init_64.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/proc_fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/pfn.h>
  27. #include <linux/poison.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/module.h>
  30. #include <linux/memory.h>
  31. #include <linux/memory_hotplug.h>
  32. #include <linux/nmi.h>
  33. #include <linux/gfp.h>
  34. #include <linux/kcore.h>
  35. #include <asm/processor.h>
  36. #include <asm/bios_ebda.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/pgalloc.h>
  40. #include <asm/dma.h>
  41. #include <asm/fixmap.h>
  42. #include <asm/e820.h>
  43. #include <asm/apic.h>
  44. #include <asm/tlb.h>
  45. #include <asm/mmu_context.h>
  46. #include <asm/proto.h>
  47. #include <asm/smp.h>
  48. #include <asm/sections.h>
  49. #include <asm/kdebug.h>
  50. #include <asm/numa.h>
  51. #include <asm/cacheflush.h>
  52. #include <asm/init.h>
  53. #include <asm/uv/uv.h>
  54. #include <asm/setup.h>
  55. #include "mm_internal.h"
  56. static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
  57. unsigned long addr, unsigned long end)
  58. {
  59. addr &= PMD_MASK;
  60. for (; addr < end; addr += PMD_SIZE) {
  61. pmd_t *pmd = pmd_page + pmd_index(addr);
  62. if (!pmd_present(*pmd))
  63. set_pmd(pmd, __pmd(addr | pmd_flag));
  64. }
  65. }
  66. static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
  67. unsigned long addr, unsigned long end)
  68. {
  69. unsigned long next;
  70. for (; addr < end; addr = next) {
  71. pud_t *pud = pud_page + pud_index(addr);
  72. pmd_t *pmd;
  73. next = (addr & PUD_MASK) + PUD_SIZE;
  74. if (next > end)
  75. next = end;
  76. if (pud_present(*pud)) {
  77. pmd = pmd_offset(pud, 0);
  78. ident_pmd_init(info->pmd_flag, pmd, addr, next);
  79. continue;
  80. }
  81. pmd = (pmd_t *)info->alloc_pgt_page(info->context);
  82. if (!pmd)
  83. return -ENOMEM;
  84. ident_pmd_init(info->pmd_flag, pmd, addr, next);
  85. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
  86. }
  87. return 0;
  88. }
  89. int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
  90. unsigned long addr, unsigned long end)
  91. {
  92. unsigned long next;
  93. int result;
  94. int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
  95. for (; addr < end; addr = next) {
  96. pgd_t *pgd = pgd_page + pgd_index(addr) + off;
  97. pud_t *pud;
  98. next = (addr & PGDIR_MASK) + PGDIR_SIZE;
  99. if (next > end)
  100. next = end;
  101. if (pgd_present(*pgd)) {
  102. pud = pud_offset(pgd, 0);
  103. result = ident_pud_init(info, pud, addr, next);
  104. if (result)
  105. return result;
  106. continue;
  107. }
  108. pud = (pud_t *)info->alloc_pgt_page(info->context);
  109. if (!pud)
  110. return -ENOMEM;
  111. result = ident_pud_init(info, pud, addr, next);
  112. if (result)
  113. return result;
  114. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
  115. }
  116. return 0;
  117. }
  118. static int __init parse_direct_gbpages_off(char *arg)
  119. {
  120. direct_gbpages = 0;
  121. return 0;
  122. }
  123. early_param("nogbpages", parse_direct_gbpages_off);
  124. static int __init parse_direct_gbpages_on(char *arg)
  125. {
  126. direct_gbpages = 1;
  127. return 0;
  128. }
  129. early_param("gbpages", parse_direct_gbpages_on);
  130. /*
  131. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  132. * physical space so we can cache the place of the first one and move
  133. * around without checking the pgd every time.
  134. */
  135. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  136. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  137. int force_personality32;
  138. /*
  139. * noexec32=on|off
  140. * Control non executable heap for 32bit processes.
  141. * To control the stack too use noexec=off
  142. *
  143. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  144. * off PROT_READ implies PROT_EXEC
  145. */
  146. static int __init nonx32_setup(char *str)
  147. {
  148. if (!strcmp(str, "on"))
  149. force_personality32 &= ~READ_IMPLIES_EXEC;
  150. else if (!strcmp(str, "off"))
  151. force_personality32 |= READ_IMPLIES_EXEC;
  152. return 1;
  153. }
  154. __setup("noexec32=", nonx32_setup);
  155. /*
  156. * When memory was added/removed make sure all the processes MM have
  157. * suitable PGD entries in the local PGD level page.
  158. */
  159. void sync_global_pgds(unsigned long start, unsigned long end)
  160. {
  161. unsigned long address;
  162. for (address = start; address <= end; address += PGDIR_SIZE) {
  163. const pgd_t *pgd_ref = pgd_offset_k(address);
  164. struct page *page;
  165. if (pgd_none(*pgd_ref))
  166. continue;
  167. spin_lock(&pgd_lock);
  168. list_for_each_entry(page, &pgd_list, lru) {
  169. pgd_t *pgd;
  170. spinlock_t *pgt_lock;
  171. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  172. /* the pgt_lock only for Xen */
  173. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  174. spin_lock(pgt_lock);
  175. if (pgd_none(*pgd))
  176. set_pgd(pgd, *pgd_ref);
  177. else
  178. BUG_ON(pgd_page_vaddr(*pgd)
  179. != pgd_page_vaddr(*pgd_ref));
  180. spin_unlock(pgt_lock);
  181. }
  182. spin_unlock(&pgd_lock);
  183. }
  184. }
  185. /*
  186. * NOTE: This function is marked __ref because it calls __init function
  187. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  188. */
  189. static __ref void *spp_getpage(void)
  190. {
  191. void *ptr;
  192. if (after_bootmem)
  193. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  194. else
  195. ptr = alloc_bootmem_pages(PAGE_SIZE);
  196. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  197. panic("set_pte_phys: cannot allocate page data %s\n",
  198. after_bootmem ? "after bootmem" : "");
  199. }
  200. pr_debug("spp_getpage %p\n", ptr);
  201. return ptr;
  202. }
  203. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  204. {
  205. if (pgd_none(*pgd)) {
  206. pud_t *pud = (pud_t *)spp_getpage();
  207. pgd_populate(&init_mm, pgd, pud);
  208. if (pud != pud_offset(pgd, 0))
  209. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  210. pud, pud_offset(pgd, 0));
  211. }
  212. return pud_offset(pgd, vaddr);
  213. }
  214. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  215. {
  216. if (pud_none(*pud)) {
  217. pmd_t *pmd = (pmd_t *) spp_getpage();
  218. pud_populate(&init_mm, pud, pmd);
  219. if (pmd != pmd_offset(pud, 0))
  220. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  221. pmd, pmd_offset(pud, 0));
  222. }
  223. return pmd_offset(pud, vaddr);
  224. }
  225. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  226. {
  227. if (pmd_none(*pmd)) {
  228. pte_t *pte = (pte_t *) spp_getpage();
  229. pmd_populate_kernel(&init_mm, pmd, pte);
  230. if (pte != pte_offset_kernel(pmd, 0))
  231. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  232. }
  233. return pte_offset_kernel(pmd, vaddr);
  234. }
  235. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  236. {
  237. pud_t *pud;
  238. pmd_t *pmd;
  239. pte_t *pte;
  240. pud = pud_page + pud_index(vaddr);
  241. pmd = fill_pmd(pud, vaddr);
  242. pte = fill_pte(pmd, vaddr);
  243. set_pte(pte, new_pte);
  244. /*
  245. * It's enough to flush this one mapping.
  246. * (PGE mappings get flushed as well)
  247. */
  248. __flush_tlb_one(vaddr);
  249. }
  250. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  251. {
  252. pgd_t *pgd;
  253. pud_t *pud_page;
  254. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  255. pgd = pgd_offset_k(vaddr);
  256. if (pgd_none(*pgd)) {
  257. printk(KERN_ERR
  258. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  259. return;
  260. }
  261. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  262. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  263. }
  264. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  265. {
  266. pgd_t *pgd;
  267. pud_t *pud;
  268. pgd = pgd_offset_k(vaddr);
  269. pud = fill_pud(pgd, vaddr);
  270. return fill_pmd(pud, vaddr);
  271. }
  272. pte_t * __init populate_extra_pte(unsigned long vaddr)
  273. {
  274. pmd_t *pmd;
  275. pmd = populate_extra_pmd(vaddr);
  276. return fill_pte(pmd, vaddr);
  277. }
  278. /*
  279. * Create large page table mappings for a range of physical addresses.
  280. */
  281. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  282. pgprot_t prot)
  283. {
  284. pgd_t *pgd;
  285. pud_t *pud;
  286. pmd_t *pmd;
  287. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  288. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  289. pgd = pgd_offset_k((unsigned long)__va(phys));
  290. if (pgd_none(*pgd)) {
  291. pud = (pud_t *) spp_getpage();
  292. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  293. _PAGE_USER));
  294. }
  295. pud = pud_offset(pgd, (unsigned long)__va(phys));
  296. if (pud_none(*pud)) {
  297. pmd = (pmd_t *) spp_getpage();
  298. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  299. _PAGE_USER));
  300. }
  301. pmd = pmd_offset(pud, phys);
  302. BUG_ON(!pmd_none(*pmd));
  303. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  304. }
  305. }
  306. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  307. {
  308. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  309. }
  310. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  311. {
  312. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  313. }
  314. /*
  315. * The head.S code sets up the kernel high mapping:
  316. *
  317. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  318. *
  319. * phys_base holds the negative offset to the kernel, which is added
  320. * to the compile time generated pmds. This results in invalid pmds up
  321. * to the point where we hit the physaddr 0 mapping.
  322. *
  323. * We limit the mappings to the region from _text to _brk_end. _brk_end
  324. * is rounded up to the 2MB boundary. This catches the invalid pmds as
  325. * well, as they are located before _text:
  326. */
  327. void __init cleanup_highmap(void)
  328. {
  329. unsigned long vaddr = __START_KERNEL_map;
  330. unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
  331. unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
  332. pmd_t *pmd = level2_kernel_pgt;
  333. /*
  334. * Native path, max_pfn_mapped is not set yet.
  335. * Xen has valid max_pfn_mapped set in
  336. * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
  337. */
  338. if (max_pfn_mapped)
  339. vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
  340. for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
  341. if (pmd_none(*pmd))
  342. continue;
  343. if (vaddr < (unsigned long) _text || vaddr > end)
  344. set_pmd(pmd, __pmd(0));
  345. }
  346. }
  347. static unsigned long __meminit
  348. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  349. pgprot_t prot)
  350. {
  351. unsigned long pages = 0, next;
  352. unsigned long last_map_addr = end;
  353. int i;
  354. pte_t *pte = pte_page + pte_index(addr);
  355. for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
  356. next = (addr & PAGE_MASK) + PAGE_SIZE;
  357. if (addr >= end) {
  358. if (!after_bootmem &&
  359. !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
  360. !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
  361. set_pte(pte, __pte(0));
  362. continue;
  363. }
  364. /*
  365. * We will re-use the existing mapping.
  366. * Xen for example has some special requirements, like mapping
  367. * pagetable pages as RO. So assume someone who pre-setup
  368. * these mappings are more intelligent.
  369. */
  370. if (pte_val(*pte)) {
  371. if (!after_bootmem)
  372. pages++;
  373. continue;
  374. }
  375. if (0)
  376. printk(" pte=%p addr=%lx pte=%016lx\n",
  377. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  378. pages++;
  379. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  380. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  381. }
  382. update_page_count(PG_LEVEL_4K, pages);
  383. return last_map_addr;
  384. }
  385. static unsigned long __meminit
  386. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  387. unsigned long page_size_mask, pgprot_t prot)
  388. {
  389. unsigned long pages = 0, next;
  390. unsigned long last_map_addr = end;
  391. int i = pmd_index(address);
  392. for (; i < PTRS_PER_PMD; i++, address = next) {
  393. pmd_t *pmd = pmd_page + pmd_index(address);
  394. pte_t *pte;
  395. pgprot_t new_prot = prot;
  396. next = (address & PMD_MASK) + PMD_SIZE;
  397. if (address >= end) {
  398. if (!after_bootmem &&
  399. !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
  400. !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
  401. set_pmd(pmd, __pmd(0));
  402. continue;
  403. }
  404. if (pmd_val(*pmd)) {
  405. if (!pmd_large(*pmd)) {
  406. spin_lock(&init_mm.page_table_lock);
  407. pte = (pte_t *)pmd_page_vaddr(*pmd);
  408. last_map_addr = phys_pte_init(pte, address,
  409. end, prot);
  410. spin_unlock(&init_mm.page_table_lock);
  411. continue;
  412. }
  413. /*
  414. * If we are ok with PG_LEVEL_2M mapping, then we will
  415. * use the existing mapping,
  416. *
  417. * Otherwise, we will split the large page mapping but
  418. * use the same existing protection bits except for
  419. * large page, so that we don't violate Intel's TLB
  420. * Application note (317080) which says, while changing
  421. * the page sizes, new and old translations should
  422. * not differ with respect to page frame and
  423. * attributes.
  424. */
  425. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  426. if (!after_bootmem)
  427. pages++;
  428. last_map_addr = next;
  429. continue;
  430. }
  431. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  432. }
  433. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  434. pages++;
  435. spin_lock(&init_mm.page_table_lock);
  436. set_pte((pte_t *)pmd,
  437. pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
  438. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  439. spin_unlock(&init_mm.page_table_lock);
  440. last_map_addr = next;
  441. continue;
  442. }
  443. pte = alloc_low_page();
  444. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  445. spin_lock(&init_mm.page_table_lock);
  446. pmd_populate_kernel(&init_mm, pmd, pte);
  447. spin_unlock(&init_mm.page_table_lock);
  448. }
  449. update_page_count(PG_LEVEL_2M, pages);
  450. return last_map_addr;
  451. }
  452. static unsigned long __meminit
  453. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  454. unsigned long page_size_mask)
  455. {
  456. unsigned long pages = 0, next;
  457. unsigned long last_map_addr = end;
  458. int i = pud_index(addr);
  459. for (; i < PTRS_PER_PUD; i++, addr = next) {
  460. pud_t *pud = pud_page + pud_index(addr);
  461. pmd_t *pmd;
  462. pgprot_t prot = PAGE_KERNEL;
  463. next = (addr & PUD_MASK) + PUD_SIZE;
  464. if (addr >= end) {
  465. if (!after_bootmem &&
  466. !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
  467. !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
  468. set_pud(pud, __pud(0));
  469. continue;
  470. }
  471. if (pud_val(*pud)) {
  472. if (!pud_large(*pud)) {
  473. pmd = pmd_offset(pud, 0);
  474. last_map_addr = phys_pmd_init(pmd, addr, end,
  475. page_size_mask, prot);
  476. __flush_tlb_all();
  477. continue;
  478. }
  479. /*
  480. * If we are ok with PG_LEVEL_1G mapping, then we will
  481. * use the existing mapping.
  482. *
  483. * Otherwise, we will split the gbpage mapping but use
  484. * the same existing protection bits except for large
  485. * page, so that we don't violate Intel's TLB
  486. * Application note (317080) which says, while changing
  487. * the page sizes, new and old translations should
  488. * not differ with respect to page frame and
  489. * attributes.
  490. */
  491. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  492. if (!after_bootmem)
  493. pages++;
  494. last_map_addr = next;
  495. continue;
  496. }
  497. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  498. }
  499. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  500. pages++;
  501. spin_lock(&init_mm.page_table_lock);
  502. set_pte((pte_t *)pud,
  503. pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
  504. PAGE_KERNEL_LARGE));
  505. spin_unlock(&init_mm.page_table_lock);
  506. last_map_addr = next;
  507. continue;
  508. }
  509. pmd = alloc_low_page();
  510. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  511. prot);
  512. spin_lock(&init_mm.page_table_lock);
  513. pud_populate(&init_mm, pud, pmd);
  514. spin_unlock(&init_mm.page_table_lock);
  515. }
  516. __flush_tlb_all();
  517. update_page_count(PG_LEVEL_1G, pages);
  518. return last_map_addr;
  519. }
  520. unsigned long __meminit
  521. kernel_physical_mapping_init(unsigned long start,
  522. unsigned long end,
  523. unsigned long page_size_mask)
  524. {
  525. bool pgd_changed = false;
  526. unsigned long next, last_map_addr = end;
  527. unsigned long addr;
  528. start = (unsigned long)__va(start);
  529. end = (unsigned long)__va(end);
  530. addr = start;
  531. for (; start < end; start = next) {
  532. pgd_t *pgd = pgd_offset_k(start);
  533. pud_t *pud;
  534. next = (start & PGDIR_MASK) + PGDIR_SIZE;
  535. if (pgd_val(*pgd)) {
  536. pud = (pud_t *)pgd_page_vaddr(*pgd);
  537. last_map_addr = phys_pud_init(pud, __pa(start),
  538. __pa(end), page_size_mask);
  539. continue;
  540. }
  541. pud = alloc_low_page();
  542. last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
  543. page_size_mask);
  544. spin_lock(&init_mm.page_table_lock);
  545. pgd_populate(&init_mm, pgd, pud);
  546. spin_unlock(&init_mm.page_table_lock);
  547. pgd_changed = true;
  548. }
  549. if (pgd_changed)
  550. sync_global_pgds(addr, end - 1);
  551. __flush_tlb_all();
  552. return last_map_addr;
  553. }
  554. #ifndef CONFIG_NUMA
  555. void __init initmem_init(void)
  556. {
  557. memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
  558. }
  559. #endif
  560. void __init paging_init(void)
  561. {
  562. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  563. sparse_init();
  564. /*
  565. * clear the default setting with node 0
  566. * note: don't use nodes_clear here, that is really clearing when
  567. * numa support is not compiled in, and later node_set_state
  568. * will not set it back.
  569. */
  570. node_clear_state(0, N_MEMORY);
  571. if (N_MEMORY != N_NORMAL_MEMORY)
  572. node_clear_state(0, N_NORMAL_MEMORY);
  573. zone_sizes_init();
  574. }
  575. /*
  576. * Memory hotplug specific functions
  577. */
  578. #ifdef CONFIG_MEMORY_HOTPLUG
  579. /*
  580. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  581. * updating.
  582. */
  583. static void update_end_of_memory_vars(u64 start, u64 size)
  584. {
  585. unsigned long end_pfn = PFN_UP(start + size);
  586. if (end_pfn > max_pfn) {
  587. max_pfn = end_pfn;
  588. max_low_pfn = end_pfn;
  589. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  590. }
  591. }
  592. /*
  593. * Memory is added always to NORMAL zone. This means you will never get
  594. * additional DMA/DMA32 memory.
  595. */
  596. int arch_add_memory(int nid, u64 start, u64 size)
  597. {
  598. struct pglist_data *pgdat = NODE_DATA(nid);
  599. struct zone *zone = pgdat->node_zones +
  600. zone_for_memory(nid, start, size, ZONE_NORMAL);
  601. unsigned long start_pfn = start >> PAGE_SHIFT;
  602. unsigned long nr_pages = size >> PAGE_SHIFT;
  603. int ret;
  604. init_memory_mapping(start, start + size);
  605. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  606. WARN_ON_ONCE(ret);
  607. /* update max_pfn, max_low_pfn and high_memory */
  608. update_end_of_memory_vars(start, size);
  609. return ret;
  610. }
  611. EXPORT_SYMBOL_GPL(arch_add_memory);
  612. #define PAGE_INUSE 0xFD
  613. static void __meminit free_pagetable(struct page *page, int order)
  614. {
  615. unsigned long magic;
  616. unsigned int nr_pages = 1 << order;
  617. /* bootmem page has reserved flag */
  618. if (PageReserved(page)) {
  619. __ClearPageReserved(page);
  620. magic = (unsigned long)page->lru.next;
  621. if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
  622. while (nr_pages--)
  623. put_page_bootmem(page++);
  624. } else
  625. while (nr_pages--)
  626. free_reserved_page(page++);
  627. } else
  628. free_pages((unsigned long)page_address(page), order);
  629. }
  630. static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
  631. {
  632. pte_t *pte;
  633. int i;
  634. for (i = 0; i < PTRS_PER_PTE; i++) {
  635. pte = pte_start + i;
  636. if (pte_val(*pte))
  637. return;
  638. }
  639. /* free a pte talbe */
  640. free_pagetable(pmd_page(*pmd), 0);
  641. spin_lock(&init_mm.page_table_lock);
  642. pmd_clear(pmd);
  643. spin_unlock(&init_mm.page_table_lock);
  644. }
  645. static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
  646. {
  647. pmd_t *pmd;
  648. int i;
  649. for (i = 0; i < PTRS_PER_PMD; i++) {
  650. pmd = pmd_start + i;
  651. if (pmd_val(*pmd))
  652. return;
  653. }
  654. /* free a pmd talbe */
  655. free_pagetable(pud_page(*pud), 0);
  656. spin_lock(&init_mm.page_table_lock);
  657. pud_clear(pud);
  658. spin_unlock(&init_mm.page_table_lock);
  659. }
  660. /* Return true if pgd is changed, otherwise return false. */
  661. static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
  662. {
  663. pud_t *pud;
  664. int i;
  665. for (i = 0; i < PTRS_PER_PUD; i++) {
  666. pud = pud_start + i;
  667. if (pud_val(*pud))
  668. return false;
  669. }
  670. /* free a pud table */
  671. free_pagetable(pgd_page(*pgd), 0);
  672. spin_lock(&init_mm.page_table_lock);
  673. pgd_clear(pgd);
  674. spin_unlock(&init_mm.page_table_lock);
  675. return true;
  676. }
  677. static void __meminit
  678. remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
  679. bool direct)
  680. {
  681. unsigned long next, pages = 0;
  682. pte_t *pte;
  683. void *page_addr;
  684. phys_addr_t phys_addr;
  685. pte = pte_start + pte_index(addr);
  686. for (; addr < end; addr = next, pte++) {
  687. next = (addr + PAGE_SIZE) & PAGE_MASK;
  688. if (next > end)
  689. next = end;
  690. if (!pte_present(*pte))
  691. continue;
  692. /*
  693. * We mapped [0,1G) memory as identity mapping when
  694. * initializing, in arch/x86/kernel/head_64.S. These
  695. * pagetables cannot be removed.
  696. */
  697. phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
  698. if (phys_addr < (phys_addr_t)0x40000000)
  699. return;
  700. if (IS_ALIGNED(addr, PAGE_SIZE) &&
  701. IS_ALIGNED(next, PAGE_SIZE)) {
  702. /*
  703. * Do not free direct mapping pages since they were
  704. * freed when offlining, or simplely not in use.
  705. */
  706. if (!direct)
  707. free_pagetable(pte_page(*pte), 0);
  708. spin_lock(&init_mm.page_table_lock);
  709. pte_clear(&init_mm, addr, pte);
  710. spin_unlock(&init_mm.page_table_lock);
  711. /* For non-direct mapping, pages means nothing. */
  712. pages++;
  713. } else {
  714. /*
  715. * If we are here, we are freeing vmemmap pages since
  716. * direct mapped memory ranges to be freed are aligned.
  717. *
  718. * If we are not removing the whole page, it means
  719. * other page structs in this page are being used and
  720. * we canot remove them. So fill the unused page_structs
  721. * with 0xFD, and remove the page when it is wholly
  722. * filled with 0xFD.
  723. */
  724. memset((void *)addr, PAGE_INUSE, next - addr);
  725. page_addr = page_address(pte_page(*pte));
  726. if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
  727. free_pagetable(pte_page(*pte), 0);
  728. spin_lock(&init_mm.page_table_lock);
  729. pte_clear(&init_mm, addr, pte);
  730. spin_unlock(&init_mm.page_table_lock);
  731. }
  732. }
  733. }
  734. /* Call free_pte_table() in remove_pmd_table(). */
  735. flush_tlb_all();
  736. if (direct)
  737. update_page_count(PG_LEVEL_4K, -pages);
  738. }
  739. static void __meminit
  740. remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
  741. bool direct)
  742. {
  743. unsigned long next, pages = 0;
  744. pte_t *pte_base;
  745. pmd_t *pmd;
  746. void *page_addr;
  747. pmd = pmd_start + pmd_index(addr);
  748. for (; addr < end; addr = next, pmd++) {
  749. next = pmd_addr_end(addr, end);
  750. if (!pmd_present(*pmd))
  751. continue;
  752. if (pmd_large(*pmd)) {
  753. if (IS_ALIGNED(addr, PMD_SIZE) &&
  754. IS_ALIGNED(next, PMD_SIZE)) {
  755. if (!direct)
  756. free_pagetable(pmd_page(*pmd),
  757. get_order(PMD_SIZE));
  758. spin_lock(&init_mm.page_table_lock);
  759. pmd_clear(pmd);
  760. spin_unlock(&init_mm.page_table_lock);
  761. pages++;
  762. } else {
  763. /* If here, we are freeing vmemmap pages. */
  764. memset((void *)addr, PAGE_INUSE, next - addr);
  765. page_addr = page_address(pmd_page(*pmd));
  766. if (!memchr_inv(page_addr, PAGE_INUSE,
  767. PMD_SIZE)) {
  768. free_pagetable(pmd_page(*pmd),
  769. get_order(PMD_SIZE));
  770. spin_lock(&init_mm.page_table_lock);
  771. pmd_clear(pmd);
  772. spin_unlock(&init_mm.page_table_lock);
  773. }
  774. }
  775. continue;
  776. }
  777. pte_base = (pte_t *)pmd_page_vaddr(*pmd);
  778. remove_pte_table(pte_base, addr, next, direct);
  779. free_pte_table(pte_base, pmd);
  780. }
  781. /* Call free_pmd_table() in remove_pud_table(). */
  782. if (direct)
  783. update_page_count(PG_LEVEL_2M, -pages);
  784. }
  785. static void __meminit
  786. remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
  787. bool direct)
  788. {
  789. unsigned long next, pages = 0;
  790. pmd_t *pmd_base;
  791. pud_t *pud;
  792. void *page_addr;
  793. pud = pud_start + pud_index(addr);
  794. for (; addr < end; addr = next, pud++) {
  795. next = pud_addr_end(addr, end);
  796. if (!pud_present(*pud))
  797. continue;
  798. if (pud_large(*pud)) {
  799. if (IS_ALIGNED(addr, PUD_SIZE) &&
  800. IS_ALIGNED(next, PUD_SIZE)) {
  801. if (!direct)
  802. free_pagetable(pud_page(*pud),
  803. get_order(PUD_SIZE));
  804. spin_lock(&init_mm.page_table_lock);
  805. pud_clear(pud);
  806. spin_unlock(&init_mm.page_table_lock);
  807. pages++;
  808. } else {
  809. /* If here, we are freeing vmemmap pages. */
  810. memset((void *)addr, PAGE_INUSE, next - addr);
  811. page_addr = page_address(pud_page(*pud));
  812. if (!memchr_inv(page_addr, PAGE_INUSE,
  813. PUD_SIZE)) {
  814. free_pagetable(pud_page(*pud),
  815. get_order(PUD_SIZE));
  816. spin_lock(&init_mm.page_table_lock);
  817. pud_clear(pud);
  818. spin_unlock(&init_mm.page_table_lock);
  819. }
  820. }
  821. continue;
  822. }
  823. pmd_base = (pmd_t *)pud_page_vaddr(*pud);
  824. remove_pmd_table(pmd_base, addr, next, direct);
  825. free_pmd_table(pmd_base, pud);
  826. }
  827. if (direct)
  828. update_page_count(PG_LEVEL_1G, -pages);
  829. }
  830. /* start and end are both virtual address. */
  831. static void __meminit
  832. remove_pagetable(unsigned long start, unsigned long end, bool direct)
  833. {
  834. unsigned long next;
  835. pgd_t *pgd;
  836. pud_t *pud;
  837. bool pgd_changed = false;
  838. for (; start < end; start = next) {
  839. next = pgd_addr_end(start, end);
  840. pgd = pgd_offset_k(start);
  841. if (!pgd_present(*pgd))
  842. continue;
  843. pud = (pud_t *)pgd_page_vaddr(*pgd);
  844. remove_pud_table(pud, start, next, direct);
  845. if (free_pud_table(pud, pgd))
  846. pgd_changed = true;
  847. }
  848. if (pgd_changed)
  849. sync_global_pgds(start, end - 1);
  850. flush_tlb_all();
  851. }
  852. void __ref vmemmap_free(unsigned long start, unsigned long end)
  853. {
  854. remove_pagetable(start, end, false);
  855. }
  856. #ifdef CONFIG_MEMORY_HOTREMOVE
  857. static void __meminit
  858. kernel_physical_mapping_remove(unsigned long start, unsigned long end)
  859. {
  860. start = (unsigned long)__va(start);
  861. end = (unsigned long)__va(end);
  862. remove_pagetable(start, end, true);
  863. }
  864. int __ref arch_remove_memory(u64 start, u64 size)
  865. {
  866. unsigned long start_pfn = start >> PAGE_SHIFT;
  867. unsigned long nr_pages = size >> PAGE_SHIFT;
  868. struct zone *zone;
  869. int ret;
  870. zone = page_zone(pfn_to_page(start_pfn));
  871. kernel_physical_mapping_remove(start, start + size);
  872. ret = __remove_pages(zone, start_pfn, nr_pages);
  873. WARN_ON_ONCE(ret);
  874. return ret;
  875. }
  876. #endif
  877. #endif /* CONFIG_MEMORY_HOTPLUG */
  878. static struct kcore_list kcore_vsyscall;
  879. static void __init register_page_bootmem_info(void)
  880. {
  881. #ifdef CONFIG_NUMA
  882. int i;
  883. for_each_online_node(i)
  884. register_page_bootmem_info_node(NODE_DATA(i));
  885. #endif
  886. }
  887. void __init mem_init(void)
  888. {
  889. pci_iommu_alloc();
  890. /* clear_bss() already clear the empty_zero_page */
  891. register_page_bootmem_info();
  892. /* this will put all memory onto the freelists */
  893. free_all_bootmem();
  894. after_bootmem = 1;
  895. /* Register memory areas for /proc/kcore */
  896. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
  897. PAGE_SIZE, KCORE_OTHER);
  898. mem_init_print_info(NULL);
  899. }
  900. #ifdef CONFIG_DEBUG_RODATA
  901. const int rodata_test_data = 0xC3;
  902. EXPORT_SYMBOL_GPL(rodata_test_data);
  903. int kernel_set_to_readonly;
  904. void set_kernel_text_rw(void)
  905. {
  906. unsigned long start = PFN_ALIGN(_text);
  907. unsigned long end = PFN_ALIGN(__stop___ex_table);
  908. if (!kernel_set_to_readonly)
  909. return;
  910. pr_debug("Set kernel text: %lx - %lx for read write\n",
  911. start, end);
  912. /*
  913. * Make the kernel identity mapping for text RW. Kernel text
  914. * mapping will always be RO. Refer to the comment in
  915. * static_protections() in pageattr.c
  916. */
  917. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  918. }
  919. void set_kernel_text_ro(void)
  920. {
  921. unsigned long start = PFN_ALIGN(_text);
  922. unsigned long end = PFN_ALIGN(__stop___ex_table);
  923. if (!kernel_set_to_readonly)
  924. return;
  925. pr_debug("Set kernel text: %lx - %lx for read only\n",
  926. start, end);
  927. /*
  928. * Set the kernel identity mapping for text RO.
  929. */
  930. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  931. }
  932. void mark_rodata_ro(void)
  933. {
  934. unsigned long start = PFN_ALIGN(_text);
  935. unsigned long rodata_start = PFN_ALIGN(__start_rodata);
  936. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  937. unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
  938. unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
  939. unsigned long all_end = PFN_ALIGN(&_end);
  940. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  941. (end - start) >> 10);
  942. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  943. kernel_set_to_readonly = 1;
  944. /*
  945. * The rodata/data/bss/brk section (but not the kernel text!)
  946. * should also be not-executable.
  947. */
  948. set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
  949. rodata_test();
  950. #ifdef CONFIG_CPA_DEBUG
  951. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  952. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  953. printk(KERN_INFO "Testing CPA: again\n");
  954. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  955. #endif
  956. free_init_pages("unused kernel",
  957. (unsigned long) __va(__pa_symbol(text_end)),
  958. (unsigned long) __va(__pa_symbol(rodata_start)));
  959. free_init_pages("unused kernel",
  960. (unsigned long) __va(__pa_symbol(rodata_end)),
  961. (unsigned long) __va(__pa_symbol(_sdata)));
  962. }
  963. #endif
  964. int kern_addr_valid(unsigned long addr)
  965. {
  966. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  967. pgd_t *pgd;
  968. pud_t *pud;
  969. pmd_t *pmd;
  970. pte_t *pte;
  971. if (above != 0 && above != -1UL)
  972. return 0;
  973. pgd = pgd_offset_k(addr);
  974. if (pgd_none(*pgd))
  975. return 0;
  976. pud = pud_offset(pgd, addr);
  977. if (pud_none(*pud))
  978. return 0;
  979. if (pud_large(*pud))
  980. return pfn_valid(pud_pfn(*pud));
  981. pmd = pmd_offset(pud, addr);
  982. if (pmd_none(*pmd))
  983. return 0;
  984. if (pmd_large(*pmd))
  985. return pfn_valid(pmd_pfn(*pmd));
  986. pte = pte_offset_kernel(pmd, addr);
  987. if (pte_none(*pte))
  988. return 0;
  989. return pfn_valid(pte_pfn(*pte));
  990. }
  991. /*
  992. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  993. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  994. * not need special handling anymore:
  995. */
  996. static const char *gate_vma_name(struct vm_area_struct *vma)
  997. {
  998. return "[vsyscall]";
  999. }
  1000. static struct vm_operations_struct gate_vma_ops = {
  1001. .name = gate_vma_name,
  1002. };
  1003. static struct vm_area_struct gate_vma = {
  1004. .vm_start = VSYSCALL_ADDR,
  1005. .vm_end = VSYSCALL_ADDR + PAGE_SIZE,
  1006. .vm_page_prot = PAGE_READONLY_EXEC,
  1007. .vm_flags = VM_READ | VM_EXEC,
  1008. .vm_ops = &gate_vma_ops,
  1009. };
  1010. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1011. {
  1012. #ifdef CONFIG_IA32_EMULATION
  1013. if (!mm || mm->context.ia32_compat)
  1014. return NULL;
  1015. #endif
  1016. return &gate_vma;
  1017. }
  1018. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1019. {
  1020. struct vm_area_struct *vma = get_gate_vma(mm);
  1021. if (!vma)
  1022. return 0;
  1023. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  1024. }
  1025. /*
  1026. * Use this when you have no reliable mm, typically from interrupt
  1027. * context. It is less reliable than using a task's mm and may give
  1028. * false positives.
  1029. */
  1030. int in_gate_area_no_mm(unsigned long addr)
  1031. {
  1032. return (addr & PAGE_MASK) == VSYSCALL_ADDR;
  1033. }
  1034. static unsigned long probe_memory_block_size(void)
  1035. {
  1036. /* start from 2g */
  1037. unsigned long bz = 1UL<<31;
  1038. #ifdef CONFIG_X86_UV
  1039. if (is_uv_system()) {
  1040. printk(KERN_INFO "UV: memory block size 2GB\n");
  1041. return 2UL * 1024 * 1024 * 1024;
  1042. }
  1043. #endif
  1044. /* less than 64g installed */
  1045. if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
  1046. return MIN_MEMORY_BLOCK_SIZE;
  1047. /* get the tail size */
  1048. while (bz > MIN_MEMORY_BLOCK_SIZE) {
  1049. if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
  1050. break;
  1051. bz >>= 1;
  1052. }
  1053. printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
  1054. return bz;
  1055. }
  1056. static unsigned long memory_block_size_probed;
  1057. unsigned long memory_block_size_bytes(void)
  1058. {
  1059. if (!memory_block_size_probed)
  1060. memory_block_size_probed = probe_memory_block_size();
  1061. return memory_block_size_probed;
  1062. }
  1063. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  1064. /*
  1065. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  1066. */
  1067. static long __meminitdata addr_start, addr_end;
  1068. static void __meminitdata *p_start, *p_end;
  1069. static int __meminitdata node_start;
  1070. static int __meminit vmemmap_populate_hugepages(unsigned long start,
  1071. unsigned long end, int node)
  1072. {
  1073. unsigned long addr;
  1074. unsigned long next;
  1075. pgd_t *pgd;
  1076. pud_t *pud;
  1077. pmd_t *pmd;
  1078. for (addr = start; addr < end; addr = next) {
  1079. next = pmd_addr_end(addr, end);
  1080. pgd = vmemmap_pgd_populate(addr, node);
  1081. if (!pgd)
  1082. return -ENOMEM;
  1083. pud = vmemmap_pud_populate(pgd, addr, node);
  1084. if (!pud)
  1085. return -ENOMEM;
  1086. pmd = pmd_offset(pud, addr);
  1087. if (pmd_none(*pmd)) {
  1088. void *p;
  1089. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  1090. if (p) {
  1091. pte_t entry;
  1092. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  1093. PAGE_KERNEL_LARGE);
  1094. set_pmd(pmd, __pmd(pte_val(entry)));
  1095. /* check to see if we have contiguous blocks */
  1096. if (p_end != p || node_start != node) {
  1097. if (p_start)
  1098. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1099. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1100. addr_start = addr;
  1101. node_start = node;
  1102. p_start = p;
  1103. }
  1104. addr_end = addr + PMD_SIZE;
  1105. p_end = p + PMD_SIZE;
  1106. continue;
  1107. }
  1108. } else if (pmd_large(*pmd)) {
  1109. vmemmap_verify((pte_t *)pmd, node, addr, next);
  1110. continue;
  1111. }
  1112. pr_warn_once("vmemmap: falling back to regular page backing\n");
  1113. if (vmemmap_populate_basepages(addr, next, node))
  1114. return -ENOMEM;
  1115. }
  1116. return 0;
  1117. }
  1118. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  1119. {
  1120. int err;
  1121. if (cpu_has_pse)
  1122. err = vmemmap_populate_hugepages(start, end, node);
  1123. else
  1124. err = vmemmap_populate_basepages(start, end, node);
  1125. if (!err)
  1126. sync_global_pgds(start, end - 1);
  1127. return err;
  1128. }
  1129. #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
  1130. void register_page_bootmem_memmap(unsigned long section_nr,
  1131. struct page *start_page, unsigned long size)
  1132. {
  1133. unsigned long addr = (unsigned long)start_page;
  1134. unsigned long end = (unsigned long)(start_page + size);
  1135. unsigned long next;
  1136. pgd_t *pgd;
  1137. pud_t *pud;
  1138. pmd_t *pmd;
  1139. unsigned int nr_pages;
  1140. struct page *page;
  1141. for (; addr < end; addr = next) {
  1142. pte_t *pte = NULL;
  1143. pgd = pgd_offset_k(addr);
  1144. if (pgd_none(*pgd)) {
  1145. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1146. continue;
  1147. }
  1148. get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
  1149. pud = pud_offset(pgd, addr);
  1150. if (pud_none(*pud)) {
  1151. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1152. continue;
  1153. }
  1154. get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
  1155. if (!cpu_has_pse) {
  1156. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1157. pmd = pmd_offset(pud, addr);
  1158. if (pmd_none(*pmd))
  1159. continue;
  1160. get_page_bootmem(section_nr, pmd_page(*pmd),
  1161. MIX_SECTION_INFO);
  1162. pte = pte_offset_kernel(pmd, addr);
  1163. if (pte_none(*pte))
  1164. continue;
  1165. get_page_bootmem(section_nr, pte_page(*pte),
  1166. SECTION_INFO);
  1167. } else {
  1168. next = pmd_addr_end(addr, end);
  1169. pmd = pmd_offset(pud, addr);
  1170. if (pmd_none(*pmd))
  1171. continue;
  1172. nr_pages = 1 << (get_order(PMD_SIZE));
  1173. page = pmd_page(*pmd);
  1174. while (nr_pages--)
  1175. get_page_bootmem(section_nr, page++,
  1176. SECTION_INFO);
  1177. }
  1178. }
  1179. }
  1180. #endif
  1181. void __meminit vmemmap_populate_print_last(void)
  1182. {
  1183. if (p_start) {
  1184. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1185. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1186. p_start = NULL;
  1187. p_end = NULL;
  1188. node_start = 0;
  1189. }
  1190. }
  1191. #endif