i915_gem_gtt.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168
  1. /*
  2. * Copyright © 2010 Daniel Vetter
  3. * Copyright © 2011-2014 Intel Corporation
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining a
  6. * copy of this software and associated documentation files (the "Software"),
  7. * to deal in the Software without restriction, including without limitation
  8. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9. * and/or sell copies of the Software, and to permit persons to whom the
  10. * Software is furnished to do so, subject to the following conditions:
  11. *
  12. * The above copyright notice and this permission notice (including the next
  13. * paragraph) shall be included in all copies or substantial portions of the
  14. * Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  22. * IN THE SOFTWARE.
  23. *
  24. */
  25. #include <linux/seq_file.h>
  26. #include <drm/drmP.h>
  27. #include <drm/i915_drm.h>
  28. #include "i915_drv.h"
  29. #include "i915_trace.h"
  30. #include "intel_drv.h"
  31. static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
  32. static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
  33. bool intel_enable_ppgtt(struct drm_device *dev, bool full)
  34. {
  35. if (i915.enable_ppgtt == 0)
  36. return false;
  37. if (i915.enable_ppgtt == 1 && full)
  38. return false;
  39. return true;
  40. }
  41. static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
  42. {
  43. if (enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
  44. return 0;
  45. if (enable_ppgtt == 1)
  46. return 1;
  47. if (enable_ppgtt == 2 && HAS_PPGTT(dev))
  48. return 2;
  49. #ifdef CONFIG_INTEL_IOMMU
  50. /* Disable ppgtt on SNB if VT-d is on. */
  51. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
  52. DRM_INFO("Disabling PPGTT because VT-d is on\n");
  53. return 0;
  54. }
  55. #endif
  56. /* Early VLV doesn't have this */
  57. if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
  58. dev->pdev->revision < 0xb) {
  59. DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
  60. return 0;
  61. }
  62. return HAS_ALIASING_PPGTT(dev) ? 1 : 0;
  63. }
  64. static void ppgtt_bind_vma(struct i915_vma *vma,
  65. enum i915_cache_level cache_level,
  66. u32 flags);
  67. static void ppgtt_unbind_vma(struct i915_vma *vma);
  68. static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
  69. static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
  70. enum i915_cache_level level,
  71. bool valid)
  72. {
  73. gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
  74. pte |= addr;
  75. switch (level) {
  76. case I915_CACHE_NONE:
  77. pte |= PPAT_UNCACHED_INDEX;
  78. break;
  79. case I915_CACHE_WT:
  80. pte |= PPAT_DISPLAY_ELLC_INDEX;
  81. break;
  82. default:
  83. pte |= PPAT_CACHED_INDEX;
  84. break;
  85. }
  86. return pte;
  87. }
  88. static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
  89. dma_addr_t addr,
  90. enum i915_cache_level level)
  91. {
  92. gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
  93. pde |= addr;
  94. if (level != I915_CACHE_NONE)
  95. pde |= PPAT_CACHED_PDE_INDEX;
  96. else
  97. pde |= PPAT_UNCACHED_INDEX;
  98. return pde;
  99. }
  100. static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
  101. enum i915_cache_level level,
  102. bool valid, u32 unused)
  103. {
  104. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  105. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  106. switch (level) {
  107. case I915_CACHE_L3_LLC:
  108. case I915_CACHE_LLC:
  109. pte |= GEN6_PTE_CACHE_LLC;
  110. break;
  111. case I915_CACHE_NONE:
  112. pte |= GEN6_PTE_UNCACHED;
  113. break;
  114. default:
  115. WARN_ON(1);
  116. }
  117. return pte;
  118. }
  119. static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
  120. enum i915_cache_level level,
  121. bool valid, u32 unused)
  122. {
  123. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  124. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  125. switch (level) {
  126. case I915_CACHE_L3_LLC:
  127. pte |= GEN7_PTE_CACHE_L3_LLC;
  128. break;
  129. case I915_CACHE_LLC:
  130. pte |= GEN6_PTE_CACHE_LLC;
  131. break;
  132. case I915_CACHE_NONE:
  133. pte |= GEN6_PTE_UNCACHED;
  134. break;
  135. default:
  136. WARN_ON(1);
  137. }
  138. return pte;
  139. }
  140. static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
  141. enum i915_cache_level level,
  142. bool valid, u32 flags)
  143. {
  144. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  145. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  146. /* Mark the page as writeable. Other platforms don't have a
  147. * setting for read-only/writable, so this matches that behavior.
  148. */
  149. if (!(flags & PTE_READ_ONLY))
  150. pte |= BYT_PTE_WRITEABLE;
  151. if (level != I915_CACHE_NONE)
  152. pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
  153. return pte;
  154. }
  155. static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
  156. enum i915_cache_level level,
  157. bool valid, u32 unused)
  158. {
  159. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  160. pte |= HSW_PTE_ADDR_ENCODE(addr);
  161. if (level != I915_CACHE_NONE)
  162. pte |= HSW_WB_LLC_AGE3;
  163. return pte;
  164. }
  165. static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
  166. enum i915_cache_level level,
  167. bool valid, u32 unused)
  168. {
  169. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  170. pte |= HSW_PTE_ADDR_ENCODE(addr);
  171. switch (level) {
  172. case I915_CACHE_NONE:
  173. break;
  174. case I915_CACHE_WT:
  175. pte |= HSW_WT_ELLC_LLC_AGE3;
  176. break;
  177. default:
  178. pte |= HSW_WB_ELLC_LLC_AGE3;
  179. break;
  180. }
  181. return pte;
  182. }
  183. /* Broadwell Page Directory Pointer Descriptors */
  184. static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
  185. uint64_t val, bool synchronous)
  186. {
  187. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  188. int ret;
  189. BUG_ON(entry >= 4);
  190. if (synchronous) {
  191. I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
  192. I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
  193. return 0;
  194. }
  195. ret = intel_ring_begin(ring, 6);
  196. if (ret)
  197. return ret;
  198. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  199. intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
  200. intel_ring_emit(ring, (u32)(val >> 32));
  201. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  202. intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
  203. intel_ring_emit(ring, (u32)(val));
  204. intel_ring_advance(ring);
  205. return 0;
  206. }
  207. static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
  208. struct intel_engine_cs *ring,
  209. bool synchronous)
  210. {
  211. int i, ret;
  212. /* bit of a hack to find the actual last used pd */
  213. int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
  214. for (i = used_pd - 1; i >= 0; i--) {
  215. dma_addr_t addr = ppgtt->pd_dma_addr[i];
  216. ret = gen8_write_pdp(ring, i, addr, synchronous);
  217. if (ret)
  218. return ret;
  219. }
  220. return 0;
  221. }
  222. static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
  223. uint64_t start,
  224. uint64_t length,
  225. bool use_scratch)
  226. {
  227. struct i915_hw_ppgtt *ppgtt =
  228. container_of(vm, struct i915_hw_ppgtt, base);
  229. gen8_gtt_pte_t *pt_vaddr, scratch_pte;
  230. unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
  231. unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
  232. unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
  233. unsigned num_entries = length >> PAGE_SHIFT;
  234. unsigned last_pte, i;
  235. scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
  236. I915_CACHE_LLC, use_scratch);
  237. while (num_entries) {
  238. struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
  239. last_pte = pte + num_entries;
  240. if (last_pte > GEN8_PTES_PER_PAGE)
  241. last_pte = GEN8_PTES_PER_PAGE;
  242. pt_vaddr = kmap_atomic(page_table);
  243. for (i = pte; i < last_pte; i++) {
  244. pt_vaddr[i] = scratch_pte;
  245. num_entries--;
  246. }
  247. if (!HAS_LLC(ppgtt->base.dev))
  248. drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
  249. kunmap_atomic(pt_vaddr);
  250. pte = 0;
  251. if (++pde == GEN8_PDES_PER_PAGE) {
  252. pdpe++;
  253. pde = 0;
  254. }
  255. }
  256. }
  257. static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
  258. struct sg_table *pages,
  259. uint64_t start,
  260. enum i915_cache_level cache_level, u32 unused)
  261. {
  262. struct i915_hw_ppgtt *ppgtt =
  263. container_of(vm, struct i915_hw_ppgtt, base);
  264. gen8_gtt_pte_t *pt_vaddr;
  265. unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
  266. unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
  267. unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
  268. struct sg_page_iter sg_iter;
  269. pt_vaddr = NULL;
  270. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  271. if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
  272. break;
  273. if (pt_vaddr == NULL)
  274. pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
  275. pt_vaddr[pte] =
  276. gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
  277. cache_level, true);
  278. if (++pte == GEN8_PTES_PER_PAGE) {
  279. if (!HAS_LLC(ppgtt->base.dev))
  280. drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
  281. kunmap_atomic(pt_vaddr);
  282. pt_vaddr = NULL;
  283. if (++pde == GEN8_PDES_PER_PAGE) {
  284. pdpe++;
  285. pde = 0;
  286. }
  287. pte = 0;
  288. }
  289. }
  290. if (pt_vaddr) {
  291. if (!HAS_LLC(ppgtt->base.dev))
  292. drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
  293. kunmap_atomic(pt_vaddr);
  294. }
  295. }
  296. static void gen8_free_page_tables(struct page **pt_pages)
  297. {
  298. int i;
  299. if (pt_pages == NULL)
  300. return;
  301. for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
  302. if (pt_pages[i])
  303. __free_pages(pt_pages[i], 0);
  304. }
  305. static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
  306. {
  307. int i;
  308. for (i = 0; i < ppgtt->num_pd_pages; i++) {
  309. gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
  310. kfree(ppgtt->gen8_pt_pages[i]);
  311. kfree(ppgtt->gen8_pt_dma_addr[i]);
  312. }
  313. __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
  314. }
  315. static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
  316. {
  317. struct pci_dev *hwdev = ppgtt->base.dev->pdev;
  318. int i, j;
  319. for (i = 0; i < ppgtt->num_pd_pages; i++) {
  320. /* TODO: In the future we'll support sparse mappings, so this
  321. * will have to change. */
  322. if (!ppgtt->pd_dma_addr[i])
  323. continue;
  324. pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
  325. PCI_DMA_BIDIRECTIONAL);
  326. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  327. dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
  328. if (addr)
  329. pci_unmap_page(hwdev, addr, PAGE_SIZE,
  330. PCI_DMA_BIDIRECTIONAL);
  331. }
  332. }
  333. }
  334. static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
  335. {
  336. struct i915_hw_ppgtt *ppgtt =
  337. container_of(vm, struct i915_hw_ppgtt, base);
  338. list_del(&vm->global_link);
  339. drm_mm_takedown(&vm->mm);
  340. gen8_ppgtt_unmap_pages(ppgtt);
  341. gen8_ppgtt_free(ppgtt);
  342. }
  343. static struct page **__gen8_alloc_page_tables(void)
  344. {
  345. struct page **pt_pages;
  346. int i;
  347. pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
  348. if (!pt_pages)
  349. return ERR_PTR(-ENOMEM);
  350. for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
  351. pt_pages[i] = alloc_page(GFP_KERNEL);
  352. if (!pt_pages[i])
  353. goto bail;
  354. }
  355. return pt_pages;
  356. bail:
  357. gen8_free_page_tables(pt_pages);
  358. kfree(pt_pages);
  359. return ERR_PTR(-ENOMEM);
  360. }
  361. static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
  362. const int max_pdp)
  363. {
  364. struct page **pt_pages[GEN8_LEGACY_PDPS];
  365. int i, ret;
  366. for (i = 0; i < max_pdp; i++) {
  367. pt_pages[i] = __gen8_alloc_page_tables();
  368. if (IS_ERR(pt_pages[i])) {
  369. ret = PTR_ERR(pt_pages[i]);
  370. goto unwind_out;
  371. }
  372. }
  373. /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
  374. * "atomic" - for cleanup purposes.
  375. */
  376. for (i = 0; i < max_pdp; i++)
  377. ppgtt->gen8_pt_pages[i] = pt_pages[i];
  378. return 0;
  379. unwind_out:
  380. while (i--) {
  381. gen8_free_page_tables(pt_pages[i]);
  382. kfree(pt_pages[i]);
  383. }
  384. return ret;
  385. }
  386. static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
  387. {
  388. int i;
  389. for (i = 0; i < ppgtt->num_pd_pages; i++) {
  390. ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
  391. sizeof(dma_addr_t),
  392. GFP_KERNEL);
  393. if (!ppgtt->gen8_pt_dma_addr[i])
  394. return -ENOMEM;
  395. }
  396. return 0;
  397. }
  398. static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
  399. const int max_pdp)
  400. {
  401. ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
  402. if (!ppgtt->pd_pages)
  403. return -ENOMEM;
  404. ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
  405. BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
  406. return 0;
  407. }
  408. static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
  409. const int max_pdp)
  410. {
  411. int ret;
  412. ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
  413. if (ret)
  414. return ret;
  415. ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
  416. if (ret) {
  417. __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
  418. return ret;
  419. }
  420. ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
  421. ret = gen8_ppgtt_allocate_dma(ppgtt);
  422. if (ret)
  423. gen8_ppgtt_free(ppgtt);
  424. return ret;
  425. }
  426. static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
  427. const int pd)
  428. {
  429. dma_addr_t pd_addr;
  430. int ret;
  431. pd_addr = pci_map_page(ppgtt->base.dev->pdev,
  432. &ppgtt->pd_pages[pd], 0,
  433. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  434. ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
  435. if (ret)
  436. return ret;
  437. ppgtt->pd_dma_addr[pd] = pd_addr;
  438. return 0;
  439. }
  440. static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
  441. const int pd,
  442. const int pt)
  443. {
  444. dma_addr_t pt_addr;
  445. struct page *p;
  446. int ret;
  447. p = ppgtt->gen8_pt_pages[pd][pt];
  448. pt_addr = pci_map_page(ppgtt->base.dev->pdev,
  449. p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  450. ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
  451. if (ret)
  452. return ret;
  453. ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
  454. return 0;
  455. }
  456. /**
  457. * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
  458. * with a net effect resembling a 2-level page table in normal x86 terms. Each
  459. * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
  460. * space.
  461. *
  462. * FIXME: split allocation into smaller pieces. For now we only ever do this
  463. * once, but with full PPGTT, the multiple contiguous allocations will be bad.
  464. * TODO: Do something with the size parameter
  465. */
  466. static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
  467. {
  468. const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
  469. const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
  470. int i, j, ret;
  471. if (size % (1<<30))
  472. DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
  473. /* 1. Do all our allocations for page directories and page tables. */
  474. ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
  475. if (ret)
  476. return ret;
  477. /*
  478. * 2. Create DMA mappings for the page directories and page tables.
  479. */
  480. for (i = 0; i < max_pdp; i++) {
  481. ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
  482. if (ret)
  483. goto bail;
  484. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  485. ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
  486. if (ret)
  487. goto bail;
  488. }
  489. }
  490. /*
  491. * 3. Map all the page directory entires to point to the page tables
  492. * we've allocated.
  493. *
  494. * For now, the PPGTT helper functions all require that the PDEs are
  495. * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
  496. * will never need to touch the PDEs again.
  497. */
  498. for (i = 0; i < max_pdp; i++) {
  499. gen8_ppgtt_pde_t *pd_vaddr;
  500. pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
  501. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  502. dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
  503. pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
  504. I915_CACHE_LLC);
  505. }
  506. if (!HAS_LLC(ppgtt->base.dev))
  507. drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
  508. kunmap_atomic(pd_vaddr);
  509. }
  510. ppgtt->enable = gen8_ppgtt_enable;
  511. ppgtt->switch_mm = gen8_mm_switch;
  512. ppgtt->base.clear_range = gen8_ppgtt_clear_range;
  513. ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
  514. ppgtt->base.cleanup = gen8_ppgtt_cleanup;
  515. ppgtt->base.start = 0;
  516. ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
  517. ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
  518. DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
  519. ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
  520. DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
  521. ppgtt->num_pd_entries,
  522. (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
  523. return 0;
  524. bail:
  525. gen8_ppgtt_unmap_pages(ppgtt);
  526. gen8_ppgtt_free(ppgtt);
  527. return ret;
  528. }
  529. static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
  530. {
  531. struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
  532. struct i915_address_space *vm = &ppgtt->base;
  533. gen6_gtt_pte_t __iomem *pd_addr;
  534. gen6_gtt_pte_t scratch_pte;
  535. uint32_t pd_entry;
  536. int pte, pde;
  537. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
  538. pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
  539. ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
  540. seq_printf(m, " VM %p (pd_offset %x-%x):\n", vm,
  541. ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
  542. for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
  543. u32 expected;
  544. gen6_gtt_pte_t *pt_vaddr;
  545. dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
  546. pd_entry = readl(pd_addr + pde);
  547. expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
  548. if (pd_entry != expected)
  549. seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
  550. pde,
  551. pd_entry,
  552. expected);
  553. seq_printf(m, "\tPDE: %x\n", pd_entry);
  554. pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
  555. for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
  556. unsigned long va =
  557. (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
  558. (pte * PAGE_SIZE);
  559. int i;
  560. bool found = false;
  561. for (i = 0; i < 4; i++)
  562. if (pt_vaddr[pte + i] != scratch_pte)
  563. found = true;
  564. if (!found)
  565. continue;
  566. seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
  567. for (i = 0; i < 4; i++) {
  568. if (pt_vaddr[pte + i] != scratch_pte)
  569. seq_printf(m, " %08x", pt_vaddr[pte + i]);
  570. else
  571. seq_puts(m, " SCRATCH ");
  572. }
  573. seq_puts(m, "\n");
  574. }
  575. kunmap_atomic(pt_vaddr);
  576. }
  577. }
  578. static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
  579. {
  580. struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
  581. gen6_gtt_pte_t __iomem *pd_addr;
  582. uint32_t pd_entry;
  583. int i;
  584. WARN_ON(ppgtt->pd_offset & 0x3f);
  585. pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
  586. ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
  587. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  588. dma_addr_t pt_addr;
  589. pt_addr = ppgtt->pt_dma_addr[i];
  590. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  591. pd_entry |= GEN6_PDE_VALID;
  592. writel(pd_entry, pd_addr + i);
  593. }
  594. readl(pd_addr);
  595. }
  596. static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
  597. {
  598. BUG_ON(ppgtt->pd_offset & 0x3f);
  599. return (ppgtt->pd_offset / 64) << 16;
  600. }
  601. static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
  602. struct intel_engine_cs *ring,
  603. bool synchronous)
  604. {
  605. struct drm_device *dev = ppgtt->base.dev;
  606. struct drm_i915_private *dev_priv = dev->dev_private;
  607. int ret;
  608. /* If we're in reset, we can assume the GPU is sufficiently idle to
  609. * manually frob these bits. Ideally we could use the ring functions,
  610. * except our error handling makes it quite difficult (can't use
  611. * intel_ring_begin, ring->flush, or intel_ring_advance)
  612. *
  613. * FIXME: We should try not to special case reset
  614. */
  615. if (synchronous ||
  616. i915_reset_in_progress(&dev_priv->gpu_error)) {
  617. WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
  618. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  619. I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
  620. POSTING_READ(RING_PP_DIR_BASE(ring));
  621. return 0;
  622. }
  623. /* NB: TLBs must be flushed and invalidated before a switch */
  624. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  625. if (ret)
  626. return ret;
  627. ret = intel_ring_begin(ring, 6);
  628. if (ret)
  629. return ret;
  630. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
  631. intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
  632. intel_ring_emit(ring, PP_DIR_DCLV_2G);
  633. intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
  634. intel_ring_emit(ring, get_pd_offset(ppgtt));
  635. intel_ring_emit(ring, MI_NOOP);
  636. intel_ring_advance(ring);
  637. return 0;
  638. }
  639. static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
  640. struct intel_engine_cs *ring,
  641. bool synchronous)
  642. {
  643. struct drm_device *dev = ppgtt->base.dev;
  644. struct drm_i915_private *dev_priv = dev->dev_private;
  645. int ret;
  646. /* If we're in reset, we can assume the GPU is sufficiently idle to
  647. * manually frob these bits. Ideally we could use the ring functions,
  648. * except our error handling makes it quite difficult (can't use
  649. * intel_ring_begin, ring->flush, or intel_ring_advance)
  650. *
  651. * FIXME: We should try not to special case reset
  652. */
  653. if (synchronous ||
  654. i915_reset_in_progress(&dev_priv->gpu_error)) {
  655. WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
  656. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  657. I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
  658. POSTING_READ(RING_PP_DIR_BASE(ring));
  659. return 0;
  660. }
  661. /* NB: TLBs must be flushed and invalidated before a switch */
  662. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  663. if (ret)
  664. return ret;
  665. ret = intel_ring_begin(ring, 6);
  666. if (ret)
  667. return ret;
  668. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
  669. intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
  670. intel_ring_emit(ring, PP_DIR_DCLV_2G);
  671. intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
  672. intel_ring_emit(ring, get_pd_offset(ppgtt));
  673. intel_ring_emit(ring, MI_NOOP);
  674. intel_ring_advance(ring);
  675. /* XXX: RCS is the only one to auto invalidate the TLBs? */
  676. if (ring->id != RCS) {
  677. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  678. if (ret)
  679. return ret;
  680. }
  681. return 0;
  682. }
  683. static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
  684. struct intel_engine_cs *ring,
  685. bool synchronous)
  686. {
  687. struct drm_device *dev = ppgtt->base.dev;
  688. struct drm_i915_private *dev_priv = dev->dev_private;
  689. if (!synchronous)
  690. return 0;
  691. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  692. I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
  693. POSTING_READ(RING_PP_DIR_DCLV(ring));
  694. return 0;
  695. }
  696. static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
  697. {
  698. struct drm_device *dev = ppgtt->base.dev;
  699. struct drm_i915_private *dev_priv = dev->dev_private;
  700. struct intel_engine_cs *ring;
  701. int j, ret;
  702. for_each_ring(ring, dev_priv, j) {
  703. I915_WRITE(RING_MODE_GEN7(ring),
  704. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  705. /* We promise to do a switch later with FULL PPGTT. If this is
  706. * aliasing, this is the one and only switch we'll do */
  707. if (USES_FULL_PPGTT(dev))
  708. continue;
  709. ret = ppgtt->switch_mm(ppgtt, ring, true);
  710. if (ret)
  711. goto err_out;
  712. }
  713. return 0;
  714. err_out:
  715. for_each_ring(ring, dev_priv, j)
  716. I915_WRITE(RING_MODE_GEN7(ring),
  717. _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
  718. return ret;
  719. }
  720. static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
  721. {
  722. struct drm_device *dev = ppgtt->base.dev;
  723. struct drm_i915_private *dev_priv = dev->dev_private;
  724. struct intel_engine_cs *ring;
  725. uint32_t ecochk, ecobits;
  726. int i;
  727. ecobits = I915_READ(GAC_ECO_BITS);
  728. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  729. ecochk = I915_READ(GAM_ECOCHK);
  730. if (IS_HASWELL(dev)) {
  731. ecochk |= ECOCHK_PPGTT_WB_HSW;
  732. } else {
  733. ecochk |= ECOCHK_PPGTT_LLC_IVB;
  734. ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
  735. }
  736. I915_WRITE(GAM_ECOCHK, ecochk);
  737. for_each_ring(ring, dev_priv, i) {
  738. int ret;
  739. /* GFX_MODE is per-ring on gen7+ */
  740. I915_WRITE(RING_MODE_GEN7(ring),
  741. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  742. /* We promise to do a switch later with FULL PPGTT. If this is
  743. * aliasing, this is the one and only switch we'll do */
  744. if (USES_FULL_PPGTT(dev))
  745. continue;
  746. ret = ppgtt->switch_mm(ppgtt, ring, true);
  747. if (ret)
  748. return ret;
  749. }
  750. return 0;
  751. }
  752. static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
  753. {
  754. struct drm_device *dev = ppgtt->base.dev;
  755. struct drm_i915_private *dev_priv = dev->dev_private;
  756. struct intel_engine_cs *ring;
  757. uint32_t ecochk, gab_ctl, ecobits;
  758. int i;
  759. ecobits = I915_READ(GAC_ECO_BITS);
  760. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
  761. ECOBITS_PPGTT_CACHE64B);
  762. gab_ctl = I915_READ(GAB_CTL);
  763. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  764. ecochk = I915_READ(GAM_ECOCHK);
  765. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
  766. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  767. for_each_ring(ring, dev_priv, i) {
  768. int ret = ppgtt->switch_mm(ppgtt, ring, true);
  769. if (ret)
  770. return ret;
  771. }
  772. return 0;
  773. }
  774. /* PPGTT support for Sandybdrige/Gen6 and later */
  775. static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
  776. uint64_t start,
  777. uint64_t length,
  778. bool use_scratch)
  779. {
  780. struct i915_hw_ppgtt *ppgtt =
  781. container_of(vm, struct i915_hw_ppgtt, base);
  782. gen6_gtt_pte_t *pt_vaddr, scratch_pte;
  783. unsigned first_entry = start >> PAGE_SHIFT;
  784. unsigned num_entries = length >> PAGE_SHIFT;
  785. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  786. unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  787. unsigned last_pte, i;
  788. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
  789. while (num_entries) {
  790. last_pte = first_pte + num_entries;
  791. if (last_pte > I915_PPGTT_PT_ENTRIES)
  792. last_pte = I915_PPGTT_PT_ENTRIES;
  793. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  794. for (i = first_pte; i < last_pte; i++)
  795. pt_vaddr[i] = scratch_pte;
  796. kunmap_atomic(pt_vaddr);
  797. num_entries -= last_pte - first_pte;
  798. first_pte = 0;
  799. act_pt++;
  800. }
  801. }
  802. static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
  803. struct sg_table *pages,
  804. uint64_t start,
  805. enum i915_cache_level cache_level, u32 flags)
  806. {
  807. struct i915_hw_ppgtt *ppgtt =
  808. container_of(vm, struct i915_hw_ppgtt, base);
  809. gen6_gtt_pte_t *pt_vaddr;
  810. unsigned first_entry = start >> PAGE_SHIFT;
  811. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  812. unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  813. struct sg_page_iter sg_iter;
  814. pt_vaddr = NULL;
  815. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  816. if (pt_vaddr == NULL)
  817. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  818. pt_vaddr[act_pte] =
  819. vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
  820. cache_level, true, flags);
  821. if (++act_pte == I915_PPGTT_PT_ENTRIES) {
  822. kunmap_atomic(pt_vaddr);
  823. pt_vaddr = NULL;
  824. act_pt++;
  825. act_pte = 0;
  826. }
  827. }
  828. if (pt_vaddr)
  829. kunmap_atomic(pt_vaddr);
  830. }
  831. static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
  832. {
  833. int i;
  834. if (ppgtt->pt_dma_addr) {
  835. for (i = 0; i < ppgtt->num_pd_entries; i++)
  836. pci_unmap_page(ppgtt->base.dev->pdev,
  837. ppgtt->pt_dma_addr[i],
  838. 4096, PCI_DMA_BIDIRECTIONAL);
  839. }
  840. }
  841. static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
  842. {
  843. int i;
  844. kfree(ppgtt->pt_dma_addr);
  845. for (i = 0; i < ppgtt->num_pd_entries; i++)
  846. __free_page(ppgtt->pt_pages[i]);
  847. kfree(ppgtt->pt_pages);
  848. }
  849. static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
  850. {
  851. struct i915_hw_ppgtt *ppgtt =
  852. container_of(vm, struct i915_hw_ppgtt, base);
  853. list_del(&vm->global_link);
  854. drm_mm_takedown(&ppgtt->base.mm);
  855. drm_mm_remove_node(&ppgtt->node);
  856. gen6_ppgtt_unmap_pages(ppgtt);
  857. gen6_ppgtt_free(ppgtt);
  858. }
  859. static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
  860. {
  861. struct drm_device *dev = ppgtt->base.dev;
  862. struct drm_i915_private *dev_priv = dev->dev_private;
  863. bool retried = false;
  864. int ret;
  865. /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
  866. * allocator works in address space sizes, so it's multiplied by page
  867. * size. We allocate at the top of the GTT to avoid fragmentation.
  868. */
  869. BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
  870. alloc:
  871. ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
  872. &ppgtt->node, GEN6_PD_SIZE,
  873. GEN6_PD_ALIGN, 0,
  874. 0, dev_priv->gtt.base.total,
  875. DRM_MM_TOPDOWN);
  876. if (ret == -ENOSPC && !retried) {
  877. ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
  878. GEN6_PD_SIZE, GEN6_PD_ALIGN,
  879. I915_CACHE_NONE,
  880. 0, dev_priv->gtt.base.total,
  881. 0);
  882. if (ret)
  883. return ret;
  884. retried = true;
  885. goto alloc;
  886. }
  887. if (ppgtt->node.start < dev_priv->gtt.mappable_end)
  888. DRM_DEBUG("Forced to use aperture for PDEs\n");
  889. ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
  890. return ret;
  891. }
  892. static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
  893. {
  894. int i;
  895. ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
  896. GFP_KERNEL);
  897. if (!ppgtt->pt_pages)
  898. return -ENOMEM;
  899. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  900. ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
  901. if (!ppgtt->pt_pages[i]) {
  902. gen6_ppgtt_free(ppgtt);
  903. return -ENOMEM;
  904. }
  905. }
  906. return 0;
  907. }
  908. static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
  909. {
  910. int ret;
  911. ret = gen6_ppgtt_allocate_page_directories(ppgtt);
  912. if (ret)
  913. return ret;
  914. ret = gen6_ppgtt_allocate_page_tables(ppgtt);
  915. if (ret) {
  916. drm_mm_remove_node(&ppgtt->node);
  917. return ret;
  918. }
  919. ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
  920. GFP_KERNEL);
  921. if (!ppgtt->pt_dma_addr) {
  922. drm_mm_remove_node(&ppgtt->node);
  923. gen6_ppgtt_free(ppgtt);
  924. return -ENOMEM;
  925. }
  926. return 0;
  927. }
  928. static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
  929. {
  930. struct drm_device *dev = ppgtt->base.dev;
  931. int i;
  932. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  933. dma_addr_t pt_addr;
  934. pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
  935. PCI_DMA_BIDIRECTIONAL);
  936. if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
  937. gen6_ppgtt_unmap_pages(ppgtt);
  938. return -EIO;
  939. }
  940. ppgtt->pt_dma_addr[i] = pt_addr;
  941. }
  942. return 0;
  943. }
  944. static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
  945. {
  946. struct drm_device *dev = ppgtt->base.dev;
  947. struct drm_i915_private *dev_priv = dev->dev_private;
  948. int ret;
  949. ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
  950. if (IS_GEN6(dev)) {
  951. ppgtt->enable = gen6_ppgtt_enable;
  952. ppgtt->switch_mm = gen6_mm_switch;
  953. } else if (IS_HASWELL(dev)) {
  954. ppgtt->enable = gen7_ppgtt_enable;
  955. ppgtt->switch_mm = hsw_mm_switch;
  956. } else if (IS_GEN7(dev)) {
  957. ppgtt->enable = gen7_ppgtt_enable;
  958. ppgtt->switch_mm = gen7_mm_switch;
  959. } else
  960. BUG();
  961. ret = gen6_ppgtt_alloc(ppgtt);
  962. if (ret)
  963. return ret;
  964. ret = gen6_ppgtt_setup_page_tables(ppgtt);
  965. if (ret) {
  966. gen6_ppgtt_free(ppgtt);
  967. return ret;
  968. }
  969. ppgtt->base.clear_range = gen6_ppgtt_clear_range;
  970. ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
  971. ppgtt->base.cleanup = gen6_ppgtt_cleanup;
  972. ppgtt->base.start = 0;
  973. ppgtt->base.total = ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
  974. ppgtt->debug_dump = gen6_dump_ppgtt;
  975. ppgtt->pd_offset =
  976. ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
  977. ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
  978. DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
  979. ppgtt->node.size >> 20,
  980. ppgtt->node.start / PAGE_SIZE);
  981. return 0;
  982. }
  983. int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
  984. {
  985. struct drm_i915_private *dev_priv = dev->dev_private;
  986. int ret = 0;
  987. ppgtt->base.dev = dev;
  988. ppgtt->base.scratch = dev_priv->gtt.base.scratch;
  989. if (INTEL_INFO(dev)->gen < 8)
  990. ret = gen6_ppgtt_init(ppgtt);
  991. else if (IS_GEN8(dev))
  992. ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
  993. else
  994. BUG();
  995. if (!ret) {
  996. struct drm_i915_private *dev_priv = dev->dev_private;
  997. kref_init(&ppgtt->ref);
  998. drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
  999. ppgtt->base.total);
  1000. i915_init_vm(dev_priv, &ppgtt->base);
  1001. if (INTEL_INFO(dev)->gen < 8) {
  1002. gen6_write_pdes(ppgtt);
  1003. DRM_DEBUG("Adding PPGTT at offset %x\n",
  1004. ppgtt->pd_offset << 10);
  1005. }
  1006. }
  1007. return ret;
  1008. }
  1009. static void
  1010. ppgtt_bind_vma(struct i915_vma *vma,
  1011. enum i915_cache_level cache_level,
  1012. u32 flags)
  1013. {
  1014. /* Currently applicable only to VLV */
  1015. if (vma->obj->gt_ro)
  1016. flags |= PTE_READ_ONLY;
  1017. vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
  1018. cache_level, flags);
  1019. }
  1020. static void ppgtt_unbind_vma(struct i915_vma *vma)
  1021. {
  1022. vma->vm->clear_range(vma->vm,
  1023. vma->node.start,
  1024. vma->obj->base.size,
  1025. true);
  1026. }
  1027. extern int intel_iommu_gfx_mapped;
  1028. /* Certain Gen5 chipsets require require idling the GPU before
  1029. * unmapping anything from the GTT when VT-d is enabled.
  1030. */
  1031. static inline bool needs_idle_maps(struct drm_device *dev)
  1032. {
  1033. #ifdef CONFIG_INTEL_IOMMU
  1034. /* Query intel_iommu to see if we need the workaround. Presumably that
  1035. * was loaded first.
  1036. */
  1037. if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
  1038. return true;
  1039. #endif
  1040. return false;
  1041. }
  1042. static bool do_idling(struct drm_i915_private *dev_priv)
  1043. {
  1044. bool ret = dev_priv->mm.interruptible;
  1045. if (unlikely(dev_priv->gtt.do_idle_maps)) {
  1046. dev_priv->mm.interruptible = false;
  1047. if (i915_gpu_idle(dev_priv->dev)) {
  1048. DRM_ERROR("Couldn't idle GPU\n");
  1049. /* Wait a bit, in hopes it avoids the hang */
  1050. udelay(10);
  1051. }
  1052. }
  1053. return ret;
  1054. }
  1055. static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
  1056. {
  1057. if (unlikely(dev_priv->gtt.do_idle_maps))
  1058. dev_priv->mm.interruptible = interruptible;
  1059. }
  1060. void i915_check_and_clear_faults(struct drm_device *dev)
  1061. {
  1062. struct drm_i915_private *dev_priv = dev->dev_private;
  1063. struct intel_engine_cs *ring;
  1064. int i;
  1065. if (INTEL_INFO(dev)->gen < 6)
  1066. return;
  1067. for_each_ring(ring, dev_priv, i) {
  1068. u32 fault_reg;
  1069. fault_reg = I915_READ(RING_FAULT_REG(ring));
  1070. if (fault_reg & RING_FAULT_VALID) {
  1071. DRM_DEBUG_DRIVER("Unexpected fault\n"
  1072. "\tAddr: 0x%08lx\\n"
  1073. "\tAddress space: %s\n"
  1074. "\tSource ID: %d\n"
  1075. "\tType: %d\n",
  1076. fault_reg & PAGE_MASK,
  1077. fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
  1078. RING_FAULT_SRCID(fault_reg),
  1079. RING_FAULT_FAULT_TYPE(fault_reg));
  1080. I915_WRITE(RING_FAULT_REG(ring),
  1081. fault_reg & ~RING_FAULT_VALID);
  1082. }
  1083. }
  1084. POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
  1085. }
  1086. void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
  1087. {
  1088. struct drm_i915_private *dev_priv = dev->dev_private;
  1089. /* Don't bother messing with faults pre GEN6 as we have little
  1090. * documentation supporting that it's a good idea.
  1091. */
  1092. if (INTEL_INFO(dev)->gen < 6)
  1093. return;
  1094. i915_check_and_clear_faults(dev);
  1095. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  1096. dev_priv->gtt.base.start,
  1097. dev_priv->gtt.base.total,
  1098. true);
  1099. }
  1100. void i915_gem_restore_gtt_mappings(struct drm_device *dev)
  1101. {
  1102. struct drm_i915_private *dev_priv = dev->dev_private;
  1103. struct drm_i915_gem_object *obj;
  1104. struct i915_address_space *vm;
  1105. i915_check_and_clear_faults(dev);
  1106. /* First fill our portion of the GTT with scratch pages */
  1107. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  1108. dev_priv->gtt.base.start,
  1109. dev_priv->gtt.base.total,
  1110. true);
  1111. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  1112. struct i915_vma *vma = i915_gem_obj_to_vma(obj,
  1113. &dev_priv->gtt.base);
  1114. if (!vma)
  1115. continue;
  1116. i915_gem_clflush_object(obj, obj->pin_display);
  1117. /* The bind_vma code tries to be smart about tracking mappings.
  1118. * Unfortunately above, we've just wiped out the mappings
  1119. * without telling our object about it. So we need to fake it.
  1120. */
  1121. obj->has_global_gtt_mapping = 0;
  1122. vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
  1123. }
  1124. if (INTEL_INFO(dev)->gen >= 8) {
  1125. if (IS_CHERRYVIEW(dev))
  1126. chv_setup_private_ppat(dev_priv);
  1127. else
  1128. bdw_setup_private_ppat(dev_priv);
  1129. return;
  1130. }
  1131. list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
  1132. /* TODO: Perhaps it shouldn't be gen6 specific */
  1133. if (i915_is_ggtt(vm)) {
  1134. if (dev_priv->mm.aliasing_ppgtt)
  1135. gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
  1136. continue;
  1137. }
  1138. gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
  1139. }
  1140. i915_gem_chipset_flush(dev);
  1141. }
  1142. int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
  1143. {
  1144. if (obj->has_dma_mapping)
  1145. return 0;
  1146. if (!dma_map_sg(&obj->base.dev->pdev->dev,
  1147. obj->pages->sgl, obj->pages->nents,
  1148. PCI_DMA_BIDIRECTIONAL))
  1149. return -ENOSPC;
  1150. return 0;
  1151. }
  1152. static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
  1153. {
  1154. #ifdef writeq
  1155. writeq(pte, addr);
  1156. #else
  1157. iowrite32((u32)pte, addr);
  1158. iowrite32(pte >> 32, addr + 4);
  1159. #endif
  1160. }
  1161. static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
  1162. struct sg_table *st,
  1163. uint64_t start,
  1164. enum i915_cache_level level, u32 unused)
  1165. {
  1166. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  1167. unsigned first_entry = start >> PAGE_SHIFT;
  1168. gen8_gtt_pte_t __iomem *gtt_entries =
  1169. (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  1170. int i = 0;
  1171. struct sg_page_iter sg_iter;
  1172. dma_addr_t addr = 0; /* shut up gcc */
  1173. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  1174. addr = sg_dma_address(sg_iter.sg) +
  1175. (sg_iter.sg_pgoffset << PAGE_SHIFT);
  1176. gen8_set_pte(&gtt_entries[i],
  1177. gen8_pte_encode(addr, level, true));
  1178. i++;
  1179. }
  1180. /*
  1181. * XXX: This serves as a posting read to make sure that the PTE has
  1182. * actually been updated. There is some concern that even though
  1183. * registers and PTEs are within the same BAR that they are potentially
  1184. * of NUMA access patterns. Therefore, even with the way we assume
  1185. * hardware should work, we must keep this posting read for paranoia.
  1186. */
  1187. if (i != 0)
  1188. WARN_ON(readq(&gtt_entries[i-1])
  1189. != gen8_pte_encode(addr, level, true));
  1190. /* This next bit makes the above posting read even more important. We
  1191. * want to flush the TLBs only after we're certain all the PTE updates
  1192. * have finished.
  1193. */
  1194. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  1195. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  1196. }
  1197. /*
  1198. * Binds an object into the global gtt with the specified cache level. The object
  1199. * will be accessible to the GPU via commands whose operands reference offsets
  1200. * within the global GTT as well as accessible by the GPU through the GMADR
  1201. * mapped BAR (dev_priv->mm.gtt->gtt).
  1202. */
  1203. static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
  1204. struct sg_table *st,
  1205. uint64_t start,
  1206. enum i915_cache_level level, u32 flags)
  1207. {
  1208. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  1209. unsigned first_entry = start >> PAGE_SHIFT;
  1210. gen6_gtt_pte_t __iomem *gtt_entries =
  1211. (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  1212. int i = 0;
  1213. struct sg_page_iter sg_iter;
  1214. dma_addr_t addr = 0;
  1215. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  1216. addr = sg_page_iter_dma_address(&sg_iter);
  1217. iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
  1218. i++;
  1219. }
  1220. /* XXX: This serves as a posting read to make sure that the PTE has
  1221. * actually been updated. There is some concern that even though
  1222. * registers and PTEs are within the same BAR that they are potentially
  1223. * of NUMA access patterns. Therefore, even with the way we assume
  1224. * hardware should work, we must keep this posting read for paranoia.
  1225. */
  1226. if (i != 0) {
  1227. unsigned long gtt = readl(&gtt_entries[i-1]);
  1228. WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
  1229. }
  1230. /* This next bit makes the above posting read even more important. We
  1231. * want to flush the TLBs only after we're certain all the PTE updates
  1232. * have finished.
  1233. */
  1234. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  1235. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  1236. }
  1237. static void gen8_ggtt_clear_range(struct i915_address_space *vm,
  1238. uint64_t start,
  1239. uint64_t length,
  1240. bool use_scratch)
  1241. {
  1242. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  1243. unsigned first_entry = start >> PAGE_SHIFT;
  1244. unsigned num_entries = length >> PAGE_SHIFT;
  1245. gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
  1246. (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  1247. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  1248. int i;
  1249. if (WARN(num_entries > max_entries,
  1250. "First entry = %d; Num entries = %d (max=%d)\n",
  1251. first_entry, num_entries, max_entries))
  1252. num_entries = max_entries;
  1253. scratch_pte = gen8_pte_encode(vm->scratch.addr,
  1254. I915_CACHE_LLC,
  1255. use_scratch);
  1256. for (i = 0; i < num_entries; i++)
  1257. gen8_set_pte(&gtt_base[i], scratch_pte);
  1258. readl(gtt_base);
  1259. }
  1260. static void gen6_ggtt_clear_range(struct i915_address_space *vm,
  1261. uint64_t start,
  1262. uint64_t length,
  1263. bool use_scratch)
  1264. {
  1265. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  1266. unsigned first_entry = start >> PAGE_SHIFT;
  1267. unsigned num_entries = length >> PAGE_SHIFT;
  1268. gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
  1269. (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  1270. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  1271. int i;
  1272. if (WARN(num_entries > max_entries,
  1273. "First entry = %d; Num entries = %d (max=%d)\n",
  1274. first_entry, num_entries, max_entries))
  1275. num_entries = max_entries;
  1276. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
  1277. for (i = 0; i < num_entries; i++)
  1278. iowrite32(scratch_pte, &gtt_base[i]);
  1279. readl(gtt_base);
  1280. }
  1281. static void i915_ggtt_bind_vma(struct i915_vma *vma,
  1282. enum i915_cache_level cache_level,
  1283. u32 unused)
  1284. {
  1285. const unsigned long entry = vma->node.start >> PAGE_SHIFT;
  1286. unsigned int flags = (cache_level == I915_CACHE_NONE) ?
  1287. AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
  1288. BUG_ON(!i915_is_ggtt(vma->vm));
  1289. intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
  1290. vma->obj->has_global_gtt_mapping = 1;
  1291. }
  1292. static void i915_ggtt_clear_range(struct i915_address_space *vm,
  1293. uint64_t start,
  1294. uint64_t length,
  1295. bool unused)
  1296. {
  1297. unsigned first_entry = start >> PAGE_SHIFT;
  1298. unsigned num_entries = length >> PAGE_SHIFT;
  1299. intel_gtt_clear_range(first_entry, num_entries);
  1300. }
  1301. static void i915_ggtt_unbind_vma(struct i915_vma *vma)
  1302. {
  1303. const unsigned int first = vma->node.start >> PAGE_SHIFT;
  1304. const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
  1305. BUG_ON(!i915_is_ggtt(vma->vm));
  1306. vma->obj->has_global_gtt_mapping = 0;
  1307. intel_gtt_clear_range(first, size);
  1308. }
  1309. static void ggtt_bind_vma(struct i915_vma *vma,
  1310. enum i915_cache_level cache_level,
  1311. u32 flags)
  1312. {
  1313. struct drm_device *dev = vma->vm->dev;
  1314. struct drm_i915_private *dev_priv = dev->dev_private;
  1315. struct drm_i915_gem_object *obj = vma->obj;
  1316. /* Currently applicable only to VLV */
  1317. if (obj->gt_ro)
  1318. flags |= PTE_READ_ONLY;
  1319. /* If there is no aliasing PPGTT, or the caller needs a global mapping,
  1320. * or we have a global mapping already but the cacheability flags have
  1321. * changed, set the global PTEs.
  1322. *
  1323. * If there is an aliasing PPGTT it is anecdotally faster, so use that
  1324. * instead if none of the above hold true.
  1325. *
  1326. * NB: A global mapping should only be needed for special regions like
  1327. * "gtt mappable", SNB errata, or if specified via special execbuf
  1328. * flags. At all other times, the GPU will use the aliasing PPGTT.
  1329. */
  1330. if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
  1331. if (!obj->has_global_gtt_mapping ||
  1332. (cache_level != obj->cache_level)) {
  1333. vma->vm->insert_entries(vma->vm, obj->pages,
  1334. vma->node.start,
  1335. cache_level, flags);
  1336. obj->has_global_gtt_mapping = 1;
  1337. }
  1338. }
  1339. if (dev_priv->mm.aliasing_ppgtt &&
  1340. (!obj->has_aliasing_ppgtt_mapping ||
  1341. (cache_level != obj->cache_level))) {
  1342. struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
  1343. appgtt->base.insert_entries(&appgtt->base,
  1344. vma->obj->pages,
  1345. vma->node.start,
  1346. cache_level, flags);
  1347. vma->obj->has_aliasing_ppgtt_mapping = 1;
  1348. }
  1349. }
  1350. static void ggtt_unbind_vma(struct i915_vma *vma)
  1351. {
  1352. struct drm_device *dev = vma->vm->dev;
  1353. struct drm_i915_private *dev_priv = dev->dev_private;
  1354. struct drm_i915_gem_object *obj = vma->obj;
  1355. if (obj->has_global_gtt_mapping) {
  1356. vma->vm->clear_range(vma->vm,
  1357. vma->node.start,
  1358. obj->base.size,
  1359. true);
  1360. obj->has_global_gtt_mapping = 0;
  1361. }
  1362. if (obj->has_aliasing_ppgtt_mapping) {
  1363. struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
  1364. appgtt->base.clear_range(&appgtt->base,
  1365. vma->node.start,
  1366. obj->base.size,
  1367. true);
  1368. obj->has_aliasing_ppgtt_mapping = 0;
  1369. }
  1370. }
  1371. void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
  1372. {
  1373. struct drm_device *dev = obj->base.dev;
  1374. struct drm_i915_private *dev_priv = dev->dev_private;
  1375. bool interruptible;
  1376. interruptible = do_idling(dev_priv);
  1377. if (!obj->has_dma_mapping)
  1378. dma_unmap_sg(&dev->pdev->dev,
  1379. obj->pages->sgl, obj->pages->nents,
  1380. PCI_DMA_BIDIRECTIONAL);
  1381. undo_idling(dev_priv, interruptible);
  1382. }
  1383. static void i915_gtt_color_adjust(struct drm_mm_node *node,
  1384. unsigned long color,
  1385. unsigned long *start,
  1386. unsigned long *end)
  1387. {
  1388. if (node->color != color)
  1389. *start += 4096;
  1390. if (!list_empty(&node->node_list)) {
  1391. node = list_entry(node->node_list.next,
  1392. struct drm_mm_node,
  1393. node_list);
  1394. if (node->allocated && node->color != color)
  1395. *end -= 4096;
  1396. }
  1397. }
  1398. void i915_gem_setup_global_gtt(struct drm_device *dev,
  1399. unsigned long start,
  1400. unsigned long mappable_end,
  1401. unsigned long end)
  1402. {
  1403. /* Let GEM Manage all of the aperture.
  1404. *
  1405. * However, leave one page at the end still bound to the scratch page.
  1406. * There are a number of places where the hardware apparently prefetches
  1407. * past the end of the object, and we've seen multiple hangs with the
  1408. * GPU head pointer stuck in a batchbuffer bound at the last page of the
  1409. * aperture. One page should be enough to keep any prefetching inside
  1410. * of the aperture.
  1411. */
  1412. struct drm_i915_private *dev_priv = dev->dev_private;
  1413. struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
  1414. struct drm_mm_node *entry;
  1415. struct drm_i915_gem_object *obj;
  1416. unsigned long hole_start, hole_end;
  1417. BUG_ON(mappable_end > end);
  1418. /* Subtract the guard page ... */
  1419. drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
  1420. if (!HAS_LLC(dev))
  1421. dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
  1422. /* Mark any preallocated objects as occupied */
  1423. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  1424. struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
  1425. int ret;
  1426. DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
  1427. i915_gem_obj_ggtt_offset(obj), obj->base.size);
  1428. WARN_ON(i915_gem_obj_ggtt_bound(obj));
  1429. ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
  1430. if (ret)
  1431. DRM_DEBUG_KMS("Reservation failed\n");
  1432. obj->has_global_gtt_mapping = 1;
  1433. }
  1434. dev_priv->gtt.base.start = start;
  1435. dev_priv->gtt.base.total = end - start;
  1436. /* Clear any non-preallocated blocks */
  1437. drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
  1438. DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
  1439. hole_start, hole_end);
  1440. ggtt_vm->clear_range(ggtt_vm, hole_start,
  1441. hole_end - hole_start, true);
  1442. }
  1443. /* And finally clear the reserved guard page */
  1444. ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
  1445. }
  1446. void i915_gem_init_global_gtt(struct drm_device *dev)
  1447. {
  1448. struct drm_i915_private *dev_priv = dev->dev_private;
  1449. unsigned long gtt_size, mappable_size;
  1450. gtt_size = dev_priv->gtt.base.total;
  1451. mappable_size = dev_priv->gtt.mappable_end;
  1452. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  1453. }
  1454. static int setup_scratch_page(struct drm_device *dev)
  1455. {
  1456. struct drm_i915_private *dev_priv = dev->dev_private;
  1457. struct page *page;
  1458. dma_addr_t dma_addr;
  1459. page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
  1460. if (page == NULL)
  1461. return -ENOMEM;
  1462. get_page(page);
  1463. set_pages_uc(page, 1);
  1464. #ifdef CONFIG_INTEL_IOMMU
  1465. dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
  1466. PCI_DMA_BIDIRECTIONAL);
  1467. if (pci_dma_mapping_error(dev->pdev, dma_addr))
  1468. return -EINVAL;
  1469. #else
  1470. dma_addr = page_to_phys(page);
  1471. #endif
  1472. dev_priv->gtt.base.scratch.page = page;
  1473. dev_priv->gtt.base.scratch.addr = dma_addr;
  1474. return 0;
  1475. }
  1476. static void teardown_scratch_page(struct drm_device *dev)
  1477. {
  1478. struct drm_i915_private *dev_priv = dev->dev_private;
  1479. struct page *page = dev_priv->gtt.base.scratch.page;
  1480. set_pages_wb(page, 1);
  1481. pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
  1482. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  1483. put_page(page);
  1484. __free_page(page);
  1485. }
  1486. static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
  1487. {
  1488. snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
  1489. snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
  1490. return snb_gmch_ctl << 20;
  1491. }
  1492. static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
  1493. {
  1494. bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
  1495. bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
  1496. if (bdw_gmch_ctl)
  1497. bdw_gmch_ctl = 1 << bdw_gmch_ctl;
  1498. #ifdef CONFIG_X86_32
  1499. /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
  1500. if (bdw_gmch_ctl > 4)
  1501. bdw_gmch_ctl = 4;
  1502. #endif
  1503. return bdw_gmch_ctl << 20;
  1504. }
  1505. static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
  1506. {
  1507. gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
  1508. gmch_ctrl &= SNB_GMCH_GGMS_MASK;
  1509. if (gmch_ctrl)
  1510. return 1 << (20 + gmch_ctrl);
  1511. return 0;
  1512. }
  1513. static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
  1514. {
  1515. snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
  1516. snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
  1517. return snb_gmch_ctl << 25; /* 32 MB units */
  1518. }
  1519. static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
  1520. {
  1521. bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
  1522. bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
  1523. return bdw_gmch_ctl << 25; /* 32 MB units */
  1524. }
  1525. static size_t chv_get_stolen_size(u16 gmch_ctrl)
  1526. {
  1527. gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
  1528. gmch_ctrl &= SNB_GMCH_GMS_MASK;
  1529. /*
  1530. * 0x0 to 0x10: 32MB increments starting at 0MB
  1531. * 0x11 to 0x16: 4MB increments starting at 8MB
  1532. * 0x17 to 0x1d: 4MB increments start at 36MB
  1533. */
  1534. if (gmch_ctrl < 0x11)
  1535. return gmch_ctrl << 25;
  1536. else if (gmch_ctrl < 0x17)
  1537. return (gmch_ctrl - 0x11 + 2) << 22;
  1538. else
  1539. return (gmch_ctrl - 0x17 + 9) << 22;
  1540. }
  1541. static int ggtt_probe_common(struct drm_device *dev,
  1542. size_t gtt_size)
  1543. {
  1544. struct drm_i915_private *dev_priv = dev->dev_private;
  1545. phys_addr_t gtt_phys_addr;
  1546. int ret;
  1547. /* For Modern GENs the PTEs and register space are split in the BAR */
  1548. gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
  1549. (pci_resource_len(dev->pdev, 0) / 2);
  1550. dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
  1551. if (!dev_priv->gtt.gsm) {
  1552. DRM_ERROR("Failed to map the gtt page table\n");
  1553. return -ENOMEM;
  1554. }
  1555. ret = setup_scratch_page(dev);
  1556. if (ret) {
  1557. DRM_ERROR("Scratch setup failed\n");
  1558. /* iounmap will also get called at remove, but meh */
  1559. iounmap(dev_priv->gtt.gsm);
  1560. }
  1561. return ret;
  1562. }
  1563. /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
  1564. * bits. When using advanced contexts each context stores its own PAT, but
  1565. * writing this data shouldn't be harmful even in those cases. */
  1566. static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
  1567. {
  1568. uint64_t pat;
  1569. pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
  1570. GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
  1571. GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
  1572. GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
  1573. GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
  1574. GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
  1575. GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
  1576. GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
  1577. /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
  1578. * write would work. */
  1579. I915_WRITE(GEN8_PRIVATE_PAT, pat);
  1580. I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
  1581. }
  1582. static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
  1583. {
  1584. uint64_t pat;
  1585. /*
  1586. * Map WB on BDW to snooped on CHV.
  1587. *
  1588. * Only the snoop bit has meaning for CHV, the rest is
  1589. * ignored.
  1590. *
  1591. * Note that the harware enforces snooping for all page
  1592. * table accesses. The snoop bit is actually ignored for
  1593. * PDEs.
  1594. */
  1595. pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
  1596. GEN8_PPAT(1, 0) |
  1597. GEN8_PPAT(2, 0) |
  1598. GEN8_PPAT(3, 0) |
  1599. GEN8_PPAT(4, CHV_PPAT_SNOOP) |
  1600. GEN8_PPAT(5, CHV_PPAT_SNOOP) |
  1601. GEN8_PPAT(6, CHV_PPAT_SNOOP) |
  1602. GEN8_PPAT(7, CHV_PPAT_SNOOP);
  1603. I915_WRITE(GEN8_PRIVATE_PAT, pat);
  1604. I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
  1605. }
  1606. static int gen8_gmch_probe(struct drm_device *dev,
  1607. size_t *gtt_total,
  1608. size_t *stolen,
  1609. phys_addr_t *mappable_base,
  1610. unsigned long *mappable_end)
  1611. {
  1612. struct drm_i915_private *dev_priv = dev->dev_private;
  1613. unsigned int gtt_size;
  1614. u16 snb_gmch_ctl;
  1615. int ret;
  1616. /* TODO: We're not aware of mappable constraints on gen8 yet */
  1617. *mappable_base = pci_resource_start(dev->pdev, 2);
  1618. *mappable_end = pci_resource_len(dev->pdev, 2);
  1619. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
  1620. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
  1621. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  1622. if (IS_CHERRYVIEW(dev)) {
  1623. *stolen = chv_get_stolen_size(snb_gmch_ctl);
  1624. gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
  1625. } else {
  1626. *stolen = gen8_get_stolen_size(snb_gmch_ctl);
  1627. gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
  1628. }
  1629. *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
  1630. if (IS_CHERRYVIEW(dev))
  1631. chv_setup_private_ppat(dev_priv);
  1632. else
  1633. bdw_setup_private_ppat(dev_priv);
  1634. ret = ggtt_probe_common(dev, gtt_size);
  1635. dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
  1636. dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
  1637. return ret;
  1638. }
  1639. static int gen6_gmch_probe(struct drm_device *dev,
  1640. size_t *gtt_total,
  1641. size_t *stolen,
  1642. phys_addr_t *mappable_base,
  1643. unsigned long *mappable_end)
  1644. {
  1645. struct drm_i915_private *dev_priv = dev->dev_private;
  1646. unsigned int gtt_size;
  1647. u16 snb_gmch_ctl;
  1648. int ret;
  1649. *mappable_base = pci_resource_start(dev->pdev, 2);
  1650. *mappable_end = pci_resource_len(dev->pdev, 2);
  1651. /* 64/512MB is the current min/max we actually know of, but this is just
  1652. * a coarse sanity check.
  1653. */
  1654. if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
  1655. DRM_ERROR("Unknown GMADR size (%lx)\n",
  1656. dev_priv->gtt.mappable_end);
  1657. return -ENXIO;
  1658. }
  1659. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
  1660. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
  1661. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  1662. *stolen = gen6_get_stolen_size(snb_gmch_ctl);
  1663. gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
  1664. *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
  1665. ret = ggtt_probe_common(dev, gtt_size);
  1666. dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
  1667. dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
  1668. return ret;
  1669. }
  1670. static void gen6_gmch_remove(struct i915_address_space *vm)
  1671. {
  1672. struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
  1673. if (drm_mm_initialized(&vm->mm)) {
  1674. drm_mm_takedown(&vm->mm);
  1675. list_del(&vm->global_link);
  1676. }
  1677. iounmap(gtt->gsm);
  1678. teardown_scratch_page(vm->dev);
  1679. }
  1680. static int i915_gmch_probe(struct drm_device *dev,
  1681. size_t *gtt_total,
  1682. size_t *stolen,
  1683. phys_addr_t *mappable_base,
  1684. unsigned long *mappable_end)
  1685. {
  1686. struct drm_i915_private *dev_priv = dev->dev_private;
  1687. int ret;
  1688. ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
  1689. if (!ret) {
  1690. DRM_ERROR("failed to set up gmch\n");
  1691. return -EIO;
  1692. }
  1693. intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
  1694. dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
  1695. dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
  1696. if (unlikely(dev_priv->gtt.do_idle_maps))
  1697. DRM_INFO("applying Ironlake quirks for intel_iommu\n");
  1698. return 0;
  1699. }
  1700. static void i915_gmch_remove(struct i915_address_space *vm)
  1701. {
  1702. if (drm_mm_initialized(&vm->mm)) {
  1703. drm_mm_takedown(&vm->mm);
  1704. list_del(&vm->global_link);
  1705. }
  1706. intel_gmch_remove();
  1707. }
  1708. int i915_gem_gtt_init(struct drm_device *dev)
  1709. {
  1710. struct drm_i915_private *dev_priv = dev->dev_private;
  1711. struct i915_gtt *gtt = &dev_priv->gtt;
  1712. int ret;
  1713. if (INTEL_INFO(dev)->gen <= 5) {
  1714. gtt->gtt_probe = i915_gmch_probe;
  1715. gtt->base.cleanup = i915_gmch_remove;
  1716. } else if (INTEL_INFO(dev)->gen < 8) {
  1717. gtt->gtt_probe = gen6_gmch_probe;
  1718. gtt->base.cleanup = gen6_gmch_remove;
  1719. if (IS_HASWELL(dev) && dev_priv->ellc_size)
  1720. gtt->base.pte_encode = iris_pte_encode;
  1721. else if (IS_HASWELL(dev))
  1722. gtt->base.pte_encode = hsw_pte_encode;
  1723. else if (IS_VALLEYVIEW(dev))
  1724. gtt->base.pte_encode = byt_pte_encode;
  1725. else if (INTEL_INFO(dev)->gen >= 7)
  1726. gtt->base.pte_encode = ivb_pte_encode;
  1727. else
  1728. gtt->base.pte_encode = snb_pte_encode;
  1729. } else {
  1730. dev_priv->gtt.gtt_probe = gen8_gmch_probe;
  1731. dev_priv->gtt.base.cleanup = gen6_gmch_remove;
  1732. }
  1733. ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
  1734. &gtt->mappable_base, &gtt->mappable_end);
  1735. if (ret)
  1736. return ret;
  1737. gtt->base.dev = dev;
  1738. /* GMADR is the PCI mmio aperture into the global GTT. */
  1739. DRM_INFO("Memory usable by graphics device = %zdM\n",
  1740. gtt->base.total >> 20);
  1741. DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
  1742. DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
  1743. #ifdef CONFIG_INTEL_IOMMU
  1744. if (intel_iommu_gfx_mapped)
  1745. DRM_INFO("VT-d active for gfx access\n");
  1746. #endif
  1747. /*
  1748. * i915.enable_ppgtt is read-only, so do an early pass to validate the
  1749. * user's requested state against the hardware/driver capabilities. We
  1750. * do this now so that we can print out any log messages once rather
  1751. * than every time we check intel_enable_ppgtt().
  1752. */
  1753. i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
  1754. DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
  1755. return 0;
  1756. }
  1757. static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
  1758. struct i915_address_space *vm)
  1759. {
  1760. struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
  1761. if (vma == NULL)
  1762. return ERR_PTR(-ENOMEM);
  1763. INIT_LIST_HEAD(&vma->vma_link);
  1764. INIT_LIST_HEAD(&vma->mm_list);
  1765. INIT_LIST_HEAD(&vma->exec_list);
  1766. vma->vm = vm;
  1767. vma->obj = obj;
  1768. switch (INTEL_INFO(vm->dev)->gen) {
  1769. case 8:
  1770. case 7:
  1771. case 6:
  1772. if (i915_is_ggtt(vm)) {
  1773. vma->unbind_vma = ggtt_unbind_vma;
  1774. vma->bind_vma = ggtt_bind_vma;
  1775. } else {
  1776. vma->unbind_vma = ppgtt_unbind_vma;
  1777. vma->bind_vma = ppgtt_bind_vma;
  1778. }
  1779. break;
  1780. case 5:
  1781. case 4:
  1782. case 3:
  1783. case 2:
  1784. BUG_ON(!i915_is_ggtt(vm));
  1785. vma->unbind_vma = i915_ggtt_unbind_vma;
  1786. vma->bind_vma = i915_ggtt_bind_vma;
  1787. break;
  1788. default:
  1789. BUG();
  1790. }
  1791. /* Keep GGTT vmas first to make debug easier */
  1792. if (i915_is_ggtt(vm))
  1793. list_add(&vma->vma_link, &obj->vma_list);
  1794. else
  1795. list_add_tail(&vma->vma_link, &obj->vma_list);
  1796. return vma;
  1797. }
  1798. struct i915_vma *
  1799. i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
  1800. struct i915_address_space *vm)
  1801. {
  1802. struct i915_vma *vma;
  1803. vma = i915_gem_obj_to_vma(obj, vm);
  1804. if (!vma)
  1805. vma = __i915_gem_vma_create(obj, vm);
  1806. return vma;
  1807. }