  498. drm_format_plane_cpp(fb->pixel_format, 0))) {
  499. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  500. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  501. goto out_disable;
  502. }
  503. /* If the scanout has not changed, don't modify the FBC settings.
  504. * Note that we make the fundamental assumption that the fb->obj
  505. * cannot be unpinned (and have its GTT offset and fence revoked)
  506. * without first being decoupled from the scanout and FBC disabled.
  507. */
  508. if (dev_priv->fbc.plane == intel_crtc->plane &&
  509. dev_priv->fbc.fb_id == fb->base.id &&
  510. dev_priv->fbc.y == crtc->y)
  511. return;
  512. if (intel_fbc_enabled(dev)) {
  513. /* We update FBC along two paths, after changing fb/crtc
  514. * configuration (modeswitching) and after page-flipping
  515. * finishes. For the latter, we know that not only did
  516. * we disable the FBC at the start of the page-flip
  517. * sequence, but also more than one vblank has passed.
  518. *
  519. * For the former case of modeswitching, it is possible
  520. * to switch between two FBC valid configurations
  521. * instantaneously so we do need to disable the FBC
  522. * before we can modify its control registers. We also
  523. * have to wait for the next vblank for that to take
  524. * effect. However, since we delay enabling FBC we can
  525. * assume that a vblank has passed since disabling and
  526. * that we can safely alter the registers in the deferred
  527. * callback.
  528. *
  529. * In the scenario that we go from a valid to invalid
  530. * and then back to valid FBC configuration we have
  531. * no strict enforcement that a vblank occurred since
  532. * disabling the FBC. However, along all current pipe
  533. * disabling paths we do need to wait for a vblank at
  534. * some point. And we wait before enabling FBC anyway.
  535. */
  536. DRM_DEBUG_KMS("disabling active FBC for update\n");
  537. intel_disable_fbc(dev);
  538. }
  539. intel_enable_fbc(crtc);
  540. dev_priv->fbc.no_fbc_reason = FBC_OK;
  541. return;
  542. out_disable:
  543. /* Multiple disables should be harmless */
  544. if (intel_fbc_enabled(dev)) {
  545. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  546. intel_disable_fbc(dev);
  547. }
  548. i915_gem_stolen_cleanup_compression(dev);
  549. }
  550. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  551. {
  552. struct drm_i915_private *dev_priv = dev->dev_private;
  553. u32 tmp;
  554. tmp = I915_READ(CLKCFG);
  555. switch (tmp & CLKCFG_FSB_MASK) {
  556. case CLKCFG_FSB_533:
  557. dev_priv->fsb_freq = 533; /* 133*4 */
  558. break;
  559. case CLKCFG_FSB_800:
  560. dev_priv->fsb_freq = 800; /* 200*4 */
  561. break;
  562. case CLKCFG_FSB_667:
  563. dev_priv->fsb_freq = 667; /* 167*4 */
  564. break;
  565. case CLKCFG_FSB_400:
  566. dev_priv->fsb_freq = 400; /* 100*4 */
  567. break;
  568. }
  569. switch (tmp & CLKCFG_MEM_MASK) {
  570. case CLKCFG_MEM_533:
  571. dev_priv->mem_freq = 533;
  572. break;
  573. case CLKCFG_MEM_667:
  574. dev_priv->mem_freq = 667;
  575. break;
  576. case CLKCFG_MEM_800:
  577. dev_priv->mem_freq = 800;
  578. break;
  579. }
  580. /* detect pineview DDR3 setting */
  581. tmp = I915_READ(CSHRDDR3CTL);
  582. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  583. }
  584. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  585. {
  586. struct drm_i915_private *dev_priv = dev->dev_private;
  587. u16 ddrpll, csipll;
  588. ddrpll = I915_READ16(DDRMPLL1);
  589. csipll = I915_READ16(CSIPLL0);
  590. switch (ddrpll & 0xff) {
  591. case 0xc:
  592. dev_priv->mem_freq = 800;
  593. break;
  594. case 0x10:
  595. dev_priv->mem_freq = 1066;
  596. break;
  597. case 0x14:
  598. dev_priv->mem_freq = 1333;
  599. break;
  600. case 0x18:
  601. dev_priv->mem_freq = 1600;
  602. break;
  603. default:
  604. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  605. ddrpll & 0xff);
  606. dev_priv->mem_freq = 0;
  607. break;
  608. }
  609. dev_priv->ips.r_t = dev_priv->mem_freq;
  610. switch (csipll & 0x3ff) {
  611. case 0x00c:
  612. dev_priv->fsb_freq = 3200;
  613. break;
  614. case 0x00e:
  615. dev_priv->fsb_freq = 3733;
  616. break;
  617. case 0x010:
  618. dev_priv->fsb_freq = 4266;
  619. break;
  620. case 0x012:
  621. dev_priv->fsb_freq = 4800;
  622. break;
  623. case 0x014:
  624. dev_priv->fsb_freq = 5333;
  625. break;
  626. case 0x016:
  627. dev_priv->fsb_freq = 5866;
  628. break;
  629. case 0x018:
  630. dev_priv->fsb_freq = 6400;
  631. break;
  632. default:
  633. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  634. csipll & 0x3ff);
  635. dev_priv->fsb_freq = 0;
  636. break;
  637. }
  638. if (dev_priv->fsb_freq == 3200) {
  639. dev_priv->ips.c_m = 0;
  640. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  641. dev_priv->ips.c_m = 1;
  642. } else {
  643. dev_priv->ips.c_m = 2;
  644. }
  645. }
  646. static const struct cxsr_latency cxsr_latency_table[] = {
  647. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  648. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  649. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  650. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  651. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  652. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  653. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  654. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  655. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  656. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  657. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  658. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  659. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  660. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  661. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  662. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  663. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  664. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  665. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  666. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  667. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  668. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  669. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  670. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  671. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  672. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  673. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  674. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  675. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  676. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  677. };
  678. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  679. int is_ddr3,
  680. int fsb,
  681. int mem)
  682. {
  683. const struct cxsr_latency *latency;
  684. int i;
  685. if (fsb == 0 || mem == 0)
  686. return NULL;
  687. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  688. latency = &cxsr_latency_table[i];
  689. if (is_desktop == latency->is_desktop &&
  690. is_ddr3 == latency->is_ddr3 &&
  691. fsb == latency->fsb_freq && mem == latency->mem_freq)
  692. return latency;
  693. }
  694. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  695. return NULL;
  696. }
  697. void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  698. {
  699. struct drm_device *dev = dev_priv->dev;
  700. u32 val;
  701. if (IS_VALLEYVIEW(dev)) {
  702. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  703. } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
  704. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  705. } else if (IS_PINEVIEW(dev)) {
  706. val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
  707. val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
  708. I915_WRITE(DSPFW3, val);
  709. } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  710. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  711. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  712. I915_WRITE(FW_BLC_SELF, val);
  713. } else if (IS_I915GM(dev)) {
  714. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  715. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  716. I915_WRITE(INSTPM, val);
  717. } else {
  718. return;
  719. }
  720. DRM_DEBUG_KMS("memory self-refresh is %s\n",
  721. enable ? "enabled" : "disabled");
  722. }
  723. /*
  724. * Latency for FIFO fetches is dependent on several factors:
  725. * - memory configuration (speed, channels)
  726. * - chipset
  727. * - current MCH state
  728. * It can be fairly high in some situations, so here we assume a fairly
  729. * pessimal value. It's a tradeoff between extra memory fetches (if we
  730. * set this value too high, the FIFO will fetch frequently to stay full)
  731. * and power consumption (set it too low to save power and we might see
  732. * FIFO underruns and display "flicker").
  733. *
  734. * A value of 5us seems to be a good balance; safe for very low end
  735. * platforms but not overly aggressive on lower latency configs.
  736. */
  737. static const int latency_ns = 5000;
  738. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  739. {
  740. struct drm_i915_private *dev_priv = dev->dev_private;
  741. uint32_t dsparb = I915_READ(DSPARB);
  742. int size;
  743. size = dsparb & 0x7f;
  744. if (plane)
  745. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  746. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  747. plane ? "B" : "A", size);
  748. return size;
  749. }
  750. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  751. {
  752. struct drm_i915_private *dev_priv = dev->dev_private;
  753. uint32_t dsparb = I915_READ(DSPARB);
  754. int size;
  755. size = dsparb & 0x1ff;
  756. if (plane)
  757. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  758. size >>= 1; /* Convert to cachelines */
  759. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  760. plane ? "B" : "A", size);
  761. return size;
  762. }
  763. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  764. {
  765. struct drm_i915_private *dev_priv = dev->dev_private;
  766. uint32_t dsparb = I915_READ(DSPARB);
  767. int size;
  768. size = dsparb & 0x7f;
  769. size >>= 2; /* Convert to cachelines */
  770. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  771. plane ? "B" : "A",
  772. size);
  773. return size;
  774. }
  775. /* Pineview has different values for various configs */
  776. static const struct intel_watermark_params pineview_display_wm = {
  777. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  778. .max_wm = PINEVIEW_MAX_WM,
  779. .default_wm = PINEVIEW_DFT_WM,
  780. .guard_size = PINEVIEW_GUARD_WM,
  781. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  782. };
  783. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  784. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  785. .max_wm = PINEVIEW_MAX_WM,
  786. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  787. .guard_size = PINEVIEW_GUARD_WM,
  788. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  789. };
  790. static const struct intel_watermark_params pineview_cursor_wm = {
  791. .fifo_size = PINEVIEW_CURSOR_FIFO,
  792. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  793. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  794. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  795. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  796. };
  797. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  798. .fifo_size = PINEVIEW_CURSOR_FIFO,
  799. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  800. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  801. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  802. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  803. };
  804. static const struct intel_watermark_params g4x_wm_info = {
  805. .fifo_size = G4X_FIFO_SIZE,
  806. .max_wm = G4X_MAX_WM,
  807. .default_wm = G4X_MAX_WM,
  808. .guard_size = 2,
  809. .cacheline_size = G4X_FIFO_LINE_SIZE,
  810. };
  811. static const struct intel_watermark_params g4x_cursor_wm_info = {
  812. .fifo_size = I965_CURSOR_FIFO,
  813. .max_wm = I965_CURSOR_MAX_WM,
  814. .default_wm = I965_CURSOR_DFT_WM,
  815. .guard_size = 2,
  816. .cacheline_size = G4X_FIFO_LINE_SIZE,
  817. };
  818. static const struct intel_watermark_params valleyview_wm_info = {
  819. .fifo_size = VALLEYVIEW_FIFO_SIZE,
  820. .max_wm = VALLEYVIEW_MAX_WM,
  821. .default_wm = VALLEYVIEW_MAX_WM,
  822. .guard_size = 2,
  823. .cacheline_size = G4X_FIFO_LINE_SIZE,
  824. };
  825. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  826. .fifo_size = I965_CURSOR_FIFO,
  827. .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
  828. .default_wm = I965_CURSOR_DFT_WM,
  829. .guard_size = 2,
  830. .cacheline_size = G4X_FIFO_LINE_SIZE,
  831. };
  832. static const struct intel_watermark_params i965_cursor_wm_info = {
  833. .fifo_size = I965_CURSOR_FIFO,
  834. .max_wm = I965_CURSOR_MAX_WM,
  835. .default_wm = I965_CURSOR_DFT_WM,
  836. .guard_size = 2,
  837. .cacheline_size = I915_FIFO_LINE_SIZE,
  838. };
  839. static const struct intel_watermark_params i945_wm_info = {
  840. .fifo_size = I945_FIFO_SIZE,
  841. .max_wm = I915_MAX_WM,
  842. .default_wm = 1,
  843. .guard_size = 2,
  844. .cacheline_size = I915_FIFO_LINE_SIZE,
  845. };
  846. static const struct intel_watermark_params i915_wm_info = {
  847. .fifo_size = I915_FIFO_SIZE,
  848. .max_wm = I915_MAX_WM,
  849. .default_wm = 1,
  850. .guard_size = 2,
  851. .cacheline_size = I915_FIFO_LINE_SIZE,
  852. };
  853. static const struct intel_watermark_params i830_wm_info = {
  854. .fifo_size = I855GM_FIFO_SIZE,
  855. .max_wm = I915_MAX_WM,
  856. .default_wm = 1,
  857. .guard_size = 2,
  858. .cacheline_size = I830_FIFO_LINE_SIZE,
  859. };
  860. static const struct intel_watermark_params i845_wm_info = {
  861. .fifo_size = I830_FIFO_SIZE,
  862. .max_wm = I915_MAX_WM,
  863. .default_wm = 1,
  864. .guard_size = 2,
  865. .cacheline_size = I830_FIFO_LINE_SIZE,
  866. };
  867. /**
  868. * intel_calculate_wm - calculate watermark level
  869. * @clock_in_khz: pixel clock
  870. * @wm: chip FIFO params
  871. * @pixel_size: display pixel size
  872. * @latency_ns: memory latency for the platform
  873. *
  874. * Calculate the watermark level (the level at which the display plane will
  875. * start fetching from memory again). Each chip has a different display
  876. * FIFO size and allocation, so the caller needs to figure that out and pass
  877. * in the correct intel_watermark_params structure.
  878. *
  879. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  880. * on the pixel size. When it reaches the watermark level, it'll start
  881. * fetching FIFO line sized based chunks from memory until the FIFO fills
  882. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  883. * will occur, and a display engine hang could result.
  884. */
  885. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  886. const struct intel_watermark_params *wm,
  887. int fifo_size,
  888. int pixel_size,
  889. unsigned long latency_ns)
  890. {
  891. long entries_required, wm_size;
  892. /*
  893. * Note: we need to make sure we don't overflow for various clock &
  894. * latency values.
  895. * clocks go from a few thousand to several hundred thousand.
  896. * latency is usually a few thousand
  897. */
  898. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  899. 1000;
  900. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  901. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  902. wm_size = fifo_size - (entries_required + wm->guard_size);
  903. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  904. /* Don't promote wm_size to unsigned... */
  905. if (wm_size > (long)wm->max_wm)
  906. wm_size = wm->max_wm;
  907. if (wm_size <= 0)
  908. wm_size = wm->default_wm;
  909. return wm_size;
  910. }
  911. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  912. {
  913. struct drm_crtc *crtc, *enabled = NULL;
  914. for_each_crtc(dev, crtc) {
  915. if (intel_crtc_active(crtc)) {
  916. if (enabled)
  917. return NULL;
  918. enabled = crtc;
  919. }
  920. }
  921. return enabled;
  922. }
  923. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  924. {
  925. struct drm_device *dev = unused_crtc->dev;
  926. struct drm_i915_private *dev_priv = dev->dev_private;
  927. struct drm_crtc *crtc;
  928. const struct cxsr_latency *latency;
  929. u32 reg;
  930. unsigned long wm;
  931. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  932. dev_priv->fsb_freq, dev_priv->mem_freq);
  933. if (!latency) {
  934. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  935. intel_set_memory_cxsr(dev_priv, false);
  936. return;
  937. }
  938. crtc = single_enabled_crtc(dev);
  939. if (crtc) {
  940. const struct drm_display_mode *adjusted_mode;
  941. int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  942. int clock;
  943. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  944. clock = adjusted_mode->crtc_clock;
  945. /* Display SR */
  946. wm = intel_calculate_wm(clock, &pineview_display_wm,
  947. pineview_display_wm.fifo_size,
  948. pixel_size, latency->display_sr);
  949. reg = I915_READ(DSPFW1);
  950. reg &= ~DSPFW_SR_MASK;
  951. reg |= wm << DSPFW_SR_SHIFT;
  952. I915_WRITE(DSPFW1, reg);
  953. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  954. /* cursor SR */
  955. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  956. pineview_display_wm.fifo_size,
  957. pixel_size, latency->cursor_sr);
  958. reg = I915_READ(DSPFW3);
  959. reg &= ~DSPFW_CURSOR_SR_MASK;
  960. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  961. I915_WRITE(DSPFW3, reg);
  962. /* Display HPLL off SR */
  963. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  964. pineview_display_hplloff_wm.fifo_size,
  965. pixel_size, latency->display_hpll_disable);
  966. reg = I915_READ(DSPFW3);
  967. reg &= ~DSPFW_HPLL_SR_MASK;
  968. reg |= wm & DSPFW_HPLL_SR_MASK;
  969. I915_WRITE(DSPFW3, reg);
  970. /* cursor HPLL off SR */
  971. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  972. pineview_display_hplloff_wm.fifo_size,
  973. pixel_size, latency->cursor_hpll_disable);
  974. reg = I915_READ(DSPFW3);
  975. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  976. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  977. I915_WRITE(DSPFW3, reg);
  978. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  979. intel_set_memory_cxsr(dev_priv, true);
  980. } else {
  981. intel_set_memory_cxsr(dev_priv, false);
  982. }
  983. }
  984. static bool g4x_compute_wm0(struct drm_device *dev,
  985. int plane,
  986. const struct intel_watermark_params *display,
  987. int display_latency_ns,
  988. const struct intel_watermark_params *cursor,
  989. int cursor_latency_ns,
  990. int *plane_wm,
  991. int *cursor_wm)
  992. {
  993. struct drm_crtc *crtc;
  994. const struct drm_display_mode *adjusted_mode;
  995. int htotal, hdisplay, clock, pixel_size;
  996. int line_time_us, line_count;
  997. int entries, tlb_miss;
  998. crtc = intel_get_crtc_for_plane(dev, plane);
  999. if (!intel_crtc_active(crtc)) {
  1000. *cursor_wm = cursor->guard_size;
  1001. *plane_wm = display->guard_size;
  1002. return false;
  1003. }
  1004. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1005. clock = adjusted_mode->crtc_clock;
  1006. htotal = adjusted_mode->crtc_htotal;
  1007. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1008. pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1009. /* Use the small buffer method to calculate plane watermark */
  1010. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1011. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1012. if (tlb_miss > 0)
  1013. entries += tlb_miss;
  1014. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1015. *plane_wm = entries + display->guard_size;
  1016. if (*plane_wm > (int)display->max_wm)
  1017. *plane_wm = display->max_wm;
  1018. /* Use the large buffer method to calculate cursor watermark */
  1019. line_time_us = max(htotal * 1000 / clock, 1);
  1020. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1021. entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
  1022. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1023. if (tlb_miss > 0)
  1024. entries += tlb_miss;
  1025. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1026. *cursor_wm = entries + cursor->guard_size;
  1027. if (*cursor_wm > (int)cursor->max_wm)
  1028. *cursor_wm = (int)cursor->max_wm;
  1029. return true;
  1030. }
  1031. /*
  1032. * Check the wm result.
  1033. *
  1034. * If any calculated watermark values is larger than the maximum value that
  1035. * can be programmed into the associated watermark register, that watermark
  1036. * must be disabled.
  1037. */
  1038. static bool g4x_check_srwm(struct drm_device *dev,
  1039. int display_wm, int cursor_wm,
  1040. const struct intel_watermark_params *display,
  1041. const struct intel_watermark_params *cursor)
  1042. {
  1043. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1044. display_wm, cursor_wm);
  1045. if (display_wm > display->max_wm) {
  1046. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1047. display_wm, display->max_wm);
  1048. return false;
  1049. }
  1050. if (cursor_wm > cursor->max_wm) {
  1051. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1052. cursor_wm, cursor->max_wm);
  1053. return false;
  1054. }
  1055. if (!(display_wm || cursor_wm)) {
  1056. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1057. return false;
  1058. }
  1059. return true;
  1060. }
  1061. static bool g4x_compute_srwm(struct drm_device *dev,
  1062. int plane,
  1063. int latency_ns,
  1064. const struct intel_watermark_params *display,
  1065. const struct intel_watermark_params *cursor,
  1066. int *display_wm, int *cursor_wm)
  1067. {
  1068. struct drm_crtc *crtc;
  1069. const struct drm_display_mode *adjusted_mode;
  1070. int hdisplay, htotal, pixel_size, clock;
  1071. unsigned long line_time_us;
  1072. int line_count, line_size;
  1073. int small, large;
  1074. int entries;
  1075. if (!latency_ns) {
  1076. *display_wm = *cursor_wm = 0;
  1077. return false;
  1078. }
  1079. crtc = intel_get_crtc_for_plane(dev, plane);
  1080. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1081. clock = adjusted_mode->crtc_clock;
  1082. htotal = adjusted_mode->crtc_htotal;
  1083. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1084. pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1085. line_time_us = max(htotal * 1000 / clock, 1);
  1086. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1087. line_size = hdisplay * pixel_size;
  1088. /* Use the minimum of the small and large buffer method for primary */
  1089. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1090. large = line_count * line_size;
  1091. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1092. *display_wm = entries + display->guard_size;
  1093. /* calculate the self-refresh watermark for display cursor */
  1094. entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
  1095. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1096. *cursor_wm = entries + cursor->guard_size;
  1097. return g4x_check_srwm(dev,
  1098. *display_wm, *cursor_wm,
  1099. display, cursor);
  1100. }
  1101. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1102. int plane,
  1103. int *plane_prec_mult,
  1104. int *plane_dl,
  1105. int *cursor_prec_mult,
  1106. int *cursor_dl)
  1107. {
  1108. struct drm_crtc *crtc;
  1109. int clock, pixel_size;
  1110. int entries;
  1111. crtc = intel_get_crtc_for_plane(dev, plane);
  1112. if (!intel_crtc_active(crtc))
  1113. return false;
  1114. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1115. pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
  1116. entries = (clock / 1000) * pixel_size;
  1117. *plane_prec_mult = (entries > 128) ?
  1118. DRAIN_LATENCY_PRECISION_64 : DRAIN_LATENCY_PRECISION_32;
  1119. *plane_dl = (64 * (*plane_prec_mult) * 4) / entries;
  1120. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1121. *cursor_prec_mult = (entries > 128) ?
  1122. DRAIN_LATENCY_PRECISION_64 : DRAIN_LATENCY_PRECISION_32;
  1123. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / entries;
  1124. return true;
  1125. }
  1126. /*
  1127. * Update drain latency registers of memory arbiter
  1128. *
  1129. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1130. * to be programmed. Each plane has a drain latency multiplier and a drain
  1131. * latency value.
  1132. */
  1133. static void vlv_update_drain_latency(struct drm_device *dev)
  1134. {
  1135. struct drm_i915_private *dev_priv = dev->dev_private;
  1136. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1137. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1138. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1139. either 16 or 32 */
  1140. /* For plane A, Cursor A */
  1141. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1142. &cursor_prec_mult, &cursora_dl)) {
  1143. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1144. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_64;
  1145. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1146. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_64;
  1147. I915_WRITE(VLV_DDL1, cursora_prec |
  1148. (cursora_dl << DDL_CURSORA_SHIFT) |
  1149. planea_prec | planea_dl);
  1150. }
  1151. /* For plane B, Cursor B */
  1152. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1153. &cursor_prec_mult, &cursorb_dl)) {
  1154. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1155. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_64;
  1156. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1157. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_64;
  1158. I915_WRITE(VLV_DDL2, cursorb_prec |
  1159. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1160. planeb_prec | planeb_dl);
  1161. }
  1162. }
  1163. #define single_plane_enabled(mask) is_power_of_2(mask)
  1164. static void valleyview_update_wm(struct drm_crtc *crtc)
  1165. {
  1166. struct drm_device *dev = crtc->dev;
  1167. static const int sr_latency_ns = 12000;
  1168. struct drm_i915_private *dev_priv = dev->dev_private;
  1169. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1170. int plane_sr, cursor_sr;
  1171. int ignore_plane_sr, ignore_cursor_sr;
  1172. unsigned int enabled = 0;
  1173. bool cxsr_enabled;
  1174. vlv_update_drain_latency(dev);
  1175. if (g4x_compute_wm0(dev, PIPE_A,
  1176. &valleyview_wm_info, latency_ns,
  1177. &valleyview_cursor_wm_info, latency_ns,
  1178. &planea_wm, &cursora_wm))
  1179. enabled |= 1 << PIPE_A;
  1180. if (g4x_compute_wm0(dev, PIPE_B,
  1181. &valleyview_wm_info, latency_ns,
  1182. &valleyview_cursor_wm_info, latency_ns,
  1183. &planeb_wm, &cursorb_wm))
  1184. enabled |= 1 << PIPE_B;
  1185. if (single_plane_enabled(enabled) &&
  1186. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1187. sr_latency_ns,
  1188. &valleyview_wm_info,
  1189. &valleyview_cursor_wm_info,
  1190. &plane_sr, &ignore_cursor_sr) &&
  1191. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1192. 2*sr_latency_ns,
  1193. &valleyview_wm_info,
  1194. &valleyview_cursor_wm_info,
  1195. &ignore_plane_sr, &cursor_sr)) {
  1196. cxsr_enabled = true;
  1197. } else {
  1198. cxsr_enabled = false;
  1199. intel_set_memory_cxsr(dev_priv, false);
  1200. plane_sr = cursor_sr = 0;
  1201. }
  1202. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1203. planea_wm, cursora_wm,
  1204. planeb_wm, cursorb_wm,
  1205. plane_sr, cursor_sr);
  1206. I915_WRITE(DSPFW1,
  1207. (plane_sr << DSPFW_SR_SHIFT) |
  1208. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1209. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1210. planea_wm);
  1211. I915_WRITE(DSPFW2,
  1212. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1213. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1214. I915_WRITE(DSPFW3,
  1215. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1216. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1217. if (cxsr_enabled)
  1218. intel_set_memory_cxsr(dev_priv, true);
  1219. }
  1220. static void g4x_update_wm(struct drm_crtc *crtc)
  1221. {
  1222. struct drm_device *dev = crtc->dev;
  1223. static const int sr_latency_ns = 12000;
  1224. struct drm_i915_private *dev_priv = dev->dev_private;
  1225. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1226. int plane_sr, cursor_sr;
  1227. unsigned int enabled = 0;
  1228. bool cxsr_enabled;
  1229. if (g4x_compute_wm0(dev, PIPE_A,
  1230. &g4x_wm_info, latency_ns,
  1231. &g4x_cursor_wm_info, latency_ns,
  1232. &planea_wm, &cursora_wm))
  1233. enabled |= 1 << PIPE_A;
  1234. if (g4x_compute_wm0(dev, PIPE_B,
  1235. &g4x_wm_info, latency_ns,
  1236. &g4x_cursor_wm_info, latency_ns,
  1237. &planeb_wm, &cursorb_wm))
  1238. enabled |= 1 << PIPE_B;
  1239. if (single_plane_enabled(enabled) &&
  1240. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1241. sr_latency_ns,
  1242. &g4x_wm_info,
  1243. &g4x_cursor_wm_info,
  1244. &plane_sr, &cursor_sr)) {
  1245. cxsr_enabled = true;
  1246. } else {
  1247. cxsr_enabled = false;
  1248. intel_set_memory_cxsr(dev_priv, false);
  1249. plane_sr = cursor_sr = 0;
  1250. }
  1251. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1252. planea_wm, cursora_wm,
  1253. planeb_wm, cursorb_wm,
  1254. plane_sr, cursor_sr);
  1255. I915_WRITE(DSPFW1,
  1256. (plane_sr << DSPFW_SR_SHIFT) |
  1257. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1258. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1259. planea_wm);
  1260. I915_WRITE(DSPFW2,
  1261. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1262. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1263. /* HPLL off in SR has some issues on G4x... disable it */
  1264. I915_WRITE(DSPFW3,
  1265. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1266. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1267. if (cxsr_enabled)
  1268. intel_set_memory_cxsr(dev_priv, true);
  1269. }
  1270. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1271. {
  1272. struct drm_device *dev = unused_crtc->dev;
  1273. struct drm_i915_private *dev_priv = dev->dev_private;
  1274. struct drm_crtc *crtc;
  1275. int srwm = 1;
  1276. int cursor_sr = 16;
  1277. bool cxsr_enabled;
  1278. /* Calc sr entries for one plane configs */
  1279. crtc = single_enabled_crtc(dev);
  1280. if (crtc) {
  1281. /* self-refresh has much higher latency */
  1282. static const int sr_latency_ns = 12000;
  1283. const struct drm_display_mode *adjusted_mode =
  1284. &to_intel_crtc(crtc)->config.adjusted_mode;
  1285. int clock = adjusted_mode->crtc_clock;
  1286. int htotal = adjusted_mode->crtc_htotal;
  1287. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1288. int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1289. unsigned long line_time_us;
  1290. int entries;
  1291. line_time_us = max(htotal * 1000 / clock, 1);
  1292. /* Use ns/us then divide to preserve precision */
  1293. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1294. pixel_size * hdisplay;
  1295. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1296. srwm = I965_FIFO_SIZE - entries;
  1297. if (srwm < 0)
  1298. srwm = 1;
  1299. srwm &= 0x1ff;
  1300. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1301. entries, srwm);
  1302. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1303. pixel_size * to_intel_crtc(crtc)->cursor_width;
  1304. entries = DIV_ROUND_UP(entries,
  1305. i965_cursor_wm_info.cacheline_size);
  1306. cursor_sr = i965_cursor_wm_info.fifo_size -
  1307. (entries + i965_cursor_wm_info.guard_size);
  1308. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1309. cursor_sr = i965_cursor_wm_info.max_wm;
  1310. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1311. "cursor %d\n", srwm, cursor_sr);
  1312. cxsr_enabled = true;
  1313. } else {
  1314. cxsr_enabled = false;
  1315. /* Turn off self refresh if both pipes are enabled */
  1316. intel_set_memory_cxsr(dev_priv, false);
  1317. }
  1318. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1319. srwm);
  1320. /* 965 has limitations... */
  1321. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1322. (8 << 16) | (8 << 8) | (8 << 0));
  1323. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1324. /* update cursor SR watermark */
  1325. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1326. if (cxsr_enabled)
  1327. intel_set_memory_cxsr(dev_priv, true);
  1328. }
  1329. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1330. {
  1331. struct drm_device *dev = unused_crtc->dev;
  1332. struct drm_i915_private *dev_priv = dev->dev_private;
  1333. const struct intel_watermark_params *wm_info;
  1334. uint32_t fwater_lo;
  1335. uint32_t fwater_hi;
  1336. int cwm, srwm = 1;
  1337. int fifo_size;
  1338. int planea_wm, planeb_wm;
  1339. struct drm_crtc *crtc, *enabled = NULL;
  1340. if (IS_I945GM(dev))
  1341. wm_info = &i945_wm_info;
  1342. else if (!IS_GEN2(dev))
  1343. wm_info = &i915_wm_info;
  1344. else
  1345. wm_info = &i830_wm_info;
  1346. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1347. crtc = intel_get_crtc_for_plane(dev, 0);
  1348. if (intel_crtc_active(crtc)) {
  1349. const struct drm_display_mode *adjusted_mode;
  1350. int cpp = crtc->primary->fb->bits_per_pixel / 8;
  1351. if (IS_GEN2(dev))
  1352. cpp = 4;
  1353. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1354. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1355. wm_info, fifo_size, cpp,
  1356. latency_ns);
  1357. enabled = crtc;
  1358. } else
  1359. planea_wm = fifo_size - wm_info->guard_size;
  1360. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1361. crtc = intel_get_crtc_for_plane(dev, 1);
  1362. if (intel_crtc_active(crtc)) {
  1363. const struct drm_display_mode *adjusted_mode;
  1364. int cpp = crtc->primary->fb->bits_per_pixel / 8;
  1365. if (IS_GEN2(dev))
  1366. cpp = 4;
  1367. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1368. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1369. wm_info, fifo_size, cpp,
  1370. latency_ns);
  1371. if (enabled == NULL)
  1372. enabled = crtc;
  1373. else
  1374. enabled = NULL;
  1375. } else
  1376. planeb_wm = fifo_size - wm_info->guard_size;
  1377. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1378. if (IS_I915GM(dev) && enabled) {
  1379. struct drm_i915_gem_object *obj;
  1380. obj = intel_fb_obj(enabled->primary->fb);
  1381. /* self-refresh seems busted with untiled */
  1382. if (obj->tiling_mode == I915_TILING_NONE)
  1383. enabled = NULL;
  1384. }
  1385. /*
  1386. * Overlay gets an aggressive default since video jitter is bad.
  1387. */
  1388. cwm = 2;
  1389. /* Play safe and disable self-refresh before adjusting watermarks. */
  1390. intel_set_memory_cxsr(dev_priv, false);
  1391. /* Calc sr entries for one plane configs */
  1392. if (HAS_FW_BLC(dev) && enabled) {
  1393. /* self-refresh has much higher latency */
  1394. static const int sr_latency_ns = 6000;
  1395. const struct drm_display_mode *adjusted_mode =
  1396. &to_intel_crtc(enabled)->config.adjusted_mode;
  1397. int clock = adjusted_mode->crtc_clock;
  1398. int htotal = adjusted_mode->crtc_htotal;
  1399. int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
  1400. int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
  1401. unsigned long line_time_us;
  1402. int entries;
  1403. line_time_us = max(htotal * 1000 / clock, 1);
  1404. /* Use ns/us then divide to preserve precision */
  1405. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1406. pixel_size * hdisplay;
  1407. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1408. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1409. srwm = wm_info->fifo_size - entries;
  1410. if (srwm < 0)
  1411. srwm = 1;
  1412. if (IS_I945G(dev) || IS_I945GM(dev))
  1413. I915_WRITE(FW_BLC_SELF,
  1414. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1415. else if (IS_I915GM(dev))
  1416. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1417. }
  1418. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1419. planea_wm, planeb_wm, cwm, srwm);
  1420. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1421. fwater_hi = (cwm & 0x1f);
  1422. /* Set request length to 8 cachelines per fetch */
  1423. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1424. fwater_hi = fwater_hi | (1 << 8);
  1425. I915_WRITE(FW_BLC, fwater_lo);
  1426. I915_WRITE(FW_BLC2, fwater_hi);
  1427. if (enabled)
  1428. intel_set_memory_cxsr(dev_priv, true);
  1429. }
  1430. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1431. {
  1432. struct drm_device *dev = unused_crtc->dev;
  1433. struct drm_i915_private *dev_priv = dev->dev_private;
  1434. struct drm_crtc *crtc;
  1435. const struct drm_display_mode *adjusted_mode;
  1436. uint32_t fwater_lo;
  1437. int planea_wm;
  1438. crtc = single_enabled_crtc(dev);
  1439. if (crtc == NULL)
  1440. return;
  1441. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1442. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1443. &i845_wm_info,
  1444. dev_priv->display.get_fifo_size(dev, 0),
  1445. 4, latency_ns);
  1446. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1447. fwater_lo |= (3<<8) | planea_wm;
  1448. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1449. I915_WRITE(FW_BLC, fwater_lo);
  1450. }
  1451. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1452. struct drm_crtc *crtc)
  1453. {
  1454. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1455. uint32_t pixel_rate;
  1456. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1457. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1458. * adjust the pixel_rate here. */
  1459. if (intel_crtc->config.pch_pfit.enabled) {
  1460. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1461. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1462. pipe_w = intel_crtc->config.pipe_src_w;
  1463. pipe_h = intel_crtc->config.pipe_src_h;
  1464. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1465. pfit_h = pfit_size & 0xFFFF;
  1466. if (pipe_w < pfit_w)
  1467. pipe_w = pfit_w;
  1468. if (pipe_h < pfit_h)
  1469. pipe_h = pfit_h;
  1470. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1471. pfit_w * pfit_h);
  1472. }
  1473. return pixel_rate;
  1474. }
  1475. /* latency must be in 0.1us units. */
  1476. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1477. uint32_t latency)
  1478. {
  1479. uint64_t ret;
  1480. if (WARN(latency == 0, "Latency value missing\n"))
  1481. return UINT_MAX;
  1482. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1483. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1484. return ret;
  1485. }
  1486. /* latency must be in 0.1us units. */
  1487. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1488. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1489. uint32_t latency)
  1490. {
  1491. uint32_t ret;
  1492. if (WARN(latency == 0, "Latency value missing\n"))
  1493. return UINT_MAX;
  1494. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1495. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1496. ret = DIV_ROUND_UP(ret, 64) + 2;
  1497. return ret;
  1498. }
  1499. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1500. uint8_t bytes_per_pixel)
  1501. {
  1502. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1503. }
  1504. struct ilk_pipe_wm_parameters {
  1505. bool active;
  1506. uint32_t pipe_htotal;
  1507. uint32_t pixel_rate;
  1508. struct intel_plane_wm_parameters pri;
  1509. struct intel_plane_wm_parameters spr;
  1510. struct intel_plane_wm_parameters cur;
  1511. };
  1512. struct ilk_wm_maximums {
  1513. uint16_t pri;
  1514. uint16_t spr;
  1515. uint16_t cur;
  1516. uint16_t fbc;
  1517. };
  1518. /* used in computing the new watermarks state */
  1519. struct intel_wm_config {
  1520. unsigned int num_pipes_active;
  1521. bool sprites_enabled;
  1522. bool sprites_scaled;
  1523. };
  1524. /*
  1525. * For both WM_PIPE and WM_LP.
  1526. * mem_value must be in 0.1us units.
  1527. */
  1528. static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
  1529. uint32_t mem_value,
  1530. bool is_lp)
  1531. {
  1532. uint32_t method1, method2;
  1533. if (!params->active || !params->pri.enabled)
  1534. return 0;
  1535. method1 = ilk_wm_method1(params->pixel_rate,
  1536. params->pri.bytes_per_pixel,
  1537. mem_value);
  1538. if (!is_lp)
  1539. return method1;
  1540. method2 = ilk_wm_method2(params->pixel_rate,
  1541. params->pipe_htotal,
  1542. params->pri.horiz_pixels,
  1543. params->pri.bytes_per_pixel,
  1544. mem_value);
  1545. return min(method1, method2);
  1546. }
  1547. /*
  1548. * For both WM_PIPE and WM_LP.
  1549. * mem_value must be in 0.1us units.
  1550. */
  1551. static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
  1552. uint32_t mem_value)
  1553. {
  1554. uint32_t method1, method2;
  1555. if (!params->active || !params->spr.enabled)
  1556. return 0;
  1557. method1 = ilk_wm_method1(params->pixel_rate,
  1558. params->spr.bytes_per_pixel,
  1559. mem_value);
  1560. method2 = ilk_wm_method2(params->pixel_rate,
  1561. params->pipe_htotal,
  1562. params->spr.horiz_pixels,
  1563. params->spr.bytes_per_pixel,
  1564. mem_value);
  1565. return min(method1, method2);
  1566. }
  1567. /*
  1568. * For both WM_PIPE and WM_LP.
  1569. * mem_value must be in 0.1us units.
  1570. */
  1571. static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
  1572. uint32_t mem_value)
  1573. {
  1574. if (!params->active || !params->cur.enabled)
  1575. return 0;
  1576. return ilk_wm_method2(params->pixel_rate,
  1577. params->pipe_htotal,
  1578. params->cur.horiz_pixels,
  1579. params->cur.bytes_per_pixel,
  1580. mem_value);
  1581. }
  1582. /* Only for WM_LP. */
  1583. static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
  1584. uint32_t pri_val)
  1585. {
  1586. if (!params->active || !params->pri.enabled)
  1587. return 0;
  1588. return ilk_wm_fbc(pri_val,
  1589. params->pri.horiz_pixels,
  1590. params->pri.bytes_per_pixel);
  1591. }
  1592. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1593. {
  1594. if (INTEL_INFO(dev)->gen >= 8)
  1595. return 3072;
  1596. else if (INTEL_INFO(dev)->gen >= 7)
  1597. return 768;
  1598. else
  1599. return 512;
  1600. }
  1601. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1602. int level, bool is_sprite)
  1603. {
  1604. if (INTEL_INFO(dev)->gen >= 8)
  1605. /* BDW primary/sprite plane watermarks */
  1606. return level == 0 ? 255 : 2047;
  1607. else if (INTEL_INFO(dev)->gen >= 7)
  1608. /* IVB/HSW primary/sprite plane watermarks */
  1609. return level == 0 ? 127 : 1023;
  1610. else if (!is_sprite)
  1611. /* ILK/SNB primary plane watermarks */
  1612. return level == 0 ? 127 : 511;
  1613. else
  1614. /* ILK/SNB sprite plane watermarks */
  1615. return level == 0 ? 63 : 255;
  1616. }
  1617. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1618. int level)
  1619. {
  1620. if (INTEL_INFO(dev)->gen >= 7)
  1621. return level == 0 ? 63 : 255;
  1622. else
  1623. return level == 0 ? 31 : 63;
  1624. }
  1625. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1626. {
  1627. if (INTEL_INFO(dev)->gen >= 8)
  1628. return 31;
  1629. else
  1630. return 15;
  1631. }
  1632. /* Calculate the maximum primary/sprite plane watermark */
  1633. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1634. int level,
  1635. const struct intel_wm_config *config,
  1636. enum intel_ddb_partitioning ddb_partitioning,
  1637. bool is_sprite)
  1638. {
  1639. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1640. /* if sprites aren't enabled, sprites get nothing */
  1641. if (is_sprite && !config->sprites_enabled)
  1642. return 0;
  1643. /* HSW allows LP1+ watermarks even with multiple pipes */
  1644. if (level == 0 || config->num_pipes_active > 1) {
  1645. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1646. /*
  1647. * For some reason the non self refresh
  1648. * FIFO size is only half of the self
  1649. * refresh FIFO size on ILK/SNB.
  1650. */
  1651. if (INTEL_INFO(dev)->gen <= 6)
  1652. fifo_size /= 2;
  1653. }
  1654. if (config->sprites_enabled) {
  1655. /* level 0 is always calculated with 1:1 split */
  1656. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1657. if (is_sprite)
  1658. fifo_size *= 5;
  1659. fifo_size /= 6;
  1660. } else {
  1661. fifo_size /= 2;
  1662. }
  1663. }
  1664. /* clamp to max that the registers can hold */
  1665. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1666. }
  1667. /* Calculate the maximum cursor plane watermark */
  1668. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1669. int level,
  1670. const struct intel_wm_config *config)
  1671. {
  1672. /* HSW LP1+ watermarks w/ multiple pipes */
  1673. if (level > 0 && config->num_pipes_active > 1)
  1674. return 64;
  1675. /* otherwise just report max that registers can hold */
  1676. return ilk_cursor_wm_reg_max(dev, level);
  1677. }
  1678. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1679. int level,
  1680. const struct intel_wm_config *config,
  1681. enum intel_ddb_partitioning ddb_partitioning,
  1682. struct ilk_wm_maximums *max)
  1683. {
  1684. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1685. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1686. max->cur = ilk_cursor_wm_max(dev, level, config);
  1687. max->fbc = ilk_fbc_wm_reg_max(dev);
  1688. }
  1689. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1690. int level,
  1691. struct ilk_wm_maximums *max)
  1692. {
  1693. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1694. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1695. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1696. max->fbc = ilk_fbc_wm_reg_max(dev);
  1697. }
  1698. static bool ilk_validate_wm_level(int level,
  1699. const struct ilk_wm_maximums *max,
  1700. struct intel_wm_level *result)
  1701. {
  1702. bool ret;
  1703. /* already determined to be invalid? */
  1704. if (!result->enable)
  1705. return false;
  1706. result->enable = result->pri_val <= max->pri &&
  1707. result->spr_val <= max->spr &&
  1708. result->cur_val <= max->cur;
  1709. ret = result->enable;
  1710. /*
  1711. * HACK until we can pre-compute everything,
  1712. * and thus fail gracefully if LP0 watermarks
  1713. * are exceeded...
  1714. */
  1715. if (level == 0 && !result->enable) {
  1716. if (result->pri_val > max->pri)
  1717. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1718. level, result->pri_val, max->pri);
  1719. if (result->spr_val > max->spr)
  1720. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1721. level, result->spr_val, max->spr);
  1722. if (result->cur_val > max->cur)
  1723. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1724. level, result->cur_val, max->cur);
  1725. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1726. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1727. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1728. result->enable = true;
  1729. }
  1730. return ret;
  1731. }
  1732. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1733. int level,
  1734. const struct ilk_pipe_wm_parameters *p,
  1735. struct intel_wm_level *result)
  1736. {
  1737. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1738. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1739. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1740. /* WM1+ latency values stored in 0.5us units */
  1741. if (level > 0) {
  1742. pri_latency *= 5;
  1743. spr_latency *= 5;
  1744. cur_latency *= 5;
  1745. }
  1746. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  1747. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  1748. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  1749. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  1750. result->enable = true;
  1751. }
  1752. static uint32_t
  1753. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  1754. {
  1755. struct drm_i915_private *dev_priv = dev->dev_private;
  1756. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1757. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  1758. u32 linetime, ips_linetime;
  1759. if (!intel_crtc_active(crtc))
  1760. return 0;
  1761. /* The WM are computed with base on how long it takes to fill a single
  1762. * row at the given clock rate, multiplied by 8.
  1763. * */
  1764. linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1765. mode->crtc_clock);
  1766. ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1767. intel_ddi_get_cdclk_freq(dev_priv));
  1768. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1769. PIPE_WM_LINETIME_TIME(linetime);
  1770. }
  1771. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1772. {
  1773. struct drm_i915_private *dev_priv = dev->dev_private;
  1774. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1775. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1776. wm[0] = (sskpd >> 56) & 0xFF;
  1777. if (wm[0] == 0)
  1778. wm[0] = sskpd & 0xF;
  1779. wm[1] = (sskpd >> 4) & 0xFF;
  1780. wm[2] = (sskpd >> 12) & 0xFF;
  1781. wm[3] = (sskpd >> 20) & 0x1FF;
  1782. wm[4] = (sskpd >> 32) & 0x1FF;
  1783. } else if (INTEL_INFO(dev)->gen >= 6) {
  1784. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1785. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1786. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1787. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1788. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1789. } else if (INTEL_INFO(dev)->gen >= 5) {
  1790. uint32_t mltr = I915_READ(MLTR_ILK);
  1791. /* ILK primary LP0 latency is 700 ns */
  1792. wm[0] = 7;
  1793. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1794. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1795. }
  1796. }
  1797. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1798. {
  1799. /* ILK sprite LP0 latency is 1300 ns */
  1800. if (INTEL_INFO(dev)->gen == 5)
  1801. wm[0] = 13;
  1802. }
  1803. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1804. {
  1805. /* ILK cursor LP0 latency is 1300 ns */
  1806. if (INTEL_INFO(dev)->gen == 5)
  1807. wm[0] = 13;
  1808. /* WaDoubleCursorLP3Latency:ivb */
  1809. if (IS_IVYBRIDGE(dev))
  1810. wm[3] *= 2;
  1811. }
  1812. int ilk_wm_max_level(const struct drm_device *dev)
  1813. {
  1814. /* how many WM levels are we expecting */
  1815. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1816. return 4;
  1817. else if (INTEL_INFO(dev)->gen >= 6)
  1818. return 3;
  1819. else
  1820. return 2;
  1821. }
  1822. static void intel_print_wm_latency(struct drm_device *dev,
  1823. const char *name,
  1824. const uint16_t wm[5])
  1825. {
  1826. int level, max_level = ilk_wm_max_level(dev);
  1827. for (level = 0; level <= max_level; level++) {
  1828. unsigned int latency = wm[level];
  1829. if (latency == 0) {
  1830. DRM_ERROR("%s WM%d latency not provided\n",
  1831. name, level);
  1832. continue;
  1833. }
  1834. /* WM1+ latency values in 0.5us units */
  1835. if (level > 0)
  1836. latency *= 5;
  1837. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1838. name, level, wm[level],
  1839. latency / 10, latency % 10);
  1840. }
  1841. }
  1842. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1843. uint16_t wm[5], uint16_t min)
  1844. {
  1845. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1846. if (wm[0] >= min)
  1847. return false;
  1848. wm[0] = max(wm[0], min);
  1849. for (level = 1; level <= max_level; level++)
  1850. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1851. return true;
  1852. }
  1853. static void snb_wm_latency_quirk(struct drm_device *dev)
  1854. {
  1855. struct drm_i915_private *dev_priv = dev->dev_private;
  1856. bool changed;
  1857. /*
  1858. * The BIOS provided WM memory latency values are often
  1859. * inadequate for high resolution displays. Adjust them.
  1860. */
  1861. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1862. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1863. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1864. if (!changed)
  1865. return;
  1866. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  1867. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1868. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1869. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1870. }
  1871. static void ilk_setup_wm_latency(struct drm_device *dev)
  1872. {
  1873. struct drm_i915_private *dev_priv = dev->dev_private;
  1874. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  1875. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1876. sizeof(dev_priv->wm.pri_latency));
  1877. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1878. sizeof(dev_priv->wm.pri_latency));
  1879. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  1880. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  1881. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1882. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1883. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1884. if (IS_GEN6(dev))
  1885. snb_wm_latency_quirk(dev);
  1886. }
  1887. static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
  1888. struct ilk_pipe_wm_parameters *p)
  1889. {
  1890. struct drm_device *dev = crtc->dev;
  1891. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1892. enum pipe pipe = intel_crtc->pipe;
  1893. struct drm_plane *plane;
  1894. if (!intel_crtc_active(crtc))
  1895. return;
  1896. p->active = true;
  1897. p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
  1898. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  1899. p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
  1900. p->cur.bytes_per_pixel = 4;
  1901. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  1902. p->cur.horiz_pixels = intel_crtc->cursor_width;
  1903. /* TODO: for now, assume primary and cursor planes are always enabled. */
  1904. p->pri.enabled = true;
  1905. p->cur.enabled = true;
  1906. drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
  1907. struct intel_plane *intel_plane = to_intel_plane(plane);
  1908. if (intel_plane->pipe == pipe) {
  1909. p->spr = intel_plane->wm;
  1910. break;
  1911. }
  1912. }
  1913. }
  1914. static void ilk_compute_wm_config(struct drm_device *dev,
  1915. struct intel_wm_config *config)
  1916. {
  1917. struct intel_crtc *intel_crtc;
  1918. /* Compute the currently _active_ config */
  1919. for_each_intel_crtc(dev, intel_crtc) {
  1920. const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
  1921. if (!wm->pipe_enabled)
  1922. continue;
  1923. config->sprites_enabled |= wm->sprites_enabled;
  1924. config->sprites_scaled |= wm->sprites_scaled;
  1925. config->num_pipes_active++;
  1926. }
  1927. }
  1928. /* Compute new watermarks for the pipe */
  1929. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  1930. const struct ilk_pipe_wm_parameters *params,
  1931. struct intel_pipe_wm *pipe_wm)
  1932. {
  1933. struct drm_device *dev = crtc->dev;
  1934. const struct drm_i915_private *dev_priv = dev->dev_private;
  1935. int level, max_level = ilk_wm_max_level(dev);
  1936. /* LP0 watermark maximums depend on this pipe alone */
  1937. struct intel_wm_config config = {
  1938. .num_pipes_active = 1,
  1939. .sprites_enabled = params->spr.enabled,
  1940. .sprites_scaled = params->spr.scaled,
  1941. };
  1942. struct ilk_wm_maximums max;
  1943. pipe_wm->pipe_enabled = params->active;
  1944. pipe_wm->sprites_enabled = params->spr.enabled;
  1945. pipe_wm->sprites_scaled = params->spr.scaled;
  1946. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  1947. if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
  1948. max_level = 1;
  1949. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  1950. if (params->spr.scaled)
  1951. max_level = 0;
  1952. ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
  1953. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1954. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  1955. /* LP0 watermarks always use 1/2 DDB partitioning */
  1956. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1957. /* At least LP0 must be valid */
  1958. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  1959. return false;
  1960. ilk_compute_wm_reg_maximums(dev, 1, &max);
  1961. for (level = 1; level <= max_level; level++) {
  1962. struct intel_wm_level wm = {};
  1963. ilk_compute_wm_level(dev_priv, level, params, &wm);
  1964. /*
  1965. * Disable any watermark level that exceeds the
  1966. * register maximums since such watermarks are
  1967. * always invalid.
  1968. */
  1969. if (!ilk_validate_wm_level(level, &max, &wm))
  1970. break;
  1971. pipe_wm->wm[level] = wm;
  1972. }
  1973. return true;
  1974. }
  1975. /*
  1976. * Merge the watermarks from all active pipes for a specific level.
  1977. */
  1978. static void ilk_merge_wm_level(struct drm_device *dev,
  1979. int level,
  1980. struct intel_wm_level *ret_wm)
  1981. {
  1982. const struct intel_crtc *intel_crtc;
  1983. ret_wm->enable = true;
  1984. for_each_intel_crtc(dev, intel_crtc) {
  1985. const struct intel_pipe_wm *active = &intel_crtc->wm.active;
  1986. const struct intel_wm_level *wm = &active->wm[level];
  1987. if (!active->pipe_enabled)
  1988. continue;
  1989. /*
  1990. * The watermark values may have been used in the past,
  1991. * so we must maintain them in the registers for some
  1992. * time even if the level is now disabled.
  1993. */
  1994. if (!wm->enable)
  1995. ret_wm->enable = false;
  1996. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  1997. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  1998. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  1999. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2000. }
  2001. }
  2002. /*
  2003. * Merge all low power watermarks for all active pipes.
  2004. */
  2005. static void ilk_wm_merge(struct drm_device *dev,
  2006. const struct intel_wm_config *config,
  2007. const struct ilk_wm_maximums *max,
  2008. struct intel_pipe_wm *merged)
  2009. {
  2010. int level, max_level = ilk_wm_max_level(dev);
  2011. int last_enabled_level = max_level;
  2012. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2013. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  2014. config->num_pipes_active > 1)
  2015. return;
  2016. /* ILK: FBC WM must be disabled always */
  2017. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  2018. /* merge each WM1+ level */
  2019. for (level = 1; level <= max_level; level++) {
  2020. struct intel_wm_level *wm = &merged->wm[level];
  2021. ilk_merge_wm_level(dev, level, wm);
  2022. if (level > last_enabled_level)
  2023. wm->enable = false;
  2024. else if (!ilk_validate_wm_level(level, max, wm))
  2025. /* make sure all following levels get disabled */
  2026. last_enabled_level = level - 1;
  2027. /*
  2028. * The spec says it is preferred to disable
  2029. * FBC WMs instead of disabling a WM level.
  2030. */
  2031. if (wm->fbc_val > max->fbc) {
  2032. if (wm->enable)
  2033. merged->fbc_wm_enabled = false;
  2034. wm->fbc_val = 0;
  2035. }
  2036. }
  2037. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2038. /*
  2039. * FIXME this is racy. FBC might get enabled later.
  2040. * What we should check here is whether FBC can be
  2041. * enabled sometime later.
  2042. */
  2043. if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
  2044. for (level = 2; level <= max_level; level++) {
  2045. struct intel_wm_level *wm = &merged->wm[level];
  2046. wm->enable = false;
  2047. }
  2048. }
  2049. }
  2050. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2051. {
  2052. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2053. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2054. }
  2055. /* The value we need to program into the WM_LPx latency field */
  2056. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2057. {
  2058. struct drm_i915_private *dev_priv = dev->dev_private;
  2059. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2060. return 2 * level;
  2061. else
  2062. return dev_priv->wm.pri_latency[level];
  2063. }
  2064. static void ilk_compute_wm_results(struct drm_device *dev,
  2065. const struct intel_pipe_wm *merged,
  2066. enum intel_ddb_partitioning partitioning,
  2067. struct ilk_wm_values *results)
  2068. {
  2069. struct intel_crtc *intel_crtc;
  2070. int level, wm_lp;
  2071. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2072. results->partitioning = partitioning;
  2073. /* LP1+ register values */
  2074. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2075. const struct intel_wm_level *r;
  2076. level = ilk_wm_lp_to_level(wm_lp, merged);
  2077. r = &merged->wm[level];
  2078. /*
  2079. * Maintain the watermark values even if the level is
  2080. * disabled. Doing otherwise could cause underruns.
  2081. */
  2082. results->wm_lp[wm_lp - 1] =
  2083. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2084. (r->pri_val << WM1_LP_SR_SHIFT) |
  2085. r->cur_val;
  2086. if (r->enable)
  2087. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2088. if (INTEL_INFO(dev)->gen >= 8)
  2089. results->wm_lp[wm_lp - 1] |=
  2090. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2091. else
  2092. results->wm_lp[wm_lp - 1] |=
  2093. r->fbc_val << WM1_LP_FBC_SHIFT;
  2094. /*
  2095. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2096. * level is disabled. Doing otherwise could cause underruns.
  2097. */
  2098. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  2099. WARN_ON(wm_lp != 1);
  2100. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2101. } else
  2102. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2103. }
  2104. /* LP0 register values */
  2105. for_each_intel_crtc(dev, intel_crtc) {
  2106. enum pipe pipe = intel_crtc->pipe;
  2107. const struct intel_wm_level *r =
  2108. &intel_crtc->wm.active.wm[0];
  2109. if (WARN_ON(!r->enable))
  2110. continue;
  2111. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2112. results->wm_pipe[pipe] =
  2113. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2114. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2115. r->cur_val;
  2116. }
  2117. }
  2118. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2119. * case both are at the same level. Prefer r1 in case they're the same. */
  2120. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2121. struct intel_pipe_wm *r1,
  2122. struct intel_pipe_wm *r2)
  2123. {
  2124. int level, max_level = ilk_wm_max_level(dev);
  2125. int level1 = 0, level2 = 0;
  2126. for (level = 1; level <= max_level; level++) {
  2127. if (r1->wm[level].enable)
  2128. level1 = level;
  2129. if (r2->wm[level].enable)
  2130. level2 = level;
  2131. }
  2132. if (level1 == level2) {
  2133. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2134. return r2;
  2135. else
  2136. return r1;
  2137. } else if (level1 > level2) {
  2138. return r1;
  2139. } else {
  2140. return r2;
  2141. }
  2142. }
  2143. /* dirty bits used to track which watermarks need changes */
  2144. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2145. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2146. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2147. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2148. #define WM_DIRTY_FBC (1 << 24)
  2149. #define WM_DIRTY_DDB (1 << 25)
  2150. static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
  2151. const struct ilk_wm_values *old,
  2152. const struct ilk_wm_values *new)
  2153. {
  2154. unsigned int dirty = 0;
  2155. enum pipe pipe;
  2156. int wm_lp;
  2157. for_each_pipe(pipe) {
  2158. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2159. dirty |= WM_DIRTY_LINETIME(pipe);
  2160. /* Must disable LP1+ watermarks too */
  2161. dirty |= WM_DIRTY_LP_ALL;
  2162. }
  2163. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2164. dirty |= WM_DIRTY_PIPE(pipe);
  2165. /* Must disable LP1+ watermarks too */
  2166. dirty |= WM_DIRTY_LP_ALL;
  2167. }
  2168. }
  2169. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2170. dirty |= WM_DIRTY_FBC;
  2171. /* Must disable LP1+ watermarks too */
  2172. dirty |= WM_DIRTY_LP_ALL;
  2173. }
  2174. if (old->partitioning != new->partitioning) {
  2175. dirty |= WM_DIRTY_DDB;
  2176. /* Must disable LP1+ watermarks too */
  2177. dirty |= WM_DIRTY_LP_ALL;
  2178. }
  2179. /* LP1+ watermarks already deemed dirty, no need to continue */
  2180. if (dirty & WM_DIRTY_LP_ALL)
  2181. return dirty;
  2182. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2183. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2184. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2185. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2186. break;
  2187. }
  2188. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2189. for (; wm_lp <= 3; wm_lp++)
  2190. dirty |= WM_DIRTY_LP(wm_lp);
  2191. return dirty;
  2192. }
  2193. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2194. unsigned int dirty)
  2195. {
  2196. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2197. bool changed = false;
  2198. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2199. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2200. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2201. changed = true;
  2202. }
  2203. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2204. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2205. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2206. changed = true;
  2207. }
  2208. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2209. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2210. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2211. changed = true;
  2212. }
  2213. /*
  2214. * Don't touch WM1S_LP_EN here.
  2215. * Doing so could cause underruns.
  2216. */
  2217. return changed;
  2218. }
  2219. /*
  2220. * The spec says we shouldn't write when we don't need, because every write
  2221. * causes WMs to be re-evaluated, expending some power.
  2222. */
  2223. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2224. struct ilk_wm_values *results)
  2225. {
  2226. struct drm_device *dev = dev_priv->dev;
  2227. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2228. unsigned int dirty;
  2229. uint32_t val;
  2230. dirty = ilk_compute_wm_dirty(dev, previous, results);
  2231. if (!dirty)
  2232. return;
  2233. _ilk_disable_lp_wm(dev_priv, dirty);
  2234. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2235. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2236. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2237. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2238. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2239. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2240. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2241. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2242. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2243. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2244. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2245. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2246. if (dirty & WM_DIRTY_DDB) {
  2247. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2248. val = I915_READ(WM_MISC);
  2249. if (results->partitioning == INTEL_DDB_PART_1_2)
  2250. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2251. else
  2252. val |= WM_MISC_DATA_PARTITION_5_6;
  2253. I915_WRITE(WM_MISC, val);
  2254. } else {
  2255. val = I915_READ(DISP_ARB_CTL2);
  2256. if (results->partitioning == INTEL_DDB_PART_1_2)
  2257. val &= ~DISP_DATA_PARTITION_5_6;
  2258. else
  2259. val |= DISP_DATA_PARTITION_5_6;
  2260. I915_WRITE(DISP_ARB_CTL2, val);
  2261. }
  2262. }
  2263. if (dirty & WM_DIRTY_FBC) {
  2264. val = I915_READ(DISP_ARB_CTL);
  2265. if (results->enable_fbc_wm)
  2266. val &= ~DISP_FBC_WM_DIS;
  2267. else
  2268. val |= DISP_FBC_WM_DIS;
  2269. I915_WRITE(DISP_ARB_CTL, val);
  2270. }
  2271. if (dirty & WM_DIRTY_LP(1) &&
  2272. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2273. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2274. if (INTEL_INFO(dev)->gen >= 7) {
  2275. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2276. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2277. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2278. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2279. }
  2280. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2281. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2282. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2283. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2284. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2285. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2286. dev_priv->wm.hw = *results;
  2287. }
  2288. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2289. {
  2290. struct drm_i915_private *dev_priv = dev->dev_private;
  2291. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2292. }
  2293. static void ilk_update_wm(struct drm_crtc *crtc)
  2294. {
  2295. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2296. struct drm_device *dev = crtc->dev;
  2297. struct drm_i915_private *dev_priv = dev->dev_private;
  2298. struct ilk_wm_maximums max;
  2299. struct ilk_pipe_wm_parameters params = {};
  2300. struct ilk_wm_values results = {};
  2301. enum intel_ddb_partitioning partitioning;
  2302. struct intel_pipe_wm pipe_wm = {};
  2303. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2304. struct intel_wm_config config = {};
  2305. ilk_compute_wm_parameters(crtc, &params);
  2306. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2307. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2308. return;
  2309. intel_crtc->wm.active = pipe_wm;
  2310. ilk_compute_wm_config(dev, &config);
  2311. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2312. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  2313. /* 5/6 split only in single pipe config on IVB+ */
  2314. if (INTEL_INFO(dev)->gen >= 7 &&
  2315. config.num_pipes_active == 1 && config.sprites_enabled) {
  2316. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2317. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  2318. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2319. } else {
  2320. best_lp_wm = &lp_wm_1_2;
  2321. }
  2322. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2323. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2324. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2325. ilk_write_wm_values(dev_priv, &results);
  2326. }
  2327. static void
  2328. ilk_update_sprite_wm(struct drm_plane *plane,
  2329. struct drm_crtc *crtc,
  2330. uint32_t sprite_width, uint32_t sprite_height,
  2331. int pixel_size, bool enabled, bool scaled)
  2332. {
  2333. struct drm_device *dev = plane->dev;
  2334. struct intel_plane *intel_plane = to_intel_plane(plane);
  2335. intel_plane->wm.enabled = enabled;
  2336. intel_plane->wm.scaled = scaled;
  2337. intel_plane->wm.horiz_pixels = sprite_width;
  2338. intel_plane->wm.vert_pixels = sprite_width;
  2339. intel_plane->wm.bytes_per_pixel = pixel_size;
  2340. /*
  2341. * IVB workaround: must disable low power watermarks for at least
  2342. * one frame before enabling scaling. LP watermarks can be re-enabled
  2343. * when scaling is disabled.
  2344. *
  2345. * WaCxSRDisabledForSpriteScaling:ivb
  2346. */
  2347. if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
  2348. intel_wait_for_vblank(dev, intel_plane->pipe);
  2349. ilk_update_wm(crtc);
  2350. }
  2351. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2352. {
  2353. struct drm_device *dev = crtc->dev;
  2354. struct drm_i915_private *dev_priv = dev->dev_private;
  2355. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2356. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2357. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2358. enum pipe pipe = intel_crtc->pipe;
  2359. static const unsigned int wm0_pipe_reg[] = {
  2360. [PIPE_A] = WM0_PIPEA_ILK,
  2361. [PIPE_B] = WM0_PIPEB_ILK,
  2362. [PIPE_C] = WM0_PIPEC_IVB,
  2363. };
  2364. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  2365. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2366. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2367. active->pipe_enabled = intel_crtc_active(crtc);
  2368. if (active->pipe_enabled) {
  2369. u32 tmp = hw->wm_pipe[pipe];
  2370. /*
  2371. * For active pipes LP0 watermark is marked as
  2372. * enabled, and LP1+ watermaks as disabled since
  2373. * we can't really reverse compute them in case
  2374. * multiple pipes are active.
  2375. */
  2376. active->wm[0].enable = true;
  2377. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  2378. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  2379. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  2380. active->linetime = hw->wm_linetime[pipe];
  2381. } else {
  2382. int level, max_level = ilk_wm_max_level(dev);
  2383. /*
  2384. * For inactive pipes, all watermark levels
  2385. * should be marked as enabled but zeroed,
  2386. * which is what we'd compute them to.
  2387. */
  2388. for (level = 0; level <= max_level; level++)
  2389. active->wm[level].enable = true;
  2390. }
  2391. }
  2392. void ilk_wm_get_hw_state(struct drm_device *dev)
  2393. {
  2394. struct drm_i915_private *dev_priv = dev->dev_private;
  2395. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2396. struct drm_crtc *crtc;
  2397. for_each_crtc(dev, crtc)
  2398. ilk_pipe_wm_get_hw_state(crtc);
  2399. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  2400. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  2401. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  2402. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2403. if (INTEL_INFO(dev)->gen >= 7) {
  2404. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2405. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2406. }
  2407. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2408. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2409. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2410. else if (IS_IVYBRIDGE(dev))
  2411. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  2412. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2413. hw->enable_fbc_wm =
  2414. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2415. }
  2416. /**
  2417. * intel_update_watermarks - update FIFO watermark values based on current modes
  2418. *
  2419. * Calculate watermark values for the various WM regs based on current mode
  2420. * and plane configuration.
  2421. *
  2422. * There are several cases to deal with here:
  2423. * - normal (i.e. non-self-refresh)
  2424. * - self-refresh (SR) mode
  2425. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2426. * - lines are small relative to FIFO size (buffer can hold more than 2
  2427. * lines), so need to account for TLB latency
  2428. *
  2429. * The normal calculation is:
  2430. * watermark = dotclock * bytes per pixel * latency
  2431. * where latency is platform & configuration dependent (we assume pessimal
  2432. * values here).
  2433. *
  2434. * The SR calculation is:
  2435. * watermark = (trunc(latency/line time)+1) * surface width *
  2436. * bytes per pixel
  2437. * where
  2438. * line time = htotal / dotclock
  2439. * surface width = hdisplay for normal plane and 64 for cursor
  2440. * and latency is assumed to be high, as above.
  2441. *
  2442. * The final value programmed to the register should always be rounded up,
  2443. * and include an extra 2 entries to account for clock crossings.
  2444. *
  2445. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2446. * to set the non-SR watermarks to 8.
  2447. */
  2448. void intel_update_watermarks(struct drm_crtc *crtc)
  2449. {
  2450. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2451. if (dev_priv->display.update_wm)
  2452. dev_priv->display.update_wm(crtc);
  2453. }
  2454. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2455. struct drm_crtc *crtc,
  2456. uint32_t sprite_width,
  2457. uint32_t sprite_height,
  2458. int pixel_size,
  2459. bool enabled, bool scaled)
  2460. {
  2461. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2462. if (dev_priv->display.update_sprite_wm)
  2463. dev_priv->display.update_sprite_wm(plane, crtc,
  2464. sprite_width, sprite_height,
  2465. pixel_size, enabled, scaled);
  2466. }
  2467. static struct drm_i915_gem_object *
  2468. intel_alloc_context_page(struct drm_device *dev)
  2469. {
  2470. struct drm_i915_gem_object *ctx;
  2471. int ret;
  2472. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2473. ctx = i915_gem_alloc_object(dev, 4096);
  2474. if (!ctx) {
  2475. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2476. return NULL;
  2477. }
  2478. ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
  2479. if (ret) {
  2480. DRM_ERROR("failed to pin power context: %d\n", ret);
  2481. goto err_unref;
  2482. }
  2483. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2484. if (ret) {
  2485. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2486. goto err_unpin;
  2487. }
  2488. return ctx;
  2489. err_unpin:
  2490. i915_gem_object_ggtt_unpin(ctx);
  2491. err_unref:
  2492. drm_gem_object_unreference(&ctx->base);
  2493. return NULL;
  2494. }
  2495. /**
  2496. * Lock protecting IPS related data structures
  2497. */
  2498. DEFINE_SPINLOCK(mchdev_lock);
  2499. /* Global for IPS driver to get at the current i915 device. Protected by
  2500. * mchdev_lock. */
  2501. static struct drm_i915_private *i915_mch_dev;
  2502. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2503. {
  2504. struct drm_i915_private *dev_priv = dev->dev_private;
  2505. u16 rgvswctl;
  2506. assert_spin_locked(&mchdev_lock);
  2507. rgvswctl = I915_READ16(MEMSWCTL);
  2508. if (rgvswctl & MEMCTL_CMD_STS) {
  2509. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2510. return false; /* still busy with another command */
  2511. }
  2512. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2513. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2514. I915_WRITE16(MEMSWCTL, rgvswctl);
  2515. POSTING_READ16(MEMSWCTL);
  2516. rgvswctl |= MEMCTL_CMD_STS;
  2517. I915_WRITE16(MEMSWCTL, rgvswctl);
  2518. return true;
  2519. }
  2520. static void ironlake_enable_drps(struct drm_device *dev)
  2521. {
  2522. struct drm_i915_private *dev_priv = dev->dev_private;
  2523. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2524. u8 fmax, fmin, fstart, vstart;
  2525. spin_lock_irq(&mchdev_lock);
  2526. /* Enable temp reporting */
  2527. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2528. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2529. /* 100ms RC evaluation intervals */
  2530. I915_WRITE(RCUPEI, 100000);
  2531. I915_WRITE(RCDNEI, 100000);
  2532. /* Set max/min thresholds to 90ms and 80ms respectively */
  2533. I915_WRITE(RCBMAXAVG, 90000);
  2534. I915_WRITE(RCBMINAVG, 80000);
  2535. I915_WRITE(MEMIHYST, 1);
  2536. /* Set up min, max, and cur for interrupt handling */
  2537. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2538. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2539. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2540. MEMMODE_FSTART_SHIFT;
  2541. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2542. PXVFREQ_PX_SHIFT;
  2543. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2544. dev_priv->ips.fstart = fstart;
  2545. dev_priv->ips.max_delay = fstart;
  2546. dev_priv->ips.min_delay = fmin;
  2547. dev_priv->ips.cur_delay = fstart;
  2548. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2549. fmax, fmin, fstart);
  2550. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2551. /*
  2552. * Interrupts will be enabled in ironlake_irq_postinstall
  2553. */
  2554. I915_WRITE(VIDSTART, vstart);
  2555. POSTING_READ(VIDSTART);
  2556. rgvmodectl |= MEMMODE_SWMODE_EN;
  2557. I915_WRITE(MEMMODECTL, rgvmodectl);
  2558. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2559. DRM_ERROR("stuck trying to change perf mode\n");
  2560. mdelay(1);
  2561. ironlake_set_drps(dev, fstart);
  2562. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2563. I915_READ(0x112e0);
  2564. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2565. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2566. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  2567. spin_unlock_irq(&mchdev_lock);
  2568. }
  2569. static void ironlake_disable_drps(struct drm_device *dev)
  2570. {
  2571. struct drm_i915_private *dev_priv = dev->dev_private;
  2572. u16 rgvswctl;
  2573. spin_lock_irq(&mchdev_lock);
  2574. rgvswctl = I915_READ16(MEMSWCTL);
  2575. /* Ack interrupts, disable EFC interrupt */
  2576. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2577. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2578. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2579. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2580. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2581. /* Go back to the starting frequency */
  2582. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2583. mdelay(1);
  2584. rgvswctl |= MEMCTL_CMD_STS;
  2585. I915_WRITE(MEMSWCTL, rgvswctl);
  2586. mdelay(1);
  2587. spin_unlock_irq(&mchdev_lock);
  2588. }
  2589. /* There's a funny hw issue where the hw returns all 0 when reading from
  2590. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2591. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2592. * all limits and the gpu stuck at whatever frequency it is at atm).
  2593. */
  2594. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  2595. {
  2596. u32 limits;
  2597. /* Only set the down limit when we've reached the lowest level to avoid
  2598. * getting more interrupts, otherwise leave this clear. This prevents a
  2599. * race in the hw when coming out of rc6: There's a tiny window where
  2600. * the hw runs at the minimal clock before selecting the desired
  2601. * frequency, if the down threshold expires in that window we will not
  2602. * receive a down interrupt. */
  2603. limits = dev_priv->rps.max_freq_softlimit << 24;
  2604. if (val <= dev_priv->rps.min_freq_softlimit)
  2605. limits |= dev_priv->rps.min_freq_softlimit << 16;
  2606. return limits;
  2607. }
  2608. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2609. {
  2610. int new_power;
  2611. new_power = dev_priv->rps.power;
  2612. switch (dev_priv->rps.power) {
  2613. case LOW_POWER:
  2614. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  2615. new_power = BETWEEN;
  2616. break;
  2617. case BETWEEN:
  2618. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  2619. new_power = LOW_POWER;
  2620. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  2621. new_power = HIGH_POWER;
  2622. break;
  2623. case HIGH_POWER:
  2624. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  2625. new_power = BETWEEN;
  2626. break;
  2627. }
  2628. /* Max/min bins are special */
  2629. if (val == dev_priv->rps.min_freq_softlimit)
  2630. new_power = LOW_POWER;
  2631. if (val == dev_priv->rps.max_freq_softlimit)
  2632. new_power = HIGH_POWER;
  2633. if (new_power == dev_priv->rps.power)
  2634. return;
  2635. /* Note the units here are not exactly 1us, but 1280ns. */
  2636. switch (new_power) {
  2637. case LOW_POWER:
  2638. /* Upclock if more than 95% busy over 16ms */
  2639. I915_WRITE(GEN6_RP_UP_EI, 12500);
  2640. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  2641. /* Downclock if less than 85% busy over 32ms */
  2642. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2643. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  2644. I915_WRITE(GEN6_RP_CONTROL,
  2645. GEN6_RP_MEDIA_TURBO |
  2646. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2647. GEN6_RP_MEDIA_IS_GFX |
  2648. GEN6_RP_ENABLE |
  2649. GEN6_RP_UP_BUSY_AVG |
  2650. GEN6_RP_DOWN_IDLE_AVG);
  2651. break;
  2652. case BETWEEN:
  2653. /* Upclock if more than 90% busy over 13ms */
  2654. I915_WRITE(GEN6_RP_UP_EI, 10250);
  2655. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  2656. /* Downclock if less than 75% busy over 32ms */
  2657. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2658. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  2659. I915_WRITE(GEN6_RP_CONTROL,
  2660. GEN6_RP_MEDIA_TURBO |
  2661. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2662. GEN6_RP_MEDIA_IS_GFX |
  2663. GEN6_RP_ENABLE |
  2664. GEN6_RP_UP_BUSY_AVG |
  2665. GEN6_RP_DOWN_IDLE_AVG);
  2666. break;
  2667. case HIGH_POWER:
  2668. /* Upclock if more than 85% busy over 10ms */
  2669. I915_WRITE(GEN6_RP_UP_EI, 8000);
  2670. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  2671. /* Downclock if less than 60% busy over 32ms */
  2672. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2673. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  2674. I915_WRITE(GEN6_RP_CONTROL,
  2675. GEN6_RP_MEDIA_TURBO |
  2676. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2677. GEN6_RP_MEDIA_IS_GFX |
  2678. GEN6_RP_ENABLE |
  2679. GEN6_RP_UP_BUSY_AVG |
  2680. GEN6_RP_DOWN_IDLE_AVG);
  2681. break;
  2682. }
  2683. dev_priv->rps.power = new_power;
  2684. dev_priv->rps.last_adj = 0;
  2685. }
  2686. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  2687. {
  2688. u32 mask = 0;
  2689. if (val > dev_priv->rps.min_freq_softlimit)
  2690. mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  2691. if (val < dev_priv->rps.max_freq_softlimit)
  2692. mask |= GEN6_PM_RP_UP_THRESHOLD;
  2693. mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
  2694. mask &= dev_priv->pm_rps_events;
  2695. /* IVB and SNB hard hangs on looping batchbuffer
  2696. * if GEN6_PM_UP_EI_EXPIRED is masked.
  2697. */
  2698. if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
  2699. mask |= GEN6_PM_RP_UP_EI_EXPIRED;
  2700. if (IS_GEN8(dev_priv->dev))
  2701. mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
  2702. return ~mask;
  2703. }
  2704. /* gen6_set_rps is called to update the frequency request, but should also be
  2705. * called when the range (min_delay and max_delay) is modified so that we can
  2706. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  2707. void gen6_set_rps(struct drm_device *dev, u8 val)
  2708. {
  2709. struct drm_i915_private *dev_priv = dev->dev_private;
  2710. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2711. WARN_ON(val > dev_priv->rps.max_freq_softlimit);
  2712. WARN_ON(val < dev_priv->rps.min_freq_softlimit);
  2713. /* min/max delay may still have been modified so be sure to
  2714. * write the limits value.
  2715. */
  2716. if (val != dev_priv->rps.cur_freq) {
  2717. gen6_set_rps_thresholds(dev_priv, val);
  2718. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2719. I915_WRITE(GEN6_RPNSWREQ,
  2720. HSW_FREQUENCY(val));
  2721. else
  2722. I915_WRITE(GEN6_RPNSWREQ,
  2723. GEN6_FREQUENCY(val) |
  2724. GEN6_OFFSET(0) |
  2725. GEN6_AGGRESSIVE_TURBO);
  2726. }
  2727. /* Make sure we continue to get interrupts
  2728. * until we hit the minimum or maximum frequencies.
  2729. */
  2730. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
  2731. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  2732. POSTING_READ(GEN6_RPNSWREQ);
  2733. dev_priv->rps.cur_freq = val;
  2734. trace_intel_gpu_freq_change(val * 50);
  2735. }
  2736. /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
  2737. *
  2738. * * If Gfx is Idle, then
  2739. * 1. Mask Turbo interrupts
  2740. * 2. Bring up Gfx clock
  2741. * 3. Change the freq to Rpn and wait till P-Unit updates freq
  2742. * 4. Clear the Force GFX CLK ON bit so that Gfx can down
  2743. * 5. Unmask Turbo interrupts
  2744. */
  2745. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  2746. {
  2747. struct drm_device *dev = dev_priv->dev;
  2748. /* Latest VLV doesn't need to force the gfx clock */
  2749. if (dev->pdev->revision >= 0xd) {
  2750. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2751. return;
  2752. }
  2753. /*
  2754. * When we are idle. Drop to min voltage state.
  2755. */
  2756. if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
  2757. return;
  2758. /* Mask turbo interrupt so that they will not come in between */
  2759. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2760. vlv_force_gfx_clock(dev_priv, true);
  2761. dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
  2762. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
  2763. dev_priv->rps.min_freq_softlimit);
  2764. if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
  2765. & GENFREQSTATUS) == 0, 5))
  2766. DRM_ERROR("timed out waiting for Punit\n");
  2767. vlv_force_gfx_clock(dev_priv, false);
  2768. I915_WRITE(GEN6_PMINTRMSK,
  2769. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  2770. }
  2771. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  2772. {
  2773. struct drm_device *dev = dev_priv->dev;
  2774. mutex_lock(&dev_priv->rps.hw_lock);
  2775. if (dev_priv->rps.enabled) {
  2776. if (IS_CHERRYVIEW(dev))
  2777. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2778. else if (IS_VALLEYVIEW(dev))
  2779. vlv_set_rps_idle(dev_priv);
  2780. else
  2781. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2782. dev_priv->rps.last_adj = 0;
  2783. }
  2784. mutex_unlock(&dev_priv->rps.hw_lock);
  2785. }
  2786. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  2787. {
  2788. struct drm_device *dev = dev_priv->dev;
  2789. mutex_lock(&dev_priv->rps.hw_lock);
  2790. if (dev_priv->rps.enabled) {
  2791. if (IS_VALLEYVIEW(dev))
  2792. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
  2793. else
  2794. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
  2795. dev_priv->rps.last_adj = 0;
  2796. }
  2797. mutex_unlock(&dev_priv->rps.hw_lock);
  2798. }
  2799. void valleyview_set_rps(struct drm_device *dev, u8 val)
  2800. {
  2801. struct drm_i915_private *dev_priv = dev->dev_private;
  2802. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2803. WARN_ON(val > dev_priv->rps.max_freq_softlimit);
  2804. WARN_ON(val < dev_priv->rps.min_freq_softlimit);
  2805. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  2806. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  2807. dev_priv->rps.cur_freq,
  2808. vlv_gpu_freq(dev_priv, val), val);
  2809. if (val != dev_priv->rps.cur_freq)
  2810. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  2811. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  2812. dev_priv->rps.cur_freq = val;
  2813. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
  2814. }
  2815. static void gen8_disable_rps_interrupts(struct drm_device *dev)
  2816. {
  2817. struct drm_i915_private *dev_priv = dev->dev_private;
  2818. I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
  2819. I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
  2820. ~dev_priv->pm_rps_events);
  2821. /* Complete PM interrupt masking here doesn't race with the rps work
  2822. * item again unmasking PM interrupts because that is using a different
  2823. * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
  2824. * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
  2825. * gen8_enable_rps will clean up. */
  2826. spin_lock_irq(&dev_priv->irq_lock);
  2827. dev_priv->rps.pm_iir = 0;
  2828. spin_unlock_irq(&dev_priv->irq_lock);
  2829. I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
  2830. }
  2831. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  2832. {
  2833. struct drm_i915_private *dev_priv = dev->dev_private;
  2834. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2835. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
  2836. ~dev_priv->pm_rps_events);
  2837. /* Complete PM interrupt masking here doesn't race with the rps work
  2838. * item again unmasking PM interrupts because that is using a different
  2839. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2840. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2841. spin_lock_irq(&dev_priv->irq_lock);
  2842. dev_priv->rps.pm_iir = 0;
  2843. spin_unlock_irq(&dev_priv->irq_lock);
  2844. I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
  2845. }
  2846. static void gen6_disable_rps(struct drm_device *dev)
  2847. {
  2848. struct drm_i915_private *dev_priv = dev->dev_private;
  2849. I915_WRITE(GEN6_RC_CONTROL, 0);
  2850. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  2851. if (IS_BROADWELL(dev))
  2852. gen8_disable_rps_interrupts(dev);
  2853. else
  2854. gen6_disable_rps_interrupts(dev);
  2855. }
  2856. static void cherryview_disable_rps(struct drm_device *dev)
  2857. {
  2858. struct drm_i915_private *dev_priv = dev->dev_private;
  2859. I915_WRITE(GEN6_RC_CONTROL, 0);
  2860. gen8_disable_rps_interrupts(dev);
  2861. }
  2862. static void valleyview_disable_rps(struct drm_device *dev)
  2863. {
  2864. struct drm_i915_private *dev_priv = dev->dev_private;
  2865. I915_WRITE(GEN6_RC_CONTROL, 0);
  2866. gen6_disable_rps_interrupts(dev);
  2867. }
  2868. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  2869. {
  2870. if (IS_VALLEYVIEW(dev)) {
  2871. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  2872. mode = GEN6_RC_CTL_RC6_ENABLE;
  2873. else
  2874. mode = 0;
  2875. }
  2876. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  2877. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  2878. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  2879. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  2880. }
  2881. static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  2882. {
  2883. /* No RC6 before Ironlake */
  2884. if (INTEL_INFO(dev)->gen < 5)
  2885. return 0;
  2886. /* RC6 is only on Ironlake mobile not on desktop */
  2887. if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
  2888. return 0;
  2889. /* Respect the kernel parameter if it is set */
  2890. if (enable_rc6 >= 0) {
  2891. int mask;
  2892. if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
  2893. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  2894. INTEL_RC6pp_ENABLE;
  2895. else
  2896. mask = INTEL_RC6_ENABLE;
  2897. if ((enable_rc6 & mask) != enable_rc6)
  2898. DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  2899. enable_rc6 & mask, enable_rc6, mask);
  2900. return enable_rc6 & mask;
  2901. }
  2902. /* Disable RC6 on Ironlake */
  2903. if (INTEL_INFO(dev)->gen == 5)
  2904. return 0;
  2905. if (IS_IVYBRIDGE(dev))
  2906. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  2907. return INTEL_RC6_ENABLE;
  2908. }
  2909. int intel_enable_rc6(const struct drm_device *dev)
  2910. {
  2911. return i915.enable_rc6;
  2912. }
  2913. static void gen8_enable_rps_interrupts(struct drm_device *dev)
  2914. {
  2915. struct drm_i915_private *dev_priv = dev->dev_private;
  2916. spin_lock_irq(&dev_priv->irq_lock);
  2917. WARN_ON(dev_priv->rps.pm_iir);
  2918. gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  2919. I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
  2920. spin_unlock_irq(&dev_priv->irq_lock);
  2921. }
  2922. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  2923. {
  2924. struct drm_i915_private *dev_priv = dev->dev_private;
  2925. spin_lock_irq(&dev_priv->irq_lock);
  2926. WARN_ON(dev_priv->rps.pm_iir);
  2927. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  2928. I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
  2929. spin_unlock_irq(&dev_priv->irq_lock);
  2930. }
  2931. static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
  2932. {
  2933. /* All of these values are in units of 50MHz */
  2934. dev_priv->rps.cur_freq = 0;
  2935. /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
  2936. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  2937. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  2938. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  2939. /* XXX: only BYT has a special efficient freq */
  2940. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  2941. /* hw_max = RP0 until we check for overclocking */
  2942. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  2943. /* Preserve min/max settings in case of re-init */
  2944. if (dev_priv->rps.max_freq_softlimit == 0)
  2945. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  2946. if (dev_priv->rps.min_freq_softlimit == 0)
  2947. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  2948. }
  2949. static void gen8_enable_rps(struct drm_device *dev)
  2950. {
  2951. struct drm_i915_private *dev_priv = dev->dev_private;
  2952. struct intel_engine_cs *ring;
  2953. uint32_t rc6_mask = 0, rp_state_cap;
  2954. int unused;
  2955. /* 1a: Software RC state - RC0 */
  2956. I915_WRITE(GEN6_RC_STATE, 0);
  2957. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  2958. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  2959. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  2960. /* 2a: Disable RC states. */
  2961. I915_WRITE(GEN6_RC_CONTROL, 0);
  2962. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2963. parse_rp_state_cap(dev_priv, rp_state_cap);
  2964. /* 2b: Program RC6 thresholds.*/
  2965. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  2966. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  2967. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  2968. for_each_ring(ring, dev_priv, unused)
  2969. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2970. I915_WRITE(GEN6_RC_SLEEP, 0);
  2971. if (IS_BROADWELL(dev))
  2972. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  2973. else
  2974. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  2975. /* 3: Enable RC6 */
  2976. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  2977. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  2978. intel_print_rc6_info(dev, rc6_mask);
  2979. if (IS_BROADWELL(dev))
  2980. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  2981. GEN7_RC_CTL_TO_MODE |
  2982. rc6_mask);
  2983. else
  2984. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  2985. GEN6_RC_CTL_EI_MODE(1) |
  2986. rc6_mask);
  2987. /* 4 Program defaults and thresholds for RPS*/
  2988. I915_WRITE(GEN6_RPNSWREQ,
  2989. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  2990. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  2991. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  2992. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  2993. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  2994. /* Docs recommend 900MHz, and 300 MHz respectively */
  2995. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  2996. dev_priv->rps.max_freq_softlimit << 24 |
  2997. dev_priv->rps.min_freq_softlimit << 16);
  2998. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  2999. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  3000. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  3001. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  3002. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3003. /* 5: Enable RPS */
  3004. I915_WRITE(GEN6_RP_CONTROL,
  3005. GEN6_RP_MEDIA_TURBO |
  3006. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3007. GEN6_RP_MEDIA_IS_GFX |
  3008. GEN6_RP_ENABLE |
  3009. GEN6_RP_UP_BUSY_AVG |
  3010. GEN6_RP_DOWN_IDLE_AVG);
  3011. /* 6: Ring frequency + overclocking (our driver does this later */
  3012. gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
  3013. gen8_enable_rps_interrupts(dev);
  3014. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3015. }
  3016. static void gen6_enable_rps(struct drm_device *dev)
  3017. {
  3018. struct drm_i915_private *dev_priv = dev->dev_private;
  3019. struct intel_engine_cs *ring;
  3020. u32 rp_state_cap;
  3021. u32 gt_perf_status;
  3022. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  3023. u32 gtfifodbg;
  3024. int rc6_mode;
  3025. int i, ret;
  3026. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3027. /* Here begins a magic sequence of register writes to enable
  3028. * auto-downclocking.
  3029. *
  3030. * Perhaps there might be some value in exposing these to
  3031. * userspace...
  3032. */
  3033. I915_WRITE(GEN6_RC_STATE, 0);
  3034. /* Clear the DBG now so we don't confuse earlier errors */
  3035. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3036. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3037. I915_WRITE(GTFIFODBG, gtfifodbg);
  3038. }
  3039. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3040. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3041. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  3042. parse_rp_state_cap(dev_priv, rp_state_cap);
  3043. /* disable the counters and set deterministic thresholds */
  3044. I915_WRITE(GEN6_RC_CONTROL, 0);
  3045. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3046. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3047. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3048. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3049. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3050. for_each_ring(ring, dev_priv, i)
  3051. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3052. I915_WRITE(GEN6_RC_SLEEP, 0);
  3053. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3054. if (IS_IVYBRIDGE(dev))
  3055. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3056. else
  3057. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3058. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3059. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3060. /* Check if we are enabling RC6 */
  3061. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3062. if (rc6_mode & INTEL_RC6_ENABLE)
  3063. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3064. /* We don't use those on Haswell */
  3065. if (!IS_HASWELL(dev)) {
  3066. if (rc6_mode & INTEL_RC6p_ENABLE)
  3067. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3068. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3069. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3070. }
  3071. intel_print_rc6_info(dev, rc6_mask);
  3072. I915_WRITE(GEN6_RC_CONTROL,
  3073. rc6_mask |
  3074. GEN6_RC_CTL_EI_MODE(1) |
  3075. GEN6_RC_CTL_HW_ENABLE);
  3076. /* Power down if completely idle for over 50ms */
  3077. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3078. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3079. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3080. if (ret)
  3081. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3082. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3083. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3084. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3085. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  3086. (pcu_mbox & 0xff) * 50);
  3087. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  3088. }
  3089. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3090. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  3091. gen6_enable_rps_interrupts(dev);
  3092. rc6vids = 0;
  3093. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3094. if (IS_GEN6(dev) && ret) {
  3095. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3096. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3097. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3098. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3099. rc6vids &= 0xffff00;
  3100. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3101. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3102. if (ret)
  3103. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3104. }
  3105. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3106. }
  3107. static void __gen6_update_ring_freq(struct drm_device *dev)
  3108. {
  3109. struct drm_i915_private *dev_priv = dev->dev_private;
  3110. int min_freq = 15;
  3111. unsigned int gpu_freq;
  3112. unsigned int max_ia_freq, min_ring_freq;
  3113. int scaling_factor = 180;
  3114. struct cpufreq_policy *policy;
  3115. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3116. policy = cpufreq_cpu_get(0);
  3117. if (policy) {
  3118. max_ia_freq = policy->cpuinfo.max_freq;
  3119. cpufreq_cpu_put(policy);
  3120. } else {
  3121. /*
  3122. * Default to measured freq if none found, PCU will ensure we
  3123. * don't go over
  3124. */
  3125. max_ia_freq = tsc_khz;
  3126. }
  3127. /* Convert from kHz to MHz */
  3128. max_ia_freq /= 1000;
  3129. min_ring_freq = I915_READ(DCLK) & 0xf;
  3130. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3131. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3132. /*
  3133. * For each potential GPU frequency, load a ring frequency we'd like
  3134. * to use for memory access. We do this by specifying the IA frequency
  3135. * the PCU should use as a reference to determine the ring frequency.
  3136. */
  3137. for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
  3138. gpu_freq--) {
  3139. int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
  3140. unsigned int ia_freq = 0, ring_freq = 0;
  3141. if (INTEL_INFO(dev)->gen >= 8) {
  3142. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3143. ring_freq = max(min_ring_freq, gpu_freq);
  3144. } else if (IS_HASWELL(dev)) {
  3145. ring_freq = mult_frac(gpu_freq, 5, 4);
  3146. ring_freq = max(min_ring_freq, ring_freq);
  3147. /* leave ia_freq as the default, chosen by cpufreq */
  3148. } else {
  3149. /* On older processors, there is no separate ring
  3150. * clock domain, so in order to boost the bandwidth
  3151. * of the ring, we need to upclock the CPU (ia_freq).
  3152. *
  3153. * For GPU frequencies less than 750MHz,
  3154. * just use the lowest ring freq.
  3155. */
  3156. if (gpu_freq < min_freq)
  3157. ia_freq = 800;
  3158. else
  3159. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3160. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3161. }
  3162. sandybridge_pcode_write(dev_priv,
  3163. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3164. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3165. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3166. gpu_freq);
  3167. }
  3168. }
  3169. void gen6_update_ring_freq(struct drm_device *dev)
  3170. {
  3171. struct drm_i915_private *dev_priv = dev->dev_private;
  3172. if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
  3173. return;
  3174. mutex_lock(&dev_priv->rps.hw_lock);
  3175. __gen6_update_ring_freq(dev);
  3176. mutex_unlock(&dev_priv->rps.hw_lock);
  3177. }
  3178. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  3179. {
  3180. u32 val, rp0;
  3181. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3182. rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
  3183. return rp0;
  3184. }
  3185. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3186. {
  3187. u32 val, rpe;
  3188. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  3189. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  3190. return rpe;
  3191. }
  3192. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3193. {
  3194. u32 val, rp1;
  3195. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3196. rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
  3197. return rp1;
  3198. }
  3199. static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
  3200. {
  3201. u32 val, rpn;
  3202. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3203. rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
  3204. return rpn;
  3205. }
  3206. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3207. {
  3208. u32 val, rp1;
  3209. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3210. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  3211. return rp1;
  3212. }
  3213. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3214. {
  3215. u32 val, rp0;
  3216. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3217. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3218. /* Clamp to max */
  3219. rp0 = min_t(u32, rp0, 0xea);
  3220. return rp0;
  3221. }
  3222. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3223. {
  3224. u32 val, rpe;
  3225. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3226. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3227. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3228. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3229. return rpe;
  3230. }
  3231. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3232. {
  3233. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3234. }
  3235. /* Check that the pctx buffer wasn't move under us. */
  3236. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  3237. {
  3238. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3239. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  3240. dev_priv->vlv_pctx->stolen->start);
  3241. }
  3242. /* Check that the pcbr address is not empty. */
  3243. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  3244. {
  3245. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3246. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  3247. }
  3248. static void cherryview_setup_pctx(struct drm_device *dev)
  3249. {
  3250. struct drm_i915_private *dev_priv = dev->dev_private;
  3251. unsigned long pctx_paddr, paddr;
  3252. struct i915_gtt *gtt = &dev_priv->gtt;
  3253. u32 pcbr;
  3254. int pctx_size = 32*1024;
  3255. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3256. pcbr = I915_READ(VLV_PCBR);
  3257. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  3258. paddr = (dev_priv->mm.stolen_base +
  3259. (gtt->stolen_size - pctx_size));
  3260. pctx_paddr = (paddr & (~4095));
  3261. I915_WRITE(VLV_PCBR, pctx_paddr);
  3262. }
  3263. }
  3264. static void valleyview_setup_pctx(struct drm_device *dev)
  3265. {
  3266. struct drm_i915_private *dev_priv = dev->dev_private;
  3267. struct drm_i915_gem_object *pctx;
  3268. unsigned long pctx_paddr;
  3269. u32 pcbr;
  3270. int pctx_size = 24*1024;
  3271. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3272. pcbr = I915_READ(VLV_PCBR);
  3273. if (pcbr) {
  3274. /* BIOS set it up already, grab the pre-alloc'd space */
  3275. int pcbr_offset;
  3276. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3277. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3278. pcbr_offset,
  3279. I915_GTT_OFFSET_NONE,
  3280. pctx_size);
  3281. goto out;
  3282. }
  3283. /*
  3284. * From the Gunit register HAS:
  3285. * The Gfx driver is expected to program this register and ensure
  3286. * proper allocation within Gfx stolen memory. For example, this
  3287. * register should be programmed such than the PCBR range does not
  3288. * overlap with other ranges, such as the frame buffer, protected
  3289. * memory, or any other relevant ranges.
  3290. */
  3291. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3292. if (!pctx) {
  3293. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3294. return;
  3295. }
  3296. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3297. I915_WRITE(VLV_PCBR, pctx_paddr);
  3298. out:
  3299. dev_priv->vlv_pctx = pctx;
  3300. }
  3301. static void valleyview_cleanup_pctx(struct drm_device *dev)
  3302. {
  3303. struct drm_i915_private *dev_priv = dev->dev_private;
  3304. if (WARN_ON(!dev_priv->vlv_pctx))
  3305. return;
  3306. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3307. dev_priv->vlv_pctx = NULL;
  3308. }
  3309. static void valleyview_init_gt_powersave(struct drm_device *dev)
  3310. {
  3311. struct drm_i915_private *dev_priv = dev->dev_private;
  3312. valleyview_setup_pctx(dev);
  3313. mutex_lock(&dev_priv->rps.hw_lock);
  3314. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  3315. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  3316. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3317. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  3318. dev_priv->rps.max_freq);
  3319. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  3320. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3321. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3322. dev_priv->rps.efficient_freq);
  3323. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  3324. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  3325. vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  3326. dev_priv->rps.rp1_freq);
  3327. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  3328. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3329. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  3330. dev_priv->rps.min_freq);
  3331. /* Preserve min/max settings in case of re-init */
  3332. if (dev_priv->rps.max_freq_softlimit == 0)
  3333. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3334. if (dev_priv->rps.min_freq_softlimit == 0)
  3335. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3336. mutex_unlock(&dev_priv->rps.hw_lock);
  3337. }
  3338. static void cherryview_init_gt_powersave(struct drm_device *dev)
  3339. {
  3340. struct drm_i915_private *dev_priv = dev->dev_private;
  3341. cherryview_setup_pctx(dev);
  3342. mutex_lock(&dev_priv->rps.hw_lock);
  3343. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  3344. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  3345. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3346. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  3347. dev_priv->rps.max_freq);
  3348. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  3349. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3350. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3351. dev_priv->rps.efficient_freq);
  3352. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  3353. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  3354. vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  3355. dev_priv->rps.rp1_freq);
  3356. dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
  3357. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3358. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  3359. dev_priv->rps.min_freq);
  3360. /* Preserve min/max settings in case of re-init */
  3361. if (dev_priv->rps.max_freq_softlimit == 0)
  3362. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3363. if (dev_priv->rps.min_freq_softlimit == 0)
  3364. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3365. mutex_unlock(&dev_priv->rps.hw_lock);
  3366. }
  3367. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  3368. {
  3369. valleyview_cleanup_pctx(dev);
  3370. }
  3371. static void cherryview_enable_rps(struct drm_device *dev)
  3372. {
  3373. struct drm_i915_private *dev_priv = dev->dev_private;
  3374. struct intel_engine_cs *ring;
  3375. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  3376. int i;
  3377. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3378. gtfifodbg = I915_READ(GTFIFODBG);
  3379. if (gtfifodbg) {
  3380. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3381. gtfifodbg);
  3382. I915_WRITE(GTFIFODBG, gtfifodbg);
  3383. }
  3384. cherryview_check_pctx(dev_priv);
  3385. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  3386. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3387. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3388. /* 2a: Program RC6 thresholds.*/
  3389. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3390. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3391. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3392. for_each_ring(ring, dev_priv, i)
  3393. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3394. I915_WRITE(GEN6_RC_SLEEP, 0);
  3395. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3396. /* allows RC6 residency counter to work */
  3397. I915_WRITE(VLV_COUNTER_CONTROL,
  3398. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3399. VLV_MEDIA_RC6_COUNT_EN |
  3400. VLV_RENDER_RC6_COUNT_EN));
  3401. /* For now we assume BIOS is allocating and populating the PCBR */
  3402. pcbr = I915_READ(VLV_PCBR);
  3403. DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
  3404. /* 3: Enable RC6 */
  3405. if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  3406. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  3407. rc6_mode = GEN6_RC_CTL_EI_MODE(1);
  3408. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3409. /* 4 Program defaults and thresholds for RPS*/
  3410. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3411. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3412. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3413. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3414. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3415. /* WaDisablePwrmtrEvent:chv (pre-production hw) */
  3416. I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
  3417. I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
  3418. /* 5: Enable RPS */
  3419. I915_WRITE(GEN6_RP_CONTROL,
  3420. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3421. GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
  3422. GEN6_RP_ENABLE |
  3423. GEN6_RP_UP_BUSY_AVG |
  3424. GEN6_RP_DOWN_IDLE_AVG);
  3425. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3426. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3427. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3428. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  3429. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3430. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  3431. dev_priv->rps.cur_freq);
  3432. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3433. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3434. dev_priv->rps.efficient_freq);
  3435. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  3436. gen8_enable_rps_interrupts(dev);
  3437. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3438. }
  3439. static void valleyview_enable_rps(struct drm_device *dev)
  3440. {
  3441. struct drm_i915_private *dev_priv = dev->dev_private;
  3442. struct intel_engine_cs *ring;
  3443. u32 gtfifodbg, val, rc6_mode = 0;
  3444. int i;
  3445. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3446. valleyview_check_pctx(dev_priv);
  3447. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3448. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3449. gtfifodbg);
  3450. I915_WRITE(GTFIFODBG, gtfifodbg);
  3451. }
  3452. /* If VLV, Forcewake all wells, else re-direct to regular path */
  3453. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3454. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3455. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3456. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3457. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3458. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3459. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
  3460. I915_WRITE(GEN6_RP_CONTROL,
  3461. GEN6_RP_MEDIA_TURBO |
  3462. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3463. GEN6_RP_MEDIA_IS_GFX |
  3464. GEN6_RP_ENABLE |
  3465. GEN6_RP_UP_BUSY_AVG |
  3466. GEN6_RP_DOWN_IDLE_CONT);
  3467. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3468. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3469. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3470. for_each_ring(ring, dev_priv, i)
  3471. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3472. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  3473. /* allows RC6 residency counter to work */
  3474. I915_WRITE(VLV_COUNTER_CONTROL,
  3475. _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  3476. VLV_RENDER_RC0_COUNT_EN |
  3477. VLV_MEDIA_RC6_COUNT_EN |
  3478. VLV_RENDER_RC6_COUNT_EN));
  3479. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3480. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  3481. intel_print_rc6_info(dev, rc6_mode);
  3482. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3483. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3484. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3485. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3486. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  3487. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3488. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  3489. dev_priv->rps.cur_freq);
  3490. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3491. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3492. dev_priv->rps.efficient_freq);
  3493. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  3494. gen6_enable_rps_interrupts(dev);
  3495. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3496. }
  3497. void ironlake_teardown_rc6(struct drm_device *dev)
  3498. {
  3499. struct drm_i915_private *dev_priv = dev->dev_private;
  3500. if (dev_priv->ips.renderctx) {
  3501. i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
  3502. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3503. dev_priv->ips.renderctx = NULL;
  3504. }
  3505. if (dev_priv->ips.pwrctx) {
  3506. i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
  3507. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3508. dev_priv->ips.pwrctx = NULL;
  3509. }
  3510. }
  3511. static void ironlake_disable_rc6(struct drm_device *dev)
  3512. {
  3513. struct drm_i915_private *dev_priv = dev->dev_private;
  3514. if (I915_READ(PWRCTXA)) {
  3515. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3516. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3517. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3518. 50);
  3519. I915_WRITE(PWRCTXA, 0);
  3520. POSTING_READ(PWRCTXA);
  3521. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3522. POSTING_READ(RSTDBYCTL);
  3523. }
  3524. }
  3525. static int ironlake_setup_rc6(struct drm_device *dev)
  3526. {
  3527. struct drm_i915_private *dev_priv = dev->dev_private;
  3528. if (dev_priv->ips.renderctx == NULL)
  3529. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3530. if (!dev_priv->ips.renderctx)
  3531. return -ENOMEM;
  3532. if (dev_priv->ips.pwrctx == NULL)
  3533. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3534. if (!dev_priv->ips.pwrctx) {
  3535. ironlake_teardown_rc6(dev);
  3536. return -ENOMEM;
  3537. }
  3538. return 0;
  3539. }
  3540. static void ironlake_enable_rc6(struct drm_device *dev)
  3541. {
  3542. struct drm_i915_private *dev_priv = dev->dev_private;
  3543. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  3544. bool was_interruptible;
  3545. int ret;
  3546. /* rc6 disabled by default due to repeated reports of hanging during
  3547. * boot and resume.
  3548. */
  3549. if (!intel_enable_rc6(dev))
  3550. return;
  3551. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3552. ret = ironlake_setup_rc6(dev);
  3553. if (ret)
  3554. return;
  3555. was_interruptible = dev_priv->mm.interruptible;
  3556. dev_priv->mm.interruptible = false;
  3557. /*
  3558. * GPU can automatically power down the render unit if given a page
  3559. * to save state.
  3560. */
  3561. ret = intel_ring_begin(ring, 6);
  3562. if (ret) {
  3563. ironlake_teardown_rc6(dev);
  3564. dev_priv->mm.interruptible = was_interruptible;
  3565. return;
  3566. }
  3567. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3568. intel_ring_emit(ring, MI_SET_CONTEXT);
  3569. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3570. MI_MM_SPACE_GTT |
  3571. MI_SAVE_EXT_STATE_EN |
  3572. MI_RESTORE_EXT_STATE_EN |
  3573. MI_RESTORE_INHIBIT);
  3574. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3575. intel_ring_emit(ring, MI_NOOP);
  3576. intel_ring_emit(ring, MI_FLUSH);
  3577. intel_ring_advance(ring);
  3578. /*
  3579. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3580. * does an implicit flush, combined with MI_FLUSH above, it should be
  3581. * safe to assume that renderctx is valid
  3582. */
  3583. ret = intel_ring_idle(ring);
  3584. dev_priv->mm.interruptible = was_interruptible;
  3585. if (ret) {
  3586. DRM_ERROR("failed to enable ironlake power savings\n");
  3587. ironlake_teardown_rc6(dev);
  3588. return;
  3589. }
  3590. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3591. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3592. intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
  3593. }
  3594. static unsigned long intel_pxfreq(u32 vidfreq)
  3595. {
  3596. unsigned long freq;
  3597. int div = (vidfreq & 0x3f0000) >> 16;
  3598. int post = (vidfreq & 0x3000) >> 12;
  3599. int pre = (vidfreq & 0x7);
  3600. if (!pre)
  3601. return 0;
  3602. freq = ((div * 133333) / ((1<<post) * pre));
  3603. return freq;
  3604. }
  3605. static const struct cparams {
  3606. u16 i;
  3607. u16 t;
  3608. u16 m;
  3609. u16 c;
  3610. } cparams[] = {
  3611. { 1, 1333, 301, 28664 },
  3612. { 1, 1066, 294, 24460 },
  3613. { 1, 800, 294, 25192 },
  3614. { 0, 1333, 276, 27605 },
  3615. { 0, 1066, 276, 27605 },
  3616. { 0, 800, 231, 23784 },
  3617. };
  3618. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3619. {
  3620. u64 total_count, diff, ret;
  3621. u32 count1, count2, count3, m = 0, c = 0;
  3622. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3623. int i;
  3624. assert_spin_locked(&mchdev_lock);
  3625. diff1 = now - dev_priv->ips.last_time1;
  3626. /* Prevent division-by-zero if we are asking too fast.
  3627. * Also, we don't get interesting results if we are polling
  3628. * faster than once in 10ms, so just return the saved value
  3629. * in such cases.
  3630. */
  3631. if (diff1 <= 10)
  3632. return dev_priv->ips.chipset_power;
  3633. count1 = I915_READ(DMIEC);
  3634. count2 = I915_READ(DDREC);
  3635. count3 = I915_READ(CSIEC);
  3636. total_count = count1 + count2 + count3;
  3637. /* FIXME: handle per-counter overflow */
  3638. if (total_count < dev_priv->ips.last_count1) {
  3639. diff = ~0UL - dev_priv->ips.last_count1;
  3640. diff += total_count;
  3641. } else {
  3642. diff = total_count - dev_priv->ips.last_count1;
  3643. }
  3644. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3645. if (cparams[i].i == dev_priv->ips.c_m &&
  3646. cparams[i].t == dev_priv->ips.r_t) {
  3647. m = cparams[i].m;
  3648. c = cparams[i].c;
  3649. break;
  3650. }
  3651. }
  3652. diff = div_u64(diff, diff1);
  3653. ret = ((m * diff) + c);
  3654. ret = div_u64(ret, 10);
  3655. dev_priv->ips.last_count1 = total_count;
  3656. dev_priv->ips.last_time1 = now;
  3657. dev_priv->ips.chipset_power = ret;
  3658. return ret;
  3659. }
  3660. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3661. {
  3662. struct drm_device *dev = dev_priv->dev;
  3663. unsigned long val;
  3664. if (INTEL_INFO(dev)->gen != 5)
  3665. return 0;
  3666. spin_lock_irq(&mchdev_lock);
  3667. val = __i915_chipset_val(dev_priv);
  3668. spin_unlock_irq(&mchdev_lock);
  3669. return val;
  3670. }
  3671. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3672. {
  3673. unsigned long m, x, b;
  3674. u32 tsfs;
  3675. tsfs = I915_READ(TSFS);
  3676. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3677. x = I915_READ8(TR1);
  3678. b = tsfs & TSFS_INTR_MASK;
  3679. return ((m * x) / 127) - b;
  3680. }
  3681. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3682. {
  3683. struct drm_device *dev = dev_priv->dev;
  3684. static const struct v_table {
  3685. u16 vd; /* in .1 mil */
  3686. u16 vm; /* in .1 mil */
  3687. } v_table[] = {
  3688. { 0, 0, },
  3689. { 375, 0, },
  3690. { 500, 0, },
  3691. { 625, 0, },
  3692. { 750, 0, },
  3693. { 875, 0, },
  3694. { 1000, 0, },
  3695. { 1125, 0, },
  3696. { 4125, 3000, },
  3697. { 4125, 3000, },
  3698. { 4125, 3000, },
  3699. { 4125, 3000, },
  3700. { 4125, 3000, },
  3701. { 4125, 3000, },
  3702. { 4125, 3000, },
  3703. { 4125, 3000, },
  3704. { 4125, 3000, },
  3705. { 4125, 3000, },
  3706. { 4125, 3000, },
  3707. { 4125, 3000, },
  3708. { 4125, 3000, },
  3709. { 4125, 3000, },
  3710. { 4125, 3000, },
  3711. { 4125, 3000, },
  3712. { 4125, 3000, },
  3713. { 4125, 3000, },
  3714. { 4125, 3000, },
  3715. { 4125, 3000, },
  3716. { 4125, 3000, },
  3717. { 4125, 3000, },
  3718. { 4125, 3000, },
  3719. { 4125, 3000, },
  3720. { 4250, 3125, },
  3721. { 4375, 3250, },
  3722. { 4500, 3375, },
  3723. { 4625, 3500, },
  3724. { 4750, 3625, },
  3725. { 4875, 3750, },
  3726. { 5000, 3875, },
  3727. { 5125, 4000, },
  3728. { 5250, 4125, },
  3729. { 5375, 4250, },
  3730. { 5500, 4375, },
  3731. { 5625, 4500, },
  3732. { 5750, 4625, },
  3733. { 5875, 4750, },
  3734. { 6000, 4875, },
  3735. { 6125, 5000, },
  3736. { 6250, 5125, },
  3737. { 6375, 5250, },
  3738. { 6500, 5375, },
  3739. { 6625, 5500, },
  3740. { 6750, 5625, },
  3741. { 6875, 5750, },
  3742. { 7000, 5875, },
  3743. { 7125, 6000, },
  3744. { 7250, 6125, },
  3745. { 7375, 6250, },
  3746. { 7500, 6375, },
  3747. { 7625, 6500, },
  3748. { 7750, 6625, },
  3749. { 7875, 6750, },
  3750. { 8000, 6875, },
  3751. { 8125, 7000, },
  3752. { 8250, 7125, },
  3753. { 8375, 7250, },
  3754. { 8500, 7375, },
  3755. { 8625, 7500, },
  3756. { 8750, 7625, },
  3757. { 8875, 7750, },
  3758. { 9000, 7875, },
  3759. { 9125, 8000, },
  3760. { 9250, 8125, },
  3761. { 9375, 8250, },
  3762. { 9500, 8375, },
  3763. { 9625, 8500, },
  3764. { 9750, 8625, },
  3765. { 9875, 8750, },
  3766. { 10000, 8875, },
  3767. { 10125, 9000, },
  3768. { 10250, 9125, },
  3769. { 10375, 9250, },
  3770. { 10500, 9375, },
  3771. { 10625, 9500, },
  3772. { 10750, 9625, },
  3773. { 10875, 9750, },
  3774. { 11000, 9875, },
  3775. { 11125, 10000, },
  3776. { 11250, 10125, },
  3777. { 11375, 10250, },
  3778. { 11500, 10375, },
  3779. { 11625, 10500, },
  3780. { 11750, 10625, },
  3781. { 11875, 10750, },
  3782. { 12000, 10875, },
  3783. { 12125, 11000, },
  3784. { 12250, 11125, },
  3785. { 12375, 11250, },
  3786. { 12500, 11375, },
  3787. { 12625, 11500, },
  3788. { 12750, 11625, },
  3789. { 12875, 11750, },
  3790. { 13000, 11875, },
  3791. { 13125, 12000, },
  3792. { 13250, 12125, },
  3793. { 13375, 12250, },
  3794. { 13500, 12375, },
  3795. { 13625, 12500, },
  3796. { 13750, 12625, },
  3797. { 13875, 12750, },
  3798. { 14000, 12875, },
  3799. { 14125, 13000, },
  3800. { 14250, 13125, },
  3801. { 14375, 13250, },
  3802. { 14500, 13375, },
  3803. { 14625, 13500, },
  3804. { 14750, 13625, },
  3805. { 14875, 13750, },
  3806. { 15000, 13875, },
  3807. { 15125, 14000, },
  3808. { 15250, 14125, },
  3809. { 15375, 14250, },
  3810. { 15500, 14375, },
  3811. { 15625, 14500, },
  3812. { 15750, 14625, },
  3813. { 15875, 14750, },
  3814. { 16000, 14875, },
  3815. { 16125, 15000, },
  3816. };
  3817. if (INTEL_INFO(dev)->is_mobile)
  3818. return v_table[pxvid].vm;
  3819. else
  3820. return v_table[pxvid].vd;
  3821. }
  3822. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3823. {
  3824. u64 now, diff, diffms;
  3825. u32 count;
  3826. assert_spin_locked(&mchdev_lock);
  3827. now = ktime_get_raw_ns();
  3828. diffms = now - dev_priv->ips.last_time2;
  3829. do_div(diffms, NSEC_PER_MSEC);
  3830. /* Don't divide by 0 */
  3831. if (!diffms)
  3832. return;
  3833. count = I915_READ(GFXEC);
  3834. if (count < dev_priv->ips.last_count2) {
  3835. diff = ~0UL - dev_priv->ips.last_count2;
  3836. diff += count;
  3837. } else {
  3838. diff = count - dev_priv->ips.last_count2;
  3839. }
  3840. dev_priv->ips.last_count2 = count;
  3841. dev_priv->ips.last_time2 = now;
  3842. /* More magic constants... */
  3843. diff = diff * 1181;
  3844. diff = div_u64(diff, diffms * 10);
  3845. dev_priv->ips.gfx_power = diff;
  3846. }
  3847. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3848. {
  3849. struct drm_device *dev = dev_priv->dev;
  3850. if (INTEL_INFO(dev)->gen != 5)
  3851. return;
  3852. spin_lock_irq(&mchdev_lock);
  3853. __i915_update_gfx_val(dev_priv);
  3854. spin_unlock_irq(&mchdev_lock);
  3855. }
  3856. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3857. {
  3858. unsigned long t, corr, state1, corr2, state2;
  3859. u32 pxvid, ext_v;
  3860. assert_spin_locked(&mchdev_lock);
  3861. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
  3862. pxvid = (pxvid >> 24) & 0x7f;
  3863. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3864. state1 = ext_v;
  3865. t = i915_mch_val(dev_priv);
  3866. /* Revel in the empirically derived constants */
  3867. /* Correction factor in 1/100000 units */
  3868. if (t > 80)
  3869. corr = ((t * 2349) + 135940);
  3870. else if (t >= 50)
  3871. corr = ((t * 964) + 29317);
  3872. else /* < 50 */
  3873. corr = ((t * 301) + 1004);
  3874. corr = corr * ((150142 * state1) / 10000 - 78642);
  3875. corr /= 100000;
  3876. corr2 = (corr * dev_priv->ips.corr);
  3877. state2 = (corr2 * state1) / 10000;
  3878. state2 /= 100; /* convert to mW */
  3879. __i915_update_gfx_val(dev_priv);
  3880. return dev_priv->ips.gfx_power + state2;
  3881. }
  3882. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3883. {
  3884. struct drm_device *dev = dev_priv->dev;
  3885. unsigned long val;
  3886. if (INTEL_INFO(dev)->gen != 5)
  3887. return 0;
  3888. spin_lock_irq(&mchdev_lock);
  3889. val = __i915_gfx_val(dev_priv);
  3890. spin_unlock_irq(&mchdev_lock);
  3891. return val;
  3892. }
  3893. /**
  3894. * i915_read_mch_val - return value for IPS use
  3895. *
  3896. * Calculate and return a value for the IPS driver to use when deciding whether
  3897. * we have thermal and power headroom to increase CPU or GPU power budget.
  3898. */
  3899. unsigned long i915_read_mch_val(void)
  3900. {
  3901. struct drm_i915_private *dev_priv;
  3902. unsigned long chipset_val, graphics_val, ret = 0;
  3903. spin_lock_irq(&mchdev_lock);
  3904. if (!i915_mch_dev)
  3905. goto out_unlock;
  3906. dev_priv = i915_mch_dev;
  3907. chipset_val = __i915_chipset_val(dev_priv);
  3908. graphics_val = __i915_gfx_val(dev_priv);
  3909. ret = chipset_val + graphics_val;
  3910. out_unlock:
  3911. spin_unlock_irq(&mchdev_lock);
  3912. return ret;
  3913. }
  3914. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3915. /**
  3916. * i915_gpu_raise - raise GPU frequency limit
  3917. *
  3918. * Raise the limit; IPS indicates we have thermal headroom.
  3919. */
  3920. bool i915_gpu_raise(void)
  3921. {
  3922. struct drm_i915_private *dev_priv;
  3923. bool ret = true;
  3924. spin_lock_irq(&mchdev_lock);
  3925. if (!i915_mch_dev) {
  3926. ret = false;
  3927. goto out_unlock;
  3928. }
  3929. dev_priv = i915_mch_dev;
  3930. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3931. dev_priv->ips.max_delay--;
  3932. out_unlock:
  3933. spin_unlock_irq(&mchdev_lock);
  3934. return ret;
  3935. }
  3936. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3937. /**
  3938. * i915_gpu_lower - lower GPU frequency limit
  3939. *
  3940. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3941. * frequency maximum.
  3942. */
  3943. bool i915_gpu_lower(void)
  3944. {
  3945. struct drm_i915_private *dev_priv;
  3946. bool ret = true;
  3947. spin_lock_irq(&mchdev_lock);
  3948. if (!i915_mch_dev) {
  3949. ret = false;
  3950. goto out_unlock;
  3951. }
  3952. dev_priv = i915_mch_dev;
  3953. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  3954. dev_priv->ips.max_delay++;
  3955. out_unlock:
  3956. spin_unlock_irq(&mchdev_lock);
  3957. return ret;
  3958. }
  3959. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  3960. /**
  3961. * i915_gpu_busy - indicate GPU business to IPS
  3962. *
  3963. * Tell the IPS driver whether or not the GPU is busy.
  3964. */
  3965. bool i915_gpu_busy(void)
  3966. {
  3967. struct drm_i915_private *dev_priv;
  3968. struct intel_engine_cs *ring;
  3969. bool ret = false;
  3970. int i;
  3971. spin_lock_irq(&mchdev_lock);
  3972. if (!i915_mch_dev)
  3973. goto out_unlock;
  3974. dev_priv = i915_mch_dev;
  3975. for_each_ring(ring, dev_priv, i)
  3976. ret |= !list_empty(&ring->request_list);
  3977. out_unlock:
  3978. spin_unlock_irq(&mchdev_lock);
  3979. return ret;
  3980. }
  3981. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  3982. /**
  3983. * i915_gpu_turbo_disable - disable graphics turbo
  3984. *
  3985. * Disable graphics turbo by resetting the max frequency and setting the
  3986. * current frequency to the default.
  3987. */
  3988. bool i915_gpu_turbo_disable(void)
  3989. {
  3990. struct drm_i915_private *dev_priv;
  3991. bool ret = true;
  3992. spin_lock_irq(&mchdev_lock);
  3993. if (!i915_mch_dev) {
  3994. ret = false;
  3995. goto out_unlock;
  3996. }
  3997. dev_priv = i915_mch_dev;
  3998. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  3999. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4000. ret = false;
  4001. out_unlock:
  4002. spin_unlock_irq(&mchdev_lock);
  4003. return ret;
  4004. }
  4005. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4006. /**
  4007. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4008. * IPS got loaded first.
  4009. *
  4010. * This awkward dance is so that neither module has to depend on the
  4011. * other in order for IPS to do the appropriate communication of
  4012. * GPU turbo limits to i915.
  4013. */
  4014. static void
  4015. ips_ping_for_i915_load(void)
  4016. {
  4017. void (*link)(void);
  4018. link = symbol_get(ips_link_to_i915_driver);
  4019. if (link) {
  4020. link();
  4021. symbol_put(ips_link_to_i915_driver);
  4022. }
  4023. }
  4024. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4025. {
  4026. /* We only register the i915 ips part with intel-ips once everything is
  4027. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4028. spin_lock_irq(&mchdev_lock);
  4029. i915_mch_dev = dev_priv;
  4030. spin_unlock_irq(&mchdev_lock);
  4031. ips_ping_for_i915_load();
  4032. }
  4033. void intel_gpu_ips_teardown(void)
  4034. {
  4035. spin_lock_irq(&mchdev_lock);
  4036. i915_mch_dev = NULL;
  4037. spin_unlock_irq(&mchdev_lock);
  4038. }
  4039. static void intel_init_emon(struct drm_device *dev)
  4040. {
  4041. struct drm_i915_private *dev_priv = dev->dev_private;
  4042. u32 lcfuse;
  4043. u8 pxw[16];
  4044. int i;
  4045. /* Disable to program */
  4046. I915_WRITE(ECR, 0);
  4047. POSTING_READ(ECR);
  4048. /* Program energy weights for various events */
  4049. I915_WRITE(SDEW, 0x15040d00);
  4050. I915_WRITE(CSIEW0, 0x007f0000);
  4051. I915_WRITE(CSIEW1, 0x1e220004);
  4052. I915_WRITE(CSIEW2, 0x04000004);
  4053. for (i = 0; i < 5; i++)
  4054. I915_WRITE(PEW + (i * 4), 0);
  4055. for (i = 0; i < 3; i++)
  4056. I915_WRITE(DEW + (i * 4), 0);
  4057. /* Program P-state weights to account for frequency power adjustment */
  4058. for (i = 0; i < 16; i++) {
  4059. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4060. unsigned long freq = intel_pxfreq(pxvidfreq);
  4061. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4062. PXVFREQ_PX_SHIFT;
  4063. unsigned long val;
  4064. val = vid * vid;
  4065. val *= (freq / 1000);
  4066. val *= 255;
  4067. val /= (127*127*900);
  4068. if (val > 0xff)
  4069. DRM_ERROR("bad pxval: %ld\n", val);
  4070. pxw[i] = val;
  4071. }
  4072. /* Render standby states get 0 weight */
  4073. pxw[14] = 0;
  4074. pxw[15] = 0;
  4075. for (i = 0; i < 4; i++) {
  4076. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4077. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4078. I915_WRITE(PXW + (i * 4), val);
  4079. }
  4080. /* Adjust magic regs to magic values (more experimental results) */
  4081. I915_WRITE(OGW0, 0);
  4082. I915_WRITE(OGW1, 0);
  4083. I915_WRITE(EG0, 0x00007f00);
  4084. I915_WRITE(EG1, 0x0000000e);
  4085. I915_WRITE(EG2, 0x000e0000);
  4086. I915_WRITE(EG3, 0x68000300);
  4087. I915_WRITE(EG4, 0x42000000);
  4088. I915_WRITE(EG5, 0x00140031);
  4089. I915_WRITE(EG6, 0);
  4090. I915_WRITE(EG7, 0);
  4091. for (i = 0; i < 8; i++)
  4092. I915_WRITE(PXWL + (i * 4), 0);
  4093. /* Enable PMON + select events */
  4094. I915_WRITE(ECR, 0x80000019);
  4095. lcfuse = I915_READ(LCFUSE02);
  4096. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4097. }
  4098. void intel_init_gt_powersave(struct drm_device *dev)
  4099. {
  4100. i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
  4101. if (IS_CHERRYVIEW(dev))
  4102. cherryview_init_gt_powersave(dev);
  4103. else if (IS_VALLEYVIEW(dev))
  4104. valleyview_init_gt_powersave(dev);
  4105. }
  4106. void intel_cleanup_gt_powersave(struct drm_device *dev)
  4107. {
  4108. if (IS_CHERRYVIEW(dev))
  4109. return;
  4110. else if (IS_VALLEYVIEW(dev))
  4111. valleyview_cleanup_gt_powersave(dev);
  4112. }
  4113. /**
  4114. * intel_suspend_gt_powersave - suspend PM work and helper threads
  4115. * @dev: drm device
  4116. *
  4117. * We don't want to disable RC6 or other features here, we just want
  4118. * to make sure any work we've queued has finished and won't bother
  4119. * us while we're suspended.
  4120. */
  4121. void intel_suspend_gt_powersave(struct drm_device *dev)
  4122. {
  4123. struct drm_i915_private *dev_priv = dev->dev_private;
  4124. /* Interrupts should be disabled already to avoid re-arming. */
  4125. WARN_ON(intel_irqs_enabled(dev_priv));
  4126. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4127. cancel_work_sync(&dev_priv->rps.work);
  4128. /* Force GPU to min freq during suspend */
  4129. gen6_rps_idle(dev_priv);
  4130. }
  4131. void intel_disable_gt_powersave(struct drm_device *dev)
  4132. {
  4133. struct drm_i915_private *dev_priv = dev->dev_private;
  4134. /* Interrupts should be disabled already to avoid re-arming. */
  4135. WARN_ON(intel_irqs_enabled(dev_priv));
  4136. if (IS_IRONLAKE_M(dev)) {
  4137. ironlake_disable_drps(dev);
  4138. ironlake_disable_rc6(dev);
  4139. } else if (INTEL_INFO(dev)->gen >= 6) {
  4140. intel_suspend_gt_powersave(dev);
  4141. mutex_lock(&dev_priv->rps.hw_lock);
  4142. if (IS_CHERRYVIEW(dev))
  4143. cherryview_disable_rps(dev);
  4144. else if (IS_VALLEYVIEW(dev))
  4145. valleyview_disable_rps(dev);
  4146. else
  4147. gen6_disable_rps(dev);
  4148. dev_priv->rps.enabled = false;
  4149. mutex_unlock(&dev_priv->rps.hw_lock);
  4150. }
  4151. }
  4152. static void intel_gen6_powersave_work(struct work_struct *work)
  4153. {
  4154. struct drm_i915_private *dev_priv =
  4155. container_of(work, struct drm_i915_private,
  4156. rps.delayed_resume_work.work);
  4157. struct drm_device *dev = dev_priv->dev;
  4158. mutex_lock(&dev_priv->rps.hw_lock);
  4159. if (IS_CHERRYVIEW(dev)) {
  4160. cherryview_enable_rps(dev);
  4161. } else if (IS_VALLEYVIEW(dev)) {
  4162. valleyview_enable_rps(dev);
  4163. } else if (IS_BROADWELL(dev)) {
  4164. gen8_enable_rps(dev);
  4165. __gen6_update_ring_freq(dev);
  4166. } else {
  4167. gen6_enable_rps(dev);
  4168. __gen6_update_ring_freq(dev);
  4169. }
  4170. dev_priv->rps.enabled = true;
  4171. mutex_unlock(&dev_priv->rps.hw_lock);
  4172. intel_runtime_pm_put(dev_priv);
  4173. }
  4174. void intel_enable_gt_powersave(struct drm_device *dev)
  4175. {
  4176. struct drm_i915_private *dev_priv = dev->dev_private;
  4177. if (IS_IRONLAKE_M(dev)) {
  4178. mutex_lock(&dev->struct_mutex);
  4179. ironlake_enable_drps(dev);
  4180. ironlake_enable_rc6(dev);
  4181. intel_init_emon(dev);
  4182. mutex_unlock(&dev->struct_mutex);
  4183. } else if (INTEL_INFO(dev)->gen >= 6) {
  4184. /*
  4185. * PCU communication is slow and this doesn't need to be
  4186. * done at any specific time, so do this out of our fast path
  4187. * to make resume and init faster.
  4188. *
  4189. * We depend on the HW RC6 power context save/restore
  4190. * mechanism when entering D3 through runtime PM suspend. So
  4191. * disable RPM until RPS/RC6 is properly setup. We can only
  4192. * get here via the driver load/system resume/runtime resume
  4193. * paths, so the _noresume version is enough (and in case of
  4194. * runtime resume it's necessary).
  4195. */
  4196. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4197. round_jiffies_up_relative(HZ)))
  4198. intel_runtime_pm_get_noresume(dev_priv);
  4199. }
  4200. }
  4201. void intel_reset_gt_powersave(struct drm_device *dev)
  4202. {
  4203. struct drm_i915_private *dev_priv = dev->dev_private;
  4204. dev_priv->rps.enabled = false;
  4205. intel_enable_gt_powersave(dev);
  4206. }
  4207. static void ibx_init_clock_gating(struct drm_device *dev)
  4208. {
  4209. struct drm_i915_private *dev_priv = dev->dev_private;
  4210. /*
  4211. * On Ibex Peak and Cougar Point, we need to disable clock
  4212. * gating for the panel power sequencer or it will fail to
  4213. * start up when no ports are active.
  4214. */
  4215. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4216. }
  4217. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4218. {
  4219. struct drm_i915_private *dev_priv = dev->dev_private;
  4220. int pipe;
  4221. for_each_pipe(pipe) {
  4222. I915_WRITE(DSPCNTR(pipe),
  4223. I915_READ(DSPCNTR(pipe)) |
  4224. DISPPLANE_TRICKLE_FEED_DISABLE);
  4225. intel_flush_primary_plane(dev_priv, pipe);
  4226. }
  4227. }
  4228. static void ilk_init_lp_watermarks(struct drm_device *dev)
  4229. {
  4230. struct drm_i915_private *dev_priv = dev->dev_private;
  4231. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  4232. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  4233. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  4234. /*
  4235. * Don't touch WM1S_LP_EN here.
  4236. * Doing so could cause underruns.
  4237. */
  4238. }
  4239. static void ironlake_init_clock_gating(struct drm_device *dev)
  4240. {
  4241. struct drm_i915_private *dev_priv = dev->dev_private;
  4242. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4243. /*
  4244. * Required for FBC
  4245. * WaFbcDisableDpfcClockGating:ilk
  4246. */
  4247. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4248. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4249. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4250. I915_WRITE(PCH_3DCGDIS0,
  4251. MARIUNIT_CLOCK_GATE_DISABLE |
  4252. SVSMUNIT_CLOCK_GATE_DISABLE);
  4253. I915_WRITE(PCH_3DCGDIS1,
  4254. VFMUNIT_CLOCK_GATE_DISABLE);
  4255. /*
  4256. * According to the spec the following bits should be set in
  4257. * order to enable memory self-refresh
  4258. * The bit 22/21 of 0x42004
  4259. * The bit 5 of 0x42020
  4260. * The bit 15 of 0x45000
  4261. */
  4262. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4263. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4264. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4265. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4266. I915_WRITE(DISP_ARB_CTL,
  4267. (I915_READ(DISP_ARB_CTL) |
  4268. DISP_FBC_WM_DIS));
  4269. ilk_init_lp_watermarks(dev);
  4270. /*
  4271. * Based on the document from hardware guys the following bits
  4272. * should be set unconditionally in order to enable FBC.
  4273. * The bit 22 of 0x42000
  4274. * The bit 22 of 0x42004
  4275. * The bit 7,8,9 of 0x42020.
  4276. */
  4277. if (IS_IRONLAKE_M(dev)) {
  4278. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4279. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4280. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4281. ILK_FBCQ_DIS);
  4282. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4283. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4284. ILK_DPARB_GATE);
  4285. }
  4286. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4287. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4288. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4289. ILK_ELPIN_409_SELECT);
  4290. I915_WRITE(_3D_CHICKEN2,
  4291. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4292. _3D_CHICKEN2_WM_READ_PIPELINED);
  4293. /* WaDisableRenderCachePipelinedFlush:ilk */
  4294. I915_WRITE(CACHE_MODE_0,
  4295. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4296. /* WaDisable_RenderCache_OperationalFlush:ilk */
  4297. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4298. g4x_disable_trickle_feed(dev);
  4299. ibx_init_clock_gating(dev);
  4300. }
  4301. static void cpt_init_clock_gating(struct drm_device *dev)
  4302. {
  4303. struct drm_i915_private *dev_priv = dev->dev_private;
  4304. int pipe;
  4305. uint32_t val;
  4306. /*
  4307. * On Ibex Peak and Cougar Point, we need to disable clock
  4308. * gating for the panel power sequencer or it will fail to
  4309. * start up when no ports are active.
  4310. */
  4311. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4312. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4313. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4314. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4315. DPLS_EDP_PPS_FIX_DIS);
  4316. /* The below fixes the weird display corruption, a few pixels shifted
  4317. * downward, on (only) LVDS of some HP laptops with IVY.
  4318. */
  4319. for_each_pipe(pipe) {
  4320. val = I915_READ(TRANS_CHICKEN2(pipe));
  4321. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4322. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4323. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4324. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4325. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4326. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4327. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4328. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4329. }
  4330. /* WADP0ClockGatingDisable */
  4331. for_each_pipe(pipe) {
  4332. I915_WRITE(TRANS_CHICKEN1(pipe),
  4333. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4334. }
  4335. }
  4336. static void gen6_check_mch_setup(struct drm_device *dev)
  4337. {
  4338. struct drm_i915_private *dev_priv = dev->dev_private;
  4339. uint32_t tmp;
  4340. tmp = I915_READ(MCH_SSKPD);
  4341. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  4342. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  4343. tmp);
  4344. }
  4345. static void gen6_init_clock_gating(struct drm_device *dev)
  4346. {
  4347. struct drm_i915_private *dev_priv = dev->dev_private;
  4348. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4349. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4350. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4351. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4352. ILK_ELPIN_409_SELECT);
  4353. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4354. I915_WRITE(_3D_CHICKEN,
  4355. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4356. /* WaSetupGtModeTdRowDispatch:snb */
  4357. if (IS_SNB_GT1(dev))
  4358. I915_WRITE(GEN6_GT_MODE,
  4359. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4360. /* WaDisable_RenderCache_OperationalFlush:snb */
  4361. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4362. /*
  4363. * BSpec recoomends 8x4 when MSAA is used,
  4364. * however in practice 16x4 seems fastest.
  4365. *
  4366. * Note that PS/WM thread counts depend on the WIZ hashing
  4367. * disable bit, which we don't touch here, but it's good
  4368. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4369. */
  4370. I915_WRITE(GEN6_GT_MODE,
  4371. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4372. ilk_init_lp_watermarks(dev);
  4373. I915_WRITE(CACHE_MODE_0,
  4374. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4375. I915_WRITE(GEN6_UCGCTL1,
  4376. I915_READ(GEN6_UCGCTL1) |
  4377. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4378. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4379. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4380. * gating disable must be set. Failure to set it results in
  4381. * flickering pixels due to Z write ordering failures after
  4382. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4383. * Sanctuary and Tropics, and apparently anything else with
  4384. * alpha test or pixel discard.
  4385. *
  4386. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4387. * but we didn't debug actual testcases to find it out.
  4388. *
  4389. * WaDisableRCCUnitClockGating:snb
  4390. * WaDisableRCPBUnitClockGating:snb
  4391. */
  4392. I915_WRITE(GEN6_UCGCTL2,
  4393. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4394. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4395. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  4396. I915_WRITE(_3D_CHICKEN3,
  4397. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  4398. /*
  4399. * Bspec says:
  4400. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  4401. * 3DSTATE_SF number of SF output attributes is more than 16."
  4402. */
  4403. I915_WRITE(_3D_CHICKEN3,
  4404. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  4405. /*
  4406. * According to the spec the following bits should be
  4407. * set in order to enable memory self-refresh and fbc:
  4408. * The bit21 and bit22 of 0x42000
  4409. * The bit21 and bit22 of 0x42004
  4410. * The bit5 and bit7 of 0x42020
  4411. * The bit14 of 0x70180
  4412. * The bit14 of 0x71180
  4413. *
  4414. * WaFbcAsynchFlipDisableFbcQueue:snb
  4415. */
  4416. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4417. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4418. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4419. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4420. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4421. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4422. I915_WRITE(ILK_DSPCLK_GATE_D,
  4423. I915_READ(ILK_DSPCLK_GATE_D) |
  4424. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4425. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4426. g4x_disable_trickle_feed(dev);
  4427. cpt_init_clock_gating(dev);
  4428. gen6_check_mch_setup(dev);
  4429. }
  4430. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4431. {
  4432. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4433. /*
  4434. * WaVSThreadDispatchOverride:ivb,vlv
  4435. *
  4436. * This actually overrides the dispatch
  4437. * mode for all thread types.
  4438. */
  4439. reg &= ~GEN7_FF_SCHED_MASK;
  4440. reg |= GEN7_FF_TS_SCHED_HW;
  4441. reg |= GEN7_FF_VS_SCHED_HW;
  4442. reg |= GEN7_FF_DS_SCHED_HW;
  4443. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4444. }
  4445. static void lpt_init_clock_gating(struct drm_device *dev)
  4446. {
  4447. struct drm_i915_private *dev_priv = dev->dev_private;
  4448. /*
  4449. * TODO: this bit should only be enabled when really needed, then
  4450. * disabled when not needed anymore in order to save power.
  4451. */
  4452. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4453. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4454. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4455. PCH_LP_PARTITION_LEVEL_DISABLE);
  4456. /* WADPOClockGatingDisable:hsw */
  4457. I915_WRITE(_TRANSA_CHICKEN1,
  4458. I915_READ(_TRANSA_CHICKEN1) |
  4459. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4460. }
  4461. static void lpt_suspend_hw(struct drm_device *dev)
  4462. {
  4463. struct drm_i915_private *dev_priv = dev->dev_private;
  4464. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4465. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4466. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4467. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4468. }
  4469. }
  4470. static void gen8_init_clock_gating(struct drm_device *dev)
  4471. {
  4472. struct drm_i915_private *dev_priv = dev->dev_private;
  4473. enum pipe pipe;
  4474. I915_WRITE(WM3_LP_ILK, 0);
  4475. I915_WRITE(WM2_LP_ILK, 0);
  4476. I915_WRITE(WM1_LP_ILK, 0);
  4477. /* FIXME(BDW): Check all the w/a, some might only apply to
  4478. * pre-production hw. */
  4479. /* WaDisablePartialInstShootdown:bdw */
  4480. I915_WRITE(GEN8_ROW_CHICKEN,
  4481. _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
  4482. /* WaDisableThreadStallDopClockGating:bdw */
  4483. /* FIXME: Unclear whether we really need this on production bdw. */
  4484. I915_WRITE(GEN8_ROW_CHICKEN,
  4485. _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
  4486. /*
  4487. * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
  4488. * pre-production hardware
  4489. */
  4490. I915_WRITE(HALF_SLICE_CHICKEN3,
  4491. _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
  4492. I915_WRITE(HALF_SLICE_CHICKEN3,
  4493. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  4494. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
  4495. I915_WRITE(_3D_CHICKEN3,
  4496. _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
  4497. I915_WRITE(COMMON_SLICE_CHICKEN2,
  4498. _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
  4499. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4500. _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
  4501. /* WaDisableDopClockGating:bdw May not be needed for production */
  4502. I915_WRITE(GEN7_ROW_CHICKEN2,
  4503. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4504. /* WaSwitchSolVfFArbitrationPriority:bdw */
  4505. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4506. /* WaPsrDPAMaskVBlankInSRD:bdw */
  4507. I915_WRITE(CHICKEN_PAR1_1,
  4508. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  4509. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  4510. for_each_pipe(pipe) {
  4511. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  4512. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  4513. BDW_DPRS_MASK_VBLANK_SRD);
  4514. }
  4515. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  4516. * workaround for for a possible hang in the unlikely event a TLB
  4517. * invalidation occurs during a PSD flush.
  4518. */
  4519. I915_WRITE(HDC_CHICKEN0,
  4520. I915_READ(HDC_CHICKEN0) |
  4521. _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
  4522. /* WaVSRefCountFullforceMissDisable:bdw */
  4523. /* WaDSRefCountFullforceMissDisable:bdw */
  4524. I915_WRITE(GEN7_FF_THREAD_MODE,
  4525. I915_READ(GEN7_FF_THREAD_MODE) &
  4526. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  4527. /*
  4528. * BSpec recommends 8x4 when MSAA is used,
  4529. * however in practice 16x4 seems fastest.
  4530. *
  4531. * Note that PS/WM thread counts depend on the WIZ hashing
  4532. * disable bit, which we don't touch here, but it's good
  4533. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4534. */
  4535. I915_WRITE(GEN7_GT_MODE,
  4536. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4537. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4538. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  4539. /* WaDisableSDEUnitClockGating:bdw */
  4540. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  4541. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  4542. /* Wa4x4STCOptimizationDisable:bdw */
  4543. I915_WRITE(CACHE_MODE_1,
  4544. _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
  4545. }
  4546. static void haswell_init_clock_gating(struct drm_device *dev)
  4547. {
  4548. struct drm_i915_private *dev_priv = dev->dev_private;
  4549. ilk_init_lp_watermarks(dev);
  4550. /* L3 caching of data atomics doesn't work -- disable it. */
  4551. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  4552. I915_WRITE(HSW_ROW_CHICKEN3,
  4553. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  4554. /* This is required by WaCatErrorRejectionIssue:hsw */
  4555. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4556. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4557. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4558. /* WaVSRefCountFullforceMissDisable:hsw */
  4559. I915_WRITE(GEN7_FF_THREAD_MODE,
  4560. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  4561. /* WaDisable_RenderCache_OperationalFlush:hsw */
  4562. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4563. /* enable HiZ Raw Stall Optimization */
  4564. I915_WRITE(CACHE_MODE_0_GEN7,
  4565. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  4566. /* WaDisable4x2SubspanOptimization:hsw */
  4567. I915_WRITE(CACHE_MODE_1,
  4568. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4569. /*
  4570. * BSpec recommends 8x4 when MSAA is used,
  4571. * however in practice 16x4 seems fastest.
  4572. *
  4573. * Note that PS/WM thread counts depend on the WIZ hashing
  4574. * disable bit, which we don't touch here, but it's good
  4575. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4576. */
  4577. I915_WRITE(GEN7_GT_MODE,
  4578. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4579. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4580. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4581. /* WaRsPkgCStateDisplayPMReq:hsw */
  4582. I915_WRITE(CHICKEN_PAR1_1,
  4583. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4584. lpt_init_clock_gating(dev);
  4585. }
  4586. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4587. {
  4588. struct drm_i915_private *dev_priv = dev->dev_private;
  4589. uint32_t snpcr;
  4590. ilk_init_lp_watermarks(dev);
  4591. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4592. /* WaDisableEarlyCull:ivb */
  4593. I915_WRITE(_3D_CHICKEN3,
  4594. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4595. /* WaDisableBackToBackFlipFix:ivb */
  4596. I915_WRITE(IVB_CHICKEN3,
  4597. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4598. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4599. /* WaDisablePSDDualDispatchEnable:ivb */
  4600. if (IS_IVB_GT1(dev))
  4601. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4602. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4603. /* WaDisable_RenderCache_OperationalFlush:ivb */
  4604. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4605. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4606. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4607. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4608. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4609. I915_WRITE(GEN7_L3CNTLREG1,
  4610. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4611. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4612. GEN7_WA_L3_CHICKEN_MODE);
  4613. if (IS_IVB_GT1(dev))
  4614. I915_WRITE(GEN7_ROW_CHICKEN2,
  4615. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4616. else {
  4617. /* must write both registers */
  4618. I915_WRITE(GEN7_ROW_CHICKEN2,
  4619. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4620. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4621. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4622. }
  4623. /* WaForceL3Serialization:ivb */
  4624. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4625. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4626. /*
  4627. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4628. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4629. */
  4630. I915_WRITE(GEN6_UCGCTL2,
  4631. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4632. /* This is required by WaCatErrorRejectionIssue:ivb */
  4633. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4634. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4635. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4636. g4x_disable_trickle_feed(dev);
  4637. gen7_setup_fixed_func_scheduler(dev_priv);
  4638. if (0) { /* causes HiZ corruption on ivb:gt1 */
  4639. /* enable HiZ Raw Stall Optimization */
  4640. I915_WRITE(CACHE_MODE_0_GEN7,
  4641. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  4642. }
  4643. /* WaDisable4x2SubspanOptimization:ivb */
  4644. I915_WRITE(CACHE_MODE_1,
  4645. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4646. /*
  4647. * BSpec recommends 8x4 when MSAA is used,
  4648. * however in practice 16x4 seems fastest.
  4649. *
  4650. * Note that PS/WM thread counts depend on the WIZ hashing
  4651. * disable bit, which we don't touch here, but it's good
  4652. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4653. */
  4654. I915_WRITE(GEN7_GT_MODE,
  4655. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4656. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4657. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4658. snpcr |= GEN6_MBC_SNPCR_MED;
  4659. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4660. if (!HAS_PCH_NOP(dev))
  4661. cpt_init_clock_gating(dev);
  4662. gen6_check_mch_setup(dev);
  4663. }
  4664. static void valleyview_init_clock_gating(struct drm_device *dev)
  4665. {
  4666. struct drm_i915_private *dev_priv = dev->dev_private;
  4667. u32 val;
  4668. mutex_lock(&dev_priv->rps.hw_lock);
  4669. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4670. mutex_unlock(&dev_priv->rps.hw_lock);
  4671. switch ((val >> 6) & 3) {
  4672. case 0:
  4673. case 1:
  4674. dev_priv->mem_freq = 800;
  4675. break;
  4676. case 2:
  4677. dev_priv->mem_freq = 1066;
  4678. break;
  4679. case 3:
  4680. dev_priv->mem_freq = 1333;
  4681. break;
  4682. }
  4683. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  4684. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4685. /* WaDisableEarlyCull:vlv */
  4686. I915_WRITE(_3D_CHICKEN3,
  4687. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4688. /* WaDisableBackToBackFlipFix:vlv */
  4689. I915_WRITE(IVB_CHICKEN3,
  4690. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4691. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4692. /* WaPsdDispatchEnable:vlv */
  4693. /* WaDisablePSDDualDispatchEnable:vlv */
  4694. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4695. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4696. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4697. /* WaDisable_RenderCache_OperationalFlush:vlv */
  4698. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4699. /* WaForceL3Serialization:vlv */
  4700. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4701. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4702. /* WaDisableDopClockGating:vlv */
  4703. I915_WRITE(GEN7_ROW_CHICKEN2,
  4704. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4705. /* This is required by WaCatErrorRejectionIssue:vlv */
  4706. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4707. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4708. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4709. gen7_setup_fixed_func_scheduler(dev_priv);
  4710. /*
  4711. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4712. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4713. */
  4714. I915_WRITE(GEN6_UCGCTL2,
  4715. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4716. /* WaDisableL3Bank2xClockGate:vlv
  4717. * Disabling L3 clock gating- MMIO 940c[25] = 1
  4718. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  4719. I915_WRITE(GEN7_UCGCTL4,
  4720. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4721. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4722. /*
  4723. * BSpec says this must be set, even though
  4724. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  4725. */
  4726. I915_WRITE(CACHE_MODE_1,
  4727. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4728. /*
  4729. * WaIncreaseL3CreditsForVLVB0:vlv
  4730. * This is the hardware default actually.
  4731. */
  4732. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  4733. /*
  4734. * WaDisableVLVClockGating_VBIIssue:vlv
  4735. * Disable clock gating on th GCFG unit to prevent a delay
  4736. * in the reporting of vblank events.
  4737. */
  4738. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  4739. }
  4740. static void cherryview_init_clock_gating(struct drm_device *dev)
  4741. {
  4742. struct drm_i915_private *dev_priv = dev->dev_private;
  4743. u32 val;
  4744. mutex_lock(&dev_priv->rps.hw_lock);
  4745. val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
  4746. mutex_unlock(&dev_priv->rps.hw_lock);
  4747. switch ((val >> 2) & 0x7) {
  4748. case 0:
  4749. case 1:
  4750. dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_200;
  4751. dev_priv->mem_freq = 1600;
  4752. break;
  4753. case 2:
  4754. dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_267;
  4755. dev_priv->mem_freq = 1600;
  4756. break;
  4757. case 3:
  4758. dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_333;
  4759. dev_priv->mem_freq = 2000;
  4760. break;
  4761. case 4:
  4762. dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_320;
  4763. dev_priv->mem_freq = 1600;
  4764. break;
  4765. case 5:
  4766. dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_400;
  4767. dev_priv->mem_freq = 1600;
  4768. break;
  4769. }
  4770. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  4771. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4772. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4773. /* WaDisablePartialInstShootdown:chv */
  4774. I915_WRITE(GEN8_ROW_CHICKEN,
  4775. _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
  4776. /* WaDisableThreadStallDopClockGating:chv */
  4777. I915_WRITE(GEN8_ROW_CHICKEN,
  4778. _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
  4779. /* WaVSRefCountFullforceMissDisable:chv */
  4780. /* WaDSRefCountFullforceMissDisable:chv */
  4781. I915_WRITE(GEN7_FF_THREAD_MODE,
  4782. I915_READ(GEN7_FF_THREAD_MODE) &
  4783. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  4784. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  4785. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4786. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  4787. /* WaDisableCSUnitClockGating:chv */
  4788. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  4789. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4790. /* WaDisableSDEUnitClockGating:chv */
  4791. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  4792. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  4793. /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
  4794. I915_WRITE(HALF_SLICE_CHICKEN3,
  4795. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  4796. /* WaDisableGunitClockGating:chv (pre-production hw) */
  4797. I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
  4798. GINT_DIS);
  4799. /* WaDisableFfDopClockGating:chv (pre-production hw) */
  4800. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4801. _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
  4802. /* WaDisableDopClockGating:chv (pre-production hw) */
  4803. I915_WRITE(GEN7_ROW_CHICKEN2,
  4804. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4805. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  4806. GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
  4807. }
  4808. static void g4x_init_clock_gating(struct drm_device *dev)
  4809. {
  4810. struct drm_i915_private *dev_priv = dev->dev_private;
  4811. uint32_t dspclk_gate;
  4812. I915_WRITE(RENCLK_GATE_D1, 0);
  4813. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4814. GS_UNIT_CLOCK_GATE_DISABLE |
  4815. CL_UNIT_CLOCK_GATE_DISABLE);
  4816. I915_WRITE(RAMCLK_GATE_D, 0);
  4817. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4818. OVRUNIT_CLOCK_GATE_DISABLE |
  4819. OVCUNIT_CLOCK_GATE_DISABLE;
  4820. if (IS_GM45(dev))
  4821. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4822. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4823. /* WaDisableRenderCachePipelinedFlush */
  4824. I915_WRITE(CACHE_MODE_0,
  4825. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4826. /* WaDisable_RenderCache_OperationalFlush:g4x */
  4827. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4828. g4x_disable_trickle_feed(dev);
  4829. }
  4830. static void crestline_init_clock_gating(struct drm_device *dev)
  4831. {
  4832. struct drm_i915_private *dev_priv = dev->dev_private;
  4833. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4834. I915_WRITE(RENCLK_GATE_D2, 0);
  4835. I915_WRITE(DSPCLK_GATE_D, 0);
  4836. I915_WRITE(RAMCLK_GATE_D, 0);
  4837. I915_WRITE16(DEUC, 0);
  4838. I915_WRITE(MI_ARB_STATE,
  4839. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4840. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  4841. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4842. }
  4843. static void broadwater_init_clock_gating(struct drm_device *dev)
  4844. {
  4845. struct drm_i915_private *dev_priv = dev->dev_private;
  4846. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4847. I965_RCC_CLOCK_GATE_DISABLE |
  4848. I965_RCPB_CLOCK_GATE_DISABLE |
  4849. I965_ISC_CLOCK_GATE_DISABLE |
  4850. I965_FBC_CLOCK_GATE_DISABLE);
  4851. I915_WRITE(RENCLK_GATE_D2, 0);
  4852. I915_WRITE(MI_ARB_STATE,
  4853. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4854. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  4855. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4856. }
  4857. static void gen3_init_clock_gating(struct drm_device *dev)
  4858. {
  4859. struct drm_i915_private *dev_priv = dev->dev_private;
  4860. u32 dstate = I915_READ(D_STATE);
  4861. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4862. DSTATE_DOT_CLOCK_GATING;
  4863. I915_WRITE(D_STATE, dstate);
  4864. if (IS_PINEVIEW(dev))
  4865. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4866. /* IIR "flip pending" means done if this bit is set */
  4867. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4868. /* interrupts should cause a wake up from C3 */
  4869. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  4870. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4871. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  4872. }
  4873. static void i85x_init_clock_gating(struct drm_device *dev)
  4874. {
  4875. struct drm_i915_private *dev_priv = dev->dev_private;
  4876. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4877. /* interrupts should cause a wake up from C3 */
  4878. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  4879. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  4880. }
  4881. static void i830_init_clock_gating(struct drm_device *dev)
  4882. {
  4883. struct drm_i915_private *dev_priv = dev->dev_private;
  4884. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4885. }
  4886. void intel_init_clock_gating(struct drm_device *dev)
  4887. {
  4888. struct drm_i915_private *dev_priv = dev->dev_private;
  4889. dev_priv->display.init_clock_gating(dev);
  4890. }
  4891. void intel_suspend_hw(struct drm_device *dev)
  4892. {
  4893. if (HAS_PCH_LPT(dev))
  4894. lpt_suspend_hw(dev);
  4895. }
  4896. #define for_each_power_well(i, power_well, domain_mask, power_domains) \
  4897. for (i = 0; \
  4898. i < (power_domains)->power_well_count && \
  4899. ((power_well) = &(power_domains)->power_wells[i]); \
  4900. i++) \
  4901. if ((power_well)->domains & (domain_mask))
  4902. #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
  4903. for (i = (power_domains)->power_well_count - 1; \
  4904. i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
  4905. i--) \
  4906. if ((power_well)->domains & (domain_mask))
  4907. /**
  4908. * We should only use the power well if we explicitly asked the hardware to
  4909. * enable it, so check if it's enabled and also check if we've requested it to
  4910. * be enabled.
  4911. */
  4912. static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
  4913. struct i915_power_well *power_well)
  4914. {
  4915. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4916. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4917. }
  4918. bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
  4919. enum intel_display_power_domain domain)
  4920. {
  4921. struct i915_power_domains *power_domains;
  4922. struct i915_power_well *power_well;
  4923. bool is_enabled;
  4924. int i;
  4925. if (dev_priv->pm.suspended)
  4926. return false;
  4927. power_domains = &dev_priv->power_domains;
  4928. is_enabled = true;
  4929. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  4930. if (power_well->always_on)
  4931. continue;
  4932. if (!power_well->hw_enabled) {
  4933. is_enabled = false;
  4934. break;
  4935. }
  4936. }
  4937. return is_enabled;
  4938. }
  4939. bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
  4940. enum intel_display_power_domain domain)
  4941. {
  4942. struct i915_power_domains *power_domains;
  4943. bool ret;
  4944. power_domains = &dev_priv->power_domains;
  4945. mutex_lock(&power_domains->lock);
  4946. ret = intel_display_power_enabled_unlocked(dev_priv, domain);
  4947. mutex_unlock(&power_domains->lock);
  4948. return ret;
  4949. }
  4950. /*
  4951. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  4952. * when not needed anymore. We have 4 registers that can request the power well
  4953. * to be enabled, and it will only be disabled if none of the registers is
  4954. * requesting it to be enabled.
  4955. */
  4956. static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
  4957. {
  4958. struct drm_device *dev = dev_priv->dev;
  4959. /*
  4960. * After we re-enable the power well, if we touch VGA register 0x3d5
  4961. * we'll get unclaimed register interrupts. This stops after we write
  4962. * anything to the VGA MSR register. The vgacon module uses this
  4963. * register all the time, so if we unbind our driver and, as a
  4964. * consequence, bind vgacon, we'll get stuck in an infinite loop at
  4965. * console_unlock(). So make here we touch the VGA MSR register, making
  4966. * sure vgacon can keep working normally without triggering interrupts
  4967. * and error messages.
  4968. */
  4969. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  4970. outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
  4971. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  4972. if (IS_BROADWELL(dev))
  4973. gen8_irq_power_well_post_enable(dev_priv);
  4974. }
  4975. static void hsw_set_power_well(struct drm_i915_private *dev_priv,
  4976. struct i915_power_well *power_well, bool enable)
  4977. {
  4978. bool is_enabled, enable_requested;
  4979. uint32_t tmp;
  4980. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4981. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4982. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4983. if (enable) {
  4984. if (!enable_requested)
  4985. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4986. HSW_PWR_WELL_ENABLE_REQUEST);
  4987. if (!is_enabled) {
  4988. DRM_DEBUG_KMS("Enabling power well\n");
  4989. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4990. HSW_PWR_WELL_STATE_ENABLED), 20))
  4991. DRM_ERROR("Timeout enabling power well\n");
  4992. }
  4993. hsw_power_well_post_enable(dev_priv);
  4994. } else {
  4995. if (enable_requested) {
  4996. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4997. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4998. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4999. }
  5000. }
  5001. }
  5002. static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
  5003. struct i915_power_well *power_well)
  5004. {
  5005. hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
  5006. /*
  5007. * We're taking over the BIOS, so clear any requests made by it since
  5008. * the driver is in charge now.
  5009. */
  5010. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  5011. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  5012. }
  5013. static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
  5014. struct i915_power_well *power_well)
  5015. {
  5016. hsw_set_power_well(dev_priv, power_well, true);
  5017. }
  5018. static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
  5019. struct i915_power_well *power_well)
  5020. {
  5021. hsw_set_power_well(dev_priv, power_well, false);
  5022. }
  5023. static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
  5024. struct i915_power_well *power_well)
  5025. {
  5026. }
  5027. static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
  5028. struct i915_power_well *power_well)
  5029. {
  5030. return true;
  5031. }
  5032. static void vlv_set_power_well(struct drm_i915_private *dev_priv,
  5033. struct i915_power_well *power_well, bool enable)
  5034. {
  5035. enum punit_power_well power_well_id = power_well->data;
  5036. u32 mask;
  5037. u32 state;
  5038. u32 ctrl;
  5039. mask = PUNIT_PWRGT_MASK(power_well_id);
  5040. state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
  5041. PUNIT_PWRGT_PWR_GATE(power_well_id);
  5042. mutex_lock(&dev_priv->rps.hw_lock);
  5043. #define COND \
  5044. ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
  5045. if (COND)
  5046. goto out;
  5047. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
  5048. ctrl &= ~mask;
  5049. ctrl |= state;
  5050. vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
  5051. if (wait_for(COND, 100))
  5052. DRM_ERROR("timout setting power well state %08x (%08x)\n",
  5053. state,
  5054. vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
  5055. #undef COND
  5056. out:
  5057. mutex_unlock(&dev_priv->rps.hw_lock);
  5058. }
  5059. static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
  5060. struct i915_power_well *power_well)
  5061. {
  5062. vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
  5063. }
  5064. static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
  5065. struct i915_power_well *power_well)
  5066. {
  5067. vlv_set_power_well(dev_priv, power_well, true);
  5068. }
  5069. static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
  5070. struct i915_power_well *power_well)
  5071. {
  5072. vlv_set_power_well(dev_priv, power_well, false);
  5073. }
  5074. static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
  5075. struct i915_power_well *power_well)
  5076. {
  5077. int power_well_id = power_well->data;
  5078. bool enabled = false;
  5079. u32 mask;
  5080. u32 state;
  5081. u32 ctrl;
  5082. mask = PUNIT_PWRGT_MASK(power_well_id);
  5083. ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
  5084. mutex_lock(&dev_priv->rps.hw_lock);
  5085. state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
  5086. /*
  5087. * We only ever set the power-on and power-gate states, anything
  5088. * else is unexpected.
  5089. */
  5090. WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
  5091. state != PUNIT_PWRGT_PWR_GATE(power_well_id));
  5092. if (state == ctrl)
  5093. enabled = true;
  5094. /*
  5095. * A transient state at this point would mean some unexpected party
  5096. * is poking at the power controls too.
  5097. */
  5098. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
  5099. WARN_ON(ctrl != state);
  5100. mutex_unlock(&dev_priv->rps.hw_lock);
  5101. return enabled;
  5102. }
  5103. static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
  5104. struct i915_power_well *power_well)
  5105. {
  5106. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
  5107. vlv_set_power_well(dev_priv, power_well, true);
  5108. spin_lock_irq(&dev_priv->irq_lock);
  5109. valleyview_enable_display_irqs(dev_priv);
  5110. spin_unlock_irq(&dev_priv->irq_lock);
  5111. /*
  5112. * During driver initialization/resume we can avoid restoring the
  5113. * part of the HW/SW state that will be inited anyway explicitly.
  5114. */
  5115. if (dev_priv->power_domains.initializing)
  5116. return;
  5117. intel_hpd_init(dev_priv->dev);
  5118. i915_redisable_vga_power_on(dev_priv->dev);
  5119. }
  5120. static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
  5121. struct i915_power_well *power_well)
  5122. {
  5123. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
  5124. spin_lock_irq(&dev_priv->irq_lock);
  5125. valleyview_disable_display_irqs(dev_priv);
  5126. spin_unlock_irq(&dev_priv->irq_lock);
  5127. vlv_set_power_well(dev_priv, power_well, false);
  5128. }
  5129. static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
  5130. struct i915_power_well *power_well)
  5131. {
  5132. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
  5133. /*
  5134. * Enable the CRI clock source so we can get at the
  5135. * display and the reference clock for VGA
  5136. * hotplug / manual detection.
  5137. */
  5138. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  5139. DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
  5140. udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
  5141. vlv_set_power_well(dev_priv, power_well, true);
  5142. /*
  5143. * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
  5144. * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
  5145. * a. GUnit 0x2110 bit[0] set to 1 (def 0)
  5146. * b. The other bits such as sfr settings / modesel may all
  5147. * be set to 0.
  5148. *
  5149. * This should only be done on init and resume from S3 with
  5150. * both PLLs disabled, or we risk losing DPIO and PLL
  5151. * synchronization.
  5152. */
  5153. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
  5154. }
  5155. static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
  5156. struct i915_power_well *power_well)
  5157. {
  5158. struct drm_device *dev = dev_priv->dev;
  5159. enum pipe pipe;
  5160. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
  5161. for_each_pipe(pipe)
  5162. assert_pll_disabled(dev_priv, pipe);
  5163. /* Assert common reset */
  5164. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
  5165. vlv_set_power_well(dev_priv, power_well, false);
  5166. }
  5167. static void check_power_well_state(struct drm_i915_private *dev_priv,
  5168. struct i915_power_well *power_well)
  5169. {
  5170. bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
  5171. if (power_well->always_on || !i915.disable_power_well) {
  5172. if (!enabled)
  5173. goto mismatch;
  5174. return;
  5175. }
  5176. if (enabled != (power_well->count > 0))
  5177. goto mismatch;
  5178. return;
  5179. mismatch:
  5180. WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
  5181. power_well->name, power_well->always_on, enabled,
  5182. power_well->count, i915.disable_power_well);
  5183. }
  5184. void intel_display_power_get(struct drm_i915_private *dev_priv,
  5185. enum intel_display_power_domain domain)
  5186. {
  5187. struct i915_power_domains *power_domains;
  5188. struct i915_power_well *power_well;
  5189. int i;
  5190. intel_runtime_pm_get(dev_priv);
  5191. power_domains = &dev_priv->power_domains;
  5192. mutex_lock(&power_domains->lock);
  5193. for_each_power_well(i, power_well, BIT(domain), power_domains) {
  5194. if (!power_well->count++) {
  5195. DRM_DEBUG_KMS("enabling %s\n", power_well->name);
  5196. power_well->ops->enable(dev_priv, power_well);
  5197. power_well->hw_enabled = true;
  5198. }
  5199. check_power_well_state(dev_priv, power_well);
  5200. }
  5201. power_domains->domain_use_count[domain]++;
  5202. mutex_unlock(&power_domains->lock);
  5203. }
  5204. void intel_display_power_put(struct drm_i915_private *dev_priv,
  5205. enum intel_display_power_domain domain)
  5206. {
  5207. struct i915_power_domains *power_domains;
  5208. struct i915_power_well *power_well;
  5209. int i;
  5210. power_domains = &dev_priv->power_domains;
  5211. mutex_lock(&power_domains->lock);
  5212. WARN_ON(!power_domains->domain_use_count[domain]);
  5213. power_domains->domain_use_count[domain]--;
  5214. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  5215. WARN_ON(!power_well->count);
  5216. if (!--power_well->count && i915.disable_power_well) {
  5217. DRM_DEBUG_KMS("disabling %s\n", power_well->name);
  5218. power_well->hw_enabled = false;
  5219. power_well->ops->disable(dev_priv, power_well);
  5220. }
  5221. check_power_well_state(dev_priv, power_well);
  5222. }
  5223. mutex_unlock(&power_domains->lock);
  5224. intel_runtime_pm_put(dev_priv);
  5225. }
  5226. static struct i915_power_domains *hsw_pwr;
  5227. /* Display audio driver power well request */
  5228. int i915_request_power_well(void)
  5229. {
  5230. struct drm_i915_private *dev_priv;
  5231. if (!hsw_pwr)
  5232. return -ENODEV;
  5233. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5234. power_domains);
  5235. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  5236. return 0;
  5237. }
  5238. EXPORT_SYMBOL_GPL(i915_request_power_well);
  5239. /* Display audio driver power well release */
  5240. int i915_release_power_well(void)
  5241. {
  5242. struct drm_i915_private *dev_priv;
  5243. if (!hsw_pwr)
  5244. return -ENODEV;
  5245. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5246. power_domains);
  5247. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  5248. return 0;
  5249. }
  5250. EXPORT_SYMBOL_GPL(i915_release_power_well);
  5251. /*
  5252. * Private interface for the audio driver to get CDCLK in kHz.
  5253. *
  5254. * Caller must request power well using i915_request_power_well() prior to
  5255. * making the call.
  5256. */
  5257. int i915_get_cdclk_freq(void)
  5258. {
  5259. struct drm_i915_private *dev_priv;
  5260. if (!hsw_pwr)
  5261. return -ENODEV;
  5262. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5263. power_domains);
  5264. return intel_ddi_get_cdclk_freq(dev_priv);
  5265. }
  5266. EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
  5267. #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
  5268. #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
  5269. BIT(POWER_DOMAIN_PIPE_A) | \
  5270. BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
  5271. BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
  5272. BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
  5273. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5274. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5275. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5276. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5277. BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
  5278. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5279. BIT(POWER_DOMAIN_PORT_CRT) | \
  5280. BIT(POWER_DOMAIN_PLLS) | \
  5281. BIT(POWER_DOMAIN_INIT))
  5282. #define HSW_DISPLAY_POWER_DOMAINS ( \
  5283. (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
  5284. BIT(POWER_DOMAIN_INIT))
  5285. #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
  5286. HSW_ALWAYS_ON_POWER_DOMAINS | \
  5287. BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
  5288. #define BDW_DISPLAY_POWER_DOMAINS ( \
  5289. (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
  5290. BIT(POWER_DOMAIN_INIT))
  5291. #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
  5292. #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
  5293. #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
  5294. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5295. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5296. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5297. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5298. BIT(POWER_DOMAIN_PORT_CRT) | \
  5299. BIT(POWER_DOMAIN_INIT))
  5300. #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
  5301. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5302. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5303. BIT(POWER_DOMAIN_INIT))
  5304. #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
  5305. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5306. BIT(POWER_DOMAIN_INIT))
  5307. #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
  5308. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5309. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5310. BIT(POWER_DOMAIN_INIT))
  5311. #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
  5312. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5313. BIT(POWER_DOMAIN_INIT))
  5314. static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
  5315. .sync_hw = i9xx_always_on_power_well_noop,
  5316. .enable = i9xx_always_on_power_well_noop,
  5317. .disable = i9xx_always_on_power_well_noop,
  5318. .is_enabled = i9xx_always_on_power_well_enabled,
  5319. };
  5320. static struct i915_power_well i9xx_always_on_power_well[] = {
  5321. {
  5322. .name = "always-on",
  5323. .always_on = 1,
  5324. .domains = POWER_DOMAIN_MASK,
  5325. .ops = &i9xx_always_on_power_well_ops,
  5326. },
  5327. };
  5328. static const struct i915_power_well_ops hsw_power_well_ops = {
  5329. .sync_hw = hsw_power_well_sync_hw,
  5330. .enable = hsw_power_well_enable,
  5331. .disable = hsw_power_well_disable,
  5332. .is_enabled = hsw_power_well_enabled,
  5333. };
  5334. static struct i915_power_well hsw_power_wells[] = {
  5335. {
  5336. .name = "always-on",
  5337. .always_on = 1,
  5338. .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
  5339. .ops = &i9xx_always_on_power_well_ops,
  5340. },
  5341. {
  5342. .name = "display",
  5343. .domains = HSW_DISPLAY_POWER_DOMAINS,
  5344. .ops = &hsw_power_well_ops,
  5345. },
  5346. };
  5347. static struct i915_power_well bdw_power_wells[] = {
  5348. {
  5349. .name = "always-on",
  5350. .always_on = 1,
  5351. .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
  5352. .ops = &i9xx_always_on_power_well_ops,
  5353. },
  5354. {
  5355. .name = "display",
  5356. .domains = BDW_DISPLAY_POWER_DOMAINS,
  5357. .ops = &hsw_power_well_ops,
  5358. },
  5359. };
  5360. static const struct i915_power_well_ops vlv_display_power_well_ops = {
  5361. .sync_hw = vlv_power_well_sync_hw,
  5362. .enable = vlv_display_power_well_enable,
  5363. .disable = vlv_display_power_well_disable,
  5364. .is_enabled = vlv_power_well_enabled,
  5365. };
  5366. static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
  5367. .sync_hw = vlv_power_well_sync_hw,
  5368. .enable = vlv_dpio_cmn_power_well_enable,
  5369. .disable = vlv_dpio_cmn_power_well_disable,
  5370. .is_enabled = vlv_power_well_enabled,
  5371. };
  5372. static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
  5373. .sync_hw = vlv_power_well_sync_hw,
  5374. .enable = vlv_power_well_enable,
  5375. .disable = vlv_power_well_disable,
  5376. .is_enabled = vlv_power_well_enabled,
  5377. };
  5378. static struct i915_power_well vlv_power_wells[] = {
  5379. {
  5380. .name = "always-on",
  5381. .always_on = 1,
  5382. .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
  5383. .ops = &i9xx_always_on_power_well_ops,
  5384. },
  5385. {
  5386. .name = "display",
  5387. .domains = VLV_DISPLAY_POWER_DOMAINS,
  5388. .data = PUNIT_POWER_WELL_DISP2D,
  5389. .ops = &vlv_display_power_well_ops,
  5390. },
  5391. {
  5392. .name = "dpio-tx-b-01",
  5393. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5394. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5395. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5396. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5397. .ops = &vlv_dpio_power_well_ops,
  5398. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
  5399. },
  5400. {
  5401. .name = "dpio-tx-b-23",
  5402. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5403. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5404. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5405. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5406. .ops = &vlv_dpio_power_well_ops,
  5407. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
  5408. },
  5409. {
  5410. .name = "dpio-tx-c-01",
  5411. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5412. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5413. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5414. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5415. .ops = &vlv_dpio_power_well_ops,
  5416. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
  5417. },
  5418. {
  5419. .name = "dpio-tx-c-23",
  5420. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5421. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5422. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5423. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5424. .ops = &vlv_dpio_power_well_ops,
  5425. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
  5426. },
  5427. {
  5428. .name = "dpio-common",
  5429. .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
  5430. .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
  5431. .ops = &vlv_dpio_cmn_power_well_ops,
  5432. },
  5433. };
  5434. static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
  5435. enum punit_power_well power_well_id)
  5436. {
  5437. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5438. struct i915_power_well *power_well;
  5439. int i;
  5440. for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
  5441. if (power_well->data == power_well_id)
  5442. return power_well;
  5443. }
  5444. return NULL;
  5445. }
  5446. #define set_power_wells(power_domains, __power_wells) ({ \
  5447. (power_domains)->power_wells = (__power_wells); \
  5448. (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
  5449. })
  5450. int intel_power_domains_init(struct drm_i915_private *dev_priv)
  5451. {
  5452. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5453. mutex_init(&power_domains->lock);
  5454. /*
  5455. * The enabling order will be from lower to higher indexed wells,
  5456. * the disabling order is reversed.
  5457. */
  5458. if (IS_HASWELL(dev_priv->dev)) {
  5459. set_power_wells(power_domains, hsw_power_wells);
  5460. hsw_pwr = power_domains;
  5461. } else if (IS_BROADWELL(dev_priv->dev)) {
  5462. set_power_wells(power_domains, bdw_power_wells);
  5463. hsw_pwr = power_domains;
  5464. } else if (IS_VALLEYVIEW(dev_priv->dev)) {
  5465. set_power_wells(power_domains, vlv_power_wells);
  5466. } else {
  5467. set_power_wells(power_domains, i9xx_always_on_power_well);
  5468. }
  5469. return 0;
  5470. }
  5471. void intel_power_domains_remove(struct drm_i915_private *dev_priv)
  5472. {
  5473. hsw_pwr = NULL;
  5474. }
  5475. static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
  5476. {
  5477. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5478. struct i915_power_well *power_well;
  5479. int i;
  5480. mutex_lock(&power_domains->lock);
  5481. for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
  5482. power_well->ops->sync_hw(dev_priv, power_well);
  5483. power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
  5484. power_well);
  5485. }
  5486. mutex_unlock(&power_domains->lock);
  5487. }
  5488. static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
  5489. {
  5490. struct i915_power_well *cmn =
  5491. lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
  5492. struct i915_power_well *disp2d =
  5493. lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
  5494. /* nothing to do if common lane is already off */
  5495. if (!cmn->ops->is_enabled(dev_priv, cmn))
  5496. return;
  5497. /* If the display might be already active skip this */
  5498. if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
  5499. I915_READ(DPIO_CTL) & DPIO_CMNRST)
  5500. return;
  5501. DRM_DEBUG_KMS("toggling display PHY side reset\n");
  5502. /* cmnlane needs DPLL registers */
  5503. disp2d->ops->enable(dev_priv, disp2d);
  5504. /*
  5505. * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
  5506. * Need to assert and de-assert PHY SB reset by gating the
  5507. * common lane power, then un-gating it.
  5508. * Simply ungating isn't enough to reset the PHY enough to get
  5509. * ports and lanes running.
  5510. */
  5511. cmn->ops->disable(dev_priv, cmn);
  5512. }
  5513. void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
  5514. {
  5515. struct drm_device *dev = dev_priv->dev;
  5516. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5517. power_domains->initializing = true;
  5518. if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
  5519. mutex_lock(&power_domains->lock);
  5520. vlv_cmnlane_wa(dev_priv);
  5521. mutex_unlock(&power_domains->lock);
  5522. }
  5523. /* For now, we need the power well to be always enabled. */
  5524. intel_display_set_init_power(dev_priv, true);
  5525. intel_power_domains_resume(dev_priv);
  5526. power_domains->initializing = false;
  5527. }
  5528. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  5529. {
  5530. intel_runtime_pm_get(dev_priv);
  5531. }
  5532. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  5533. {
  5534. intel_runtime_pm_put(dev_priv);
  5535. }
  5536. void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
  5537. {
  5538. struct drm_device *dev = dev_priv->dev;
  5539. struct device *device = &dev->pdev->dev;
  5540. if (!HAS_RUNTIME_PM(dev))
  5541. return;
  5542. pm_runtime_get_sync(device);
  5543. WARN(dev_priv->pm.suspended, "Device still suspended.\n");
  5544. }
  5545. void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
  5546. {
  5547. struct drm_device *dev = dev_priv->dev;
  5548. struct device *device = &dev->pdev->dev;
  5549. if (!HAS_RUNTIME_PM(dev))
  5550. return;
  5551. WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
  5552. pm_runtime_get_noresume(device);
  5553. }
  5554. void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
  5555. {
  5556. struct drm_device *dev = dev_priv->dev;
  5557. struct device *device = &dev->pdev->dev;
  5558. if (!HAS_RUNTIME_PM(dev))
  5559. return;
  5560. pm_runtime_mark_last_busy(device);
  5561. pm_runtime_put_autosuspend(device);
  5562. }
  5563. void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
  5564. {
  5565. struct drm_device *dev = dev_priv->dev;
  5566. struct device *device = &dev->pdev->dev;
  5567. if (!HAS_RUNTIME_PM(dev))
  5568. return;
  5569. pm_runtime_set_active(device);
  5570. /*
  5571. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  5572. * requirement.
  5573. */
  5574. if (!intel_enable_rc6(dev)) {
  5575. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  5576. return;
  5577. }
  5578. pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
  5579. pm_runtime_mark_last_busy(device);
  5580. pm_runtime_use_autosuspend(device);
  5581. pm_runtime_put_autosuspend(device);
  5582. }
  5583. void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
  5584. {
  5585. struct drm_device *dev = dev_priv->dev;
  5586. struct device *device = &dev->pdev->dev;
  5587. if (!HAS_RUNTIME_PM(dev))
  5588. return;
  5589. if (!intel_enable_rc6(dev))
  5590. return;
  5591. /* Make sure we're not suspended first. */
  5592. pm_runtime_get_sync(device);
  5593. pm_runtime_disable(device);
  5594. }
  5595. /* Set up chip specific power management-related functions */
  5596. void intel_init_pm(struct drm_device *dev)
  5597. {
  5598. struct drm_i915_private *dev_priv = dev->dev_private;
  5599. if (HAS_FBC(dev)) {
  5600. if (INTEL_INFO(dev)->gen >= 7) {
  5601. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  5602. dev_priv->display.enable_fbc = gen7_enable_fbc;
  5603. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  5604. } else if (INTEL_INFO(dev)->gen >= 5) {
  5605. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  5606. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  5607. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  5608. } else if (IS_GM45(dev)) {
  5609. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  5610. dev_priv->display.enable_fbc = g4x_enable_fbc;
  5611. dev_priv->display.disable_fbc = g4x_disable_fbc;
  5612. } else {
  5613. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  5614. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  5615. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  5616. /* This value was pulled out of someone's hat */
  5617. I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
  5618. }
  5619. }
  5620. /* For cxsr */
  5621. if (IS_PINEVIEW(dev))
  5622. i915_pineview_get_mem_freq(dev);
  5623. else if (IS_GEN5(dev))
  5624. i915_ironlake_get_mem_freq(dev);
  5625. /* For FIFO watermark updates */
  5626. if (HAS_PCH_SPLIT(dev)) {
  5627. ilk_setup_wm_latency(dev);
  5628. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  5629. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  5630. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  5631. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  5632. dev_priv->display.update_wm = ilk_update_wm;
  5633. dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
  5634. } else {
  5635. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5636. "Disable CxSR\n");
  5637. }
  5638. if (IS_GEN5(dev))
  5639. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  5640. else if (IS_GEN6(dev))
  5641. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  5642. else if (IS_IVYBRIDGE(dev))
  5643. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5644. else if (IS_HASWELL(dev))
  5645. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5646. else if (INTEL_INFO(dev)->gen == 8)
  5647. dev_priv->display.init_clock_gating = gen8_init_clock_gating;
  5648. } else if (IS_CHERRYVIEW(dev)) {
  5649. dev_priv->display.update_wm = valleyview_update_wm;
  5650. dev_priv->display.init_clock_gating =
  5651. cherryview_init_clock_gating;
  5652. } else if (IS_VALLEYVIEW(dev)) {
  5653. dev_priv->display.update_wm = valleyview_update_wm;
  5654. dev_priv->display.init_clock_gating =
  5655. valleyview_init_clock_gating;
  5656. } else if (IS_PINEVIEW(dev)) {
  5657. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5658. dev_priv->is_ddr3,
  5659. dev_priv->fsb_freq,
  5660. dev_priv->mem_freq)) {
  5661. DRM_INFO("failed to find known CxSR latency "
  5662. "(found ddr%s fsb freq %d, mem freq %d), "
  5663. "disabling CxSR\n",
  5664. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5665. dev_priv->fsb_freq, dev_priv->mem_freq);
  5666. /* Disable CxSR and never update its watermark again */
  5667. intel_set_memory_cxsr(dev_priv, false);
  5668. dev_priv->display.update_wm = NULL;
  5669. } else
  5670. dev_priv->display.update_wm = pineview_update_wm;
  5671. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5672. } else if (IS_G4X(dev)) {
  5673. dev_priv->display.update_wm = g4x_update_wm;
  5674. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5675. } else if (IS_GEN4(dev)) {
  5676. dev_priv->display.update_wm = i965_update_wm;
  5677. if (IS_CRESTLINE(dev))
  5678. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5679. else if (IS_BROADWATER(dev))
  5680. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5681. } else if (IS_GEN3(dev)) {
  5682. dev_priv->display.update_wm = i9xx_update_wm;
  5683. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5684. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5685. } else if (IS_GEN2(dev)) {
  5686. if (INTEL_INFO(dev)->num_pipes == 1) {
  5687. dev_priv->display.update_wm = i845_update_wm;
  5688. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5689. } else {
  5690. dev_priv->display.update_wm = i9xx_update_wm;
  5691. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5692. }
  5693. if (IS_I85X(dev) || IS_I865G(dev))
  5694. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5695. else
  5696. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5697. } else {
  5698. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  5699. }
  5700. }
  5701. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  5702. {
  5703. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5704. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5705. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5706. return -EAGAIN;
  5707. }
  5708. I915_WRITE(GEN6_PCODE_DATA, *val);
  5709. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5710. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5711. 500)) {
  5712. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5713. return -ETIMEDOUT;
  5714. }
  5715. *val = I915_READ(GEN6_PCODE_DATA);
  5716. I915_WRITE(GEN6_PCODE_DATA, 0);
  5717. return 0;
  5718. }
  5719. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  5720. {
  5721. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5722. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5723. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5724. return -EAGAIN;
  5725. }
  5726. I915_WRITE(GEN6_PCODE_DATA, val);
  5727. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5728. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5729. 500)) {
  5730. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5731. return -ETIMEDOUT;
  5732. }
  5733. I915_WRITE(GEN6_PCODE_DATA, 0);
  5734. return 0;
  5735. }
  5736. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5737. {
  5738. int div;
  5739. /* 4 x czclk */
  5740. switch (dev_priv->mem_freq) {
  5741. case 800:
  5742. div = 10;
  5743. break;
  5744. case 1066:
  5745. div = 12;
  5746. break;
  5747. case 1333:
  5748. div = 16;
  5749. break;
  5750. default:
  5751. return -1;
  5752. }
  5753. return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
  5754. }
  5755. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5756. {
  5757. int mul;
  5758. /* 4 x czclk */
  5759. switch (dev_priv->mem_freq) {
  5760. case 800:
  5761. mul = 10;
  5762. break;
  5763. case 1066:
  5764. mul = 12;
  5765. break;
  5766. case 1333:
  5767. mul = 16;
  5768. break;
  5769. default:
  5770. return -1;
  5771. }
  5772. return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
  5773. }
  5774. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5775. {
  5776. int div, freq;
  5777. switch (dev_priv->rps.cz_freq) {
  5778. case 200:
  5779. div = 5;
  5780. break;
  5781. case 267:
  5782. div = 6;
  5783. break;
  5784. case 320:
  5785. case 333:
  5786. case 400:
  5787. div = 8;
  5788. break;
  5789. default:
  5790. return -1;
  5791. }
  5792. freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
  5793. return freq;
  5794. }
  5795. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5796. {
  5797. int mul, opcode;
  5798. switch (dev_priv->rps.cz_freq) {
  5799. case 200:
  5800. mul = 5;
  5801. break;
  5802. case 267:
  5803. mul = 6;
  5804. break;
  5805. case 320:
  5806. case 333:
  5807. case 400:
  5808. mul = 8;
  5809. break;
  5810. default:
  5811. return -1;
  5812. }
  5813. opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
  5814. return opcode;
  5815. }
  5816. int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5817. {
  5818. int ret = -1;
  5819. if (IS_CHERRYVIEW(dev_priv->dev))
  5820. ret = chv_gpu_freq(dev_priv, val);
  5821. else if (IS_VALLEYVIEW(dev_priv->dev))
  5822. ret = byt_gpu_freq(dev_priv, val);
  5823. return ret;
  5824. }
  5825. int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5826. {
  5827. int ret = -1;
  5828. if (IS_CHERRYVIEW(dev_priv->dev))
  5829. ret = chv_freq_opcode(dev_priv, val);
  5830. else if (IS_VALLEYVIEW(dev_priv->dev))
  5831. ret = byt_freq_opcode(dev_priv, val);
  5832. return ret;
  5833. }
  5834. void intel_pm_setup(struct drm_device *dev)
  5835. {
  5836. struct drm_i915_private *dev_priv = dev->dev_private;
  5837. mutex_init(&dev_priv->rps.hw_lock);
  5838. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5839. intel_gen6_powersave_work);
  5840. dev_priv->pm.suspended = false;
  5841. dev_priv->pm._irqs_disabled = false;
  5842. }