i915_sysfs.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Ben Widawsky <ben@bwidawsk.net>
  25. *
  26. */
  27. #include <linux/device.h>
  28. #include <linux/module.h>
  29. #include <linux/stat.h>
  30. #include <linux/sysfs.h>
  31. #include "intel_drv.h"
  32. #include "i915_drv.h"
  33. #define dev_to_drm_minor(d) dev_get_drvdata((d))
  34. #ifdef CONFIG_PM
  35. static u32 calc_residency(struct drm_device *dev, const u32 reg)
  36. {
  37. struct drm_i915_private *dev_priv = dev->dev_private;
  38. u64 raw_time; /* 32b value may overflow during fixed point math */
  39. u64 units = 128ULL, div = 100000ULL, bias = 100ULL;
  40. u32 ret;
  41. if (!intel_enable_rc6(dev))
  42. return 0;
  43. intel_runtime_pm_get(dev_priv);
  44. /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
  45. if (IS_VALLEYVIEW(dev)) {
  46. u32 reg, czcount_30ns;
  47. if (IS_CHERRYVIEW(dev))
  48. reg = CHV_CLK_CTL1;
  49. else
  50. reg = VLV_CLK_CTL2;
  51. czcount_30ns = I915_READ(reg) >> CLK_CTL2_CZCOUNT_30NS_SHIFT;
  52. if (!czcount_30ns) {
  53. WARN(!czcount_30ns, "bogus CZ count value");
  54. ret = 0;
  55. goto out;
  56. }
  57. units = 0;
  58. div = 1000000ULL;
  59. if (IS_CHERRYVIEW(dev)) {
  60. /* Special case for 320Mhz */
  61. if (czcount_30ns == 1) {
  62. div = 10000000ULL;
  63. units = 3125ULL;
  64. } else {
  65. /* chv counts are one less */
  66. czcount_30ns += 1;
  67. }
  68. }
  69. if (units == 0)
  70. units = DIV_ROUND_UP_ULL(30ULL * bias,
  71. (u64)czcount_30ns);
  72. if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
  73. units <<= 8;
  74. div = div * bias;
  75. }
  76. raw_time = I915_READ(reg) * units;
  77. ret = DIV_ROUND_UP_ULL(raw_time, div);
  78. out:
  79. intel_runtime_pm_put(dev_priv);
  80. return ret;
  81. }
  82. static ssize_t
  83. show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
  84. {
  85. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  86. return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
  87. }
  88. static ssize_t
  89. show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  90. {
  91. struct drm_minor *dminor = dev_get_drvdata(kdev);
  92. u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
  93. return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
  94. }
  95. static ssize_t
  96. show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  97. {
  98. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  99. u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
  100. if (IS_VALLEYVIEW(dminor->dev))
  101. rc6p_residency = 0;
  102. return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
  103. }
  104. static ssize_t
  105. show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  106. {
  107. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  108. u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
  109. if (IS_VALLEYVIEW(dminor->dev))
  110. rc6pp_residency = 0;
  111. return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
  112. }
  113. static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
  114. static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
  115. static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
  116. static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
  117. static struct attribute *rc6_attrs[] = {
  118. &dev_attr_rc6_enable.attr,
  119. &dev_attr_rc6_residency_ms.attr,
  120. &dev_attr_rc6p_residency_ms.attr,
  121. &dev_attr_rc6pp_residency_ms.attr,
  122. NULL
  123. };
  124. static struct attribute_group rc6_attr_group = {
  125. .name = power_group_name,
  126. .attrs = rc6_attrs
  127. };
  128. #endif
  129. static int l3_access_valid(struct drm_device *dev, loff_t offset)
  130. {
  131. if (!HAS_L3_DPF(dev))
  132. return -EPERM;
  133. if (offset % 4 != 0)
  134. return -EINVAL;
  135. if (offset >= GEN7_L3LOG_SIZE)
  136. return -ENXIO;
  137. return 0;
  138. }
  139. static ssize_t
  140. i915_l3_read(struct file *filp, struct kobject *kobj,
  141. struct bin_attribute *attr, char *buf,
  142. loff_t offset, size_t count)
  143. {
  144. struct device *dev = container_of(kobj, struct device, kobj);
  145. struct drm_minor *dminor = dev_to_drm_minor(dev);
  146. struct drm_device *drm_dev = dminor->dev;
  147. struct drm_i915_private *dev_priv = drm_dev->dev_private;
  148. int slice = (int)(uintptr_t)attr->private;
  149. int ret;
  150. count = round_down(count, 4);
  151. ret = l3_access_valid(drm_dev, offset);
  152. if (ret)
  153. return ret;
  154. count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count);
  155. ret = i915_mutex_lock_interruptible(drm_dev);
  156. if (ret)
  157. return ret;
  158. if (dev_priv->l3_parity.remap_info[slice])
  159. memcpy(buf,
  160. dev_priv->l3_parity.remap_info[slice] + (offset/4),
  161. count);
  162. else
  163. memset(buf, 0, count);
  164. mutex_unlock(&drm_dev->struct_mutex);
  165. return count;
  166. }
  167. static ssize_t
  168. i915_l3_write(struct file *filp, struct kobject *kobj,
  169. struct bin_attribute *attr, char *buf,
  170. loff_t offset, size_t count)
  171. {
  172. struct device *dev = container_of(kobj, struct device, kobj);
  173. struct drm_minor *dminor = dev_to_drm_minor(dev);
  174. struct drm_device *drm_dev = dminor->dev;
  175. struct drm_i915_private *dev_priv = drm_dev->dev_private;
  176. struct intel_context *ctx;
  177. u32 *temp = NULL; /* Just here to make handling failures easy */
  178. int slice = (int)(uintptr_t)attr->private;
  179. int ret;
  180. if (!HAS_HW_CONTEXTS(drm_dev))
  181. return -ENXIO;
  182. ret = l3_access_valid(drm_dev, offset);
  183. if (ret)
  184. return ret;
  185. ret = i915_mutex_lock_interruptible(drm_dev);
  186. if (ret)
  187. return ret;
  188. if (!dev_priv->l3_parity.remap_info[slice]) {
  189. temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
  190. if (!temp) {
  191. mutex_unlock(&drm_dev->struct_mutex);
  192. return -ENOMEM;
  193. }
  194. }
  195. ret = i915_gpu_idle(drm_dev);
  196. if (ret) {
  197. kfree(temp);
  198. mutex_unlock(&drm_dev->struct_mutex);
  199. return ret;
  200. }
  201. /* TODO: Ideally we really want a GPU reset here to make sure errors
  202. * aren't propagated. Since I cannot find a stable way to reset the GPU
  203. * at this point it is left as a TODO.
  204. */
  205. if (temp)
  206. dev_priv->l3_parity.remap_info[slice] = temp;
  207. memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count);
  208. /* NB: We defer the remapping until we switch to the context */
  209. list_for_each_entry(ctx, &dev_priv->context_list, link)
  210. ctx->remap_slice |= (1<<slice);
  211. mutex_unlock(&drm_dev->struct_mutex);
  212. return count;
  213. }
  214. static struct bin_attribute dpf_attrs = {
  215. .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
  216. .size = GEN7_L3LOG_SIZE,
  217. .read = i915_l3_read,
  218. .write = i915_l3_write,
  219. .mmap = NULL,
  220. .private = (void *)0
  221. };
  222. static struct bin_attribute dpf_attrs_1 = {
  223. .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
  224. .size = GEN7_L3LOG_SIZE,
  225. .read = i915_l3_read,
  226. .write = i915_l3_write,
  227. .mmap = NULL,
  228. .private = (void *)1
  229. };
  230. static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
  231. struct device_attribute *attr, char *buf)
  232. {
  233. struct drm_minor *minor = dev_to_drm_minor(kdev);
  234. struct drm_device *dev = minor->dev;
  235. struct drm_i915_private *dev_priv = dev->dev_private;
  236. int ret;
  237. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  238. intel_runtime_pm_get(dev_priv);
  239. mutex_lock(&dev_priv->rps.hw_lock);
  240. if (IS_VALLEYVIEW(dev_priv->dev)) {
  241. u32 freq;
  242. freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  243. ret = vlv_gpu_freq(dev_priv, (freq >> 8) & 0xff);
  244. } else {
  245. ret = dev_priv->rps.cur_freq * GT_FREQUENCY_MULTIPLIER;
  246. }
  247. mutex_unlock(&dev_priv->rps.hw_lock);
  248. intel_runtime_pm_put(dev_priv);
  249. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  250. }
  251. static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
  252. struct device_attribute *attr, char *buf)
  253. {
  254. struct drm_minor *minor = dev_to_drm_minor(kdev);
  255. struct drm_device *dev = minor->dev;
  256. struct drm_i915_private *dev_priv = dev->dev_private;
  257. return snprintf(buf, PAGE_SIZE, "%d\n",
  258. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  259. }
  260. static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  261. {
  262. struct drm_minor *minor = dev_to_drm_minor(kdev);
  263. struct drm_device *dev = minor->dev;
  264. struct drm_i915_private *dev_priv = dev->dev_private;
  265. int ret;
  266. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  267. mutex_lock(&dev_priv->rps.hw_lock);
  268. if (IS_VALLEYVIEW(dev_priv->dev))
  269. ret = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  270. else
  271. ret = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
  272. mutex_unlock(&dev_priv->rps.hw_lock);
  273. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  274. }
  275. static ssize_t gt_max_freq_mhz_store(struct device *kdev,
  276. struct device_attribute *attr,
  277. const char *buf, size_t count)
  278. {
  279. struct drm_minor *minor = dev_to_drm_minor(kdev);
  280. struct drm_device *dev = minor->dev;
  281. struct drm_i915_private *dev_priv = dev->dev_private;
  282. u32 val;
  283. ssize_t ret;
  284. ret = kstrtou32(buf, 0, &val);
  285. if (ret)
  286. return ret;
  287. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  288. mutex_lock(&dev_priv->rps.hw_lock);
  289. if (IS_VALLEYVIEW(dev_priv->dev))
  290. val = vlv_freq_opcode(dev_priv, val);
  291. else
  292. val /= GT_FREQUENCY_MULTIPLIER;
  293. if (val < dev_priv->rps.min_freq ||
  294. val > dev_priv->rps.max_freq ||
  295. val < dev_priv->rps.min_freq_softlimit) {
  296. mutex_unlock(&dev_priv->rps.hw_lock);
  297. return -EINVAL;
  298. }
  299. if (val > dev_priv->rps.rp0_freq)
  300. DRM_DEBUG("User requested overclocking to %d\n",
  301. val * GT_FREQUENCY_MULTIPLIER);
  302. dev_priv->rps.max_freq_softlimit = val;
  303. if (dev_priv->rps.cur_freq > val) {
  304. if (IS_VALLEYVIEW(dev))
  305. valleyview_set_rps(dev, val);
  306. else
  307. gen6_set_rps(dev, val);
  308. } else if (!IS_VALLEYVIEW(dev)) {
  309. /* We still need gen6_set_rps to process the new max_delay and
  310. * update the interrupt limits even though frequency request is
  311. * unchanged. */
  312. gen6_set_rps(dev, dev_priv->rps.cur_freq);
  313. }
  314. mutex_unlock(&dev_priv->rps.hw_lock);
  315. return count;
  316. }
  317. static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  318. {
  319. struct drm_minor *minor = dev_to_drm_minor(kdev);
  320. struct drm_device *dev = minor->dev;
  321. struct drm_i915_private *dev_priv = dev->dev_private;
  322. int ret;
  323. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  324. mutex_lock(&dev_priv->rps.hw_lock);
  325. if (IS_VALLEYVIEW(dev_priv->dev))
  326. ret = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  327. else
  328. ret = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
  329. mutex_unlock(&dev_priv->rps.hw_lock);
  330. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  331. }
  332. static ssize_t gt_min_freq_mhz_store(struct device *kdev,
  333. struct device_attribute *attr,
  334. const char *buf, size_t count)
  335. {
  336. struct drm_minor *minor = dev_to_drm_minor(kdev);
  337. struct drm_device *dev = minor->dev;
  338. struct drm_i915_private *dev_priv = dev->dev_private;
  339. u32 val;
  340. ssize_t ret;
  341. ret = kstrtou32(buf, 0, &val);
  342. if (ret)
  343. return ret;
  344. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  345. mutex_lock(&dev_priv->rps.hw_lock);
  346. if (IS_VALLEYVIEW(dev))
  347. val = vlv_freq_opcode(dev_priv, val);
  348. else
  349. val /= GT_FREQUENCY_MULTIPLIER;
  350. if (val < dev_priv->rps.min_freq ||
  351. val > dev_priv->rps.max_freq ||
  352. val > dev_priv->rps.max_freq_softlimit) {
  353. mutex_unlock(&dev_priv->rps.hw_lock);
  354. return -EINVAL;
  355. }
  356. dev_priv->rps.min_freq_softlimit = val;
  357. if (dev_priv->rps.cur_freq < val) {
  358. if (IS_VALLEYVIEW(dev))
  359. valleyview_set_rps(dev, val);
  360. else
  361. gen6_set_rps(dev, val);
  362. } else if (!IS_VALLEYVIEW(dev)) {
  363. /* We still need gen6_set_rps to process the new min_delay and
  364. * update the interrupt limits even though frequency request is
  365. * unchanged. */
  366. gen6_set_rps(dev, dev_priv->rps.cur_freq);
  367. }
  368. mutex_unlock(&dev_priv->rps.hw_lock);
  369. return count;
  370. }
  371. static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
  372. static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
  373. static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
  374. static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
  375. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
  376. static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  377. static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  378. static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  379. /* For now we have a static number of RP states */
  380. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  381. {
  382. struct drm_minor *minor = dev_to_drm_minor(kdev);
  383. struct drm_device *dev = minor->dev;
  384. struct drm_i915_private *dev_priv = dev->dev_private;
  385. u32 val, rp_state_cap;
  386. ssize_t ret;
  387. ret = mutex_lock_interruptible(&dev->struct_mutex);
  388. if (ret)
  389. return ret;
  390. intel_runtime_pm_get(dev_priv);
  391. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  392. intel_runtime_pm_put(dev_priv);
  393. mutex_unlock(&dev->struct_mutex);
  394. if (attr == &dev_attr_gt_RP0_freq_mhz) {
  395. if (IS_VALLEYVIEW(dev))
  396. val = vlv_gpu_freq(dev_priv, dev_priv->rps.rp0_freq);
  397. else
  398. val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER;
  399. } else if (attr == &dev_attr_gt_RP1_freq_mhz) {
  400. if (IS_VALLEYVIEW(dev))
  401. val = vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq);
  402. else
  403. val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER;
  404. } else if (attr == &dev_attr_gt_RPn_freq_mhz) {
  405. if (IS_VALLEYVIEW(dev))
  406. val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq);
  407. else
  408. val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER;
  409. } else {
  410. BUG();
  411. }
  412. return snprintf(buf, PAGE_SIZE, "%d\n", val);
  413. }
  414. static const struct attribute *gen6_attrs[] = {
  415. &dev_attr_gt_cur_freq_mhz.attr,
  416. &dev_attr_gt_max_freq_mhz.attr,
  417. &dev_attr_gt_min_freq_mhz.attr,
  418. &dev_attr_gt_RP0_freq_mhz.attr,
  419. &dev_attr_gt_RP1_freq_mhz.attr,
  420. &dev_attr_gt_RPn_freq_mhz.attr,
  421. NULL,
  422. };
  423. static const struct attribute *vlv_attrs[] = {
  424. &dev_attr_gt_cur_freq_mhz.attr,
  425. &dev_attr_gt_max_freq_mhz.attr,
  426. &dev_attr_gt_min_freq_mhz.attr,
  427. &dev_attr_gt_RP0_freq_mhz.attr,
  428. &dev_attr_gt_RP1_freq_mhz.attr,
  429. &dev_attr_gt_RPn_freq_mhz.attr,
  430. &dev_attr_vlv_rpe_freq_mhz.attr,
  431. NULL,
  432. };
  433. static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
  434. struct bin_attribute *attr, char *buf,
  435. loff_t off, size_t count)
  436. {
  437. struct device *kdev = container_of(kobj, struct device, kobj);
  438. struct drm_minor *minor = dev_to_drm_minor(kdev);
  439. struct drm_device *dev = minor->dev;
  440. struct i915_error_state_file_priv error_priv;
  441. struct drm_i915_error_state_buf error_str;
  442. ssize_t ret_count = 0;
  443. int ret;
  444. memset(&error_priv, 0, sizeof(error_priv));
  445. ret = i915_error_state_buf_init(&error_str, count, off);
  446. if (ret)
  447. return ret;
  448. error_priv.dev = dev;
  449. i915_error_state_get(dev, &error_priv);
  450. ret = i915_error_state_to_str(&error_str, &error_priv);
  451. if (ret)
  452. goto out;
  453. ret_count = count < error_str.bytes ? count : error_str.bytes;
  454. memcpy(buf, error_str.buf, ret_count);
  455. out:
  456. i915_error_state_put(&error_priv);
  457. i915_error_state_buf_release(&error_str);
  458. return ret ?: ret_count;
  459. }
  460. static ssize_t error_state_write(struct file *file, struct kobject *kobj,
  461. struct bin_attribute *attr, char *buf,
  462. loff_t off, size_t count)
  463. {
  464. struct device *kdev = container_of(kobj, struct device, kobj);
  465. struct drm_minor *minor = dev_to_drm_minor(kdev);
  466. struct drm_device *dev = minor->dev;
  467. int ret;
  468. DRM_DEBUG_DRIVER("Resetting error state\n");
  469. ret = mutex_lock_interruptible(&dev->struct_mutex);
  470. if (ret)
  471. return ret;
  472. i915_destroy_error_state(dev);
  473. mutex_unlock(&dev->struct_mutex);
  474. return count;
  475. }
  476. static struct bin_attribute error_state_attr = {
  477. .attr.name = "error",
  478. .attr.mode = S_IRUSR | S_IWUSR,
  479. .size = 0,
  480. .read = error_state_read,
  481. .write = error_state_write,
  482. };
  483. void i915_setup_sysfs(struct drm_device *dev)
  484. {
  485. int ret;
  486. #ifdef CONFIG_PM
  487. if (INTEL_INFO(dev)->gen >= 6) {
  488. ret = sysfs_merge_group(&dev->primary->kdev->kobj,
  489. &rc6_attr_group);
  490. if (ret)
  491. DRM_ERROR("RC6 residency sysfs setup failed\n");
  492. }
  493. #endif
  494. if (HAS_L3_DPF(dev)) {
  495. ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs);
  496. if (ret)
  497. DRM_ERROR("l3 parity sysfs setup failed\n");
  498. if (NUM_L3_SLICES(dev) > 1) {
  499. ret = device_create_bin_file(dev->primary->kdev,
  500. &dpf_attrs_1);
  501. if (ret)
  502. DRM_ERROR("l3 parity slice 1 setup failed\n");
  503. }
  504. }
  505. ret = 0;
  506. if (IS_VALLEYVIEW(dev))
  507. ret = sysfs_create_files(&dev->primary->kdev->kobj, vlv_attrs);
  508. else if (INTEL_INFO(dev)->gen >= 6)
  509. ret = sysfs_create_files(&dev->primary->kdev->kobj, gen6_attrs);
  510. if (ret)
  511. DRM_ERROR("RPS sysfs setup failed\n");
  512. ret = sysfs_create_bin_file(&dev->primary->kdev->kobj,
  513. &error_state_attr);
  514. if (ret)
  515. DRM_ERROR("error_state sysfs setup failed\n");
  516. }
  517. void i915_teardown_sysfs(struct drm_device *dev)
  518. {
  519. sysfs_remove_bin_file(&dev->primary->kdev->kobj, &error_state_attr);
  520. if (IS_VALLEYVIEW(dev))
  521. sysfs_remove_files(&dev->primary->kdev->kobj, vlv_attrs);
  522. else
  523. sysfs_remove_files(&dev->primary->kdev->kobj, gen6_attrs);
  524. device_remove_bin_file(dev->primary->kdev, &dpf_attrs_1);
  525. device_remove_bin_file(dev->primary->kdev, &dpf_attrs);
  526. #ifdef CONFIG_PM
  527. sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6_attr_group);
  528. #endif
  529. }