book3s_hv.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667
  1. /*
  2. * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  3. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
  4. *
  5. * Authors:
  6. * Paul Mackerras <paulus@au1.ibm.com>
  7. * Alexander Graf <agraf@suse.de>
  8. * Kevin Wolf <mail@kevin-wolf.de>
  9. *
  10. * Description: KVM functions specific to running on Book 3S
  11. * processors in hypervisor mode (specifically POWER7 and later).
  12. *
  13. * This file is derived from arch/powerpc/kvm/book3s.c,
  14. * by Alexander Graf <agraf@suse.de>.
  15. *
  16. * This program is free software; you can redistribute it and/or modify
  17. * it under the terms of the GNU General Public License, version 2, as
  18. * published by the Free Software Foundation.
  19. */
  20. #include <linux/kvm_host.h>
  21. #include <linux/err.h>
  22. #include <linux/slab.h>
  23. #include <linux/preempt.h>
  24. #include <linux/sched.h>
  25. #include <linux/delay.h>
  26. #include <linux/export.h>
  27. #include <linux/fs.h>
  28. #include <linux/anon_inodes.h>
  29. #include <linux/cpumask.h>
  30. #include <linux/spinlock.h>
  31. #include <linux/page-flags.h>
  32. #include <linux/srcu.h>
  33. #include <linux/miscdevice.h>
  34. #include <asm/reg.h>
  35. #include <asm/cputable.h>
  36. #include <asm/cache.h>
  37. #include <asm/cacheflush.h>
  38. #include <asm/tlbflush.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/io.h>
  41. #include <asm/kvm_ppc.h>
  42. #include <asm/kvm_book3s.h>
  43. #include <asm/mmu_context.h>
  44. #include <asm/lppaca.h>
  45. #include <asm/processor.h>
  46. #include <asm/cputhreads.h>
  47. #include <asm/page.h>
  48. #include <asm/hvcall.h>
  49. #include <asm/switch_to.h>
  50. #include <asm/smp.h>
  51. #include <linux/gfp.h>
  52. #include <linux/vmalloc.h>
  53. #include <linux/highmem.h>
  54. #include <linux/hugetlb.h>
  55. #include <linux/module.h>
  56. #include "book3s.h"
  57. /* #define EXIT_DEBUG */
  58. /* #define EXIT_DEBUG_SIMPLE */
  59. /* #define EXIT_DEBUG_INT */
  60. /* Used to indicate that a guest page fault needs to be handled */
  61. #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
  62. /* Used as a "null" value for timebase values */
  63. #define TB_NIL (~(u64)0)
  64. static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
  65. #if defined(CONFIG_PPC_64K_PAGES)
  66. #define MPP_BUFFER_ORDER 0
  67. #elif defined(CONFIG_PPC_4K_PAGES)
  68. #define MPP_BUFFER_ORDER 3
  69. #endif
  70. static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
  71. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
  72. static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
  73. {
  74. int me;
  75. int cpu = vcpu->cpu;
  76. wait_queue_head_t *wqp;
  77. wqp = kvm_arch_vcpu_wq(vcpu);
  78. if (waitqueue_active(wqp)) {
  79. wake_up_interruptible(wqp);
  80. ++vcpu->stat.halt_wakeup;
  81. }
  82. me = get_cpu();
  83. /* CPU points to the first thread of the core */
  84. if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
  85. #ifdef CONFIG_PPC_ICP_NATIVE
  86. int real_cpu = cpu + vcpu->arch.ptid;
  87. if (paca[real_cpu].kvm_hstate.xics_phys)
  88. xics_wake_cpu(real_cpu);
  89. else
  90. #endif
  91. if (cpu_online(cpu))
  92. smp_send_reschedule(cpu);
  93. }
  94. put_cpu();
  95. }
  96. /*
  97. * We use the vcpu_load/put functions to measure stolen time.
  98. * Stolen time is counted as time when either the vcpu is able to
  99. * run as part of a virtual core, but the task running the vcore
  100. * is preempted or sleeping, or when the vcpu needs something done
  101. * in the kernel by the task running the vcpu, but that task is
  102. * preempted or sleeping. Those two things have to be counted
  103. * separately, since one of the vcpu tasks will take on the job
  104. * of running the core, and the other vcpu tasks in the vcore will
  105. * sleep waiting for it to do that, but that sleep shouldn't count
  106. * as stolen time.
  107. *
  108. * Hence we accumulate stolen time when the vcpu can run as part of
  109. * a vcore using vc->stolen_tb, and the stolen time when the vcpu
  110. * needs its task to do other things in the kernel (for example,
  111. * service a page fault) in busy_stolen. We don't accumulate
  112. * stolen time for a vcore when it is inactive, or for a vcpu
  113. * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
  114. * a misnomer; it means that the vcpu task is not executing in
  115. * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
  116. * the kernel. We don't have any way of dividing up that time
  117. * between time that the vcpu is genuinely stopped, time that
  118. * the task is actively working on behalf of the vcpu, and time
  119. * that the task is preempted, so we don't count any of it as
  120. * stolen.
  121. *
  122. * Updates to busy_stolen are protected by arch.tbacct_lock;
  123. * updates to vc->stolen_tb are protected by the arch.tbacct_lock
  124. * of the vcpu that has taken responsibility for running the vcore
  125. * (i.e. vc->runner). The stolen times are measured in units of
  126. * timebase ticks. (Note that the != TB_NIL checks below are
  127. * purely defensive; they should never fail.)
  128. */
  129. static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
  130. {
  131. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  132. unsigned long flags;
  133. spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
  134. if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
  135. vc->preempt_tb != TB_NIL) {
  136. vc->stolen_tb += mftb() - vc->preempt_tb;
  137. vc->preempt_tb = TB_NIL;
  138. }
  139. if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
  140. vcpu->arch.busy_preempt != TB_NIL) {
  141. vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
  142. vcpu->arch.busy_preempt = TB_NIL;
  143. }
  144. spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
  145. }
  146. static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
  147. {
  148. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  149. unsigned long flags;
  150. spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
  151. if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
  152. vc->preempt_tb = mftb();
  153. if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
  154. vcpu->arch.busy_preempt = mftb();
  155. spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
  156. }
  157. static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
  158. {
  159. vcpu->arch.shregs.msr = msr;
  160. kvmppc_end_cede(vcpu);
  161. }
  162. void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
  163. {
  164. vcpu->arch.pvr = pvr;
  165. }
  166. int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
  167. {
  168. unsigned long pcr = 0;
  169. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  170. if (arch_compat) {
  171. if (!cpu_has_feature(CPU_FTR_ARCH_206))
  172. return -EINVAL; /* 970 has no compat mode support */
  173. switch (arch_compat) {
  174. case PVR_ARCH_205:
  175. /*
  176. * If an arch bit is set in PCR, all the defined
  177. * higher-order arch bits also have to be set.
  178. */
  179. pcr = PCR_ARCH_206 | PCR_ARCH_205;
  180. break;
  181. case PVR_ARCH_206:
  182. case PVR_ARCH_206p:
  183. pcr = PCR_ARCH_206;
  184. break;
  185. case PVR_ARCH_207:
  186. break;
  187. default:
  188. return -EINVAL;
  189. }
  190. if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
  191. /* POWER7 can't emulate POWER8 */
  192. if (!(pcr & PCR_ARCH_206))
  193. return -EINVAL;
  194. pcr &= ~PCR_ARCH_206;
  195. }
  196. }
  197. spin_lock(&vc->lock);
  198. vc->arch_compat = arch_compat;
  199. vc->pcr = pcr;
  200. spin_unlock(&vc->lock);
  201. return 0;
  202. }
  203. void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
  204. {
  205. int r;
  206. pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
  207. pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
  208. vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
  209. for (r = 0; r < 16; ++r)
  210. pr_err("r%2d = %.16lx r%d = %.16lx\n",
  211. r, kvmppc_get_gpr(vcpu, r),
  212. r+16, kvmppc_get_gpr(vcpu, r+16));
  213. pr_err("ctr = %.16lx lr = %.16lx\n",
  214. vcpu->arch.ctr, vcpu->arch.lr);
  215. pr_err("srr0 = %.16llx srr1 = %.16llx\n",
  216. vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
  217. pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
  218. vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
  219. pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
  220. vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
  221. pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
  222. vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
  223. pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
  224. pr_err("fault dar = %.16lx dsisr = %.8x\n",
  225. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  226. pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
  227. for (r = 0; r < vcpu->arch.slb_max; ++r)
  228. pr_err(" ESID = %.16llx VSID = %.16llx\n",
  229. vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
  230. pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
  231. vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
  232. vcpu->arch.last_inst);
  233. }
  234. struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
  235. {
  236. int r;
  237. struct kvm_vcpu *v, *ret = NULL;
  238. mutex_lock(&kvm->lock);
  239. kvm_for_each_vcpu(r, v, kvm) {
  240. if (v->vcpu_id == id) {
  241. ret = v;
  242. break;
  243. }
  244. }
  245. mutex_unlock(&kvm->lock);
  246. return ret;
  247. }
  248. static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
  249. {
  250. vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
  251. vpa->yield_count = cpu_to_be32(1);
  252. }
  253. static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
  254. unsigned long addr, unsigned long len)
  255. {
  256. /* check address is cacheline aligned */
  257. if (addr & (L1_CACHE_BYTES - 1))
  258. return -EINVAL;
  259. spin_lock(&vcpu->arch.vpa_update_lock);
  260. if (v->next_gpa != addr || v->len != len) {
  261. v->next_gpa = addr;
  262. v->len = addr ? len : 0;
  263. v->update_pending = 1;
  264. }
  265. spin_unlock(&vcpu->arch.vpa_update_lock);
  266. return 0;
  267. }
  268. /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
  269. struct reg_vpa {
  270. u32 dummy;
  271. union {
  272. __be16 hword;
  273. __be32 word;
  274. } length;
  275. };
  276. static int vpa_is_registered(struct kvmppc_vpa *vpap)
  277. {
  278. if (vpap->update_pending)
  279. return vpap->next_gpa != 0;
  280. return vpap->pinned_addr != NULL;
  281. }
  282. static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
  283. unsigned long flags,
  284. unsigned long vcpuid, unsigned long vpa)
  285. {
  286. struct kvm *kvm = vcpu->kvm;
  287. unsigned long len, nb;
  288. void *va;
  289. struct kvm_vcpu *tvcpu;
  290. int err;
  291. int subfunc;
  292. struct kvmppc_vpa *vpap;
  293. tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
  294. if (!tvcpu)
  295. return H_PARAMETER;
  296. subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
  297. if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
  298. subfunc == H_VPA_REG_SLB) {
  299. /* Registering new area - address must be cache-line aligned */
  300. if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
  301. return H_PARAMETER;
  302. /* convert logical addr to kernel addr and read length */
  303. va = kvmppc_pin_guest_page(kvm, vpa, &nb);
  304. if (va == NULL)
  305. return H_PARAMETER;
  306. if (subfunc == H_VPA_REG_VPA)
  307. len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
  308. else
  309. len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
  310. kvmppc_unpin_guest_page(kvm, va, vpa, false);
  311. /* Check length */
  312. if (len > nb || len < sizeof(struct reg_vpa))
  313. return H_PARAMETER;
  314. } else {
  315. vpa = 0;
  316. len = 0;
  317. }
  318. err = H_PARAMETER;
  319. vpap = NULL;
  320. spin_lock(&tvcpu->arch.vpa_update_lock);
  321. switch (subfunc) {
  322. case H_VPA_REG_VPA: /* register VPA */
  323. if (len < sizeof(struct lppaca))
  324. break;
  325. vpap = &tvcpu->arch.vpa;
  326. err = 0;
  327. break;
  328. case H_VPA_REG_DTL: /* register DTL */
  329. if (len < sizeof(struct dtl_entry))
  330. break;
  331. len -= len % sizeof(struct dtl_entry);
  332. /* Check that they have previously registered a VPA */
  333. err = H_RESOURCE;
  334. if (!vpa_is_registered(&tvcpu->arch.vpa))
  335. break;
  336. vpap = &tvcpu->arch.dtl;
  337. err = 0;
  338. break;
  339. case H_VPA_REG_SLB: /* register SLB shadow buffer */
  340. /* Check that they have previously registered a VPA */
  341. err = H_RESOURCE;
  342. if (!vpa_is_registered(&tvcpu->arch.vpa))
  343. break;
  344. vpap = &tvcpu->arch.slb_shadow;
  345. err = 0;
  346. break;
  347. case H_VPA_DEREG_VPA: /* deregister VPA */
  348. /* Check they don't still have a DTL or SLB buf registered */
  349. err = H_RESOURCE;
  350. if (vpa_is_registered(&tvcpu->arch.dtl) ||
  351. vpa_is_registered(&tvcpu->arch.slb_shadow))
  352. break;
  353. vpap = &tvcpu->arch.vpa;
  354. err = 0;
  355. break;
  356. case H_VPA_DEREG_DTL: /* deregister DTL */
  357. vpap = &tvcpu->arch.dtl;
  358. err = 0;
  359. break;
  360. case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
  361. vpap = &tvcpu->arch.slb_shadow;
  362. err = 0;
  363. break;
  364. }
  365. if (vpap) {
  366. vpap->next_gpa = vpa;
  367. vpap->len = len;
  368. vpap->update_pending = 1;
  369. }
  370. spin_unlock(&tvcpu->arch.vpa_update_lock);
  371. return err;
  372. }
  373. static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
  374. {
  375. struct kvm *kvm = vcpu->kvm;
  376. void *va;
  377. unsigned long nb;
  378. unsigned long gpa;
  379. /*
  380. * We need to pin the page pointed to by vpap->next_gpa,
  381. * but we can't call kvmppc_pin_guest_page under the lock
  382. * as it does get_user_pages() and down_read(). So we
  383. * have to drop the lock, pin the page, then get the lock
  384. * again and check that a new area didn't get registered
  385. * in the meantime.
  386. */
  387. for (;;) {
  388. gpa = vpap->next_gpa;
  389. spin_unlock(&vcpu->arch.vpa_update_lock);
  390. va = NULL;
  391. nb = 0;
  392. if (gpa)
  393. va = kvmppc_pin_guest_page(kvm, gpa, &nb);
  394. spin_lock(&vcpu->arch.vpa_update_lock);
  395. if (gpa == vpap->next_gpa)
  396. break;
  397. /* sigh... unpin that one and try again */
  398. if (va)
  399. kvmppc_unpin_guest_page(kvm, va, gpa, false);
  400. }
  401. vpap->update_pending = 0;
  402. if (va && nb < vpap->len) {
  403. /*
  404. * If it's now too short, it must be that userspace
  405. * has changed the mappings underlying guest memory,
  406. * so unregister the region.
  407. */
  408. kvmppc_unpin_guest_page(kvm, va, gpa, false);
  409. va = NULL;
  410. }
  411. if (vpap->pinned_addr)
  412. kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
  413. vpap->dirty);
  414. vpap->gpa = gpa;
  415. vpap->pinned_addr = va;
  416. vpap->dirty = false;
  417. if (va)
  418. vpap->pinned_end = va + vpap->len;
  419. }
  420. static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
  421. {
  422. if (!(vcpu->arch.vpa.update_pending ||
  423. vcpu->arch.slb_shadow.update_pending ||
  424. vcpu->arch.dtl.update_pending))
  425. return;
  426. spin_lock(&vcpu->arch.vpa_update_lock);
  427. if (vcpu->arch.vpa.update_pending) {
  428. kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
  429. if (vcpu->arch.vpa.pinned_addr)
  430. init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
  431. }
  432. if (vcpu->arch.dtl.update_pending) {
  433. kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
  434. vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
  435. vcpu->arch.dtl_index = 0;
  436. }
  437. if (vcpu->arch.slb_shadow.update_pending)
  438. kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
  439. spin_unlock(&vcpu->arch.vpa_update_lock);
  440. }
  441. /*
  442. * Return the accumulated stolen time for the vcore up until `now'.
  443. * The caller should hold the vcore lock.
  444. */
  445. static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
  446. {
  447. u64 p;
  448. /*
  449. * If we are the task running the vcore, then since we hold
  450. * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
  451. * can't be updated, so we don't need the tbacct_lock.
  452. * If the vcore is inactive, it can't become active (since we
  453. * hold the vcore lock), so the vcpu load/put functions won't
  454. * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
  455. */
  456. if (vc->vcore_state != VCORE_INACTIVE &&
  457. vc->runner->arch.run_task != current) {
  458. spin_lock_irq(&vc->runner->arch.tbacct_lock);
  459. p = vc->stolen_tb;
  460. if (vc->preempt_tb != TB_NIL)
  461. p += now - vc->preempt_tb;
  462. spin_unlock_irq(&vc->runner->arch.tbacct_lock);
  463. } else {
  464. p = vc->stolen_tb;
  465. }
  466. return p;
  467. }
  468. static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
  469. struct kvmppc_vcore *vc)
  470. {
  471. struct dtl_entry *dt;
  472. struct lppaca *vpa;
  473. unsigned long stolen;
  474. unsigned long core_stolen;
  475. u64 now;
  476. dt = vcpu->arch.dtl_ptr;
  477. vpa = vcpu->arch.vpa.pinned_addr;
  478. now = mftb();
  479. core_stolen = vcore_stolen_time(vc, now);
  480. stolen = core_stolen - vcpu->arch.stolen_logged;
  481. vcpu->arch.stolen_logged = core_stolen;
  482. spin_lock_irq(&vcpu->arch.tbacct_lock);
  483. stolen += vcpu->arch.busy_stolen;
  484. vcpu->arch.busy_stolen = 0;
  485. spin_unlock_irq(&vcpu->arch.tbacct_lock);
  486. if (!dt || !vpa)
  487. return;
  488. memset(dt, 0, sizeof(struct dtl_entry));
  489. dt->dispatch_reason = 7;
  490. dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
  491. dt->timebase = cpu_to_be64(now + vc->tb_offset);
  492. dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
  493. dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
  494. dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
  495. ++dt;
  496. if (dt == vcpu->arch.dtl.pinned_end)
  497. dt = vcpu->arch.dtl.pinned_addr;
  498. vcpu->arch.dtl_ptr = dt;
  499. /* order writing *dt vs. writing vpa->dtl_idx */
  500. smp_wmb();
  501. vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
  502. vcpu->arch.dtl.dirty = true;
  503. }
  504. static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
  505. {
  506. if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
  507. return true;
  508. if ((!vcpu->arch.vcore->arch_compat) &&
  509. cpu_has_feature(CPU_FTR_ARCH_207S))
  510. return true;
  511. return false;
  512. }
  513. static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
  514. unsigned long resource, unsigned long value1,
  515. unsigned long value2)
  516. {
  517. switch (resource) {
  518. case H_SET_MODE_RESOURCE_SET_CIABR:
  519. if (!kvmppc_power8_compatible(vcpu))
  520. return H_P2;
  521. if (value2)
  522. return H_P4;
  523. if (mflags)
  524. return H_UNSUPPORTED_FLAG_START;
  525. /* Guests can't breakpoint the hypervisor */
  526. if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
  527. return H_P3;
  528. vcpu->arch.ciabr = value1;
  529. return H_SUCCESS;
  530. case H_SET_MODE_RESOURCE_SET_DAWR:
  531. if (!kvmppc_power8_compatible(vcpu))
  532. return H_P2;
  533. if (mflags)
  534. return H_UNSUPPORTED_FLAG_START;
  535. if (value2 & DABRX_HYP)
  536. return H_P4;
  537. vcpu->arch.dawr = value1;
  538. vcpu->arch.dawrx = value2;
  539. return H_SUCCESS;
  540. default:
  541. return H_TOO_HARD;
  542. }
  543. }
  544. int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
  545. {
  546. unsigned long req = kvmppc_get_gpr(vcpu, 3);
  547. unsigned long target, ret = H_SUCCESS;
  548. struct kvm_vcpu *tvcpu;
  549. int idx, rc;
  550. if (req <= MAX_HCALL_OPCODE &&
  551. !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
  552. return RESUME_HOST;
  553. switch (req) {
  554. case H_ENTER:
  555. idx = srcu_read_lock(&vcpu->kvm->srcu);
  556. ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
  557. kvmppc_get_gpr(vcpu, 5),
  558. kvmppc_get_gpr(vcpu, 6),
  559. kvmppc_get_gpr(vcpu, 7));
  560. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  561. break;
  562. case H_CEDE:
  563. break;
  564. case H_PROD:
  565. target = kvmppc_get_gpr(vcpu, 4);
  566. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  567. if (!tvcpu) {
  568. ret = H_PARAMETER;
  569. break;
  570. }
  571. tvcpu->arch.prodded = 1;
  572. smp_mb();
  573. if (vcpu->arch.ceded) {
  574. if (waitqueue_active(&vcpu->wq)) {
  575. wake_up_interruptible(&vcpu->wq);
  576. vcpu->stat.halt_wakeup++;
  577. }
  578. }
  579. break;
  580. case H_CONFER:
  581. target = kvmppc_get_gpr(vcpu, 4);
  582. if (target == -1)
  583. break;
  584. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  585. if (!tvcpu) {
  586. ret = H_PARAMETER;
  587. break;
  588. }
  589. kvm_vcpu_yield_to(tvcpu);
  590. break;
  591. case H_REGISTER_VPA:
  592. ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
  593. kvmppc_get_gpr(vcpu, 5),
  594. kvmppc_get_gpr(vcpu, 6));
  595. break;
  596. case H_RTAS:
  597. if (list_empty(&vcpu->kvm->arch.rtas_tokens))
  598. return RESUME_HOST;
  599. idx = srcu_read_lock(&vcpu->kvm->srcu);
  600. rc = kvmppc_rtas_hcall(vcpu);
  601. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  602. if (rc == -ENOENT)
  603. return RESUME_HOST;
  604. else if (rc == 0)
  605. break;
  606. /* Send the error out to userspace via KVM_RUN */
  607. return rc;
  608. case H_SET_MODE:
  609. ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
  610. kvmppc_get_gpr(vcpu, 5),
  611. kvmppc_get_gpr(vcpu, 6),
  612. kvmppc_get_gpr(vcpu, 7));
  613. if (ret == H_TOO_HARD)
  614. return RESUME_HOST;
  615. break;
  616. case H_XIRR:
  617. case H_CPPR:
  618. case H_EOI:
  619. case H_IPI:
  620. case H_IPOLL:
  621. case H_XIRR_X:
  622. if (kvmppc_xics_enabled(vcpu)) {
  623. ret = kvmppc_xics_hcall(vcpu, req);
  624. break;
  625. } /* fallthrough */
  626. default:
  627. return RESUME_HOST;
  628. }
  629. kvmppc_set_gpr(vcpu, 3, ret);
  630. vcpu->arch.hcall_needed = 0;
  631. return RESUME_GUEST;
  632. }
  633. static int kvmppc_hcall_impl_hv(unsigned long cmd)
  634. {
  635. switch (cmd) {
  636. case H_CEDE:
  637. case H_PROD:
  638. case H_CONFER:
  639. case H_REGISTER_VPA:
  640. case H_SET_MODE:
  641. #ifdef CONFIG_KVM_XICS
  642. case H_XIRR:
  643. case H_CPPR:
  644. case H_EOI:
  645. case H_IPI:
  646. case H_IPOLL:
  647. case H_XIRR_X:
  648. #endif
  649. return 1;
  650. }
  651. /* See if it's in the real-mode table */
  652. return kvmppc_hcall_impl_hv_realmode(cmd);
  653. }
  654. static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
  655. struct task_struct *tsk)
  656. {
  657. int r = RESUME_HOST;
  658. vcpu->stat.sum_exits++;
  659. run->exit_reason = KVM_EXIT_UNKNOWN;
  660. run->ready_for_interrupt_injection = 1;
  661. switch (vcpu->arch.trap) {
  662. /* We're good on these - the host merely wanted to get our attention */
  663. case BOOK3S_INTERRUPT_HV_DECREMENTER:
  664. vcpu->stat.dec_exits++;
  665. r = RESUME_GUEST;
  666. break;
  667. case BOOK3S_INTERRUPT_EXTERNAL:
  668. case BOOK3S_INTERRUPT_H_DOORBELL:
  669. vcpu->stat.ext_intr_exits++;
  670. r = RESUME_GUEST;
  671. break;
  672. case BOOK3S_INTERRUPT_PERFMON:
  673. r = RESUME_GUEST;
  674. break;
  675. case BOOK3S_INTERRUPT_MACHINE_CHECK:
  676. /*
  677. * Deliver a machine check interrupt to the guest.
  678. * We have to do this, even if the host has handled the
  679. * machine check, because machine checks use SRR0/1 and
  680. * the interrupt might have trashed guest state in them.
  681. */
  682. kvmppc_book3s_queue_irqprio(vcpu,
  683. BOOK3S_INTERRUPT_MACHINE_CHECK);
  684. r = RESUME_GUEST;
  685. break;
  686. case BOOK3S_INTERRUPT_PROGRAM:
  687. {
  688. ulong flags;
  689. /*
  690. * Normally program interrupts are delivered directly
  691. * to the guest by the hardware, but we can get here
  692. * as a result of a hypervisor emulation interrupt
  693. * (e40) getting turned into a 700 by BML RTAS.
  694. */
  695. flags = vcpu->arch.shregs.msr & 0x1f0000ull;
  696. kvmppc_core_queue_program(vcpu, flags);
  697. r = RESUME_GUEST;
  698. break;
  699. }
  700. case BOOK3S_INTERRUPT_SYSCALL:
  701. {
  702. /* hcall - punt to userspace */
  703. int i;
  704. /* hypercall with MSR_PR has already been handled in rmode,
  705. * and never reaches here.
  706. */
  707. run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
  708. for (i = 0; i < 9; ++i)
  709. run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
  710. run->exit_reason = KVM_EXIT_PAPR_HCALL;
  711. vcpu->arch.hcall_needed = 1;
  712. r = RESUME_HOST;
  713. break;
  714. }
  715. /*
  716. * We get these next two if the guest accesses a page which it thinks
  717. * it has mapped but which is not actually present, either because
  718. * it is for an emulated I/O device or because the corresonding
  719. * host page has been paged out. Any other HDSI/HISI interrupts
  720. * have been handled already.
  721. */
  722. case BOOK3S_INTERRUPT_H_DATA_STORAGE:
  723. r = RESUME_PAGE_FAULT;
  724. break;
  725. case BOOK3S_INTERRUPT_H_INST_STORAGE:
  726. vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
  727. vcpu->arch.fault_dsisr = 0;
  728. r = RESUME_PAGE_FAULT;
  729. break;
  730. /*
  731. * This occurs if the guest executes an illegal instruction.
  732. * We just generate a program interrupt to the guest, since
  733. * we don't emulate any guest instructions at this stage.
  734. */
  735. case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
  736. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  737. r = RESUME_GUEST;
  738. break;
  739. /*
  740. * This occurs if the guest (kernel or userspace), does something that
  741. * is prohibited by HFSCR. We just generate a program interrupt to
  742. * the guest.
  743. */
  744. case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
  745. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  746. r = RESUME_GUEST;
  747. break;
  748. default:
  749. kvmppc_dump_regs(vcpu);
  750. printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
  751. vcpu->arch.trap, kvmppc_get_pc(vcpu),
  752. vcpu->arch.shregs.msr);
  753. run->hw.hardware_exit_reason = vcpu->arch.trap;
  754. r = RESUME_HOST;
  755. break;
  756. }
  757. return r;
  758. }
  759. static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
  760. struct kvm_sregs *sregs)
  761. {
  762. int i;
  763. memset(sregs, 0, sizeof(struct kvm_sregs));
  764. sregs->pvr = vcpu->arch.pvr;
  765. for (i = 0; i < vcpu->arch.slb_max; i++) {
  766. sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
  767. sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
  768. }
  769. return 0;
  770. }
  771. static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
  772. struct kvm_sregs *sregs)
  773. {
  774. int i, j;
  775. kvmppc_set_pvr_hv(vcpu, sregs->pvr);
  776. j = 0;
  777. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  778. if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
  779. vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
  780. vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
  781. ++j;
  782. }
  783. }
  784. vcpu->arch.slb_max = j;
  785. return 0;
  786. }
  787. static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
  788. bool preserve_top32)
  789. {
  790. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  791. u64 mask;
  792. spin_lock(&vc->lock);
  793. /*
  794. * If ILE (interrupt little-endian) has changed, update the
  795. * MSR_LE bit in the intr_msr for each vcpu in this vcore.
  796. */
  797. if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
  798. struct kvm *kvm = vcpu->kvm;
  799. struct kvm_vcpu *vcpu;
  800. int i;
  801. mutex_lock(&kvm->lock);
  802. kvm_for_each_vcpu(i, vcpu, kvm) {
  803. if (vcpu->arch.vcore != vc)
  804. continue;
  805. if (new_lpcr & LPCR_ILE)
  806. vcpu->arch.intr_msr |= MSR_LE;
  807. else
  808. vcpu->arch.intr_msr &= ~MSR_LE;
  809. }
  810. mutex_unlock(&kvm->lock);
  811. }
  812. /*
  813. * Userspace can only modify DPFD (default prefetch depth),
  814. * ILE (interrupt little-endian) and TC (translation control).
  815. * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
  816. */
  817. mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
  818. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  819. mask |= LPCR_AIL;
  820. /* Broken 32-bit version of LPCR must not clear top bits */
  821. if (preserve_top32)
  822. mask &= 0xFFFFFFFF;
  823. vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
  824. spin_unlock(&vc->lock);
  825. }
  826. static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
  827. union kvmppc_one_reg *val)
  828. {
  829. int r = 0;
  830. long int i;
  831. switch (id) {
  832. case KVM_REG_PPC_HIOR:
  833. *val = get_reg_val(id, 0);
  834. break;
  835. case KVM_REG_PPC_DABR:
  836. *val = get_reg_val(id, vcpu->arch.dabr);
  837. break;
  838. case KVM_REG_PPC_DABRX:
  839. *val = get_reg_val(id, vcpu->arch.dabrx);
  840. break;
  841. case KVM_REG_PPC_DSCR:
  842. *val = get_reg_val(id, vcpu->arch.dscr);
  843. break;
  844. case KVM_REG_PPC_PURR:
  845. *val = get_reg_val(id, vcpu->arch.purr);
  846. break;
  847. case KVM_REG_PPC_SPURR:
  848. *val = get_reg_val(id, vcpu->arch.spurr);
  849. break;
  850. case KVM_REG_PPC_AMR:
  851. *val = get_reg_val(id, vcpu->arch.amr);
  852. break;
  853. case KVM_REG_PPC_UAMOR:
  854. *val = get_reg_val(id, vcpu->arch.uamor);
  855. break;
  856. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
  857. i = id - KVM_REG_PPC_MMCR0;
  858. *val = get_reg_val(id, vcpu->arch.mmcr[i]);
  859. break;
  860. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  861. i = id - KVM_REG_PPC_PMC1;
  862. *val = get_reg_val(id, vcpu->arch.pmc[i]);
  863. break;
  864. case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
  865. i = id - KVM_REG_PPC_SPMC1;
  866. *val = get_reg_val(id, vcpu->arch.spmc[i]);
  867. break;
  868. case KVM_REG_PPC_SIAR:
  869. *val = get_reg_val(id, vcpu->arch.siar);
  870. break;
  871. case KVM_REG_PPC_SDAR:
  872. *val = get_reg_val(id, vcpu->arch.sdar);
  873. break;
  874. case KVM_REG_PPC_SIER:
  875. *val = get_reg_val(id, vcpu->arch.sier);
  876. break;
  877. case KVM_REG_PPC_IAMR:
  878. *val = get_reg_val(id, vcpu->arch.iamr);
  879. break;
  880. case KVM_REG_PPC_PSPB:
  881. *val = get_reg_val(id, vcpu->arch.pspb);
  882. break;
  883. case KVM_REG_PPC_DPDES:
  884. *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
  885. break;
  886. case KVM_REG_PPC_DAWR:
  887. *val = get_reg_val(id, vcpu->arch.dawr);
  888. break;
  889. case KVM_REG_PPC_DAWRX:
  890. *val = get_reg_val(id, vcpu->arch.dawrx);
  891. break;
  892. case KVM_REG_PPC_CIABR:
  893. *val = get_reg_val(id, vcpu->arch.ciabr);
  894. break;
  895. case KVM_REG_PPC_CSIGR:
  896. *val = get_reg_val(id, vcpu->arch.csigr);
  897. break;
  898. case KVM_REG_PPC_TACR:
  899. *val = get_reg_val(id, vcpu->arch.tacr);
  900. break;
  901. case KVM_REG_PPC_TCSCR:
  902. *val = get_reg_val(id, vcpu->arch.tcscr);
  903. break;
  904. case KVM_REG_PPC_PID:
  905. *val = get_reg_val(id, vcpu->arch.pid);
  906. break;
  907. case KVM_REG_PPC_ACOP:
  908. *val = get_reg_val(id, vcpu->arch.acop);
  909. break;
  910. case KVM_REG_PPC_WORT:
  911. *val = get_reg_val(id, vcpu->arch.wort);
  912. break;
  913. case KVM_REG_PPC_VPA_ADDR:
  914. spin_lock(&vcpu->arch.vpa_update_lock);
  915. *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
  916. spin_unlock(&vcpu->arch.vpa_update_lock);
  917. break;
  918. case KVM_REG_PPC_VPA_SLB:
  919. spin_lock(&vcpu->arch.vpa_update_lock);
  920. val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
  921. val->vpaval.length = vcpu->arch.slb_shadow.len;
  922. spin_unlock(&vcpu->arch.vpa_update_lock);
  923. break;
  924. case KVM_REG_PPC_VPA_DTL:
  925. spin_lock(&vcpu->arch.vpa_update_lock);
  926. val->vpaval.addr = vcpu->arch.dtl.next_gpa;
  927. val->vpaval.length = vcpu->arch.dtl.len;
  928. spin_unlock(&vcpu->arch.vpa_update_lock);
  929. break;
  930. case KVM_REG_PPC_TB_OFFSET:
  931. *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
  932. break;
  933. case KVM_REG_PPC_LPCR:
  934. case KVM_REG_PPC_LPCR_64:
  935. *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
  936. break;
  937. case KVM_REG_PPC_PPR:
  938. *val = get_reg_val(id, vcpu->arch.ppr);
  939. break;
  940. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  941. case KVM_REG_PPC_TFHAR:
  942. *val = get_reg_val(id, vcpu->arch.tfhar);
  943. break;
  944. case KVM_REG_PPC_TFIAR:
  945. *val = get_reg_val(id, vcpu->arch.tfiar);
  946. break;
  947. case KVM_REG_PPC_TEXASR:
  948. *val = get_reg_val(id, vcpu->arch.texasr);
  949. break;
  950. case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
  951. i = id - KVM_REG_PPC_TM_GPR0;
  952. *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
  953. break;
  954. case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
  955. {
  956. int j;
  957. i = id - KVM_REG_PPC_TM_VSR0;
  958. if (i < 32)
  959. for (j = 0; j < TS_FPRWIDTH; j++)
  960. val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
  961. else {
  962. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  963. val->vval = vcpu->arch.vr_tm.vr[i-32];
  964. else
  965. r = -ENXIO;
  966. }
  967. break;
  968. }
  969. case KVM_REG_PPC_TM_CR:
  970. *val = get_reg_val(id, vcpu->arch.cr_tm);
  971. break;
  972. case KVM_REG_PPC_TM_LR:
  973. *val = get_reg_val(id, vcpu->arch.lr_tm);
  974. break;
  975. case KVM_REG_PPC_TM_CTR:
  976. *val = get_reg_val(id, vcpu->arch.ctr_tm);
  977. break;
  978. case KVM_REG_PPC_TM_FPSCR:
  979. *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
  980. break;
  981. case KVM_REG_PPC_TM_AMR:
  982. *val = get_reg_val(id, vcpu->arch.amr_tm);
  983. break;
  984. case KVM_REG_PPC_TM_PPR:
  985. *val = get_reg_val(id, vcpu->arch.ppr_tm);
  986. break;
  987. case KVM_REG_PPC_TM_VRSAVE:
  988. *val = get_reg_val(id, vcpu->arch.vrsave_tm);
  989. break;
  990. case KVM_REG_PPC_TM_VSCR:
  991. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  992. *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
  993. else
  994. r = -ENXIO;
  995. break;
  996. case KVM_REG_PPC_TM_DSCR:
  997. *val = get_reg_val(id, vcpu->arch.dscr_tm);
  998. break;
  999. case KVM_REG_PPC_TM_TAR:
  1000. *val = get_reg_val(id, vcpu->arch.tar_tm);
  1001. break;
  1002. #endif
  1003. case KVM_REG_PPC_ARCH_COMPAT:
  1004. *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
  1005. break;
  1006. default:
  1007. r = -EINVAL;
  1008. break;
  1009. }
  1010. return r;
  1011. }
  1012. static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
  1013. union kvmppc_one_reg *val)
  1014. {
  1015. int r = 0;
  1016. long int i;
  1017. unsigned long addr, len;
  1018. switch (id) {
  1019. case KVM_REG_PPC_HIOR:
  1020. /* Only allow this to be set to zero */
  1021. if (set_reg_val(id, *val))
  1022. r = -EINVAL;
  1023. break;
  1024. case KVM_REG_PPC_DABR:
  1025. vcpu->arch.dabr = set_reg_val(id, *val);
  1026. break;
  1027. case KVM_REG_PPC_DABRX:
  1028. vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
  1029. break;
  1030. case KVM_REG_PPC_DSCR:
  1031. vcpu->arch.dscr = set_reg_val(id, *val);
  1032. break;
  1033. case KVM_REG_PPC_PURR:
  1034. vcpu->arch.purr = set_reg_val(id, *val);
  1035. break;
  1036. case KVM_REG_PPC_SPURR:
  1037. vcpu->arch.spurr = set_reg_val(id, *val);
  1038. break;
  1039. case KVM_REG_PPC_AMR:
  1040. vcpu->arch.amr = set_reg_val(id, *val);
  1041. break;
  1042. case KVM_REG_PPC_UAMOR:
  1043. vcpu->arch.uamor = set_reg_val(id, *val);
  1044. break;
  1045. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
  1046. i = id - KVM_REG_PPC_MMCR0;
  1047. vcpu->arch.mmcr[i] = set_reg_val(id, *val);
  1048. break;
  1049. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  1050. i = id - KVM_REG_PPC_PMC1;
  1051. vcpu->arch.pmc[i] = set_reg_val(id, *val);
  1052. break;
  1053. case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
  1054. i = id - KVM_REG_PPC_SPMC1;
  1055. vcpu->arch.spmc[i] = set_reg_val(id, *val);
  1056. break;
  1057. case KVM_REG_PPC_SIAR:
  1058. vcpu->arch.siar = set_reg_val(id, *val);
  1059. break;
  1060. case KVM_REG_PPC_SDAR:
  1061. vcpu->arch.sdar = set_reg_val(id, *val);
  1062. break;
  1063. case KVM_REG_PPC_SIER:
  1064. vcpu->arch.sier = set_reg_val(id, *val);
  1065. break;
  1066. case KVM_REG_PPC_IAMR:
  1067. vcpu->arch.iamr = set_reg_val(id, *val);
  1068. break;
  1069. case KVM_REG_PPC_PSPB:
  1070. vcpu->arch.pspb = set_reg_val(id, *val);
  1071. break;
  1072. case KVM_REG_PPC_DPDES:
  1073. vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
  1074. break;
  1075. case KVM_REG_PPC_DAWR:
  1076. vcpu->arch.dawr = set_reg_val(id, *val);
  1077. break;
  1078. case KVM_REG_PPC_DAWRX:
  1079. vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
  1080. break;
  1081. case KVM_REG_PPC_CIABR:
  1082. vcpu->arch.ciabr = set_reg_val(id, *val);
  1083. /* Don't allow setting breakpoints in hypervisor code */
  1084. if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
  1085. vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
  1086. break;
  1087. case KVM_REG_PPC_CSIGR:
  1088. vcpu->arch.csigr = set_reg_val(id, *val);
  1089. break;
  1090. case KVM_REG_PPC_TACR:
  1091. vcpu->arch.tacr = set_reg_val(id, *val);
  1092. break;
  1093. case KVM_REG_PPC_TCSCR:
  1094. vcpu->arch.tcscr = set_reg_val(id, *val);
  1095. break;
  1096. case KVM_REG_PPC_PID:
  1097. vcpu->arch.pid = set_reg_val(id, *val);
  1098. break;
  1099. case KVM_REG_PPC_ACOP:
  1100. vcpu->arch.acop = set_reg_val(id, *val);
  1101. break;
  1102. case KVM_REG_PPC_WORT:
  1103. vcpu->arch.wort = set_reg_val(id, *val);
  1104. break;
  1105. case KVM_REG_PPC_VPA_ADDR:
  1106. addr = set_reg_val(id, *val);
  1107. r = -EINVAL;
  1108. if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
  1109. vcpu->arch.dtl.next_gpa))
  1110. break;
  1111. r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
  1112. break;
  1113. case KVM_REG_PPC_VPA_SLB:
  1114. addr = val->vpaval.addr;
  1115. len = val->vpaval.length;
  1116. r = -EINVAL;
  1117. if (addr && !vcpu->arch.vpa.next_gpa)
  1118. break;
  1119. r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
  1120. break;
  1121. case KVM_REG_PPC_VPA_DTL:
  1122. addr = val->vpaval.addr;
  1123. len = val->vpaval.length;
  1124. r = -EINVAL;
  1125. if (addr && (len < sizeof(struct dtl_entry) ||
  1126. !vcpu->arch.vpa.next_gpa))
  1127. break;
  1128. len -= len % sizeof(struct dtl_entry);
  1129. r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
  1130. break;
  1131. case KVM_REG_PPC_TB_OFFSET:
  1132. /* round up to multiple of 2^24 */
  1133. vcpu->arch.vcore->tb_offset =
  1134. ALIGN(set_reg_val(id, *val), 1UL << 24);
  1135. break;
  1136. case KVM_REG_PPC_LPCR:
  1137. kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
  1138. break;
  1139. case KVM_REG_PPC_LPCR_64:
  1140. kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
  1141. break;
  1142. case KVM_REG_PPC_PPR:
  1143. vcpu->arch.ppr = set_reg_val(id, *val);
  1144. break;
  1145. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1146. case KVM_REG_PPC_TFHAR:
  1147. vcpu->arch.tfhar = set_reg_val(id, *val);
  1148. break;
  1149. case KVM_REG_PPC_TFIAR:
  1150. vcpu->arch.tfiar = set_reg_val(id, *val);
  1151. break;
  1152. case KVM_REG_PPC_TEXASR:
  1153. vcpu->arch.texasr = set_reg_val(id, *val);
  1154. break;
  1155. case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
  1156. i = id - KVM_REG_PPC_TM_GPR0;
  1157. vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
  1158. break;
  1159. case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
  1160. {
  1161. int j;
  1162. i = id - KVM_REG_PPC_TM_VSR0;
  1163. if (i < 32)
  1164. for (j = 0; j < TS_FPRWIDTH; j++)
  1165. vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
  1166. else
  1167. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1168. vcpu->arch.vr_tm.vr[i-32] = val->vval;
  1169. else
  1170. r = -ENXIO;
  1171. break;
  1172. }
  1173. case KVM_REG_PPC_TM_CR:
  1174. vcpu->arch.cr_tm = set_reg_val(id, *val);
  1175. break;
  1176. case KVM_REG_PPC_TM_LR:
  1177. vcpu->arch.lr_tm = set_reg_val(id, *val);
  1178. break;
  1179. case KVM_REG_PPC_TM_CTR:
  1180. vcpu->arch.ctr_tm = set_reg_val(id, *val);
  1181. break;
  1182. case KVM_REG_PPC_TM_FPSCR:
  1183. vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
  1184. break;
  1185. case KVM_REG_PPC_TM_AMR:
  1186. vcpu->arch.amr_tm = set_reg_val(id, *val);
  1187. break;
  1188. case KVM_REG_PPC_TM_PPR:
  1189. vcpu->arch.ppr_tm = set_reg_val(id, *val);
  1190. break;
  1191. case KVM_REG_PPC_TM_VRSAVE:
  1192. vcpu->arch.vrsave_tm = set_reg_val(id, *val);
  1193. break;
  1194. case KVM_REG_PPC_TM_VSCR:
  1195. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1196. vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
  1197. else
  1198. r = - ENXIO;
  1199. break;
  1200. case KVM_REG_PPC_TM_DSCR:
  1201. vcpu->arch.dscr_tm = set_reg_val(id, *val);
  1202. break;
  1203. case KVM_REG_PPC_TM_TAR:
  1204. vcpu->arch.tar_tm = set_reg_val(id, *val);
  1205. break;
  1206. #endif
  1207. case KVM_REG_PPC_ARCH_COMPAT:
  1208. r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
  1209. break;
  1210. default:
  1211. r = -EINVAL;
  1212. break;
  1213. }
  1214. return r;
  1215. }
  1216. static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
  1217. {
  1218. struct kvmppc_vcore *vcore;
  1219. vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
  1220. if (vcore == NULL)
  1221. return NULL;
  1222. INIT_LIST_HEAD(&vcore->runnable_threads);
  1223. spin_lock_init(&vcore->lock);
  1224. init_waitqueue_head(&vcore->wq);
  1225. vcore->preempt_tb = TB_NIL;
  1226. vcore->lpcr = kvm->arch.lpcr;
  1227. vcore->first_vcpuid = core * threads_per_subcore;
  1228. vcore->kvm = kvm;
  1229. vcore->mpp_buffer_is_valid = false;
  1230. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  1231. vcore->mpp_buffer = (void *)__get_free_pages(
  1232. GFP_KERNEL|__GFP_ZERO,
  1233. MPP_BUFFER_ORDER);
  1234. return vcore;
  1235. }
  1236. static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
  1237. unsigned int id)
  1238. {
  1239. struct kvm_vcpu *vcpu;
  1240. int err = -EINVAL;
  1241. int core;
  1242. struct kvmppc_vcore *vcore;
  1243. core = id / threads_per_subcore;
  1244. if (core >= KVM_MAX_VCORES)
  1245. goto out;
  1246. err = -ENOMEM;
  1247. vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  1248. if (!vcpu)
  1249. goto out;
  1250. err = kvm_vcpu_init(vcpu, kvm, id);
  1251. if (err)
  1252. goto free_vcpu;
  1253. vcpu->arch.shared = &vcpu->arch.shregs;
  1254. #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
  1255. /*
  1256. * The shared struct is never shared on HV,
  1257. * so we can always use host endianness
  1258. */
  1259. #ifdef __BIG_ENDIAN__
  1260. vcpu->arch.shared_big_endian = true;
  1261. #else
  1262. vcpu->arch.shared_big_endian = false;
  1263. #endif
  1264. #endif
  1265. vcpu->arch.mmcr[0] = MMCR0_FC;
  1266. vcpu->arch.ctrl = CTRL_RUNLATCH;
  1267. /* default to host PVR, since we can't spoof it */
  1268. kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
  1269. spin_lock_init(&vcpu->arch.vpa_update_lock);
  1270. spin_lock_init(&vcpu->arch.tbacct_lock);
  1271. vcpu->arch.busy_preempt = TB_NIL;
  1272. vcpu->arch.intr_msr = MSR_SF | MSR_ME;
  1273. kvmppc_mmu_book3s_hv_init(vcpu);
  1274. vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
  1275. init_waitqueue_head(&vcpu->arch.cpu_run);
  1276. mutex_lock(&kvm->lock);
  1277. vcore = kvm->arch.vcores[core];
  1278. if (!vcore) {
  1279. vcore = kvmppc_vcore_create(kvm, core);
  1280. kvm->arch.vcores[core] = vcore;
  1281. kvm->arch.online_vcores++;
  1282. }
  1283. mutex_unlock(&kvm->lock);
  1284. if (!vcore)
  1285. goto free_vcpu;
  1286. spin_lock(&vcore->lock);
  1287. ++vcore->num_threads;
  1288. spin_unlock(&vcore->lock);
  1289. vcpu->arch.vcore = vcore;
  1290. vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
  1291. vcpu->arch.cpu_type = KVM_CPU_3S_64;
  1292. kvmppc_sanity_check(vcpu);
  1293. return vcpu;
  1294. free_vcpu:
  1295. kmem_cache_free(kvm_vcpu_cache, vcpu);
  1296. out:
  1297. return ERR_PTR(err);
  1298. }
  1299. static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
  1300. {
  1301. if (vpa->pinned_addr)
  1302. kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
  1303. vpa->dirty);
  1304. }
  1305. static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
  1306. {
  1307. spin_lock(&vcpu->arch.vpa_update_lock);
  1308. unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
  1309. unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
  1310. unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
  1311. spin_unlock(&vcpu->arch.vpa_update_lock);
  1312. kvm_vcpu_uninit(vcpu);
  1313. kmem_cache_free(kvm_vcpu_cache, vcpu);
  1314. }
  1315. static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
  1316. {
  1317. /* Indicate we want to get back into the guest */
  1318. return 1;
  1319. }
  1320. static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
  1321. {
  1322. unsigned long dec_nsec, now;
  1323. now = get_tb();
  1324. if (now > vcpu->arch.dec_expires) {
  1325. /* decrementer has already gone negative */
  1326. kvmppc_core_queue_dec(vcpu);
  1327. kvmppc_core_prepare_to_enter(vcpu);
  1328. return;
  1329. }
  1330. dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
  1331. / tb_ticks_per_sec;
  1332. hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
  1333. HRTIMER_MODE_REL);
  1334. vcpu->arch.timer_running = 1;
  1335. }
  1336. static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
  1337. {
  1338. vcpu->arch.ceded = 0;
  1339. if (vcpu->arch.timer_running) {
  1340. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  1341. vcpu->arch.timer_running = 0;
  1342. }
  1343. }
  1344. extern void __kvmppc_vcore_entry(void);
  1345. static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
  1346. struct kvm_vcpu *vcpu)
  1347. {
  1348. u64 now;
  1349. if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  1350. return;
  1351. spin_lock_irq(&vcpu->arch.tbacct_lock);
  1352. now = mftb();
  1353. vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
  1354. vcpu->arch.stolen_logged;
  1355. vcpu->arch.busy_preempt = now;
  1356. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  1357. spin_unlock_irq(&vcpu->arch.tbacct_lock);
  1358. --vc->n_runnable;
  1359. list_del(&vcpu->arch.run_list);
  1360. }
  1361. static int kvmppc_grab_hwthread(int cpu)
  1362. {
  1363. struct paca_struct *tpaca;
  1364. long timeout = 1000;
  1365. tpaca = &paca[cpu];
  1366. /* Ensure the thread won't go into the kernel if it wakes */
  1367. tpaca->kvm_hstate.hwthread_req = 1;
  1368. tpaca->kvm_hstate.kvm_vcpu = NULL;
  1369. /*
  1370. * If the thread is already executing in the kernel (e.g. handling
  1371. * a stray interrupt), wait for it to get back to nap mode.
  1372. * The smp_mb() is to ensure that our setting of hwthread_req
  1373. * is visible before we look at hwthread_state, so if this
  1374. * races with the code at system_reset_pSeries and the thread
  1375. * misses our setting of hwthread_req, we are sure to see its
  1376. * setting of hwthread_state, and vice versa.
  1377. */
  1378. smp_mb();
  1379. while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
  1380. if (--timeout <= 0) {
  1381. pr_err("KVM: couldn't grab cpu %d\n", cpu);
  1382. return -EBUSY;
  1383. }
  1384. udelay(1);
  1385. }
  1386. return 0;
  1387. }
  1388. static void kvmppc_release_hwthread(int cpu)
  1389. {
  1390. struct paca_struct *tpaca;
  1391. tpaca = &paca[cpu];
  1392. tpaca->kvm_hstate.hwthread_req = 0;
  1393. tpaca->kvm_hstate.kvm_vcpu = NULL;
  1394. }
  1395. static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
  1396. {
  1397. int cpu;
  1398. struct paca_struct *tpaca;
  1399. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  1400. if (vcpu->arch.timer_running) {
  1401. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  1402. vcpu->arch.timer_running = 0;
  1403. }
  1404. cpu = vc->pcpu + vcpu->arch.ptid;
  1405. tpaca = &paca[cpu];
  1406. tpaca->kvm_hstate.kvm_vcpu = vcpu;
  1407. tpaca->kvm_hstate.kvm_vcore = vc;
  1408. tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
  1409. vcpu->cpu = vc->pcpu;
  1410. smp_wmb();
  1411. #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
  1412. if (cpu != smp_processor_id()) {
  1413. xics_wake_cpu(cpu);
  1414. if (vcpu->arch.ptid)
  1415. ++vc->n_woken;
  1416. }
  1417. #endif
  1418. }
  1419. static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
  1420. {
  1421. int i;
  1422. HMT_low();
  1423. i = 0;
  1424. while (vc->nap_count < vc->n_woken) {
  1425. if (++i >= 1000000) {
  1426. pr_err("kvmppc_wait_for_nap timeout %d %d\n",
  1427. vc->nap_count, vc->n_woken);
  1428. break;
  1429. }
  1430. cpu_relax();
  1431. }
  1432. HMT_medium();
  1433. }
  1434. /*
  1435. * Check that we are on thread 0 and that any other threads in
  1436. * this core are off-line. Then grab the threads so they can't
  1437. * enter the kernel.
  1438. */
  1439. static int on_primary_thread(void)
  1440. {
  1441. int cpu = smp_processor_id();
  1442. int thr;
  1443. /* Are we on a primary subcore? */
  1444. if (cpu_thread_in_subcore(cpu))
  1445. return 0;
  1446. thr = 0;
  1447. while (++thr < threads_per_subcore)
  1448. if (cpu_online(cpu + thr))
  1449. return 0;
  1450. /* Grab all hw threads so they can't go into the kernel */
  1451. for (thr = 1; thr < threads_per_subcore; ++thr) {
  1452. if (kvmppc_grab_hwthread(cpu + thr)) {
  1453. /* Couldn't grab one; let the others go */
  1454. do {
  1455. kvmppc_release_hwthread(cpu + thr);
  1456. } while (--thr > 0);
  1457. return 0;
  1458. }
  1459. }
  1460. return 1;
  1461. }
  1462. static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
  1463. {
  1464. phys_addr_t phy_addr, mpp_addr;
  1465. phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
  1466. mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
  1467. mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
  1468. logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);
  1469. vc->mpp_buffer_is_valid = true;
  1470. }
  1471. static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
  1472. {
  1473. phys_addr_t phy_addr, mpp_addr;
  1474. phy_addr = virt_to_phys(vc->mpp_buffer);
  1475. mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
  1476. /* We must abort any in-progress save operations to ensure
  1477. * the table is valid so that prefetch engine knows when to
  1478. * stop prefetching. */
  1479. logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
  1480. mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
  1481. }
  1482. /*
  1483. * Run a set of guest threads on a physical core.
  1484. * Called with vc->lock held.
  1485. */
  1486. static void kvmppc_run_core(struct kvmppc_vcore *vc)
  1487. {
  1488. struct kvm_vcpu *vcpu, *vnext;
  1489. long ret;
  1490. u64 now;
  1491. int i, need_vpa_update;
  1492. int srcu_idx;
  1493. struct kvm_vcpu *vcpus_to_update[threads_per_core];
  1494. /* don't start if any threads have a signal pending */
  1495. need_vpa_update = 0;
  1496. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1497. if (signal_pending(vcpu->arch.run_task))
  1498. return;
  1499. if (vcpu->arch.vpa.update_pending ||
  1500. vcpu->arch.slb_shadow.update_pending ||
  1501. vcpu->arch.dtl.update_pending)
  1502. vcpus_to_update[need_vpa_update++] = vcpu;
  1503. }
  1504. /*
  1505. * Initialize *vc, in particular vc->vcore_state, so we can
  1506. * drop the vcore lock if necessary.
  1507. */
  1508. vc->n_woken = 0;
  1509. vc->nap_count = 0;
  1510. vc->entry_exit_count = 0;
  1511. vc->vcore_state = VCORE_STARTING;
  1512. vc->in_guest = 0;
  1513. vc->napping_threads = 0;
  1514. /*
  1515. * Updating any of the vpas requires calling kvmppc_pin_guest_page,
  1516. * which can't be called with any spinlocks held.
  1517. */
  1518. if (need_vpa_update) {
  1519. spin_unlock(&vc->lock);
  1520. for (i = 0; i < need_vpa_update; ++i)
  1521. kvmppc_update_vpas(vcpus_to_update[i]);
  1522. spin_lock(&vc->lock);
  1523. }
  1524. /*
  1525. * Make sure we are running on primary threads, and that secondary
  1526. * threads are offline. Also check if the number of threads in this
  1527. * guest are greater than the current system threads per guest.
  1528. */
  1529. if ((threads_per_core > 1) &&
  1530. ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
  1531. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  1532. vcpu->arch.ret = -EBUSY;
  1533. goto out;
  1534. }
  1535. vc->pcpu = smp_processor_id();
  1536. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1537. kvmppc_start_thread(vcpu);
  1538. kvmppc_create_dtl_entry(vcpu, vc);
  1539. }
  1540. /* Set this explicitly in case thread 0 doesn't have a vcpu */
  1541. get_paca()->kvm_hstate.kvm_vcore = vc;
  1542. get_paca()->kvm_hstate.ptid = 0;
  1543. vc->vcore_state = VCORE_RUNNING;
  1544. preempt_disable();
  1545. spin_unlock(&vc->lock);
  1546. kvm_guest_enter();
  1547. srcu_idx = srcu_read_lock(&vc->kvm->srcu);
  1548. if (vc->mpp_buffer_is_valid)
  1549. kvmppc_start_restoring_l2_cache(vc);
  1550. __kvmppc_vcore_entry();
  1551. spin_lock(&vc->lock);
  1552. if (vc->mpp_buffer)
  1553. kvmppc_start_saving_l2_cache(vc);
  1554. /* disable sending of IPIs on virtual external irqs */
  1555. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  1556. vcpu->cpu = -1;
  1557. /* wait for secondary threads to finish writing their state to memory */
  1558. if (vc->nap_count < vc->n_woken)
  1559. kvmppc_wait_for_nap(vc);
  1560. for (i = 0; i < threads_per_subcore; ++i)
  1561. kvmppc_release_hwthread(vc->pcpu + i);
  1562. /* prevent other vcpu threads from doing kvmppc_start_thread() now */
  1563. vc->vcore_state = VCORE_EXITING;
  1564. spin_unlock(&vc->lock);
  1565. srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
  1566. /* make sure updates to secondary vcpu structs are visible now */
  1567. smp_mb();
  1568. kvm_guest_exit();
  1569. preempt_enable();
  1570. cond_resched();
  1571. spin_lock(&vc->lock);
  1572. now = get_tb();
  1573. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1574. /* cancel pending dec exception if dec is positive */
  1575. if (now < vcpu->arch.dec_expires &&
  1576. kvmppc_core_pending_dec(vcpu))
  1577. kvmppc_core_dequeue_dec(vcpu);
  1578. ret = RESUME_GUEST;
  1579. if (vcpu->arch.trap)
  1580. ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
  1581. vcpu->arch.run_task);
  1582. vcpu->arch.ret = ret;
  1583. vcpu->arch.trap = 0;
  1584. if (vcpu->arch.ceded) {
  1585. if (!is_kvmppc_resume_guest(ret))
  1586. kvmppc_end_cede(vcpu);
  1587. else
  1588. kvmppc_set_timer(vcpu);
  1589. }
  1590. }
  1591. out:
  1592. vc->vcore_state = VCORE_INACTIVE;
  1593. list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
  1594. arch.run_list) {
  1595. if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
  1596. kvmppc_remove_runnable(vc, vcpu);
  1597. wake_up(&vcpu->arch.cpu_run);
  1598. }
  1599. }
  1600. }
  1601. /*
  1602. * Wait for some other vcpu thread to execute us, and
  1603. * wake us up when we need to handle something in the host.
  1604. */
  1605. static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
  1606. {
  1607. DEFINE_WAIT(wait);
  1608. prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
  1609. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
  1610. schedule();
  1611. finish_wait(&vcpu->arch.cpu_run, &wait);
  1612. }
  1613. /*
  1614. * All the vcpus in this vcore are idle, so wait for a decrementer
  1615. * or external interrupt to one of the vcpus. vc->lock is held.
  1616. */
  1617. static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
  1618. {
  1619. DEFINE_WAIT(wait);
  1620. prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
  1621. vc->vcore_state = VCORE_SLEEPING;
  1622. spin_unlock(&vc->lock);
  1623. schedule();
  1624. finish_wait(&vc->wq, &wait);
  1625. spin_lock(&vc->lock);
  1626. vc->vcore_state = VCORE_INACTIVE;
  1627. }
  1628. static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1629. {
  1630. int n_ceded;
  1631. struct kvmppc_vcore *vc;
  1632. struct kvm_vcpu *v, *vn;
  1633. kvm_run->exit_reason = 0;
  1634. vcpu->arch.ret = RESUME_GUEST;
  1635. vcpu->arch.trap = 0;
  1636. kvmppc_update_vpas(vcpu);
  1637. /*
  1638. * Synchronize with other threads in this virtual core
  1639. */
  1640. vc = vcpu->arch.vcore;
  1641. spin_lock(&vc->lock);
  1642. vcpu->arch.ceded = 0;
  1643. vcpu->arch.run_task = current;
  1644. vcpu->arch.kvm_run = kvm_run;
  1645. vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
  1646. vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
  1647. vcpu->arch.busy_preempt = TB_NIL;
  1648. list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
  1649. ++vc->n_runnable;
  1650. /*
  1651. * This happens the first time this is called for a vcpu.
  1652. * If the vcore is already running, we may be able to start
  1653. * this thread straight away and have it join in.
  1654. */
  1655. if (!signal_pending(current)) {
  1656. if (vc->vcore_state == VCORE_RUNNING &&
  1657. VCORE_EXIT_COUNT(vc) == 0) {
  1658. kvmppc_create_dtl_entry(vcpu, vc);
  1659. kvmppc_start_thread(vcpu);
  1660. } else if (vc->vcore_state == VCORE_SLEEPING) {
  1661. wake_up(&vc->wq);
  1662. }
  1663. }
  1664. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
  1665. !signal_pending(current)) {
  1666. if (vc->vcore_state != VCORE_INACTIVE) {
  1667. spin_unlock(&vc->lock);
  1668. kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
  1669. spin_lock(&vc->lock);
  1670. continue;
  1671. }
  1672. list_for_each_entry_safe(v, vn, &vc->runnable_threads,
  1673. arch.run_list) {
  1674. kvmppc_core_prepare_to_enter(v);
  1675. if (signal_pending(v->arch.run_task)) {
  1676. kvmppc_remove_runnable(vc, v);
  1677. v->stat.signal_exits++;
  1678. v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
  1679. v->arch.ret = -EINTR;
  1680. wake_up(&v->arch.cpu_run);
  1681. }
  1682. }
  1683. if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  1684. break;
  1685. vc->runner = vcpu;
  1686. n_ceded = 0;
  1687. list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
  1688. if (!v->arch.pending_exceptions)
  1689. n_ceded += v->arch.ceded;
  1690. else
  1691. v->arch.ceded = 0;
  1692. }
  1693. if (n_ceded == vc->n_runnable)
  1694. kvmppc_vcore_blocked(vc);
  1695. else
  1696. kvmppc_run_core(vc);
  1697. vc->runner = NULL;
  1698. }
  1699. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
  1700. (vc->vcore_state == VCORE_RUNNING ||
  1701. vc->vcore_state == VCORE_EXITING)) {
  1702. spin_unlock(&vc->lock);
  1703. kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
  1704. spin_lock(&vc->lock);
  1705. }
  1706. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
  1707. kvmppc_remove_runnable(vc, vcpu);
  1708. vcpu->stat.signal_exits++;
  1709. kvm_run->exit_reason = KVM_EXIT_INTR;
  1710. vcpu->arch.ret = -EINTR;
  1711. }
  1712. if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
  1713. /* Wake up some vcpu to run the core */
  1714. v = list_first_entry(&vc->runnable_threads,
  1715. struct kvm_vcpu, arch.run_list);
  1716. wake_up(&v->arch.cpu_run);
  1717. }
  1718. spin_unlock(&vc->lock);
  1719. return vcpu->arch.ret;
  1720. }
  1721. static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1722. {
  1723. int r;
  1724. int srcu_idx;
  1725. if (!vcpu->arch.sane) {
  1726. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1727. return -EINVAL;
  1728. }
  1729. kvmppc_core_prepare_to_enter(vcpu);
  1730. /* No need to go into the guest when all we'll do is come back out */
  1731. if (signal_pending(current)) {
  1732. run->exit_reason = KVM_EXIT_INTR;
  1733. return -EINTR;
  1734. }
  1735. atomic_inc(&vcpu->kvm->arch.vcpus_running);
  1736. /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
  1737. smp_mb();
  1738. /* On the first time here, set up HTAB and VRMA or RMA */
  1739. if (!vcpu->kvm->arch.rma_setup_done) {
  1740. r = kvmppc_hv_setup_htab_rma(vcpu);
  1741. if (r)
  1742. goto out;
  1743. }
  1744. flush_fp_to_thread(current);
  1745. flush_altivec_to_thread(current);
  1746. flush_vsx_to_thread(current);
  1747. vcpu->arch.wqp = &vcpu->arch.vcore->wq;
  1748. vcpu->arch.pgdir = current->mm->pgd;
  1749. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  1750. do {
  1751. r = kvmppc_run_vcpu(run, vcpu);
  1752. if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
  1753. !(vcpu->arch.shregs.msr & MSR_PR)) {
  1754. r = kvmppc_pseries_do_hcall(vcpu);
  1755. kvmppc_core_prepare_to_enter(vcpu);
  1756. } else if (r == RESUME_PAGE_FAULT) {
  1757. srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  1758. r = kvmppc_book3s_hv_page_fault(run, vcpu,
  1759. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  1760. srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
  1761. }
  1762. } while (is_kvmppc_resume_guest(r));
  1763. out:
  1764. vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
  1765. atomic_dec(&vcpu->kvm->arch.vcpus_running);
  1766. return r;
  1767. }
  1768. /* Work out RMLS (real mode limit selector) field value for a given RMA size.
  1769. Assumes POWER7 or PPC970. */
  1770. static inline int lpcr_rmls(unsigned long rma_size)
  1771. {
  1772. switch (rma_size) {
  1773. case 32ul << 20: /* 32 MB */
  1774. if (cpu_has_feature(CPU_FTR_ARCH_206))
  1775. return 8; /* only supported on POWER7 */
  1776. return -1;
  1777. case 64ul << 20: /* 64 MB */
  1778. return 3;
  1779. case 128ul << 20: /* 128 MB */
  1780. return 7;
  1781. case 256ul << 20: /* 256 MB */
  1782. return 4;
  1783. case 1ul << 30: /* 1 GB */
  1784. return 2;
  1785. case 16ul << 30: /* 16 GB */
  1786. return 1;
  1787. case 256ul << 30: /* 256 GB */
  1788. return 0;
  1789. default:
  1790. return -1;
  1791. }
  1792. }
  1793. static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1794. {
  1795. struct page *page;
  1796. struct kvm_rma_info *ri = vma->vm_file->private_data;
  1797. if (vmf->pgoff >= kvm_rma_pages)
  1798. return VM_FAULT_SIGBUS;
  1799. page = pfn_to_page(ri->base_pfn + vmf->pgoff);
  1800. get_page(page);
  1801. vmf->page = page;
  1802. return 0;
  1803. }
  1804. static const struct vm_operations_struct kvm_rma_vm_ops = {
  1805. .fault = kvm_rma_fault,
  1806. };
  1807. static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
  1808. {
  1809. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1810. vma->vm_ops = &kvm_rma_vm_ops;
  1811. return 0;
  1812. }
  1813. static int kvm_rma_release(struct inode *inode, struct file *filp)
  1814. {
  1815. struct kvm_rma_info *ri = filp->private_data;
  1816. kvm_release_rma(ri);
  1817. return 0;
  1818. }
  1819. static const struct file_operations kvm_rma_fops = {
  1820. .mmap = kvm_rma_mmap,
  1821. .release = kvm_rma_release,
  1822. };
  1823. static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
  1824. struct kvm_allocate_rma *ret)
  1825. {
  1826. long fd;
  1827. struct kvm_rma_info *ri;
  1828. /*
  1829. * Only do this on PPC970 in HV mode
  1830. */
  1831. if (!cpu_has_feature(CPU_FTR_HVMODE) ||
  1832. !cpu_has_feature(CPU_FTR_ARCH_201))
  1833. return -EINVAL;
  1834. if (!kvm_rma_pages)
  1835. return -EINVAL;
  1836. ri = kvm_alloc_rma();
  1837. if (!ri)
  1838. return -ENOMEM;
  1839. fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
  1840. if (fd < 0)
  1841. kvm_release_rma(ri);
  1842. ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
  1843. return fd;
  1844. }
  1845. static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
  1846. int linux_psize)
  1847. {
  1848. struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
  1849. if (!def->shift)
  1850. return;
  1851. (*sps)->page_shift = def->shift;
  1852. (*sps)->slb_enc = def->sllp;
  1853. (*sps)->enc[0].page_shift = def->shift;
  1854. (*sps)->enc[0].pte_enc = def->penc[linux_psize];
  1855. /*
  1856. * Add 16MB MPSS support if host supports it
  1857. */
  1858. if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
  1859. (*sps)->enc[1].page_shift = 24;
  1860. (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
  1861. }
  1862. (*sps)++;
  1863. }
  1864. static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
  1865. struct kvm_ppc_smmu_info *info)
  1866. {
  1867. struct kvm_ppc_one_seg_page_size *sps;
  1868. info->flags = KVM_PPC_PAGE_SIZES_REAL;
  1869. if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
  1870. info->flags |= KVM_PPC_1T_SEGMENTS;
  1871. info->slb_size = mmu_slb_size;
  1872. /* We only support these sizes for now, and no muti-size segments */
  1873. sps = &info->sps[0];
  1874. kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
  1875. kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
  1876. kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
  1877. return 0;
  1878. }
  1879. /*
  1880. * Get (and clear) the dirty memory log for a memory slot.
  1881. */
  1882. static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
  1883. struct kvm_dirty_log *log)
  1884. {
  1885. struct kvm_memory_slot *memslot;
  1886. int r;
  1887. unsigned long n;
  1888. mutex_lock(&kvm->slots_lock);
  1889. r = -EINVAL;
  1890. if (log->slot >= KVM_USER_MEM_SLOTS)
  1891. goto out;
  1892. memslot = id_to_memslot(kvm->memslots, log->slot);
  1893. r = -ENOENT;
  1894. if (!memslot->dirty_bitmap)
  1895. goto out;
  1896. n = kvm_dirty_bitmap_bytes(memslot);
  1897. memset(memslot->dirty_bitmap, 0, n);
  1898. r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
  1899. if (r)
  1900. goto out;
  1901. r = -EFAULT;
  1902. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1903. goto out;
  1904. r = 0;
  1905. out:
  1906. mutex_unlock(&kvm->slots_lock);
  1907. return r;
  1908. }
  1909. static void unpin_slot(struct kvm_memory_slot *memslot)
  1910. {
  1911. unsigned long *physp;
  1912. unsigned long j, npages, pfn;
  1913. struct page *page;
  1914. physp = memslot->arch.slot_phys;
  1915. npages = memslot->npages;
  1916. if (!physp)
  1917. return;
  1918. for (j = 0; j < npages; j++) {
  1919. if (!(physp[j] & KVMPPC_GOT_PAGE))
  1920. continue;
  1921. pfn = physp[j] >> PAGE_SHIFT;
  1922. page = pfn_to_page(pfn);
  1923. SetPageDirty(page);
  1924. put_page(page);
  1925. }
  1926. }
  1927. static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
  1928. struct kvm_memory_slot *dont)
  1929. {
  1930. if (!dont || free->arch.rmap != dont->arch.rmap) {
  1931. vfree(free->arch.rmap);
  1932. free->arch.rmap = NULL;
  1933. }
  1934. if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
  1935. unpin_slot(free);
  1936. vfree(free->arch.slot_phys);
  1937. free->arch.slot_phys = NULL;
  1938. }
  1939. }
  1940. static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
  1941. unsigned long npages)
  1942. {
  1943. slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
  1944. if (!slot->arch.rmap)
  1945. return -ENOMEM;
  1946. slot->arch.slot_phys = NULL;
  1947. return 0;
  1948. }
  1949. static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
  1950. struct kvm_memory_slot *memslot,
  1951. struct kvm_userspace_memory_region *mem)
  1952. {
  1953. unsigned long *phys;
  1954. /* Allocate a slot_phys array if needed */
  1955. phys = memslot->arch.slot_phys;
  1956. if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
  1957. phys = vzalloc(memslot->npages * sizeof(unsigned long));
  1958. if (!phys)
  1959. return -ENOMEM;
  1960. memslot->arch.slot_phys = phys;
  1961. }
  1962. return 0;
  1963. }
  1964. static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
  1965. struct kvm_userspace_memory_region *mem,
  1966. const struct kvm_memory_slot *old)
  1967. {
  1968. unsigned long npages = mem->memory_size >> PAGE_SHIFT;
  1969. struct kvm_memory_slot *memslot;
  1970. if (npages && old->npages) {
  1971. /*
  1972. * If modifying a memslot, reset all the rmap dirty bits.
  1973. * If this is a new memslot, we don't need to do anything
  1974. * since the rmap array starts out as all zeroes,
  1975. * i.e. no pages are dirty.
  1976. */
  1977. memslot = id_to_memslot(kvm->memslots, mem->slot);
  1978. kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
  1979. }
  1980. }
  1981. /*
  1982. * Update LPCR values in kvm->arch and in vcores.
  1983. * Caller must hold kvm->lock.
  1984. */
  1985. void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
  1986. {
  1987. long int i;
  1988. u32 cores_done = 0;
  1989. if ((kvm->arch.lpcr & mask) == lpcr)
  1990. return;
  1991. kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
  1992. for (i = 0; i < KVM_MAX_VCORES; ++i) {
  1993. struct kvmppc_vcore *vc = kvm->arch.vcores[i];
  1994. if (!vc)
  1995. continue;
  1996. spin_lock(&vc->lock);
  1997. vc->lpcr = (vc->lpcr & ~mask) | lpcr;
  1998. spin_unlock(&vc->lock);
  1999. if (++cores_done >= kvm->arch.online_vcores)
  2000. break;
  2001. }
  2002. }
  2003. static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
  2004. {
  2005. return;
  2006. }
  2007. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
  2008. {
  2009. int err = 0;
  2010. struct kvm *kvm = vcpu->kvm;
  2011. struct kvm_rma_info *ri = NULL;
  2012. unsigned long hva;
  2013. struct kvm_memory_slot *memslot;
  2014. struct vm_area_struct *vma;
  2015. unsigned long lpcr = 0, senc;
  2016. unsigned long lpcr_mask = 0;
  2017. unsigned long psize, porder;
  2018. unsigned long rma_size;
  2019. unsigned long rmls;
  2020. unsigned long *physp;
  2021. unsigned long i, npages;
  2022. int srcu_idx;
  2023. mutex_lock(&kvm->lock);
  2024. if (kvm->arch.rma_setup_done)
  2025. goto out; /* another vcpu beat us to it */
  2026. /* Allocate hashed page table (if not done already) and reset it */
  2027. if (!kvm->arch.hpt_virt) {
  2028. err = kvmppc_alloc_hpt(kvm, NULL);
  2029. if (err) {
  2030. pr_err("KVM: Couldn't alloc HPT\n");
  2031. goto out;
  2032. }
  2033. }
  2034. /* Look up the memslot for guest physical address 0 */
  2035. srcu_idx = srcu_read_lock(&kvm->srcu);
  2036. memslot = gfn_to_memslot(kvm, 0);
  2037. /* We must have some memory at 0 by now */
  2038. err = -EINVAL;
  2039. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  2040. goto out_srcu;
  2041. /* Look up the VMA for the start of this memory slot */
  2042. hva = memslot->userspace_addr;
  2043. down_read(&current->mm->mmap_sem);
  2044. vma = find_vma(current->mm, hva);
  2045. if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
  2046. goto up_out;
  2047. psize = vma_kernel_pagesize(vma);
  2048. porder = __ilog2(psize);
  2049. /* Is this one of our preallocated RMAs? */
  2050. if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
  2051. hva == vma->vm_start)
  2052. ri = vma->vm_file->private_data;
  2053. up_read(&current->mm->mmap_sem);
  2054. if (!ri) {
  2055. /* On POWER7, use VRMA; on PPC970, give up */
  2056. err = -EPERM;
  2057. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  2058. pr_err("KVM: CPU requires an RMO\n");
  2059. goto out_srcu;
  2060. }
  2061. /* We can handle 4k, 64k or 16M pages in the VRMA */
  2062. err = -EINVAL;
  2063. if (!(psize == 0x1000 || psize == 0x10000 ||
  2064. psize == 0x1000000))
  2065. goto out_srcu;
  2066. /* Update VRMASD field in the LPCR */
  2067. senc = slb_pgsize_encoding(psize);
  2068. kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
  2069. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  2070. lpcr_mask = LPCR_VRMASD;
  2071. /* the -4 is to account for senc values starting at 0x10 */
  2072. lpcr = senc << (LPCR_VRMASD_SH - 4);
  2073. /* Create HPTEs in the hash page table for the VRMA */
  2074. kvmppc_map_vrma(vcpu, memslot, porder);
  2075. } else {
  2076. /* Set up to use an RMO region */
  2077. rma_size = kvm_rma_pages;
  2078. if (rma_size > memslot->npages)
  2079. rma_size = memslot->npages;
  2080. rma_size <<= PAGE_SHIFT;
  2081. rmls = lpcr_rmls(rma_size);
  2082. err = -EINVAL;
  2083. if ((long)rmls < 0) {
  2084. pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
  2085. goto out_srcu;
  2086. }
  2087. atomic_inc(&ri->use_count);
  2088. kvm->arch.rma = ri;
  2089. /* Update LPCR and RMOR */
  2090. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  2091. /* PPC970; insert RMLS value (split field) in HID4 */
  2092. lpcr_mask = (1ul << HID4_RMLS0_SH) |
  2093. (3ul << HID4_RMLS2_SH) | HID4_RMOR;
  2094. lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
  2095. ((rmls & 3) << HID4_RMLS2_SH);
  2096. /* RMOR is also in HID4 */
  2097. lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
  2098. << HID4_RMOR_SH;
  2099. } else {
  2100. /* POWER7 */
  2101. lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
  2102. lpcr = rmls << LPCR_RMLS_SH;
  2103. kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
  2104. }
  2105. pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
  2106. ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
  2107. /* Initialize phys addrs of pages in RMO */
  2108. npages = kvm_rma_pages;
  2109. porder = __ilog2(npages);
  2110. physp = memslot->arch.slot_phys;
  2111. if (physp) {
  2112. if (npages > memslot->npages)
  2113. npages = memslot->npages;
  2114. spin_lock(&kvm->arch.slot_phys_lock);
  2115. for (i = 0; i < npages; ++i)
  2116. physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
  2117. porder;
  2118. spin_unlock(&kvm->arch.slot_phys_lock);
  2119. }
  2120. }
  2121. kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
  2122. /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
  2123. smp_wmb();
  2124. kvm->arch.rma_setup_done = 1;
  2125. err = 0;
  2126. out_srcu:
  2127. srcu_read_unlock(&kvm->srcu, srcu_idx);
  2128. out:
  2129. mutex_unlock(&kvm->lock);
  2130. return err;
  2131. up_out:
  2132. up_read(&current->mm->mmap_sem);
  2133. goto out_srcu;
  2134. }
  2135. static int kvmppc_core_init_vm_hv(struct kvm *kvm)
  2136. {
  2137. unsigned long lpcr, lpid;
  2138. /* Allocate the guest's logical partition ID */
  2139. lpid = kvmppc_alloc_lpid();
  2140. if ((long)lpid < 0)
  2141. return -ENOMEM;
  2142. kvm->arch.lpid = lpid;
  2143. /*
  2144. * Since we don't flush the TLB when tearing down a VM,
  2145. * and this lpid might have previously been used,
  2146. * make sure we flush on each core before running the new VM.
  2147. */
  2148. cpumask_setall(&kvm->arch.need_tlb_flush);
  2149. /* Start out with the default set of hcalls enabled */
  2150. memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
  2151. sizeof(kvm->arch.enabled_hcalls));
  2152. kvm->arch.rma = NULL;
  2153. kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
  2154. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  2155. /* PPC970; HID4 is effectively the LPCR */
  2156. kvm->arch.host_lpid = 0;
  2157. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
  2158. lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
  2159. lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
  2160. ((lpid & 0xf) << HID4_LPID5_SH);
  2161. } else {
  2162. /* POWER7; init LPCR for virtual RMA mode */
  2163. kvm->arch.host_lpid = mfspr(SPRN_LPID);
  2164. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
  2165. lpcr &= LPCR_PECE | LPCR_LPES;
  2166. lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
  2167. LPCR_VPM0 | LPCR_VPM1;
  2168. kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
  2169. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  2170. /* On POWER8 turn on online bit to enable PURR/SPURR */
  2171. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  2172. lpcr |= LPCR_ONL;
  2173. }
  2174. kvm->arch.lpcr = lpcr;
  2175. kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
  2176. spin_lock_init(&kvm->arch.slot_phys_lock);
  2177. /*
  2178. * Track that we now have a HV mode VM active. This blocks secondary
  2179. * CPU threads from coming online.
  2180. */
  2181. kvm_hv_vm_activated();
  2182. return 0;
  2183. }
  2184. static void kvmppc_free_vcores(struct kvm *kvm)
  2185. {
  2186. long int i;
  2187. for (i = 0; i < KVM_MAX_VCORES; ++i) {
  2188. if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
  2189. struct kvmppc_vcore *vc = kvm->arch.vcores[i];
  2190. free_pages((unsigned long)vc->mpp_buffer,
  2191. MPP_BUFFER_ORDER);
  2192. }
  2193. kfree(kvm->arch.vcores[i]);
  2194. }
  2195. kvm->arch.online_vcores = 0;
  2196. }
  2197. static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
  2198. {
  2199. kvm_hv_vm_deactivated();
  2200. kvmppc_free_vcores(kvm);
  2201. if (kvm->arch.rma) {
  2202. kvm_release_rma(kvm->arch.rma);
  2203. kvm->arch.rma = NULL;
  2204. }
  2205. kvmppc_free_hpt(kvm);
  2206. }
  2207. /* We don't need to emulate any privileged instructions or dcbz */
  2208. static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
  2209. unsigned int inst, int *advance)
  2210. {
  2211. return EMULATE_FAIL;
  2212. }
  2213. static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
  2214. ulong spr_val)
  2215. {
  2216. return EMULATE_FAIL;
  2217. }
  2218. static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
  2219. ulong *spr_val)
  2220. {
  2221. return EMULATE_FAIL;
  2222. }
  2223. static int kvmppc_core_check_processor_compat_hv(void)
  2224. {
  2225. if (!cpu_has_feature(CPU_FTR_HVMODE))
  2226. return -EIO;
  2227. return 0;
  2228. }
  2229. static long kvm_arch_vm_ioctl_hv(struct file *filp,
  2230. unsigned int ioctl, unsigned long arg)
  2231. {
  2232. struct kvm *kvm __maybe_unused = filp->private_data;
  2233. void __user *argp = (void __user *)arg;
  2234. long r;
  2235. switch (ioctl) {
  2236. case KVM_ALLOCATE_RMA: {
  2237. struct kvm_allocate_rma rma;
  2238. struct kvm *kvm = filp->private_data;
  2239. r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
  2240. if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
  2241. r = -EFAULT;
  2242. break;
  2243. }
  2244. case KVM_PPC_ALLOCATE_HTAB: {
  2245. u32 htab_order;
  2246. r = -EFAULT;
  2247. if (get_user(htab_order, (u32 __user *)argp))
  2248. break;
  2249. r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
  2250. if (r)
  2251. break;
  2252. r = -EFAULT;
  2253. if (put_user(htab_order, (u32 __user *)argp))
  2254. break;
  2255. r = 0;
  2256. break;
  2257. }
  2258. case KVM_PPC_GET_HTAB_FD: {
  2259. struct kvm_get_htab_fd ghf;
  2260. r = -EFAULT;
  2261. if (copy_from_user(&ghf, argp, sizeof(ghf)))
  2262. break;
  2263. r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
  2264. break;
  2265. }
  2266. default:
  2267. r = -ENOTTY;
  2268. }
  2269. return r;
  2270. }
  2271. /*
  2272. * List of hcall numbers to enable by default.
  2273. * For compatibility with old userspace, we enable by default
  2274. * all hcalls that were implemented before the hcall-enabling
  2275. * facility was added. Note this list should not include H_RTAS.
  2276. */
  2277. static unsigned int default_hcall_list[] = {
  2278. H_REMOVE,
  2279. H_ENTER,
  2280. H_READ,
  2281. H_PROTECT,
  2282. H_BULK_REMOVE,
  2283. H_GET_TCE,
  2284. H_PUT_TCE,
  2285. H_SET_DABR,
  2286. H_SET_XDABR,
  2287. H_CEDE,
  2288. H_PROD,
  2289. H_CONFER,
  2290. H_REGISTER_VPA,
  2291. #ifdef CONFIG_KVM_XICS
  2292. H_EOI,
  2293. H_CPPR,
  2294. H_IPI,
  2295. H_IPOLL,
  2296. H_XIRR,
  2297. H_XIRR_X,
  2298. #endif
  2299. 0
  2300. };
  2301. static void init_default_hcalls(void)
  2302. {
  2303. int i;
  2304. unsigned int hcall;
  2305. for (i = 0; default_hcall_list[i]; ++i) {
  2306. hcall = default_hcall_list[i];
  2307. WARN_ON(!kvmppc_hcall_impl_hv(hcall));
  2308. __set_bit(hcall / 4, default_enabled_hcalls);
  2309. }
  2310. }
  2311. static struct kvmppc_ops kvm_ops_hv = {
  2312. .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
  2313. .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
  2314. .get_one_reg = kvmppc_get_one_reg_hv,
  2315. .set_one_reg = kvmppc_set_one_reg_hv,
  2316. .vcpu_load = kvmppc_core_vcpu_load_hv,
  2317. .vcpu_put = kvmppc_core_vcpu_put_hv,
  2318. .set_msr = kvmppc_set_msr_hv,
  2319. .vcpu_run = kvmppc_vcpu_run_hv,
  2320. .vcpu_create = kvmppc_core_vcpu_create_hv,
  2321. .vcpu_free = kvmppc_core_vcpu_free_hv,
  2322. .check_requests = kvmppc_core_check_requests_hv,
  2323. .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
  2324. .flush_memslot = kvmppc_core_flush_memslot_hv,
  2325. .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
  2326. .commit_memory_region = kvmppc_core_commit_memory_region_hv,
  2327. .unmap_hva = kvm_unmap_hva_hv,
  2328. .unmap_hva_range = kvm_unmap_hva_range_hv,
  2329. .age_hva = kvm_age_hva_hv,
  2330. .test_age_hva = kvm_test_age_hva_hv,
  2331. .set_spte_hva = kvm_set_spte_hva_hv,
  2332. .mmu_destroy = kvmppc_mmu_destroy_hv,
  2333. .free_memslot = kvmppc_core_free_memslot_hv,
  2334. .create_memslot = kvmppc_core_create_memslot_hv,
  2335. .init_vm = kvmppc_core_init_vm_hv,
  2336. .destroy_vm = kvmppc_core_destroy_vm_hv,
  2337. .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
  2338. .emulate_op = kvmppc_core_emulate_op_hv,
  2339. .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
  2340. .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
  2341. .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
  2342. .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
  2343. .hcall_implemented = kvmppc_hcall_impl_hv,
  2344. };
  2345. static int kvmppc_book3s_init_hv(void)
  2346. {
  2347. int r;
  2348. /*
  2349. * FIXME!! Do we need to check on all cpus ?
  2350. */
  2351. r = kvmppc_core_check_processor_compat_hv();
  2352. if (r < 0)
  2353. return -ENODEV;
  2354. kvm_ops_hv.owner = THIS_MODULE;
  2355. kvmppc_hv_ops = &kvm_ops_hv;
  2356. init_default_hcalls();
  2357. r = kvmppc_mmu_hv_init();
  2358. return r;
  2359. }
  2360. static void kvmppc_book3s_exit_hv(void)
  2361. {
  2362. kvmppc_hv_ops = NULL;
  2363. }
  2364. module_init(kvmppc_book3s_init_hv);
  2365. module_exit(kvmppc_book3s_exit_hv);
  2366. MODULE_LICENSE("GPL");
  2367. MODULE_ALIAS_MISCDEV(KVM_MINOR);
  2368. MODULE_ALIAS("devname:kvm");