intel_ddi.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  30. * them for both DP and FDI transports, allowing those ports to
  31. * automatically adapt to HDMI connections as well
  32. */
  33. static const u32 hsw_ddi_translations_dp[] = {
  34. 0x00FFFFFF, 0x0006000E, /* DP parameters */
  35. 0x00D75FFF, 0x0005000A,
  36. 0x00C30FFF, 0x00040006,
  37. 0x80AAAFFF, 0x000B0000,
  38. 0x00FFFFFF, 0x0005000A,
  39. 0x00D75FFF, 0x000C0004,
  40. 0x80C30FFF, 0x000B0000,
  41. 0x00FFFFFF, 0x00040006,
  42. 0x80D75FFF, 0x000B0000,
  43. };
  44. static const u32 hsw_ddi_translations_fdi[] = {
  45. 0x00FFFFFF, 0x0007000E, /* FDI parameters */
  46. 0x00D75FFF, 0x000F000A,
  47. 0x00C30FFF, 0x00060006,
  48. 0x00AAAFFF, 0x001E0000,
  49. 0x00FFFFFF, 0x000F000A,
  50. 0x00D75FFF, 0x00160004,
  51. 0x00C30FFF, 0x001E0000,
  52. 0x00FFFFFF, 0x00060006,
  53. 0x00D75FFF, 0x001E0000,
  54. };
  55. static const u32 hsw_ddi_translations_hdmi[] = {
  56. /* Idx NT mV diff T mV diff db */
  57. 0x00FFFFFF, 0x0006000E, /* 0: 400 400 0 */
  58. 0x00E79FFF, 0x000E000C, /* 1: 400 500 2 */
  59. 0x00D75FFF, 0x0005000A, /* 2: 400 600 3.5 */
  60. 0x00FFFFFF, 0x0005000A, /* 3: 600 600 0 */
  61. 0x00E79FFF, 0x001D0007, /* 4: 600 750 2 */
  62. 0x00D75FFF, 0x000C0004, /* 5: 600 900 3.5 */
  63. 0x00FFFFFF, 0x00040006, /* 6: 800 800 0 */
  64. 0x80E79FFF, 0x00030002, /* 7: 800 1000 2 */
  65. 0x00FFFFFF, 0x00140005, /* 8: 850 850 0 */
  66. 0x00FFFFFF, 0x000C0004, /* 9: 900 900 0 */
  67. 0x00FFFFFF, 0x001C0003, /* 10: 950 950 0 */
  68. 0x80FFFFFF, 0x00030002, /* 11: 1000 1000 0 */
  69. };
  70. static const u32 bdw_ddi_translations_edp[] = {
  71. 0x00FFFFFF, 0x00000012, /* eDP parameters */
  72. 0x00EBAFFF, 0x00020011,
  73. 0x00C71FFF, 0x0006000F,
  74. 0x00AAAFFF, 0x000E000A,
  75. 0x00FFFFFF, 0x00020011,
  76. 0x00DB6FFF, 0x0005000F,
  77. 0x00BEEFFF, 0x000A000C,
  78. 0x00FFFFFF, 0x0005000F,
  79. 0x00DB6FFF, 0x000A000C,
  80. 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/
  81. };
  82. static const u32 bdw_ddi_translations_dp[] = {
  83. 0x00FFFFFF, 0x0007000E, /* DP parameters */
  84. 0x00D75FFF, 0x000E000A,
  85. 0x00BEFFFF, 0x00140006,
  86. 0x80B2CFFF, 0x001B0002,
  87. 0x00FFFFFF, 0x000E000A,
  88. 0x00D75FFF, 0x00180004,
  89. 0x80CB2FFF, 0x001B0002,
  90. 0x00F7DFFF, 0x00180004,
  91. 0x80D75FFF, 0x001B0002,
  92. 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/
  93. };
  94. static const u32 bdw_ddi_translations_fdi[] = {
  95. 0x00FFFFFF, 0x0001000E, /* FDI parameters */
  96. 0x00D75FFF, 0x0004000A,
  97. 0x00C30FFF, 0x00070006,
  98. 0x00AAAFFF, 0x000C0000,
  99. 0x00FFFFFF, 0x0004000A,
  100. 0x00D75FFF, 0x00090004,
  101. 0x00C30FFF, 0x000C0000,
  102. 0x00FFFFFF, 0x00070006,
  103. 0x00D75FFF, 0x000C0000,
  104. 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/
  105. };
  106. enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  107. {
  108. struct drm_encoder *encoder = &intel_encoder->base;
  109. int type = intel_encoder->type;
  110. if (type == INTEL_OUTPUT_DP_MST) {
  111. struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary;
  112. return intel_dig_port->port;
  113. } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
  114. type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
  115. struct intel_digital_port *intel_dig_port =
  116. enc_to_dig_port(encoder);
  117. return intel_dig_port->port;
  118. } else if (type == INTEL_OUTPUT_ANALOG) {
  119. return PORT_E;
  120. } else {
  121. DRM_ERROR("Invalid DDI encoder type %d\n", type);
  122. BUG();
  123. }
  124. }
  125. /*
  126. * Starting with Haswell, DDI port buffers must be programmed with correct
  127. * values in advance. The buffer values are different for FDI and DP modes,
  128. * but the HDMI/DVI fields are shared among those. So we program the DDI
  129. * in either FDI or DP modes only, as HDMI connections will work with both
  130. * of those
  131. */
  132. static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
  133. {
  134. struct drm_i915_private *dev_priv = dev->dev_private;
  135. u32 reg;
  136. int i;
  137. int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  138. const u32 *ddi_translations_fdi;
  139. const u32 *ddi_translations_dp;
  140. const u32 *ddi_translations_edp;
  141. const u32 *ddi_translations;
  142. if (IS_BROADWELL(dev)) {
  143. ddi_translations_fdi = bdw_ddi_translations_fdi;
  144. ddi_translations_dp = bdw_ddi_translations_dp;
  145. ddi_translations_edp = bdw_ddi_translations_edp;
  146. } else if (IS_HASWELL(dev)) {
  147. ddi_translations_fdi = hsw_ddi_translations_fdi;
  148. ddi_translations_dp = hsw_ddi_translations_dp;
  149. ddi_translations_edp = hsw_ddi_translations_dp;
  150. } else {
  151. WARN(1, "ddi translation table missing\n");
  152. ddi_translations_edp = bdw_ddi_translations_dp;
  153. ddi_translations_fdi = bdw_ddi_translations_fdi;
  154. ddi_translations_dp = bdw_ddi_translations_dp;
  155. }
  156. switch (port) {
  157. case PORT_A:
  158. ddi_translations = ddi_translations_edp;
  159. break;
  160. case PORT_B:
  161. case PORT_C:
  162. ddi_translations = ddi_translations_dp;
  163. break;
  164. case PORT_D:
  165. if (intel_dp_is_edp(dev, PORT_D))
  166. ddi_translations = ddi_translations_edp;
  167. else
  168. ddi_translations = ddi_translations_dp;
  169. break;
  170. case PORT_E:
  171. ddi_translations = ddi_translations_fdi;
  172. break;
  173. default:
  174. BUG();
  175. }
  176. for (i = 0, reg = DDI_BUF_TRANS(port);
  177. i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
  178. I915_WRITE(reg, ddi_translations[i]);
  179. reg += 4;
  180. }
  181. /* Entry 9 is for HDMI: */
  182. for (i = 0; i < 2; i++) {
  183. I915_WRITE(reg, hsw_ddi_translations_hdmi[hdmi_level * 2 + i]);
  184. reg += 4;
  185. }
  186. }
  187. /* Program DDI buffers translations for DP. By default, program ports A-D in DP
  188. * mode and port E for FDI.
  189. */
  190. void intel_prepare_ddi(struct drm_device *dev)
  191. {
  192. int port;
  193. if (!HAS_DDI(dev))
  194. return;
  195. for (port = PORT_A; port <= PORT_E; port++)
  196. intel_prepare_ddi_buffers(dev, port);
  197. }
  198. static const long hsw_ddi_buf_ctl_values[] = {
  199. DDI_BUF_EMP_400MV_0DB_HSW,
  200. DDI_BUF_EMP_400MV_3_5DB_HSW,
  201. DDI_BUF_EMP_400MV_6DB_HSW,
  202. DDI_BUF_EMP_400MV_9_5DB_HSW,
  203. DDI_BUF_EMP_600MV_0DB_HSW,
  204. DDI_BUF_EMP_600MV_3_5DB_HSW,
  205. DDI_BUF_EMP_600MV_6DB_HSW,
  206. DDI_BUF_EMP_800MV_0DB_HSW,
  207. DDI_BUF_EMP_800MV_3_5DB_HSW
  208. };
  209. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  210. enum port port)
  211. {
  212. uint32_t reg = DDI_BUF_CTL(port);
  213. int i;
  214. for (i = 0; i < 8; i++) {
  215. udelay(1);
  216. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  217. return;
  218. }
  219. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  220. }
  221. /* Starting with Haswell, different DDI ports can work in FDI mode for
  222. * connection to the PCH-located connectors. For this, it is necessary to train
  223. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  224. *
  225. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  226. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  227. * DDI A (which is used for eDP)
  228. */
  229. void hsw_fdi_link_train(struct drm_crtc *crtc)
  230. {
  231. struct drm_device *dev = crtc->dev;
  232. struct drm_i915_private *dev_priv = dev->dev_private;
  233. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  234. u32 temp, i, rx_ctl_val;
  235. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  236. * mode set "sequence for CRT port" document:
  237. * - TP1 to TP2 time with the default value
  238. * - FDI delay to 90h
  239. *
  240. * WaFDIAutoLinkSetTimingOverrride:hsw
  241. */
  242. I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
  243. FDI_RX_PWRDN_LANE0_VAL(2) |
  244. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  245. /* Enable the PCH Receiver FDI PLL */
  246. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  247. FDI_RX_PLL_ENABLE |
  248. FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  249. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  250. POSTING_READ(_FDI_RXA_CTL);
  251. udelay(220);
  252. /* Switch from Rawclk to PCDclk */
  253. rx_ctl_val |= FDI_PCDCLK;
  254. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  255. /* Configure Port Clock Select */
  256. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config.ddi_pll_sel);
  257. WARN_ON(intel_crtc->config.ddi_pll_sel != PORT_CLK_SEL_SPLL);
  258. /* Start the training iterating through available voltages and emphasis,
  259. * testing each value twice. */
  260. for (i = 0; i < ARRAY_SIZE(hsw_ddi_buf_ctl_values) * 2; i++) {
  261. /* Configure DP_TP_CTL with auto-training */
  262. I915_WRITE(DP_TP_CTL(PORT_E),
  263. DP_TP_CTL_FDI_AUTOTRAIN |
  264. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  265. DP_TP_CTL_LINK_TRAIN_PAT1 |
  266. DP_TP_CTL_ENABLE);
  267. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  268. * DDI E does not support port reversal, the functionality is
  269. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  270. * port reversal bit */
  271. I915_WRITE(DDI_BUF_CTL(PORT_E),
  272. DDI_BUF_CTL_ENABLE |
  273. ((intel_crtc->config.fdi_lanes - 1) << 1) |
  274. hsw_ddi_buf_ctl_values[i / 2]);
  275. POSTING_READ(DDI_BUF_CTL(PORT_E));
  276. udelay(600);
  277. /* Program PCH FDI Receiver TU */
  278. I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
  279. /* Enable PCH FDI Receiver with auto-training */
  280. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  281. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  282. POSTING_READ(_FDI_RXA_CTL);
  283. /* Wait for FDI receiver lane calibration */
  284. udelay(30);
  285. /* Unset FDI_RX_MISC pwrdn lanes */
  286. temp = I915_READ(_FDI_RXA_MISC);
  287. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  288. I915_WRITE(_FDI_RXA_MISC, temp);
  289. POSTING_READ(_FDI_RXA_MISC);
  290. /* Wait for FDI auto training time */
  291. udelay(5);
  292. temp = I915_READ(DP_TP_STATUS(PORT_E));
  293. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  294. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  295. /* Enable normal pixel sending for FDI */
  296. I915_WRITE(DP_TP_CTL(PORT_E),
  297. DP_TP_CTL_FDI_AUTOTRAIN |
  298. DP_TP_CTL_LINK_TRAIN_NORMAL |
  299. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  300. DP_TP_CTL_ENABLE);
  301. return;
  302. }
  303. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  304. temp &= ~DDI_BUF_CTL_ENABLE;
  305. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  306. POSTING_READ(DDI_BUF_CTL(PORT_E));
  307. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  308. temp = I915_READ(DP_TP_CTL(PORT_E));
  309. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  310. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  311. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  312. POSTING_READ(DP_TP_CTL(PORT_E));
  313. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  314. rx_ctl_val &= ~FDI_RX_ENABLE;
  315. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  316. POSTING_READ(_FDI_RXA_CTL);
  317. /* Reset FDI_RX_MISC pwrdn lanes */
  318. temp = I915_READ(_FDI_RXA_MISC);
  319. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  320. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  321. I915_WRITE(_FDI_RXA_MISC, temp);
  322. POSTING_READ(_FDI_RXA_MISC);
  323. }
  324. DRM_ERROR("FDI link training failed!\n");
  325. }
  326. void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
  327. {
  328. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  329. struct intel_digital_port *intel_dig_port =
  330. enc_to_dig_port(&encoder->base);
  331. intel_dp->DP = intel_dig_port->saved_port_bits |
  332. DDI_BUF_CTL_ENABLE | DDI_BUF_EMP_400MV_0DB_HSW;
  333. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  334. }
  335. static struct intel_encoder *
  336. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  337. {
  338. struct drm_device *dev = crtc->dev;
  339. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  340. struct intel_encoder *intel_encoder, *ret = NULL;
  341. int num_encoders = 0;
  342. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  343. ret = intel_encoder;
  344. num_encoders++;
  345. }
  346. if (num_encoders != 1)
  347. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  348. pipe_name(intel_crtc->pipe));
  349. BUG_ON(ret == NULL);
  350. return ret;
  351. }
  352. #define LC_FREQ 2700
  353. #define LC_FREQ_2K (LC_FREQ * 2000)
  354. #define P_MIN 2
  355. #define P_MAX 64
  356. #define P_INC 2
  357. /* Constraints for PLL good behavior */
  358. #define REF_MIN 48
  359. #define REF_MAX 400
  360. #define VCO_MIN 2400
  361. #define VCO_MAX 4800
  362. #define ABS_DIFF(a, b) ((a > b) ? (a - b) : (b - a))
  363. struct wrpll_rnp {
  364. unsigned p, n2, r2;
  365. };
  366. static unsigned wrpll_get_budget_for_freq(int clock)
  367. {
  368. unsigned budget;
  369. switch (clock) {
  370. case 25175000:
  371. case 25200000:
  372. case 27000000:
  373. case 27027000:
  374. case 37762500:
  375. case 37800000:
  376. case 40500000:
  377. case 40541000:
  378. case 54000000:
  379. case 54054000:
  380. case 59341000:
  381. case 59400000:
  382. case 72000000:
  383. case 74176000:
  384. case 74250000:
  385. case 81000000:
  386. case 81081000:
  387. case 89012000:
  388. case 89100000:
  389. case 108000000:
  390. case 108108000:
  391. case 111264000:
  392. case 111375000:
  393. case 148352000:
  394. case 148500000:
  395. case 162000000:
  396. case 162162000:
  397. case 222525000:
  398. case 222750000:
  399. case 296703000:
  400. case 297000000:
  401. budget = 0;
  402. break;
  403. case 233500000:
  404. case 245250000:
  405. case 247750000:
  406. case 253250000:
  407. case 298000000:
  408. budget = 1500;
  409. break;
  410. case 169128000:
  411. case 169500000:
  412. case 179500000:
  413. case 202000000:
  414. budget = 2000;
  415. break;
  416. case 256250000:
  417. case 262500000:
  418. case 270000000:
  419. case 272500000:
  420. case 273750000:
  421. case 280750000:
  422. case 281250000:
  423. case 286000000:
  424. case 291750000:
  425. budget = 4000;
  426. break;
  427. case 267250000:
  428. case 268500000:
  429. budget = 5000;
  430. break;
  431. default:
  432. budget = 1000;
  433. break;
  434. }
  435. return budget;
  436. }
  437. static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  438. unsigned r2, unsigned n2, unsigned p,
  439. struct wrpll_rnp *best)
  440. {
  441. uint64_t a, b, c, d, diff, diff_best;
  442. /* No best (r,n,p) yet */
  443. if (best->p == 0) {
  444. best->p = p;
  445. best->n2 = n2;
  446. best->r2 = r2;
  447. return;
  448. }
  449. /*
  450. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  451. * freq2k.
  452. *
  453. * delta = 1e6 *
  454. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  455. * freq2k;
  456. *
  457. * and we would like delta <= budget.
  458. *
  459. * If the discrepancy is above the PPM-based budget, always prefer to
  460. * improve upon the previous solution. However, if you're within the
  461. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  462. */
  463. a = freq2k * budget * p * r2;
  464. b = freq2k * budget * best->p * best->r2;
  465. diff = ABS_DIFF((freq2k * p * r2), (LC_FREQ_2K * n2));
  466. diff_best = ABS_DIFF((freq2k * best->p * best->r2),
  467. (LC_FREQ_2K * best->n2));
  468. c = 1000000 * diff;
  469. d = 1000000 * diff_best;
  470. if (a < c && b < d) {
  471. /* If both are above the budget, pick the closer */
  472. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  473. best->p = p;
  474. best->n2 = n2;
  475. best->r2 = r2;
  476. }
  477. } else if (a >= c && b < d) {
  478. /* If A is below the threshold but B is above it? Update. */
  479. best->p = p;
  480. best->n2 = n2;
  481. best->r2 = r2;
  482. } else if (a >= c && b >= d) {
  483. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  484. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  485. best->p = p;
  486. best->n2 = n2;
  487. best->r2 = r2;
  488. }
  489. }
  490. /* Otherwise a < c && b >= d, do nothing */
  491. }
  492. static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
  493. int reg)
  494. {
  495. int refclk = LC_FREQ;
  496. int n, p, r;
  497. u32 wrpll;
  498. wrpll = I915_READ(reg);
  499. switch (wrpll & WRPLL_PLL_REF_MASK) {
  500. case WRPLL_PLL_SSC:
  501. case WRPLL_PLL_NON_SSC:
  502. /*
  503. * We could calculate spread here, but our checking
  504. * code only cares about 5% accuracy, and spread is a max of
  505. * 0.5% downspread.
  506. */
  507. refclk = 135;
  508. break;
  509. case WRPLL_PLL_LCPLL:
  510. refclk = LC_FREQ;
  511. break;
  512. default:
  513. WARN(1, "bad wrpll refclk\n");
  514. return 0;
  515. }
  516. r = wrpll & WRPLL_DIVIDER_REF_MASK;
  517. p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  518. n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  519. /* Convert to KHz, p & r have a fixed point portion */
  520. return (refclk * n * 100) / (p * r);
  521. }
  522. void intel_ddi_clock_get(struct intel_encoder *encoder,
  523. struct intel_crtc_config *pipe_config)
  524. {
  525. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  526. int link_clock = 0;
  527. u32 val, pll;
  528. val = pipe_config->ddi_pll_sel;
  529. switch (val & PORT_CLK_SEL_MASK) {
  530. case PORT_CLK_SEL_LCPLL_810:
  531. link_clock = 81000;
  532. break;
  533. case PORT_CLK_SEL_LCPLL_1350:
  534. link_clock = 135000;
  535. break;
  536. case PORT_CLK_SEL_LCPLL_2700:
  537. link_clock = 270000;
  538. break;
  539. case PORT_CLK_SEL_WRPLL1:
  540. link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
  541. break;
  542. case PORT_CLK_SEL_WRPLL2:
  543. link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
  544. break;
  545. case PORT_CLK_SEL_SPLL:
  546. pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
  547. if (pll == SPLL_PLL_FREQ_810MHz)
  548. link_clock = 81000;
  549. else if (pll == SPLL_PLL_FREQ_1350MHz)
  550. link_clock = 135000;
  551. else if (pll == SPLL_PLL_FREQ_2700MHz)
  552. link_clock = 270000;
  553. else {
  554. WARN(1, "bad spll freq\n");
  555. return;
  556. }
  557. break;
  558. default:
  559. WARN(1, "bad port clock sel\n");
  560. return;
  561. }
  562. pipe_config->port_clock = link_clock * 2;
  563. if (pipe_config->has_pch_encoder)
  564. pipe_config->adjusted_mode.crtc_clock =
  565. intel_dotclock_calculate(pipe_config->port_clock,
  566. &pipe_config->fdi_m_n);
  567. else if (pipe_config->has_dp_encoder)
  568. pipe_config->adjusted_mode.crtc_clock =
  569. intel_dotclock_calculate(pipe_config->port_clock,
  570. &pipe_config->dp_m_n);
  571. else
  572. pipe_config->adjusted_mode.crtc_clock = pipe_config->port_clock;
  573. }
  574. static void
  575. intel_ddi_calculate_wrpll(int clock /* in Hz */,
  576. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  577. {
  578. uint64_t freq2k;
  579. unsigned p, n2, r2;
  580. struct wrpll_rnp best = { 0, 0, 0 };
  581. unsigned budget;
  582. freq2k = clock / 100;
  583. budget = wrpll_get_budget_for_freq(clock);
  584. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  585. * and directly pass the LC PLL to it. */
  586. if (freq2k == 5400000) {
  587. *n2_out = 2;
  588. *p_out = 1;
  589. *r2_out = 2;
  590. return;
  591. }
  592. /*
  593. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  594. * the WR PLL.
  595. *
  596. * We want R so that REF_MIN <= Ref <= REF_MAX.
  597. * Injecting R2 = 2 * R gives:
  598. * REF_MAX * r2 > LC_FREQ * 2 and
  599. * REF_MIN * r2 < LC_FREQ * 2
  600. *
  601. * Which means the desired boundaries for r2 are:
  602. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  603. *
  604. */
  605. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  606. r2 <= LC_FREQ * 2 / REF_MIN;
  607. r2++) {
  608. /*
  609. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  610. *
  611. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  612. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  613. * VCO_MAX * r2 > n2 * LC_FREQ and
  614. * VCO_MIN * r2 < n2 * LC_FREQ)
  615. *
  616. * Which means the desired boundaries for n2 are:
  617. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  618. */
  619. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  620. n2 <= VCO_MAX * r2 / LC_FREQ;
  621. n2++) {
  622. for (p = P_MIN; p <= P_MAX; p += P_INC)
  623. wrpll_update_rnp(freq2k, budget,
  624. r2, n2, p, &best);
  625. }
  626. }
  627. *n2_out = best.n2;
  628. *p_out = best.p;
  629. *r2_out = best.r2;
  630. }
  631. /*
  632. * Tries to find a PLL for the CRTC. If it finds, it increases the refcount and
  633. * stores it in intel_crtc->ddi_pll_sel, so other mode sets won't be able to
  634. * steal the selected PLL. You need to call intel_ddi_pll_enable to actually
  635. * enable the PLL.
  636. */
  637. bool intel_ddi_pll_select(struct intel_crtc *intel_crtc)
  638. {
  639. struct drm_crtc *crtc = &intel_crtc->base;
  640. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  641. int type = intel_encoder->type;
  642. int clock = intel_crtc->config.port_clock;
  643. intel_put_shared_dpll(intel_crtc);
  644. if (type == INTEL_OUTPUT_HDMI) {
  645. struct intel_shared_dpll *pll;
  646. uint32_t val;
  647. unsigned p, n2, r2;
  648. intel_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  649. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  650. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  651. WRPLL_DIVIDER_POST(p);
  652. intel_crtc->config.dpll_hw_state.wrpll = val;
  653. pll = intel_get_shared_dpll(intel_crtc);
  654. if (pll == NULL) {
  655. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  656. pipe_name(intel_crtc->pipe));
  657. return false;
  658. }
  659. intel_crtc->config.ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
  660. }
  661. return true;
  662. }
  663. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  664. {
  665. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  666. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  667. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  668. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  669. int type = intel_encoder->type;
  670. uint32_t temp;
  671. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
  672. temp = TRANS_MSA_SYNC_CLK;
  673. switch (intel_crtc->config.pipe_bpp) {
  674. case 18:
  675. temp |= TRANS_MSA_6_BPC;
  676. break;
  677. case 24:
  678. temp |= TRANS_MSA_8_BPC;
  679. break;
  680. case 30:
  681. temp |= TRANS_MSA_10_BPC;
  682. break;
  683. case 36:
  684. temp |= TRANS_MSA_12_BPC;
  685. break;
  686. default:
  687. BUG();
  688. }
  689. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  690. }
  691. }
  692. void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
  693. {
  694. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  695. struct drm_device *dev = crtc->dev;
  696. struct drm_i915_private *dev_priv = dev->dev_private;
  697. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  698. uint32_t temp;
  699. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  700. if (state == true)
  701. temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  702. else
  703. temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  704. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  705. }
  706. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  707. {
  708. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  709. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  710. struct drm_encoder *encoder = &intel_encoder->base;
  711. struct drm_device *dev = crtc->dev;
  712. struct drm_i915_private *dev_priv = dev->dev_private;
  713. enum pipe pipe = intel_crtc->pipe;
  714. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  715. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  716. int type = intel_encoder->type;
  717. uint32_t temp;
  718. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  719. temp = TRANS_DDI_FUNC_ENABLE;
  720. temp |= TRANS_DDI_SELECT_PORT(port);
  721. switch (intel_crtc->config.pipe_bpp) {
  722. case 18:
  723. temp |= TRANS_DDI_BPC_6;
  724. break;
  725. case 24:
  726. temp |= TRANS_DDI_BPC_8;
  727. break;
  728. case 30:
  729. temp |= TRANS_DDI_BPC_10;
  730. break;
  731. case 36:
  732. temp |= TRANS_DDI_BPC_12;
  733. break;
  734. default:
  735. BUG();
  736. }
  737. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  738. temp |= TRANS_DDI_PVSYNC;
  739. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  740. temp |= TRANS_DDI_PHSYNC;
  741. if (cpu_transcoder == TRANSCODER_EDP) {
  742. switch (pipe) {
  743. case PIPE_A:
  744. /* On Haswell, can only use the always-on power well for
  745. * eDP when not using the panel fitter, and when not
  746. * using motion blur mitigation (which we don't
  747. * support). */
  748. if (IS_HASWELL(dev) &&
  749. (intel_crtc->config.pch_pfit.enabled ||
  750. intel_crtc->config.pch_pfit.force_thru))
  751. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  752. else
  753. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  754. break;
  755. case PIPE_B:
  756. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  757. break;
  758. case PIPE_C:
  759. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  760. break;
  761. default:
  762. BUG();
  763. break;
  764. }
  765. }
  766. if (type == INTEL_OUTPUT_HDMI) {
  767. if (intel_crtc->config.has_hdmi_sink)
  768. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  769. else
  770. temp |= TRANS_DDI_MODE_SELECT_DVI;
  771. } else if (type == INTEL_OUTPUT_ANALOG) {
  772. temp |= TRANS_DDI_MODE_SELECT_FDI;
  773. temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
  774. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  775. type == INTEL_OUTPUT_EDP) {
  776. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  777. if (intel_dp->is_mst) {
  778. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  779. } else
  780. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  781. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  782. } else if (type == INTEL_OUTPUT_DP_MST) {
  783. struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
  784. if (intel_dp->is_mst) {
  785. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  786. } else
  787. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  788. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  789. } else {
  790. WARN(1, "Invalid encoder type %d for pipe %c\n",
  791. intel_encoder->type, pipe_name(pipe));
  792. }
  793. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  794. }
  795. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  796. enum transcoder cpu_transcoder)
  797. {
  798. uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  799. uint32_t val = I915_READ(reg);
  800. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
  801. val |= TRANS_DDI_PORT_NONE;
  802. I915_WRITE(reg, val);
  803. }
  804. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  805. {
  806. struct drm_device *dev = intel_connector->base.dev;
  807. struct drm_i915_private *dev_priv = dev->dev_private;
  808. struct intel_encoder *intel_encoder = intel_connector->encoder;
  809. int type = intel_connector->base.connector_type;
  810. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  811. enum pipe pipe = 0;
  812. enum transcoder cpu_transcoder;
  813. enum intel_display_power_domain power_domain;
  814. uint32_t tmp;
  815. power_domain = intel_display_port_power_domain(intel_encoder);
  816. if (!intel_display_power_enabled(dev_priv, power_domain))
  817. return false;
  818. if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
  819. return false;
  820. if (port == PORT_A)
  821. cpu_transcoder = TRANSCODER_EDP;
  822. else
  823. cpu_transcoder = (enum transcoder) pipe;
  824. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  825. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  826. case TRANS_DDI_MODE_SELECT_HDMI:
  827. case TRANS_DDI_MODE_SELECT_DVI:
  828. return (type == DRM_MODE_CONNECTOR_HDMIA);
  829. case TRANS_DDI_MODE_SELECT_DP_SST:
  830. if (type == DRM_MODE_CONNECTOR_eDP)
  831. return true;
  832. return (type == DRM_MODE_CONNECTOR_DisplayPort);
  833. case TRANS_DDI_MODE_SELECT_DP_MST:
  834. /* if the transcoder is in MST state then
  835. * connector isn't connected */
  836. return false;
  837. case TRANS_DDI_MODE_SELECT_FDI:
  838. return (type == DRM_MODE_CONNECTOR_VGA);
  839. default:
  840. return false;
  841. }
  842. }
  843. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  844. enum pipe *pipe)
  845. {
  846. struct drm_device *dev = encoder->base.dev;
  847. struct drm_i915_private *dev_priv = dev->dev_private;
  848. enum port port = intel_ddi_get_encoder_port(encoder);
  849. enum intel_display_power_domain power_domain;
  850. u32 tmp;
  851. int i;
  852. power_domain = intel_display_port_power_domain(encoder);
  853. if (!intel_display_power_enabled(dev_priv, power_domain))
  854. return false;
  855. tmp = I915_READ(DDI_BUF_CTL(port));
  856. if (!(tmp & DDI_BUF_CTL_ENABLE))
  857. return false;
  858. if (port == PORT_A) {
  859. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  860. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  861. case TRANS_DDI_EDP_INPUT_A_ON:
  862. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  863. *pipe = PIPE_A;
  864. break;
  865. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  866. *pipe = PIPE_B;
  867. break;
  868. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  869. *pipe = PIPE_C;
  870. break;
  871. }
  872. return true;
  873. } else {
  874. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  875. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  876. if ((tmp & TRANS_DDI_PORT_MASK)
  877. == TRANS_DDI_SELECT_PORT(port)) {
  878. if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
  879. return false;
  880. *pipe = i;
  881. return true;
  882. }
  883. }
  884. }
  885. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  886. return false;
  887. }
  888. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  889. {
  890. struct drm_crtc *crtc = &intel_crtc->base;
  891. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  892. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  893. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  894. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  895. if (cpu_transcoder != TRANSCODER_EDP)
  896. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  897. TRANS_CLK_SEL_PORT(port));
  898. }
  899. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  900. {
  901. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  902. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  903. if (cpu_transcoder != TRANSCODER_EDP)
  904. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  905. TRANS_CLK_SEL_DISABLED);
  906. }
  907. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  908. {
  909. struct drm_encoder *encoder = &intel_encoder->base;
  910. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  911. struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
  912. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  913. int type = intel_encoder->type;
  914. if (crtc->config.has_audio) {
  915. DRM_DEBUG_DRIVER("Audio on pipe %c on DDI\n",
  916. pipe_name(crtc->pipe));
  917. /* write eld */
  918. DRM_DEBUG_DRIVER("DDI audio: write eld information\n");
  919. intel_write_eld(encoder, &crtc->config.adjusted_mode);
  920. }
  921. if (type == INTEL_OUTPUT_EDP) {
  922. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  923. intel_edp_panel_on(intel_dp);
  924. }
  925. WARN_ON(crtc->config.ddi_pll_sel == PORT_CLK_SEL_NONE);
  926. I915_WRITE(PORT_CLK_SEL(port), crtc->config.ddi_pll_sel);
  927. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  928. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  929. intel_ddi_init_dp_buf_reg(intel_encoder);
  930. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  931. intel_dp_start_link_train(intel_dp);
  932. intel_dp_complete_link_train(intel_dp);
  933. if (port != PORT_A)
  934. intel_dp_stop_link_train(intel_dp);
  935. } else if (type == INTEL_OUTPUT_HDMI) {
  936. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  937. intel_hdmi->set_infoframes(encoder,
  938. crtc->config.has_hdmi_sink,
  939. &crtc->config.adjusted_mode);
  940. }
  941. }
  942. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  943. {
  944. struct drm_encoder *encoder = &intel_encoder->base;
  945. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  946. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  947. int type = intel_encoder->type;
  948. uint32_t val;
  949. bool wait = false;
  950. val = I915_READ(DDI_BUF_CTL(port));
  951. if (val & DDI_BUF_CTL_ENABLE) {
  952. val &= ~DDI_BUF_CTL_ENABLE;
  953. I915_WRITE(DDI_BUF_CTL(port), val);
  954. wait = true;
  955. }
  956. val = I915_READ(DP_TP_CTL(port));
  957. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  958. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  959. I915_WRITE(DP_TP_CTL(port), val);
  960. if (wait)
  961. intel_wait_ddi_buf_idle(dev_priv, port);
  962. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  963. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  964. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  965. intel_edp_panel_vdd_on(intel_dp);
  966. intel_edp_panel_off(intel_dp);
  967. }
  968. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  969. }
  970. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  971. {
  972. struct drm_encoder *encoder = &intel_encoder->base;
  973. struct drm_crtc *crtc = encoder->crtc;
  974. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  975. int pipe = intel_crtc->pipe;
  976. struct drm_device *dev = encoder->dev;
  977. struct drm_i915_private *dev_priv = dev->dev_private;
  978. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  979. int type = intel_encoder->type;
  980. uint32_t tmp;
  981. if (type == INTEL_OUTPUT_HDMI) {
  982. struct intel_digital_port *intel_dig_port =
  983. enc_to_dig_port(encoder);
  984. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  985. * are ignored so nothing special needs to be done besides
  986. * enabling the port.
  987. */
  988. I915_WRITE(DDI_BUF_CTL(port),
  989. intel_dig_port->saved_port_bits |
  990. DDI_BUF_CTL_ENABLE);
  991. } else if (type == INTEL_OUTPUT_EDP) {
  992. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  993. if (port == PORT_A)
  994. intel_dp_stop_link_train(intel_dp);
  995. intel_edp_backlight_on(intel_dp);
  996. intel_edp_psr_enable(intel_dp);
  997. }
  998. if (intel_crtc->config.has_audio) {
  999. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  1000. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1001. tmp |= ((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4));
  1002. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  1003. }
  1004. }
  1005. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  1006. {
  1007. struct drm_encoder *encoder = &intel_encoder->base;
  1008. struct drm_crtc *crtc = encoder->crtc;
  1009. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1010. int pipe = intel_crtc->pipe;
  1011. int type = intel_encoder->type;
  1012. struct drm_device *dev = encoder->dev;
  1013. struct drm_i915_private *dev_priv = dev->dev_private;
  1014. uint32_t tmp;
  1015. /* We can't touch HSW_AUD_PIN_ELD_CP_VLD uncionditionally because this
  1016. * register is part of the power well on Haswell. */
  1017. if (intel_crtc->config.has_audio) {
  1018. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1019. tmp &= ~((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) <<
  1020. (pipe * 4));
  1021. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  1022. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  1023. }
  1024. if (type == INTEL_OUTPUT_EDP) {
  1025. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1026. intel_edp_psr_disable(intel_dp);
  1027. intel_edp_backlight_off(intel_dp);
  1028. }
  1029. }
  1030. int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1031. {
  1032. struct drm_device *dev = dev_priv->dev;
  1033. uint32_t lcpll = I915_READ(LCPLL_CTL);
  1034. uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  1035. if (lcpll & LCPLL_CD_SOURCE_FCLK) {
  1036. return 800000;
  1037. } else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) {
  1038. return 450000;
  1039. } else if (freq == LCPLL_CLK_FREQ_450) {
  1040. return 450000;
  1041. } else if (IS_HASWELL(dev)) {
  1042. if (IS_ULT(dev))
  1043. return 337500;
  1044. else
  1045. return 540000;
  1046. } else {
  1047. if (freq == LCPLL_CLK_FREQ_54O_BDW)
  1048. return 540000;
  1049. else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
  1050. return 337500;
  1051. else
  1052. return 675000;
  1053. }
  1054. }
  1055. static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1056. struct intel_shared_dpll *pll)
  1057. {
  1058. I915_WRITE(WRPLL_CTL(pll->id), pll->hw_state.wrpll);
  1059. POSTING_READ(WRPLL_CTL(pll->id));
  1060. udelay(20);
  1061. }
  1062. static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1063. struct intel_shared_dpll *pll)
  1064. {
  1065. uint32_t val;
  1066. val = I915_READ(WRPLL_CTL(pll->id));
  1067. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  1068. POSTING_READ(WRPLL_CTL(pll->id));
  1069. }
  1070. static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1071. struct intel_shared_dpll *pll,
  1072. struct intel_dpll_hw_state *hw_state)
  1073. {
  1074. uint32_t val;
  1075. if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1076. return false;
  1077. val = I915_READ(WRPLL_CTL(pll->id));
  1078. hw_state->wrpll = val;
  1079. return val & WRPLL_PLL_ENABLE;
  1080. }
  1081. static const char * const hsw_ddi_pll_names[] = {
  1082. "WRPLL 1",
  1083. "WRPLL 2",
  1084. };
  1085. void intel_ddi_pll_init(struct drm_device *dev)
  1086. {
  1087. struct drm_i915_private *dev_priv = dev->dev_private;
  1088. uint32_t val = I915_READ(LCPLL_CTL);
  1089. int i;
  1090. dev_priv->num_shared_dpll = 2;
  1091. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  1092. dev_priv->shared_dplls[i].id = i;
  1093. dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
  1094. dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
  1095. dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
  1096. dev_priv->shared_dplls[i].get_hw_state =
  1097. hsw_ddi_pll_get_hw_state;
  1098. }
  1099. /* The LCPLL register should be turned on by the BIOS. For now let's
  1100. * just check its state and print errors in case something is wrong.
  1101. * Don't even try to turn it on.
  1102. */
  1103. DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
  1104. intel_ddi_get_cdclk_freq(dev_priv));
  1105. if (val & LCPLL_CD_SOURCE_FCLK)
  1106. DRM_ERROR("CDCLK source is not LCPLL\n");
  1107. if (val & LCPLL_PLL_DISABLE)
  1108. DRM_ERROR("LCPLL is disabled\n");
  1109. }
  1110. void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
  1111. {
  1112. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  1113. struct intel_dp *intel_dp = &intel_dig_port->dp;
  1114. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  1115. enum port port = intel_dig_port->port;
  1116. uint32_t val;
  1117. bool wait = false;
  1118. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  1119. val = I915_READ(DDI_BUF_CTL(port));
  1120. if (val & DDI_BUF_CTL_ENABLE) {
  1121. val &= ~DDI_BUF_CTL_ENABLE;
  1122. I915_WRITE(DDI_BUF_CTL(port), val);
  1123. wait = true;
  1124. }
  1125. val = I915_READ(DP_TP_CTL(port));
  1126. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1127. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1128. I915_WRITE(DP_TP_CTL(port), val);
  1129. POSTING_READ(DP_TP_CTL(port));
  1130. if (wait)
  1131. intel_wait_ddi_buf_idle(dev_priv, port);
  1132. }
  1133. val = DP_TP_CTL_ENABLE |
  1134. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  1135. if (intel_dp->is_mst)
  1136. val |= DP_TP_CTL_MODE_MST;
  1137. else {
  1138. val |= DP_TP_CTL_MODE_SST;
  1139. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  1140. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  1141. }
  1142. I915_WRITE(DP_TP_CTL(port), val);
  1143. POSTING_READ(DP_TP_CTL(port));
  1144. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  1145. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  1146. POSTING_READ(DDI_BUF_CTL(port));
  1147. udelay(600);
  1148. }
  1149. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  1150. {
  1151. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1152. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1153. uint32_t val;
  1154. intel_ddi_post_disable(intel_encoder);
  1155. val = I915_READ(_FDI_RXA_CTL);
  1156. val &= ~FDI_RX_ENABLE;
  1157. I915_WRITE(_FDI_RXA_CTL, val);
  1158. val = I915_READ(_FDI_RXA_MISC);
  1159. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1160. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1161. I915_WRITE(_FDI_RXA_MISC, val);
  1162. val = I915_READ(_FDI_RXA_CTL);
  1163. val &= ~FDI_PCDCLK;
  1164. I915_WRITE(_FDI_RXA_CTL, val);
  1165. val = I915_READ(_FDI_RXA_CTL);
  1166. val &= ~FDI_RX_PLL_ENABLE;
  1167. I915_WRITE(_FDI_RXA_CTL, val);
  1168. }
  1169. static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
  1170. {
  1171. struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  1172. int type = intel_dig_port->base.type;
  1173. if (type != INTEL_OUTPUT_DISPLAYPORT &&
  1174. type != INTEL_OUTPUT_EDP &&
  1175. type != INTEL_OUTPUT_UNKNOWN) {
  1176. return;
  1177. }
  1178. intel_dp_hot_plug(intel_encoder);
  1179. }
  1180. void intel_ddi_get_config(struct intel_encoder *encoder,
  1181. struct intel_crtc_config *pipe_config)
  1182. {
  1183. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1184. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1185. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1186. u32 temp, flags = 0;
  1187. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1188. if (temp & TRANS_DDI_PHSYNC)
  1189. flags |= DRM_MODE_FLAG_PHSYNC;
  1190. else
  1191. flags |= DRM_MODE_FLAG_NHSYNC;
  1192. if (temp & TRANS_DDI_PVSYNC)
  1193. flags |= DRM_MODE_FLAG_PVSYNC;
  1194. else
  1195. flags |= DRM_MODE_FLAG_NVSYNC;
  1196. pipe_config->adjusted_mode.flags |= flags;
  1197. switch (temp & TRANS_DDI_BPC_MASK) {
  1198. case TRANS_DDI_BPC_6:
  1199. pipe_config->pipe_bpp = 18;
  1200. break;
  1201. case TRANS_DDI_BPC_8:
  1202. pipe_config->pipe_bpp = 24;
  1203. break;
  1204. case TRANS_DDI_BPC_10:
  1205. pipe_config->pipe_bpp = 30;
  1206. break;
  1207. case TRANS_DDI_BPC_12:
  1208. pipe_config->pipe_bpp = 36;
  1209. break;
  1210. default:
  1211. break;
  1212. }
  1213. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  1214. case TRANS_DDI_MODE_SELECT_HDMI:
  1215. pipe_config->has_hdmi_sink = true;
  1216. case TRANS_DDI_MODE_SELECT_DVI:
  1217. case TRANS_DDI_MODE_SELECT_FDI:
  1218. break;
  1219. case TRANS_DDI_MODE_SELECT_DP_SST:
  1220. case TRANS_DDI_MODE_SELECT_DP_MST:
  1221. pipe_config->has_dp_encoder = true;
  1222. intel_dp_get_m_n(intel_crtc, pipe_config);
  1223. break;
  1224. default:
  1225. break;
  1226. }
  1227. if (intel_display_power_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
  1228. temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1229. if (temp & (AUDIO_OUTPUT_ENABLE_A << (intel_crtc->pipe * 4)))
  1230. pipe_config->has_audio = true;
  1231. }
  1232. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
  1233. pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
  1234. /*
  1235. * This is a big fat ugly hack.
  1236. *
  1237. * Some machines in UEFI boot mode provide us a VBT that has 18
  1238. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  1239. * unknown we fail to light up. Yet the same BIOS boots up with
  1240. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  1241. * max, not what it tells us to use.
  1242. *
  1243. * Note: This will still be broken if the eDP panel is not lit
  1244. * up by the BIOS, and thus we can't get the mode at module
  1245. * load.
  1246. */
  1247. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  1248. pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
  1249. dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
  1250. }
  1251. intel_ddi_clock_get(encoder, pipe_config);
  1252. }
  1253. static void intel_ddi_destroy(struct drm_encoder *encoder)
  1254. {
  1255. /* HDMI has nothing special to destroy, so we can go with this. */
  1256. intel_dp_encoder_destroy(encoder);
  1257. }
  1258. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  1259. struct intel_crtc_config *pipe_config)
  1260. {
  1261. int type = encoder->type;
  1262. int port = intel_ddi_get_encoder_port(encoder);
  1263. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  1264. if (port == PORT_A)
  1265. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  1266. if (type == INTEL_OUTPUT_HDMI)
  1267. return intel_hdmi_compute_config(encoder, pipe_config);
  1268. else
  1269. return intel_dp_compute_config(encoder, pipe_config);
  1270. }
  1271. static const struct drm_encoder_funcs intel_ddi_funcs = {
  1272. .destroy = intel_ddi_destroy,
  1273. };
  1274. static struct intel_connector *
  1275. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  1276. {
  1277. struct intel_connector *connector;
  1278. enum port port = intel_dig_port->port;
  1279. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1280. if (!connector)
  1281. return NULL;
  1282. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  1283. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  1284. kfree(connector);
  1285. return NULL;
  1286. }
  1287. return connector;
  1288. }
  1289. static struct intel_connector *
  1290. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  1291. {
  1292. struct intel_connector *connector;
  1293. enum port port = intel_dig_port->port;
  1294. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1295. if (!connector)
  1296. return NULL;
  1297. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  1298. intel_hdmi_init_connector(intel_dig_port, connector);
  1299. return connector;
  1300. }
  1301. void intel_ddi_init(struct drm_device *dev, enum port port)
  1302. {
  1303. struct drm_i915_private *dev_priv = dev->dev_private;
  1304. struct intel_digital_port *intel_dig_port;
  1305. struct intel_encoder *intel_encoder;
  1306. struct drm_encoder *encoder;
  1307. bool init_hdmi, init_dp;
  1308. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  1309. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  1310. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  1311. if (!init_dp && !init_hdmi) {
  1312. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
  1313. port_name(port));
  1314. init_hdmi = true;
  1315. init_dp = true;
  1316. }
  1317. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1318. if (!intel_dig_port)
  1319. return;
  1320. intel_encoder = &intel_dig_port->base;
  1321. encoder = &intel_encoder->base;
  1322. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  1323. DRM_MODE_ENCODER_TMDS);
  1324. intel_encoder->compute_config = intel_ddi_compute_config;
  1325. intel_encoder->enable = intel_enable_ddi;
  1326. intel_encoder->pre_enable = intel_ddi_pre_enable;
  1327. intel_encoder->disable = intel_disable_ddi;
  1328. intel_encoder->post_disable = intel_ddi_post_disable;
  1329. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  1330. intel_encoder->get_config = intel_ddi_get_config;
  1331. intel_dig_port->port = port;
  1332. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  1333. (DDI_BUF_PORT_REVERSAL |
  1334. DDI_A_4_LANES);
  1335. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  1336. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1337. intel_encoder->cloneable = 0;
  1338. intel_encoder->hot_plug = intel_ddi_hot_plug;
  1339. if (init_dp) {
  1340. if (!intel_ddi_init_dp_connector(intel_dig_port))
  1341. goto err;
  1342. intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
  1343. dev_priv->hpd_irq_port[port] = intel_dig_port;
  1344. }
  1345. /* In theory we don't need the encoder->type check, but leave it just in
  1346. * case we have some really bad VBTs... */
  1347. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
  1348. if (!intel_ddi_init_hdmi_connector(intel_dig_port))
  1349. goto err;
  1350. }
  1351. return;
  1352. err:
  1353. drm_encoder_cleanup(encoder);
  1354. kfree(intel_dig_port);
  1355. }