prom.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824
  1. /*
  2. * Procedures for creating, accessing and interpreting the device tree.
  3. *
  4. * Paul Mackerras August 1996.
  5. * Copyright (C) 1996-2005 Paul Mackerras.
  6. *
  7. * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
  8. * {engebret|bergner}@us.ibm.com
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. */
  15. #undef DEBUG
  16. #include <stdarg.h>
  17. #include <linux/kernel.h>
  18. #include <linux/string.h>
  19. #include <linux/init.h>
  20. #include <linux/threads.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/types.h>
  23. #include <linux/pci.h>
  24. #include <linux/stringify.h>
  25. #include <linux/delay.h>
  26. #include <linux/initrd.h>
  27. #include <linux/bitops.h>
  28. #include <linux/export.h>
  29. #include <linux/kexec.h>
  30. #include <linux/irq.h>
  31. #include <linux/memblock.h>
  32. #include <linux/of.h>
  33. #include <linux/of_fdt.h>
  34. #include <linux/libfdt.h>
  35. #include <asm/prom.h>
  36. #include <asm/rtas.h>
  37. #include <asm/page.h>
  38. #include <asm/processor.h>
  39. #include <asm/irq.h>
  40. #include <asm/io.h>
  41. #include <asm/kdump.h>
  42. #include <asm/smp.h>
  43. #include <asm/mmu.h>
  44. #include <asm/paca.h>
  45. #include <asm/pgtable.h>
  46. #include <asm/pci.h>
  47. #include <asm/iommu.h>
  48. #include <asm/btext.h>
  49. #include <asm/sections.h>
  50. #include <asm/machdep.h>
  51. #include <asm/pci-bridge.h>
  52. #include <asm/kexec.h>
  53. #include <asm/opal.h>
  54. #include <asm/fadump.h>
  55. #include <asm/debug.h>
  56. #include <mm/mmu_decl.h>
  57. #ifdef DEBUG
  58. #define DBG(fmt...) printk(KERN_ERR fmt)
  59. #else
  60. #define DBG(fmt...)
  61. #endif
  62. #ifdef CONFIG_PPC64
  63. int __initdata iommu_is_off;
  64. int __initdata iommu_force_on;
  65. unsigned long tce_alloc_start, tce_alloc_end;
  66. u64 ppc64_rma_size;
  67. #endif
  68. static phys_addr_t first_memblock_size;
  69. static int __initdata boot_cpu_count;
  70. static int __init early_parse_mem(char *p)
  71. {
  72. if (!p)
  73. return 1;
  74. memory_limit = PAGE_ALIGN(memparse(p, &p));
  75. DBG("memory limit = 0x%llx\n", memory_limit);
  76. return 0;
  77. }
  78. early_param("mem", early_parse_mem);
  79. /*
  80. * overlaps_initrd - check for overlap with page aligned extension of
  81. * initrd.
  82. */
  83. static inline int overlaps_initrd(unsigned long start, unsigned long size)
  84. {
  85. #ifdef CONFIG_BLK_DEV_INITRD
  86. if (!initrd_start)
  87. return 0;
  88. return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
  89. start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
  90. #else
  91. return 0;
  92. #endif
  93. }
  94. /**
  95. * move_device_tree - move tree to an unused area, if needed.
  96. *
  97. * The device tree may be allocated beyond our memory limit, or inside the
  98. * crash kernel region for kdump, or within the page aligned range of initrd.
  99. * If so, move it out of the way.
  100. */
  101. static void __init move_device_tree(void)
  102. {
  103. unsigned long start, size;
  104. void *p;
  105. DBG("-> move_device_tree\n");
  106. start = __pa(initial_boot_params);
  107. size = fdt_totalsize(initial_boot_params);
  108. if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
  109. overlaps_crashkernel(start, size) ||
  110. overlaps_initrd(start, size)) {
  111. p = __va(memblock_alloc(size, PAGE_SIZE));
  112. memcpy(p, initial_boot_params, size);
  113. initial_boot_params = p;
  114. DBG("Moved device tree to 0x%p\n", p);
  115. }
  116. DBG("<- move_device_tree\n");
  117. }
  118. /*
  119. * ibm,pa-features is a per-cpu property that contains a string of
  120. * attribute descriptors, each of which has a 2 byte header plus up
  121. * to 254 bytes worth of processor attribute bits. First header
  122. * byte specifies the number of bytes following the header.
  123. * Second header byte is an "attribute-specifier" type, of which
  124. * zero is the only currently-defined value.
  125. * Implementation: Pass in the byte and bit offset for the feature
  126. * that we are interested in. The function will return -1 if the
  127. * pa-features property is missing, or a 1/0 to indicate if the feature
  128. * is supported/not supported. Note that the bit numbers are
  129. * big-endian to match the definition in PAPR.
  130. */
  131. static struct ibm_pa_feature {
  132. unsigned long cpu_features; /* CPU_FTR_xxx bit */
  133. unsigned long mmu_features; /* MMU_FTR_xxx bit */
  134. unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
  135. unsigned char pabyte; /* byte number in ibm,pa-features */
  136. unsigned char pabit; /* bit number (big-endian) */
  137. unsigned char invert; /* if 1, pa bit set => clear feature */
  138. } ibm_pa_features[] __initdata = {
  139. {0, 0, PPC_FEATURE_HAS_MMU, 0, 0, 0},
  140. {0, 0, PPC_FEATURE_HAS_FPU, 0, 1, 0},
  141. {CPU_FTR_CTRL, 0, 0, 0, 3, 0},
  142. {CPU_FTR_NOEXECUTE, 0, 0, 0, 6, 0},
  143. {CPU_FTR_NODSISRALIGN, 0, 0, 1, 1, 1},
  144. {0, MMU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0},
  145. {CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
  146. };
  147. static void __init scan_features(unsigned long node, const unsigned char *ftrs,
  148. unsigned long tablelen,
  149. struct ibm_pa_feature *fp,
  150. unsigned long ft_size)
  151. {
  152. unsigned long i, len, bit;
  153. /* find descriptor with type == 0 */
  154. for (;;) {
  155. if (tablelen < 3)
  156. return;
  157. len = 2 + ftrs[0];
  158. if (tablelen < len)
  159. return; /* descriptor 0 not found */
  160. if (ftrs[1] == 0)
  161. break;
  162. tablelen -= len;
  163. ftrs += len;
  164. }
  165. /* loop over bits we know about */
  166. for (i = 0; i < ft_size; ++i, ++fp) {
  167. if (fp->pabyte >= ftrs[0])
  168. continue;
  169. bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
  170. if (bit ^ fp->invert) {
  171. cur_cpu_spec->cpu_features |= fp->cpu_features;
  172. cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
  173. cur_cpu_spec->mmu_features |= fp->mmu_features;
  174. } else {
  175. cur_cpu_spec->cpu_features &= ~fp->cpu_features;
  176. cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
  177. cur_cpu_spec->mmu_features &= ~fp->mmu_features;
  178. }
  179. }
  180. }
  181. static void __init check_cpu_pa_features(unsigned long node)
  182. {
  183. const unsigned char *pa_ftrs;
  184. int tablelen;
  185. pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
  186. if (pa_ftrs == NULL)
  187. return;
  188. scan_features(node, pa_ftrs, tablelen,
  189. ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
  190. }
  191. #ifdef CONFIG_PPC_STD_MMU_64
  192. static void __init check_cpu_slb_size(unsigned long node)
  193. {
  194. const __be32 *slb_size_ptr;
  195. slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL);
  196. if (slb_size_ptr != NULL) {
  197. mmu_slb_size = be32_to_cpup(slb_size_ptr);
  198. return;
  199. }
  200. slb_size_ptr = of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
  201. if (slb_size_ptr != NULL) {
  202. mmu_slb_size = be32_to_cpup(slb_size_ptr);
  203. }
  204. }
  205. #else
  206. #define check_cpu_slb_size(node) do { } while(0)
  207. #endif
  208. static struct feature_property {
  209. const char *name;
  210. u32 min_value;
  211. unsigned long cpu_feature;
  212. unsigned long cpu_user_ftr;
  213. } feature_properties[] __initdata = {
  214. #ifdef CONFIG_ALTIVEC
  215. {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
  216. {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
  217. #endif /* CONFIG_ALTIVEC */
  218. #ifdef CONFIG_VSX
  219. /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
  220. {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
  221. #endif /* CONFIG_VSX */
  222. #ifdef CONFIG_PPC64
  223. {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
  224. {"ibm,purr", 1, CPU_FTR_PURR, 0},
  225. {"ibm,spurr", 1, CPU_FTR_SPURR, 0},
  226. #endif /* CONFIG_PPC64 */
  227. };
  228. #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
  229. static inline void identical_pvr_fixup(unsigned long node)
  230. {
  231. unsigned int pvr;
  232. const char *model = of_get_flat_dt_prop(node, "model", NULL);
  233. /*
  234. * Since 440GR(x)/440EP(x) processors have the same pvr,
  235. * we check the node path and set bit 28 in the cur_cpu_spec
  236. * pvr for EP(x) processor version. This bit is always 0 in
  237. * the "real" pvr. Then we call identify_cpu again with
  238. * the new logical pvr to enable FPU support.
  239. */
  240. if (model && strstr(model, "440EP")) {
  241. pvr = cur_cpu_spec->pvr_value | 0x8;
  242. identify_cpu(0, pvr);
  243. DBG("Using logical pvr %x for %s\n", pvr, model);
  244. }
  245. }
  246. #else
  247. #define identical_pvr_fixup(node) do { } while(0)
  248. #endif
  249. static void __init check_cpu_feature_properties(unsigned long node)
  250. {
  251. unsigned long i;
  252. struct feature_property *fp = feature_properties;
  253. const __be32 *prop;
  254. for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
  255. prop = of_get_flat_dt_prop(node, fp->name, NULL);
  256. if (prop && be32_to_cpup(prop) >= fp->min_value) {
  257. cur_cpu_spec->cpu_features |= fp->cpu_feature;
  258. cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
  259. }
  260. }
  261. }
  262. static int __init early_init_dt_scan_cpus(unsigned long node,
  263. const char *uname, int depth,
  264. void *data)
  265. {
  266. const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
  267. const __be32 *prop;
  268. const __be32 *intserv;
  269. int i, nthreads;
  270. int len;
  271. int found = -1;
  272. int found_thread = 0;
  273. /* We are scanning "cpu" nodes only */
  274. if (type == NULL || strcmp(type, "cpu") != 0)
  275. return 0;
  276. /* Get physical cpuid */
  277. intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
  278. if (!intserv)
  279. intserv = of_get_flat_dt_prop(node, "reg", &len);
  280. nthreads = len / sizeof(int);
  281. /*
  282. * Now see if any of these threads match our boot cpu.
  283. * NOTE: This must match the parsing done in smp_setup_cpu_maps.
  284. */
  285. for (i = 0; i < nthreads; i++) {
  286. /*
  287. * version 2 of the kexec param format adds the phys cpuid of
  288. * booted proc.
  289. */
  290. if (fdt_version(initial_boot_params) >= 2) {
  291. if (be32_to_cpu(intserv[i]) ==
  292. fdt_boot_cpuid_phys(initial_boot_params)) {
  293. found = boot_cpu_count;
  294. found_thread = i;
  295. }
  296. } else {
  297. /*
  298. * Check if it's the boot-cpu, set it's hw index now,
  299. * unfortunately this format did not support booting
  300. * off secondary threads.
  301. */
  302. if (of_get_flat_dt_prop(node,
  303. "linux,boot-cpu", NULL) != NULL)
  304. found = boot_cpu_count;
  305. }
  306. #ifdef CONFIG_SMP
  307. /* logical cpu id is always 0 on UP kernels */
  308. boot_cpu_count++;
  309. #endif
  310. }
  311. /* Not the boot CPU */
  312. if (found < 0)
  313. return 0;
  314. DBG("boot cpu: logical %d physical %d\n", found,
  315. be32_to_cpu(intserv[found_thread]));
  316. boot_cpuid = found;
  317. set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
  318. /*
  319. * PAPR defines "logical" PVR values for cpus that
  320. * meet various levels of the architecture:
  321. * 0x0f000001 Architecture version 2.04
  322. * 0x0f000002 Architecture version 2.05
  323. * If the cpu-version property in the cpu node contains
  324. * such a value, we call identify_cpu again with the
  325. * logical PVR value in order to use the cpu feature
  326. * bits appropriate for the architecture level.
  327. *
  328. * A POWER6 partition in "POWER6 architected" mode
  329. * uses the 0x0f000002 PVR value; in POWER5+ mode
  330. * it uses 0x0f000001.
  331. */
  332. prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
  333. if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
  334. identify_cpu(0, be32_to_cpup(prop));
  335. identical_pvr_fixup(node);
  336. check_cpu_feature_properties(node);
  337. check_cpu_pa_features(node);
  338. check_cpu_slb_size(node);
  339. #ifdef CONFIG_PPC64
  340. if (nthreads > 1)
  341. cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
  342. else
  343. cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
  344. #endif
  345. return 0;
  346. }
  347. int __init early_init_dt_scan_chosen_ppc(unsigned long node, const char *uname,
  348. int depth, void *data)
  349. {
  350. const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
  351. /* Use common scan routine to determine if this is the chosen node */
  352. if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
  353. return 0;
  354. #ifdef CONFIG_PPC64
  355. /* check if iommu is forced on or off */
  356. if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
  357. iommu_is_off = 1;
  358. if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
  359. iommu_force_on = 1;
  360. #endif
  361. /* mem=x on the command line is the preferred mechanism */
  362. lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
  363. if (lprop)
  364. memory_limit = *lprop;
  365. #ifdef CONFIG_PPC64
  366. lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
  367. if (lprop)
  368. tce_alloc_start = *lprop;
  369. lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
  370. if (lprop)
  371. tce_alloc_end = *lprop;
  372. #endif
  373. #ifdef CONFIG_KEXEC
  374. lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
  375. if (lprop)
  376. crashk_res.start = *lprop;
  377. lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
  378. if (lprop)
  379. crashk_res.end = crashk_res.start + *lprop - 1;
  380. #endif
  381. /* break now */
  382. return 1;
  383. }
  384. #ifdef CONFIG_PPC_PSERIES
  385. /*
  386. * Interpret the ibm,dynamic-memory property in the
  387. * /ibm,dynamic-reconfiguration-memory node.
  388. * This contains a list of memory blocks along with NUMA affinity
  389. * information.
  390. */
  391. static int __init early_init_dt_scan_drconf_memory(unsigned long node)
  392. {
  393. const __be32 *dm, *ls, *usm;
  394. int l;
  395. unsigned long n, flags;
  396. u64 base, size, memblock_size;
  397. unsigned int is_kexec_kdump = 0, rngs;
  398. ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
  399. if (ls == NULL || l < dt_root_size_cells * sizeof(__be32))
  400. return 0;
  401. memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls);
  402. dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
  403. if (dm == NULL || l < sizeof(__be32))
  404. return 0;
  405. n = of_read_number(dm++, 1); /* number of entries */
  406. if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32))
  407. return 0;
  408. /* check if this is a kexec/kdump kernel. */
  409. usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory",
  410. &l);
  411. if (usm != NULL)
  412. is_kexec_kdump = 1;
  413. for (; n != 0; --n) {
  414. base = dt_mem_next_cell(dt_root_addr_cells, &dm);
  415. flags = of_read_number(&dm[3], 1);
  416. /* skip DRC index, pad, assoc. list index, flags */
  417. dm += 4;
  418. /* skip this block if the reserved bit is set in flags (0x80)
  419. or if the block is not assigned to this partition (0x8) */
  420. if ((flags & 0x80) || !(flags & 0x8))
  421. continue;
  422. size = memblock_size;
  423. rngs = 1;
  424. if (is_kexec_kdump) {
  425. /*
  426. * For each memblock in ibm,dynamic-memory, a corresponding
  427. * entry in linux,drconf-usable-memory property contains
  428. * a counter 'p' followed by 'p' (base, size) duple.
  429. * Now read the counter from
  430. * linux,drconf-usable-memory property
  431. */
  432. rngs = dt_mem_next_cell(dt_root_size_cells, &usm);
  433. if (!rngs) /* there are no (base, size) duple */
  434. continue;
  435. }
  436. do {
  437. if (is_kexec_kdump) {
  438. base = dt_mem_next_cell(dt_root_addr_cells,
  439. &usm);
  440. size = dt_mem_next_cell(dt_root_size_cells,
  441. &usm);
  442. }
  443. if (iommu_is_off) {
  444. if (base >= 0x80000000ul)
  445. continue;
  446. if ((base + size) > 0x80000000ul)
  447. size = 0x80000000ul - base;
  448. }
  449. memblock_add(base, size);
  450. } while (--rngs);
  451. }
  452. memblock_dump_all();
  453. return 0;
  454. }
  455. #else
  456. #define early_init_dt_scan_drconf_memory(node) 0
  457. #endif /* CONFIG_PPC_PSERIES */
  458. static int __init early_init_dt_scan_memory_ppc(unsigned long node,
  459. const char *uname,
  460. int depth, void *data)
  461. {
  462. if (depth == 1 &&
  463. strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
  464. return early_init_dt_scan_drconf_memory(node);
  465. return early_init_dt_scan_memory(node, uname, depth, data);
  466. }
  467. /*
  468. * For a relocatable kernel, we need to get the memstart_addr first,
  469. * then use it to calculate the virtual kernel start address. This has
  470. * to happen at a very early stage (before machine_init). In this case,
  471. * we just want to get the memstart_address and would not like to mess the
  472. * memblock at this stage. So introduce a variable to skip the memblock_add()
  473. * for this reason.
  474. */
  475. #ifdef CONFIG_RELOCATABLE
  476. static int add_mem_to_memblock = 1;
  477. #else
  478. #define add_mem_to_memblock 1
  479. #endif
  480. void __init early_init_dt_add_memory_arch(u64 base, u64 size)
  481. {
  482. #ifdef CONFIG_PPC64
  483. if (iommu_is_off) {
  484. if (base >= 0x80000000ul)
  485. return;
  486. if ((base + size) > 0x80000000ul)
  487. size = 0x80000000ul - base;
  488. }
  489. #endif
  490. /* Keep track of the beginning of memory -and- the size of
  491. * the very first block in the device-tree as it represents
  492. * the RMA on ppc64 server
  493. */
  494. if (base < memstart_addr) {
  495. memstart_addr = base;
  496. first_memblock_size = size;
  497. }
  498. /* Add the chunk to the MEMBLOCK list */
  499. if (add_mem_to_memblock)
  500. memblock_add(base, size);
  501. }
  502. static void __init early_reserve_mem_dt(void)
  503. {
  504. unsigned long i, dt_root;
  505. int len;
  506. const __be32 *prop;
  507. early_init_fdt_scan_reserved_mem();
  508. dt_root = of_get_flat_dt_root();
  509. prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
  510. if (!prop)
  511. return;
  512. DBG("Found new-style reserved-ranges\n");
  513. /* Each reserved range is an (address,size) pair, 2 cells each,
  514. * totalling 4 cells per range. */
  515. for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
  516. u64 base, size;
  517. base = of_read_number(prop + (i * 4) + 0, 2);
  518. size = of_read_number(prop + (i * 4) + 2, 2);
  519. if (size) {
  520. DBG("reserving: %llx -> %llx\n", base, size);
  521. memblock_reserve(base, size);
  522. }
  523. }
  524. }
  525. static void __init early_reserve_mem(void)
  526. {
  527. __be64 *reserve_map;
  528. reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
  529. fdt_off_mem_rsvmap(initial_boot_params));
  530. /* Look for the new "reserved-regions" property in the DT */
  531. early_reserve_mem_dt();
  532. #ifdef CONFIG_BLK_DEV_INITRD
  533. /* Then reserve the initrd, if any */
  534. if (initrd_start && (initrd_end > initrd_start)) {
  535. memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
  536. _ALIGN_UP(initrd_end, PAGE_SIZE) -
  537. _ALIGN_DOWN(initrd_start, PAGE_SIZE));
  538. }
  539. #endif /* CONFIG_BLK_DEV_INITRD */
  540. #ifdef CONFIG_PPC32
  541. /*
  542. * Handle the case where we might be booting from an old kexec
  543. * image that setup the mem_rsvmap as pairs of 32-bit values
  544. */
  545. if (be64_to_cpup(reserve_map) > 0xffffffffull) {
  546. u32 base_32, size_32;
  547. __be32 *reserve_map_32 = (__be32 *)reserve_map;
  548. DBG("Found old 32-bit reserve map\n");
  549. while (1) {
  550. base_32 = be32_to_cpup(reserve_map_32++);
  551. size_32 = be32_to_cpup(reserve_map_32++);
  552. if (size_32 == 0)
  553. break;
  554. DBG("reserving: %x -> %x\n", base_32, size_32);
  555. memblock_reserve(base_32, size_32);
  556. }
  557. return;
  558. }
  559. #endif
  560. }
  561. void __init early_init_devtree(void *params)
  562. {
  563. phys_addr_t limit;
  564. DBG(" -> early_init_devtree(%p)\n", params);
  565. /* Setup flat device-tree pointer */
  566. initial_boot_params = params;
  567. #ifdef CONFIG_PPC_RTAS
  568. /* Some machines might need RTAS info for debugging, grab it now. */
  569. of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
  570. #endif
  571. #ifdef CONFIG_PPC_POWERNV
  572. /* Some machines might need OPAL info for debugging, grab it now. */
  573. of_scan_flat_dt(early_init_dt_scan_opal, NULL);
  574. #endif
  575. #ifdef CONFIG_FA_DUMP
  576. /* scan tree to see if dump is active during last boot */
  577. of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
  578. #endif
  579. /* Retrieve various informations from the /chosen node of the
  580. * device-tree, including the platform type, initrd location and
  581. * size, TCE reserve, and more ...
  582. */
  583. of_scan_flat_dt(early_init_dt_scan_chosen_ppc, cmd_line);
  584. /* Scan memory nodes and rebuild MEMBLOCKs */
  585. of_scan_flat_dt(early_init_dt_scan_root, NULL);
  586. of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
  587. /* Save command line for /proc/cmdline and then parse parameters */
  588. strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE);
  589. parse_early_param();
  590. /* make sure we've parsed cmdline for mem= before this */
  591. if (memory_limit)
  592. first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
  593. setup_initial_memory_limit(memstart_addr, first_memblock_size);
  594. /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
  595. memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
  596. /* If relocatable, reserve first 32k for interrupt vectors etc. */
  597. if (PHYSICAL_START > MEMORY_START)
  598. memblock_reserve(MEMORY_START, 0x8000);
  599. reserve_kdump_trampoline();
  600. #ifdef CONFIG_FA_DUMP
  601. /*
  602. * If we fail to reserve memory for firmware-assisted dump then
  603. * fallback to kexec based kdump.
  604. */
  605. if (fadump_reserve_mem() == 0)
  606. #endif
  607. reserve_crashkernel();
  608. early_reserve_mem();
  609. /*
  610. * Ensure that total memory size is page-aligned, because otherwise
  611. * mark_bootmem() gets upset.
  612. */
  613. limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
  614. memblock_enforce_memory_limit(limit);
  615. memblock_allow_resize();
  616. memblock_dump_all();
  617. DBG("Phys. mem: %llx\n", memblock_phys_mem_size());
  618. /* We may need to relocate the flat tree, do it now.
  619. * FIXME .. and the initrd too? */
  620. move_device_tree();
  621. allocate_pacas();
  622. DBG("Scanning CPUs ...\n");
  623. /* Retrieve CPU related informations from the flat tree
  624. * (altivec support, boot CPU ID, ...)
  625. */
  626. of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
  627. if (boot_cpuid < 0) {
  628. printk("Failed to indentify boot CPU !\n");
  629. BUG();
  630. }
  631. #if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
  632. /* We'll later wait for secondaries to check in; there are
  633. * NCPUS-1 non-boot CPUs :-)
  634. */
  635. spinning_secondaries = boot_cpu_count - 1;
  636. #endif
  637. #ifdef CONFIG_PPC_POWERNV
  638. /* Scan and build the list of machine check recoverable ranges */
  639. of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
  640. #endif
  641. DBG(" <- early_init_devtree()\n");
  642. }
  643. #ifdef CONFIG_RELOCATABLE
  644. /*
  645. * This function run before early_init_devtree, so we have to init
  646. * initial_boot_params.
  647. */
  648. void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
  649. {
  650. /* Setup flat device-tree pointer */
  651. initial_boot_params = params;
  652. /*
  653. * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
  654. * mess the memblock.
  655. */
  656. add_mem_to_memblock = 0;
  657. of_scan_flat_dt(early_init_dt_scan_root, NULL);
  658. of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
  659. add_mem_to_memblock = 1;
  660. if (size)
  661. *size = first_memblock_size;
  662. }
  663. #endif
  664. /*******
  665. *
  666. * New implementation of the OF "find" APIs, return a refcounted
  667. * object, call of_node_put() when done. The device tree and list
  668. * are protected by a rw_lock.
  669. *
  670. * Note that property management will need some locking as well,
  671. * this isn't dealt with yet.
  672. *
  673. *******/
  674. /**
  675. * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
  676. * @np: device node of the device
  677. *
  678. * This looks for a property "ibm,chip-id" in the node or any
  679. * of its parents and returns its content, or -1 if it cannot
  680. * be found.
  681. */
  682. int of_get_ibm_chip_id(struct device_node *np)
  683. {
  684. of_node_get(np);
  685. while(np) {
  686. struct device_node *old = np;
  687. const __be32 *prop;
  688. prop = of_get_property(np, "ibm,chip-id", NULL);
  689. if (prop) {
  690. of_node_put(np);
  691. return be32_to_cpup(prop);
  692. }
  693. np = of_get_parent(np);
  694. of_node_put(old);
  695. }
  696. return -1;
  697. }
  698. /**
  699. * cpu_to_chip_id - Return the cpus chip-id
  700. * @cpu: The logical cpu number.
  701. *
  702. * Return the value of the ibm,chip-id property corresponding to the given
  703. * logical cpu number. If the chip-id can not be found, returns -1.
  704. */
  705. int cpu_to_chip_id(int cpu)
  706. {
  707. struct device_node *np;
  708. np = of_get_cpu_node(cpu, NULL);
  709. if (!np)
  710. return -1;
  711. of_node_put(np);
  712. return of_get_ibm_chip_id(np);
  713. }
  714. EXPORT_SYMBOL(cpu_to_chip_id);
  715. bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
  716. {
  717. return (int)phys_id == get_hard_smp_processor_id(cpu);
  718. }