book3s_hv_rm_mmu.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <linux/hugetlb.h>
  13. #include <linux/module.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/kvm_ppc.h>
  16. #include <asm/kvm_book3s.h>
  17. #include <asm/mmu-hash64.h>
  18. #include <asm/hvcall.h>
  19. #include <asm/synch.h>
  20. #include <asm/ppc-opcode.h>
  21. /* Translate address of a vmalloc'd thing to a linear map address */
  22. static void *real_vmalloc_addr(void *x)
  23. {
  24. unsigned long addr = (unsigned long) x;
  25. pte_t *p;
  26. p = find_linux_pte_or_hugepte(swapper_pg_dir, addr, NULL);
  27. if (!p || !pte_present(*p))
  28. return NULL;
  29. /* assume we don't have huge pages in vmalloc space... */
  30. addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
  31. return __va(addr);
  32. }
  33. /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
  34. static int global_invalidates(struct kvm *kvm, unsigned long flags)
  35. {
  36. int global;
  37. /*
  38. * If there is only one vcore, and it's currently running,
  39. * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
  40. * we can use tlbiel as long as we mark all other physical
  41. * cores as potentially having stale TLB entries for this lpid.
  42. * If we're not using MMU notifiers, we never take pages away
  43. * from the guest, so we can use tlbiel if requested.
  44. * Otherwise, don't use tlbiel.
  45. */
  46. if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
  47. global = 0;
  48. else if (kvm->arch.using_mmu_notifiers)
  49. global = 1;
  50. else
  51. global = !(flags & H_LOCAL);
  52. if (!global) {
  53. /* any other core might now have stale TLB entries... */
  54. smp_wmb();
  55. cpumask_setall(&kvm->arch.need_tlb_flush);
  56. cpumask_clear_cpu(local_paca->kvm_hstate.kvm_vcore->pcpu,
  57. &kvm->arch.need_tlb_flush);
  58. }
  59. return global;
  60. }
  61. /*
  62. * Add this HPTE into the chain for the real page.
  63. * Must be called with the chain locked; it unlocks the chain.
  64. */
  65. void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
  66. unsigned long *rmap, long pte_index, int realmode)
  67. {
  68. struct revmap_entry *head, *tail;
  69. unsigned long i;
  70. if (*rmap & KVMPPC_RMAP_PRESENT) {
  71. i = *rmap & KVMPPC_RMAP_INDEX;
  72. head = &kvm->arch.revmap[i];
  73. if (realmode)
  74. head = real_vmalloc_addr(head);
  75. tail = &kvm->arch.revmap[head->back];
  76. if (realmode)
  77. tail = real_vmalloc_addr(tail);
  78. rev->forw = i;
  79. rev->back = head->back;
  80. tail->forw = pte_index;
  81. head->back = pte_index;
  82. } else {
  83. rev->forw = rev->back = pte_index;
  84. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
  85. pte_index | KVMPPC_RMAP_PRESENT;
  86. }
  87. unlock_rmap(rmap);
  88. }
  89. EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
  90. /* Remove this HPTE from the chain for a real page */
  91. static void remove_revmap_chain(struct kvm *kvm, long pte_index,
  92. struct revmap_entry *rev,
  93. unsigned long hpte_v, unsigned long hpte_r)
  94. {
  95. struct revmap_entry *next, *prev;
  96. unsigned long gfn, ptel, head;
  97. struct kvm_memory_slot *memslot;
  98. unsigned long *rmap;
  99. unsigned long rcbits;
  100. rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
  101. ptel = rev->guest_rpte |= rcbits;
  102. gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
  103. memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
  104. if (!memslot)
  105. return;
  106. rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
  107. lock_rmap(rmap);
  108. head = *rmap & KVMPPC_RMAP_INDEX;
  109. next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
  110. prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
  111. next->back = rev->back;
  112. prev->forw = rev->forw;
  113. if (head == pte_index) {
  114. head = rev->forw;
  115. if (head == pte_index)
  116. *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  117. else
  118. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
  119. }
  120. *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
  121. unlock_rmap(rmap);
  122. }
  123. static pte_t lookup_linux_pte_and_update(pgd_t *pgdir, unsigned long hva,
  124. int writing, unsigned long *pte_sizep)
  125. {
  126. pte_t *ptep;
  127. unsigned long ps = *pte_sizep;
  128. unsigned int hugepage_shift;
  129. ptep = find_linux_pte_or_hugepte(pgdir, hva, &hugepage_shift);
  130. if (!ptep)
  131. return __pte(0);
  132. if (hugepage_shift)
  133. *pte_sizep = 1ul << hugepage_shift;
  134. else
  135. *pte_sizep = PAGE_SIZE;
  136. if (ps > *pte_sizep)
  137. return __pte(0);
  138. return kvmppc_read_update_linux_pte(ptep, writing, hugepage_shift);
  139. }
  140. static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
  141. {
  142. asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
  143. hpte[0] = cpu_to_be64(hpte_v);
  144. }
  145. long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
  146. long pte_index, unsigned long pteh, unsigned long ptel,
  147. pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
  148. {
  149. unsigned long i, pa, gpa, gfn, psize;
  150. unsigned long slot_fn, hva;
  151. __be64 *hpte;
  152. struct revmap_entry *rev;
  153. unsigned long g_ptel;
  154. struct kvm_memory_slot *memslot;
  155. unsigned long *physp, pte_size;
  156. unsigned long is_io;
  157. unsigned long *rmap;
  158. pte_t pte;
  159. unsigned int writing;
  160. unsigned long mmu_seq;
  161. unsigned long rcbits;
  162. psize = hpte_page_size(pteh, ptel);
  163. if (!psize)
  164. return H_PARAMETER;
  165. writing = hpte_is_writable(ptel);
  166. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  167. ptel &= ~HPTE_GR_RESERVED;
  168. g_ptel = ptel;
  169. /* used later to detect if we might have been invalidated */
  170. mmu_seq = kvm->mmu_notifier_seq;
  171. smp_rmb();
  172. /* Find the memslot (if any) for this address */
  173. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  174. gfn = gpa >> PAGE_SHIFT;
  175. memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
  176. pa = 0;
  177. is_io = ~0ul;
  178. rmap = NULL;
  179. if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
  180. /* PPC970 can't do emulated MMIO */
  181. if (!cpu_has_feature(CPU_FTR_ARCH_206))
  182. return H_PARAMETER;
  183. /* Emulated MMIO - mark this with key=31 */
  184. pteh |= HPTE_V_ABSENT;
  185. ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  186. goto do_insert;
  187. }
  188. /* Check if the requested page fits entirely in the memslot. */
  189. if (!slot_is_aligned(memslot, psize))
  190. return H_PARAMETER;
  191. slot_fn = gfn - memslot->base_gfn;
  192. rmap = &memslot->arch.rmap[slot_fn];
  193. if (!kvm->arch.using_mmu_notifiers) {
  194. physp = memslot->arch.slot_phys;
  195. if (!physp)
  196. return H_PARAMETER;
  197. physp += slot_fn;
  198. if (realmode)
  199. physp = real_vmalloc_addr(physp);
  200. pa = *physp;
  201. if (!pa)
  202. return H_TOO_HARD;
  203. is_io = pa & (HPTE_R_I | HPTE_R_W);
  204. pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
  205. pa &= PAGE_MASK;
  206. pa |= gpa & ~PAGE_MASK;
  207. } else {
  208. /* Translate to host virtual address */
  209. hva = __gfn_to_hva_memslot(memslot, gfn);
  210. /* Look up the Linux PTE for the backing page */
  211. pte_size = psize;
  212. pte = lookup_linux_pte_and_update(pgdir, hva, writing,
  213. &pte_size);
  214. if (pte_present(pte) && !pte_numa(pte)) {
  215. if (writing && !pte_write(pte))
  216. /* make the actual HPTE be read-only */
  217. ptel = hpte_make_readonly(ptel);
  218. is_io = hpte_cache_bits(pte_val(pte));
  219. pa = pte_pfn(pte) << PAGE_SHIFT;
  220. pa |= hva & (pte_size - 1);
  221. pa |= gpa & ~PAGE_MASK;
  222. }
  223. }
  224. if (pte_size < psize)
  225. return H_PARAMETER;
  226. ptel &= ~(HPTE_R_PP0 - psize);
  227. ptel |= pa;
  228. if (pa)
  229. pteh |= HPTE_V_VALID;
  230. else
  231. pteh |= HPTE_V_ABSENT;
  232. /* Check WIMG */
  233. if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
  234. if (is_io)
  235. return H_PARAMETER;
  236. /*
  237. * Allow guest to map emulated device memory as
  238. * uncacheable, but actually make it cacheable.
  239. */
  240. ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
  241. ptel |= HPTE_R_M;
  242. }
  243. /* Find and lock the HPTEG slot to use */
  244. do_insert:
  245. if (pte_index >= kvm->arch.hpt_npte)
  246. return H_PARAMETER;
  247. if (likely((flags & H_EXACT) == 0)) {
  248. pte_index &= ~7UL;
  249. hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
  250. for (i = 0; i < 8; ++i) {
  251. if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
  252. try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  253. HPTE_V_ABSENT))
  254. break;
  255. hpte += 2;
  256. }
  257. if (i == 8) {
  258. /*
  259. * Since try_lock_hpte doesn't retry (not even stdcx.
  260. * failures), it could be that there is a free slot
  261. * but we transiently failed to lock it. Try again,
  262. * actually locking each slot and checking it.
  263. */
  264. hpte -= 16;
  265. for (i = 0; i < 8; ++i) {
  266. u64 pte;
  267. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  268. cpu_relax();
  269. pte = be64_to_cpu(*hpte);
  270. if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
  271. break;
  272. *hpte &= ~cpu_to_be64(HPTE_V_HVLOCK);
  273. hpte += 2;
  274. }
  275. if (i == 8)
  276. return H_PTEG_FULL;
  277. }
  278. pte_index += i;
  279. } else {
  280. hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
  281. if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  282. HPTE_V_ABSENT)) {
  283. /* Lock the slot and check again */
  284. u64 pte;
  285. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  286. cpu_relax();
  287. pte = be64_to_cpu(*hpte);
  288. if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  289. *hpte &= ~cpu_to_be64(HPTE_V_HVLOCK);
  290. return H_PTEG_FULL;
  291. }
  292. }
  293. }
  294. /* Save away the guest's idea of the second HPTE dword */
  295. rev = &kvm->arch.revmap[pte_index];
  296. if (realmode)
  297. rev = real_vmalloc_addr(rev);
  298. if (rev) {
  299. rev->guest_rpte = g_ptel;
  300. note_hpte_modification(kvm, rev);
  301. }
  302. /* Link HPTE into reverse-map chain */
  303. if (pteh & HPTE_V_VALID) {
  304. if (realmode)
  305. rmap = real_vmalloc_addr(rmap);
  306. lock_rmap(rmap);
  307. /* Check for pending invalidations under the rmap chain lock */
  308. if (kvm->arch.using_mmu_notifiers &&
  309. mmu_notifier_retry(kvm, mmu_seq)) {
  310. /* inval in progress, write a non-present HPTE */
  311. pteh |= HPTE_V_ABSENT;
  312. pteh &= ~HPTE_V_VALID;
  313. unlock_rmap(rmap);
  314. } else {
  315. kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
  316. realmode);
  317. /* Only set R/C in real HPTE if already set in *rmap */
  318. rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
  319. ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
  320. }
  321. }
  322. hpte[1] = cpu_to_be64(ptel);
  323. /* Write the first HPTE dword, unlocking the HPTE and making it valid */
  324. eieio();
  325. hpte[0] = cpu_to_be64(pteh);
  326. asm volatile("ptesync" : : : "memory");
  327. *pte_idx_ret = pte_index;
  328. return H_SUCCESS;
  329. }
  330. EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
  331. long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  332. long pte_index, unsigned long pteh, unsigned long ptel)
  333. {
  334. return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
  335. vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]);
  336. }
  337. #ifdef __BIG_ENDIAN__
  338. #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
  339. #else
  340. #define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index))
  341. #endif
  342. static inline int try_lock_tlbie(unsigned int *lock)
  343. {
  344. unsigned int tmp, old;
  345. unsigned int token = LOCK_TOKEN;
  346. asm volatile("1:lwarx %1,0,%2\n"
  347. " cmpwi cr0,%1,0\n"
  348. " bne 2f\n"
  349. " stwcx. %3,0,%2\n"
  350. " bne- 1b\n"
  351. " isync\n"
  352. "2:"
  353. : "=&r" (tmp), "=&r" (old)
  354. : "r" (lock), "r" (token)
  355. : "cc", "memory");
  356. return old == 0;
  357. }
  358. /*
  359. * tlbie/tlbiel is a bit different on the PPC970 compared to later
  360. * processors such as POWER7; the large page bit is in the instruction
  361. * not RB, and the top 16 bits and the bottom 12 bits of the VA
  362. * in RB must be 0.
  363. */
  364. static void do_tlbies_970(struct kvm *kvm, unsigned long *rbvalues,
  365. long npages, int global, bool need_sync)
  366. {
  367. long i;
  368. if (global) {
  369. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  370. cpu_relax();
  371. if (need_sync)
  372. asm volatile("ptesync" : : : "memory");
  373. for (i = 0; i < npages; ++i) {
  374. unsigned long rb = rbvalues[i];
  375. if (rb & 1) /* large page */
  376. asm volatile("tlbie %0,1" : :
  377. "r" (rb & 0x0000fffffffff000ul));
  378. else
  379. asm volatile("tlbie %0,0" : :
  380. "r" (rb & 0x0000fffffffff000ul));
  381. }
  382. asm volatile("eieio; tlbsync; ptesync" : : : "memory");
  383. kvm->arch.tlbie_lock = 0;
  384. } else {
  385. if (need_sync)
  386. asm volatile("ptesync" : : : "memory");
  387. for (i = 0; i < npages; ++i) {
  388. unsigned long rb = rbvalues[i];
  389. if (rb & 1) /* large page */
  390. asm volatile("tlbiel %0,1" : :
  391. "r" (rb & 0x0000fffffffff000ul));
  392. else
  393. asm volatile("tlbiel %0,0" : :
  394. "r" (rb & 0x0000fffffffff000ul));
  395. }
  396. asm volatile("ptesync" : : : "memory");
  397. }
  398. }
  399. static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
  400. long npages, int global, bool need_sync)
  401. {
  402. long i;
  403. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  404. /* PPC970 tlbie instruction is a bit different */
  405. do_tlbies_970(kvm, rbvalues, npages, global, need_sync);
  406. return;
  407. }
  408. if (global) {
  409. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  410. cpu_relax();
  411. if (need_sync)
  412. asm volatile("ptesync" : : : "memory");
  413. for (i = 0; i < npages; ++i)
  414. asm volatile(PPC_TLBIE(%1,%0) : :
  415. "r" (rbvalues[i]), "r" (kvm->arch.lpid));
  416. asm volatile("eieio; tlbsync; ptesync" : : : "memory");
  417. kvm->arch.tlbie_lock = 0;
  418. } else {
  419. if (need_sync)
  420. asm volatile("ptesync" : : : "memory");
  421. for (i = 0; i < npages; ++i)
  422. asm volatile("tlbiel %0" : : "r" (rbvalues[i]));
  423. asm volatile("ptesync" : : : "memory");
  424. }
  425. }
  426. long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
  427. unsigned long pte_index, unsigned long avpn,
  428. unsigned long *hpret)
  429. {
  430. __be64 *hpte;
  431. unsigned long v, r, rb;
  432. struct revmap_entry *rev;
  433. u64 pte;
  434. if (pte_index >= kvm->arch.hpt_npte)
  435. return H_PARAMETER;
  436. hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
  437. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  438. cpu_relax();
  439. pte = be64_to_cpu(hpte[0]);
  440. if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  441. ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
  442. ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
  443. hpte[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
  444. return H_NOT_FOUND;
  445. }
  446. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  447. v = pte & ~HPTE_V_HVLOCK;
  448. if (v & HPTE_V_VALID) {
  449. u64 pte1;
  450. pte1 = be64_to_cpu(hpte[1]);
  451. hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
  452. rb = compute_tlbie_rb(v, pte1, pte_index);
  453. do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true);
  454. /* Read PTE low word after tlbie to get final R/C values */
  455. remove_revmap_chain(kvm, pte_index, rev, v, pte1);
  456. }
  457. r = rev->guest_rpte & ~HPTE_GR_RESERVED;
  458. note_hpte_modification(kvm, rev);
  459. unlock_hpte(hpte, 0);
  460. hpret[0] = v;
  461. hpret[1] = r;
  462. return H_SUCCESS;
  463. }
  464. EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
  465. long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
  466. unsigned long pte_index, unsigned long avpn)
  467. {
  468. return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
  469. &vcpu->arch.gpr[4]);
  470. }
  471. long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
  472. {
  473. struct kvm *kvm = vcpu->kvm;
  474. unsigned long *args = &vcpu->arch.gpr[4];
  475. __be64 *hp, *hptes[4];
  476. unsigned long tlbrb[4];
  477. long int i, j, k, n, found, indexes[4];
  478. unsigned long flags, req, pte_index, rcbits;
  479. int global;
  480. long int ret = H_SUCCESS;
  481. struct revmap_entry *rev, *revs[4];
  482. u64 hp0;
  483. global = global_invalidates(kvm, 0);
  484. for (i = 0; i < 4 && ret == H_SUCCESS; ) {
  485. n = 0;
  486. for (; i < 4; ++i) {
  487. j = i * 2;
  488. pte_index = args[j];
  489. flags = pte_index >> 56;
  490. pte_index &= ((1ul << 56) - 1);
  491. req = flags >> 6;
  492. flags &= 3;
  493. if (req == 3) { /* no more requests */
  494. i = 4;
  495. break;
  496. }
  497. if (req != 1 || flags == 3 ||
  498. pte_index >= kvm->arch.hpt_npte) {
  499. /* parameter error */
  500. args[j] = ((0xa0 | flags) << 56) + pte_index;
  501. ret = H_PARAMETER;
  502. break;
  503. }
  504. hp = (__be64 *) (kvm->arch.hpt_virt + (pte_index << 4));
  505. /* to avoid deadlock, don't spin except for first */
  506. if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
  507. if (n)
  508. break;
  509. while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
  510. cpu_relax();
  511. }
  512. found = 0;
  513. hp0 = be64_to_cpu(hp[0]);
  514. if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
  515. switch (flags & 3) {
  516. case 0: /* absolute */
  517. found = 1;
  518. break;
  519. case 1: /* andcond */
  520. if (!(hp0 & args[j + 1]))
  521. found = 1;
  522. break;
  523. case 2: /* AVPN */
  524. if ((hp0 & ~0x7fUL) == args[j + 1])
  525. found = 1;
  526. break;
  527. }
  528. }
  529. if (!found) {
  530. hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
  531. args[j] = ((0x90 | flags) << 56) + pte_index;
  532. continue;
  533. }
  534. args[j] = ((0x80 | flags) << 56) + pte_index;
  535. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  536. note_hpte_modification(kvm, rev);
  537. if (!(hp0 & HPTE_V_VALID)) {
  538. /* insert R and C bits from PTE */
  539. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  540. args[j] |= rcbits << (56 - 5);
  541. hp[0] = 0;
  542. continue;
  543. }
  544. /* leave it locked */
  545. hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
  546. tlbrb[n] = compute_tlbie_rb(be64_to_cpu(hp[0]),
  547. be64_to_cpu(hp[1]), pte_index);
  548. indexes[n] = j;
  549. hptes[n] = hp;
  550. revs[n] = rev;
  551. ++n;
  552. }
  553. if (!n)
  554. break;
  555. /* Now that we've collected a batch, do the tlbies */
  556. do_tlbies(kvm, tlbrb, n, global, true);
  557. /* Read PTE low words after tlbie to get final R/C values */
  558. for (k = 0; k < n; ++k) {
  559. j = indexes[k];
  560. pte_index = args[j] & ((1ul << 56) - 1);
  561. hp = hptes[k];
  562. rev = revs[k];
  563. remove_revmap_chain(kvm, pte_index, rev,
  564. be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
  565. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  566. args[j] |= rcbits << (56 - 5);
  567. hp[0] = 0;
  568. }
  569. }
  570. return ret;
  571. }
  572. long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
  573. unsigned long pte_index, unsigned long avpn,
  574. unsigned long va)
  575. {
  576. struct kvm *kvm = vcpu->kvm;
  577. __be64 *hpte;
  578. struct revmap_entry *rev;
  579. unsigned long v, r, rb, mask, bits;
  580. u64 pte;
  581. if (pte_index >= kvm->arch.hpt_npte)
  582. return H_PARAMETER;
  583. hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
  584. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  585. cpu_relax();
  586. pte = be64_to_cpu(hpte[0]);
  587. if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  588. ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn)) {
  589. hpte[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
  590. return H_NOT_FOUND;
  591. }
  592. v = pte;
  593. bits = (flags << 55) & HPTE_R_PP0;
  594. bits |= (flags << 48) & HPTE_R_KEY_HI;
  595. bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
  596. /* Update guest view of 2nd HPTE dword */
  597. mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
  598. HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  599. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  600. if (rev) {
  601. r = (rev->guest_rpte & ~mask) | bits;
  602. rev->guest_rpte = r;
  603. note_hpte_modification(kvm, rev);
  604. }
  605. r = (be64_to_cpu(hpte[1]) & ~mask) | bits;
  606. /* Update HPTE */
  607. if (v & HPTE_V_VALID) {
  608. rb = compute_tlbie_rb(v, r, pte_index);
  609. hpte[0] = cpu_to_be64(v & ~HPTE_V_VALID);
  610. do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true);
  611. /*
  612. * If the host has this page as readonly but the guest
  613. * wants to make it read/write, reduce the permissions.
  614. * Checking the host permissions involves finding the
  615. * memslot and then the Linux PTE for the page.
  616. */
  617. if (hpte_is_writable(r) && kvm->arch.using_mmu_notifiers) {
  618. unsigned long psize, gfn, hva;
  619. struct kvm_memory_slot *memslot;
  620. pgd_t *pgdir = vcpu->arch.pgdir;
  621. pte_t pte;
  622. psize = hpte_page_size(v, r);
  623. gfn = ((r & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
  624. memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
  625. if (memslot) {
  626. hva = __gfn_to_hva_memslot(memslot, gfn);
  627. pte = lookup_linux_pte_and_update(pgdir, hva,
  628. 1, &psize);
  629. if (pte_present(pte) && !pte_write(pte))
  630. r = hpte_make_readonly(r);
  631. }
  632. }
  633. }
  634. hpte[1] = cpu_to_be64(r);
  635. eieio();
  636. hpte[0] = cpu_to_be64(v & ~HPTE_V_HVLOCK);
  637. asm volatile("ptesync" : : : "memory");
  638. return H_SUCCESS;
  639. }
  640. long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
  641. unsigned long pte_index)
  642. {
  643. struct kvm *kvm = vcpu->kvm;
  644. __be64 *hpte;
  645. unsigned long v, r;
  646. int i, n = 1;
  647. struct revmap_entry *rev = NULL;
  648. if (pte_index >= kvm->arch.hpt_npte)
  649. return H_PARAMETER;
  650. if (flags & H_READ_4) {
  651. pte_index &= ~3;
  652. n = 4;
  653. }
  654. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  655. for (i = 0; i < n; ++i, ++pte_index) {
  656. hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
  657. v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
  658. r = be64_to_cpu(hpte[1]);
  659. if (v & HPTE_V_ABSENT) {
  660. v &= ~HPTE_V_ABSENT;
  661. v |= HPTE_V_VALID;
  662. }
  663. if (v & HPTE_V_VALID) {
  664. r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
  665. r &= ~HPTE_GR_RESERVED;
  666. }
  667. vcpu->arch.gpr[4 + i * 2] = v;
  668. vcpu->arch.gpr[5 + i * 2] = r;
  669. }
  670. return H_SUCCESS;
  671. }
  672. void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
  673. unsigned long pte_index)
  674. {
  675. unsigned long rb;
  676. hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
  677. rb = compute_tlbie_rb(be64_to_cpu(hptep[0]), be64_to_cpu(hptep[1]),
  678. pte_index);
  679. do_tlbies(kvm, &rb, 1, 1, true);
  680. }
  681. EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
  682. void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
  683. unsigned long pte_index)
  684. {
  685. unsigned long rb;
  686. unsigned char rbyte;
  687. rb = compute_tlbie_rb(be64_to_cpu(hptep[0]), be64_to_cpu(hptep[1]),
  688. pte_index);
  689. rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
  690. /* modify only the second-last byte, which contains the ref bit */
  691. *((char *)hptep + 14) = rbyte;
  692. do_tlbies(kvm, &rb, 1, 1, false);
  693. }
  694. EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
  695. static int slb_base_page_shift[4] = {
  696. 24, /* 16M */
  697. 16, /* 64k */
  698. 34, /* 16G */
  699. 20, /* 1M, unsupported */
  700. };
  701. /* When called from virtmode, this func should be protected by
  702. * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
  703. * can trigger deadlock issue.
  704. */
  705. long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
  706. unsigned long valid)
  707. {
  708. unsigned int i;
  709. unsigned int pshift;
  710. unsigned long somask;
  711. unsigned long vsid, hash;
  712. unsigned long avpn;
  713. __be64 *hpte;
  714. unsigned long mask, val;
  715. unsigned long v, r;
  716. /* Get page shift, work out hash and AVPN etc. */
  717. mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
  718. val = 0;
  719. pshift = 12;
  720. if (slb_v & SLB_VSID_L) {
  721. mask |= HPTE_V_LARGE;
  722. val |= HPTE_V_LARGE;
  723. pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
  724. }
  725. if (slb_v & SLB_VSID_B_1T) {
  726. somask = (1UL << 40) - 1;
  727. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
  728. vsid ^= vsid << 25;
  729. } else {
  730. somask = (1UL << 28) - 1;
  731. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
  732. }
  733. hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask;
  734. avpn = slb_v & ~(somask >> 16); /* also includes B */
  735. avpn |= (eaddr & somask) >> 16;
  736. if (pshift >= 24)
  737. avpn &= ~((1UL << (pshift - 16)) - 1);
  738. else
  739. avpn &= ~0x7fUL;
  740. val |= avpn;
  741. for (;;) {
  742. hpte = (__be64 *)(kvm->arch.hpt_virt + (hash << 7));
  743. for (i = 0; i < 16; i += 2) {
  744. /* Read the PTE racily */
  745. v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
  746. /* Check valid/absent, hash, segment size and AVPN */
  747. if (!(v & valid) || (v & mask) != val)
  748. continue;
  749. /* Lock the PTE and read it under the lock */
  750. while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
  751. cpu_relax();
  752. v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
  753. r = be64_to_cpu(hpte[i+1]);
  754. /*
  755. * Check the HPTE again, including base page size
  756. */
  757. if ((v & valid) && (v & mask) == val &&
  758. hpte_base_page_size(v, r) == (1ul << pshift))
  759. /* Return with the HPTE still locked */
  760. return (hash << 3) + (i >> 1);
  761. /* Unlock and move on */
  762. hpte[i] = cpu_to_be64(v);
  763. }
  764. if (val & HPTE_V_SECONDARY)
  765. break;
  766. val |= HPTE_V_SECONDARY;
  767. hash = hash ^ kvm->arch.hpt_mask;
  768. }
  769. return -1;
  770. }
  771. EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
  772. /*
  773. * Called in real mode to check whether an HPTE not found fault
  774. * is due to accessing a paged-out page or an emulated MMIO page,
  775. * or if a protection fault is due to accessing a page that the
  776. * guest wanted read/write access to but which we made read-only.
  777. * Returns a possibly modified status (DSISR) value if not
  778. * (i.e. pass the interrupt to the guest),
  779. * -1 to pass the fault up to host kernel mode code, -2 to do that
  780. * and also load the instruction word (for MMIO emulation),
  781. * or 0 if we should make the guest retry the access.
  782. */
  783. long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  784. unsigned long slb_v, unsigned int status, bool data)
  785. {
  786. struct kvm *kvm = vcpu->kvm;
  787. long int index;
  788. unsigned long v, r, gr;
  789. __be64 *hpte;
  790. unsigned long valid;
  791. struct revmap_entry *rev;
  792. unsigned long pp, key;
  793. /* For protection fault, expect to find a valid HPTE */
  794. valid = HPTE_V_VALID;
  795. if (status & DSISR_NOHPTE)
  796. valid |= HPTE_V_ABSENT;
  797. index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
  798. if (index < 0) {
  799. if (status & DSISR_NOHPTE)
  800. return status; /* there really was no HPTE */
  801. return 0; /* for prot fault, HPTE disappeared */
  802. }
  803. hpte = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
  804. v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
  805. r = be64_to_cpu(hpte[1]);
  806. rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
  807. gr = rev->guest_rpte;
  808. unlock_hpte(hpte, v);
  809. /* For not found, if the HPTE is valid by now, retry the instruction */
  810. if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
  811. return 0;
  812. /* Check access permissions to the page */
  813. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  814. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  815. status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
  816. if (!data) {
  817. if (gr & (HPTE_R_N | HPTE_R_G))
  818. return status | SRR1_ISI_N_OR_G;
  819. if (!hpte_read_permission(pp, slb_v & key))
  820. return status | SRR1_ISI_PROT;
  821. } else if (status & DSISR_ISSTORE) {
  822. /* check write permission */
  823. if (!hpte_write_permission(pp, slb_v & key))
  824. return status | DSISR_PROTFAULT;
  825. } else {
  826. if (!hpte_read_permission(pp, slb_v & key))
  827. return status | DSISR_PROTFAULT;
  828. }
  829. /* Check storage key, if applicable */
  830. if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
  831. unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
  832. if (status & DSISR_ISSTORE)
  833. perm >>= 1;
  834. if (perm & 1)
  835. return status | DSISR_KEYFAULT;
  836. }
  837. /* Save HPTE info for virtual-mode handler */
  838. vcpu->arch.pgfault_addr = addr;
  839. vcpu->arch.pgfault_index = index;
  840. vcpu->arch.pgfault_hpte[0] = v;
  841. vcpu->arch.pgfault_hpte[1] = r;
  842. /* Check the storage key to see if it is possibly emulated MMIO */
  843. if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
  844. (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
  845. (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
  846. return -2; /* MMIO emulation - load instr word */
  847. return -1; /* send fault up to host kernel mode */
  848. }