i915_gem.c 133 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include <drm/drmP.h>
  28. #include <drm/drm_vma_manager.h>
  29. #include <drm/i915_drm.h>
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/oom.h>
  34. #include <linux/shmem_fs.h>
  35. #include <linux/slab.h>
  36. #include <linux/swap.h>
  37. #include <linux/pci.h>
  38. #include <linux/dma-buf.h>
  39. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  40. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
  41. bool force);
  42. static __must_check int
  43. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  44. bool readonly);
  45. static void
  46. i915_gem_object_retire(struct drm_i915_gem_object *obj);
  47. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48. struct drm_i915_gem_object *obj);
  49. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50. struct drm_i915_fence_reg *fence,
  51. bool enable);
  52. static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
  53. struct shrink_control *sc);
  54. static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
  55. struct shrink_control *sc);
  56. static int i915_gem_shrinker_oom(struct notifier_block *nb,
  57. unsigned long event,
  58. void *ptr);
  59. static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  60. static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  61. static bool cpu_cache_is_coherent(struct drm_device *dev,
  62. enum i915_cache_level level)
  63. {
  64. return HAS_LLC(dev) || level != I915_CACHE_NONE;
  65. }
  66. static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  67. {
  68. if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  69. return true;
  70. return obj->pin_display;
  71. }
  72. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  73. {
  74. if (obj->tiling_mode)
  75. i915_gem_release_mmap(obj);
  76. /* As we do not have an associated fence register, we will force
  77. * a tiling change if we ever need to acquire one.
  78. */
  79. obj->fence_dirty = false;
  80. obj->fence_reg = I915_FENCE_REG_NONE;
  81. }
  82. /* some bookkeeping */
  83. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  84. size_t size)
  85. {
  86. spin_lock(&dev_priv->mm.object_stat_lock);
  87. dev_priv->mm.object_count++;
  88. dev_priv->mm.object_memory += size;
  89. spin_unlock(&dev_priv->mm.object_stat_lock);
  90. }
  91. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  92. size_t size)
  93. {
  94. spin_lock(&dev_priv->mm.object_stat_lock);
  95. dev_priv->mm.object_count--;
  96. dev_priv->mm.object_memory -= size;
  97. spin_unlock(&dev_priv->mm.object_stat_lock);
  98. }
  99. static int
  100. i915_gem_wait_for_error(struct i915_gpu_error *error)
  101. {
  102. int ret;
  103. #define EXIT_COND (!i915_reset_in_progress(error) || \
  104. i915_terminally_wedged(error))
  105. if (EXIT_COND)
  106. return 0;
  107. /*
  108. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  109. * userspace. If it takes that long something really bad is going on and
  110. * we should simply try to bail out and fail as gracefully as possible.
  111. */
  112. ret = wait_event_interruptible_timeout(error->reset_queue,
  113. EXIT_COND,
  114. 10*HZ);
  115. if (ret == 0) {
  116. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  117. return -EIO;
  118. } else if (ret < 0) {
  119. return ret;
  120. }
  121. #undef EXIT_COND
  122. return 0;
  123. }
  124. int i915_mutex_lock_interruptible(struct drm_device *dev)
  125. {
  126. struct drm_i915_private *dev_priv = dev->dev_private;
  127. int ret;
  128. ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
  129. if (ret)
  130. return ret;
  131. ret = mutex_lock_interruptible(&dev->struct_mutex);
  132. if (ret)
  133. return ret;
  134. WARN_ON(i915_verify_lists(dev));
  135. return 0;
  136. }
  137. static inline bool
  138. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  139. {
  140. return i915_gem_obj_bound_any(obj) && !obj->active;
  141. }
  142. int
  143. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  144. struct drm_file *file)
  145. {
  146. struct drm_i915_private *dev_priv = dev->dev_private;
  147. struct drm_i915_gem_init *args = data;
  148. if (drm_core_check_feature(dev, DRIVER_MODESET))
  149. return -ENODEV;
  150. if (args->gtt_start >= args->gtt_end ||
  151. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  152. return -EINVAL;
  153. /* GEM with user mode setting was never supported on ilk and later. */
  154. if (INTEL_INFO(dev)->gen >= 5)
  155. return -ENODEV;
  156. mutex_lock(&dev->struct_mutex);
  157. i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
  158. args->gtt_end);
  159. dev_priv->gtt.mappable_end = args->gtt_end;
  160. mutex_unlock(&dev->struct_mutex);
  161. return 0;
  162. }
  163. int
  164. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  165. struct drm_file *file)
  166. {
  167. struct drm_i915_private *dev_priv = dev->dev_private;
  168. struct drm_i915_gem_get_aperture *args = data;
  169. struct drm_i915_gem_object *obj;
  170. size_t pinned;
  171. pinned = 0;
  172. mutex_lock(&dev->struct_mutex);
  173. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
  174. if (i915_gem_obj_is_pinned(obj))
  175. pinned += i915_gem_obj_ggtt_size(obj);
  176. mutex_unlock(&dev->struct_mutex);
  177. args->aper_size = dev_priv->gtt.base.total;
  178. args->aper_available_size = args->aper_size - pinned;
  179. return 0;
  180. }
  181. static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
  182. {
  183. drm_dma_handle_t *phys = obj->phys_handle;
  184. if (!phys)
  185. return;
  186. if (obj->madv == I915_MADV_WILLNEED) {
  187. struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
  188. char *vaddr = phys->vaddr;
  189. int i;
  190. for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
  191. struct page *page = shmem_read_mapping_page(mapping, i);
  192. if (!IS_ERR(page)) {
  193. char *dst = kmap_atomic(page);
  194. memcpy(dst, vaddr, PAGE_SIZE);
  195. drm_clflush_virt_range(dst, PAGE_SIZE);
  196. kunmap_atomic(dst);
  197. set_page_dirty(page);
  198. mark_page_accessed(page);
  199. page_cache_release(page);
  200. }
  201. vaddr += PAGE_SIZE;
  202. }
  203. i915_gem_chipset_flush(obj->base.dev);
  204. }
  205. #ifdef CONFIG_X86
  206. set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
  207. #endif
  208. drm_pci_free(obj->base.dev, phys);
  209. obj->phys_handle = NULL;
  210. }
  211. int
  212. i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
  213. int align)
  214. {
  215. drm_dma_handle_t *phys;
  216. struct address_space *mapping;
  217. char *vaddr;
  218. int i;
  219. if (obj->phys_handle) {
  220. if ((unsigned long)obj->phys_handle->vaddr & (align -1))
  221. return -EBUSY;
  222. return 0;
  223. }
  224. if (obj->madv != I915_MADV_WILLNEED)
  225. return -EFAULT;
  226. if (obj->base.filp == NULL)
  227. return -EINVAL;
  228. /* create a new object */
  229. phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
  230. if (!phys)
  231. return -ENOMEM;
  232. vaddr = phys->vaddr;
  233. #ifdef CONFIG_X86
  234. set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
  235. #endif
  236. mapping = file_inode(obj->base.filp)->i_mapping;
  237. for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
  238. struct page *page;
  239. char *src;
  240. page = shmem_read_mapping_page(mapping, i);
  241. if (IS_ERR(page)) {
  242. #ifdef CONFIG_X86
  243. set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
  244. #endif
  245. drm_pci_free(obj->base.dev, phys);
  246. return PTR_ERR(page);
  247. }
  248. src = kmap_atomic(page);
  249. memcpy(vaddr, src, PAGE_SIZE);
  250. kunmap_atomic(src);
  251. mark_page_accessed(page);
  252. page_cache_release(page);
  253. vaddr += PAGE_SIZE;
  254. }
  255. obj->phys_handle = phys;
  256. return 0;
  257. }
  258. static int
  259. i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
  260. struct drm_i915_gem_pwrite *args,
  261. struct drm_file *file_priv)
  262. {
  263. struct drm_device *dev = obj->base.dev;
  264. void *vaddr = obj->phys_handle->vaddr + args->offset;
  265. char __user *user_data = to_user_ptr(args->data_ptr);
  266. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  267. unsigned long unwritten;
  268. /* The physical object once assigned is fixed for the lifetime
  269. * of the obj, so we can safely drop the lock and continue
  270. * to access vaddr.
  271. */
  272. mutex_unlock(&dev->struct_mutex);
  273. unwritten = copy_from_user(vaddr, user_data, args->size);
  274. mutex_lock(&dev->struct_mutex);
  275. if (unwritten)
  276. return -EFAULT;
  277. }
  278. i915_gem_chipset_flush(dev);
  279. return 0;
  280. }
  281. void *i915_gem_object_alloc(struct drm_device *dev)
  282. {
  283. struct drm_i915_private *dev_priv = dev->dev_private;
  284. return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
  285. }
  286. void i915_gem_object_free(struct drm_i915_gem_object *obj)
  287. {
  288. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  289. kmem_cache_free(dev_priv->slab, obj);
  290. }
  291. static int
  292. i915_gem_create(struct drm_file *file,
  293. struct drm_device *dev,
  294. uint64_t size,
  295. uint32_t *handle_p)
  296. {
  297. struct drm_i915_gem_object *obj;
  298. int ret;
  299. u32 handle;
  300. size = roundup(size, PAGE_SIZE);
  301. if (size == 0)
  302. return -EINVAL;
  303. /* Allocate the new object */
  304. obj = i915_gem_alloc_object(dev, size);
  305. if (obj == NULL)
  306. return -ENOMEM;
  307. ret = drm_gem_handle_create(file, &obj->base, &handle);
  308. /* drop reference from allocate - handle holds it now */
  309. drm_gem_object_unreference_unlocked(&obj->base);
  310. if (ret)
  311. return ret;
  312. *handle_p = handle;
  313. return 0;
  314. }
  315. int
  316. i915_gem_dumb_create(struct drm_file *file,
  317. struct drm_device *dev,
  318. struct drm_mode_create_dumb *args)
  319. {
  320. /* have to work out size/pitch and return them */
  321. args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
  322. args->size = args->pitch * args->height;
  323. return i915_gem_create(file, dev,
  324. args->size, &args->handle);
  325. }
  326. /**
  327. * Creates a new mm object and returns a handle to it.
  328. */
  329. int
  330. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  331. struct drm_file *file)
  332. {
  333. struct drm_i915_gem_create *args = data;
  334. return i915_gem_create(file, dev,
  335. args->size, &args->handle);
  336. }
  337. static inline int
  338. __copy_to_user_swizzled(char __user *cpu_vaddr,
  339. const char *gpu_vaddr, int gpu_offset,
  340. int length)
  341. {
  342. int ret, cpu_offset = 0;
  343. while (length > 0) {
  344. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  345. int this_length = min(cacheline_end - gpu_offset, length);
  346. int swizzled_gpu_offset = gpu_offset ^ 64;
  347. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  348. gpu_vaddr + swizzled_gpu_offset,
  349. this_length);
  350. if (ret)
  351. return ret + length;
  352. cpu_offset += this_length;
  353. gpu_offset += this_length;
  354. length -= this_length;
  355. }
  356. return 0;
  357. }
  358. static inline int
  359. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  360. const char __user *cpu_vaddr,
  361. int length)
  362. {
  363. int ret, cpu_offset = 0;
  364. while (length > 0) {
  365. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  366. int this_length = min(cacheline_end - gpu_offset, length);
  367. int swizzled_gpu_offset = gpu_offset ^ 64;
  368. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  369. cpu_vaddr + cpu_offset,
  370. this_length);
  371. if (ret)
  372. return ret + length;
  373. cpu_offset += this_length;
  374. gpu_offset += this_length;
  375. length -= this_length;
  376. }
  377. return 0;
  378. }
  379. /*
  380. * Pins the specified object's pages and synchronizes the object with
  381. * GPU accesses. Sets needs_clflush to non-zero if the caller should
  382. * flush the object from the CPU cache.
  383. */
  384. int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
  385. int *needs_clflush)
  386. {
  387. int ret;
  388. *needs_clflush = 0;
  389. if (!obj->base.filp)
  390. return -EINVAL;
  391. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  392. /* If we're not in the cpu read domain, set ourself into the gtt
  393. * read domain and manually flush cachelines (if required). This
  394. * optimizes for the case when the gpu will dirty the data
  395. * anyway again before the next pread happens. */
  396. *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
  397. obj->cache_level);
  398. ret = i915_gem_object_wait_rendering(obj, true);
  399. if (ret)
  400. return ret;
  401. i915_gem_object_retire(obj);
  402. }
  403. ret = i915_gem_object_get_pages(obj);
  404. if (ret)
  405. return ret;
  406. i915_gem_object_pin_pages(obj);
  407. return ret;
  408. }
  409. /* Per-page copy function for the shmem pread fastpath.
  410. * Flushes invalid cachelines before reading the target if
  411. * needs_clflush is set. */
  412. static int
  413. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  414. char __user *user_data,
  415. bool page_do_bit17_swizzling, bool needs_clflush)
  416. {
  417. char *vaddr;
  418. int ret;
  419. if (unlikely(page_do_bit17_swizzling))
  420. return -EINVAL;
  421. vaddr = kmap_atomic(page);
  422. if (needs_clflush)
  423. drm_clflush_virt_range(vaddr + shmem_page_offset,
  424. page_length);
  425. ret = __copy_to_user_inatomic(user_data,
  426. vaddr + shmem_page_offset,
  427. page_length);
  428. kunmap_atomic(vaddr);
  429. return ret ? -EFAULT : 0;
  430. }
  431. static void
  432. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  433. bool swizzled)
  434. {
  435. if (unlikely(swizzled)) {
  436. unsigned long start = (unsigned long) addr;
  437. unsigned long end = (unsigned long) addr + length;
  438. /* For swizzling simply ensure that we always flush both
  439. * channels. Lame, but simple and it works. Swizzled
  440. * pwrite/pread is far from a hotpath - current userspace
  441. * doesn't use it at all. */
  442. start = round_down(start, 128);
  443. end = round_up(end, 128);
  444. drm_clflush_virt_range((void *)start, end - start);
  445. } else {
  446. drm_clflush_virt_range(addr, length);
  447. }
  448. }
  449. /* Only difference to the fast-path function is that this can handle bit17
  450. * and uses non-atomic copy and kmap functions. */
  451. static int
  452. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  453. char __user *user_data,
  454. bool page_do_bit17_swizzling, bool needs_clflush)
  455. {
  456. char *vaddr;
  457. int ret;
  458. vaddr = kmap(page);
  459. if (needs_clflush)
  460. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  461. page_length,
  462. page_do_bit17_swizzling);
  463. if (page_do_bit17_swizzling)
  464. ret = __copy_to_user_swizzled(user_data,
  465. vaddr, shmem_page_offset,
  466. page_length);
  467. else
  468. ret = __copy_to_user(user_data,
  469. vaddr + shmem_page_offset,
  470. page_length);
  471. kunmap(page);
  472. return ret ? - EFAULT : 0;
  473. }
  474. static int
  475. i915_gem_shmem_pread(struct drm_device *dev,
  476. struct drm_i915_gem_object *obj,
  477. struct drm_i915_gem_pread *args,
  478. struct drm_file *file)
  479. {
  480. char __user *user_data;
  481. ssize_t remain;
  482. loff_t offset;
  483. int shmem_page_offset, page_length, ret = 0;
  484. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  485. int prefaulted = 0;
  486. int needs_clflush = 0;
  487. struct sg_page_iter sg_iter;
  488. user_data = to_user_ptr(args->data_ptr);
  489. remain = args->size;
  490. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  491. ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
  492. if (ret)
  493. return ret;
  494. offset = args->offset;
  495. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
  496. offset >> PAGE_SHIFT) {
  497. struct page *page = sg_page_iter_page(&sg_iter);
  498. if (remain <= 0)
  499. break;
  500. /* Operation in this page
  501. *
  502. * shmem_page_offset = offset within page in shmem file
  503. * page_length = bytes to copy for this page
  504. */
  505. shmem_page_offset = offset_in_page(offset);
  506. page_length = remain;
  507. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  508. page_length = PAGE_SIZE - shmem_page_offset;
  509. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  510. (page_to_phys(page) & (1 << 17)) != 0;
  511. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  512. user_data, page_do_bit17_swizzling,
  513. needs_clflush);
  514. if (ret == 0)
  515. goto next_page;
  516. mutex_unlock(&dev->struct_mutex);
  517. if (likely(!i915.prefault_disable) && !prefaulted) {
  518. ret = fault_in_multipages_writeable(user_data, remain);
  519. /* Userspace is tricking us, but we've already clobbered
  520. * its pages with the prefault and promised to write the
  521. * data up to the first fault. Hence ignore any errors
  522. * and just continue. */
  523. (void)ret;
  524. prefaulted = 1;
  525. }
  526. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  527. user_data, page_do_bit17_swizzling,
  528. needs_clflush);
  529. mutex_lock(&dev->struct_mutex);
  530. if (ret)
  531. goto out;
  532. next_page:
  533. remain -= page_length;
  534. user_data += page_length;
  535. offset += page_length;
  536. }
  537. out:
  538. i915_gem_object_unpin_pages(obj);
  539. return ret;
  540. }
  541. /**
  542. * Reads data from the object referenced by handle.
  543. *
  544. * On error, the contents of *data are undefined.
  545. */
  546. int
  547. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  548. struct drm_file *file)
  549. {
  550. struct drm_i915_gem_pread *args = data;
  551. struct drm_i915_gem_object *obj;
  552. int ret = 0;
  553. if (args->size == 0)
  554. return 0;
  555. if (!access_ok(VERIFY_WRITE,
  556. to_user_ptr(args->data_ptr),
  557. args->size))
  558. return -EFAULT;
  559. ret = i915_mutex_lock_interruptible(dev);
  560. if (ret)
  561. return ret;
  562. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  563. if (&obj->base == NULL) {
  564. ret = -ENOENT;
  565. goto unlock;
  566. }
  567. /* Bounds check source. */
  568. if (args->offset > obj->base.size ||
  569. args->size > obj->base.size - args->offset) {
  570. ret = -EINVAL;
  571. goto out;
  572. }
  573. /* prime objects have no backing filp to GEM pread/pwrite
  574. * pages from.
  575. */
  576. if (!obj->base.filp) {
  577. ret = -EINVAL;
  578. goto out;
  579. }
  580. trace_i915_gem_object_pread(obj, args->offset, args->size);
  581. ret = i915_gem_shmem_pread(dev, obj, args, file);
  582. out:
  583. drm_gem_object_unreference(&obj->base);
  584. unlock:
  585. mutex_unlock(&dev->struct_mutex);
  586. return ret;
  587. }
  588. /* This is the fast write path which cannot handle
  589. * page faults in the source data
  590. */
  591. static inline int
  592. fast_user_write(struct io_mapping *mapping,
  593. loff_t page_base, int page_offset,
  594. char __user *user_data,
  595. int length)
  596. {
  597. void __iomem *vaddr_atomic;
  598. void *vaddr;
  599. unsigned long unwritten;
  600. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  601. /* We can use the cpu mem copy function because this is X86. */
  602. vaddr = (void __force*)vaddr_atomic + page_offset;
  603. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  604. user_data, length);
  605. io_mapping_unmap_atomic(vaddr_atomic);
  606. return unwritten;
  607. }
  608. /**
  609. * This is the fast pwrite path, where we copy the data directly from the
  610. * user into the GTT, uncached.
  611. */
  612. static int
  613. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  614. struct drm_i915_gem_object *obj,
  615. struct drm_i915_gem_pwrite *args,
  616. struct drm_file *file)
  617. {
  618. struct drm_i915_private *dev_priv = dev->dev_private;
  619. ssize_t remain;
  620. loff_t offset, page_base;
  621. char __user *user_data;
  622. int page_offset, page_length, ret;
  623. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
  624. if (ret)
  625. goto out;
  626. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  627. if (ret)
  628. goto out_unpin;
  629. ret = i915_gem_object_put_fence(obj);
  630. if (ret)
  631. goto out_unpin;
  632. user_data = to_user_ptr(args->data_ptr);
  633. remain = args->size;
  634. offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
  635. while (remain > 0) {
  636. /* Operation in this page
  637. *
  638. * page_base = page offset within aperture
  639. * page_offset = offset within page
  640. * page_length = bytes to copy for this page
  641. */
  642. page_base = offset & PAGE_MASK;
  643. page_offset = offset_in_page(offset);
  644. page_length = remain;
  645. if ((page_offset + remain) > PAGE_SIZE)
  646. page_length = PAGE_SIZE - page_offset;
  647. /* If we get a fault while copying data, then (presumably) our
  648. * source page isn't available. Return the error and we'll
  649. * retry in the slow path.
  650. */
  651. if (fast_user_write(dev_priv->gtt.mappable, page_base,
  652. page_offset, user_data, page_length)) {
  653. ret = -EFAULT;
  654. goto out_unpin;
  655. }
  656. remain -= page_length;
  657. user_data += page_length;
  658. offset += page_length;
  659. }
  660. out_unpin:
  661. i915_gem_object_ggtt_unpin(obj);
  662. out:
  663. return ret;
  664. }
  665. /* Per-page copy function for the shmem pwrite fastpath.
  666. * Flushes invalid cachelines before writing to the target if
  667. * needs_clflush_before is set and flushes out any written cachelines after
  668. * writing if needs_clflush is set. */
  669. static int
  670. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  671. char __user *user_data,
  672. bool page_do_bit17_swizzling,
  673. bool needs_clflush_before,
  674. bool needs_clflush_after)
  675. {
  676. char *vaddr;
  677. int ret;
  678. if (unlikely(page_do_bit17_swizzling))
  679. return -EINVAL;
  680. vaddr = kmap_atomic(page);
  681. if (needs_clflush_before)
  682. drm_clflush_virt_range(vaddr + shmem_page_offset,
  683. page_length);
  684. ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
  685. user_data, page_length);
  686. if (needs_clflush_after)
  687. drm_clflush_virt_range(vaddr + shmem_page_offset,
  688. page_length);
  689. kunmap_atomic(vaddr);
  690. return ret ? -EFAULT : 0;
  691. }
  692. /* Only difference to the fast-path function is that this can handle bit17
  693. * and uses non-atomic copy and kmap functions. */
  694. static int
  695. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  696. char __user *user_data,
  697. bool page_do_bit17_swizzling,
  698. bool needs_clflush_before,
  699. bool needs_clflush_after)
  700. {
  701. char *vaddr;
  702. int ret;
  703. vaddr = kmap(page);
  704. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  705. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  706. page_length,
  707. page_do_bit17_swizzling);
  708. if (page_do_bit17_swizzling)
  709. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  710. user_data,
  711. page_length);
  712. else
  713. ret = __copy_from_user(vaddr + shmem_page_offset,
  714. user_data,
  715. page_length);
  716. if (needs_clflush_after)
  717. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  718. page_length,
  719. page_do_bit17_swizzling);
  720. kunmap(page);
  721. return ret ? -EFAULT : 0;
  722. }
  723. static int
  724. i915_gem_shmem_pwrite(struct drm_device *dev,
  725. struct drm_i915_gem_object *obj,
  726. struct drm_i915_gem_pwrite *args,
  727. struct drm_file *file)
  728. {
  729. ssize_t remain;
  730. loff_t offset;
  731. char __user *user_data;
  732. int shmem_page_offset, page_length, ret = 0;
  733. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  734. int hit_slowpath = 0;
  735. int needs_clflush_after = 0;
  736. int needs_clflush_before = 0;
  737. struct sg_page_iter sg_iter;
  738. user_data = to_user_ptr(args->data_ptr);
  739. remain = args->size;
  740. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  741. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  742. /* If we're not in the cpu write domain, set ourself into the gtt
  743. * write domain and manually flush cachelines (if required). This
  744. * optimizes for the case when the gpu will use the data
  745. * right away and we therefore have to clflush anyway. */
  746. needs_clflush_after = cpu_write_needs_clflush(obj);
  747. ret = i915_gem_object_wait_rendering(obj, false);
  748. if (ret)
  749. return ret;
  750. i915_gem_object_retire(obj);
  751. }
  752. /* Same trick applies to invalidate partially written cachelines read
  753. * before writing. */
  754. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  755. needs_clflush_before =
  756. !cpu_cache_is_coherent(dev, obj->cache_level);
  757. ret = i915_gem_object_get_pages(obj);
  758. if (ret)
  759. return ret;
  760. i915_gem_object_pin_pages(obj);
  761. offset = args->offset;
  762. obj->dirty = 1;
  763. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
  764. offset >> PAGE_SHIFT) {
  765. struct page *page = sg_page_iter_page(&sg_iter);
  766. int partial_cacheline_write;
  767. if (remain <= 0)
  768. break;
  769. /* Operation in this page
  770. *
  771. * shmem_page_offset = offset within page in shmem file
  772. * page_length = bytes to copy for this page
  773. */
  774. shmem_page_offset = offset_in_page(offset);
  775. page_length = remain;
  776. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  777. page_length = PAGE_SIZE - shmem_page_offset;
  778. /* If we don't overwrite a cacheline completely we need to be
  779. * careful to have up-to-date data by first clflushing. Don't
  780. * overcomplicate things and flush the entire patch. */
  781. partial_cacheline_write = needs_clflush_before &&
  782. ((shmem_page_offset | page_length)
  783. & (boot_cpu_data.x86_clflush_size - 1));
  784. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  785. (page_to_phys(page) & (1 << 17)) != 0;
  786. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  787. user_data, page_do_bit17_swizzling,
  788. partial_cacheline_write,
  789. needs_clflush_after);
  790. if (ret == 0)
  791. goto next_page;
  792. hit_slowpath = 1;
  793. mutex_unlock(&dev->struct_mutex);
  794. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  795. user_data, page_do_bit17_swizzling,
  796. partial_cacheline_write,
  797. needs_clflush_after);
  798. mutex_lock(&dev->struct_mutex);
  799. if (ret)
  800. goto out;
  801. next_page:
  802. remain -= page_length;
  803. user_data += page_length;
  804. offset += page_length;
  805. }
  806. out:
  807. i915_gem_object_unpin_pages(obj);
  808. if (hit_slowpath) {
  809. /*
  810. * Fixup: Flush cpu caches in case we didn't flush the dirty
  811. * cachelines in-line while writing and the object moved
  812. * out of the cpu write domain while we've dropped the lock.
  813. */
  814. if (!needs_clflush_after &&
  815. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  816. if (i915_gem_clflush_object(obj, obj->pin_display))
  817. i915_gem_chipset_flush(dev);
  818. }
  819. }
  820. if (needs_clflush_after)
  821. i915_gem_chipset_flush(dev);
  822. return ret;
  823. }
  824. /**
  825. * Writes data to the object referenced by handle.
  826. *
  827. * On error, the contents of the buffer that were to be modified are undefined.
  828. */
  829. int
  830. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  831. struct drm_file *file)
  832. {
  833. struct drm_i915_gem_pwrite *args = data;
  834. struct drm_i915_gem_object *obj;
  835. int ret;
  836. if (args->size == 0)
  837. return 0;
  838. if (!access_ok(VERIFY_READ,
  839. to_user_ptr(args->data_ptr),
  840. args->size))
  841. return -EFAULT;
  842. if (likely(!i915.prefault_disable)) {
  843. ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
  844. args->size);
  845. if (ret)
  846. return -EFAULT;
  847. }
  848. ret = i915_mutex_lock_interruptible(dev);
  849. if (ret)
  850. return ret;
  851. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  852. if (&obj->base == NULL) {
  853. ret = -ENOENT;
  854. goto unlock;
  855. }
  856. /* Bounds check destination. */
  857. if (args->offset > obj->base.size ||
  858. args->size > obj->base.size - args->offset) {
  859. ret = -EINVAL;
  860. goto out;
  861. }
  862. /* prime objects have no backing filp to GEM pread/pwrite
  863. * pages from.
  864. */
  865. if (!obj->base.filp) {
  866. ret = -EINVAL;
  867. goto out;
  868. }
  869. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  870. ret = -EFAULT;
  871. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  872. * it would end up going through the fenced access, and we'll get
  873. * different detiling behavior between reading and writing.
  874. * pread/pwrite currently are reading and writing from the CPU
  875. * perspective, requiring manual detiling by the client.
  876. */
  877. if (obj->phys_handle) {
  878. ret = i915_gem_phys_pwrite(obj, args, file);
  879. goto out;
  880. }
  881. if (obj->tiling_mode == I915_TILING_NONE &&
  882. obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
  883. cpu_write_needs_clflush(obj)) {
  884. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  885. /* Note that the gtt paths might fail with non-page-backed user
  886. * pointers (e.g. gtt mappings when moving data between
  887. * textures). Fallback to the shmem path in that case. */
  888. }
  889. if (ret == -EFAULT || ret == -ENOSPC)
  890. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  891. out:
  892. drm_gem_object_unreference(&obj->base);
  893. unlock:
  894. mutex_unlock(&dev->struct_mutex);
  895. return ret;
  896. }
  897. int
  898. i915_gem_check_wedge(struct i915_gpu_error *error,
  899. bool interruptible)
  900. {
  901. if (i915_reset_in_progress(error)) {
  902. /* Non-interruptible callers can't handle -EAGAIN, hence return
  903. * -EIO unconditionally for these. */
  904. if (!interruptible)
  905. return -EIO;
  906. /* Recovery complete, but the reset failed ... */
  907. if (i915_terminally_wedged(error))
  908. return -EIO;
  909. return -EAGAIN;
  910. }
  911. return 0;
  912. }
  913. /*
  914. * Compare seqno against outstanding lazy request. Emit a request if they are
  915. * equal.
  916. */
  917. int
  918. i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
  919. {
  920. int ret;
  921. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  922. ret = 0;
  923. if (seqno == ring->outstanding_lazy_seqno)
  924. ret = i915_add_request(ring, NULL);
  925. return ret;
  926. }
  927. static void fake_irq(unsigned long data)
  928. {
  929. wake_up_process((struct task_struct *)data);
  930. }
  931. static bool missed_irq(struct drm_i915_private *dev_priv,
  932. struct intel_engine_cs *ring)
  933. {
  934. return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
  935. }
  936. static bool can_wait_boost(struct drm_i915_file_private *file_priv)
  937. {
  938. if (file_priv == NULL)
  939. return true;
  940. return !atomic_xchg(&file_priv->rps_wait_boost, true);
  941. }
  942. /**
  943. * __wait_seqno - wait until execution of seqno has finished
  944. * @ring: the ring expected to report seqno
  945. * @seqno: duh!
  946. * @reset_counter: reset sequence associated with the given seqno
  947. * @interruptible: do an interruptible wait (normally yes)
  948. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  949. *
  950. * Note: It is of utmost importance that the passed in seqno and reset_counter
  951. * values have been read by the caller in an smp safe manner. Where read-side
  952. * locks are involved, it is sufficient to read the reset_counter before
  953. * unlocking the lock that protects the seqno. For lockless tricks, the
  954. * reset_counter _must_ be read before, and an appropriate smp_rmb must be
  955. * inserted.
  956. *
  957. * Returns 0 if the seqno was found within the alloted time. Else returns the
  958. * errno with remaining time filled in timeout argument.
  959. */
  960. static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
  961. unsigned reset_counter,
  962. bool interruptible,
  963. s64 *timeout,
  964. struct drm_i915_file_private *file_priv)
  965. {
  966. struct drm_device *dev = ring->dev;
  967. struct drm_i915_private *dev_priv = dev->dev_private;
  968. const bool irq_test_in_progress =
  969. ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
  970. DEFINE_WAIT(wait);
  971. unsigned long timeout_expire;
  972. s64 before, now;
  973. int ret;
  974. WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
  975. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  976. return 0;
  977. timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
  978. if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
  979. gen6_rps_boost(dev_priv);
  980. if (file_priv)
  981. mod_delayed_work(dev_priv->wq,
  982. &file_priv->mm.idle_work,
  983. msecs_to_jiffies(100));
  984. }
  985. if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
  986. return -ENODEV;
  987. /* Record current time in case interrupted by signal, or wedged */
  988. trace_i915_gem_request_wait_begin(ring, seqno);
  989. before = ktime_get_raw_ns();
  990. for (;;) {
  991. struct timer_list timer;
  992. prepare_to_wait(&ring->irq_queue, &wait,
  993. interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
  994. /* We need to check whether any gpu reset happened in between
  995. * the caller grabbing the seqno and now ... */
  996. if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
  997. /* ... but upgrade the -EAGAIN to an -EIO if the gpu
  998. * is truely gone. */
  999. ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
  1000. if (ret == 0)
  1001. ret = -EAGAIN;
  1002. break;
  1003. }
  1004. if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
  1005. ret = 0;
  1006. break;
  1007. }
  1008. if (interruptible && signal_pending(current)) {
  1009. ret = -ERESTARTSYS;
  1010. break;
  1011. }
  1012. if (timeout && time_after_eq(jiffies, timeout_expire)) {
  1013. ret = -ETIME;
  1014. break;
  1015. }
  1016. timer.function = NULL;
  1017. if (timeout || missed_irq(dev_priv, ring)) {
  1018. unsigned long expire;
  1019. setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
  1020. expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
  1021. mod_timer(&timer, expire);
  1022. }
  1023. io_schedule();
  1024. if (timer.function) {
  1025. del_singleshot_timer_sync(&timer);
  1026. destroy_timer_on_stack(&timer);
  1027. }
  1028. }
  1029. now = ktime_get_raw_ns();
  1030. trace_i915_gem_request_wait_end(ring, seqno);
  1031. if (!irq_test_in_progress)
  1032. ring->irq_put(ring);
  1033. finish_wait(&ring->irq_queue, &wait);
  1034. if (timeout) {
  1035. s64 tres = *timeout - (now - before);
  1036. *timeout = tres < 0 ? 0 : tres;
  1037. }
  1038. return ret;
  1039. }
  1040. /**
  1041. * Waits for a sequence number to be signaled, and cleans up the
  1042. * request and object lists appropriately for that event.
  1043. */
  1044. int
  1045. i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
  1046. {
  1047. struct drm_device *dev = ring->dev;
  1048. struct drm_i915_private *dev_priv = dev->dev_private;
  1049. bool interruptible = dev_priv->mm.interruptible;
  1050. int ret;
  1051. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  1052. BUG_ON(seqno == 0);
  1053. ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
  1054. if (ret)
  1055. return ret;
  1056. ret = i915_gem_check_olr(ring, seqno);
  1057. if (ret)
  1058. return ret;
  1059. return __wait_seqno(ring, seqno,
  1060. atomic_read(&dev_priv->gpu_error.reset_counter),
  1061. interruptible, NULL, NULL);
  1062. }
  1063. static int
  1064. i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
  1065. struct intel_engine_cs *ring)
  1066. {
  1067. if (!obj->active)
  1068. return 0;
  1069. /* Manually manage the write flush as we may have not yet
  1070. * retired the buffer.
  1071. *
  1072. * Note that the last_write_seqno is always the earlier of
  1073. * the two (read/write) seqno, so if we haved successfully waited,
  1074. * we know we have passed the last write.
  1075. */
  1076. obj->last_write_seqno = 0;
  1077. return 0;
  1078. }
  1079. /**
  1080. * Ensures that all rendering to the object has completed and the object is
  1081. * safe to unbind from the GTT or access from the CPU.
  1082. */
  1083. static __must_check int
  1084. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  1085. bool readonly)
  1086. {
  1087. struct intel_engine_cs *ring = obj->ring;
  1088. u32 seqno;
  1089. int ret;
  1090. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  1091. if (seqno == 0)
  1092. return 0;
  1093. ret = i915_wait_seqno(ring, seqno);
  1094. if (ret)
  1095. return ret;
  1096. return i915_gem_object_wait_rendering__tail(obj, ring);
  1097. }
  1098. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  1099. * as the object state may change during this call.
  1100. */
  1101. static __must_check int
  1102. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  1103. struct drm_i915_file_private *file_priv,
  1104. bool readonly)
  1105. {
  1106. struct drm_device *dev = obj->base.dev;
  1107. struct drm_i915_private *dev_priv = dev->dev_private;
  1108. struct intel_engine_cs *ring = obj->ring;
  1109. unsigned reset_counter;
  1110. u32 seqno;
  1111. int ret;
  1112. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  1113. BUG_ON(!dev_priv->mm.interruptible);
  1114. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  1115. if (seqno == 0)
  1116. return 0;
  1117. ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
  1118. if (ret)
  1119. return ret;
  1120. ret = i915_gem_check_olr(ring, seqno);
  1121. if (ret)
  1122. return ret;
  1123. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  1124. mutex_unlock(&dev->struct_mutex);
  1125. ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
  1126. mutex_lock(&dev->struct_mutex);
  1127. if (ret)
  1128. return ret;
  1129. return i915_gem_object_wait_rendering__tail(obj, ring);
  1130. }
  1131. /**
  1132. * Called when user space prepares to use an object with the CPU, either
  1133. * through the mmap ioctl's mapping or a GTT mapping.
  1134. */
  1135. int
  1136. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  1137. struct drm_file *file)
  1138. {
  1139. struct drm_i915_gem_set_domain *args = data;
  1140. struct drm_i915_gem_object *obj;
  1141. uint32_t read_domains = args->read_domains;
  1142. uint32_t write_domain = args->write_domain;
  1143. int ret;
  1144. /* Only handle setting domains to types used by the CPU. */
  1145. if (write_domain & I915_GEM_GPU_DOMAINS)
  1146. return -EINVAL;
  1147. if (read_domains & I915_GEM_GPU_DOMAINS)
  1148. return -EINVAL;
  1149. /* Having something in the write domain implies it's in the read
  1150. * domain, and only that read domain. Enforce that in the request.
  1151. */
  1152. if (write_domain != 0 && read_domains != write_domain)
  1153. return -EINVAL;
  1154. ret = i915_mutex_lock_interruptible(dev);
  1155. if (ret)
  1156. return ret;
  1157. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1158. if (&obj->base == NULL) {
  1159. ret = -ENOENT;
  1160. goto unlock;
  1161. }
  1162. /* Try to flush the object off the GPU without holding the lock.
  1163. * We will repeat the flush holding the lock in the normal manner
  1164. * to catch cases where we are gazumped.
  1165. */
  1166. ret = i915_gem_object_wait_rendering__nonblocking(obj,
  1167. file->driver_priv,
  1168. !write_domain);
  1169. if (ret)
  1170. goto unref;
  1171. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1172. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1173. /* Silently promote "you're not bound, there was nothing to do"
  1174. * to success, since the client was just asking us to
  1175. * make sure everything was done.
  1176. */
  1177. if (ret == -EINVAL)
  1178. ret = 0;
  1179. } else {
  1180. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1181. }
  1182. unref:
  1183. drm_gem_object_unreference(&obj->base);
  1184. unlock:
  1185. mutex_unlock(&dev->struct_mutex);
  1186. return ret;
  1187. }
  1188. /**
  1189. * Called when user space has done writes to this buffer
  1190. */
  1191. int
  1192. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1193. struct drm_file *file)
  1194. {
  1195. struct drm_i915_gem_sw_finish *args = data;
  1196. struct drm_i915_gem_object *obj;
  1197. int ret = 0;
  1198. ret = i915_mutex_lock_interruptible(dev);
  1199. if (ret)
  1200. return ret;
  1201. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1202. if (&obj->base == NULL) {
  1203. ret = -ENOENT;
  1204. goto unlock;
  1205. }
  1206. /* Pinned buffers may be scanout, so flush the cache */
  1207. if (obj->pin_display)
  1208. i915_gem_object_flush_cpu_write_domain(obj, true);
  1209. drm_gem_object_unreference(&obj->base);
  1210. unlock:
  1211. mutex_unlock(&dev->struct_mutex);
  1212. return ret;
  1213. }
  1214. /**
  1215. * Maps the contents of an object, returning the address it is mapped
  1216. * into.
  1217. *
  1218. * While the mapping holds a reference on the contents of the object, it doesn't
  1219. * imply a ref on the object itself.
  1220. */
  1221. int
  1222. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1223. struct drm_file *file)
  1224. {
  1225. struct drm_i915_gem_mmap *args = data;
  1226. struct drm_gem_object *obj;
  1227. unsigned long addr;
  1228. obj = drm_gem_object_lookup(dev, file, args->handle);
  1229. if (obj == NULL)
  1230. return -ENOENT;
  1231. /* prime objects have no backing filp to GEM mmap
  1232. * pages from.
  1233. */
  1234. if (!obj->filp) {
  1235. drm_gem_object_unreference_unlocked(obj);
  1236. return -EINVAL;
  1237. }
  1238. addr = vm_mmap(obj->filp, 0, args->size,
  1239. PROT_READ | PROT_WRITE, MAP_SHARED,
  1240. args->offset);
  1241. drm_gem_object_unreference_unlocked(obj);
  1242. if (IS_ERR((void *)addr))
  1243. return addr;
  1244. args->addr_ptr = (uint64_t) addr;
  1245. return 0;
  1246. }
  1247. /**
  1248. * i915_gem_fault - fault a page into the GTT
  1249. * vma: VMA in question
  1250. * vmf: fault info
  1251. *
  1252. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1253. * from userspace. The fault handler takes care of binding the object to
  1254. * the GTT (if needed), allocating and programming a fence register (again,
  1255. * only if needed based on whether the old reg is still valid or the object
  1256. * is tiled) and inserting a new PTE into the faulting process.
  1257. *
  1258. * Note that the faulting process may involve evicting existing objects
  1259. * from the GTT and/or fence registers to make room. So performance may
  1260. * suffer if the GTT working set is large or there are few fence registers
  1261. * left.
  1262. */
  1263. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1264. {
  1265. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1266. struct drm_device *dev = obj->base.dev;
  1267. struct drm_i915_private *dev_priv = dev->dev_private;
  1268. pgoff_t page_offset;
  1269. unsigned long pfn;
  1270. int ret = 0;
  1271. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1272. intel_runtime_pm_get(dev_priv);
  1273. /* We don't use vmf->pgoff since that has the fake offset */
  1274. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1275. PAGE_SHIFT;
  1276. ret = i915_mutex_lock_interruptible(dev);
  1277. if (ret)
  1278. goto out;
  1279. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1280. /* Try to flush the object off the GPU first without holding the lock.
  1281. * Upon reacquiring the lock, we will perform our sanity checks and then
  1282. * repeat the flush holding the lock in the normal manner to catch cases
  1283. * where we are gazumped.
  1284. */
  1285. ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
  1286. if (ret)
  1287. goto unlock;
  1288. /* Access to snoopable pages through the GTT is incoherent. */
  1289. if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
  1290. ret = -EFAULT;
  1291. goto unlock;
  1292. }
  1293. /* Now bind it into the GTT if needed */
  1294. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
  1295. if (ret)
  1296. goto unlock;
  1297. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1298. if (ret)
  1299. goto unpin;
  1300. ret = i915_gem_object_get_fence(obj);
  1301. if (ret)
  1302. goto unpin;
  1303. /* Finally, remap it using the new GTT offset */
  1304. pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
  1305. pfn >>= PAGE_SHIFT;
  1306. if (!obj->fault_mappable) {
  1307. unsigned long size = min_t(unsigned long,
  1308. vma->vm_end - vma->vm_start,
  1309. obj->base.size);
  1310. int i;
  1311. for (i = 0; i < size >> PAGE_SHIFT; i++) {
  1312. ret = vm_insert_pfn(vma,
  1313. (unsigned long)vma->vm_start + i * PAGE_SIZE,
  1314. pfn + i);
  1315. if (ret)
  1316. break;
  1317. }
  1318. obj->fault_mappable = true;
  1319. } else
  1320. ret = vm_insert_pfn(vma,
  1321. (unsigned long)vmf->virtual_address,
  1322. pfn + page_offset);
  1323. unpin:
  1324. i915_gem_object_ggtt_unpin(obj);
  1325. unlock:
  1326. mutex_unlock(&dev->struct_mutex);
  1327. out:
  1328. switch (ret) {
  1329. case -EIO:
  1330. /*
  1331. * We eat errors when the gpu is terminally wedged to avoid
  1332. * userspace unduly crashing (gl has no provisions for mmaps to
  1333. * fail). But any other -EIO isn't ours (e.g. swap in failure)
  1334. * and so needs to be reported.
  1335. */
  1336. if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
  1337. ret = VM_FAULT_SIGBUS;
  1338. break;
  1339. }
  1340. case -EAGAIN:
  1341. /*
  1342. * EAGAIN means the gpu is hung and we'll wait for the error
  1343. * handler to reset everything when re-faulting in
  1344. * i915_mutex_lock_interruptible.
  1345. */
  1346. case 0:
  1347. case -ERESTARTSYS:
  1348. case -EINTR:
  1349. case -EBUSY:
  1350. /*
  1351. * EBUSY is ok: this just means that another thread
  1352. * already did the job.
  1353. */
  1354. ret = VM_FAULT_NOPAGE;
  1355. break;
  1356. case -ENOMEM:
  1357. ret = VM_FAULT_OOM;
  1358. break;
  1359. case -ENOSPC:
  1360. case -EFAULT:
  1361. ret = VM_FAULT_SIGBUS;
  1362. break;
  1363. default:
  1364. WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
  1365. ret = VM_FAULT_SIGBUS;
  1366. break;
  1367. }
  1368. intel_runtime_pm_put(dev_priv);
  1369. return ret;
  1370. }
  1371. /**
  1372. * i915_gem_release_mmap - remove physical page mappings
  1373. * @obj: obj in question
  1374. *
  1375. * Preserve the reservation of the mmapping with the DRM core code, but
  1376. * relinquish ownership of the pages back to the system.
  1377. *
  1378. * It is vital that we remove the page mapping if we have mapped a tiled
  1379. * object through the GTT and then lose the fence register due to
  1380. * resource pressure. Similarly if the object has been moved out of the
  1381. * aperture, than pages mapped into userspace must be revoked. Removing the
  1382. * mapping will then trigger a page fault on the next user access, allowing
  1383. * fixup by i915_gem_fault().
  1384. */
  1385. void
  1386. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1387. {
  1388. if (!obj->fault_mappable)
  1389. return;
  1390. drm_vma_node_unmap(&obj->base.vma_node,
  1391. obj->base.dev->anon_inode->i_mapping);
  1392. obj->fault_mappable = false;
  1393. }
  1394. void
  1395. i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
  1396. {
  1397. struct drm_i915_gem_object *obj;
  1398. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
  1399. i915_gem_release_mmap(obj);
  1400. }
  1401. uint32_t
  1402. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1403. {
  1404. uint32_t gtt_size;
  1405. if (INTEL_INFO(dev)->gen >= 4 ||
  1406. tiling_mode == I915_TILING_NONE)
  1407. return size;
  1408. /* Previous chips need a power-of-two fence region when tiling */
  1409. if (INTEL_INFO(dev)->gen == 3)
  1410. gtt_size = 1024*1024;
  1411. else
  1412. gtt_size = 512*1024;
  1413. while (gtt_size < size)
  1414. gtt_size <<= 1;
  1415. return gtt_size;
  1416. }
  1417. /**
  1418. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1419. * @obj: object to check
  1420. *
  1421. * Return the required GTT alignment for an object, taking into account
  1422. * potential fence register mapping.
  1423. */
  1424. uint32_t
  1425. i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
  1426. int tiling_mode, bool fenced)
  1427. {
  1428. /*
  1429. * Minimum alignment is 4k (GTT page size), but might be greater
  1430. * if a fence register is needed for the object.
  1431. */
  1432. if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
  1433. tiling_mode == I915_TILING_NONE)
  1434. return 4096;
  1435. /*
  1436. * Previous chips need to be aligned to the size of the smallest
  1437. * fence register that can contain the object.
  1438. */
  1439. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1440. }
  1441. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1442. {
  1443. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1444. int ret;
  1445. if (drm_vma_node_has_offset(&obj->base.vma_node))
  1446. return 0;
  1447. dev_priv->mm.shrinker_no_lock_stealing = true;
  1448. ret = drm_gem_create_mmap_offset(&obj->base);
  1449. if (ret != -ENOSPC)
  1450. goto out;
  1451. /* Badly fragmented mmap space? The only way we can recover
  1452. * space is by destroying unwanted objects. We can't randomly release
  1453. * mmap_offsets as userspace expects them to be persistent for the
  1454. * lifetime of the objects. The closest we can is to release the
  1455. * offsets on purgeable objects by truncating it and marking it purged,
  1456. * which prevents userspace from ever using that object again.
  1457. */
  1458. i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
  1459. ret = drm_gem_create_mmap_offset(&obj->base);
  1460. if (ret != -ENOSPC)
  1461. goto out;
  1462. i915_gem_shrink_all(dev_priv);
  1463. ret = drm_gem_create_mmap_offset(&obj->base);
  1464. out:
  1465. dev_priv->mm.shrinker_no_lock_stealing = false;
  1466. return ret;
  1467. }
  1468. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1469. {
  1470. drm_gem_free_mmap_offset(&obj->base);
  1471. }
  1472. int
  1473. i915_gem_mmap_gtt(struct drm_file *file,
  1474. struct drm_device *dev,
  1475. uint32_t handle,
  1476. uint64_t *offset)
  1477. {
  1478. struct drm_i915_private *dev_priv = dev->dev_private;
  1479. struct drm_i915_gem_object *obj;
  1480. int ret;
  1481. ret = i915_mutex_lock_interruptible(dev);
  1482. if (ret)
  1483. return ret;
  1484. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1485. if (&obj->base == NULL) {
  1486. ret = -ENOENT;
  1487. goto unlock;
  1488. }
  1489. if (obj->base.size > dev_priv->gtt.mappable_end) {
  1490. ret = -E2BIG;
  1491. goto out;
  1492. }
  1493. if (obj->madv != I915_MADV_WILLNEED) {
  1494. DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
  1495. ret = -EFAULT;
  1496. goto out;
  1497. }
  1498. ret = i915_gem_object_create_mmap_offset(obj);
  1499. if (ret)
  1500. goto out;
  1501. *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
  1502. out:
  1503. drm_gem_object_unreference(&obj->base);
  1504. unlock:
  1505. mutex_unlock(&dev->struct_mutex);
  1506. return ret;
  1507. }
  1508. /**
  1509. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1510. * @dev: DRM device
  1511. * @data: GTT mapping ioctl data
  1512. * @file: GEM object info
  1513. *
  1514. * Simply returns the fake offset to userspace so it can mmap it.
  1515. * The mmap call will end up in drm_gem_mmap(), which will set things
  1516. * up so we can get faults in the handler above.
  1517. *
  1518. * The fault handler will take care of binding the object into the GTT
  1519. * (since it may have been evicted to make room for something), allocating
  1520. * a fence register, and mapping the appropriate aperture address into
  1521. * userspace.
  1522. */
  1523. int
  1524. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1525. struct drm_file *file)
  1526. {
  1527. struct drm_i915_gem_mmap_gtt *args = data;
  1528. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1529. }
  1530. static inline int
  1531. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1532. {
  1533. return obj->madv == I915_MADV_DONTNEED;
  1534. }
  1535. /* Immediately discard the backing storage */
  1536. static void
  1537. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1538. {
  1539. i915_gem_object_free_mmap_offset(obj);
  1540. if (obj->base.filp == NULL)
  1541. return;
  1542. /* Our goal here is to return as much of the memory as
  1543. * is possible back to the system as we are called from OOM.
  1544. * To do this we must instruct the shmfs to drop all of its
  1545. * backing pages, *now*.
  1546. */
  1547. shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
  1548. obj->madv = __I915_MADV_PURGED;
  1549. }
  1550. /* Try to discard unwanted pages */
  1551. static void
  1552. i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
  1553. {
  1554. struct address_space *mapping;
  1555. switch (obj->madv) {
  1556. case I915_MADV_DONTNEED:
  1557. i915_gem_object_truncate(obj);
  1558. case __I915_MADV_PURGED:
  1559. return;
  1560. }
  1561. if (obj->base.filp == NULL)
  1562. return;
  1563. mapping = file_inode(obj->base.filp)->i_mapping,
  1564. invalidate_mapping_pages(mapping, 0, (loff_t)-1);
  1565. }
  1566. static void
  1567. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1568. {
  1569. struct sg_page_iter sg_iter;
  1570. int ret;
  1571. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1572. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1573. if (ret) {
  1574. /* In the event of a disaster, abandon all caches and
  1575. * hope for the best.
  1576. */
  1577. WARN_ON(ret != -EIO);
  1578. i915_gem_clflush_object(obj, true);
  1579. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1580. }
  1581. if (i915_gem_object_needs_bit17_swizzle(obj))
  1582. i915_gem_object_save_bit_17_swizzle(obj);
  1583. if (obj->madv == I915_MADV_DONTNEED)
  1584. obj->dirty = 0;
  1585. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
  1586. struct page *page = sg_page_iter_page(&sg_iter);
  1587. if (obj->dirty)
  1588. set_page_dirty(page);
  1589. if (obj->madv == I915_MADV_WILLNEED)
  1590. mark_page_accessed(page);
  1591. page_cache_release(page);
  1592. }
  1593. obj->dirty = 0;
  1594. sg_free_table(obj->pages);
  1595. kfree(obj->pages);
  1596. }
  1597. int
  1598. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1599. {
  1600. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1601. if (obj->pages == NULL)
  1602. return 0;
  1603. if (obj->pages_pin_count)
  1604. return -EBUSY;
  1605. BUG_ON(i915_gem_obj_bound_any(obj));
  1606. /* ->put_pages might need to allocate memory for the bit17 swizzle
  1607. * array, hence protect them from being reaped by removing them from gtt
  1608. * lists early. */
  1609. list_del(&obj->global_list);
  1610. ops->put_pages(obj);
  1611. obj->pages = NULL;
  1612. i915_gem_object_invalidate(obj);
  1613. return 0;
  1614. }
  1615. static unsigned long
  1616. __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
  1617. bool purgeable_only)
  1618. {
  1619. struct list_head still_in_list;
  1620. struct drm_i915_gem_object *obj;
  1621. unsigned long count = 0;
  1622. /*
  1623. * As we may completely rewrite the (un)bound list whilst unbinding
  1624. * (due to retiring requests) we have to strictly process only
  1625. * one element of the list at the time, and recheck the list
  1626. * on every iteration.
  1627. *
  1628. * In particular, we must hold a reference whilst removing the
  1629. * object as we may end up waiting for and/or retiring the objects.
  1630. * This might release the final reference (held by the active list)
  1631. * and result in the object being freed from under us. This is
  1632. * similar to the precautions the eviction code must take whilst
  1633. * removing objects.
  1634. *
  1635. * Also note that although these lists do not hold a reference to
  1636. * the object we can safely grab one here: The final object
  1637. * unreferencing and the bound_list are both protected by the
  1638. * dev->struct_mutex and so we won't ever be able to observe an
  1639. * object on the bound_list with a reference count equals 0.
  1640. */
  1641. INIT_LIST_HEAD(&still_in_list);
  1642. while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
  1643. obj = list_first_entry(&dev_priv->mm.unbound_list,
  1644. typeof(*obj), global_list);
  1645. list_move_tail(&obj->global_list, &still_in_list);
  1646. if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
  1647. continue;
  1648. drm_gem_object_reference(&obj->base);
  1649. if (i915_gem_object_put_pages(obj) == 0)
  1650. count += obj->base.size >> PAGE_SHIFT;
  1651. drm_gem_object_unreference(&obj->base);
  1652. }
  1653. list_splice(&still_in_list, &dev_priv->mm.unbound_list);
  1654. INIT_LIST_HEAD(&still_in_list);
  1655. while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
  1656. struct i915_vma *vma, *v;
  1657. obj = list_first_entry(&dev_priv->mm.bound_list,
  1658. typeof(*obj), global_list);
  1659. list_move_tail(&obj->global_list, &still_in_list);
  1660. if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
  1661. continue;
  1662. drm_gem_object_reference(&obj->base);
  1663. list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
  1664. if (i915_vma_unbind(vma))
  1665. break;
  1666. if (i915_gem_object_put_pages(obj) == 0)
  1667. count += obj->base.size >> PAGE_SHIFT;
  1668. drm_gem_object_unreference(&obj->base);
  1669. }
  1670. list_splice(&still_in_list, &dev_priv->mm.bound_list);
  1671. return count;
  1672. }
  1673. static unsigned long
  1674. i915_gem_purge(struct drm_i915_private *dev_priv, long target)
  1675. {
  1676. return __i915_gem_shrink(dev_priv, target, true);
  1677. }
  1678. static unsigned long
  1679. i915_gem_shrink_all(struct drm_i915_private *dev_priv)
  1680. {
  1681. i915_gem_evict_everything(dev_priv->dev);
  1682. return __i915_gem_shrink(dev_priv, LONG_MAX, false);
  1683. }
  1684. static int
  1685. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1686. {
  1687. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1688. int page_count, i;
  1689. struct address_space *mapping;
  1690. struct sg_table *st;
  1691. struct scatterlist *sg;
  1692. struct sg_page_iter sg_iter;
  1693. struct page *page;
  1694. unsigned long last_pfn = 0; /* suppress gcc warning */
  1695. gfp_t gfp;
  1696. /* Assert that the object is not currently in any GPU domain. As it
  1697. * wasn't in the GTT, there shouldn't be any way it could have been in
  1698. * a GPU cache
  1699. */
  1700. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1701. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1702. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1703. if (st == NULL)
  1704. return -ENOMEM;
  1705. page_count = obj->base.size / PAGE_SIZE;
  1706. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1707. kfree(st);
  1708. return -ENOMEM;
  1709. }
  1710. /* Get the list of pages out of our struct file. They'll be pinned
  1711. * at this point until we release them.
  1712. *
  1713. * Fail silently without starting the shrinker
  1714. */
  1715. mapping = file_inode(obj->base.filp)->i_mapping;
  1716. gfp = mapping_gfp_mask(mapping);
  1717. gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
  1718. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1719. sg = st->sgl;
  1720. st->nents = 0;
  1721. for (i = 0; i < page_count; i++) {
  1722. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1723. if (IS_ERR(page)) {
  1724. i915_gem_purge(dev_priv, page_count);
  1725. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1726. }
  1727. if (IS_ERR(page)) {
  1728. /* We've tried hard to allocate the memory by reaping
  1729. * our own buffer, now let the real VM do its job and
  1730. * go down in flames if truly OOM.
  1731. */
  1732. i915_gem_shrink_all(dev_priv);
  1733. page = shmem_read_mapping_page(mapping, i);
  1734. if (IS_ERR(page))
  1735. goto err_pages;
  1736. }
  1737. #ifdef CONFIG_SWIOTLB
  1738. if (swiotlb_nr_tbl()) {
  1739. st->nents++;
  1740. sg_set_page(sg, page, PAGE_SIZE, 0);
  1741. sg = sg_next(sg);
  1742. continue;
  1743. }
  1744. #endif
  1745. if (!i || page_to_pfn(page) != last_pfn + 1) {
  1746. if (i)
  1747. sg = sg_next(sg);
  1748. st->nents++;
  1749. sg_set_page(sg, page, PAGE_SIZE, 0);
  1750. } else {
  1751. sg->length += PAGE_SIZE;
  1752. }
  1753. last_pfn = page_to_pfn(page);
  1754. /* Check that the i965g/gm workaround works. */
  1755. WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
  1756. }
  1757. #ifdef CONFIG_SWIOTLB
  1758. if (!swiotlb_nr_tbl())
  1759. #endif
  1760. sg_mark_end(sg);
  1761. obj->pages = st;
  1762. if (i915_gem_object_needs_bit17_swizzle(obj))
  1763. i915_gem_object_do_bit_17_swizzle(obj);
  1764. return 0;
  1765. err_pages:
  1766. sg_mark_end(sg);
  1767. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
  1768. page_cache_release(sg_page_iter_page(&sg_iter));
  1769. sg_free_table(st);
  1770. kfree(st);
  1771. /* shmemfs first checks if there is enough memory to allocate the page
  1772. * and reports ENOSPC should there be insufficient, along with the usual
  1773. * ENOMEM for a genuine allocation failure.
  1774. *
  1775. * We use ENOSPC in our driver to mean that we have run out of aperture
  1776. * space and so want to translate the error from shmemfs back to our
  1777. * usual understanding of ENOMEM.
  1778. */
  1779. if (PTR_ERR(page) == -ENOSPC)
  1780. return -ENOMEM;
  1781. else
  1782. return PTR_ERR(page);
  1783. }
  1784. /* Ensure that the associated pages are gathered from the backing storage
  1785. * and pinned into our object. i915_gem_object_get_pages() may be called
  1786. * multiple times before they are released by a single call to
  1787. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1788. * either as a result of memory pressure (reaping pages under the shrinker)
  1789. * or as the object is itself released.
  1790. */
  1791. int
  1792. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1793. {
  1794. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1795. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1796. int ret;
  1797. if (obj->pages)
  1798. return 0;
  1799. if (obj->madv != I915_MADV_WILLNEED) {
  1800. DRM_DEBUG("Attempting to obtain a purgeable object\n");
  1801. return -EFAULT;
  1802. }
  1803. BUG_ON(obj->pages_pin_count);
  1804. ret = ops->get_pages(obj);
  1805. if (ret)
  1806. return ret;
  1807. list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
  1808. return 0;
  1809. }
  1810. static void
  1811. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1812. struct intel_engine_cs *ring)
  1813. {
  1814. struct drm_device *dev = obj->base.dev;
  1815. struct drm_i915_private *dev_priv = dev->dev_private;
  1816. u32 seqno = intel_ring_get_seqno(ring);
  1817. BUG_ON(ring == NULL);
  1818. if (obj->ring != ring && obj->last_write_seqno) {
  1819. /* Keep the seqno relative to the current ring */
  1820. obj->last_write_seqno = seqno;
  1821. }
  1822. obj->ring = ring;
  1823. /* Add a reference if we're newly entering the active list. */
  1824. if (!obj->active) {
  1825. drm_gem_object_reference(&obj->base);
  1826. obj->active = 1;
  1827. }
  1828. list_move_tail(&obj->ring_list, &ring->active_list);
  1829. obj->last_read_seqno = seqno;
  1830. if (obj->fenced_gpu_access) {
  1831. obj->last_fenced_seqno = seqno;
  1832. /* Bump MRU to take account of the delayed flush */
  1833. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1834. struct drm_i915_fence_reg *reg;
  1835. reg = &dev_priv->fence_regs[obj->fence_reg];
  1836. list_move_tail(&reg->lru_list,
  1837. &dev_priv->mm.fence_list);
  1838. }
  1839. }
  1840. }
  1841. void i915_vma_move_to_active(struct i915_vma *vma,
  1842. struct intel_engine_cs *ring)
  1843. {
  1844. list_move_tail(&vma->mm_list, &vma->vm->active_list);
  1845. return i915_gem_object_move_to_active(vma->obj, ring);
  1846. }
  1847. static void
  1848. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1849. {
  1850. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1851. struct i915_address_space *vm;
  1852. struct i915_vma *vma;
  1853. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1854. BUG_ON(!obj->active);
  1855. list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
  1856. vma = i915_gem_obj_to_vma(obj, vm);
  1857. if (vma && !list_empty(&vma->mm_list))
  1858. list_move_tail(&vma->mm_list, &vm->inactive_list);
  1859. }
  1860. intel_fb_obj_flush(obj, true);
  1861. list_del_init(&obj->ring_list);
  1862. obj->ring = NULL;
  1863. obj->last_read_seqno = 0;
  1864. obj->last_write_seqno = 0;
  1865. obj->base.write_domain = 0;
  1866. obj->last_fenced_seqno = 0;
  1867. obj->fenced_gpu_access = false;
  1868. obj->active = 0;
  1869. drm_gem_object_unreference(&obj->base);
  1870. WARN_ON(i915_verify_lists(dev));
  1871. }
  1872. static void
  1873. i915_gem_object_retire(struct drm_i915_gem_object *obj)
  1874. {
  1875. struct intel_engine_cs *ring = obj->ring;
  1876. if (ring == NULL)
  1877. return;
  1878. if (i915_seqno_passed(ring->get_seqno(ring, true),
  1879. obj->last_read_seqno))
  1880. i915_gem_object_move_to_inactive(obj);
  1881. }
  1882. static int
  1883. i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
  1884. {
  1885. struct drm_i915_private *dev_priv = dev->dev_private;
  1886. struct intel_engine_cs *ring;
  1887. int ret, i, j;
  1888. /* Carefully retire all requests without writing to the rings */
  1889. for_each_ring(ring, dev_priv, i) {
  1890. ret = intel_ring_idle(ring);
  1891. if (ret)
  1892. return ret;
  1893. }
  1894. i915_gem_retire_requests(dev);
  1895. /* Finally reset hw state */
  1896. for_each_ring(ring, dev_priv, i) {
  1897. intel_ring_init_seqno(ring, seqno);
  1898. for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
  1899. ring->semaphore.sync_seqno[j] = 0;
  1900. }
  1901. return 0;
  1902. }
  1903. int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
  1904. {
  1905. struct drm_i915_private *dev_priv = dev->dev_private;
  1906. int ret;
  1907. if (seqno == 0)
  1908. return -EINVAL;
  1909. /* HWS page needs to be set less than what we
  1910. * will inject to ring
  1911. */
  1912. ret = i915_gem_init_seqno(dev, seqno - 1);
  1913. if (ret)
  1914. return ret;
  1915. /* Carefully set the last_seqno value so that wrap
  1916. * detection still works
  1917. */
  1918. dev_priv->next_seqno = seqno;
  1919. dev_priv->last_seqno = seqno - 1;
  1920. if (dev_priv->last_seqno == 0)
  1921. dev_priv->last_seqno--;
  1922. return 0;
  1923. }
  1924. int
  1925. i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
  1926. {
  1927. struct drm_i915_private *dev_priv = dev->dev_private;
  1928. /* reserve 0 for non-seqno */
  1929. if (dev_priv->next_seqno == 0) {
  1930. int ret = i915_gem_init_seqno(dev, 0);
  1931. if (ret)
  1932. return ret;
  1933. dev_priv->next_seqno = 1;
  1934. }
  1935. *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
  1936. return 0;
  1937. }
  1938. int __i915_add_request(struct intel_engine_cs *ring,
  1939. struct drm_file *file,
  1940. struct drm_i915_gem_object *obj,
  1941. u32 *out_seqno)
  1942. {
  1943. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1944. struct drm_i915_gem_request *request;
  1945. u32 request_ring_position, request_start;
  1946. int ret;
  1947. request_start = intel_ring_get_tail(ring->buffer);
  1948. /*
  1949. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1950. * after having emitted the batchbuffer command. Hence we need to fix
  1951. * things up similar to emitting the lazy request. The difference here
  1952. * is that the flush _must_ happen before the next request, no matter
  1953. * what.
  1954. */
  1955. ret = intel_ring_flush_all_caches(ring);
  1956. if (ret)
  1957. return ret;
  1958. request = ring->preallocated_lazy_request;
  1959. if (WARN_ON(request == NULL))
  1960. return -ENOMEM;
  1961. /* Record the position of the start of the request so that
  1962. * should we detect the updated seqno part-way through the
  1963. * GPU processing the request, we never over-estimate the
  1964. * position of the head.
  1965. */
  1966. request_ring_position = intel_ring_get_tail(ring->buffer);
  1967. ret = ring->add_request(ring);
  1968. if (ret)
  1969. return ret;
  1970. request->seqno = intel_ring_get_seqno(ring);
  1971. request->ring = ring;
  1972. request->head = request_start;
  1973. request->tail = request_ring_position;
  1974. /* Whilst this request exists, batch_obj will be on the
  1975. * active_list, and so will hold the active reference. Only when this
  1976. * request is retired will the the batch_obj be moved onto the
  1977. * inactive_list and lose its active reference. Hence we do not need
  1978. * to explicitly hold another reference here.
  1979. */
  1980. request->batch_obj = obj;
  1981. /* Hold a reference to the current context so that we can inspect
  1982. * it later in case a hangcheck error event fires.
  1983. */
  1984. request->ctx = ring->last_context;
  1985. if (request->ctx)
  1986. i915_gem_context_reference(request->ctx);
  1987. request->emitted_jiffies = jiffies;
  1988. list_add_tail(&request->list, &ring->request_list);
  1989. request->file_priv = NULL;
  1990. if (file) {
  1991. struct drm_i915_file_private *file_priv = file->driver_priv;
  1992. spin_lock(&file_priv->mm.lock);
  1993. request->file_priv = file_priv;
  1994. list_add_tail(&request->client_list,
  1995. &file_priv->mm.request_list);
  1996. spin_unlock(&file_priv->mm.lock);
  1997. }
  1998. trace_i915_gem_request_add(ring, request->seqno);
  1999. ring->outstanding_lazy_seqno = 0;
  2000. ring->preallocated_lazy_request = NULL;
  2001. if (!dev_priv->ums.mm_suspended) {
  2002. i915_queue_hangcheck(ring->dev);
  2003. cancel_delayed_work_sync(&dev_priv->mm.idle_work);
  2004. queue_delayed_work(dev_priv->wq,
  2005. &dev_priv->mm.retire_work,
  2006. round_jiffies_up_relative(HZ));
  2007. intel_mark_busy(dev_priv->dev);
  2008. }
  2009. if (out_seqno)
  2010. *out_seqno = request->seqno;
  2011. return 0;
  2012. }
  2013. static inline void
  2014. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  2015. {
  2016. struct drm_i915_file_private *file_priv = request->file_priv;
  2017. if (!file_priv)
  2018. return;
  2019. spin_lock(&file_priv->mm.lock);
  2020. list_del(&request->client_list);
  2021. request->file_priv = NULL;
  2022. spin_unlock(&file_priv->mm.lock);
  2023. }
  2024. static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
  2025. const struct intel_context *ctx)
  2026. {
  2027. unsigned long elapsed;
  2028. elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
  2029. if (ctx->hang_stats.banned)
  2030. return true;
  2031. if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
  2032. if (!i915_gem_context_is_default(ctx)) {
  2033. DRM_DEBUG("context hanging too fast, banning!\n");
  2034. return true;
  2035. } else if (i915_stop_ring_allow_ban(dev_priv)) {
  2036. if (i915_stop_ring_allow_warn(dev_priv))
  2037. DRM_ERROR("gpu hanging too fast, banning!\n");
  2038. return true;
  2039. }
  2040. }
  2041. return false;
  2042. }
  2043. static void i915_set_reset_status(struct drm_i915_private *dev_priv,
  2044. struct intel_context *ctx,
  2045. const bool guilty)
  2046. {
  2047. struct i915_ctx_hang_stats *hs;
  2048. if (WARN_ON(!ctx))
  2049. return;
  2050. hs = &ctx->hang_stats;
  2051. if (guilty) {
  2052. hs->banned = i915_context_is_banned(dev_priv, ctx);
  2053. hs->batch_active++;
  2054. hs->guilty_ts = get_seconds();
  2055. } else {
  2056. hs->batch_pending++;
  2057. }
  2058. }
  2059. static void i915_gem_free_request(struct drm_i915_gem_request *request)
  2060. {
  2061. list_del(&request->list);
  2062. i915_gem_request_remove_from_client(request);
  2063. if (request->ctx)
  2064. i915_gem_context_unreference(request->ctx);
  2065. kfree(request);
  2066. }
  2067. struct drm_i915_gem_request *
  2068. i915_gem_find_active_request(struct intel_engine_cs *ring)
  2069. {
  2070. struct drm_i915_gem_request *request;
  2071. u32 completed_seqno;
  2072. completed_seqno = ring->get_seqno(ring, false);
  2073. list_for_each_entry(request, &ring->request_list, list) {
  2074. if (i915_seqno_passed(completed_seqno, request->seqno))
  2075. continue;
  2076. return request;
  2077. }
  2078. return NULL;
  2079. }
  2080. static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
  2081. struct intel_engine_cs *ring)
  2082. {
  2083. struct drm_i915_gem_request *request;
  2084. bool ring_hung;
  2085. request = i915_gem_find_active_request(ring);
  2086. if (request == NULL)
  2087. return;
  2088. ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
  2089. i915_set_reset_status(dev_priv, request->ctx, ring_hung);
  2090. list_for_each_entry_continue(request, &ring->request_list, list)
  2091. i915_set_reset_status(dev_priv, request->ctx, false);
  2092. }
  2093. static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
  2094. struct intel_engine_cs *ring)
  2095. {
  2096. while (!list_empty(&ring->active_list)) {
  2097. struct drm_i915_gem_object *obj;
  2098. obj = list_first_entry(&ring->active_list,
  2099. struct drm_i915_gem_object,
  2100. ring_list);
  2101. i915_gem_object_move_to_inactive(obj);
  2102. }
  2103. /*
  2104. * We must free the requests after all the corresponding objects have
  2105. * been moved off active lists. Which is the same order as the normal
  2106. * retire_requests function does. This is important if object hold
  2107. * implicit references on things like e.g. ppgtt address spaces through
  2108. * the request.
  2109. */
  2110. while (!list_empty(&ring->request_list)) {
  2111. struct drm_i915_gem_request *request;
  2112. request = list_first_entry(&ring->request_list,
  2113. struct drm_i915_gem_request,
  2114. list);
  2115. i915_gem_free_request(request);
  2116. }
  2117. /* These may not have been flush before the reset, do so now */
  2118. kfree(ring->preallocated_lazy_request);
  2119. ring->preallocated_lazy_request = NULL;
  2120. ring->outstanding_lazy_seqno = 0;
  2121. }
  2122. void i915_gem_restore_fences(struct drm_device *dev)
  2123. {
  2124. struct drm_i915_private *dev_priv = dev->dev_private;
  2125. int i;
  2126. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  2127. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  2128. /*
  2129. * Commit delayed tiling changes if we have an object still
  2130. * attached to the fence, otherwise just clear the fence.
  2131. */
  2132. if (reg->obj) {
  2133. i915_gem_object_update_fence(reg->obj, reg,
  2134. reg->obj->tiling_mode);
  2135. } else {
  2136. i915_gem_write_fence(dev, i, NULL);
  2137. }
  2138. }
  2139. }
  2140. void i915_gem_reset(struct drm_device *dev)
  2141. {
  2142. struct drm_i915_private *dev_priv = dev->dev_private;
  2143. struct intel_engine_cs *ring;
  2144. int i;
  2145. /*
  2146. * Before we free the objects from the requests, we need to inspect
  2147. * them for finding the guilty party. As the requests only borrow
  2148. * their reference to the objects, the inspection must be done first.
  2149. */
  2150. for_each_ring(ring, dev_priv, i)
  2151. i915_gem_reset_ring_status(dev_priv, ring);
  2152. for_each_ring(ring, dev_priv, i)
  2153. i915_gem_reset_ring_cleanup(dev_priv, ring);
  2154. i915_gem_context_reset(dev);
  2155. i915_gem_restore_fences(dev);
  2156. }
  2157. /**
  2158. * This function clears the request list as sequence numbers are passed.
  2159. */
  2160. void
  2161. i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
  2162. {
  2163. uint32_t seqno;
  2164. if (list_empty(&ring->request_list))
  2165. return;
  2166. WARN_ON(i915_verify_lists(ring->dev));
  2167. seqno = ring->get_seqno(ring, true);
  2168. /* Move any buffers on the active list that are no longer referenced
  2169. * by the ringbuffer to the flushing/inactive lists as appropriate,
  2170. * before we free the context associated with the requests.
  2171. */
  2172. while (!list_empty(&ring->active_list)) {
  2173. struct drm_i915_gem_object *obj;
  2174. obj = list_first_entry(&ring->active_list,
  2175. struct drm_i915_gem_object,
  2176. ring_list);
  2177. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  2178. break;
  2179. i915_gem_object_move_to_inactive(obj);
  2180. }
  2181. while (!list_empty(&ring->request_list)) {
  2182. struct drm_i915_gem_request *request;
  2183. request = list_first_entry(&ring->request_list,
  2184. struct drm_i915_gem_request,
  2185. list);
  2186. if (!i915_seqno_passed(seqno, request->seqno))
  2187. break;
  2188. trace_i915_gem_request_retire(ring, request->seqno);
  2189. /* We know the GPU must have read the request to have
  2190. * sent us the seqno + interrupt, so use the position
  2191. * of tail of the request to update the last known position
  2192. * of the GPU head.
  2193. */
  2194. ring->buffer->last_retired_head = request->tail;
  2195. i915_gem_free_request(request);
  2196. }
  2197. if (unlikely(ring->trace_irq_seqno &&
  2198. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  2199. ring->irq_put(ring);
  2200. ring->trace_irq_seqno = 0;
  2201. }
  2202. WARN_ON(i915_verify_lists(ring->dev));
  2203. }
  2204. bool
  2205. i915_gem_retire_requests(struct drm_device *dev)
  2206. {
  2207. struct drm_i915_private *dev_priv = dev->dev_private;
  2208. struct intel_engine_cs *ring;
  2209. bool idle = true;
  2210. int i;
  2211. for_each_ring(ring, dev_priv, i) {
  2212. i915_gem_retire_requests_ring(ring);
  2213. idle &= list_empty(&ring->request_list);
  2214. }
  2215. if (idle)
  2216. mod_delayed_work(dev_priv->wq,
  2217. &dev_priv->mm.idle_work,
  2218. msecs_to_jiffies(100));
  2219. return idle;
  2220. }
  2221. static void
  2222. i915_gem_retire_work_handler(struct work_struct *work)
  2223. {
  2224. struct drm_i915_private *dev_priv =
  2225. container_of(work, typeof(*dev_priv), mm.retire_work.work);
  2226. struct drm_device *dev = dev_priv->dev;
  2227. bool idle;
  2228. /* Come back later if the device is busy... */
  2229. idle = false;
  2230. if (mutex_trylock(&dev->struct_mutex)) {
  2231. idle = i915_gem_retire_requests(dev);
  2232. mutex_unlock(&dev->struct_mutex);
  2233. }
  2234. if (!idle)
  2235. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  2236. round_jiffies_up_relative(HZ));
  2237. }
  2238. static void
  2239. i915_gem_idle_work_handler(struct work_struct *work)
  2240. {
  2241. struct drm_i915_private *dev_priv =
  2242. container_of(work, typeof(*dev_priv), mm.idle_work.work);
  2243. intel_mark_idle(dev_priv->dev);
  2244. }
  2245. /**
  2246. * Ensures that an object will eventually get non-busy by flushing any required
  2247. * write domains, emitting any outstanding lazy request and retiring and
  2248. * completed requests.
  2249. */
  2250. static int
  2251. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  2252. {
  2253. int ret;
  2254. if (obj->active) {
  2255. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  2256. if (ret)
  2257. return ret;
  2258. i915_gem_retire_requests_ring(obj->ring);
  2259. }
  2260. return 0;
  2261. }
  2262. /**
  2263. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  2264. * @DRM_IOCTL_ARGS: standard ioctl arguments
  2265. *
  2266. * Returns 0 if successful, else an error is returned with the remaining time in
  2267. * the timeout parameter.
  2268. * -ETIME: object is still busy after timeout
  2269. * -ERESTARTSYS: signal interrupted the wait
  2270. * -ENONENT: object doesn't exist
  2271. * Also possible, but rare:
  2272. * -EAGAIN: GPU wedged
  2273. * -ENOMEM: damn
  2274. * -ENODEV: Internal IRQ fail
  2275. * -E?: The add request failed
  2276. *
  2277. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  2278. * non-zero timeout parameter the wait ioctl will wait for the given number of
  2279. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  2280. * without holding struct_mutex the object may become re-busied before this
  2281. * function completes. A similar but shorter * race condition exists in the busy
  2282. * ioctl
  2283. */
  2284. int
  2285. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  2286. {
  2287. struct drm_i915_private *dev_priv = dev->dev_private;
  2288. struct drm_i915_gem_wait *args = data;
  2289. struct drm_i915_gem_object *obj;
  2290. struct intel_engine_cs *ring = NULL;
  2291. unsigned reset_counter;
  2292. u32 seqno = 0;
  2293. int ret = 0;
  2294. ret = i915_mutex_lock_interruptible(dev);
  2295. if (ret)
  2296. return ret;
  2297. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  2298. if (&obj->base == NULL) {
  2299. mutex_unlock(&dev->struct_mutex);
  2300. return -ENOENT;
  2301. }
  2302. /* Need to make sure the object gets inactive eventually. */
  2303. ret = i915_gem_object_flush_active(obj);
  2304. if (ret)
  2305. goto out;
  2306. if (obj->active) {
  2307. seqno = obj->last_read_seqno;
  2308. ring = obj->ring;
  2309. }
  2310. if (seqno == 0)
  2311. goto out;
  2312. /* Do this after OLR check to make sure we make forward progress polling
  2313. * on this IOCTL with a timeout <=0 (like busy ioctl)
  2314. */
  2315. if (args->timeout_ns <= 0) {
  2316. ret = -ETIME;
  2317. goto out;
  2318. }
  2319. drm_gem_object_unreference(&obj->base);
  2320. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  2321. mutex_unlock(&dev->struct_mutex);
  2322. return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
  2323. file->driver_priv);
  2324. out:
  2325. drm_gem_object_unreference(&obj->base);
  2326. mutex_unlock(&dev->struct_mutex);
  2327. return ret;
  2328. }
  2329. /**
  2330. * i915_gem_object_sync - sync an object to a ring.
  2331. *
  2332. * @obj: object which may be in use on another ring.
  2333. * @to: ring we wish to use the object on. May be NULL.
  2334. *
  2335. * This code is meant to abstract object synchronization with the GPU.
  2336. * Calling with NULL implies synchronizing the object with the CPU
  2337. * rather than a particular GPU ring.
  2338. *
  2339. * Returns 0 if successful, else propagates up the lower layer error.
  2340. */
  2341. int
  2342. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  2343. struct intel_engine_cs *to)
  2344. {
  2345. struct intel_engine_cs *from = obj->ring;
  2346. u32 seqno;
  2347. int ret, idx;
  2348. if (from == NULL || to == from)
  2349. return 0;
  2350. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  2351. return i915_gem_object_wait_rendering(obj, false);
  2352. idx = intel_ring_sync_index(from, to);
  2353. seqno = obj->last_read_seqno;
  2354. /* Optimization: Avoid semaphore sync when we are sure we already
  2355. * waited for an object with higher seqno */
  2356. if (seqno <= from->semaphore.sync_seqno[idx])
  2357. return 0;
  2358. ret = i915_gem_check_olr(obj->ring, seqno);
  2359. if (ret)
  2360. return ret;
  2361. trace_i915_gem_ring_sync_to(from, to, seqno);
  2362. ret = to->semaphore.sync_to(to, from, seqno);
  2363. if (!ret)
  2364. /* We use last_read_seqno because sync_to()
  2365. * might have just caused seqno wrap under
  2366. * the radar.
  2367. */
  2368. from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
  2369. return ret;
  2370. }
  2371. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  2372. {
  2373. u32 old_write_domain, old_read_domains;
  2374. /* Force a pagefault for domain tracking on next user access */
  2375. i915_gem_release_mmap(obj);
  2376. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2377. return;
  2378. /* Wait for any direct GTT access to complete */
  2379. mb();
  2380. old_read_domains = obj->base.read_domains;
  2381. old_write_domain = obj->base.write_domain;
  2382. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  2383. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  2384. trace_i915_gem_object_change_domain(obj,
  2385. old_read_domains,
  2386. old_write_domain);
  2387. }
  2388. int i915_vma_unbind(struct i915_vma *vma)
  2389. {
  2390. struct drm_i915_gem_object *obj = vma->obj;
  2391. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2392. int ret;
  2393. if (list_empty(&vma->vma_link))
  2394. return 0;
  2395. if (!drm_mm_node_allocated(&vma->node)) {
  2396. i915_gem_vma_destroy(vma);
  2397. return 0;
  2398. }
  2399. if (vma->pin_count)
  2400. return -EBUSY;
  2401. BUG_ON(obj->pages == NULL);
  2402. ret = i915_gem_object_finish_gpu(obj);
  2403. if (ret)
  2404. return ret;
  2405. /* Continue on if we fail due to EIO, the GPU is hung so we
  2406. * should be safe and we need to cleanup or else we might
  2407. * cause memory corruption through use-after-free.
  2408. */
  2409. if (i915_is_ggtt(vma->vm)) {
  2410. i915_gem_object_finish_gtt(obj);
  2411. /* release the fence reg _after_ flushing */
  2412. ret = i915_gem_object_put_fence(obj);
  2413. if (ret)
  2414. return ret;
  2415. }
  2416. trace_i915_vma_unbind(vma);
  2417. vma->unbind_vma(vma);
  2418. list_del_init(&vma->mm_list);
  2419. /* Avoid an unnecessary call to unbind on rebind. */
  2420. if (i915_is_ggtt(vma->vm))
  2421. obj->map_and_fenceable = true;
  2422. drm_mm_remove_node(&vma->node);
  2423. i915_gem_vma_destroy(vma);
  2424. /* Since the unbound list is global, only move to that list if
  2425. * no more VMAs exist. */
  2426. if (list_empty(&obj->vma_list)) {
  2427. i915_gem_gtt_finish_object(obj);
  2428. list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
  2429. }
  2430. /* And finally now the object is completely decoupled from this vma,
  2431. * we can drop its hold on the backing storage and allow it to be
  2432. * reaped by the shrinker.
  2433. */
  2434. i915_gem_object_unpin_pages(obj);
  2435. return 0;
  2436. }
  2437. int i915_gpu_idle(struct drm_device *dev)
  2438. {
  2439. struct drm_i915_private *dev_priv = dev->dev_private;
  2440. struct intel_engine_cs *ring;
  2441. int ret, i;
  2442. /* Flush everything onto the inactive list. */
  2443. for_each_ring(ring, dev_priv, i) {
  2444. ret = i915_switch_context(ring, ring->default_context);
  2445. if (ret)
  2446. return ret;
  2447. ret = intel_ring_idle(ring);
  2448. if (ret)
  2449. return ret;
  2450. }
  2451. return 0;
  2452. }
  2453. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2454. struct drm_i915_gem_object *obj)
  2455. {
  2456. struct drm_i915_private *dev_priv = dev->dev_private;
  2457. int fence_reg;
  2458. int fence_pitch_shift;
  2459. if (INTEL_INFO(dev)->gen >= 6) {
  2460. fence_reg = FENCE_REG_SANDYBRIDGE_0;
  2461. fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2462. } else {
  2463. fence_reg = FENCE_REG_965_0;
  2464. fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
  2465. }
  2466. fence_reg += reg * 8;
  2467. /* To w/a incoherency with non-atomic 64-bit register updates,
  2468. * we split the 64-bit update into two 32-bit writes. In order
  2469. * for a partial fence not to be evaluated between writes, we
  2470. * precede the update with write to turn off the fence register,
  2471. * and only enable the fence as the last step.
  2472. *
  2473. * For extra levels of paranoia, we make sure each step lands
  2474. * before applying the next step.
  2475. */
  2476. I915_WRITE(fence_reg, 0);
  2477. POSTING_READ(fence_reg);
  2478. if (obj) {
  2479. u32 size = i915_gem_obj_ggtt_size(obj);
  2480. uint64_t val;
  2481. val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
  2482. 0xfffff000) << 32;
  2483. val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
  2484. val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
  2485. if (obj->tiling_mode == I915_TILING_Y)
  2486. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2487. val |= I965_FENCE_REG_VALID;
  2488. I915_WRITE(fence_reg + 4, val >> 32);
  2489. POSTING_READ(fence_reg + 4);
  2490. I915_WRITE(fence_reg + 0, val);
  2491. POSTING_READ(fence_reg);
  2492. } else {
  2493. I915_WRITE(fence_reg + 4, 0);
  2494. POSTING_READ(fence_reg + 4);
  2495. }
  2496. }
  2497. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2498. struct drm_i915_gem_object *obj)
  2499. {
  2500. struct drm_i915_private *dev_priv = dev->dev_private;
  2501. u32 val;
  2502. if (obj) {
  2503. u32 size = i915_gem_obj_ggtt_size(obj);
  2504. int pitch_val;
  2505. int tile_width;
  2506. WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
  2507. (size & -size) != size ||
  2508. (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
  2509. "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2510. i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
  2511. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2512. tile_width = 128;
  2513. else
  2514. tile_width = 512;
  2515. /* Note: pitch better be a power of two tile widths */
  2516. pitch_val = obj->stride / tile_width;
  2517. pitch_val = ffs(pitch_val) - 1;
  2518. val = i915_gem_obj_ggtt_offset(obj);
  2519. if (obj->tiling_mode == I915_TILING_Y)
  2520. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2521. val |= I915_FENCE_SIZE_BITS(size);
  2522. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2523. val |= I830_FENCE_REG_VALID;
  2524. } else
  2525. val = 0;
  2526. if (reg < 8)
  2527. reg = FENCE_REG_830_0 + reg * 4;
  2528. else
  2529. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2530. I915_WRITE(reg, val);
  2531. POSTING_READ(reg);
  2532. }
  2533. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2534. struct drm_i915_gem_object *obj)
  2535. {
  2536. struct drm_i915_private *dev_priv = dev->dev_private;
  2537. uint32_t val;
  2538. if (obj) {
  2539. u32 size = i915_gem_obj_ggtt_size(obj);
  2540. uint32_t pitch_val;
  2541. WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
  2542. (size & -size) != size ||
  2543. (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
  2544. "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
  2545. i915_gem_obj_ggtt_offset(obj), size);
  2546. pitch_val = obj->stride / 128;
  2547. pitch_val = ffs(pitch_val) - 1;
  2548. val = i915_gem_obj_ggtt_offset(obj);
  2549. if (obj->tiling_mode == I915_TILING_Y)
  2550. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2551. val |= I830_FENCE_SIZE_BITS(size);
  2552. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2553. val |= I830_FENCE_REG_VALID;
  2554. } else
  2555. val = 0;
  2556. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2557. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2558. }
  2559. inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
  2560. {
  2561. return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
  2562. }
  2563. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2564. struct drm_i915_gem_object *obj)
  2565. {
  2566. struct drm_i915_private *dev_priv = dev->dev_private;
  2567. /* Ensure that all CPU reads are completed before installing a fence
  2568. * and all writes before removing the fence.
  2569. */
  2570. if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
  2571. mb();
  2572. WARN(obj && (!obj->stride || !obj->tiling_mode),
  2573. "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
  2574. obj->stride, obj->tiling_mode);
  2575. switch (INTEL_INFO(dev)->gen) {
  2576. case 8:
  2577. case 7:
  2578. case 6:
  2579. case 5:
  2580. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2581. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2582. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2583. default: BUG();
  2584. }
  2585. /* And similarly be paranoid that no direct access to this region
  2586. * is reordered to before the fence is installed.
  2587. */
  2588. if (i915_gem_object_needs_mb(obj))
  2589. mb();
  2590. }
  2591. static inline int fence_number(struct drm_i915_private *dev_priv,
  2592. struct drm_i915_fence_reg *fence)
  2593. {
  2594. return fence - dev_priv->fence_regs;
  2595. }
  2596. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2597. struct drm_i915_fence_reg *fence,
  2598. bool enable)
  2599. {
  2600. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2601. int reg = fence_number(dev_priv, fence);
  2602. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2603. if (enable) {
  2604. obj->fence_reg = reg;
  2605. fence->obj = obj;
  2606. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2607. } else {
  2608. obj->fence_reg = I915_FENCE_REG_NONE;
  2609. fence->obj = NULL;
  2610. list_del_init(&fence->lru_list);
  2611. }
  2612. obj->fence_dirty = false;
  2613. }
  2614. static int
  2615. i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
  2616. {
  2617. if (obj->last_fenced_seqno) {
  2618. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2619. if (ret)
  2620. return ret;
  2621. obj->last_fenced_seqno = 0;
  2622. }
  2623. obj->fenced_gpu_access = false;
  2624. return 0;
  2625. }
  2626. int
  2627. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2628. {
  2629. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2630. struct drm_i915_fence_reg *fence;
  2631. int ret;
  2632. ret = i915_gem_object_wait_fence(obj);
  2633. if (ret)
  2634. return ret;
  2635. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2636. return 0;
  2637. fence = &dev_priv->fence_regs[obj->fence_reg];
  2638. if (WARN_ON(fence->pin_count))
  2639. return -EBUSY;
  2640. i915_gem_object_fence_lost(obj);
  2641. i915_gem_object_update_fence(obj, fence, false);
  2642. return 0;
  2643. }
  2644. static struct drm_i915_fence_reg *
  2645. i915_find_fence_reg(struct drm_device *dev)
  2646. {
  2647. struct drm_i915_private *dev_priv = dev->dev_private;
  2648. struct drm_i915_fence_reg *reg, *avail;
  2649. int i;
  2650. /* First try to find a free reg */
  2651. avail = NULL;
  2652. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2653. reg = &dev_priv->fence_regs[i];
  2654. if (!reg->obj)
  2655. return reg;
  2656. if (!reg->pin_count)
  2657. avail = reg;
  2658. }
  2659. if (avail == NULL)
  2660. goto deadlock;
  2661. /* None available, try to steal one or wait for a user to finish */
  2662. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2663. if (reg->pin_count)
  2664. continue;
  2665. return reg;
  2666. }
  2667. deadlock:
  2668. /* Wait for completion of pending flips which consume fences */
  2669. if (intel_has_pending_fb_unpin(dev))
  2670. return ERR_PTR(-EAGAIN);
  2671. return ERR_PTR(-EDEADLK);
  2672. }
  2673. /**
  2674. * i915_gem_object_get_fence - set up fencing for an object
  2675. * @obj: object to map through a fence reg
  2676. *
  2677. * When mapping objects through the GTT, userspace wants to be able to write
  2678. * to them without having to worry about swizzling if the object is tiled.
  2679. * This function walks the fence regs looking for a free one for @obj,
  2680. * stealing one if it can't find any.
  2681. *
  2682. * It then sets up the reg based on the object's properties: address, pitch
  2683. * and tiling format.
  2684. *
  2685. * For an untiled surface, this removes any existing fence.
  2686. */
  2687. int
  2688. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2689. {
  2690. struct drm_device *dev = obj->base.dev;
  2691. struct drm_i915_private *dev_priv = dev->dev_private;
  2692. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2693. struct drm_i915_fence_reg *reg;
  2694. int ret;
  2695. /* Have we updated the tiling parameters upon the object and so
  2696. * will need to serialise the write to the associated fence register?
  2697. */
  2698. if (obj->fence_dirty) {
  2699. ret = i915_gem_object_wait_fence(obj);
  2700. if (ret)
  2701. return ret;
  2702. }
  2703. /* Just update our place in the LRU if our fence is getting reused. */
  2704. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2705. reg = &dev_priv->fence_regs[obj->fence_reg];
  2706. if (!obj->fence_dirty) {
  2707. list_move_tail(&reg->lru_list,
  2708. &dev_priv->mm.fence_list);
  2709. return 0;
  2710. }
  2711. } else if (enable) {
  2712. reg = i915_find_fence_reg(dev);
  2713. if (IS_ERR(reg))
  2714. return PTR_ERR(reg);
  2715. if (reg->obj) {
  2716. struct drm_i915_gem_object *old = reg->obj;
  2717. ret = i915_gem_object_wait_fence(old);
  2718. if (ret)
  2719. return ret;
  2720. i915_gem_object_fence_lost(old);
  2721. }
  2722. } else
  2723. return 0;
  2724. i915_gem_object_update_fence(obj, reg, enable);
  2725. return 0;
  2726. }
  2727. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2728. struct drm_mm_node *gtt_space,
  2729. unsigned long cache_level)
  2730. {
  2731. struct drm_mm_node *other;
  2732. /* On non-LLC machines we have to be careful when putting differing
  2733. * types of snoopable memory together to avoid the prefetcher
  2734. * crossing memory domains and dying.
  2735. */
  2736. if (HAS_LLC(dev))
  2737. return true;
  2738. if (!drm_mm_node_allocated(gtt_space))
  2739. return true;
  2740. if (list_empty(&gtt_space->node_list))
  2741. return true;
  2742. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2743. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2744. return false;
  2745. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2746. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2747. return false;
  2748. return true;
  2749. }
  2750. static void i915_gem_verify_gtt(struct drm_device *dev)
  2751. {
  2752. #if WATCH_GTT
  2753. struct drm_i915_private *dev_priv = dev->dev_private;
  2754. struct drm_i915_gem_object *obj;
  2755. int err = 0;
  2756. list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
  2757. if (obj->gtt_space == NULL) {
  2758. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2759. err++;
  2760. continue;
  2761. }
  2762. if (obj->cache_level != obj->gtt_space->color) {
  2763. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2764. i915_gem_obj_ggtt_offset(obj),
  2765. i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
  2766. obj->cache_level,
  2767. obj->gtt_space->color);
  2768. err++;
  2769. continue;
  2770. }
  2771. if (!i915_gem_valid_gtt_space(dev,
  2772. obj->gtt_space,
  2773. obj->cache_level)) {
  2774. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2775. i915_gem_obj_ggtt_offset(obj),
  2776. i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
  2777. obj->cache_level);
  2778. err++;
  2779. continue;
  2780. }
  2781. }
  2782. WARN_ON(err);
  2783. #endif
  2784. }
  2785. /**
  2786. * Finds free space in the GTT aperture and binds the object there.
  2787. */
  2788. static struct i915_vma *
  2789. i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
  2790. struct i915_address_space *vm,
  2791. unsigned alignment,
  2792. uint64_t flags)
  2793. {
  2794. struct drm_device *dev = obj->base.dev;
  2795. struct drm_i915_private *dev_priv = dev->dev_private;
  2796. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2797. unsigned long start =
  2798. flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
  2799. unsigned long end =
  2800. flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
  2801. struct i915_vma *vma;
  2802. int ret;
  2803. fence_size = i915_gem_get_gtt_size(dev,
  2804. obj->base.size,
  2805. obj->tiling_mode);
  2806. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2807. obj->base.size,
  2808. obj->tiling_mode, true);
  2809. unfenced_alignment =
  2810. i915_gem_get_gtt_alignment(dev,
  2811. obj->base.size,
  2812. obj->tiling_mode, false);
  2813. if (alignment == 0)
  2814. alignment = flags & PIN_MAPPABLE ? fence_alignment :
  2815. unfenced_alignment;
  2816. if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
  2817. DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
  2818. return ERR_PTR(-EINVAL);
  2819. }
  2820. size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
  2821. /* If the object is bigger than the entire aperture, reject it early
  2822. * before evicting everything in a vain attempt to find space.
  2823. */
  2824. if (obj->base.size > end) {
  2825. DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
  2826. obj->base.size,
  2827. flags & PIN_MAPPABLE ? "mappable" : "total",
  2828. end);
  2829. return ERR_PTR(-E2BIG);
  2830. }
  2831. ret = i915_gem_object_get_pages(obj);
  2832. if (ret)
  2833. return ERR_PTR(ret);
  2834. i915_gem_object_pin_pages(obj);
  2835. vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
  2836. if (IS_ERR(vma))
  2837. goto err_unpin;
  2838. search_free:
  2839. ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
  2840. size, alignment,
  2841. obj->cache_level,
  2842. start, end,
  2843. DRM_MM_SEARCH_DEFAULT,
  2844. DRM_MM_CREATE_DEFAULT);
  2845. if (ret) {
  2846. ret = i915_gem_evict_something(dev, vm, size, alignment,
  2847. obj->cache_level,
  2848. start, end,
  2849. flags);
  2850. if (ret == 0)
  2851. goto search_free;
  2852. goto err_free_vma;
  2853. }
  2854. if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
  2855. obj->cache_level))) {
  2856. ret = -EINVAL;
  2857. goto err_remove_node;
  2858. }
  2859. ret = i915_gem_gtt_prepare_object(obj);
  2860. if (ret)
  2861. goto err_remove_node;
  2862. list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
  2863. list_add_tail(&vma->mm_list, &vm->inactive_list);
  2864. if (i915_is_ggtt(vm)) {
  2865. bool mappable, fenceable;
  2866. fenceable = (vma->node.size == fence_size &&
  2867. (vma->node.start & (fence_alignment - 1)) == 0);
  2868. mappable = (vma->node.start + obj->base.size <=
  2869. dev_priv->gtt.mappable_end);
  2870. obj->map_and_fenceable = mappable && fenceable;
  2871. }
  2872. WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
  2873. trace_i915_vma_bind(vma, flags);
  2874. vma->bind_vma(vma, obj->cache_level,
  2875. flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
  2876. i915_gem_verify_gtt(dev);
  2877. return vma;
  2878. err_remove_node:
  2879. drm_mm_remove_node(&vma->node);
  2880. err_free_vma:
  2881. i915_gem_vma_destroy(vma);
  2882. vma = ERR_PTR(ret);
  2883. err_unpin:
  2884. i915_gem_object_unpin_pages(obj);
  2885. return vma;
  2886. }
  2887. bool
  2888. i915_gem_clflush_object(struct drm_i915_gem_object *obj,
  2889. bool force)
  2890. {
  2891. /* If we don't have a page list set up, then we're not pinned
  2892. * to GPU, and we can ignore the cache flush because it'll happen
  2893. * again at bind time.
  2894. */
  2895. if (obj->pages == NULL)
  2896. return false;
  2897. /*
  2898. * Stolen memory is always coherent with the GPU as it is explicitly
  2899. * marked as wc by the system, or the system is cache-coherent.
  2900. */
  2901. if (obj->stolen)
  2902. return false;
  2903. /* If the GPU is snooping the contents of the CPU cache,
  2904. * we do not need to manually clear the CPU cache lines. However,
  2905. * the caches are only snooped when the render cache is
  2906. * flushed/invalidated. As we always have to emit invalidations
  2907. * and flushes when moving into and out of the RENDER domain, correct
  2908. * snooping behaviour occurs naturally as the result of our domain
  2909. * tracking.
  2910. */
  2911. if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  2912. return false;
  2913. trace_i915_gem_object_clflush(obj);
  2914. drm_clflush_sg(obj->pages);
  2915. return true;
  2916. }
  2917. /** Flushes the GTT write domain for the object if it's dirty. */
  2918. static void
  2919. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2920. {
  2921. uint32_t old_write_domain;
  2922. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2923. return;
  2924. /* No actual flushing is required for the GTT write domain. Writes
  2925. * to it immediately go to main memory as far as we know, so there's
  2926. * no chipset flush. It also doesn't land in render cache.
  2927. *
  2928. * However, we do have to enforce the order so that all writes through
  2929. * the GTT land before any writes to the device, such as updates to
  2930. * the GATT itself.
  2931. */
  2932. wmb();
  2933. old_write_domain = obj->base.write_domain;
  2934. obj->base.write_domain = 0;
  2935. intel_fb_obj_flush(obj, false);
  2936. trace_i915_gem_object_change_domain(obj,
  2937. obj->base.read_domains,
  2938. old_write_domain);
  2939. }
  2940. /** Flushes the CPU write domain for the object if it's dirty. */
  2941. static void
  2942. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
  2943. bool force)
  2944. {
  2945. uint32_t old_write_domain;
  2946. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2947. return;
  2948. if (i915_gem_clflush_object(obj, force))
  2949. i915_gem_chipset_flush(obj->base.dev);
  2950. old_write_domain = obj->base.write_domain;
  2951. obj->base.write_domain = 0;
  2952. intel_fb_obj_flush(obj, false);
  2953. trace_i915_gem_object_change_domain(obj,
  2954. obj->base.read_domains,
  2955. old_write_domain);
  2956. }
  2957. /**
  2958. * Moves a single object to the GTT read, and possibly write domain.
  2959. *
  2960. * This function returns when the move is complete, including waiting on
  2961. * flushes to occur.
  2962. */
  2963. int
  2964. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2965. {
  2966. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2967. uint32_t old_write_domain, old_read_domains;
  2968. int ret;
  2969. /* Not valid to be called on unbound objects. */
  2970. if (!i915_gem_obj_bound_any(obj))
  2971. return -EINVAL;
  2972. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2973. return 0;
  2974. ret = i915_gem_object_wait_rendering(obj, !write);
  2975. if (ret)
  2976. return ret;
  2977. i915_gem_object_retire(obj);
  2978. i915_gem_object_flush_cpu_write_domain(obj, false);
  2979. /* Serialise direct access to this object with the barriers for
  2980. * coherent writes from the GPU, by effectively invalidating the
  2981. * GTT domain upon first access.
  2982. */
  2983. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2984. mb();
  2985. old_write_domain = obj->base.write_domain;
  2986. old_read_domains = obj->base.read_domains;
  2987. /* It should now be out of any other write domains, and we can update
  2988. * the domain values for our changes.
  2989. */
  2990. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2991. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2992. if (write) {
  2993. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2994. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2995. obj->dirty = 1;
  2996. }
  2997. if (write)
  2998. intel_fb_obj_invalidate(obj, NULL);
  2999. trace_i915_gem_object_change_domain(obj,
  3000. old_read_domains,
  3001. old_write_domain);
  3002. /* And bump the LRU for this access */
  3003. if (i915_gem_object_is_inactive(obj)) {
  3004. struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
  3005. if (vma)
  3006. list_move_tail(&vma->mm_list,
  3007. &dev_priv->gtt.base.inactive_list);
  3008. }
  3009. return 0;
  3010. }
  3011. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  3012. enum i915_cache_level cache_level)
  3013. {
  3014. struct drm_device *dev = obj->base.dev;
  3015. struct i915_vma *vma, *next;
  3016. int ret;
  3017. if (obj->cache_level == cache_level)
  3018. return 0;
  3019. if (i915_gem_obj_is_pinned(obj)) {
  3020. DRM_DEBUG("can not change the cache level of pinned objects\n");
  3021. return -EBUSY;
  3022. }
  3023. list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
  3024. if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
  3025. ret = i915_vma_unbind(vma);
  3026. if (ret)
  3027. return ret;
  3028. }
  3029. }
  3030. if (i915_gem_obj_bound_any(obj)) {
  3031. ret = i915_gem_object_finish_gpu(obj);
  3032. if (ret)
  3033. return ret;
  3034. i915_gem_object_finish_gtt(obj);
  3035. /* Before SandyBridge, you could not use tiling or fence
  3036. * registers with snooped memory, so relinquish any fences
  3037. * currently pointing to our region in the aperture.
  3038. */
  3039. if (INTEL_INFO(dev)->gen < 6) {
  3040. ret = i915_gem_object_put_fence(obj);
  3041. if (ret)
  3042. return ret;
  3043. }
  3044. list_for_each_entry(vma, &obj->vma_list, vma_link)
  3045. if (drm_mm_node_allocated(&vma->node))
  3046. vma->bind_vma(vma, cache_level,
  3047. obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
  3048. }
  3049. list_for_each_entry(vma, &obj->vma_list, vma_link)
  3050. vma->node.color = cache_level;
  3051. obj->cache_level = cache_level;
  3052. if (cpu_write_needs_clflush(obj)) {
  3053. u32 old_read_domains, old_write_domain;
  3054. /* If we're coming from LLC cached, then we haven't
  3055. * actually been tracking whether the data is in the
  3056. * CPU cache or not, since we only allow one bit set
  3057. * in obj->write_domain and have been skipping the clflushes.
  3058. * Just set it to the CPU cache for now.
  3059. */
  3060. i915_gem_object_retire(obj);
  3061. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  3062. old_read_domains = obj->base.read_domains;
  3063. old_write_domain = obj->base.write_domain;
  3064. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3065. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3066. trace_i915_gem_object_change_domain(obj,
  3067. old_read_domains,
  3068. old_write_domain);
  3069. }
  3070. i915_gem_verify_gtt(dev);
  3071. return 0;
  3072. }
  3073. int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
  3074. struct drm_file *file)
  3075. {
  3076. struct drm_i915_gem_caching *args = data;
  3077. struct drm_i915_gem_object *obj;
  3078. int ret;
  3079. ret = i915_mutex_lock_interruptible(dev);
  3080. if (ret)
  3081. return ret;
  3082. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3083. if (&obj->base == NULL) {
  3084. ret = -ENOENT;
  3085. goto unlock;
  3086. }
  3087. switch (obj->cache_level) {
  3088. case I915_CACHE_LLC:
  3089. case I915_CACHE_L3_LLC:
  3090. args->caching = I915_CACHING_CACHED;
  3091. break;
  3092. case I915_CACHE_WT:
  3093. args->caching = I915_CACHING_DISPLAY;
  3094. break;
  3095. default:
  3096. args->caching = I915_CACHING_NONE;
  3097. break;
  3098. }
  3099. drm_gem_object_unreference(&obj->base);
  3100. unlock:
  3101. mutex_unlock(&dev->struct_mutex);
  3102. return ret;
  3103. }
  3104. int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
  3105. struct drm_file *file)
  3106. {
  3107. struct drm_i915_gem_caching *args = data;
  3108. struct drm_i915_gem_object *obj;
  3109. enum i915_cache_level level;
  3110. int ret;
  3111. switch (args->caching) {
  3112. case I915_CACHING_NONE:
  3113. level = I915_CACHE_NONE;
  3114. break;
  3115. case I915_CACHING_CACHED:
  3116. level = I915_CACHE_LLC;
  3117. break;
  3118. case I915_CACHING_DISPLAY:
  3119. level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
  3120. break;
  3121. default:
  3122. return -EINVAL;
  3123. }
  3124. ret = i915_mutex_lock_interruptible(dev);
  3125. if (ret)
  3126. return ret;
  3127. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3128. if (&obj->base == NULL) {
  3129. ret = -ENOENT;
  3130. goto unlock;
  3131. }
  3132. ret = i915_gem_object_set_cache_level(obj, level);
  3133. drm_gem_object_unreference(&obj->base);
  3134. unlock:
  3135. mutex_unlock(&dev->struct_mutex);
  3136. return ret;
  3137. }
  3138. static bool is_pin_display(struct drm_i915_gem_object *obj)
  3139. {
  3140. struct i915_vma *vma;
  3141. if (list_empty(&obj->vma_list))
  3142. return false;
  3143. vma = i915_gem_obj_to_ggtt(obj);
  3144. if (!vma)
  3145. return false;
  3146. /* There are 3 sources that pin objects:
  3147. * 1. The display engine (scanouts, sprites, cursors);
  3148. * 2. Reservations for execbuffer;
  3149. * 3. The user.
  3150. *
  3151. * We can ignore reservations as we hold the struct_mutex and
  3152. * are only called outside of the reservation path. The user
  3153. * can only increment pin_count once, and so if after
  3154. * subtracting the potential reference by the user, any pin_count
  3155. * remains, it must be due to another use by the display engine.
  3156. */
  3157. return vma->pin_count - !!obj->user_pin_count;
  3158. }
  3159. /*
  3160. * Prepare buffer for display plane (scanout, cursors, etc).
  3161. * Can be called from an uninterruptible phase (modesetting) and allows
  3162. * any flushes to be pipelined (for pageflips).
  3163. */
  3164. int
  3165. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  3166. u32 alignment,
  3167. struct intel_engine_cs *pipelined)
  3168. {
  3169. u32 old_read_domains, old_write_domain;
  3170. bool was_pin_display;
  3171. int ret;
  3172. if (pipelined != obj->ring) {
  3173. ret = i915_gem_object_sync(obj, pipelined);
  3174. if (ret)
  3175. return ret;
  3176. }
  3177. /* Mark the pin_display early so that we account for the
  3178. * display coherency whilst setting up the cache domains.
  3179. */
  3180. was_pin_display = obj->pin_display;
  3181. obj->pin_display = true;
  3182. /* The display engine is not coherent with the LLC cache on gen6. As
  3183. * a result, we make sure that the pinning that is about to occur is
  3184. * done with uncached PTEs. This is lowest common denominator for all
  3185. * chipsets.
  3186. *
  3187. * However for gen6+, we could do better by using the GFDT bit instead
  3188. * of uncaching, which would allow us to flush all the LLC-cached data
  3189. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  3190. */
  3191. ret = i915_gem_object_set_cache_level(obj,
  3192. HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
  3193. if (ret)
  3194. goto err_unpin_display;
  3195. /* As the user may map the buffer once pinned in the display plane
  3196. * (e.g. libkms for the bootup splash), we have to ensure that we
  3197. * always use map_and_fenceable for all scanout buffers.
  3198. */
  3199. ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
  3200. if (ret)
  3201. goto err_unpin_display;
  3202. i915_gem_object_flush_cpu_write_domain(obj, true);
  3203. old_write_domain = obj->base.write_domain;
  3204. old_read_domains = obj->base.read_domains;
  3205. /* It should now be out of any other write domains, and we can update
  3206. * the domain values for our changes.
  3207. */
  3208. obj->base.write_domain = 0;
  3209. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  3210. trace_i915_gem_object_change_domain(obj,
  3211. old_read_domains,
  3212. old_write_domain);
  3213. return 0;
  3214. err_unpin_display:
  3215. WARN_ON(was_pin_display != is_pin_display(obj));
  3216. obj->pin_display = was_pin_display;
  3217. return ret;
  3218. }
  3219. void
  3220. i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
  3221. {
  3222. i915_gem_object_ggtt_unpin(obj);
  3223. obj->pin_display = is_pin_display(obj);
  3224. }
  3225. int
  3226. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  3227. {
  3228. int ret;
  3229. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  3230. return 0;
  3231. ret = i915_gem_object_wait_rendering(obj, false);
  3232. if (ret)
  3233. return ret;
  3234. /* Ensure that we invalidate the GPU's caches and TLBs. */
  3235. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  3236. return 0;
  3237. }
  3238. /**
  3239. * Moves a single object to the CPU read, and possibly write domain.
  3240. *
  3241. * This function returns when the move is complete, including waiting on
  3242. * flushes to occur.
  3243. */
  3244. int
  3245. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  3246. {
  3247. uint32_t old_write_domain, old_read_domains;
  3248. int ret;
  3249. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  3250. return 0;
  3251. ret = i915_gem_object_wait_rendering(obj, !write);
  3252. if (ret)
  3253. return ret;
  3254. i915_gem_object_retire(obj);
  3255. i915_gem_object_flush_gtt_write_domain(obj);
  3256. old_write_domain = obj->base.write_domain;
  3257. old_read_domains = obj->base.read_domains;
  3258. /* Flush the CPU cache if it's still invalid. */
  3259. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  3260. i915_gem_clflush_object(obj, false);
  3261. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  3262. }
  3263. /* It should now be out of any other write domains, and we can update
  3264. * the domain values for our changes.
  3265. */
  3266. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  3267. /* If we're writing through the CPU, then the GPU read domains will
  3268. * need to be invalidated at next use.
  3269. */
  3270. if (write) {
  3271. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3272. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3273. }
  3274. if (write)
  3275. intel_fb_obj_invalidate(obj, NULL);
  3276. trace_i915_gem_object_change_domain(obj,
  3277. old_read_domains,
  3278. old_write_domain);
  3279. return 0;
  3280. }
  3281. /* Throttle our rendering by waiting until the ring has completed our requests
  3282. * emitted over 20 msec ago.
  3283. *
  3284. * Note that if we were to use the current jiffies each time around the loop,
  3285. * we wouldn't escape the function with any frames outstanding if the time to
  3286. * render a frame was over 20ms.
  3287. *
  3288. * This should get us reasonable parallelism between CPU and GPU but also
  3289. * relatively low latency when blocking on a particular request to finish.
  3290. */
  3291. static int
  3292. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3293. {
  3294. struct drm_i915_private *dev_priv = dev->dev_private;
  3295. struct drm_i915_file_private *file_priv = file->driver_priv;
  3296. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3297. struct drm_i915_gem_request *request;
  3298. struct intel_engine_cs *ring = NULL;
  3299. unsigned reset_counter;
  3300. u32 seqno = 0;
  3301. int ret;
  3302. ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
  3303. if (ret)
  3304. return ret;
  3305. ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
  3306. if (ret)
  3307. return ret;
  3308. spin_lock(&file_priv->mm.lock);
  3309. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3310. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3311. break;
  3312. ring = request->ring;
  3313. seqno = request->seqno;
  3314. }
  3315. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  3316. spin_unlock(&file_priv->mm.lock);
  3317. if (seqno == 0)
  3318. return 0;
  3319. ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
  3320. if (ret == 0)
  3321. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3322. return ret;
  3323. }
  3324. static bool
  3325. i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
  3326. {
  3327. struct drm_i915_gem_object *obj = vma->obj;
  3328. if (alignment &&
  3329. vma->node.start & (alignment - 1))
  3330. return true;
  3331. if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
  3332. return true;
  3333. if (flags & PIN_OFFSET_BIAS &&
  3334. vma->node.start < (flags & PIN_OFFSET_MASK))
  3335. return true;
  3336. return false;
  3337. }
  3338. int
  3339. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  3340. struct i915_address_space *vm,
  3341. uint32_t alignment,
  3342. uint64_t flags)
  3343. {
  3344. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  3345. struct i915_vma *vma;
  3346. int ret;
  3347. if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
  3348. return -ENODEV;
  3349. if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
  3350. return -EINVAL;
  3351. vma = i915_gem_obj_to_vma(obj, vm);
  3352. if (vma) {
  3353. if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  3354. return -EBUSY;
  3355. if (i915_vma_misplaced(vma, alignment, flags)) {
  3356. WARN(vma->pin_count,
  3357. "bo is already pinned with incorrect alignment:"
  3358. " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
  3359. " obj->map_and_fenceable=%d\n",
  3360. i915_gem_obj_offset(obj, vm), alignment,
  3361. !!(flags & PIN_MAPPABLE),
  3362. obj->map_and_fenceable);
  3363. ret = i915_vma_unbind(vma);
  3364. if (ret)
  3365. return ret;
  3366. vma = NULL;
  3367. }
  3368. }
  3369. if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
  3370. vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
  3371. if (IS_ERR(vma))
  3372. return PTR_ERR(vma);
  3373. }
  3374. if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
  3375. vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
  3376. vma->pin_count++;
  3377. if (flags & PIN_MAPPABLE)
  3378. obj->pin_mappable |= true;
  3379. return 0;
  3380. }
  3381. void
  3382. i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
  3383. {
  3384. struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
  3385. BUG_ON(!vma);
  3386. BUG_ON(vma->pin_count == 0);
  3387. BUG_ON(!i915_gem_obj_ggtt_bound(obj));
  3388. if (--vma->pin_count == 0)
  3389. obj->pin_mappable = false;
  3390. }
  3391. bool
  3392. i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
  3393. {
  3394. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  3395. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  3396. struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
  3397. WARN_ON(!ggtt_vma ||
  3398. dev_priv->fence_regs[obj->fence_reg].pin_count >
  3399. ggtt_vma->pin_count);
  3400. dev_priv->fence_regs[obj->fence_reg].pin_count++;
  3401. return true;
  3402. } else
  3403. return false;
  3404. }
  3405. void
  3406. i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
  3407. {
  3408. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  3409. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  3410. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
  3411. dev_priv->fence_regs[obj->fence_reg].pin_count--;
  3412. }
  3413. }
  3414. int
  3415. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3416. struct drm_file *file)
  3417. {
  3418. struct drm_i915_gem_pin *args = data;
  3419. struct drm_i915_gem_object *obj;
  3420. int ret;
  3421. if (INTEL_INFO(dev)->gen >= 6)
  3422. return -ENODEV;
  3423. ret = i915_mutex_lock_interruptible(dev);
  3424. if (ret)
  3425. return ret;
  3426. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3427. if (&obj->base == NULL) {
  3428. ret = -ENOENT;
  3429. goto unlock;
  3430. }
  3431. if (obj->madv != I915_MADV_WILLNEED) {
  3432. DRM_DEBUG("Attempting to pin a purgeable buffer\n");
  3433. ret = -EFAULT;
  3434. goto out;
  3435. }
  3436. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  3437. DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3438. args->handle);
  3439. ret = -EINVAL;
  3440. goto out;
  3441. }
  3442. if (obj->user_pin_count == ULONG_MAX) {
  3443. ret = -EBUSY;
  3444. goto out;
  3445. }
  3446. if (obj->user_pin_count == 0) {
  3447. ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
  3448. if (ret)
  3449. goto out;
  3450. }
  3451. obj->user_pin_count++;
  3452. obj->pin_filp = file;
  3453. args->offset = i915_gem_obj_ggtt_offset(obj);
  3454. out:
  3455. drm_gem_object_unreference(&obj->base);
  3456. unlock:
  3457. mutex_unlock(&dev->struct_mutex);
  3458. return ret;
  3459. }
  3460. int
  3461. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3462. struct drm_file *file)
  3463. {
  3464. struct drm_i915_gem_pin *args = data;
  3465. struct drm_i915_gem_object *obj;
  3466. int ret;
  3467. ret = i915_mutex_lock_interruptible(dev);
  3468. if (ret)
  3469. return ret;
  3470. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3471. if (&obj->base == NULL) {
  3472. ret = -ENOENT;
  3473. goto unlock;
  3474. }
  3475. if (obj->pin_filp != file) {
  3476. DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3477. args->handle);
  3478. ret = -EINVAL;
  3479. goto out;
  3480. }
  3481. obj->user_pin_count--;
  3482. if (obj->user_pin_count == 0) {
  3483. obj->pin_filp = NULL;
  3484. i915_gem_object_ggtt_unpin(obj);
  3485. }
  3486. out:
  3487. drm_gem_object_unreference(&obj->base);
  3488. unlock:
  3489. mutex_unlock(&dev->struct_mutex);
  3490. return ret;
  3491. }
  3492. int
  3493. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3494. struct drm_file *file)
  3495. {
  3496. struct drm_i915_gem_busy *args = data;
  3497. struct drm_i915_gem_object *obj;
  3498. int ret;
  3499. ret = i915_mutex_lock_interruptible(dev);
  3500. if (ret)
  3501. return ret;
  3502. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3503. if (&obj->base == NULL) {
  3504. ret = -ENOENT;
  3505. goto unlock;
  3506. }
  3507. /* Count all active objects as busy, even if they are currently not used
  3508. * by the gpu. Users of this interface expect objects to eventually
  3509. * become non-busy without any further actions, therefore emit any
  3510. * necessary flushes here.
  3511. */
  3512. ret = i915_gem_object_flush_active(obj);
  3513. args->busy = obj->active;
  3514. if (obj->ring) {
  3515. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  3516. args->busy |= intel_ring_flag(obj->ring) << 16;
  3517. }
  3518. drm_gem_object_unreference(&obj->base);
  3519. unlock:
  3520. mutex_unlock(&dev->struct_mutex);
  3521. return ret;
  3522. }
  3523. int
  3524. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3525. struct drm_file *file_priv)
  3526. {
  3527. return i915_gem_ring_throttle(dev, file_priv);
  3528. }
  3529. int
  3530. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3531. struct drm_file *file_priv)
  3532. {
  3533. struct drm_i915_gem_madvise *args = data;
  3534. struct drm_i915_gem_object *obj;
  3535. int ret;
  3536. switch (args->madv) {
  3537. case I915_MADV_DONTNEED:
  3538. case I915_MADV_WILLNEED:
  3539. break;
  3540. default:
  3541. return -EINVAL;
  3542. }
  3543. ret = i915_mutex_lock_interruptible(dev);
  3544. if (ret)
  3545. return ret;
  3546. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3547. if (&obj->base == NULL) {
  3548. ret = -ENOENT;
  3549. goto unlock;
  3550. }
  3551. if (i915_gem_obj_is_pinned(obj)) {
  3552. ret = -EINVAL;
  3553. goto out;
  3554. }
  3555. if (obj->madv != __I915_MADV_PURGED)
  3556. obj->madv = args->madv;
  3557. /* if the object is no longer attached, discard its backing storage */
  3558. if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
  3559. i915_gem_object_truncate(obj);
  3560. args->retained = obj->madv != __I915_MADV_PURGED;
  3561. out:
  3562. drm_gem_object_unreference(&obj->base);
  3563. unlock:
  3564. mutex_unlock(&dev->struct_mutex);
  3565. return ret;
  3566. }
  3567. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3568. const struct drm_i915_gem_object_ops *ops)
  3569. {
  3570. INIT_LIST_HEAD(&obj->global_list);
  3571. INIT_LIST_HEAD(&obj->ring_list);
  3572. INIT_LIST_HEAD(&obj->obj_exec_link);
  3573. INIT_LIST_HEAD(&obj->vma_list);
  3574. obj->ops = ops;
  3575. obj->fence_reg = I915_FENCE_REG_NONE;
  3576. obj->madv = I915_MADV_WILLNEED;
  3577. /* Avoid an unnecessary call to unbind on the first bind. */
  3578. obj->map_and_fenceable = true;
  3579. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3580. }
  3581. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3582. .get_pages = i915_gem_object_get_pages_gtt,
  3583. .put_pages = i915_gem_object_put_pages_gtt,
  3584. };
  3585. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3586. size_t size)
  3587. {
  3588. struct drm_i915_gem_object *obj;
  3589. struct address_space *mapping;
  3590. gfp_t mask;
  3591. obj = i915_gem_object_alloc(dev);
  3592. if (obj == NULL)
  3593. return NULL;
  3594. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3595. i915_gem_object_free(obj);
  3596. return NULL;
  3597. }
  3598. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3599. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3600. /* 965gm cannot relocate objects above 4GiB. */
  3601. mask &= ~__GFP_HIGHMEM;
  3602. mask |= __GFP_DMA32;
  3603. }
  3604. mapping = file_inode(obj->base.filp)->i_mapping;
  3605. mapping_set_gfp_mask(mapping, mask);
  3606. i915_gem_object_init(obj, &i915_gem_object_ops);
  3607. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3608. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3609. if (HAS_LLC(dev)) {
  3610. /* On some devices, we can have the GPU use the LLC (the CPU
  3611. * cache) for about a 10% performance improvement
  3612. * compared to uncached. Graphics requests other than
  3613. * display scanout are coherent with the CPU in
  3614. * accessing this cache. This means in this mode we
  3615. * don't need to clflush on the CPU side, and on the
  3616. * GPU side we only need to flush internal caches to
  3617. * get data visible to the CPU.
  3618. *
  3619. * However, we maintain the display planes as UC, and so
  3620. * need to rebind when first used as such.
  3621. */
  3622. obj->cache_level = I915_CACHE_LLC;
  3623. } else
  3624. obj->cache_level = I915_CACHE_NONE;
  3625. trace_i915_gem_object_create(obj);
  3626. return obj;
  3627. }
  3628. static bool discard_backing_storage(struct drm_i915_gem_object *obj)
  3629. {
  3630. /* If we are the last user of the backing storage (be it shmemfs
  3631. * pages or stolen etc), we know that the pages are going to be
  3632. * immediately released. In this case, we can then skip copying
  3633. * back the contents from the GPU.
  3634. */
  3635. if (obj->madv != I915_MADV_WILLNEED)
  3636. return false;
  3637. if (obj->base.filp == NULL)
  3638. return true;
  3639. /* At first glance, this looks racy, but then again so would be
  3640. * userspace racing mmap against close. However, the first external
  3641. * reference to the filp can only be obtained through the
  3642. * i915_gem_mmap_ioctl() which safeguards us against the user
  3643. * acquiring such a reference whilst we are in the middle of
  3644. * freeing the object.
  3645. */
  3646. return atomic_long_read(&obj->base.filp->f_count) == 1;
  3647. }
  3648. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3649. {
  3650. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3651. struct drm_device *dev = obj->base.dev;
  3652. struct drm_i915_private *dev_priv = dev->dev_private;
  3653. struct i915_vma *vma, *next;
  3654. intel_runtime_pm_get(dev_priv);
  3655. trace_i915_gem_object_destroy(obj);
  3656. list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
  3657. int ret;
  3658. vma->pin_count = 0;
  3659. ret = i915_vma_unbind(vma);
  3660. if (WARN_ON(ret == -ERESTARTSYS)) {
  3661. bool was_interruptible;
  3662. was_interruptible = dev_priv->mm.interruptible;
  3663. dev_priv->mm.interruptible = false;
  3664. WARN_ON(i915_vma_unbind(vma));
  3665. dev_priv->mm.interruptible = was_interruptible;
  3666. }
  3667. }
  3668. i915_gem_object_detach_phys(obj);
  3669. /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
  3670. * before progressing. */
  3671. if (obj->stolen)
  3672. i915_gem_object_unpin_pages(obj);
  3673. WARN_ON(obj->frontbuffer_bits);
  3674. if (WARN_ON(obj->pages_pin_count))
  3675. obj->pages_pin_count = 0;
  3676. if (discard_backing_storage(obj))
  3677. obj->madv = I915_MADV_DONTNEED;
  3678. i915_gem_object_put_pages(obj);
  3679. i915_gem_object_free_mmap_offset(obj);
  3680. BUG_ON(obj->pages);
  3681. if (obj->base.import_attach)
  3682. drm_prime_gem_destroy(&obj->base, NULL);
  3683. if (obj->ops->release)
  3684. obj->ops->release(obj);
  3685. drm_gem_object_release(&obj->base);
  3686. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3687. kfree(obj->bit_17);
  3688. i915_gem_object_free(obj);
  3689. intel_runtime_pm_put(dev_priv);
  3690. }
  3691. struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
  3692. struct i915_address_space *vm)
  3693. {
  3694. struct i915_vma *vma;
  3695. list_for_each_entry(vma, &obj->vma_list, vma_link)
  3696. if (vma->vm == vm)
  3697. return vma;
  3698. return NULL;
  3699. }
  3700. void i915_gem_vma_destroy(struct i915_vma *vma)
  3701. {
  3702. WARN_ON(vma->node.allocated);
  3703. /* Keep the vma as a placeholder in the execbuffer reservation lists */
  3704. if (!list_empty(&vma->exec_list))
  3705. return;
  3706. list_del(&vma->vma_link);
  3707. kfree(vma);
  3708. }
  3709. static void
  3710. i915_gem_stop_ringbuffers(struct drm_device *dev)
  3711. {
  3712. struct drm_i915_private *dev_priv = dev->dev_private;
  3713. struct intel_engine_cs *ring;
  3714. int i;
  3715. for_each_ring(ring, dev_priv, i)
  3716. intel_stop_ring_buffer(ring);
  3717. }
  3718. int
  3719. i915_gem_suspend(struct drm_device *dev)
  3720. {
  3721. struct drm_i915_private *dev_priv = dev->dev_private;
  3722. int ret = 0;
  3723. mutex_lock(&dev->struct_mutex);
  3724. if (dev_priv->ums.mm_suspended)
  3725. goto err;
  3726. ret = i915_gpu_idle(dev);
  3727. if (ret)
  3728. goto err;
  3729. i915_gem_retire_requests(dev);
  3730. /* Under UMS, be paranoid and evict. */
  3731. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3732. i915_gem_evict_everything(dev);
  3733. i915_kernel_lost_context(dev);
  3734. i915_gem_stop_ringbuffers(dev);
  3735. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3736. * We need to replace this with a semaphore, or something.
  3737. * And not confound ums.mm_suspended!
  3738. */
  3739. dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
  3740. DRIVER_MODESET);
  3741. mutex_unlock(&dev->struct_mutex);
  3742. del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
  3743. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3744. flush_delayed_work(&dev_priv->mm.idle_work);
  3745. return 0;
  3746. err:
  3747. mutex_unlock(&dev->struct_mutex);
  3748. return ret;
  3749. }
  3750. int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
  3751. {
  3752. struct drm_device *dev = ring->dev;
  3753. struct drm_i915_private *dev_priv = dev->dev_private;
  3754. u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
  3755. u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
  3756. int i, ret;
  3757. if (!HAS_L3_DPF(dev) || !remap_info)
  3758. return 0;
  3759. ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
  3760. if (ret)
  3761. return ret;
  3762. /*
  3763. * Note: We do not worry about the concurrent register cacheline hang
  3764. * here because no other code should access these registers other than
  3765. * at initialization time.
  3766. */
  3767. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3768. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  3769. intel_ring_emit(ring, reg_base + i);
  3770. intel_ring_emit(ring, remap_info[i/4]);
  3771. }
  3772. intel_ring_advance(ring);
  3773. return ret;
  3774. }
  3775. void i915_gem_init_swizzling(struct drm_device *dev)
  3776. {
  3777. struct drm_i915_private *dev_priv = dev->dev_private;
  3778. if (INTEL_INFO(dev)->gen < 5 ||
  3779. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3780. return;
  3781. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3782. DISP_TILE_SURFACE_SWIZZLING);
  3783. if (IS_GEN5(dev))
  3784. return;
  3785. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3786. if (IS_GEN6(dev))
  3787. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3788. else if (IS_GEN7(dev))
  3789. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3790. else if (IS_GEN8(dev))
  3791. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
  3792. else
  3793. BUG();
  3794. }
  3795. static bool
  3796. intel_enable_blt(struct drm_device *dev)
  3797. {
  3798. if (!HAS_BLT(dev))
  3799. return false;
  3800. /* The blitter was dysfunctional on early prototypes */
  3801. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3802. DRM_INFO("BLT not supported on this pre-production hardware;"
  3803. " graphics performance will be degraded.\n");
  3804. return false;
  3805. }
  3806. return true;
  3807. }
  3808. static int i915_gem_init_rings(struct drm_device *dev)
  3809. {
  3810. struct drm_i915_private *dev_priv = dev->dev_private;
  3811. int ret;
  3812. ret = intel_init_render_ring_buffer(dev);
  3813. if (ret)
  3814. return ret;
  3815. if (HAS_BSD(dev)) {
  3816. ret = intel_init_bsd_ring_buffer(dev);
  3817. if (ret)
  3818. goto cleanup_render_ring;
  3819. }
  3820. if (intel_enable_blt(dev)) {
  3821. ret = intel_init_blt_ring_buffer(dev);
  3822. if (ret)
  3823. goto cleanup_bsd_ring;
  3824. }
  3825. if (HAS_VEBOX(dev)) {
  3826. ret = intel_init_vebox_ring_buffer(dev);
  3827. if (ret)
  3828. goto cleanup_blt_ring;
  3829. }
  3830. if (HAS_BSD2(dev)) {
  3831. ret = intel_init_bsd2_ring_buffer(dev);
  3832. if (ret)
  3833. goto cleanup_vebox_ring;
  3834. }
  3835. ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
  3836. if (ret)
  3837. goto cleanup_bsd2_ring;
  3838. return 0;
  3839. cleanup_bsd2_ring:
  3840. intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
  3841. cleanup_vebox_ring:
  3842. intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
  3843. cleanup_blt_ring:
  3844. intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
  3845. cleanup_bsd_ring:
  3846. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3847. cleanup_render_ring:
  3848. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3849. return ret;
  3850. }
  3851. int
  3852. i915_gem_init_hw(struct drm_device *dev)
  3853. {
  3854. struct drm_i915_private *dev_priv = dev->dev_private;
  3855. int ret, i;
  3856. if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
  3857. return -EIO;
  3858. if (dev_priv->ellc_size)
  3859. I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
  3860. if (IS_HASWELL(dev))
  3861. I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
  3862. LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
  3863. if (HAS_PCH_NOP(dev)) {
  3864. if (IS_IVYBRIDGE(dev)) {
  3865. u32 temp = I915_READ(GEN7_MSG_CTL);
  3866. temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
  3867. I915_WRITE(GEN7_MSG_CTL, temp);
  3868. } else if (INTEL_INFO(dev)->gen >= 7) {
  3869. u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
  3870. temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
  3871. I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
  3872. }
  3873. }
  3874. i915_gem_init_swizzling(dev);
  3875. ret = i915_gem_init_rings(dev);
  3876. if (ret)
  3877. return ret;
  3878. for (i = 0; i < NUM_L3_SLICES(dev); i++)
  3879. i915_gem_l3_remap(&dev_priv->ring[RCS], i);
  3880. /*
  3881. * XXX: Contexts should only be initialized once. Doing a switch to the
  3882. * default context switch however is something we'd like to do after
  3883. * reset or thaw (the latter may not actually be necessary for HW, but
  3884. * goes with our code better). Context switching requires rings (for
  3885. * the do_switch), but before enabling PPGTT. So don't move this.
  3886. */
  3887. ret = i915_gem_context_enable(dev_priv);
  3888. if (ret && ret != -EIO) {
  3889. DRM_ERROR("Context enable failed %d\n", ret);
  3890. i915_gem_cleanup_ringbuffer(dev);
  3891. }
  3892. return ret;
  3893. }
  3894. int i915_gem_init(struct drm_device *dev)
  3895. {
  3896. struct drm_i915_private *dev_priv = dev->dev_private;
  3897. int ret;
  3898. mutex_lock(&dev->struct_mutex);
  3899. if (IS_VALLEYVIEW(dev)) {
  3900. /* VLVA0 (potential hack), BIOS isn't actually waking us */
  3901. I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
  3902. if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
  3903. VLV_GTLC_ALLOWWAKEACK), 10))
  3904. DRM_DEBUG_DRIVER("allow wake ack timed out\n");
  3905. }
  3906. i915_gem_init_userptr(dev);
  3907. i915_gem_init_global_gtt(dev);
  3908. ret = i915_gem_context_init(dev);
  3909. if (ret) {
  3910. mutex_unlock(&dev->struct_mutex);
  3911. return ret;
  3912. }
  3913. ret = i915_gem_init_hw(dev);
  3914. if (ret == -EIO) {
  3915. /* Allow ring initialisation to fail by marking the GPU as
  3916. * wedged. But we only want to do this where the GPU is angry,
  3917. * for all other failure, such as an allocation failure, bail.
  3918. */
  3919. DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
  3920. atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
  3921. ret = 0;
  3922. }
  3923. mutex_unlock(&dev->struct_mutex);
  3924. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3925. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3926. dev_priv->dri1.allow_batchbuffer = 1;
  3927. return ret;
  3928. }
  3929. void
  3930. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3931. {
  3932. struct drm_i915_private *dev_priv = dev->dev_private;
  3933. struct intel_engine_cs *ring;
  3934. int i;
  3935. for_each_ring(ring, dev_priv, i)
  3936. intel_cleanup_ring_buffer(ring);
  3937. }
  3938. int
  3939. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3940. struct drm_file *file_priv)
  3941. {
  3942. struct drm_i915_private *dev_priv = dev->dev_private;
  3943. int ret;
  3944. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3945. return 0;
  3946. if (i915_reset_in_progress(&dev_priv->gpu_error)) {
  3947. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3948. atomic_set(&dev_priv->gpu_error.reset_counter, 0);
  3949. }
  3950. mutex_lock(&dev->struct_mutex);
  3951. dev_priv->ums.mm_suspended = 0;
  3952. ret = i915_gem_init_hw(dev);
  3953. if (ret != 0) {
  3954. mutex_unlock(&dev->struct_mutex);
  3955. return ret;
  3956. }
  3957. BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
  3958. ret = drm_irq_install(dev, dev->pdev->irq);
  3959. if (ret)
  3960. goto cleanup_ringbuffer;
  3961. mutex_unlock(&dev->struct_mutex);
  3962. return 0;
  3963. cleanup_ringbuffer:
  3964. i915_gem_cleanup_ringbuffer(dev);
  3965. dev_priv->ums.mm_suspended = 1;
  3966. mutex_unlock(&dev->struct_mutex);
  3967. return ret;
  3968. }
  3969. int
  3970. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3971. struct drm_file *file_priv)
  3972. {
  3973. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3974. return 0;
  3975. mutex_lock(&dev->struct_mutex);
  3976. drm_irq_uninstall(dev);
  3977. mutex_unlock(&dev->struct_mutex);
  3978. return i915_gem_suspend(dev);
  3979. }
  3980. void
  3981. i915_gem_lastclose(struct drm_device *dev)
  3982. {
  3983. int ret;
  3984. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3985. return;
  3986. ret = i915_gem_suspend(dev);
  3987. if (ret)
  3988. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3989. }
  3990. static void
  3991. init_ring_lists(struct intel_engine_cs *ring)
  3992. {
  3993. INIT_LIST_HEAD(&ring->active_list);
  3994. INIT_LIST_HEAD(&ring->request_list);
  3995. }
  3996. void i915_init_vm(struct drm_i915_private *dev_priv,
  3997. struct i915_address_space *vm)
  3998. {
  3999. if (!i915_is_ggtt(vm))
  4000. drm_mm_init(&vm->mm, vm->start, vm->total);
  4001. vm->dev = dev_priv->dev;
  4002. INIT_LIST_HEAD(&vm->active_list);
  4003. INIT_LIST_HEAD(&vm->inactive_list);
  4004. INIT_LIST_HEAD(&vm->global_link);
  4005. list_add_tail(&vm->global_link, &dev_priv->vm_list);
  4006. }
  4007. void
  4008. i915_gem_load(struct drm_device *dev)
  4009. {
  4010. struct drm_i915_private *dev_priv = dev->dev_private;
  4011. int i;
  4012. dev_priv->slab =
  4013. kmem_cache_create("i915_gem_object",
  4014. sizeof(struct drm_i915_gem_object), 0,
  4015. SLAB_HWCACHE_ALIGN,
  4016. NULL);
  4017. INIT_LIST_HEAD(&dev_priv->vm_list);
  4018. i915_init_vm(dev_priv, &dev_priv->gtt.base);
  4019. INIT_LIST_HEAD(&dev_priv->context_list);
  4020. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  4021. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  4022. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4023. for (i = 0; i < I915_NUM_RINGS; i++)
  4024. init_ring_lists(&dev_priv->ring[i]);
  4025. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  4026. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4027. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4028. i915_gem_retire_work_handler);
  4029. INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
  4030. i915_gem_idle_work_handler);
  4031. init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
  4032. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4033. if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
  4034. I915_WRITE(MI_ARB_STATE,
  4035. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  4036. }
  4037. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  4038. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4039. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4040. dev_priv->fence_reg_start = 3;
  4041. if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
  4042. dev_priv->num_fence_regs = 32;
  4043. else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4044. dev_priv->num_fence_regs = 16;
  4045. else
  4046. dev_priv->num_fence_regs = 8;
  4047. /* Initialize fence registers to zero */
  4048. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4049. i915_gem_restore_fences(dev);
  4050. i915_gem_detect_bit_6_swizzle(dev);
  4051. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4052. dev_priv->mm.interruptible = true;
  4053. dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
  4054. dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
  4055. dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
  4056. register_shrinker(&dev_priv->mm.shrinker);
  4057. dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
  4058. register_oom_notifier(&dev_priv->mm.oom_notifier);
  4059. mutex_init(&dev_priv->fb_tracking.lock);
  4060. }
  4061. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4062. {
  4063. struct drm_i915_file_private *file_priv = file->driver_priv;
  4064. cancel_delayed_work_sync(&file_priv->mm.idle_work);
  4065. /* Clean up our request list when the client is going away, so that
  4066. * later retire_requests won't dereference our soon-to-be-gone
  4067. * file_priv.
  4068. */
  4069. spin_lock(&file_priv->mm.lock);
  4070. while (!list_empty(&file_priv->mm.request_list)) {
  4071. struct drm_i915_gem_request *request;
  4072. request = list_first_entry(&file_priv->mm.request_list,
  4073. struct drm_i915_gem_request,
  4074. client_list);
  4075. list_del(&request->client_list);
  4076. request->file_priv = NULL;
  4077. }
  4078. spin_unlock(&file_priv->mm.lock);
  4079. }
  4080. static void
  4081. i915_gem_file_idle_work_handler(struct work_struct *work)
  4082. {
  4083. struct drm_i915_file_private *file_priv =
  4084. container_of(work, typeof(*file_priv), mm.idle_work.work);
  4085. atomic_set(&file_priv->rps_wait_boost, false);
  4086. }
  4087. int i915_gem_open(struct drm_device *dev, struct drm_file *file)
  4088. {
  4089. struct drm_i915_file_private *file_priv;
  4090. int ret;
  4091. DRM_DEBUG_DRIVER("\n");
  4092. file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
  4093. if (!file_priv)
  4094. return -ENOMEM;
  4095. file->driver_priv = file_priv;
  4096. file_priv->dev_priv = dev->dev_private;
  4097. file_priv->file = file;
  4098. spin_lock_init(&file_priv->mm.lock);
  4099. INIT_LIST_HEAD(&file_priv->mm.request_list);
  4100. INIT_DELAYED_WORK(&file_priv->mm.idle_work,
  4101. i915_gem_file_idle_work_handler);
  4102. ret = i915_gem_context_open(dev, file);
  4103. if (ret)
  4104. kfree(file_priv);
  4105. return ret;
  4106. }
  4107. void i915_gem_track_fb(struct drm_i915_gem_object *old,
  4108. struct drm_i915_gem_object *new,
  4109. unsigned frontbuffer_bits)
  4110. {
  4111. if (old) {
  4112. WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
  4113. WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
  4114. old->frontbuffer_bits &= ~frontbuffer_bits;
  4115. }
  4116. if (new) {
  4117. WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
  4118. WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
  4119. new->frontbuffer_bits |= frontbuffer_bits;
  4120. }
  4121. }
  4122. static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
  4123. {
  4124. if (!mutex_is_locked(mutex))
  4125. return false;
  4126. #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
  4127. return mutex->owner == task;
  4128. #else
  4129. /* Since UP may be pre-empted, we cannot assume that we own the lock */
  4130. return false;
  4131. #endif
  4132. }
  4133. static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
  4134. {
  4135. if (!mutex_trylock(&dev->struct_mutex)) {
  4136. if (!mutex_is_locked_by(&dev->struct_mutex, current))
  4137. return false;
  4138. if (to_i915(dev)->mm.shrinker_no_lock_stealing)
  4139. return false;
  4140. *unlock = false;
  4141. } else
  4142. *unlock = true;
  4143. return true;
  4144. }
  4145. static int num_vma_bound(struct drm_i915_gem_object *obj)
  4146. {
  4147. struct i915_vma *vma;
  4148. int count = 0;
  4149. list_for_each_entry(vma, &obj->vma_list, vma_link)
  4150. if (drm_mm_node_allocated(&vma->node))
  4151. count++;
  4152. return count;
  4153. }
  4154. static unsigned long
  4155. i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
  4156. {
  4157. struct drm_i915_private *dev_priv =
  4158. container_of(shrinker, struct drm_i915_private, mm.shrinker);
  4159. struct drm_device *dev = dev_priv->dev;
  4160. struct drm_i915_gem_object *obj;
  4161. unsigned long count;
  4162. bool unlock;
  4163. if (!i915_gem_shrinker_lock(dev, &unlock))
  4164. return 0;
  4165. count = 0;
  4166. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
  4167. if (obj->pages_pin_count == 0)
  4168. count += obj->base.size >> PAGE_SHIFT;
  4169. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  4170. if (!i915_gem_obj_is_pinned(obj) &&
  4171. obj->pages_pin_count == num_vma_bound(obj))
  4172. count += obj->base.size >> PAGE_SHIFT;
  4173. }
  4174. if (unlock)
  4175. mutex_unlock(&dev->struct_mutex);
  4176. return count;
  4177. }
  4178. /* All the new VM stuff */
  4179. unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
  4180. struct i915_address_space *vm)
  4181. {
  4182. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  4183. struct i915_vma *vma;
  4184. if (!dev_priv->mm.aliasing_ppgtt ||
  4185. vm == &dev_priv->mm.aliasing_ppgtt->base)
  4186. vm = &dev_priv->gtt.base;
  4187. list_for_each_entry(vma, &o->vma_list, vma_link) {
  4188. if (vma->vm == vm)
  4189. return vma->node.start;
  4190. }
  4191. WARN(1, "%s vma for this object not found.\n",
  4192. i915_is_ggtt(vm) ? "global" : "ppgtt");
  4193. return -1;
  4194. }
  4195. bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
  4196. struct i915_address_space *vm)
  4197. {
  4198. struct i915_vma *vma;
  4199. list_for_each_entry(vma, &o->vma_list, vma_link)
  4200. if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
  4201. return true;
  4202. return false;
  4203. }
  4204. bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
  4205. {
  4206. struct i915_vma *vma;
  4207. list_for_each_entry(vma, &o->vma_list, vma_link)
  4208. if (drm_mm_node_allocated(&vma->node))
  4209. return true;
  4210. return false;
  4211. }
  4212. unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
  4213. struct i915_address_space *vm)
  4214. {
  4215. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  4216. struct i915_vma *vma;
  4217. if (!dev_priv->mm.aliasing_ppgtt ||
  4218. vm == &dev_priv->mm.aliasing_ppgtt->base)
  4219. vm = &dev_priv->gtt.base;
  4220. BUG_ON(list_empty(&o->vma_list));
  4221. list_for_each_entry(vma, &o->vma_list, vma_link)
  4222. if (vma->vm == vm)
  4223. return vma->node.size;
  4224. return 0;
  4225. }
  4226. static unsigned long
  4227. i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
  4228. {
  4229. struct drm_i915_private *dev_priv =
  4230. container_of(shrinker, struct drm_i915_private, mm.shrinker);
  4231. struct drm_device *dev = dev_priv->dev;
  4232. unsigned long freed;
  4233. bool unlock;
  4234. if (!i915_gem_shrinker_lock(dev, &unlock))
  4235. return SHRINK_STOP;
  4236. freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
  4237. if (freed < sc->nr_to_scan)
  4238. freed += __i915_gem_shrink(dev_priv,
  4239. sc->nr_to_scan - freed,
  4240. false);
  4241. if (unlock)
  4242. mutex_unlock(&dev->struct_mutex);
  4243. return freed;
  4244. }
  4245. static int
  4246. i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
  4247. {
  4248. struct drm_i915_private *dev_priv =
  4249. container_of(nb, struct drm_i915_private, mm.oom_notifier);
  4250. struct drm_device *dev = dev_priv->dev;
  4251. struct drm_i915_gem_object *obj;
  4252. unsigned long timeout = msecs_to_jiffies(5000) + 1;
  4253. unsigned long pinned, bound, unbound, freed;
  4254. bool was_interruptible;
  4255. bool unlock;
  4256. while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
  4257. schedule_timeout_killable(1);
  4258. if (fatal_signal_pending(current))
  4259. return NOTIFY_DONE;
  4260. }
  4261. if (timeout == 0) {
  4262. pr_err("Unable to purge GPU memory due lock contention.\n");
  4263. return NOTIFY_DONE;
  4264. }
  4265. was_interruptible = dev_priv->mm.interruptible;
  4266. dev_priv->mm.interruptible = false;
  4267. freed = i915_gem_shrink_all(dev_priv);
  4268. dev_priv->mm.interruptible = was_interruptible;
  4269. /* Because we may be allocating inside our own driver, we cannot
  4270. * assert that there are no objects with pinned pages that are not
  4271. * being pointed to by hardware.
  4272. */
  4273. unbound = bound = pinned = 0;
  4274. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  4275. if (!obj->base.filp) /* not backed by a freeable object */
  4276. continue;
  4277. if (obj->pages_pin_count)
  4278. pinned += obj->base.size;
  4279. else
  4280. unbound += obj->base.size;
  4281. }
  4282. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  4283. if (!obj->base.filp)
  4284. continue;
  4285. if (obj->pages_pin_count)
  4286. pinned += obj->base.size;
  4287. else
  4288. bound += obj->base.size;
  4289. }
  4290. if (unlock)
  4291. mutex_unlock(&dev->struct_mutex);
  4292. pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
  4293. freed, pinned);
  4294. if (unbound || bound)
  4295. pr_err("%lu and %lu bytes still available in the "
  4296. "bound and unbound GPU page lists.\n",
  4297. bound, unbound);
  4298. *(unsigned long *)ptr += freed;
  4299. return NOTIFY_DONE;
  4300. }
  4301. struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
  4302. {
  4303. struct i915_vma *vma;
  4304. /* This WARN has probably outlived its usefulness (callers already
  4305. * WARN if they don't find the GGTT vma they expect). When removing,
  4306. * remember to remove the pre-check in is_pin_display() as well */
  4307. if (WARN_ON(list_empty(&obj->vma_list)))
  4308. return NULL;
  4309. vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
  4310. if (vma->vm != obj_to_ggtt(obj))
  4311. return NULL;
  4312. return vma;
  4313. }