intel_hdmi.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663
  1. /*
  2. * Copyright 2006 Dave Airlie <airlied@linux.ie>
  3. * Copyright © 2006-2009 Intel Corporation
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining a
  6. * copy of this software and associated documentation files (the "Software"),
  7. * to deal in the Software without restriction, including without limitation
  8. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9. * and/or sell copies of the Software, and to permit persons to whom the
  10. * Software is furnished to do so, subject to the following conditions:
  11. *
  12. * The above copyright notice and this permission notice (including the next
  13. * paragraph) shall be included in all copies or substantial portions of the
  14. * Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22. * DEALINGS IN THE SOFTWARE.
  23. *
  24. * Authors:
  25. * Eric Anholt <eric@anholt.net>
  26. * Jesse Barnes <jesse.barnes@intel.com>
  27. */
  28. #include <linux/i2c.h>
  29. #include <linux/slab.h>
  30. #include <linux/delay.h>
  31. #include <linux/hdmi.h>
  32. #include <drm/drmP.h>
  33. #include <drm/drm_crtc.h>
  34. #include <drm/drm_edid.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
  39. {
  40. return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
  41. }
  42. static void
  43. assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
  44. {
  45. struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
  46. struct drm_i915_private *dev_priv = dev->dev_private;
  47. uint32_t enabled_bits;
  48. enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
  49. WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
  50. "HDMI port enabled, expecting disabled\n");
  51. }
  52. struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
  53. {
  54. struct intel_digital_port *intel_dig_port =
  55. container_of(encoder, struct intel_digital_port, base.base);
  56. return &intel_dig_port->hdmi;
  57. }
  58. static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
  59. {
  60. return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
  61. }
  62. static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
  63. {
  64. switch (type) {
  65. case HDMI_INFOFRAME_TYPE_AVI:
  66. return VIDEO_DIP_SELECT_AVI;
  67. case HDMI_INFOFRAME_TYPE_SPD:
  68. return VIDEO_DIP_SELECT_SPD;
  69. case HDMI_INFOFRAME_TYPE_VENDOR:
  70. return VIDEO_DIP_SELECT_VENDOR;
  71. default:
  72. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  73. return 0;
  74. }
  75. }
  76. static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
  77. {
  78. switch (type) {
  79. case HDMI_INFOFRAME_TYPE_AVI:
  80. return VIDEO_DIP_ENABLE_AVI;
  81. case HDMI_INFOFRAME_TYPE_SPD:
  82. return VIDEO_DIP_ENABLE_SPD;
  83. case HDMI_INFOFRAME_TYPE_VENDOR:
  84. return VIDEO_DIP_ENABLE_VENDOR;
  85. default:
  86. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  87. return 0;
  88. }
  89. }
  90. static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
  91. {
  92. switch (type) {
  93. case HDMI_INFOFRAME_TYPE_AVI:
  94. return VIDEO_DIP_ENABLE_AVI_HSW;
  95. case HDMI_INFOFRAME_TYPE_SPD:
  96. return VIDEO_DIP_ENABLE_SPD_HSW;
  97. case HDMI_INFOFRAME_TYPE_VENDOR:
  98. return VIDEO_DIP_ENABLE_VS_HSW;
  99. default:
  100. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  101. return 0;
  102. }
  103. }
  104. static u32 hsw_infoframe_data_reg(enum hdmi_infoframe_type type,
  105. enum transcoder cpu_transcoder,
  106. struct drm_i915_private *dev_priv)
  107. {
  108. switch (type) {
  109. case HDMI_INFOFRAME_TYPE_AVI:
  110. return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder);
  111. case HDMI_INFOFRAME_TYPE_SPD:
  112. return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder);
  113. case HDMI_INFOFRAME_TYPE_VENDOR:
  114. return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder);
  115. default:
  116. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  117. return 0;
  118. }
  119. }
  120. static void g4x_write_infoframe(struct drm_encoder *encoder,
  121. enum hdmi_infoframe_type type,
  122. const void *frame, ssize_t len)
  123. {
  124. const uint32_t *data = frame;
  125. struct drm_device *dev = encoder->dev;
  126. struct drm_i915_private *dev_priv = dev->dev_private;
  127. u32 val = I915_READ(VIDEO_DIP_CTL);
  128. int i;
  129. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  130. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  131. val |= g4x_infoframe_index(type);
  132. val &= ~g4x_infoframe_enable(type);
  133. I915_WRITE(VIDEO_DIP_CTL, val);
  134. mmiowb();
  135. for (i = 0; i < len; i += 4) {
  136. I915_WRITE(VIDEO_DIP_DATA, *data);
  137. data++;
  138. }
  139. /* Write every possible data byte to force correct ECC calculation. */
  140. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  141. I915_WRITE(VIDEO_DIP_DATA, 0);
  142. mmiowb();
  143. val |= g4x_infoframe_enable(type);
  144. val &= ~VIDEO_DIP_FREQ_MASK;
  145. val |= VIDEO_DIP_FREQ_VSYNC;
  146. I915_WRITE(VIDEO_DIP_CTL, val);
  147. POSTING_READ(VIDEO_DIP_CTL);
  148. }
  149. static void ibx_write_infoframe(struct drm_encoder *encoder,
  150. enum hdmi_infoframe_type type,
  151. const void *frame, ssize_t len)
  152. {
  153. const uint32_t *data = frame;
  154. struct drm_device *dev = encoder->dev;
  155. struct drm_i915_private *dev_priv = dev->dev_private;
  156. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  157. int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  158. u32 val = I915_READ(reg);
  159. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  160. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  161. val |= g4x_infoframe_index(type);
  162. val &= ~g4x_infoframe_enable(type);
  163. I915_WRITE(reg, val);
  164. mmiowb();
  165. for (i = 0; i < len; i += 4) {
  166. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  167. data++;
  168. }
  169. /* Write every possible data byte to force correct ECC calculation. */
  170. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  171. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  172. mmiowb();
  173. val |= g4x_infoframe_enable(type);
  174. val &= ~VIDEO_DIP_FREQ_MASK;
  175. val |= VIDEO_DIP_FREQ_VSYNC;
  176. I915_WRITE(reg, val);
  177. POSTING_READ(reg);
  178. }
  179. static void cpt_write_infoframe(struct drm_encoder *encoder,
  180. enum hdmi_infoframe_type type,
  181. const void *frame, ssize_t len)
  182. {
  183. const uint32_t *data = frame;
  184. struct drm_device *dev = encoder->dev;
  185. struct drm_i915_private *dev_priv = dev->dev_private;
  186. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  187. int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  188. u32 val = I915_READ(reg);
  189. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  190. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  191. val |= g4x_infoframe_index(type);
  192. /* The DIP control register spec says that we need to update the AVI
  193. * infoframe without clearing its enable bit */
  194. if (type != HDMI_INFOFRAME_TYPE_AVI)
  195. val &= ~g4x_infoframe_enable(type);
  196. I915_WRITE(reg, val);
  197. mmiowb();
  198. for (i = 0; i < len; i += 4) {
  199. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  200. data++;
  201. }
  202. /* Write every possible data byte to force correct ECC calculation. */
  203. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  204. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  205. mmiowb();
  206. val |= g4x_infoframe_enable(type);
  207. val &= ~VIDEO_DIP_FREQ_MASK;
  208. val |= VIDEO_DIP_FREQ_VSYNC;
  209. I915_WRITE(reg, val);
  210. POSTING_READ(reg);
  211. }
  212. static void vlv_write_infoframe(struct drm_encoder *encoder,
  213. enum hdmi_infoframe_type type,
  214. const void *frame, ssize_t len)
  215. {
  216. const uint32_t *data = frame;
  217. struct drm_device *dev = encoder->dev;
  218. struct drm_i915_private *dev_priv = dev->dev_private;
  219. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  220. int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  221. u32 val = I915_READ(reg);
  222. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  223. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  224. val |= g4x_infoframe_index(type);
  225. val &= ~g4x_infoframe_enable(type);
  226. I915_WRITE(reg, val);
  227. mmiowb();
  228. for (i = 0; i < len; i += 4) {
  229. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  230. data++;
  231. }
  232. /* Write every possible data byte to force correct ECC calculation. */
  233. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  234. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  235. mmiowb();
  236. val |= g4x_infoframe_enable(type);
  237. val &= ~VIDEO_DIP_FREQ_MASK;
  238. val |= VIDEO_DIP_FREQ_VSYNC;
  239. I915_WRITE(reg, val);
  240. POSTING_READ(reg);
  241. }
  242. static void hsw_write_infoframe(struct drm_encoder *encoder,
  243. enum hdmi_infoframe_type type,
  244. const void *frame, ssize_t len)
  245. {
  246. const uint32_t *data = frame;
  247. struct drm_device *dev = encoder->dev;
  248. struct drm_i915_private *dev_priv = dev->dev_private;
  249. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  250. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
  251. u32 data_reg;
  252. int i;
  253. u32 val = I915_READ(ctl_reg);
  254. data_reg = hsw_infoframe_data_reg(type,
  255. intel_crtc->config.cpu_transcoder,
  256. dev_priv);
  257. if (data_reg == 0)
  258. return;
  259. val &= ~hsw_infoframe_enable(type);
  260. I915_WRITE(ctl_reg, val);
  261. mmiowb();
  262. for (i = 0; i < len; i += 4) {
  263. I915_WRITE(data_reg + i, *data);
  264. data++;
  265. }
  266. /* Write every possible data byte to force correct ECC calculation. */
  267. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  268. I915_WRITE(data_reg + i, 0);
  269. mmiowb();
  270. val |= hsw_infoframe_enable(type);
  271. I915_WRITE(ctl_reg, val);
  272. POSTING_READ(ctl_reg);
  273. }
  274. /*
  275. * The data we write to the DIP data buffer registers is 1 byte bigger than the
  276. * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
  277. * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
  278. * used for both technologies.
  279. *
  280. * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
  281. * DW1: DB3 | DB2 | DB1 | DB0
  282. * DW2: DB7 | DB6 | DB5 | DB4
  283. * DW3: ...
  284. *
  285. * (HB is Header Byte, DB is Data Byte)
  286. *
  287. * The hdmi pack() functions don't know about that hardware specific hole so we
  288. * trick them by giving an offset into the buffer and moving back the header
  289. * bytes by one.
  290. */
  291. static void intel_write_infoframe(struct drm_encoder *encoder,
  292. union hdmi_infoframe *frame)
  293. {
  294. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  295. uint8_t buffer[VIDEO_DIP_DATA_SIZE];
  296. ssize_t len;
  297. /* see comment above for the reason for this offset */
  298. len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
  299. if (len < 0)
  300. return;
  301. /* Insert the 'hole' (see big comment above) at position 3 */
  302. buffer[0] = buffer[1];
  303. buffer[1] = buffer[2];
  304. buffer[2] = buffer[3];
  305. buffer[3] = 0;
  306. len++;
  307. intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
  308. }
  309. static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
  310. struct drm_display_mode *adjusted_mode)
  311. {
  312. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  313. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  314. union hdmi_infoframe frame;
  315. int ret;
  316. /* Set user selected PAR to incoming mode's member */
  317. adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
  318. ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
  319. adjusted_mode);
  320. if (ret < 0) {
  321. DRM_ERROR("couldn't fill AVI infoframe\n");
  322. return;
  323. }
  324. if (intel_hdmi->rgb_quant_range_selectable) {
  325. if (intel_crtc->config.limited_color_range)
  326. frame.avi.quantization_range =
  327. HDMI_QUANTIZATION_RANGE_LIMITED;
  328. else
  329. frame.avi.quantization_range =
  330. HDMI_QUANTIZATION_RANGE_FULL;
  331. }
  332. intel_write_infoframe(encoder, &frame);
  333. }
  334. static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
  335. {
  336. union hdmi_infoframe frame;
  337. int ret;
  338. ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
  339. if (ret < 0) {
  340. DRM_ERROR("couldn't fill SPD infoframe\n");
  341. return;
  342. }
  343. frame.spd.sdi = HDMI_SPD_SDI_PC;
  344. intel_write_infoframe(encoder, &frame);
  345. }
  346. static void
  347. intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
  348. struct drm_display_mode *adjusted_mode)
  349. {
  350. union hdmi_infoframe frame;
  351. int ret;
  352. ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
  353. adjusted_mode);
  354. if (ret < 0)
  355. return;
  356. intel_write_infoframe(encoder, &frame);
  357. }
  358. static void g4x_set_infoframes(struct drm_encoder *encoder,
  359. bool enable,
  360. struct drm_display_mode *adjusted_mode)
  361. {
  362. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  363. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  364. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  365. u32 reg = VIDEO_DIP_CTL;
  366. u32 val = I915_READ(reg);
  367. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  368. assert_hdmi_port_disabled(intel_hdmi);
  369. /* If the registers were not initialized yet, they might be zeroes,
  370. * which means we're selecting the AVI DIP and we're setting its
  371. * frequency to once. This seems to really confuse the HW and make
  372. * things stop working (the register spec says the AVI always needs to
  373. * be sent every VSync). So here we avoid writing to the register more
  374. * than we need and also explicitly select the AVI DIP and explicitly
  375. * set its frequency to every VSync. Avoiding to write it twice seems to
  376. * be enough to solve the problem, but being defensive shouldn't hurt us
  377. * either. */
  378. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  379. if (!enable) {
  380. if (!(val & VIDEO_DIP_ENABLE))
  381. return;
  382. val &= ~VIDEO_DIP_ENABLE;
  383. I915_WRITE(reg, val);
  384. POSTING_READ(reg);
  385. return;
  386. }
  387. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  388. if (val & VIDEO_DIP_ENABLE) {
  389. val &= ~VIDEO_DIP_ENABLE;
  390. I915_WRITE(reg, val);
  391. POSTING_READ(reg);
  392. }
  393. val &= ~VIDEO_DIP_PORT_MASK;
  394. val |= port;
  395. }
  396. val |= VIDEO_DIP_ENABLE;
  397. val &= ~VIDEO_DIP_ENABLE_VENDOR;
  398. I915_WRITE(reg, val);
  399. POSTING_READ(reg);
  400. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  401. intel_hdmi_set_spd_infoframe(encoder);
  402. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  403. }
  404. static void ibx_set_infoframes(struct drm_encoder *encoder,
  405. bool enable,
  406. struct drm_display_mode *adjusted_mode)
  407. {
  408. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  409. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  410. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  411. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  412. u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  413. u32 val = I915_READ(reg);
  414. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  415. assert_hdmi_port_disabled(intel_hdmi);
  416. /* See the big comment in g4x_set_infoframes() */
  417. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  418. if (!enable) {
  419. if (!(val & VIDEO_DIP_ENABLE))
  420. return;
  421. val &= ~VIDEO_DIP_ENABLE;
  422. I915_WRITE(reg, val);
  423. POSTING_READ(reg);
  424. return;
  425. }
  426. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  427. if (val & VIDEO_DIP_ENABLE) {
  428. val &= ~VIDEO_DIP_ENABLE;
  429. I915_WRITE(reg, val);
  430. POSTING_READ(reg);
  431. }
  432. val &= ~VIDEO_DIP_PORT_MASK;
  433. val |= port;
  434. }
  435. val |= VIDEO_DIP_ENABLE;
  436. val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  437. VIDEO_DIP_ENABLE_GCP);
  438. I915_WRITE(reg, val);
  439. POSTING_READ(reg);
  440. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  441. intel_hdmi_set_spd_infoframe(encoder);
  442. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  443. }
  444. static void cpt_set_infoframes(struct drm_encoder *encoder,
  445. bool enable,
  446. struct drm_display_mode *adjusted_mode)
  447. {
  448. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  449. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  450. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  451. u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  452. u32 val = I915_READ(reg);
  453. assert_hdmi_port_disabled(intel_hdmi);
  454. /* See the big comment in g4x_set_infoframes() */
  455. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  456. if (!enable) {
  457. if (!(val & VIDEO_DIP_ENABLE))
  458. return;
  459. val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI);
  460. I915_WRITE(reg, val);
  461. POSTING_READ(reg);
  462. return;
  463. }
  464. /* Set both together, unset both together: see the spec. */
  465. val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
  466. val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  467. VIDEO_DIP_ENABLE_GCP);
  468. I915_WRITE(reg, val);
  469. POSTING_READ(reg);
  470. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  471. intel_hdmi_set_spd_infoframe(encoder);
  472. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  473. }
  474. static void vlv_set_infoframes(struct drm_encoder *encoder,
  475. bool enable,
  476. struct drm_display_mode *adjusted_mode)
  477. {
  478. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  479. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  480. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  481. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  482. u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  483. u32 val = I915_READ(reg);
  484. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  485. assert_hdmi_port_disabled(intel_hdmi);
  486. /* See the big comment in g4x_set_infoframes() */
  487. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  488. if (!enable) {
  489. if (!(val & VIDEO_DIP_ENABLE))
  490. return;
  491. val &= ~VIDEO_DIP_ENABLE;
  492. I915_WRITE(reg, val);
  493. POSTING_READ(reg);
  494. return;
  495. }
  496. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  497. if (val & VIDEO_DIP_ENABLE) {
  498. val &= ~VIDEO_DIP_ENABLE;
  499. I915_WRITE(reg, val);
  500. POSTING_READ(reg);
  501. }
  502. val &= ~VIDEO_DIP_PORT_MASK;
  503. val |= port;
  504. }
  505. val |= VIDEO_DIP_ENABLE;
  506. val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR |
  507. VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP);
  508. I915_WRITE(reg, val);
  509. POSTING_READ(reg);
  510. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  511. intel_hdmi_set_spd_infoframe(encoder);
  512. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  513. }
  514. static void hsw_set_infoframes(struct drm_encoder *encoder,
  515. bool enable,
  516. struct drm_display_mode *adjusted_mode)
  517. {
  518. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  519. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  520. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  521. u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
  522. u32 val = I915_READ(reg);
  523. assert_hdmi_port_disabled(intel_hdmi);
  524. if (!enable) {
  525. I915_WRITE(reg, 0);
  526. POSTING_READ(reg);
  527. return;
  528. }
  529. val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
  530. VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW);
  531. I915_WRITE(reg, val);
  532. POSTING_READ(reg);
  533. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  534. intel_hdmi_set_spd_infoframe(encoder);
  535. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  536. }
  537. static void intel_hdmi_prepare(struct intel_encoder *encoder)
  538. {
  539. struct drm_device *dev = encoder->base.dev;
  540. struct drm_i915_private *dev_priv = dev->dev_private;
  541. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  542. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  543. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  544. u32 hdmi_val;
  545. hdmi_val = SDVO_ENCODING_HDMI;
  546. if (!HAS_PCH_SPLIT(dev))
  547. hdmi_val |= intel_hdmi->color_range;
  548. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  549. hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
  550. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  551. hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
  552. if (crtc->config.pipe_bpp > 24)
  553. hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
  554. else
  555. hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
  556. if (crtc->config.has_hdmi_sink)
  557. hdmi_val |= HDMI_MODE_SELECT_HDMI;
  558. if (crtc->config.has_audio) {
  559. WARN_ON(!crtc->config.has_hdmi_sink);
  560. DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
  561. pipe_name(crtc->pipe));
  562. hdmi_val |= SDVO_AUDIO_ENABLE;
  563. intel_write_eld(&encoder->base, adjusted_mode);
  564. }
  565. if (HAS_PCH_CPT(dev))
  566. hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
  567. else if (IS_CHERRYVIEW(dev))
  568. hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
  569. else
  570. hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
  571. I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
  572. POSTING_READ(intel_hdmi->hdmi_reg);
  573. }
  574. static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
  575. enum pipe *pipe)
  576. {
  577. struct drm_device *dev = encoder->base.dev;
  578. struct drm_i915_private *dev_priv = dev->dev_private;
  579. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  580. enum intel_display_power_domain power_domain;
  581. u32 tmp;
  582. power_domain = intel_display_port_power_domain(encoder);
  583. if (!intel_display_power_enabled(dev_priv, power_domain))
  584. return false;
  585. tmp = I915_READ(intel_hdmi->hdmi_reg);
  586. if (!(tmp & SDVO_ENABLE))
  587. return false;
  588. if (HAS_PCH_CPT(dev))
  589. *pipe = PORT_TO_PIPE_CPT(tmp);
  590. else if (IS_CHERRYVIEW(dev))
  591. *pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
  592. else
  593. *pipe = PORT_TO_PIPE(tmp);
  594. return true;
  595. }
  596. static void intel_hdmi_get_config(struct intel_encoder *encoder,
  597. struct intel_crtc_config *pipe_config)
  598. {
  599. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  600. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  601. u32 tmp, flags = 0;
  602. int dotclock;
  603. tmp = I915_READ(intel_hdmi->hdmi_reg);
  604. if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
  605. flags |= DRM_MODE_FLAG_PHSYNC;
  606. else
  607. flags |= DRM_MODE_FLAG_NHSYNC;
  608. if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
  609. flags |= DRM_MODE_FLAG_PVSYNC;
  610. else
  611. flags |= DRM_MODE_FLAG_NVSYNC;
  612. if (tmp & HDMI_MODE_SELECT_HDMI)
  613. pipe_config->has_hdmi_sink = true;
  614. if (tmp & HDMI_MODE_SELECT_HDMI)
  615. pipe_config->has_audio = true;
  616. pipe_config->adjusted_mode.flags |= flags;
  617. if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
  618. dotclock = pipe_config->port_clock * 2 / 3;
  619. else
  620. dotclock = pipe_config->port_clock;
  621. if (HAS_PCH_SPLIT(dev_priv->dev))
  622. ironlake_check_encoder_dotclock(pipe_config, dotclock);
  623. pipe_config->adjusted_mode.crtc_clock = dotclock;
  624. }
  625. static void intel_enable_hdmi(struct intel_encoder *encoder)
  626. {
  627. struct drm_device *dev = encoder->base.dev;
  628. struct drm_i915_private *dev_priv = dev->dev_private;
  629. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  630. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  631. u32 temp;
  632. u32 enable_bits = SDVO_ENABLE;
  633. if (intel_crtc->config.has_audio)
  634. enable_bits |= SDVO_AUDIO_ENABLE;
  635. temp = I915_READ(intel_hdmi->hdmi_reg);
  636. /* HW workaround for IBX, we need to move the port to transcoder A
  637. * before disabling it, so restore the transcoder select bit here. */
  638. if (HAS_PCH_IBX(dev))
  639. enable_bits |= SDVO_PIPE_SEL(intel_crtc->pipe);
  640. /* HW workaround, need to toggle enable bit off and on for 12bpc, but
  641. * we do this anyway which shows more stable in testing.
  642. */
  643. if (HAS_PCH_SPLIT(dev)) {
  644. I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
  645. POSTING_READ(intel_hdmi->hdmi_reg);
  646. }
  647. temp |= enable_bits;
  648. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  649. POSTING_READ(intel_hdmi->hdmi_reg);
  650. /* HW workaround, need to write this twice for issue that may result
  651. * in first write getting masked.
  652. */
  653. if (HAS_PCH_SPLIT(dev)) {
  654. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  655. POSTING_READ(intel_hdmi->hdmi_reg);
  656. }
  657. }
  658. static void vlv_enable_hdmi(struct intel_encoder *encoder)
  659. {
  660. }
  661. static void intel_disable_hdmi(struct intel_encoder *encoder)
  662. {
  663. struct drm_device *dev = encoder->base.dev;
  664. struct drm_i915_private *dev_priv = dev->dev_private;
  665. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  666. u32 temp;
  667. u32 enable_bits = SDVO_ENABLE | SDVO_AUDIO_ENABLE;
  668. temp = I915_READ(intel_hdmi->hdmi_reg);
  669. /* HW workaround for IBX, we need to move the port to transcoder A
  670. * before disabling it. */
  671. if (HAS_PCH_IBX(dev)) {
  672. struct drm_crtc *crtc = encoder->base.crtc;
  673. int pipe = crtc ? to_intel_crtc(crtc)->pipe : -1;
  674. if (temp & SDVO_PIPE_B_SELECT) {
  675. temp &= ~SDVO_PIPE_B_SELECT;
  676. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  677. POSTING_READ(intel_hdmi->hdmi_reg);
  678. /* Again we need to write this twice. */
  679. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  680. POSTING_READ(intel_hdmi->hdmi_reg);
  681. /* Transcoder selection bits only update
  682. * effectively on vblank. */
  683. if (crtc)
  684. intel_wait_for_vblank(dev, pipe);
  685. else
  686. msleep(50);
  687. }
  688. }
  689. /* HW workaround, need to toggle enable bit off and on for 12bpc, but
  690. * we do this anyway which shows more stable in testing.
  691. */
  692. if (HAS_PCH_SPLIT(dev)) {
  693. I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
  694. POSTING_READ(intel_hdmi->hdmi_reg);
  695. }
  696. temp &= ~enable_bits;
  697. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  698. POSTING_READ(intel_hdmi->hdmi_reg);
  699. /* HW workaround, need to write this twice for issue that may result
  700. * in first write getting masked.
  701. */
  702. if (HAS_PCH_SPLIT(dev)) {
  703. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  704. POSTING_READ(intel_hdmi->hdmi_reg);
  705. }
  706. }
  707. static int hdmi_portclock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
  708. {
  709. struct drm_device *dev = intel_hdmi_to_dev(hdmi);
  710. if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
  711. return 165000;
  712. else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
  713. return 300000;
  714. else
  715. return 225000;
  716. }
  717. static enum drm_mode_status
  718. intel_hdmi_mode_valid(struct drm_connector *connector,
  719. struct drm_display_mode *mode)
  720. {
  721. if (mode->clock > hdmi_portclock_limit(intel_attached_hdmi(connector),
  722. true))
  723. return MODE_CLOCK_HIGH;
  724. if (mode->clock < 20000)
  725. return MODE_CLOCK_LOW;
  726. if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
  727. return MODE_NO_DBLESCAN;
  728. return MODE_OK;
  729. }
  730. static bool hdmi_12bpc_possible(struct intel_crtc *crtc)
  731. {
  732. struct drm_device *dev = crtc->base.dev;
  733. struct intel_encoder *encoder;
  734. int count = 0, count_hdmi = 0;
  735. if (HAS_GMCH_DISPLAY(dev))
  736. return false;
  737. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  738. if (encoder->new_crtc != crtc)
  739. continue;
  740. count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
  741. count++;
  742. }
  743. /*
  744. * HDMI 12bpc affects the clocks, so it's only possible
  745. * when not cloning with other encoder types.
  746. */
  747. return count_hdmi > 0 && count_hdmi == count;
  748. }
  749. bool intel_hdmi_compute_config(struct intel_encoder *encoder,
  750. struct intel_crtc_config *pipe_config)
  751. {
  752. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  753. struct drm_device *dev = encoder->base.dev;
  754. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  755. int clock_12bpc = pipe_config->adjusted_mode.crtc_clock * 3 / 2;
  756. int portclock_limit = hdmi_portclock_limit(intel_hdmi, false);
  757. int desired_bpp;
  758. pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
  759. if (intel_hdmi->color_range_auto) {
  760. /* See CEA-861-E - 5.1 Default Encoding Parameters */
  761. if (pipe_config->has_hdmi_sink &&
  762. drm_match_cea_mode(adjusted_mode) > 1)
  763. intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
  764. else
  765. intel_hdmi->color_range = 0;
  766. }
  767. if (intel_hdmi->color_range)
  768. pipe_config->limited_color_range = true;
  769. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
  770. pipe_config->has_pch_encoder = true;
  771. if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
  772. pipe_config->has_audio = true;
  773. /*
  774. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  775. * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
  776. * outputs. We also need to check that the higher clock still fits
  777. * within limits.
  778. */
  779. if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
  780. clock_12bpc <= portclock_limit &&
  781. hdmi_12bpc_possible(encoder->new_crtc)) {
  782. DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
  783. desired_bpp = 12*3;
  784. /* Need to adjust the port link by 1.5x for 12bpc. */
  785. pipe_config->port_clock = clock_12bpc;
  786. } else {
  787. DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
  788. desired_bpp = 8*3;
  789. }
  790. if (!pipe_config->bw_constrained) {
  791. DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
  792. pipe_config->pipe_bpp = desired_bpp;
  793. }
  794. if (adjusted_mode->crtc_clock > portclock_limit) {
  795. DRM_DEBUG_KMS("too high HDMI clock, rejecting mode\n");
  796. return false;
  797. }
  798. return true;
  799. }
  800. static enum drm_connector_status
  801. intel_hdmi_detect(struct drm_connector *connector, bool force)
  802. {
  803. struct drm_device *dev = connector->dev;
  804. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  805. struct intel_digital_port *intel_dig_port =
  806. hdmi_to_dig_port(intel_hdmi);
  807. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  808. struct drm_i915_private *dev_priv = dev->dev_private;
  809. struct edid *edid;
  810. enum intel_display_power_domain power_domain;
  811. enum drm_connector_status status = connector_status_disconnected;
  812. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  813. connector->base.id, connector->name);
  814. power_domain = intel_display_port_power_domain(intel_encoder);
  815. intel_display_power_get(dev_priv, power_domain);
  816. intel_hdmi->has_hdmi_sink = false;
  817. intel_hdmi->has_audio = false;
  818. intel_hdmi->rgb_quant_range_selectable = false;
  819. edid = drm_get_edid(connector,
  820. intel_gmbus_get_adapter(dev_priv,
  821. intel_hdmi->ddc_bus));
  822. if (edid) {
  823. if (edid->input & DRM_EDID_INPUT_DIGITAL) {
  824. status = connector_status_connected;
  825. if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
  826. intel_hdmi->has_hdmi_sink =
  827. drm_detect_hdmi_monitor(edid);
  828. intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
  829. intel_hdmi->rgb_quant_range_selectable =
  830. drm_rgb_quant_range_selectable(edid);
  831. }
  832. kfree(edid);
  833. }
  834. if (status == connector_status_connected) {
  835. if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
  836. intel_hdmi->has_audio =
  837. (intel_hdmi->force_audio == HDMI_AUDIO_ON);
  838. intel_encoder->type = INTEL_OUTPUT_HDMI;
  839. }
  840. intel_display_power_put(dev_priv, power_domain);
  841. return status;
  842. }
  843. static int intel_hdmi_get_modes(struct drm_connector *connector)
  844. {
  845. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  846. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  847. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  848. enum intel_display_power_domain power_domain;
  849. int ret;
  850. /* We should parse the EDID data and find out if it's an HDMI sink so
  851. * we can send audio to it.
  852. */
  853. power_domain = intel_display_port_power_domain(intel_encoder);
  854. intel_display_power_get(dev_priv, power_domain);
  855. ret = intel_ddc_get_modes(connector,
  856. intel_gmbus_get_adapter(dev_priv,
  857. intel_hdmi->ddc_bus));
  858. intel_display_power_put(dev_priv, power_domain);
  859. return ret;
  860. }
  861. static bool
  862. intel_hdmi_detect_audio(struct drm_connector *connector)
  863. {
  864. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  865. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  866. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  867. enum intel_display_power_domain power_domain;
  868. struct edid *edid;
  869. bool has_audio = false;
  870. power_domain = intel_display_port_power_domain(intel_encoder);
  871. intel_display_power_get(dev_priv, power_domain);
  872. edid = drm_get_edid(connector,
  873. intel_gmbus_get_adapter(dev_priv,
  874. intel_hdmi->ddc_bus));
  875. if (edid) {
  876. if (edid->input & DRM_EDID_INPUT_DIGITAL)
  877. has_audio = drm_detect_monitor_audio(edid);
  878. kfree(edid);
  879. }
  880. intel_display_power_put(dev_priv, power_domain);
  881. return has_audio;
  882. }
  883. static int
  884. intel_hdmi_set_property(struct drm_connector *connector,
  885. struct drm_property *property,
  886. uint64_t val)
  887. {
  888. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  889. struct intel_digital_port *intel_dig_port =
  890. hdmi_to_dig_port(intel_hdmi);
  891. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  892. int ret;
  893. ret = drm_object_property_set_value(&connector->base, property, val);
  894. if (ret)
  895. return ret;
  896. if (property == dev_priv->force_audio_property) {
  897. enum hdmi_force_audio i = val;
  898. bool has_audio;
  899. if (i == intel_hdmi->force_audio)
  900. return 0;
  901. intel_hdmi->force_audio = i;
  902. if (i == HDMI_AUDIO_AUTO)
  903. has_audio = intel_hdmi_detect_audio(connector);
  904. else
  905. has_audio = (i == HDMI_AUDIO_ON);
  906. if (i == HDMI_AUDIO_OFF_DVI)
  907. intel_hdmi->has_hdmi_sink = 0;
  908. intel_hdmi->has_audio = has_audio;
  909. goto done;
  910. }
  911. if (property == dev_priv->broadcast_rgb_property) {
  912. bool old_auto = intel_hdmi->color_range_auto;
  913. uint32_t old_range = intel_hdmi->color_range;
  914. switch (val) {
  915. case INTEL_BROADCAST_RGB_AUTO:
  916. intel_hdmi->color_range_auto = true;
  917. break;
  918. case INTEL_BROADCAST_RGB_FULL:
  919. intel_hdmi->color_range_auto = false;
  920. intel_hdmi->color_range = 0;
  921. break;
  922. case INTEL_BROADCAST_RGB_LIMITED:
  923. intel_hdmi->color_range_auto = false;
  924. intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
  925. break;
  926. default:
  927. return -EINVAL;
  928. }
  929. if (old_auto == intel_hdmi->color_range_auto &&
  930. old_range == intel_hdmi->color_range)
  931. return 0;
  932. goto done;
  933. }
  934. if (property == connector->dev->mode_config.aspect_ratio_property) {
  935. switch (val) {
  936. case DRM_MODE_PICTURE_ASPECT_NONE:
  937. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
  938. break;
  939. case DRM_MODE_PICTURE_ASPECT_4_3:
  940. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
  941. break;
  942. case DRM_MODE_PICTURE_ASPECT_16_9:
  943. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
  944. break;
  945. default:
  946. return -EINVAL;
  947. }
  948. goto done;
  949. }
  950. return -EINVAL;
  951. done:
  952. if (intel_dig_port->base.base.crtc)
  953. intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
  954. return 0;
  955. }
  956. static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
  957. {
  958. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  959. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  960. struct drm_display_mode *adjusted_mode =
  961. &intel_crtc->config.adjusted_mode;
  962. intel_hdmi_prepare(encoder);
  963. intel_hdmi->set_infoframes(&encoder->base,
  964. intel_crtc->config.has_hdmi_sink,
  965. adjusted_mode);
  966. }
  967. static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
  968. {
  969. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  970. struct intel_hdmi *intel_hdmi = &dport->hdmi;
  971. struct drm_device *dev = encoder->base.dev;
  972. struct drm_i915_private *dev_priv = dev->dev_private;
  973. struct intel_crtc *intel_crtc =
  974. to_intel_crtc(encoder->base.crtc);
  975. struct drm_display_mode *adjusted_mode =
  976. &intel_crtc->config.adjusted_mode;
  977. enum dpio_channel port = vlv_dport_to_channel(dport);
  978. int pipe = intel_crtc->pipe;
  979. u32 val;
  980. /* Enable clock channels for this port */
  981. mutex_lock(&dev_priv->dpio_lock);
  982. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
  983. val = 0;
  984. if (pipe)
  985. val |= (1<<21);
  986. else
  987. val &= ~(1<<21);
  988. val |= 0x001000c4;
  989. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
  990. /* HDMI 1.0V-2dB */
  991. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
  992. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
  993. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
  994. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
  995. vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
  996. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
  997. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
  998. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
  999. /* Program lane clock */
  1000. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
  1001. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
  1002. mutex_unlock(&dev_priv->dpio_lock);
  1003. intel_hdmi->set_infoframes(&encoder->base,
  1004. intel_crtc->config.has_hdmi_sink,
  1005. adjusted_mode);
  1006. intel_enable_hdmi(encoder);
  1007. vlv_wait_port_ready(dev_priv, dport);
  1008. }
  1009. static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
  1010. {
  1011. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1012. struct drm_device *dev = encoder->base.dev;
  1013. struct drm_i915_private *dev_priv = dev->dev_private;
  1014. struct intel_crtc *intel_crtc =
  1015. to_intel_crtc(encoder->base.crtc);
  1016. enum dpio_channel port = vlv_dport_to_channel(dport);
  1017. int pipe = intel_crtc->pipe;
  1018. intel_hdmi_prepare(encoder);
  1019. /* Program Tx lane resets to default */
  1020. mutex_lock(&dev_priv->dpio_lock);
  1021. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
  1022. DPIO_PCS_TX_LANE2_RESET |
  1023. DPIO_PCS_TX_LANE1_RESET);
  1024. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
  1025. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1026. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1027. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1028. DPIO_PCS_CLK_SOFT_RESET);
  1029. /* Fix up inter-pair skew failure */
  1030. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
  1031. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
  1032. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
  1033. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
  1034. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
  1035. mutex_unlock(&dev_priv->dpio_lock);
  1036. }
  1037. static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
  1038. {
  1039. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1040. struct drm_device *dev = encoder->base.dev;
  1041. struct drm_i915_private *dev_priv = dev->dev_private;
  1042. struct intel_crtc *intel_crtc =
  1043. to_intel_crtc(encoder->base.crtc);
  1044. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1045. enum pipe pipe = intel_crtc->pipe;
  1046. u32 val;
  1047. mutex_lock(&dev_priv->dpio_lock);
  1048. /* program left/right clock distribution */
  1049. if (pipe != PIPE_B) {
  1050. val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
  1051. val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
  1052. if (ch == DPIO_CH0)
  1053. val |= CHV_BUFLEFTENA1_FORCE;
  1054. if (ch == DPIO_CH1)
  1055. val |= CHV_BUFRIGHTENA1_FORCE;
  1056. vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
  1057. } else {
  1058. val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
  1059. val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
  1060. if (ch == DPIO_CH0)
  1061. val |= CHV_BUFLEFTENA2_FORCE;
  1062. if (ch == DPIO_CH1)
  1063. val |= CHV_BUFRIGHTENA2_FORCE;
  1064. vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
  1065. }
  1066. /* program clock channel usage */
  1067. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
  1068. val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
  1069. if (pipe != PIPE_B)
  1070. val &= ~CHV_PCS_USEDCLKCHANNEL;
  1071. else
  1072. val |= CHV_PCS_USEDCLKCHANNEL;
  1073. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
  1074. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
  1075. val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
  1076. if (pipe != PIPE_B)
  1077. val &= ~CHV_PCS_USEDCLKCHANNEL;
  1078. else
  1079. val |= CHV_PCS_USEDCLKCHANNEL;
  1080. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
  1081. /*
  1082. * This a a bit weird since generally CL
  1083. * matches the pipe, but here we need to
  1084. * pick the CL based on the port.
  1085. */
  1086. val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
  1087. if (pipe != PIPE_B)
  1088. val &= ~CHV_CMN_USEDCLKCHANNEL;
  1089. else
  1090. val |= CHV_CMN_USEDCLKCHANNEL;
  1091. vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
  1092. mutex_unlock(&dev_priv->dpio_lock);
  1093. }
  1094. static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
  1095. {
  1096. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1097. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1098. struct intel_crtc *intel_crtc =
  1099. to_intel_crtc(encoder->base.crtc);
  1100. enum dpio_channel port = vlv_dport_to_channel(dport);
  1101. int pipe = intel_crtc->pipe;
  1102. /* Reset lanes to avoid HDMI flicker (VLV w/a) */
  1103. mutex_lock(&dev_priv->dpio_lock);
  1104. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
  1105. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
  1106. mutex_unlock(&dev_priv->dpio_lock);
  1107. }
  1108. static void chv_hdmi_post_disable(struct intel_encoder *encoder)
  1109. {
  1110. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1111. struct drm_device *dev = encoder->base.dev;
  1112. struct drm_i915_private *dev_priv = dev->dev_private;
  1113. struct intel_crtc *intel_crtc =
  1114. to_intel_crtc(encoder->base.crtc);
  1115. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1116. enum pipe pipe = intel_crtc->pipe;
  1117. u32 val;
  1118. mutex_lock(&dev_priv->dpio_lock);
  1119. /* Propagate soft reset to data lane reset */
  1120. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
  1121. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1122. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
  1123. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
  1124. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1125. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
  1126. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
  1127. val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1128. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
  1129. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
  1130. val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1131. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
  1132. mutex_unlock(&dev_priv->dpio_lock);
  1133. }
  1134. static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
  1135. {
  1136. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1137. struct drm_device *dev = encoder->base.dev;
  1138. struct drm_i915_private *dev_priv = dev->dev_private;
  1139. struct intel_crtc *intel_crtc =
  1140. to_intel_crtc(encoder->base.crtc);
  1141. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1142. int pipe = intel_crtc->pipe;
  1143. int data, i;
  1144. u32 val;
  1145. mutex_lock(&dev_priv->dpio_lock);
  1146. /* Deassert soft data lane reset*/
  1147. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
  1148. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1149. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
  1150. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
  1151. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1152. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
  1153. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
  1154. val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1155. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
  1156. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
  1157. val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1158. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
  1159. /* Program Tx latency optimal setting */
  1160. for (i = 0; i < 4; i++) {
  1161. /* Set the latency optimal bit */
  1162. data = (i == 1) ? 0x0 : 0x6;
  1163. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
  1164. data << DPIO_FRC_LATENCY_SHFIT);
  1165. /* Set the upar bit */
  1166. data = (i == 1) ? 0x0 : 0x1;
  1167. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
  1168. data << DPIO_UPAR_SHIFT);
  1169. }
  1170. /* Data lane stagger programming */
  1171. /* FIXME: Fix up value only after power analysis */
  1172. /* Clear calc init */
  1173. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
  1174. val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
  1175. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
  1176. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
  1177. val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
  1178. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
  1179. /* FIXME: Program the support xxx V-dB */
  1180. /* Use 800mV-0dB */
  1181. for (i = 0; i < 4; i++) {
  1182. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
  1183. val &= ~DPIO_SWING_DEEMPH9P5_MASK;
  1184. val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
  1185. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
  1186. }
  1187. for (i = 0; i < 4; i++) {
  1188. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
  1189. val &= ~DPIO_SWING_MARGIN_MASK;
  1190. val |= 102 << DPIO_SWING_MARGIN_SHIFT;
  1191. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
  1192. }
  1193. /* Disable unique transition scale */
  1194. for (i = 0; i < 4; i++) {
  1195. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
  1196. val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
  1197. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
  1198. }
  1199. /* Additional steps for 1200mV-0dB */
  1200. #if 0
  1201. val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
  1202. if (ch)
  1203. val |= DPIO_TX_UNIQ_TRANS_SCALE_CH1;
  1204. else
  1205. val |= DPIO_TX_UNIQ_TRANS_SCALE_CH0;
  1206. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
  1207. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch),
  1208. vlv_dpio_read(dev_priv, pipe, VLV_TX_DW2(ch)) |
  1209. (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT));
  1210. #endif
  1211. /* Start swing calculation */
  1212. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
  1213. val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
  1214. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
  1215. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
  1216. val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
  1217. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
  1218. /* LRC Bypass */
  1219. val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
  1220. val |= DPIO_LRC_BYPASS;
  1221. vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
  1222. mutex_unlock(&dev_priv->dpio_lock);
  1223. intel_enable_hdmi(encoder);
  1224. vlv_wait_port_ready(dev_priv, dport);
  1225. }
  1226. static void intel_hdmi_destroy(struct drm_connector *connector)
  1227. {
  1228. drm_connector_cleanup(connector);
  1229. kfree(connector);
  1230. }
  1231. static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
  1232. .dpms = intel_connector_dpms,
  1233. .detect = intel_hdmi_detect,
  1234. .fill_modes = drm_helper_probe_single_connector_modes,
  1235. .set_property = intel_hdmi_set_property,
  1236. .destroy = intel_hdmi_destroy,
  1237. };
  1238. static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
  1239. .get_modes = intel_hdmi_get_modes,
  1240. .mode_valid = intel_hdmi_mode_valid,
  1241. .best_encoder = intel_best_encoder,
  1242. };
  1243. static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
  1244. .destroy = intel_encoder_destroy,
  1245. };
  1246. static void
  1247. intel_attach_aspect_ratio_property(struct drm_connector *connector)
  1248. {
  1249. if (!drm_mode_create_aspect_ratio_property(connector->dev))
  1250. drm_object_attach_property(&connector->base,
  1251. connector->dev->mode_config.aspect_ratio_property,
  1252. DRM_MODE_PICTURE_ASPECT_NONE);
  1253. }
  1254. static void
  1255. intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
  1256. {
  1257. intel_attach_force_audio_property(connector);
  1258. intel_attach_broadcast_rgb_property(connector);
  1259. intel_hdmi->color_range_auto = true;
  1260. intel_attach_aspect_ratio_property(connector);
  1261. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
  1262. }
  1263. void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
  1264. struct intel_connector *intel_connector)
  1265. {
  1266. struct drm_connector *connector = &intel_connector->base;
  1267. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  1268. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  1269. struct drm_device *dev = intel_encoder->base.dev;
  1270. struct drm_i915_private *dev_priv = dev->dev_private;
  1271. enum port port = intel_dig_port->port;
  1272. drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
  1273. DRM_MODE_CONNECTOR_HDMIA);
  1274. drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
  1275. connector->interlace_allowed = 1;
  1276. connector->doublescan_allowed = 0;
  1277. connector->stereo_allowed = 1;
  1278. switch (port) {
  1279. case PORT_B:
  1280. intel_hdmi->ddc_bus = GMBUS_PORT_DPB;
  1281. intel_encoder->hpd_pin = HPD_PORT_B;
  1282. break;
  1283. case PORT_C:
  1284. intel_hdmi->ddc_bus = GMBUS_PORT_DPC;
  1285. intel_encoder->hpd_pin = HPD_PORT_C;
  1286. break;
  1287. case PORT_D:
  1288. if (IS_CHERRYVIEW(dev))
  1289. intel_hdmi->ddc_bus = GMBUS_PORT_DPD_CHV;
  1290. else
  1291. intel_hdmi->ddc_bus = GMBUS_PORT_DPD;
  1292. intel_encoder->hpd_pin = HPD_PORT_D;
  1293. break;
  1294. case PORT_A:
  1295. intel_encoder->hpd_pin = HPD_PORT_A;
  1296. /* Internal port only for eDP. */
  1297. default:
  1298. BUG();
  1299. }
  1300. if (IS_VALLEYVIEW(dev)) {
  1301. intel_hdmi->write_infoframe = vlv_write_infoframe;
  1302. intel_hdmi->set_infoframes = vlv_set_infoframes;
  1303. } else if (IS_G4X(dev)) {
  1304. intel_hdmi->write_infoframe = g4x_write_infoframe;
  1305. intel_hdmi->set_infoframes = g4x_set_infoframes;
  1306. } else if (HAS_DDI(dev)) {
  1307. intel_hdmi->write_infoframe = hsw_write_infoframe;
  1308. intel_hdmi->set_infoframes = hsw_set_infoframes;
  1309. } else if (HAS_PCH_IBX(dev)) {
  1310. intel_hdmi->write_infoframe = ibx_write_infoframe;
  1311. intel_hdmi->set_infoframes = ibx_set_infoframes;
  1312. } else {
  1313. intel_hdmi->write_infoframe = cpt_write_infoframe;
  1314. intel_hdmi->set_infoframes = cpt_set_infoframes;
  1315. }
  1316. if (HAS_DDI(dev))
  1317. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  1318. else
  1319. intel_connector->get_hw_state = intel_connector_get_hw_state;
  1320. intel_connector->unregister = intel_connector_unregister;
  1321. intel_hdmi_add_properties(intel_hdmi, connector);
  1322. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1323. drm_connector_register(connector);
  1324. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1325. * 0xd. Failure to do so will result in spurious interrupts being
  1326. * generated on the port when a cable is not attached.
  1327. */
  1328. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1329. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1330. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1331. }
  1332. }
  1333. void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
  1334. {
  1335. struct intel_digital_port *intel_dig_port;
  1336. struct intel_encoder *intel_encoder;
  1337. struct intel_connector *intel_connector;
  1338. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1339. if (!intel_dig_port)
  1340. return;
  1341. intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
  1342. if (!intel_connector) {
  1343. kfree(intel_dig_port);
  1344. return;
  1345. }
  1346. intel_encoder = &intel_dig_port->base;
  1347. drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
  1348. DRM_MODE_ENCODER_TMDS);
  1349. intel_encoder->compute_config = intel_hdmi_compute_config;
  1350. intel_encoder->disable = intel_disable_hdmi;
  1351. intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
  1352. intel_encoder->get_config = intel_hdmi_get_config;
  1353. if (IS_CHERRYVIEW(dev)) {
  1354. intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
  1355. intel_encoder->pre_enable = chv_hdmi_pre_enable;
  1356. intel_encoder->enable = vlv_enable_hdmi;
  1357. intel_encoder->post_disable = chv_hdmi_post_disable;
  1358. } else if (IS_VALLEYVIEW(dev)) {
  1359. intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
  1360. intel_encoder->pre_enable = vlv_hdmi_pre_enable;
  1361. intel_encoder->enable = vlv_enable_hdmi;
  1362. intel_encoder->post_disable = vlv_hdmi_post_disable;
  1363. } else {
  1364. intel_encoder->pre_enable = intel_hdmi_pre_enable;
  1365. intel_encoder->enable = intel_enable_hdmi;
  1366. }
  1367. intel_encoder->type = INTEL_OUTPUT_HDMI;
  1368. if (IS_CHERRYVIEW(dev)) {
  1369. if (port == PORT_D)
  1370. intel_encoder->crtc_mask = 1 << 2;
  1371. else
  1372. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1373. } else {
  1374. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1375. }
  1376. intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
  1377. /*
  1378. * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
  1379. * to work on real hardware. And since g4x can send infoframes to
  1380. * only one port anyway, nothing is lost by allowing it.
  1381. */
  1382. if (IS_G4X(dev))
  1383. intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
  1384. intel_dig_port->port = port;
  1385. intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
  1386. intel_dig_port->dp.output_reg = 0;
  1387. intel_hdmi_init_connector(intel_dig_port, intel_connector);
  1388. }