init_64.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  6. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  7. * Copyright (C) 1996 Paul Mackerras
  8. *
  9. * Derived from "arch/i386/mm/init.c"
  10. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  11. *
  12. * Dave Engebretsen <engebret@us.ibm.com>
  13. * Rework for PPC64 port.
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. */
  21. #undef DEBUG
  22. #include <linux/signal.h>
  23. #include <linux/sched.h>
  24. #include <linux/kernel.h>
  25. #include <linux/errno.h>
  26. #include <linux/string.h>
  27. #include <linux/types.h>
  28. #include <linux/mman.h>
  29. #include <linux/mm.h>
  30. #include <linux/swap.h>
  31. #include <linux/stddef.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/init.h>
  34. #include <linux/delay.h>
  35. #include <linux/bootmem.h>
  36. #include <linux/highmem.h>
  37. #include <linux/idr.h>
  38. #include <linux/nodemask.h>
  39. #include <linux/module.h>
  40. #include <linux/poison.h>
  41. #include <linux/memblock.h>
  42. #include <linux/hugetlb.h>
  43. #include <linux/slab.h>
  44. #include <asm/pgalloc.h>
  45. #include <asm/page.h>
  46. #include <asm/prom.h>
  47. #include <asm/rtas.h>
  48. #include <asm/io.h>
  49. #include <asm/mmu_context.h>
  50. #include <asm/pgtable.h>
  51. #include <asm/mmu.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/smp.h>
  54. #include <asm/machdep.h>
  55. #include <asm/tlb.h>
  56. #include <asm/eeh.h>
  57. #include <asm/processor.h>
  58. #include <asm/mmzone.h>
  59. #include <asm/cputable.h>
  60. #include <asm/sections.h>
  61. #include <asm/iommu.h>
  62. #include <asm/vdso.h>
  63. #include "mmu_decl.h"
  64. #ifdef CONFIG_PPC_STD_MMU_64
  65. #if PGTABLE_RANGE > USER_VSID_RANGE
  66. #warning Limited user VSID range means pagetable space is wasted
  67. #endif
  68. #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
  69. #warning TASK_SIZE is smaller than it needs to be.
  70. #endif
  71. #endif /* CONFIG_PPC_STD_MMU_64 */
  72. phys_addr_t memstart_addr = ~0;
  73. EXPORT_SYMBOL_GPL(memstart_addr);
  74. phys_addr_t kernstart_addr;
  75. EXPORT_SYMBOL_GPL(kernstart_addr);
  76. static void pgd_ctor(void *addr)
  77. {
  78. memset(addr, 0, PGD_TABLE_SIZE);
  79. }
  80. static void pmd_ctor(void *addr)
  81. {
  82. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  83. memset(addr, 0, PMD_TABLE_SIZE * 2);
  84. #else
  85. memset(addr, 0, PMD_TABLE_SIZE);
  86. #endif
  87. }
  88. struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
  89. /*
  90. * Create a kmem_cache() for pagetables. This is not used for PTE
  91. * pages - they're linked to struct page, come from the normal free
  92. * pages pool and have a different entry size (see real_pte_t) to
  93. * everything else. Caches created by this function are used for all
  94. * the higher level pagetables, and for hugepage pagetables.
  95. */
  96. void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
  97. {
  98. char *name;
  99. unsigned long table_size = sizeof(void *) << shift;
  100. unsigned long align = table_size;
  101. /* When batching pgtable pointers for RCU freeing, we store
  102. * the index size in the low bits. Table alignment must be
  103. * big enough to fit it.
  104. *
  105. * Likewise, hugeapge pagetable pointers contain a (different)
  106. * shift value in the low bits. All tables must be aligned so
  107. * as to leave enough 0 bits in the address to contain it. */
  108. unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
  109. HUGEPD_SHIFT_MASK + 1);
  110. struct kmem_cache *new;
  111. /* It would be nice if this was a BUILD_BUG_ON(), but at the
  112. * moment, gcc doesn't seem to recognize is_power_of_2 as a
  113. * constant expression, so so much for that. */
  114. BUG_ON(!is_power_of_2(minalign));
  115. BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
  116. if (PGT_CACHE(shift))
  117. return; /* Already have a cache of this size */
  118. align = max_t(unsigned long, align, minalign);
  119. name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
  120. new = kmem_cache_create(name, table_size, align, 0, ctor);
  121. pgtable_cache[shift - 1] = new;
  122. pr_debug("Allocated pgtable cache for order %d\n", shift);
  123. }
  124. void pgtable_cache_init(void)
  125. {
  126. pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
  127. pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
  128. if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
  129. panic("Couldn't allocate pgtable caches");
  130. /* In all current configs, when the PUD index exists it's the
  131. * same size as either the pgd or pmd index. Verify that the
  132. * initialization above has also created a PUD cache. This
  133. * will need re-examiniation if we add new possibilities for
  134. * the pagetable layout. */
  135. BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE));
  136. }
  137. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  138. /*
  139. * Given an address within the vmemmap, determine the pfn of the page that
  140. * represents the start of the section it is within. Note that we have to
  141. * do this by hand as the proffered address may not be correctly aligned.
  142. * Subtraction of non-aligned pointers produces undefined results.
  143. */
  144. static unsigned long __meminit vmemmap_section_start(unsigned long page)
  145. {
  146. unsigned long offset = page - ((unsigned long)(vmemmap));
  147. /* Return the pfn of the start of the section. */
  148. return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
  149. }
  150. /*
  151. * Check if this vmemmap page is already initialised. If any section
  152. * which overlaps this vmemmap page is initialised then this page is
  153. * initialised already.
  154. */
  155. static int __meminit vmemmap_populated(unsigned long start, int page_size)
  156. {
  157. unsigned long end = start + page_size;
  158. start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
  159. for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
  160. if (pfn_valid(page_to_pfn((struct page *)start)))
  161. return 1;
  162. return 0;
  163. }
  164. /* On hash-based CPUs, the vmemmap is bolted in the hash table.
  165. *
  166. * On Book3E CPUs, the vmemmap is currently mapped in the top half of
  167. * the vmalloc space using normal page tables, though the size of
  168. * pages encoded in the PTEs can be different
  169. */
  170. #ifdef CONFIG_PPC_BOOK3E
  171. static void __meminit vmemmap_create_mapping(unsigned long start,
  172. unsigned long page_size,
  173. unsigned long phys)
  174. {
  175. /* Create a PTE encoding without page size */
  176. unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
  177. _PAGE_KERNEL_RW;
  178. /* PTEs only contain page size encodings up to 32M */
  179. BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
  180. /* Encode the size in the PTE */
  181. flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
  182. /* For each PTE for that area, map things. Note that we don't
  183. * increment phys because all PTEs are of the large size and
  184. * thus must have the low bits clear
  185. */
  186. for (i = 0; i < page_size; i += PAGE_SIZE)
  187. BUG_ON(map_kernel_page(start + i, phys, flags));
  188. }
  189. #ifdef CONFIG_MEMORY_HOTPLUG
  190. static void vmemmap_remove_mapping(unsigned long start,
  191. unsigned long page_size)
  192. {
  193. }
  194. #endif
  195. #else /* CONFIG_PPC_BOOK3E */
  196. static void __meminit vmemmap_create_mapping(unsigned long start,
  197. unsigned long page_size,
  198. unsigned long phys)
  199. {
  200. int mapped = htab_bolt_mapping(start, start + page_size, phys,
  201. pgprot_val(PAGE_KERNEL),
  202. mmu_vmemmap_psize,
  203. mmu_kernel_ssize);
  204. BUG_ON(mapped < 0);
  205. }
  206. #ifdef CONFIG_MEMORY_HOTPLUG
  207. extern int htab_remove_mapping(unsigned long vstart, unsigned long vend,
  208. int psize, int ssize);
  209. static void vmemmap_remove_mapping(unsigned long start,
  210. unsigned long page_size)
  211. {
  212. int mapped = htab_remove_mapping(start, start + page_size,
  213. mmu_vmemmap_psize,
  214. mmu_kernel_ssize);
  215. BUG_ON(mapped < 0);
  216. }
  217. #endif
  218. #endif /* CONFIG_PPC_BOOK3E */
  219. struct vmemmap_backing *vmemmap_list;
  220. static struct vmemmap_backing *next;
  221. static int num_left;
  222. static int num_freed;
  223. static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
  224. {
  225. struct vmemmap_backing *vmem_back;
  226. /* get from freed entries first */
  227. if (num_freed) {
  228. num_freed--;
  229. vmem_back = next;
  230. next = next->list;
  231. return vmem_back;
  232. }
  233. /* allocate a page when required and hand out chunks */
  234. if (!num_left) {
  235. next = vmemmap_alloc_block(PAGE_SIZE, node);
  236. if (unlikely(!next)) {
  237. WARN_ON(1);
  238. return NULL;
  239. }
  240. num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
  241. }
  242. num_left--;
  243. return next++;
  244. }
  245. static __meminit void vmemmap_list_populate(unsigned long phys,
  246. unsigned long start,
  247. int node)
  248. {
  249. struct vmemmap_backing *vmem_back;
  250. vmem_back = vmemmap_list_alloc(node);
  251. if (unlikely(!vmem_back)) {
  252. WARN_ON(1);
  253. return;
  254. }
  255. vmem_back->phys = phys;
  256. vmem_back->virt_addr = start;
  257. vmem_back->list = vmemmap_list;
  258. vmemmap_list = vmem_back;
  259. }
  260. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  261. {
  262. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  263. /* Align to the page size of the linear mapping. */
  264. start = _ALIGN_DOWN(start, page_size);
  265. pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
  266. for (; start < end; start += page_size) {
  267. void *p;
  268. if (vmemmap_populated(start, page_size))
  269. continue;
  270. p = vmemmap_alloc_block(page_size, node);
  271. if (!p)
  272. return -ENOMEM;
  273. vmemmap_list_populate(__pa(p), start, node);
  274. pr_debug(" * %016lx..%016lx allocated at %p\n",
  275. start, start + page_size, p);
  276. vmemmap_create_mapping(start, page_size, __pa(p));
  277. }
  278. return 0;
  279. }
  280. #ifdef CONFIG_MEMORY_HOTPLUG
  281. static unsigned long vmemmap_list_free(unsigned long start)
  282. {
  283. struct vmemmap_backing *vmem_back, *vmem_back_prev;
  284. vmem_back_prev = vmem_back = vmemmap_list;
  285. /* look for it with prev pointer recorded */
  286. for (; vmem_back; vmem_back = vmem_back->list) {
  287. if (vmem_back->virt_addr == start)
  288. break;
  289. vmem_back_prev = vmem_back;
  290. }
  291. if (unlikely(!vmem_back)) {
  292. WARN_ON(1);
  293. return 0;
  294. }
  295. /* remove it from vmemmap_list */
  296. if (vmem_back == vmemmap_list) /* remove head */
  297. vmemmap_list = vmem_back->list;
  298. else
  299. vmem_back_prev->list = vmem_back->list;
  300. /* next point to this freed entry */
  301. vmem_back->list = next;
  302. next = vmem_back;
  303. num_freed++;
  304. return vmem_back->phys;
  305. }
  306. void __ref vmemmap_free(unsigned long start, unsigned long end)
  307. {
  308. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  309. start = _ALIGN_DOWN(start, page_size);
  310. pr_debug("vmemmap_free %lx...%lx\n", start, end);
  311. for (; start < end; start += page_size) {
  312. unsigned long addr;
  313. /*
  314. * the section has already be marked as invalid, so
  315. * vmemmap_populated() true means some other sections still
  316. * in this page, so skip it.
  317. */
  318. if (vmemmap_populated(start, page_size))
  319. continue;
  320. addr = vmemmap_list_free(start);
  321. if (addr) {
  322. struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
  323. if (PageReserved(page)) {
  324. /* allocated from bootmem */
  325. if (page_size < PAGE_SIZE) {
  326. /*
  327. * this shouldn't happen, but if it is
  328. * the case, leave the memory there
  329. */
  330. WARN_ON_ONCE(1);
  331. } else {
  332. unsigned int nr_pages =
  333. 1 << get_order(page_size);
  334. while (nr_pages--)
  335. free_reserved_page(page++);
  336. }
  337. } else
  338. free_pages((unsigned long)(__va(addr)),
  339. get_order(page_size));
  340. vmemmap_remove_mapping(start, page_size);
  341. }
  342. }
  343. }
  344. #endif
  345. void register_page_bootmem_memmap(unsigned long section_nr,
  346. struct page *start_page, unsigned long size)
  347. {
  348. }
  349. /*
  350. * We do not have access to the sparsemem vmemmap, so we fallback to
  351. * walking the list of sparsemem blocks which we already maintain for
  352. * the sake of crashdump. In the long run, we might want to maintain
  353. * a tree if performance of that linear walk becomes a problem.
  354. *
  355. * realmode_pfn_to_page functions can fail due to:
  356. * 1) As real sparsemem blocks do not lay in RAM continously (they
  357. * are in virtual address space which is not available in the real mode),
  358. * the requested page struct can be split between blocks so get_page/put_page
  359. * may fail.
  360. * 2) When huge pages are used, the get_page/put_page API will fail
  361. * in real mode as the linked addresses in the page struct are virtual
  362. * too.
  363. */
  364. struct page *realmode_pfn_to_page(unsigned long pfn)
  365. {
  366. struct vmemmap_backing *vmem_back;
  367. struct page *page;
  368. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  369. unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
  370. for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
  371. if (pg_va < vmem_back->virt_addr)
  372. continue;
  373. /* After vmemmap_list entry free is possible, need check all */
  374. if ((pg_va + sizeof(struct page)) <=
  375. (vmem_back->virt_addr + page_size)) {
  376. page = (struct page *) (vmem_back->phys + pg_va -
  377. vmem_back->virt_addr);
  378. return page;
  379. }
  380. }
  381. /* Probably that page struct is split between real pages */
  382. return NULL;
  383. }
  384. EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
  385. #elif defined(CONFIG_FLATMEM)
  386. struct page *realmode_pfn_to_page(unsigned long pfn)
  387. {
  388. struct page *page = pfn_to_page(pfn);
  389. return page;
  390. }
  391. EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
  392. #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */