i915_debugfs.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. enum {
  42. ACTIVE_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. static const char *yesno(int v)
  47. {
  48. return v ? "yes" : "no";
  49. }
  50. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  51. * allocated we need to hook into the minor for release. */
  52. static int
  53. drm_add_fake_info_node(struct drm_minor *minor,
  54. struct dentry *ent,
  55. const void *key)
  56. {
  57. struct drm_info_node *node;
  58. node = kmalloc(sizeof(*node), GFP_KERNEL);
  59. if (node == NULL) {
  60. debugfs_remove(ent);
  61. return -ENOMEM;
  62. }
  63. node->minor = minor;
  64. node->dent = ent;
  65. node->info_ent = (void *) key;
  66. mutex_lock(&minor->debugfs_lock);
  67. list_add(&node->list, &minor->debugfs_list);
  68. mutex_unlock(&minor->debugfs_lock);
  69. return 0;
  70. }
  71. static int i915_capabilities(struct seq_file *m, void *data)
  72. {
  73. struct drm_info_node *node = m->private;
  74. struct drm_device *dev = node->minor->dev;
  75. const struct intel_device_info *info = INTEL_INFO(dev);
  76. seq_printf(m, "gen: %d\n", info->gen);
  77. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  78. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  79. #define SEP_SEMICOLON ;
  80. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
  81. #undef PRINT_FLAG
  82. #undef SEP_SEMICOLON
  83. return 0;
  84. }
  85. static const char *get_pin_flag(struct drm_i915_gem_object *obj)
  86. {
  87. if (obj->user_pin_count > 0)
  88. return "P";
  89. else if (i915_gem_obj_is_pinned(obj))
  90. return "p";
  91. else
  92. return " ";
  93. }
  94. static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
  95. {
  96. switch (obj->tiling_mode) {
  97. default:
  98. case I915_TILING_NONE: return " ";
  99. case I915_TILING_X: return "X";
  100. case I915_TILING_Y: return "Y";
  101. }
  102. }
  103. static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
  104. {
  105. return obj->has_global_gtt_mapping ? "g" : " ";
  106. }
  107. static void
  108. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  109. {
  110. struct i915_vma *vma;
  111. int pin_count = 0;
  112. seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
  113. &obj->base,
  114. get_pin_flag(obj),
  115. get_tiling_flag(obj),
  116. get_global_flag(obj),
  117. obj->base.size / 1024,
  118. obj->base.read_domains,
  119. obj->base.write_domain,
  120. obj->last_read_seqno,
  121. obj->last_write_seqno,
  122. obj->last_fenced_seqno,
  123. i915_cache_level_str(obj->cache_level),
  124. obj->dirty ? " dirty" : "",
  125. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  126. if (obj->base.name)
  127. seq_printf(m, " (name: %d)", obj->base.name);
  128. list_for_each_entry(vma, &obj->vma_list, vma_link)
  129. if (vma->pin_count > 0)
  130. pin_count++;
  131. seq_printf(m, " (pinned x %d)", pin_count);
  132. if (obj->pin_display)
  133. seq_printf(m, " (display)");
  134. if (obj->fence_reg != I915_FENCE_REG_NONE)
  135. seq_printf(m, " (fence: %d)", obj->fence_reg);
  136. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  137. if (!i915_is_ggtt(vma->vm))
  138. seq_puts(m, " (pp");
  139. else
  140. seq_puts(m, " (g");
  141. seq_printf(m, "gtt offset: %08lx, size: %08lx)",
  142. vma->node.start, vma->node.size);
  143. }
  144. if (obj->stolen)
  145. seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
  146. if (obj->pin_mappable || obj->fault_mappable) {
  147. char s[3], *t = s;
  148. if (obj->pin_mappable)
  149. *t++ = 'p';
  150. if (obj->fault_mappable)
  151. *t++ = 'f';
  152. *t = '\0';
  153. seq_printf(m, " (%s mappable)", s);
  154. }
  155. if (obj->ring != NULL)
  156. seq_printf(m, " (%s)", obj->ring->name);
  157. if (obj->frontbuffer_bits)
  158. seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
  159. }
  160. static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
  161. {
  162. seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
  163. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  164. seq_putc(m, ' ');
  165. }
  166. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  167. {
  168. struct drm_info_node *node = m->private;
  169. uintptr_t list = (uintptr_t) node->info_ent->data;
  170. struct list_head *head;
  171. struct drm_device *dev = node->minor->dev;
  172. struct drm_i915_private *dev_priv = dev->dev_private;
  173. struct i915_address_space *vm = &dev_priv->gtt.base;
  174. struct i915_vma *vma;
  175. size_t total_obj_size, total_gtt_size;
  176. int count, ret;
  177. ret = mutex_lock_interruptible(&dev->struct_mutex);
  178. if (ret)
  179. return ret;
  180. /* FIXME: the user of this interface might want more than just GGTT */
  181. switch (list) {
  182. case ACTIVE_LIST:
  183. seq_puts(m, "Active:\n");
  184. head = &vm->active_list;
  185. break;
  186. case INACTIVE_LIST:
  187. seq_puts(m, "Inactive:\n");
  188. head = &vm->inactive_list;
  189. break;
  190. default:
  191. mutex_unlock(&dev->struct_mutex);
  192. return -EINVAL;
  193. }
  194. total_obj_size = total_gtt_size = count = 0;
  195. list_for_each_entry(vma, head, mm_list) {
  196. seq_printf(m, " ");
  197. describe_obj(m, vma->obj);
  198. seq_printf(m, "\n");
  199. total_obj_size += vma->obj->base.size;
  200. total_gtt_size += vma->node.size;
  201. count++;
  202. }
  203. mutex_unlock(&dev->struct_mutex);
  204. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  205. count, total_obj_size, total_gtt_size);
  206. return 0;
  207. }
  208. static int obj_rank_by_stolen(void *priv,
  209. struct list_head *A, struct list_head *B)
  210. {
  211. struct drm_i915_gem_object *a =
  212. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  213. struct drm_i915_gem_object *b =
  214. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  215. return a->stolen->start - b->stolen->start;
  216. }
  217. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  218. {
  219. struct drm_info_node *node = m->private;
  220. struct drm_device *dev = node->minor->dev;
  221. struct drm_i915_private *dev_priv = dev->dev_private;
  222. struct drm_i915_gem_object *obj;
  223. size_t total_obj_size, total_gtt_size;
  224. LIST_HEAD(stolen);
  225. int count, ret;
  226. ret = mutex_lock_interruptible(&dev->struct_mutex);
  227. if (ret)
  228. return ret;
  229. total_obj_size = total_gtt_size = count = 0;
  230. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  231. if (obj->stolen == NULL)
  232. continue;
  233. list_add(&obj->obj_exec_link, &stolen);
  234. total_obj_size += obj->base.size;
  235. total_gtt_size += i915_gem_obj_ggtt_size(obj);
  236. count++;
  237. }
  238. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  239. if (obj->stolen == NULL)
  240. continue;
  241. list_add(&obj->obj_exec_link, &stolen);
  242. total_obj_size += obj->base.size;
  243. count++;
  244. }
  245. list_sort(NULL, &stolen, obj_rank_by_stolen);
  246. seq_puts(m, "Stolen:\n");
  247. while (!list_empty(&stolen)) {
  248. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  249. seq_puts(m, " ");
  250. describe_obj(m, obj);
  251. seq_putc(m, '\n');
  252. list_del_init(&obj->obj_exec_link);
  253. }
  254. mutex_unlock(&dev->struct_mutex);
  255. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  256. count, total_obj_size, total_gtt_size);
  257. return 0;
  258. }
  259. #define count_objects(list, member) do { \
  260. list_for_each_entry(obj, list, member) { \
  261. size += i915_gem_obj_ggtt_size(obj); \
  262. ++count; \
  263. if (obj->map_and_fenceable) { \
  264. mappable_size += i915_gem_obj_ggtt_size(obj); \
  265. ++mappable_count; \
  266. } \
  267. } \
  268. } while (0)
  269. struct file_stats {
  270. struct drm_i915_file_private *file_priv;
  271. int count;
  272. size_t total, unbound;
  273. size_t global, shared;
  274. size_t active, inactive;
  275. };
  276. static int per_file_stats(int id, void *ptr, void *data)
  277. {
  278. struct drm_i915_gem_object *obj = ptr;
  279. struct file_stats *stats = data;
  280. struct i915_vma *vma;
  281. stats->count++;
  282. stats->total += obj->base.size;
  283. if (obj->base.name || obj->base.dma_buf)
  284. stats->shared += obj->base.size;
  285. if (USES_FULL_PPGTT(obj->base.dev)) {
  286. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  287. struct i915_hw_ppgtt *ppgtt;
  288. if (!drm_mm_node_allocated(&vma->node))
  289. continue;
  290. if (i915_is_ggtt(vma->vm)) {
  291. stats->global += obj->base.size;
  292. continue;
  293. }
  294. ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
  295. if (ppgtt->ctx && ppgtt->ctx->file_priv != stats->file_priv)
  296. continue;
  297. if (obj->ring) /* XXX per-vma statistic */
  298. stats->active += obj->base.size;
  299. else
  300. stats->inactive += obj->base.size;
  301. return 0;
  302. }
  303. } else {
  304. if (i915_gem_obj_ggtt_bound(obj)) {
  305. stats->global += obj->base.size;
  306. if (obj->ring)
  307. stats->active += obj->base.size;
  308. else
  309. stats->inactive += obj->base.size;
  310. return 0;
  311. }
  312. }
  313. if (!list_empty(&obj->global_list))
  314. stats->unbound += obj->base.size;
  315. return 0;
  316. }
  317. #define count_vmas(list, member) do { \
  318. list_for_each_entry(vma, list, member) { \
  319. size += i915_gem_obj_ggtt_size(vma->obj); \
  320. ++count; \
  321. if (vma->obj->map_and_fenceable) { \
  322. mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
  323. ++mappable_count; \
  324. } \
  325. } \
  326. } while (0)
  327. static int i915_gem_object_info(struct seq_file *m, void* data)
  328. {
  329. struct drm_info_node *node = m->private;
  330. struct drm_device *dev = node->minor->dev;
  331. struct drm_i915_private *dev_priv = dev->dev_private;
  332. u32 count, mappable_count, purgeable_count;
  333. size_t size, mappable_size, purgeable_size;
  334. struct drm_i915_gem_object *obj;
  335. struct i915_address_space *vm = &dev_priv->gtt.base;
  336. struct drm_file *file;
  337. struct i915_vma *vma;
  338. int ret;
  339. ret = mutex_lock_interruptible(&dev->struct_mutex);
  340. if (ret)
  341. return ret;
  342. seq_printf(m, "%u objects, %zu bytes\n",
  343. dev_priv->mm.object_count,
  344. dev_priv->mm.object_memory);
  345. size = count = mappable_size = mappable_count = 0;
  346. count_objects(&dev_priv->mm.bound_list, global_list);
  347. seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
  348. count, mappable_count, size, mappable_size);
  349. size = count = mappable_size = mappable_count = 0;
  350. count_vmas(&vm->active_list, mm_list);
  351. seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
  352. count, mappable_count, size, mappable_size);
  353. size = count = mappable_size = mappable_count = 0;
  354. count_vmas(&vm->inactive_list, mm_list);
  355. seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
  356. count, mappable_count, size, mappable_size);
  357. size = count = purgeable_size = purgeable_count = 0;
  358. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  359. size += obj->base.size, ++count;
  360. if (obj->madv == I915_MADV_DONTNEED)
  361. purgeable_size += obj->base.size, ++purgeable_count;
  362. }
  363. seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
  364. size = count = mappable_size = mappable_count = 0;
  365. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  366. if (obj->fault_mappable) {
  367. size += i915_gem_obj_ggtt_size(obj);
  368. ++count;
  369. }
  370. if (obj->pin_mappable) {
  371. mappable_size += i915_gem_obj_ggtt_size(obj);
  372. ++mappable_count;
  373. }
  374. if (obj->madv == I915_MADV_DONTNEED) {
  375. purgeable_size += obj->base.size;
  376. ++purgeable_count;
  377. }
  378. }
  379. seq_printf(m, "%u purgeable objects, %zu bytes\n",
  380. purgeable_count, purgeable_size);
  381. seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
  382. mappable_count, mappable_size);
  383. seq_printf(m, "%u fault mappable objects, %zu bytes\n",
  384. count, size);
  385. seq_printf(m, "%zu [%lu] gtt total\n",
  386. dev_priv->gtt.base.total,
  387. dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
  388. seq_putc(m, '\n');
  389. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  390. struct file_stats stats;
  391. struct task_struct *task;
  392. memset(&stats, 0, sizeof(stats));
  393. stats.file_priv = file->driver_priv;
  394. spin_lock(&file->table_lock);
  395. idr_for_each(&file->object_idr, per_file_stats, &stats);
  396. spin_unlock(&file->table_lock);
  397. /*
  398. * Although we have a valid reference on file->pid, that does
  399. * not guarantee that the task_struct who called get_pid() is
  400. * still alive (e.g. get_pid(current) => fork() => exit()).
  401. * Therefore, we need to protect this ->comm access using RCU.
  402. */
  403. rcu_read_lock();
  404. task = pid_task(file->pid, PIDTYPE_PID);
  405. seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
  406. task ? task->comm : "<unknown>",
  407. stats.count,
  408. stats.total,
  409. stats.active,
  410. stats.inactive,
  411. stats.global,
  412. stats.shared,
  413. stats.unbound);
  414. rcu_read_unlock();
  415. }
  416. mutex_unlock(&dev->struct_mutex);
  417. return 0;
  418. }
  419. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  420. {
  421. struct drm_info_node *node = m->private;
  422. struct drm_device *dev = node->minor->dev;
  423. uintptr_t list = (uintptr_t) node->info_ent->data;
  424. struct drm_i915_private *dev_priv = dev->dev_private;
  425. struct drm_i915_gem_object *obj;
  426. size_t total_obj_size, total_gtt_size;
  427. int count, ret;
  428. ret = mutex_lock_interruptible(&dev->struct_mutex);
  429. if (ret)
  430. return ret;
  431. total_obj_size = total_gtt_size = count = 0;
  432. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  433. if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
  434. continue;
  435. seq_puts(m, " ");
  436. describe_obj(m, obj);
  437. seq_putc(m, '\n');
  438. total_obj_size += obj->base.size;
  439. total_gtt_size += i915_gem_obj_ggtt_size(obj);
  440. count++;
  441. }
  442. mutex_unlock(&dev->struct_mutex);
  443. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  444. count, total_obj_size, total_gtt_size);
  445. return 0;
  446. }
  447. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  448. {
  449. struct drm_info_node *node = m->private;
  450. struct drm_device *dev = node->minor->dev;
  451. unsigned long flags;
  452. struct intel_crtc *crtc;
  453. int ret;
  454. ret = mutex_lock_interruptible(&dev->struct_mutex);
  455. if (ret)
  456. return ret;
  457. for_each_intel_crtc(dev, crtc) {
  458. const char pipe = pipe_name(crtc->pipe);
  459. const char plane = plane_name(crtc->plane);
  460. struct intel_unpin_work *work;
  461. spin_lock_irqsave(&dev->event_lock, flags);
  462. work = crtc->unpin_work;
  463. if (work == NULL) {
  464. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  465. pipe, plane);
  466. } else {
  467. if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  468. seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
  469. pipe, plane);
  470. } else {
  471. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  472. pipe, plane);
  473. }
  474. if (work->enable_stall_check)
  475. seq_puts(m, "Stall check enabled, ");
  476. else
  477. seq_puts(m, "Stall check waiting for page flip ioctl, ");
  478. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  479. if (work->old_fb_obj) {
  480. struct drm_i915_gem_object *obj = work->old_fb_obj;
  481. if (obj)
  482. seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
  483. i915_gem_obj_ggtt_offset(obj));
  484. }
  485. if (work->pending_flip_obj) {
  486. struct drm_i915_gem_object *obj = work->pending_flip_obj;
  487. if (obj)
  488. seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
  489. i915_gem_obj_ggtt_offset(obj));
  490. }
  491. }
  492. spin_unlock_irqrestore(&dev->event_lock, flags);
  493. }
  494. mutex_unlock(&dev->struct_mutex);
  495. return 0;
  496. }
  497. static int i915_gem_request_info(struct seq_file *m, void *data)
  498. {
  499. struct drm_info_node *node = m->private;
  500. struct drm_device *dev = node->minor->dev;
  501. struct drm_i915_private *dev_priv = dev->dev_private;
  502. struct intel_engine_cs *ring;
  503. struct drm_i915_gem_request *gem_request;
  504. int ret, count, i;
  505. ret = mutex_lock_interruptible(&dev->struct_mutex);
  506. if (ret)
  507. return ret;
  508. count = 0;
  509. for_each_ring(ring, dev_priv, i) {
  510. if (list_empty(&ring->request_list))
  511. continue;
  512. seq_printf(m, "%s requests:\n", ring->name);
  513. list_for_each_entry(gem_request,
  514. &ring->request_list,
  515. list) {
  516. seq_printf(m, " %d @ %d\n",
  517. gem_request->seqno,
  518. (int) (jiffies - gem_request->emitted_jiffies));
  519. }
  520. count++;
  521. }
  522. mutex_unlock(&dev->struct_mutex);
  523. if (count == 0)
  524. seq_puts(m, "No requests\n");
  525. return 0;
  526. }
  527. static void i915_ring_seqno_info(struct seq_file *m,
  528. struct intel_engine_cs *ring)
  529. {
  530. if (ring->get_seqno) {
  531. seq_printf(m, "Current sequence (%s): %u\n",
  532. ring->name, ring->get_seqno(ring, false));
  533. }
  534. }
  535. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  536. {
  537. struct drm_info_node *node = m->private;
  538. struct drm_device *dev = node->minor->dev;
  539. struct drm_i915_private *dev_priv = dev->dev_private;
  540. struct intel_engine_cs *ring;
  541. int ret, i;
  542. ret = mutex_lock_interruptible(&dev->struct_mutex);
  543. if (ret)
  544. return ret;
  545. intel_runtime_pm_get(dev_priv);
  546. for_each_ring(ring, dev_priv, i)
  547. i915_ring_seqno_info(m, ring);
  548. intel_runtime_pm_put(dev_priv);
  549. mutex_unlock(&dev->struct_mutex);
  550. return 0;
  551. }
  552. static int i915_interrupt_info(struct seq_file *m, void *data)
  553. {
  554. struct drm_info_node *node = m->private;
  555. struct drm_device *dev = node->minor->dev;
  556. struct drm_i915_private *dev_priv = dev->dev_private;
  557. struct intel_engine_cs *ring;
  558. int ret, i, pipe;
  559. ret = mutex_lock_interruptible(&dev->struct_mutex);
  560. if (ret)
  561. return ret;
  562. intel_runtime_pm_get(dev_priv);
  563. if (IS_CHERRYVIEW(dev)) {
  564. int i;
  565. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  566. I915_READ(GEN8_MASTER_IRQ));
  567. seq_printf(m, "Display IER:\t%08x\n",
  568. I915_READ(VLV_IER));
  569. seq_printf(m, "Display IIR:\t%08x\n",
  570. I915_READ(VLV_IIR));
  571. seq_printf(m, "Display IIR_RW:\t%08x\n",
  572. I915_READ(VLV_IIR_RW));
  573. seq_printf(m, "Display IMR:\t%08x\n",
  574. I915_READ(VLV_IMR));
  575. for_each_pipe(pipe)
  576. seq_printf(m, "Pipe %c stat:\t%08x\n",
  577. pipe_name(pipe),
  578. I915_READ(PIPESTAT(pipe)));
  579. seq_printf(m, "Port hotplug:\t%08x\n",
  580. I915_READ(PORT_HOTPLUG_EN));
  581. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  582. I915_READ(VLV_DPFLIPSTAT));
  583. seq_printf(m, "DPINVGTT:\t%08x\n",
  584. I915_READ(DPINVGTT));
  585. for (i = 0; i < 4; i++) {
  586. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  587. i, I915_READ(GEN8_GT_IMR(i)));
  588. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  589. i, I915_READ(GEN8_GT_IIR(i)));
  590. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  591. i, I915_READ(GEN8_GT_IER(i)));
  592. }
  593. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  594. I915_READ(GEN8_PCU_IMR));
  595. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  596. I915_READ(GEN8_PCU_IIR));
  597. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  598. I915_READ(GEN8_PCU_IER));
  599. } else if (INTEL_INFO(dev)->gen >= 8) {
  600. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  601. I915_READ(GEN8_MASTER_IRQ));
  602. for (i = 0; i < 4; i++) {
  603. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  604. i, I915_READ(GEN8_GT_IMR(i)));
  605. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  606. i, I915_READ(GEN8_GT_IIR(i)));
  607. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  608. i, I915_READ(GEN8_GT_IER(i)));
  609. }
  610. for_each_pipe(pipe) {
  611. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  612. pipe_name(pipe),
  613. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  614. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  615. pipe_name(pipe),
  616. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  617. seq_printf(m, "Pipe %c IER:\t%08x\n",
  618. pipe_name(pipe),
  619. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  620. }
  621. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  622. I915_READ(GEN8_DE_PORT_IMR));
  623. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  624. I915_READ(GEN8_DE_PORT_IIR));
  625. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  626. I915_READ(GEN8_DE_PORT_IER));
  627. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  628. I915_READ(GEN8_DE_MISC_IMR));
  629. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  630. I915_READ(GEN8_DE_MISC_IIR));
  631. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  632. I915_READ(GEN8_DE_MISC_IER));
  633. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  634. I915_READ(GEN8_PCU_IMR));
  635. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  636. I915_READ(GEN8_PCU_IIR));
  637. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  638. I915_READ(GEN8_PCU_IER));
  639. } else if (IS_VALLEYVIEW(dev)) {
  640. seq_printf(m, "Display IER:\t%08x\n",
  641. I915_READ(VLV_IER));
  642. seq_printf(m, "Display IIR:\t%08x\n",
  643. I915_READ(VLV_IIR));
  644. seq_printf(m, "Display IIR_RW:\t%08x\n",
  645. I915_READ(VLV_IIR_RW));
  646. seq_printf(m, "Display IMR:\t%08x\n",
  647. I915_READ(VLV_IMR));
  648. for_each_pipe(pipe)
  649. seq_printf(m, "Pipe %c stat:\t%08x\n",
  650. pipe_name(pipe),
  651. I915_READ(PIPESTAT(pipe)));
  652. seq_printf(m, "Master IER:\t%08x\n",
  653. I915_READ(VLV_MASTER_IER));
  654. seq_printf(m, "Render IER:\t%08x\n",
  655. I915_READ(GTIER));
  656. seq_printf(m, "Render IIR:\t%08x\n",
  657. I915_READ(GTIIR));
  658. seq_printf(m, "Render IMR:\t%08x\n",
  659. I915_READ(GTIMR));
  660. seq_printf(m, "PM IER:\t\t%08x\n",
  661. I915_READ(GEN6_PMIER));
  662. seq_printf(m, "PM IIR:\t\t%08x\n",
  663. I915_READ(GEN6_PMIIR));
  664. seq_printf(m, "PM IMR:\t\t%08x\n",
  665. I915_READ(GEN6_PMIMR));
  666. seq_printf(m, "Port hotplug:\t%08x\n",
  667. I915_READ(PORT_HOTPLUG_EN));
  668. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  669. I915_READ(VLV_DPFLIPSTAT));
  670. seq_printf(m, "DPINVGTT:\t%08x\n",
  671. I915_READ(DPINVGTT));
  672. } else if (!HAS_PCH_SPLIT(dev)) {
  673. seq_printf(m, "Interrupt enable: %08x\n",
  674. I915_READ(IER));
  675. seq_printf(m, "Interrupt identity: %08x\n",
  676. I915_READ(IIR));
  677. seq_printf(m, "Interrupt mask: %08x\n",
  678. I915_READ(IMR));
  679. for_each_pipe(pipe)
  680. seq_printf(m, "Pipe %c stat: %08x\n",
  681. pipe_name(pipe),
  682. I915_READ(PIPESTAT(pipe)));
  683. } else {
  684. seq_printf(m, "North Display Interrupt enable: %08x\n",
  685. I915_READ(DEIER));
  686. seq_printf(m, "North Display Interrupt identity: %08x\n",
  687. I915_READ(DEIIR));
  688. seq_printf(m, "North Display Interrupt mask: %08x\n",
  689. I915_READ(DEIMR));
  690. seq_printf(m, "South Display Interrupt enable: %08x\n",
  691. I915_READ(SDEIER));
  692. seq_printf(m, "South Display Interrupt identity: %08x\n",
  693. I915_READ(SDEIIR));
  694. seq_printf(m, "South Display Interrupt mask: %08x\n",
  695. I915_READ(SDEIMR));
  696. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  697. I915_READ(GTIER));
  698. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  699. I915_READ(GTIIR));
  700. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  701. I915_READ(GTIMR));
  702. }
  703. for_each_ring(ring, dev_priv, i) {
  704. if (INTEL_INFO(dev)->gen >= 6) {
  705. seq_printf(m,
  706. "Graphics Interrupt mask (%s): %08x\n",
  707. ring->name, I915_READ_IMR(ring));
  708. }
  709. i915_ring_seqno_info(m, ring);
  710. }
  711. intel_runtime_pm_put(dev_priv);
  712. mutex_unlock(&dev->struct_mutex);
  713. return 0;
  714. }
  715. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  716. {
  717. struct drm_info_node *node = m->private;
  718. struct drm_device *dev = node->minor->dev;
  719. struct drm_i915_private *dev_priv = dev->dev_private;
  720. int i, ret;
  721. ret = mutex_lock_interruptible(&dev->struct_mutex);
  722. if (ret)
  723. return ret;
  724. seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
  725. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  726. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  727. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  728. seq_printf(m, "Fence %d, pin count = %d, object = ",
  729. i, dev_priv->fence_regs[i].pin_count);
  730. if (obj == NULL)
  731. seq_puts(m, "unused");
  732. else
  733. describe_obj(m, obj);
  734. seq_putc(m, '\n');
  735. }
  736. mutex_unlock(&dev->struct_mutex);
  737. return 0;
  738. }
  739. static int i915_hws_info(struct seq_file *m, void *data)
  740. {
  741. struct drm_info_node *node = m->private;
  742. struct drm_device *dev = node->minor->dev;
  743. struct drm_i915_private *dev_priv = dev->dev_private;
  744. struct intel_engine_cs *ring;
  745. const u32 *hws;
  746. int i;
  747. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  748. hws = ring->status_page.page_addr;
  749. if (hws == NULL)
  750. return 0;
  751. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  752. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  753. i * 4,
  754. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  755. }
  756. return 0;
  757. }
  758. static ssize_t
  759. i915_error_state_write(struct file *filp,
  760. const char __user *ubuf,
  761. size_t cnt,
  762. loff_t *ppos)
  763. {
  764. struct i915_error_state_file_priv *error_priv = filp->private_data;
  765. struct drm_device *dev = error_priv->dev;
  766. int ret;
  767. DRM_DEBUG_DRIVER("Resetting error state\n");
  768. ret = mutex_lock_interruptible(&dev->struct_mutex);
  769. if (ret)
  770. return ret;
  771. i915_destroy_error_state(dev);
  772. mutex_unlock(&dev->struct_mutex);
  773. return cnt;
  774. }
  775. static int i915_error_state_open(struct inode *inode, struct file *file)
  776. {
  777. struct drm_device *dev = inode->i_private;
  778. struct i915_error_state_file_priv *error_priv;
  779. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  780. if (!error_priv)
  781. return -ENOMEM;
  782. error_priv->dev = dev;
  783. i915_error_state_get(dev, error_priv);
  784. file->private_data = error_priv;
  785. return 0;
  786. }
  787. static int i915_error_state_release(struct inode *inode, struct file *file)
  788. {
  789. struct i915_error_state_file_priv *error_priv = file->private_data;
  790. i915_error_state_put(error_priv);
  791. kfree(error_priv);
  792. return 0;
  793. }
  794. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  795. size_t count, loff_t *pos)
  796. {
  797. struct i915_error_state_file_priv *error_priv = file->private_data;
  798. struct drm_i915_error_state_buf error_str;
  799. loff_t tmp_pos = 0;
  800. ssize_t ret_count = 0;
  801. int ret;
  802. ret = i915_error_state_buf_init(&error_str, count, *pos);
  803. if (ret)
  804. return ret;
  805. ret = i915_error_state_to_str(&error_str, error_priv);
  806. if (ret)
  807. goto out;
  808. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  809. error_str.buf,
  810. error_str.bytes);
  811. if (ret_count < 0)
  812. ret = ret_count;
  813. else
  814. *pos = error_str.start + ret_count;
  815. out:
  816. i915_error_state_buf_release(&error_str);
  817. return ret ?: ret_count;
  818. }
  819. static const struct file_operations i915_error_state_fops = {
  820. .owner = THIS_MODULE,
  821. .open = i915_error_state_open,
  822. .read = i915_error_state_read,
  823. .write = i915_error_state_write,
  824. .llseek = default_llseek,
  825. .release = i915_error_state_release,
  826. };
  827. static int
  828. i915_next_seqno_get(void *data, u64 *val)
  829. {
  830. struct drm_device *dev = data;
  831. struct drm_i915_private *dev_priv = dev->dev_private;
  832. int ret;
  833. ret = mutex_lock_interruptible(&dev->struct_mutex);
  834. if (ret)
  835. return ret;
  836. *val = dev_priv->next_seqno;
  837. mutex_unlock(&dev->struct_mutex);
  838. return 0;
  839. }
  840. static int
  841. i915_next_seqno_set(void *data, u64 val)
  842. {
  843. struct drm_device *dev = data;
  844. int ret;
  845. ret = mutex_lock_interruptible(&dev->struct_mutex);
  846. if (ret)
  847. return ret;
  848. ret = i915_gem_set_seqno(dev, val);
  849. mutex_unlock(&dev->struct_mutex);
  850. return ret;
  851. }
  852. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  853. i915_next_seqno_get, i915_next_seqno_set,
  854. "0x%llx\n");
  855. static int i915_frequency_info(struct seq_file *m, void *unused)
  856. {
  857. struct drm_info_node *node = m->private;
  858. struct drm_device *dev = node->minor->dev;
  859. struct drm_i915_private *dev_priv = dev->dev_private;
  860. int ret = 0;
  861. intel_runtime_pm_get(dev_priv);
  862. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  863. if (IS_GEN5(dev)) {
  864. u16 rgvswctl = I915_READ16(MEMSWCTL);
  865. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  866. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  867. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  868. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  869. MEMSTAT_VID_SHIFT);
  870. seq_printf(m, "Current P-state: %d\n",
  871. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  872. } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
  873. IS_BROADWELL(dev)) {
  874. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  875. u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  876. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  877. u32 rpmodectl, rpinclimit, rpdeclimit;
  878. u32 rpstat, cagf, reqf;
  879. u32 rpupei, rpcurup, rpprevup;
  880. u32 rpdownei, rpcurdown, rpprevdown;
  881. int max_freq;
  882. /* RPSTAT1 is in the GT power well */
  883. ret = mutex_lock_interruptible(&dev->struct_mutex);
  884. if (ret)
  885. goto out;
  886. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  887. reqf = I915_READ(GEN6_RPNSWREQ);
  888. reqf &= ~GEN6_TURBO_DISABLE;
  889. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  890. reqf >>= 24;
  891. else
  892. reqf >>= 25;
  893. reqf *= GT_FREQUENCY_MULTIPLIER;
  894. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  895. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  896. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  897. rpstat = I915_READ(GEN6_RPSTAT1);
  898. rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
  899. rpcurup = I915_READ(GEN6_RP_CUR_UP);
  900. rpprevup = I915_READ(GEN6_RP_PREV_UP);
  901. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
  902. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
  903. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
  904. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  905. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  906. else
  907. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  908. cagf *= GT_FREQUENCY_MULTIPLIER;
  909. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  910. mutex_unlock(&dev->struct_mutex);
  911. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  912. I915_READ(GEN6_PMIER),
  913. I915_READ(GEN6_PMIMR),
  914. I915_READ(GEN6_PMISR),
  915. I915_READ(GEN6_PMIIR),
  916. I915_READ(GEN6_PMINTRMSK));
  917. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  918. seq_printf(m, "Render p-state ratio: %d\n",
  919. (gt_perf_status & 0xff00) >> 8);
  920. seq_printf(m, "Render p-state VID: %d\n",
  921. gt_perf_status & 0xff);
  922. seq_printf(m, "Render p-state limit: %d\n",
  923. rp_state_limits & 0xff);
  924. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  925. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  926. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  927. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  928. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  929. seq_printf(m, "CAGF: %dMHz\n", cagf);
  930. seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
  931. GEN6_CURICONT_MASK);
  932. seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
  933. GEN6_CURBSYTAVG_MASK);
  934. seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
  935. GEN6_CURBSYTAVG_MASK);
  936. seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
  937. GEN6_CURIAVG_MASK);
  938. seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
  939. GEN6_CURBSYTAVG_MASK);
  940. seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
  941. GEN6_CURBSYTAVG_MASK);
  942. max_freq = (rp_state_cap & 0xff0000) >> 16;
  943. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  944. max_freq * GT_FREQUENCY_MULTIPLIER);
  945. max_freq = (rp_state_cap & 0xff00) >> 8;
  946. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  947. max_freq * GT_FREQUENCY_MULTIPLIER);
  948. max_freq = rp_state_cap & 0xff;
  949. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  950. max_freq * GT_FREQUENCY_MULTIPLIER);
  951. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  952. dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
  953. } else if (IS_VALLEYVIEW(dev)) {
  954. u32 freq_sts;
  955. mutex_lock(&dev_priv->rps.hw_lock);
  956. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  957. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  958. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  959. seq_printf(m, "max GPU freq: %d MHz\n",
  960. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  961. seq_printf(m, "min GPU freq: %d MHz\n",
  962. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  963. seq_printf(m, "efficient (RPe) frequency: %d MHz\n",
  964. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  965. seq_printf(m, "current GPU freq: %d MHz\n",
  966. vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  967. mutex_unlock(&dev_priv->rps.hw_lock);
  968. } else {
  969. seq_puts(m, "no P-state info available\n");
  970. }
  971. out:
  972. intel_runtime_pm_put(dev_priv);
  973. return ret;
  974. }
  975. static int ironlake_drpc_info(struct seq_file *m)
  976. {
  977. struct drm_info_node *node = m->private;
  978. struct drm_device *dev = node->minor->dev;
  979. struct drm_i915_private *dev_priv = dev->dev_private;
  980. u32 rgvmodectl, rstdbyctl;
  981. u16 crstandvid;
  982. int ret;
  983. ret = mutex_lock_interruptible(&dev->struct_mutex);
  984. if (ret)
  985. return ret;
  986. intel_runtime_pm_get(dev_priv);
  987. rgvmodectl = I915_READ(MEMMODECTL);
  988. rstdbyctl = I915_READ(RSTDBYCTL);
  989. crstandvid = I915_READ16(CRSTANDVID);
  990. intel_runtime_pm_put(dev_priv);
  991. mutex_unlock(&dev->struct_mutex);
  992. seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
  993. "yes" : "no");
  994. seq_printf(m, "Boost freq: %d\n",
  995. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  996. MEMMODE_BOOST_FREQ_SHIFT);
  997. seq_printf(m, "HW control enabled: %s\n",
  998. rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
  999. seq_printf(m, "SW control enabled: %s\n",
  1000. rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
  1001. seq_printf(m, "Gated voltage change: %s\n",
  1002. rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
  1003. seq_printf(m, "Starting frequency: P%d\n",
  1004. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1005. seq_printf(m, "Max P-state: P%d\n",
  1006. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1007. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1008. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1009. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1010. seq_printf(m, "Render standby enabled: %s\n",
  1011. (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
  1012. seq_puts(m, "Current RS state: ");
  1013. switch (rstdbyctl & RSX_STATUS_MASK) {
  1014. case RSX_STATUS_ON:
  1015. seq_puts(m, "on\n");
  1016. break;
  1017. case RSX_STATUS_RC1:
  1018. seq_puts(m, "RC1\n");
  1019. break;
  1020. case RSX_STATUS_RC1E:
  1021. seq_puts(m, "RC1E\n");
  1022. break;
  1023. case RSX_STATUS_RS1:
  1024. seq_puts(m, "RS1\n");
  1025. break;
  1026. case RSX_STATUS_RS2:
  1027. seq_puts(m, "RS2 (RC6)\n");
  1028. break;
  1029. case RSX_STATUS_RS3:
  1030. seq_puts(m, "RC3 (RC6+)\n");
  1031. break;
  1032. default:
  1033. seq_puts(m, "unknown\n");
  1034. break;
  1035. }
  1036. return 0;
  1037. }
  1038. static int vlv_drpc_info(struct seq_file *m)
  1039. {
  1040. struct drm_info_node *node = m->private;
  1041. struct drm_device *dev = node->minor->dev;
  1042. struct drm_i915_private *dev_priv = dev->dev_private;
  1043. u32 rpmodectl1, rcctl1;
  1044. unsigned fw_rendercount = 0, fw_mediacount = 0;
  1045. intel_runtime_pm_get(dev_priv);
  1046. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1047. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1048. intel_runtime_pm_put(dev_priv);
  1049. seq_printf(m, "Video Turbo Mode: %s\n",
  1050. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1051. seq_printf(m, "Turbo enabled: %s\n",
  1052. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1053. seq_printf(m, "HW control enabled: %s\n",
  1054. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1055. seq_printf(m, "SW control enabled: %s\n",
  1056. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1057. GEN6_RP_MEDIA_SW_MODE));
  1058. seq_printf(m, "RC6 Enabled: %s\n",
  1059. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1060. GEN6_RC_CTL_EI_MODE(1))));
  1061. seq_printf(m, "Render Power Well: %s\n",
  1062. (I915_READ(VLV_GTLC_PW_STATUS) &
  1063. VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1064. seq_printf(m, "Media Power Well: %s\n",
  1065. (I915_READ(VLV_GTLC_PW_STATUS) &
  1066. VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1067. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1068. I915_READ(VLV_GT_RENDER_RC6));
  1069. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1070. I915_READ(VLV_GT_MEDIA_RC6));
  1071. spin_lock_irq(&dev_priv->uncore.lock);
  1072. fw_rendercount = dev_priv->uncore.fw_rendercount;
  1073. fw_mediacount = dev_priv->uncore.fw_mediacount;
  1074. spin_unlock_irq(&dev_priv->uncore.lock);
  1075. seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
  1076. seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
  1077. return 0;
  1078. }
  1079. static int gen6_drpc_info(struct seq_file *m)
  1080. {
  1081. struct drm_info_node *node = m->private;
  1082. struct drm_device *dev = node->minor->dev;
  1083. struct drm_i915_private *dev_priv = dev->dev_private;
  1084. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1085. unsigned forcewake_count;
  1086. int count = 0, ret;
  1087. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1088. if (ret)
  1089. return ret;
  1090. intel_runtime_pm_get(dev_priv);
  1091. spin_lock_irq(&dev_priv->uncore.lock);
  1092. forcewake_count = dev_priv->uncore.forcewake_count;
  1093. spin_unlock_irq(&dev_priv->uncore.lock);
  1094. if (forcewake_count) {
  1095. seq_puts(m, "RC information inaccurate because somebody "
  1096. "holds a forcewake reference \n");
  1097. } else {
  1098. /* NB: we cannot use forcewake, else we read the wrong values */
  1099. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1100. udelay(10);
  1101. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1102. }
  1103. gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
  1104. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1105. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1106. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1107. mutex_unlock(&dev->struct_mutex);
  1108. mutex_lock(&dev_priv->rps.hw_lock);
  1109. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1110. mutex_unlock(&dev_priv->rps.hw_lock);
  1111. intel_runtime_pm_put(dev_priv);
  1112. seq_printf(m, "Video Turbo Mode: %s\n",
  1113. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1114. seq_printf(m, "HW control enabled: %s\n",
  1115. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1116. seq_printf(m, "SW control enabled: %s\n",
  1117. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1118. GEN6_RP_MEDIA_SW_MODE));
  1119. seq_printf(m, "RC1e Enabled: %s\n",
  1120. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1121. seq_printf(m, "RC6 Enabled: %s\n",
  1122. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1123. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1124. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1125. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1126. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1127. seq_puts(m, "Current RC state: ");
  1128. switch (gt_core_status & GEN6_RCn_MASK) {
  1129. case GEN6_RC0:
  1130. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1131. seq_puts(m, "Core Power Down\n");
  1132. else
  1133. seq_puts(m, "on\n");
  1134. break;
  1135. case GEN6_RC3:
  1136. seq_puts(m, "RC3\n");
  1137. break;
  1138. case GEN6_RC6:
  1139. seq_puts(m, "RC6\n");
  1140. break;
  1141. case GEN6_RC7:
  1142. seq_puts(m, "RC7\n");
  1143. break;
  1144. default:
  1145. seq_puts(m, "Unknown\n");
  1146. break;
  1147. }
  1148. seq_printf(m, "Core Power Down: %s\n",
  1149. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1150. /* Not exactly sure what this is */
  1151. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1152. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1153. seq_printf(m, "RC6 residency since boot: %u\n",
  1154. I915_READ(GEN6_GT_GFX_RC6));
  1155. seq_printf(m, "RC6+ residency since boot: %u\n",
  1156. I915_READ(GEN6_GT_GFX_RC6p));
  1157. seq_printf(m, "RC6++ residency since boot: %u\n",
  1158. I915_READ(GEN6_GT_GFX_RC6pp));
  1159. seq_printf(m, "RC6 voltage: %dmV\n",
  1160. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1161. seq_printf(m, "RC6+ voltage: %dmV\n",
  1162. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1163. seq_printf(m, "RC6++ voltage: %dmV\n",
  1164. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1165. return 0;
  1166. }
  1167. static int i915_drpc_info(struct seq_file *m, void *unused)
  1168. {
  1169. struct drm_info_node *node = m->private;
  1170. struct drm_device *dev = node->minor->dev;
  1171. if (IS_VALLEYVIEW(dev))
  1172. return vlv_drpc_info(m);
  1173. else if (IS_GEN6(dev) || IS_GEN7(dev))
  1174. return gen6_drpc_info(m);
  1175. else
  1176. return ironlake_drpc_info(m);
  1177. }
  1178. static int i915_fbc_status(struct seq_file *m, void *unused)
  1179. {
  1180. struct drm_info_node *node = m->private;
  1181. struct drm_device *dev = node->minor->dev;
  1182. struct drm_i915_private *dev_priv = dev->dev_private;
  1183. if (!HAS_FBC(dev)) {
  1184. seq_puts(m, "FBC unsupported on this chipset\n");
  1185. return 0;
  1186. }
  1187. intel_runtime_pm_get(dev_priv);
  1188. if (intel_fbc_enabled(dev)) {
  1189. seq_puts(m, "FBC enabled\n");
  1190. } else {
  1191. seq_puts(m, "FBC disabled: ");
  1192. switch (dev_priv->fbc.no_fbc_reason) {
  1193. case FBC_OK:
  1194. seq_puts(m, "FBC actived, but currently disabled in hardware");
  1195. break;
  1196. case FBC_UNSUPPORTED:
  1197. seq_puts(m, "unsupported by this chipset");
  1198. break;
  1199. case FBC_NO_OUTPUT:
  1200. seq_puts(m, "no outputs");
  1201. break;
  1202. case FBC_STOLEN_TOO_SMALL:
  1203. seq_puts(m, "not enough stolen memory");
  1204. break;
  1205. case FBC_UNSUPPORTED_MODE:
  1206. seq_puts(m, "mode not supported");
  1207. break;
  1208. case FBC_MODE_TOO_LARGE:
  1209. seq_puts(m, "mode too large");
  1210. break;
  1211. case FBC_BAD_PLANE:
  1212. seq_puts(m, "FBC unsupported on plane");
  1213. break;
  1214. case FBC_NOT_TILED:
  1215. seq_puts(m, "scanout buffer not tiled");
  1216. break;
  1217. case FBC_MULTIPLE_PIPES:
  1218. seq_puts(m, "multiple pipes are enabled");
  1219. break;
  1220. case FBC_MODULE_PARAM:
  1221. seq_puts(m, "disabled per module param (default off)");
  1222. break;
  1223. case FBC_CHIP_DEFAULT:
  1224. seq_puts(m, "disabled per chip default");
  1225. break;
  1226. default:
  1227. seq_puts(m, "unknown reason");
  1228. }
  1229. seq_putc(m, '\n');
  1230. }
  1231. intel_runtime_pm_put(dev_priv);
  1232. return 0;
  1233. }
  1234. static int i915_ips_status(struct seq_file *m, void *unused)
  1235. {
  1236. struct drm_info_node *node = m->private;
  1237. struct drm_device *dev = node->minor->dev;
  1238. struct drm_i915_private *dev_priv = dev->dev_private;
  1239. if (!HAS_IPS(dev)) {
  1240. seq_puts(m, "not supported\n");
  1241. return 0;
  1242. }
  1243. intel_runtime_pm_get(dev_priv);
  1244. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1245. yesno(i915.enable_ips));
  1246. if (INTEL_INFO(dev)->gen >= 8) {
  1247. seq_puts(m, "Currently: unknown\n");
  1248. } else {
  1249. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1250. seq_puts(m, "Currently: enabled\n");
  1251. else
  1252. seq_puts(m, "Currently: disabled\n");
  1253. }
  1254. intel_runtime_pm_put(dev_priv);
  1255. return 0;
  1256. }
  1257. static int i915_sr_status(struct seq_file *m, void *unused)
  1258. {
  1259. struct drm_info_node *node = m->private;
  1260. struct drm_device *dev = node->minor->dev;
  1261. struct drm_i915_private *dev_priv = dev->dev_private;
  1262. bool sr_enabled = false;
  1263. intel_runtime_pm_get(dev_priv);
  1264. if (HAS_PCH_SPLIT(dev))
  1265. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1266. else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
  1267. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1268. else if (IS_I915GM(dev))
  1269. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1270. else if (IS_PINEVIEW(dev))
  1271. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1272. intel_runtime_pm_put(dev_priv);
  1273. seq_printf(m, "self-refresh: %s\n",
  1274. sr_enabled ? "enabled" : "disabled");
  1275. return 0;
  1276. }
  1277. static int i915_emon_status(struct seq_file *m, void *unused)
  1278. {
  1279. struct drm_info_node *node = m->private;
  1280. struct drm_device *dev = node->minor->dev;
  1281. struct drm_i915_private *dev_priv = dev->dev_private;
  1282. unsigned long temp, chipset, gfx;
  1283. int ret;
  1284. if (!IS_GEN5(dev))
  1285. return -ENODEV;
  1286. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1287. if (ret)
  1288. return ret;
  1289. temp = i915_mch_val(dev_priv);
  1290. chipset = i915_chipset_val(dev_priv);
  1291. gfx = i915_gfx_val(dev_priv);
  1292. mutex_unlock(&dev->struct_mutex);
  1293. seq_printf(m, "GMCH temp: %ld\n", temp);
  1294. seq_printf(m, "Chipset power: %ld\n", chipset);
  1295. seq_printf(m, "GFX power: %ld\n", gfx);
  1296. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1297. return 0;
  1298. }
  1299. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1300. {
  1301. struct drm_info_node *node = m->private;
  1302. struct drm_device *dev = node->minor->dev;
  1303. struct drm_i915_private *dev_priv = dev->dev_private;
  1304. int ret = 0;
  1305. int gpu_freq, ia_freq;
  1306. if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
  1307. seq_puts(m, "unsupported on this chipset\n");
  1308. return 0;
  1309. }
  1310. intel_runtime_pm_get(dev_priv);
  1311. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  1312. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1313. if (ret)
  1314. goto out;
  1315. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1316. for (gpu_freq = dev_priv->rps.min_freq_softlimit;
  1317. gpu_freq <= dev_priv->rps.max_freq_softlimit;
  1318. gpu_freq++) {
  1319. ia_freq = gpu_freq;
  1320. sandybridge_pcode_read(dev_priv,
  1321. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1322. &ia_freq);
  1323. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1324. gpu_freq * GT_FREQUENCY_MULTIPLIER,
  1325. ((ia_freq >> 0) & 0xff) * 100,
  1326. ((ia_freq >> 8) & 0xff) * 100);
  1327. }
  1328. mutex_unlock(&dev_priv->rps.hw_lock);
  1329. out:
  1330. intel_runtime_pm_put(dev_priv);
  1331. return ret;
  1332. }
  1333. static int i915_opregion(struct seq_file *m, void *unused)
  1334. {
  1335. struct drm_info_node *node = m->private;
  1336. struct drm_device *dev = node->minor->dev;
  1337. struct drm_i915_private *dev_priv = dev->dev_private;
  1338. struct intel_opregion *opregion = &dev_priv->opregion;
  1339. void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
  1340. int ret;
  1341. if (data == NULL)
  1342. return -ENOMEM;
  1343. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1344. if (ret)
  1345. goto out;
  1346. if (opregion->header) {
  1347. memcpy_fromio(data, opregion->header, OPREGION_SIZE);
  1348. seq_write(m, data, OPREGION_SIZE);
  1349. }
  1350. mutex_unlock(&dev->struct_mutex);
  1351. out:
  1352. kfree(data);
  1353. return 0;
  1354. }
  1355. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1356. {
  1357. struct drm_info_node *node = m->private;
  1358. struct drm_device *dev = node->minor->dev;
  1359. struct intel_fbdev *ifbdev = NULL;
  1360. struct intel_framebuffer *fb;
  1361. #ifdef CONFIG_DRM_I915_FBDEV
  1362. struct drm_i915_private *dev_priv = dev->dev_private;
  1363. ifbdev = dev_priv->fbdev;
  1364. fb = to_intel_framebuffer(ifbdev->helper.fb);
  1365. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
  1366. fb->base.width,
  1367. fb->base.height,
  1368. fb->base.depth,
  1369. fb->base.bits_per_pixel,
  1370. atomic_read(&fb->base.refcount.refcount));
  1371. describe_obj(m, fb->obj);
  1372. seq_putc(m, '\n');
  1373. #endif
  1374. mutex_lock(&dev->mode_config.fb_lock);
  1375. list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
  1376. if (ifbdev && &fb->base == ifbdev->helper.fb)
  1377. continue;
  1378. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
  1379. fb->base.width,
  1380. fb->base.height,
  1381. fb->base.depth,
  1382. fb->base.bits_per_pixel,
  1383. atomic_read(&fb->base.refcount.refcount));
  1384. describe_obj(m, fb->obj);
  1385. seq_putc(m, '\n');
  1386. }
  1387. mutex_unlock(&dev->mode_config.fb_lock);
  1388. return 0;
  1389. }
  1390. static int i915_context_status(struct seq_file *m, void *unused)
  1391. {
  1392. struct drm_info_node *node = m->private;
  1393. struct drm_device *dev = node->minor->dev;
  1394. struct drm_i915_private *dev_priv = dev->dev_private;
  1395. struct intel_engine_cs *ring;
  1396. struct intel_context *ctx;
  1397. int ret, i;
  1398. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1399. if (ret)
  1400. return ret;
  1401. if (dev_priv->ips.pwrctx) {
  1402. seq_puts(m, "power context ");
  1403. describe_obj(m, dev_priv->ips.pwrctx);
  1404. seq_putc(m, '\n');
  1405. }
  1406. if (dev_priv->ips.renderctx) {
  1407. seq_puts(m, "render context ");
  1408. describe_obj(m, dev_priv->ips.renderctx);
  1409. seq_putc(m, '\n');
  1410. }
  1411. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1412. if (ctx->legacy_hw_ctx.rcs_state == NULL)
  1413. continue;
  1414. seq_puts(m, "HW context ");
  1415. describe_ctx(m, ctx);
  1416. for_each_ring(ring, dev_priv, i)
  1417. if (ring->default_context == ctx)
  1418. seq_printf(m, "(default context %s) ", ring->name);
  1419. describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
  1420. seq_putc(m, '\n');
  1421. }
  1422. mutex_unlock(&dev->struct_mutex);
  1423. return 0;
  1424. }
  1425. static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
  1426. {
  1427. struct drm_info_node *node = m->private;
  1428. struct drm_device *dev = node->minor->dev;
  1429. struct drm_i915_private *dev_priv = dev->dev_private;
  1430. unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
  1431. spin_lock_irq(&dev_priv->uncore.lock);
  1432. if (IS_VALLEYVIEW(dev)) {
  1433. fw_rendercount = dev_priv->uncore.fw_rendercount;
  1434. fw_mediacount = dev_priv->uncore.fw_mediacount;
  1435. } else
  1436. forcewake_count = dev_priv->uncore.forcewake_count;
  1437. spin_unlock_irq(&dev_priv->uncore.lock);
  1438. if (IS_VALLEYVIEW(dev)) {
  1439. seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
  1440. seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
  1441. } else
  1442. seq_printf(m, "forcewake count = %u\n", forcewake_count);
  1443. return 0;
  1444. }
  1445. static const char *swizzle_string(unsigned swizzle)
  1446. {
  1447. switch (swizzle) {
  1448. case I915_BIT_6_SWIZZLE_NONE:
  1449. return "none";
  1450. case I915_BIT_6_SWIZZLE_9:
  1451. return "bit9";
  1452. case I915_BIT_6_SWIZZLE_9_10:
  1453. return "bit9/bit10";
  1454. case I915_BIT_6_SWIZZLE_9_11:
  1455. return "bit9/bit11";
  1456. case I915_BIT_6_SWIZZLE_9_10_11:
  1457. return "bit9/bit10/bit11";
  1458. case I915_BIT_6_SWIZZLE_9_17:
  1459. return "bit9/bit17";
  1460. case I915_BIT_6_SWIZZLE_9_10_17:
  1461. return "bit9/bit10/bit17";
  1462. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1463. return "unknown";
  1464. }
  1465. return "bug";
  1466. }
  1467. static int i915_swizzle_info(struct seq_file *m, void *data)
  1468. {
  1469. struct drm_info_node *node = m->private;
  1470. struct drm_device *dev = node->minor->dev;
  1471. struct drm_i915_private *dev_priv = dev->dev_private;
  1472. int ret;
  1473. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1474. if (ret)
  1475. return ret;
  1476. intel_runtime_pm_get(dev_priv);
  1477. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1478. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1479. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1480. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1481. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1482. seq_printf(m, "DDC = 0x%08x\n",
  1483. I915_READ(DCC));
  1484. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1485. I915_READ16(C0DRB3));
  1486. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1487. I915_READ16(C1DRB3));
  1488. } else if (INTEL_INFO(dev)->gen >= 6) {
  1489. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1490. I915_READ(MAD_DIMM_C0));
  1491. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1492. I915_READ(MAD_DIMM_C1));
  1493. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1494. I915_READ(MAD_DIMM_C2));
  1495. seq_printf(m, "TILECTL = 0x%08x\n",
  1496. I915_READ(TILECTL));
  1497. if (IS_GEN8(dev))
  1498. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1499. I915_READ(GAMTARBMODE));
  1500. else
  1501. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1502. I915_READ(ARB_MODE));
  1503. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1504. I915_READ(DISP_ARB_CTL));
  1505. }
  1506. intel_runtime_pm_put(dev_priv);
  1507. mutex_unlock(&dev->struct_mutex);
  1508. return 0;
  1509. }
  1510. static int per_file_ctx(int id, void *ptr, void *data)
  1511. {
  1512. struct intel_context *ctx = ptr;
  1513. struct seq_file *m = data;
  1514. struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(ctx);
  1515. if (i915_gem_context_is_default(ctx))
  1516. seq_puts(m, " default context:\n");
  1517. else
  1518. seq_printf(m, " context %d:\n", ctx->user_handle);
  1519. ppgtt->debug_dump(ppgtt, m);
  1520. return 0;
  1521. }
  1522. static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1523. {
  1524. struct drm_i915_private *dev_priv = dev->dev_private;
  1525. struct intel_engine_cs *ring;
  1526. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1527. int unused, i;
  1528. if (!ppgtt)
  1529. return;
  1530. seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
  1531. seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
  1532. for_each_ring(ring, dev_priv, unused) {
  1533. seq_printf(m, "%s\n", ring->name);
  1534. for (i = 0; i < 4; i++) {
  1535. u32 offset = 0x270 + i * 8;
  1536. u64 pdp = I915_READ(ring->mmio_base + offset + 4);
  1537. pdp <<= 32;
  1538. pdp |= I915_READ(ring->mmio_base + offset);
  1539. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1540. }
  1541. }
  1542. }
  1543. static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1544. {
  1545. struct drm_i915_private *dev_priv = dev->dev_private;
  1546. struct intel_engine_cs *ring;
  1547. struct drm_file *file;
  1548. int i;
  1549. if (INTEL_INFO(dev)->gen == 6)
  1550. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1551. for_each_ring(ring, dev_priv, i) {
  1552. seq_printf(m, "%s\n", ring->name);
  1553. if (INTEL_INFO(dev)->gen == 7)
  1554. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
  1555. seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
  1556. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
  1557. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
  1558. }
  1559. if (dev_priv->mm.aliasing_ppgtt) {
  1560. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1561. seq_puts(m, "aliasing PPGTT:\n");
  1562. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
  1563. ppgtt->debug_dump(ppgtt, m);
  1564. } else
  1565. return;
  1566. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1567. struct drm_i915_file_private *file_priv = file->driver_priv;
  1568. seq_printf(m, "proc: %s\n",
  1569. get_pid_task(file->pid, PIDTYPE_PID)->comm);
  1570. idr_for_each(&file_priv->context_idr, per_file_ctx, m);
  1571. }
  1572. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1573. }
  1574. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1575. {
  1576. struct drm_info_node *node = m->private;
  1577. struct drm_device *dev = node->minor->dev;
  1578. struct drm_i915_private *dev_priv = dev->dev_private;
  1579. int ret = mutex_lock_interruptible(&dev->struct_mutex);
  1580. if (ret)
  1581. return ret;
  1582. intel_runtime_pm_get(dev_priv);
  1583. if (INTEL_INFO(dev)->gen >= 8)
  1584. gen8_ppgtt_info(m, dev);
  1585. else if (INTEL_INFO(dev)->gen >= 6)
  1586. gen6_ppgtt_info(m, dev);
  1587. intel_runtime_pm_put(dev_priv);
  1588. mutex_unlock(&dev->struct_mutex);
  1589. return 0;
  1590. }
  1591. static int i915_llc(struct seq_file *m, void *data)
  1592. {
  1593. struct drm_info_node *node = m->private;
  1594. struct drm_device *dev = node->minor->dev;
  1595. struct drm_i915_private *dev_priv = dev->dev_private;
  1596. /* Size calculation for LLC is a bit of a pain. Ignore for now. */
  1597. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
  1598. seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
  1599. return 0;
  1600. }
  1601. static int i915_edp_psr_status(struct seq_file *m, void *data)
  1602. {
  1603. struct drm_info_node *node = m->private;
  1604. struct drm_device *dev = node->minor->dev;
  1605. struct drm_i915_private *dev_priv = dev->dev_private;
  1606. u32 psrperf = 0;
  1607. bool enabled = false;
  1608. intel_runtime_pm_get(dev_priv);
  1609. mutex_lock(&dev_priv->psr.lock);
  1610. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  1611. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  1612. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  1613. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  1614. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  1615. dev_priv->psr.busy_frontbuffer_bits);
  1616. seq_printf(m, "Re-enable work scheduled: %s\n",
  1617. yesno(work_busy(&dev_priv->psr.work.work)));
  1618. enabled = HAS_PSR(dev) &&
  1619. I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
  1620. seq_printf(m, "HW Enabled & Active bit: %s\n", yesno(enabled));
  1621. if (HAS_PSR(dev))
  1622. psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
  1623. EDP_PSR_PERF_CNT_MASK;
  1624. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  1625. mutex_unlock(&dev_priv->psr.lock);
  1626. intel_runtime_pm_put(dev_priv);
  1627. return 0;
  1628. }
  1629. static int i915_sink_crc(struct seq_file *m, void *data)
  1630. {
  1631. struct drm_info_node *node = m->private;
  1632. struct drm_device *dev = node->minor->dev;
  1633. struct intel_encoder *encoder;
  1634. struct intel_connector *connector;
  1635. struct intel_dp *intel_dp = NULL;
  1636. int ret;
  1637. u8 crc[6];
  1638. drm_modeset_lock_all(dev);
  1639. list_for_each_entry(connector, &dev->mode_config.connector_list,
  1640. base.head) {
  1641. if (connector->base.dpms != DRM_MODE_DPMS_ON)
  1642. continue;
  1643. if (!connector->base.encoder)
  1644. continue;
  1645. encoder = to_intel_encoder(connector->base.encoder);
  1646. if (encoder->type != INTEL_OUTPUT_EDP)
  1647. continue;
  1648. intel_dp = enc_to_intel_dp(&encoder->base);
  1649. ret = intel_dp_sink_crc(intel_dp, crc);
  1650. if (ret)
  1651. goto out;
  1652. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  1653. crc[0], crc[1], crc[2],
  1654. crc[3], crc[4], crc[5]);
  1655. goto out;
  1656. }
  1657. ret = -ENODEV;
  1658. out:
  1659. drm_modeset_unlock_all(dev);
  1660. return ret;
  1661. }
  1662. static int i915_energy_uJ(struct seq_file *m, void *data)
  1663. {
  1664. struct drm_info_node *node = m->private;
  1665. struct drm_device *dev = node->minor->dev;
  1666. struct drm_i915_private *dev_priv = dev->dev_private;
  1667. u64 power;
  1668. u32 units;
  1669. if (INTEL_INFO(dev)->gen < 6)
  1670. return -ENODEV;
  1671. intel_runtime_pm_get(dev_priv);
  1672. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  1673. power = (power & 0x1f00) >> 8;
  1674. units = 1000000 / (1 << power); /* convert to uJ */
  1675. power = I915_READ(MCH_SECP_NRG_STTS);
  1676. power *= units;
  1677. intel_runtime_pm_put(dev_priv);
  1678. seq_printf(m, "%llu", (long long unsigned)power);
  1679. return 0;
  1680. }
  1681. static int i915_pc8_status(struct seq_file *m, void *unused)
  1682. {
  1683. struct drm_info_node *node = m->private;
  1684. struct drm_device *dev = node->minor->dev;
  1685. struct drm_i915_private *dev_priv = dev->dev_private;
  1686. if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
  1687. seq_puts(m, "not supported\n");
  1688. return 0;
  1689. }
  1690. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
  1691. seq_printf(m, "IRQs disabled: %s\n",
  1692. yesno(!intel_irqs_enabled(dev_priv)));
  1693. return 0;
  1694. }
  1695. static const char *power_domain_str(enum intel_display_power_domain domain)
  1696. {
  1697. switch (domain) {
  1698. case POWER_DOMAIN_PIPE_A:
  1699. return "PIPE_A";
  1700. case POWER_DOMAIN_PIPE_B:
  1701. return "PIPE_B";
  1702. case POWER_DOMAIN_PIPE_C:
  1703. return "PIPE_C";
  1704. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  1705. return "PIPE_A_PANEL_FITTER";
  1706. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  1707. return "PIPE_B_PANEL_FITTER";
  1708. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  1709. return "PIPE_C_PANEL_FITTER";
  1710. case POWER_DOMAIN_TRANSCODER_A:
  1711. return "TRANSCODER_A";
  1712. case POWER_DOMAIN_TRANSCODER_B:
  1713. return "TRANSCODER_B";
  1714. case POWER_DOMAIN_TRANSCODER_C:
  1715. return "TRANSCODER_C";
  1716. case POWER_DOMAIN_TRANSCODER_EDP:
  1717. return "TRANSCODER_EDP";
  1718. case POWER_DOMAIN_PORT_DDI_A_2_LANES:
  1719. return "PORT_DDI_A_2_LANES";
  1720. case POWER_DOMAIN_PORT_DDI_A_4_LANES:
  1721. return "PORT_DDI_A_4_LANES";
  1722. case POWER_DOMAIN_PORT_DDI_B_2_LANES:
  1723. return "PORT_DDI_B_2_LANES";
  1724. case POWER_DOMAIN_PORT_DDI_B_4_LANES:
  1725. return "PORT_DDI_B_4_LANES";
  1726. case POWER_DOMAIN_PORT_DDI_C_2_LANES:
  1727. return "PORT_DDI_C_2_LANES";
  1728. case POWER_DOMAIN_PORT_DDI_C_4_LANES:
  1729. return "PORT_DDI_C_4_LANES";
  1730. case POWER_DOMAIN_PORT_DDI_D_2_LANES:
  1731. return "PORT_DDI_D_2_LANES";
  1732. case POWER_DOMAIN_PORT_DDI_D_4_LANES:
  1733. return "PORT_DDI_D_4_LANES";
  1734. case POWER_DOMAIN_PORT_DSI:
  1735. return "PORT_DSI";
  1736. case POWER_DOMAIN_PORT_CRT:
  1737. return "PORT_CRT";
  1738. case POWER_DOMAIN_PORT_OTHER:
  1739. return "PORT_OTHER";
  1740. case POWER_DOMAIN_VGA:
  1741. return "VGA";
  1742. case POWER_DOMAIN_AUDIO:
  1743. return "AUDIO";
  1744. case POWER_DOMAIN_PLLS:
  1745. return "PLLS";
  1746. case POWER_DOMAIN_INIT:
  1747. return "INIT";
  1748. default:
  1749. WARN_ON(1);
  1750. return "?";
  1751. }
  1752. }
  1753. static int i915_power_domain_info(struct seq_file *m, void *unused)
  1754. {
  1755. struct drm_info_node *node = m->private;
  1756. struct drm_device *dev = node->minor->dev;
  1757. struct drm_i915_private *dev_priv = dev->dev_private;
  1758. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  1759. int i;
  1760. mutex_lock(&power_domains->lock);
  1761. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  1762. for (i = 0; i < power_domains->power_well_count; i++) {
  1763. struct i915_power_well *power_well;
  1764. enum intel_display_power_domain power_domain;
  1765. power_well = &power_domains->power_wells[i];
  1766. seq_printf(m, "%-25s %d\n", power_well->name,
  1767. power_well->count);
  1768. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  1769. power_domain++) {
  1770. if (!(BIT(power_domain) & power_well->domains))
  1771. continue;
  1772. seq_printf(m, " %-23s %d\n",
  1773. power_domain_str(power_domain),
  1774. power_domains->domain_use_count[power_domain]);
  1775. }
  1776. }
  1777. mutex_unlock(&power_domains->lock);
  1778. return 0;
  1779. }
  1780. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  1781. struct drm_display_mode *mode)
  1782. {
  1783. int i;
  1784. for (i = 0; i < tabs; i++)
  1785. seq_putc(m, '\t');
  1786. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  1787. mode->base.id, mode->name,
  1788. mode->vrefresh, mode->clock,
  1789. mode->hdisplay, mode->hsync_start,
  1790. mode->hsync_end, mode->htotal,
  1791. mode->vdisplay, mode->vsync_start,
  1792. mode->vsync_end, mode->vtotal,
  1793. mode->type, mode->flags);
  1794. }
  1795. static void intel_encoder_info(struct seq_file *m,
  1796. struct intel_crtc *intel_crtc,
  1797. struct intel_encoder *intel_encoder)
  1798. {
  1799. struct drm_info_node *node = m->private;
  1800. struct drm_device *dev = node->minor->dev;
  1801. struct drm_crtc *crtc = &intel_crtc->base;
  1802. struct intel_connector *intel_connector;
  1803. struct drm_encoder *encoder;
  1804. encoder = &intel_encoder->base;
  1805. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  1806. encoder->base.id, encoder->name);
  1807. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  1808. struct drm_connector *connector = &intel_connector->base;
  1809. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  1810. connector->base.id,
  1811. connector->name,
  1812. drm_get_connector_status_name(connector->status));
  1813. if (connector->status == connector_status_connected) {
  1814. struct drm_display_mode *mode = &crtc->mode;
  1815. seq_printf(m, ", mode:\n");
  1816. intel_seq_print_mode(m, 2, mode);
  1817. } else {
  1818. seq_putc(m, '\n');
  1819. }
  1820. }
  1821. }
  1822. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  1823. {
  1824. struct drm_info_node *node = m->private;
  1825. struct drm_device *dev = node->minor->dev;
  1826. struct drm_crtc *crtc = &intel_crtc->base;
  1827. struct intel_encoder *intel_encoder;
  1828. if (crtc->primary->fb)
  1829. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  1830. crtc->primary->fb->base.id, crtc->x, crtc->y,
  1831. crtc->primary->fb->width, crtc->primary->fb->height);
  1832. else
  1833. seq_puts(m, "\tprimary plane disabled\n");
  1834. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  1835. intel_encoder_info(m, intel_crtc, intel_encoder);
  1836. }
  1837. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  1838. {
  1839. struct drm_display_mode *mode = panel->fixed_mode;
  1840. seq_printf(m, "\tfixed mode:\n");
  1841. intel_seq_print_mode(m, 2, mode);
  1842. }
  1843. static void intel_dp_info(struct seq_file *m,
  1844. struct intel_connector *intel_connector)
  1845. {
  1846. struct intel_encoder *intel_encoder = intel_connector->encoder;
  1847. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  1848. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  1849. seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
  1850. "no");
  1851. if (intel_encoder->type == INTEL_OUTPUT_EDP)
  1852. intel_panel_info(m, &intel_connector->panel);
  1853. }
  1854. static void intel_hdmi_info(struct seq_file *m,
  1855. struct intel_connector *intel_connector)
  1856. {
  1857. struct intel_encoder *intel_encoder = intel_connector->encoder;
  1858. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  1859. seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
  1860. "no");
  1861. }
  1862. static void intel_lvds_info(struct seq_file *m,
  1863. struct intel_connector *intel_connector)
  1864. {
  1865. intel_panel_info(m, &intel_connector->panel);
  1866. }
  1867. static void intel_connector_info(struct seq_file *m,
  1868. struct drm_connector *connector)
  1869. {
  1870. struct intel_connector *intel_connector = to_intel_connector(connector);
  1871. struct intel_encoder *intel_encoder = intel_connector->encoder;
  1872. struct drm_display_mode *mode;
  1873. seq_printf(m, "connector %d: type %s, status: %s\n",
  1874. connector->base.id, connector->name,
  1875. drm_get_connector_status_name(connector->status));
  1876. if (connector->status == connector_status_connected) {
  1877. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  1878. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  1879. connector->display_info.width_mm,
  1880. connector->display_info.height_mm);
  1881. seq_printf(m, "\tsubpixel order: %s\n",
  1882. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  1883. seq_printf(m, "\tCEA rev: %d\n",
  1884. connector->display_info.cea_rev);
  1885. }
  1886. if (intel_encoder) {
  1887. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  1888. intel_encoder->type == INTEL_OUTPUT_EDP)
  1889. intel_dp_info(m, intel_connector);
  1890. else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
  1891. intel_hdmi_info(m, intel_connector);
  1892. else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  1893. intel_lvds_info(m, intel_connector);
  1894. }
  1895. seq_printf(m, "\tmodes:\n");
  1896. list_for_each_entry(mode, &connector->modes, head)
  1897. intel_seq_print_mode(m, 2, mode);
  1898. }
  1899. static bool cursor_active(struct drm_device *dev, int pipe)
  1900. {
  1901. struct drm_i915_private *dev_priv = dev->dev_private;
  1902. u32 state;
  1903. if (IS_845G(dev) || IS_I865G(dev))
  1904. state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  1905. else
  1906. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  1907. return state;
  1908. }
  1909. static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
  1910. {
  1911. struct drm_i915_private *dev_priv = dev->dev_private;
  1912. u32 pos;
  1913. pos = I915_READ(CURPOS(pipe));
  1914. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  1915. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  1916. *x = -*x;
  1917. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  1918. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  1919. *y = -*y;
  1920. return cursor_active(dev, pipe);
  1921. }
  1922. static int i915_display_info(struct seq_file *m, void *unused)
  1923. {
  1924. struct drm_info_node *node = m->private;
  1925. struct drm_device *dev = node->minor->dev;
  1926. struct drm_i915_private *dev_priv = dev->dev_private;
  1927. struct intel_crtc *crtc;
  1928. struct drm_connector *connector;
  1929. intel_runtime_pm_get(dev_priv);
  1930. drm_modeset_lock_all(dev);
  1931. seq_printf(m, "CRTC info\n");
  1932. seq_printf(m, "---------\n");
  1933. for_each_intel_crtc(dev, crtc) {
  1934. bool active;
  1935. int x, y;
  1936. seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
  1937. crtc->base.base.id, pipe_name(crtc->pipe),
  1938. yesno(crtc->active), crtc->config.pipe_src_w, crtc->config.pipe_src_h);
  1939. if (crtc->active) {
  1940. intel_crtc_info(m, crtc);
  1941. active = cursor_position(dev, crtc->pipe, &x, &y);
  1942. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  1943. yesno(crtc->cursor_base),
  1944. x, y, crtc->cursor_width, crtc->cursor_height,
  1945. crtc->cursor_addr, yesno(active));
  1946. }
  1947. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  1948. yesno(!crtc->cpu_fifo_underrun_disabled),
  1949. yesno(!crtc->pch_fifo_underrun_disabled));
  1950. }
  1951. seq_printf(m, "\n");
  1952. seq_printf(m, "Connector info\n");
  1953. seq_printf(m, "--------------\n");
  1954. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  1955. intel_connector_info(m, connector);
  1956. }
  1957. drm_modeset_unlock_all(dev);
  1958. intel_runtime_pm_put(dev_priv);
  1959. return 0;
  1960. }
  1961. static int i915_semaphore_status(struct seq_file *m, void *unused)
  1962. {
  1963. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1964. struct drm_device *dev = node->minor->dev;
  1965. struct drm_i915_private *dev_priv = dev->dev_private;
  1966. struct intel_engine_cs *ring;
  1967. int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1968. int i, j, ret;
  1969. if (!i915_semaphore_is_enabled(dev)) {
  1970. seq_puts(m, "Semaphores are disabled\n");
  1971. return 0;
  1972. }
  1973. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1974. if (ret)
  1975. return ret;
  1976. intel_runtime_pm_get(dev_priv);
  1977. if (IS_BROADWELL(dev)) {
  1978. struct page *page;
  1979. uint64_t *seqno;
  1980. page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
  1981. seqno = (uint64_t *)kmap_atomic(page);
  1982. for_each_ring(ring, dev_priv, i) {
  1983. uint64_t offset;
  1984. seq_printf(m, "%s\n", ring->name);
  1985. seq_puts(m, " Last signal:");
  1986. for (j = 0; j < num_rings; j++) {
  1987. offset = i * I915_NUM_RINGS + j;
  1988. seq_printf(m, "0x%08llx (0x%02llx) ",
  1989. seqno[offset], offset * 8);
  1990. }
  1991. seq_putc(m, '\n');
  1992. seq_puts(m, " Last wait: ");
  1993. for (j = 0; j < num_rings; j++) {
  1994. offset = i + (j * I915_NUM_RINGS);
  1995. seq_printf(m, "0x%08llx (0x%02llx) ",
  1996. seqno[offset], offset * 8);
  1997. }
  1998. seq_putc(m, '\n');
  1999. }
  2000. kunmap_atomic(seqno);
  2001. } else {
  2002. seq_puts(m, " Last signal:");
  2003. for_each_ring(ring, dev_priv, i)
  2004. for (j = 0; j < num_rings; j++)
  2005. seq_printf(m, "0x%08x\n",
  2006. I915_READ(ring->semaphore.mbox.signal[j]));
  2007. seq_putc(m, '\n');
  2008. }
  2009. seq_puts(m, "\nSync seqno:\n");
  2010. for_each_ring(ring, dev_priv, i) {
  2011. for (j = 0; j < num_rings; j++) {
  2012. seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
  2013. }
  2014. seq_putc(m, '\n');
  2015. }
  2016. seq_putc(m, '\n');
  2017. intel_runtime_pm_put(dev_priv);
  2018. mutex_unlock(&dev->struct_mutex);
  2019. return 0;
  2020. }
  2021. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2022. {
  2023. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2024. struct drm_device *dev = node->minor->dev;
  2025. struct drm_i915_private *dev_priv = dev->dev_private;
  2026. int i;
  2027. drm_modeset_lock_all(dev);
  2028. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2029. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2030. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2031. seq_printf(m, " refcount: %i, active: %i, on: %s\n", pll->refcount,
  2032. pll->active, yesno(pll->on));
  2033. seq_printf(m, " tracked hardware state:\n");
  2034. seq_printf(m, " dpll: 0x%08x\n", pll->hw_state.dpll);
  2035. seq_printf(m, " dpll_md: 0x%08x\n", pll->hw_state.dpll_md);
  2036. seq_printf(m, " fp0: 0x%08x\n", pll->hw_state.fp0);
  2037. seq_printf(m, " fp1: 0x%08x\n", pll->hw_state.fp1);
  2038. seq_printf(m, " wrpll: 0x%08x\n", pll->hw_state.wrpll);
  2039. }
  2040. drm_modeset_unlock_all(dev);
  2041. return 0;
  2042. }
  2043. struct pipe_crc_info {
  2044. const char *name;
  2045. struct drm_device *dev;
  2046. enum pipe pipe;
  2047. };
  2048. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2049. {
  2050. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2051. struct drm_device *dev = node->minor->dev;
  2052. struct drm_encoder *encoder;
  2053. struct intel_encoder *intel_encoder;
  2054. struct intel_digital_port *intel_dig_port;
  2055. drm_modeset_lock_all(dev);
  2056. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  2057. intel_encoder = to_intel_encoder(encoder);
  2058. if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
  2059. continue;
  2060. intel_dig_port = enc_to_dig_port(encoder);
  2061. if (!intel_dig_port->dp.can_mst)
  2062. continue;
  2063. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2064. }
  2065. drm_modeset_unlock_all(dev);
  2066. return 0;
  2067. }
  2068. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2069. {
  2070. struct pipe_crc_info *info = inode->i_private;
  2071. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2072. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2073. if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
  2074. return -ENODEV;
  2075. spin_lock_irq(&pipe_crc->lock);
  2076. if (pipe_crc->opened) {
  2077. spin_unlock_irq(&pipe_crc->lock);
  2078. return -EBUSY; /* already open */
  2079. }
  2080. pipe_crc->opened = true;
  2081. filep->private_data = inode->i_private;
  2082. spin_unlock_irq(&pipe_crc->lock);
  2083. return 0;
  2084. }
  2085. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2086. {
  2087. struct pipe_crc_info *info = inode->i_private;
  2088. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2089. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2090. spin_lock_irq(&pipe_crc->lock);
  2091. pipe_crc->opened = false;
  2092. spin_unlock_irq(&pipe_crc->lock);
  2093. return 0;
  2094. }
  2095. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  2096. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  2097. /* account for \'0' */
  2098. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  2099. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  2100. {
  2101. assert_spin_locked(&pipe_crc->lock);
  2102. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2103. INTEL_PIPE_CRC_ENTRIES_NR);
  2104. }
  2105. static ssize_t
  2106. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  2107. loff_t *pos)
  2108. {
  2109. struct pipe_crc_info *info = filep->private_data;
  2110. struct drm_device *dev = info->dev;
  2111. struct drm_i915_private *dev_priv = dev->dev_private;
  2112. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2113. char buf[PIPE_CRC_BUFFER_LEN];
  2114. int head, tail, n_entries, n;
  2115. ssize_t bytes_read;
  2116. /*
  2117. * Don't allow user space to provide buffers not big enough to hold
  2118. * a line of data.
  2119. */
  2120. if (count < PIPE_CRC_LINE_LEN)
  2121. return -EINVAL;
  2122. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  2123. return 0;
  2124. /* nothing to read */
  2125. spin_lock_irq(&pipe_crc->lock);
  2126. while (pipe_crc_data_count(pipe_crc) == 0) {
  2127. int ret;
  2128. if (filep->f_flags & O_NONBLOCK) {
  2129. spin_unlock_irq(&pipe_crc->lock);
  2130. return -EAGAIN;
  2131. }
  2132. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  2133. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  2134. if (ret) {
  2135. spin_unlock_irq(&pipe_crc->lock);
  2136. return ret;
  2137. }
  2138. }
  2139. /* We now have one or more entries to read */
  2140. head = pipe_crc->head;
  2141. tail = pipe_crc->tail;
  2142. n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
  2143. count / PIPE_CRC_LINE_LEN);
  2144. spin_unlock_irq(&pipe_crc->lock);
  2145. bytes_read = 0;
  2146. n = 0;
  2147. do {
  2148. struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
  2149. int ret;
  2150. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  2151. "%8u %8x %8x %8x %8x %8x\n",
  2152. entry->frame, entry->crc[0],
  2153. entry->crc[1], entry->crc[2],
  2154. entry->crc[3], entry->crc[4]);
  2155. ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
  2156. buf, PIPE_CRC_LINE_LEN);
  2157. if (ret == PIPE_CRC_LINE_LEN)
  2158. return -EFAULT;
  2159. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  2160. tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  2161. n++;
  2162. } while (--n_entries);
  2163. spin_lock_irq(&pipe_crc->lock);
  2164. pipe_crc->tail = tail;
  2165. spin_unlock_irq(&pipe_crc->lock);
  2166. return bytes_read;
  2167. }
  2168. static const struct file_operations i915_pipe_crc_fops = {
  2169. .owner = THIS_MODULE,
  2170. .open = i915_pipe_crc_open,
  2171. .read = i915_pipe_crc_read,
  2172. .release = i915_pipe_crc_release,
  2173. };
  2174. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  2175. {
  2176. .name = "i915_pipe_A_crc",
  2177. .pipe = PIPE_A,
  2178. },
  2179. {
  2180. .name = "i915_pipe_B_crc",
  2181. .pipe = PIPE_B,
  2182. },
  2183. {
  2184. .name = "i915_pipe_C_crc",
  2185. .pipe = PIPE_C,
  2186. },
  2187. };
  2188. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  2189. enum pipe pipe)
  2190. {
  2191. struct drm_device *dev = minor->dev;
  2192. struct dentry *ent;
  2193. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  2194. info->dev = dev;
  2195. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  2196. &i915_pipe_crc_fops);
  2197. if (!ent)
  2198. return -ENOMEM;
  2199. return drm_add_fake_info_node(minor, ent, info);
  2200. }
  2201. static const char * const pipe_crc_sources[] = {
  2202. "none",
  2203. "plane1",
  2204. "plane2",
  2205. "pf",
  2206. "pipe",
  2207. "TV",
  2208. "DP-B",
  2209. "DP-C",
  2210. "DP-D",
  2211. "auto",
  2212. };
  2213. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  2214. {
  2215. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  2216. return pipe_crc_sources[source];
  2217. }
  2218. static int display_crc_ctl_show(struct seq_file *m, void *data)
  2219. {
  2220. struct drm_device *dev = m->private;
  2221. struct drm_i915_private *dev_priv = dev->dev_private;
  2222. int i;
  2223. for (i = 0; i < I915_MAX_PIPES; i++)
  2224. seq_printf(m, "%c %s\n", pipe_name(i),
  2225. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  2226. return 0;
  2227. }
  2228. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  2229. {
  2230. struct drm_device *dev = inode->i_private;
  2231. return single_open(file, display_crc_ctl_show, dev);
  2232. }
  2233. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  2234. uint32_t *val)
  2235. {
  2236. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2237. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2238. switch (*source) {
  2239. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2240. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  2241. break;
  2242. case INTEL_PIPE_CRC_SOURCE_NONE:
  2243. *val = 0;
  2244. break;
  2245. default:
  2246. return -EINVAL;
  2247. }
  2248. return 0;
  2249. }
  2250. static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
  2251. enum intel_pipe_crc_source *source)
  2252. {
  2253. struct intel_encoder *encoder;
  2254. struct intel_crtc *crtc;
  2255. struct intel_digital_port *dig_port;
  2256. int ret = 0;
  2257. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2258. drm_modeset_lock_all(dev);
  2259. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  2260. base.head) {
  2261. if (!encoder->base.crtc)
  2262. continue;
  2263. crtc = to_intel_crtc(encoder->base.crtc);
  2264. if (crtc->pipe != pipe)
  2265. continue;
  2266. switch (encoder->type) {
  2267. case INTEL_OUTPUT_TVOUT:
  2268. *source = INTEL_PIPE_CRC_SOURCE_TV;
  2269. break;
  2270. case INTEL_OUTPUT_DISPLAYPORT:
  2271. case INTEL_OUTPUT_EDP:
  2272. dig_port = enc_to_dig_port(&encoder->base);
  2273. switch (dig_port->port) {
  2274. case PORT_B:
  2275. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  2276. break;
  2277. case PORT_C:
  2278. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  2279. break;
  2280. case PORT_D:
  2281. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  2282. break;
  2283. default:
  2284. WARN(1, "nonexisting DP port %c\n",
  2285. port_name(dig_port->port));
  2286. break;
  2287. }
  2288. break;
  2289. }
  2290. }
  2291. drm_modeset_unlock_all(dev);
  2292. return ret;
  2293. }
  2294. static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
  2295. enum pipe pipe,
  2296. enum intel_pipe_crc_source *source,
  2297. uint32_t *val)
  2298. {
  2299. struct drm_i915_private *dev_priv = dev->dev_private;
  2300. bool need_stable_symbols = false;
  2301. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  2302. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  2303. if (ret)
  2304. return ret;
  2305. }
  2306. switch (*source) {
  2307. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2308. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  2309. break;
  2310. case INTEL_PIPE_CRC_SOURCE_DP_B:
  2311. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  2312. need_stable_symbols = true;
  2313. break;
  2314. case INTEL_PIPE_CRC_SOURCE_DP_C:
  2315. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  2316. need_stable_symbols = true;
  2317. break;
  2318. case INTEL_PIPE_CRC_SOURCE_NONE:
  2319. *val = 0;
  2320. break;
  2321. default:
  2322. return -EINVAL;
  2323. }
  2324. /*
  2325. * When the pipe CRC tap point is after the transcoders we need
  2326. * to tweak symbol-level features to produce a deterministic series of
  2327. * symbols for a given frame. We need to reset those features only once
  2328. * a frame (instead of every nth symbol):
  2329. * - DC-balance: used to ensure a better clock recovery from the data
  2330. * link (SDVO)
  2331. * - DisplayPort scrambling: used for EMI reduction
  2332. */
  2333. if (need_stable_symbols) {
  2334. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2335. tmp |= DC_BALANCE_RESET_VLV;
  2336. if (pipe == PIPE_A)
  2337. tmp |= PIPE_A_SCRAMBLE_RESET;
  2338. else
  2339. tmp |= PIPE_B_SCRAMBLE_RESET;
  2340. I915_WRITE(PORT_DFT2_G4X, tmp);
  2341. }
  2342. return 0;
  2343. }
  2344. static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
  2345. enum pipe pipe,
  2346. enum intel_pipe_crc_source *source,
  2347. uint32_t *val)
  2348. {
  2349. struct drm_i915_private *dev_priv = dev->dev_private;
  2350. bool need_stable_symbols = false;
  2351. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  2352. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  2353. if (ret)
  2354. return ret;
  2355. }
  2356. switch (*source) {
  2357. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2358. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  2359. break;
  2360. case INTEL_PIPE_CRC_SOURCE_TV:
  2361. if (!SUPPORTS_TV(dev))
  2362. return -EINVAL;
  2363. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  2364. break;
  2365. case INTEL_PIPE_CRC_SOURCE_DP_B:
  2366. if (!IS_G4X(dev))
  2367. return -EINVAL;
  2368. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  2369. need_stable_symbols = true;
  2370. break;
  2371. case INTEL_PIPE_CRC_SOURCE_DP_C:
  2372. if (!IS_G4X(dev))
  2373. return -EINVAL;
  2374. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  2375. need_stable_symbols = true;
  2376. break;
  2377. case INTEL_PIPE_CRC_SOURCE_DP_D:
  2378. if (!IS_G4X(dev))
  2379. return -EINVAL;
  2380. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  2381. need_stable_symbols = true;
  2382. break;
  2383. case INTEL_PIPE_CRC_SOURCE_NONE:
  2384. *val = 0;
  2385. break;
  2386. default:
  2387. return -EINVAL;
  2388. }
  2389. /*
  2390. * When the pipe CRC tap point is after the transcoders we need
  2391. * to tweak symbol-level features to produce a deterministic series of
  2392. * symbols for a given frame. We need to reset those features only once
  2393. * a frame (instead of every nth symbol):
  2394. * - DC-balance: used to ensure a better clock recovery from the data
  2395. * link (SDVO)
  2396. * - DisplayPort scrambling: used for EMI reduction
  2397. */
  2398. if (need_stable_symbols) {
  2399. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2400. WARN_ON(!IS_G4X(dev));
  2401. I915_WRITE(PORT_DFT_I9XX,
  2402. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  2403. if (pipe == PIPE_A)
  2404. tmp |= PIPE_A_SCRAMBLE_RESET;
  2405. else
  2406. tmp |= PIPE_B_SCRAMBLE_RESET;
  2407. I915_WRITE(PORT_DFT2_G4X, tmp);
  2408. }
  2409. return 0;
  2410. }
  2411. static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
  2412. enum pipe pipe)
  2413. {
  2414. struct drm_i915_private *dev_priv = dev->dev_private;
  2415. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2416. if (pipe == PIPE_A)
  2417. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  2418. else
  2419. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  2420. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  2421. tmp &= ~DC_BALANCE_RESET_VLV;
  2422. I915_WRITE(PORT_DFT2_G4X, tmp);
  2423. }
  2424. static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
  2425. enum pipe pipe)
  2426. {
  2427. struct drm_i915_private *dev_priv = dev->dev_private;
  2428. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2429. if (pipe == PIPE_A)
  2430. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  2431. else
  2432. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  2433. I915_WRITE(PORT_DFT2_G4X, tmp);
  2434. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  2435. I915_WRITE(PORT_DFT_I9XX,
  2436. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  2437. }
  2438. }
  2439. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  2440. uint32_t *val)
  2441. {
  2442. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2443. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2444. switch (*source) {
  2445. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  2446. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  2447. break;
  2448. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  2449. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  2450. break;
  2451. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2452. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  2453. break;
  2454. case INTEL_PIPE_CRC_SOURCE_NONE:
  2455. *val = 0;
  2456. break;
  2457. default:
  2458. return -EINVAL;
  2459. }
  2460. return 0;
  2461. }
  2462. static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
  2463. {
  2464. struct drm_i915_private *dev_priv = dev->dev_private;
  2465. struct intel_crtc *crtc =
  2466. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  2467. drm_modeset_lock_all(dev);
  2468. /*
  2469. * If we use the eDP transcoder we need to make sure that we don't
  2470. * bypass the pfit, since otherwise the pipe CRC source won't work. Only
  2471. * relevant on hsw with pipe A when using the always-on power well
  2472. * routing.
  2473. */
  2474. if (crtc->config.cpu_transcoder == TRANSCODER_EDP &&
  2475. !crtc->config.pch_pfit.enabled) {
  2476. crtc->config.pch_pfit.force_thru = true;
  2477. intel_display_power_get(dev_priv,
  2478. POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
  2479. dev_priv->display.crtc_disable(&crtc->base);
  2480. dev_priv->display.crtc_enable(&crtc->base);
  2481. }
  2482. drm_modeset_unlock_all(dev);
  2483. }
  2484. static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
  2485. {
  2486. struct drm_i915_private *dev_priv = dev->dev_private;
  2487. struct intel_crtc *crtc =
  2488. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  2489. drm_modeset_lock_all(dev);
  2490. /*
  2491. * If we use the eDP transcoder we need to make sure that we don't
  2492. * bypass the pfit, since otherwise the pipe CRC source won't work. Only
  2493. * relevant on hsw with pipe A when using the always-on power well
  2494. * routing.
  2495. */
  2496. if (crtc->config.pch_pfit.force_thru) {
  2497. crtc->config.pch_pfit.force_thru = false;
  2498. dev_priv->display.crtc_disable(&crtc->base);
  2499. dev_priv->display.crtc_enable(&crtc->base);
  2500. intel_display_power_put(dev_priv,
  2501. POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
  2502. }
  2503. drm_modeset_unlock_all(dev);
  2504. }
  2505. static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
  2506. enum pipe pipe,
  2507. enum intel_pipe_crc_source *source,
  2508. uint32_t *val)
  2509. {
  2510. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2511. *source = INTEL_PIPE_CRC_SOURCE_PF;
  2512. switch (*source) {
  2513. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  2514. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  2515. break;
  2516. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  2517. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  2518. break;
  2519. case INTEL_PIPE_CRC_SOURCE_PF:
  2520. if (IS_HASWELL(dev) && pipe == PIPE_A)
  2521. hsw_trans_edp_pipe_A_crc_wa(dev);
  2522. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  2523. break;
  2524. case INTEL_PIPE_CRC_SOURCE_NONE:
  2525. *val = 0;
  2526. break;
  2527. default:
  2528. return -EINVAL;
  2529. }
  2530. return 0;
  2531. }
  2532. static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
  2533. enum intel_pipe_crc_source source)
  2534. {
  2535. struct drm_i915_private *dev_priv = dev->dev_private;
  2536. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  2537. u32 val = 0; /* shut up gcc */
  2538. int ret;
  2539. if (pipe_crc->source == source)
  2540. return 0;
  2541. /* forbid changing the source without going back to 'none' */
  2542. if (pipe_crc->source && source)
  2543. return -EINVAL;
  2544. if (IS_GEN2(dev))
  2545. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  2546. else if (INTEL_INFO(dev)->gen < 5)
  2547. ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  2548. else if (IS_VALLEYVIEW(dev))
  2549. ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  2550. else if (IS_GEN5(dev) || IS_GEN6(dev))
  2551. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  2552. else
  2553. ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  2554. if (ret != 0)
  2555. return ret;
  2556. /* none -> real source transition */
  2557. if (source) {
  2558. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  2559. pipe_name(pipe), pipe_crc_source_name(source));
  2560. pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
  2561. INTEL_PIPE_CRC_ENTRIES_NR,
  2562. GFP_KERNEL);
  2563. if (!pipe_crc->entries)
  2564. return -ENOMEM;
  2565. spin_lock_irq(&pipe_crc->lock);
  2566. pipe_crc->head = 0;
  2567. pipe_crc->tail = 0;
  2568. spin_unlock_irq(&pipe_crc->lock);
  2569. }
  2570. pipe_crc->source = source;
  2571. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  2572. POSTING_READ(PIPE_CRC_CTL(pipe));
  2573. /* real source -> none transition */
  2574. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  2575. struct intel_pipe_crc_entry *entries;
  2576. struct intel_crtc *crtc =
  2577. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  2578. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  2579. pipe_name(pipe));
  2580. drm_modeset_lock(&crtc->base.mutex, NULL);
  2581. if (crtc->active)
  2582. intel_wait_for_vblank(dev, pipe);
  2583. drm_modeset_unlock(&crtc->base.mutex);
  2584. spin_lock_irq(&pipe_crc->lock);
  2585. entries = pipe_crc->entries;
  2586. pipe_crc->entries = NULL;
  2587. spin_unlock_irq(&pipe_crc->lock);
  2588. kfree(entries);
  2589. if (IS_G4X(dev))
  2590. g4x_undo_pipe_scramble_reset(dev, pipe);
  2591. else if (IS_VALLEYVIEW(dev))
  2592. vlv_undo_pipe_scramble_reset(dev, pipe);
  2593. else if (IS_HASWELL(dev) && pipe == PIPE_A)
  2594. hsw_undo_trans_edp_pipe_A_crc_wa(dev);
  2595. }
  2596. return 0;
  2597. }
  2598. /*
  2599. * Parse pipe CRC command strings:
  2600. * command: wsp* object wsp+ name wsp+ source wsp*
  2601. * object: 'pipe'
  2602. * name: (A | B | C)
  2603. * source: (none | plane1 | plane2 | pf)
  2604. * wsp: (#0x20 | #0x9 | #0xA)+
  2605. *
  2606. * eg.:
  2607. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  2608. * "pipe A none" -> Stop CRC
  2609. */
  2610. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  2611. {
  2612. int n_words = 0;
  2613. while (*buf) {
  2614. char *end;
  2615. /* skip leading white space */
  2616. buf = skip_spaces(buf);
  2617. if (!*buf)
  2618. break; /* end of buffer */
  2619. /* find end of word */
  2620. for (end = buf; *end && !isspace(*end); end++)
  2621. ;
  2622. if (n_words == max_words) {
  2623. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  2624. max_words);
  2625. return -EINVAL; /* ran out of words[] before bytes */
  2626. }
  2627. if (*end)
  2628. *end++ = '\0';
  2629. words[n_words++] = buf;
  2630. buf = end;
  2631. }
  2632. return n_words;
  2633. }
  2634. enum intel_pipe_crc_object {
  2635. PIPE_CRC_OBJECT_PIPE,
  2636. };
  2637. static const char * const pipe_crc_objects[] = {
  2638. "pipe",
  2639. };
  2640. static int
  2641. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  2642. {
  2643. int i;
  2644. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  2645. if (!strcmp(buf, pipe_crc_objects[i])) {
  2646. *o = i;
  2647. return 0;
  2648. }
  2649. return -EINVAL;
  2650. }
  2651. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  2652. {
  2653. const char name = buf[0];
  2654. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  2655. return -EINVAL;
  2656. *pipe = name - 'A';
  2657. return 0;
  2658. }
  2659. static int
  2660. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  2661. {
  2662. int i;
  2663. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  2664. if (!strcmp(buf, pipe_crc_sources[i])) {
  2665. *s = i;
  2666. return 0;
  2667. }
  2668. return -EINVAL;
  2669. }
  2670. static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
  2671. {
  2672. #define N_WORDS 3
  2673. int n_words;
  2674. char *words[N_WORDS];
  2675. enum pipe pipe;
  2676. enum intel_pipe_crc_object object;
  2677. enum intel_pipe_crc_source source;
  2678. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  2679. if (n_words != N_WORDS) {
  2680. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  2681. N_WORDS);
  2682. return -EINVAL;
  2683. }
  2684. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  2685. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  2686. return -EINVAL;
  2687. }
  2688. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  2689. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  2690. return -EINVAL;
  2691. }
  2692. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  2693. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  2694. return -EINVAL;
  2695. }
  2696. return pipe_crc_set_source(dev, pipe, source);
  2697. }
  2698. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  2699. size_t len, loff_t *offp)
  2700. {
  2701. struct seq_file *m = file->private_data;
  2702. struct drm_device *dev = m->private;
  2703. char *tmpbuf;
  2704. int ret;
  2705. if (len == 0)
  2706. return 0;
  2707. if (len > PAGE_SIZE - 1) {
  2708. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  2709. PAGE_SIZE);
  2710. return -E2BIG;
  2711. }
  2712. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  2713. if (!tmpbuf)
  2714. return -ENOMEM;
  2715. if (copy_from_user(tmpbuf, ubuf, len)) {
  2716. ret = -EFAULT;
  2717. goto out;
  2718. }
  2719. tmpbuf[len] = '\0';
  2720. ret = display_crc_ctl_parse(dev, tmpbuf, len);
  2721. out:
  2722. kfree(tmpbuf);
  2723. if (ret < 0)
  2724. return ret;
  2725. *offp += len;
  2726. return len;
  2727. }
  2728. static const struct file_operations i915_display_crc_ctl_fops = {
  2729. .owner = THIS_MODULE,
  2730. .open = display_crc_ctl_open,
  2731. .read = seq_read,
  2732. .llseek = seq_lseek,
  2733. .release = single_release,
  2734. .write = display_crc_ctl_write
  2735. };
  2736. static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
  2737. {
  2738. struct drm_device *dev = m->private;
  2739. int num_levels = ilk_wm_max_level(dev) + 1;
  2740. int level;
  2741. drm_modeset_lock_all(dev);
  2742. for (level = 0; level < num_levels; level++) {
  2743. unsigned int latency = wm[level];
  2744. /* WM1+ latency values in 0.5us units */
  2745. if (level > 0)
  2746. latency *= 5;
  2747. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  2748. level, wm[level],
  2749. latency / 10, latency % 10);
  2750. }
  2751. drm_modeset_unlock_all(dev);
  2752. }
  2753. static int pri_wm_latency_show(struct seq_file *m, void *data)
  2754. {
  2755. struct drm_device *dev = m->private;
  2756. wm_latency_show(m, to_i915(dev)->wm.pri_latency);
  2757. return 0;
  2758. }
  2759. static int spr_wm_latency_show(struct seq_file *m, void *data)
  2760. {
  2761. struct drm_device *dev = m->private;
  2762. wm_latency_show(m, to_i915(dev)->wm.spr_latency);
  2763. return 0;
  2764. }
  2765. static int cur_wm_latency_show(struct seq_file *m, void *data)
  2766. {
  2767. struct drm_device *dev = m->private;
  2768. wm_latency_show(m, to_i915(dev)->wm.cur_latency);
  2769. return 0;
  2770. }
  2771. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  2772. {
  2773. struct drm_device *dev = inode->i_private;
  2774. if (HAS_GMCH_DISPLAY(dev))
  2775. return -ENODEV;
  2776. return single_open(file, pri_wm_latency_show, dev);
  2777. }
  2778. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  2779. {
  2780. struct drm_device *dev = inode->i_private;
  2781. if (HAS_GMCH_DISPLAY(dev))
  2782. return -ENODEV;
  2783. return single_open(file, spr_wm_latency_show, dev);
  2784. }
  2785. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  2786. {
  2787. struct drm_device *dev = inode->i_private;
  2788. if (HAS_GMCH_DISPLAY(dev))
  2789. return -ENODEV;
  2790. return single_open(file, cur_wm_latency_show, dev);
  2791. }
  2792. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  2793. size_t len, loff_t *offp, uint16_t wm[5])
  2794. {
  2795. struct seq_file *m = file->private_data;
  2796. struct drm_device *dev = m->private;
  2797. uint16_t new[5] = { 0 };
  2798. int num_levels = ilk_wm_max_level(dev) + 1;
  2799. int level;
  2800. int ret;
  2801. char tmp[32];
  2802. if (len >= sizeof(tmp))
  2803. return -EINVAL;
  2804. if (copy_from_user(tmp, ubuf, len))
  2805. return -EFAULT;
  2806. tmp[len] = '\0';
  2807. ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
  2808. if (ret != num_levels)
  2809. return -EINVAL;
  2810. drm_modeset_lock_all(dev);
  2811. for (level = 0; level < num_levels; level++)
  2812. wm[level] = new[level];
  2813. drm_modeset_unlock_all(dev);
  2814. return len;
  2815. }
  2816. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  2817. size_t len, loff_t *offp)
  2818. {
  2819. struct seq_file *m = file->private_data;
  2820. struct drm_device *dev = m->private;
  2821. return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
  2822. }
  2823. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  2824. size_t len, loff_t *offp)
  2825. {
  2826. struct seq_file *m = file->private_data;
  2827. struct drm_device *dev = m->private;
  2828. return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
  2829. }
  2830. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  2831. size_t len, loff_t *offp)
  2832. {
  2833. struct seq_file *m = file->private_data;
  2834. struct drm_device *dev = m->private;
  2835. return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
  2836. }
  2837. static const struct file_operations i915_pri_wm_latency_fops = {
  2838. .owner = THIS_MODULE,
  2839. .open = pri_wm_latency_open,
  2840. .read = seq_read,
  2841. .llseek = seq_lseek,
  2842. .release = single_release,
  2843. .write = pri_wm_latency_write
  2844. };
  2845. static const struct file_operations i915_spr_wm_latency_fops = {
  2846. .owner = THIS_MODULE,
  2847. .open = spr_wm_latency_open,
  2848. .read = seq_read,
  2849. .llseek = seq_lseek,
  2850. .release = single_release,
  2851. .write = spr_wm_latency_write
  2852. };
  2853. static const struct file_operations i915_cur_wm_latency_fops = {
  2854. .owner = THIS_MODULE,
  2855. .open = cur_wm_latency_open,
  2856. .read = seq_read,
  2857. .llseek = seq_lseek,
  2858. .release = single_release,
  2859. .write = cur_wm_latency_write
  2860. };
  2861. static int
  2862. i915_wedged_get(void *data, u64 *val)
  2863. {
  2864. struct drm_device *dev = data;
  2865. struct drm_i915_private *dev_priv = dev->dev_private;
  2866. *val = atomic_read(&dev_priv->gpu_error.reset_counter);
  2867. return 0;
  2868. }
  2869. static int
  2870. i915_wedged_set(void *data, u64 val)
  2871. {
  2872. struct drm_device *dev = data;
  2873. struct drm_i915_private *dev_priv = dev->dev_private;
  2874. intel_runtime_pm_get(dev_priv);
  2875. i915_handle_error(dev, val,
  2876. "Manually setting wedged to %llu", val);
  2877. intel_runtime_pm_put(dev_priv);
  2878. return 0;
  2879. }
  2880. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  2881. i915_wedged_get, i915_wedged_set,
  2882. "%llu\n");
  2883. static int
  2884. i915_ring_stop_get(void *data, u64 *val)
  2885. {
  2886. struct drm_device *dev = data;
  2887. struct drm_i915_private *dev_priv = dev->dev_private;
  2888. *val = dev_priv->gpu_error.stop_rings;
  2889. return 0;
  2890. }
  2891. static int
  2892. i915_ring_stop_set(void *data, u64 val)
  2893. {
  2894. struct drm_device *dev = data;
  2895. struct drm_i915_private *dev_priv = dev->dev_private;
  2896. int ret;
  2897. DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
  2898. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2899. if (ret)
  2900. return ret;
  2901. dev_priv->gpu_error.stop_rings = val;
  2902. mutex_unlock(&dev->struct_mutex);
  2903. return 0;
  2904. }
  2905. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
  2906. i915_ring_stop_get, i915_ring_stop_set,
  2907. "0x%08llx\n");
  2908. static int
  2909. i915_ring_missed_irq_get(void *data, u64 *val)
  2910. {
  2911. struct drm_device *dev = data;
  2912. struct drm_i915_private *dev_priv = dev->dev_private;
  2913. *val = dev_priv->gpu_error.missed_irq_rings;
  2914. return 0;
  2915. }
  2916. static int
  2917. i915_ring_missed_irq_set(void *data, u64 val)
  2918. {
  2919. struct drm_device *dev = data;
  2920. struct drm_i915_private *dev_priv = dev->dev_private;
  2921. int ret;
  2922. /* Lock against concurrent debugfs callers */
  2923. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2924. if (ret)
  2925. return ret;
  2926. dev_priv->gpu_error.missed_irq_rings = val;
  2927. mutex_unlock(&dev->struct_mutex);
  2928. return 0;
  2929. }
  2930. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  2931. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  2932. "0x%08llx\n");
  2933. static int
  2934. i915_ring_test_irq_get(void *data, u64 *val)
  2935. {
  2936. struct drm_device *dev = data;
  2937. struct drm_i915_private *dev_priv = dev->dev_private;
  2938. *val = dev_priv->gpu_error.test_irq_rings;
  2939. return 0;
  2940. }
  2941. static int
  2942. i915_ring_test_irq_set(void *data, u64 val)
  2943. {
  2944. struct drm_device *dev = data;
  2945. struct drm_i915_private *dev_priv = dev->dev_private;
  2946. int ret;
  2947. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  2948. /* Lock against concurrent debugfs callers */
  2949. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2950. if (ret)
  2951. return ret;
  2952. dev_priv->gpu_error.test_irq_rings = val;
  2953. mutex_unlock(&dev->struct_mutex);
  2954. return 0;
  2955. }
  2956. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  2957. i915_ring_test_irq_get, i915_ring_test_irq_set,
  2958. "0x%08llx\n");
  2959. #define DROP_UNBOUND 0x1
  2960. #define DROP_BOUND 0x2
  2961. #define DROP_RETIRE 0x4
  2962. #define DROP_ACTIVE 0x8
  2963. #define DROP_ALL (DROP_UNBOUND | \
  2964. DROP_BOUND | \
  2965. DROP_RETIRE | \
  2966. DROP_ACTIVE)
  2967. static int
  2968. i915_drop_caches_get(void *data, u64 *val)
  2969. {
  2970. *val = DROP_ALL;
  2971. return 0;
  2972. }
  2973. static int
  2974. i915_drop_caches_set(void *data, u64 val)
  2975. {
  2976. struct drm_device *dev = data;
  2977. struct drm_i915_private *dev_priv = dev->dev_private;
  2978. struct drm_i915_gem_object *obj, *next;
  2979. struct i915_address_space *vm;
  2980. struct i915_vma *vma, *x;
  2981. int ret;
  2982. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  2983. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  2984. * on ioctls on -EAGAIN. */
  2985. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2986. if (ret)
  2987. return ret;
  2988. if (val & DROP_ACTIVE) {
  2989. ret = i915_gpu_idle(dev);
  2990. if (ret)
  2991. goto unlock;
  2992. }
  2993. if (val & (DROP_RETIRE | DROP_ACTIVE))
  2994. i915_gem_retire_requests(dev);
  2995. if (val & DROP_BOUND) {
  2996. list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
  2997. list_for_each_entry_safe(vma, x, &vm->inactive_list,
  2998. mm_list) {
  2999. if (vma->pin_count)
  3000. continue;
  3001. ret = i915_vma_unbind(vma);
  3002. if (ret)
  3003. goto unlock;
  3004. }
  3005. }
  3006. }
  3007. if (val & DROP_UNBOUND) {
  3008. list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
  3009. global_list)
  3010. if (obj->pages_pin_count == 0) {
  3011. ret = i915_gem_object_put_pages(obj);
  3012. if (ret)
  3013. goto unlock;
  3014. }
  3015. }
  3016. unlock:
  3017. mutex_unlock(&dev->struct_mutex);
  3018. return ret;
  3019. }
  3020. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3021. i915_drop_caches_get, i915_drop_caches_set,
  3022. "0x%08llx\n");
  3023. static int
  3024. i915_max_freq_get(void *data, u64 *val)
  3025. {
  3026. struct drm_device *dev = data;
  3027. struct drm_i915_private *dev_priv = dev->dev_private;
  3028. int ret;
  3029. if (INTEL_INFO(dev)->gen < 6)
  3030. return -ENODEV;
  3031. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3032. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3033. if (ret)
  3034. return ret;
  3035. if (IS_VALLEYVIEW(dev))
  3036. *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  3037. else
  3038. *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
  3039. mutex_unlock(&dev_priv->rps.hw_lock);
  3040. return 0;
  3041. }
  3042. static int
  3043. i915_max_freq_set(void *data, u64 val)
  3044. {
  3045. struct drm_device *dev = data;
  3046. struct drm_i915_private *dev_priv = dev->dev_private;
  3047. u32 rp_state_cap, hw_max, hw_min;
  3048. int ret;
  3049. if (INTEL_INFO(dev)->gen < 6)
  3050. return -ENODEV;
  3051. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3052. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  3053. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3054. if (ret)
  3055. return ret;
  3056. /*
  3057. * Turbo will still be enabled, but won't go above the set value.
  3058. */
  3059. if (IS_VALLEYVIEW(dev)) {
  3060. val = vlv_freq_opcode(dev_priv, val);
  3061. hw_max = dev_priv->rps.max_freq;
  3062. hw_min = dev_priv->rps.min_freq;
  3063. } else {
  3064. do_div(val, GT_FREQUENCY_MULTIPLIER);
  3065. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3066. hw_max = dev_priv->rps.max_freq;
  3067. hw_min = (rp_state_cap >> 16) & 0xff;
  3068. }
  3069. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  3070. mutex_unlock(&dev_priv->rps.hw_lock);
  3071. return -EINVAL;
  3072. }
  3073. dev_priv->rps.max_freq_softlimit = val;
  3074. if (IS_VALLEYVIEW(dev))
  3075. valleyview_set_rps(dev, val);
  3076. else
  3077. gen6_set_rps(dev, val);
  3078. mutex_unlock(&dev_priv->rps.hw_lock);
  3079. return 0;
  3080. }
  3081. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  3082. i915_max_freq_get, i915_max_freq_set,
  3083. "%llu\n");
  3084. static int
  3085. i915_min_freq_get(void *data, u64 *val)
  3086. {
  3087. struct drm_device *dev = data;
  3088. struct drm_i915_private *dev_priv = dev->dev_private;
  3089. int ret;
  3090. if (INTEL_INFO(dev)->gen < 6)
  3091. return -ENODEV;
  3092. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3093. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3094. if (ret)
  3095. return ret;
  3096. if (IS_VALLEYVIEW(dev))
  3097. *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  3098. else
  3099. *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
  3100. mutex_unlock(&dev_priv->rps.hw_lock);
  3101. return 0;
  3102. }
  3103. static int
  3104. i915_min_freq_set(void *data, u64 val)
  3105. {
  3106. struct drm_device *dev = data;
  3107. struct drm_i915_private *dev_priv = dev->dev_private;
  3108. u32 rp_state_cap, hw_max, hw_min;
  3109. int ret;
  3110. if (INTEL_INFO(dev)->gen < 6)
  3111. return -ENODEV;
  3112. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3113. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  3114. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3115. if (ret)
  3116. return ret;
  3117. /*
  3118. * Turbo will still be enabled, but won't go below the set value.
  3119. */
  3120. if (IS_VALLEYVIEW(dev)) {
  3121. val = vlv_freq_opcode(dev_priv, val);
  3122. hw_max = dev_priv->rps.max_freq;
  3123. hw_min = dev_priv->rps.min_freq;
  3124. } else {
  3125. do_div(val, GT_FREQUENCY_MULTIPLIER);
  3126. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3127. hw_max = dev_priv->rps.max_freq;
  3128. hw_min = (rp_state_cap >> 16) & 0xff;
  3129. }
  3130. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  3131. mutex_unlock(&dev_priv->rps.hw_lock);
  3132. return -EINVAL;
  3133. }
  3134. dev_priv->rps.min_freq_softlimit = val;
  3135. if (IS_VALLEYVIEW(dev))
  3136. valleyview_set_rps(dev, val);
  3137. else
  3138. gen6_set_rps(dev, val);
  3139. mutex_unlock(&dev_priv->rps.hw_lock);
  3140. return 0;
  3141. }
  3142. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  3143. i915_min_freq_get, i915_min_freq_set,
  3144. "%llu\n");
  3145. static int
  3146. i915_cache_sharing_get(void *data, u64 *val)
  3147. {
  3148. struct drm_device *dev = data;
  3149. struct drm_i915_private *dev_priv = dev->dev_private;
  3150. u32 snpcr;
  3151. int ret;
  3152. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  3153. return -ENODEV;
  3154. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3155. if (ret)
  3156. return ret;
  3157. intel_runtime_pm_get(dev_priv);
  3158. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3159. intel_runtime_pm_put(dev_priv);
  3160. mutex_unlock(&dev_priv->dev->struct_mutex);
  3161. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3162. return 0;
  3163. }
  3164. static int
  3165. i915_cache_sharing_set(void *data, u64 val)
  3166. {
  3167. struct drm_device *dev = data;
  3168. struct drm_i915_private *dev_priv = dev->dev_private;
  3169. u32 snpcr;
  3170. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  3171. return -ENODEV;
  3172. if (val > 3)
  3173. return -EINVAL;
  3174. intel_runtime_pm_get(dev_priv);
  3175. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3176. /* Update the cache sharing policy here as well */
  3177. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3178. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3179. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3180. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3181. intel_runtime_pm_put(dev_priv);
  3182. return 0;
  3183. }
  3184. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3185. i915_cache_sharing_get, i915_cache_sharing_set,
  3186. "%llu\n");
  3187. static int i915_forcewake_open(struct inode *inode, struct file *file)
  3188. {
  3189. struct drm_device *dev = inode->i_private;
  3190. struct drm_i915_private *dev_priv = dev->dev_private;
  3191. if (INTEL_INFO(dev)->gen < 6)
  3192. return 0;
  3193. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3194. return 0;
  3195. }
  3196. static int i915_forcewake_release(struct inode *inode, struct file *file)
  3197. {
  3198. struct drm_device *dev = inode->i_private;
  3199. struct drm_i915_private *dev_priv = dev->dev_private;
  3200. if (INTEL_INFO(dev)->gen < 6)
  3201. return 0;
  3202. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3203. return 0;
  3204. }
  3205. static const struct file_operations i915_forcewake_fops = {
  3206. .owner = THIS_MODULE,
  3207. .open = i915_forcewake_open,
  3208. .release = i915_forcewake_release,
  3209. };
  3210. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  3211. {
  3212. struct drm_device *dev = minor->dev;
  3213. struct dentry *ent;
  3214. ent = debugfs_create_file("i915_forcewake_user",
  3215. S_IRUSR,
  3216. root, dev,
  3217. &i915_forcewake_fops);
  3218. if (!ent)
  3219. return -ENOMEM;
  3220. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  3221. }
  3222. static int i915_debugfs_create(struct dentry *root,
  3223. struct drm_minor *minor,
  3224. const char *name,
  3225. const struct file_operations *fops)
  3226. {
  3227. struct drm_device *dev = minor->dev;
  3228. struct dentry *ent;
  3229. ent = debugfs_create_file(name,
  3230. S_IRUGO | S_IWUSR,
  3231. root, dev,
  3232. fops);
  3233. if (!ent)
  3234. return -ENOMEM;
  3235. return drm_add_fake_info_node(minor, ent, fops);
  3236. }
  3237. static const struct drm_info_list i915_debugfs_list[] = {
  3238. {"i915_capabilities", i915_capabilities, 0},
  3239. {"i915_gem_objects", i915_gem_object_info, 0},
  3240. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  3241. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  3242. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  3243. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  3244. {"i915_gem_stolen", i915_gem_stolen_list_info },
  3245. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  3246. {"i915_gem_request", i915_gem_request_info, 0},
  3247. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  3248. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  3249. {"i915_gem_interrupt", i915_interrupt_info, 0},
  3250. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  3251. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  3252. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  3253. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  3254. {"i915_frequency_info", i915_frequency_info, 0},
  3255. {"i915_drpc_info", i915_drpc_info, 0},
  3256. {"i915_emon_status", i915_emon_status, 0},
  3257. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  3258. {"i915_fbc_status", i915_fbc_status, 0},
  3259. {"i915_ips_status", i915_ips_status, 0},
  3260. {"i915_sr_status", i915_sr_status, 0},
  3261. {"i915_opregion", i915_opregion, 0},
  3262. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  3263. {"i915_context_status", i915_context_status, 0},
  3264. {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
  3265. {"i915_swizzle_info", i915_swizzle_info, 0},
  3266. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  3267. {"i915_llc", i915_llc, 0},
  3268. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  3269. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  3270. {"i915_energy_uJ", i915_energy_uJ, 0},
  3271. {"i915_pc8_status", i915_pc8_status, 0},
  3272. {"i915_power_domain_info", i915_power_domain_info, 0},
  3273. {"i915_display_info", i915_display_info, 0},
  3274. {"i915_semaphore_status", i915_semaphore_status, 0},
  3275. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  3276. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  3277. };
  3278. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  3279. static const struct i915_debugfs_files {
  3280. const char *name;
  3281. const struct file_operations *fops;
  3282. } i915_debugfs_files[] = {
  3283. {"i915_wedged", &i915_wedged_fops},
  3284. {"i915_max_freq", &i915_max_freq_fops},
  3285. {"i915_min_freq", &i915_min_freq_fops},
  3286. {"i915_cache_sharing", &i915_cache_sharing_fops},
  3287. {"i915_ring_stop", &i915_ring_stop_fops},
  3288. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  3289. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  3290. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  3291. {"i915_error_state", &i915_error_state_fops},
  3292. {"i915_next_seqno", &i915_next_seqno_fops},
  3293. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  3294. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  3295. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  3296. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  3297. };
  3298. void intel_display_crc_init(struct drm_device *dev)
  3299. {
  3300. struct drm_i915_private *dev_priv = dev->dev_private;
  3301. enum pipe pipe;
  3302. for_each_pipe(pipe) {
  3303. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3304. pipe_crc->opened = false;
  3305. spin_lock_init(&pipe_crc->lock);
  3306. init_waitqueue_head(&pipe_crc->wq);
  3307. }
  3308. }
  3309. int i915_debugfs_init(struct drm_minor *minor)
  3310. {
  3311. int ret, i;
  3312. ret = i915_forcewake_create(minor->debugfs_root, minor);
  3313. if (ret)
  3314. return ret;
  3315. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  3316. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  3317. if (ret)
  3318. return ret;
  3319. }
  3320. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3321. ret = i915_debugfs_create(minor->debugfs_root, minor,
  3322. i915_debugfs_files[i].name,
  3323. i915_debugfs_files[i].fops);
  3324. if (ret)
  3325. return ret;
  3326. }
  3327. return drm_debugfs_create_files(i915_debugfs_list,
  3328. I915_DEBUGFS_ENTRIES,
  3329. minor->debugfs_root, minor);
  3330. }
  3331. void i915_debugfs_cleanup(struct drm_minor *minor)
  3332. {
  3333. int i;
  3334. drm_debugfs_remove_files(i915_debugfs_list,
  3335. I915_DEBUGFS_ENTRIES, minor);
  3336. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  3337. 1, minor);
  3338. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  3339. struct drm_info_list *info_list =
  3340. (struct drm_info_list *)&i915_pipe_crc_data[i];
  3341. drm_debugfs_remove_files(info_list, 1, minor);
  3342. }
  3343. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3344. struct drm_info_list *info_list =
  3345. (struct drm_info_list *) i915_debugfs_files[i].fops;
  3346. drm_debugfs_remove_files(info_list, 1, minor);
  3347. }
  3348. }