mips.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/errno.h>
  12. #include <linux/err.h>
  13. #include <linux/module.h>
  14. #include <linux/vmalloc.h>
  15. #include <linux/fs.h>
  16. #include <linux/bootmem.h>
  17. #include <asm/page.h>
  18. #include <asm/cacheflush.h>
  19. #include <asm/mmu_context.h>
  20. #include <linux/kvm_host.h>
  21. #include "interrupt.h"
  22. #include "commpage.h"
  23. #define CREATE_TRACE_POINTS
  24. #include "trace.h"
  25. #ifndef VECTORSPACING
  26. #define VECTORSPACING 0x100 /* for EI/VI mode */
  27. #endif
  28. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  29. struct kvm_stats_debugfs_item debugfs_entries[] = {
  30. { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
  31. { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
  32. { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
  33. { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
  34. { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  35. { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
  36. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
  37. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
  38. { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
  39. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
  40. { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
  41. { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
  42. { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
  43. { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  44. { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
  45. {NULL}
  46. };
  47. static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  48. {
  49. int i;
  50. for_each_possible_cpu(i) {
  51. vcpu->arch.guest_kernel_asid[i] = 0;
  52. vcpu->arch.guest_user_asid[i] = 0;
  53. }
  54. return 0;
  55. }
  56. /*
  57. * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  58. * Config7, so we are "runnable" if interrupts are pending
  59. */
  60. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  61. {
  62. return !!(vcpu->arch.pending_exceptions);
  63. }
  64. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  65. {
  66. return 1;
  67. }
  68. int kvm_arch_hardware_enable(void *garbage)
  69. {
  70. return 0;
  71. }
  72. void kvm_arch_hardware_disable(void *garbage)
  73. {
  74. }
  75. int kvm_arch_hardware_setup(void)
  76. {
  77. return 0;
  78. }
  79. void kvm_arch_hardware_unsetup(void)
  80. {
  81. }
  82. void kvm_arch_check_processor_compat(void *rtn)
  83. {
  84. *(int *)rtn = 0;
  85. }
  86. static void kvm_mips_init_tlbs(struct kvm *kvm)
  87. {
  88. unsigned long wired;
  89. /*
  90. * Add a wired entry to the TLB, it is used to map the commpage to
  91. * the Guest kernel
  92. */
  93. wired = read_c0_wired();
  94. write_c0_wired(wired + 1);
  95. mtc0_tlbw_hazard();
  96. kvm->arch.commpage_tlb = wired;
  97. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  98. kvm->arch.commpage_tlb);
  99. }
  100. static void kvm_mips_init_vm_percpu(void *arg)
  101. {
  102. struct kvm *kvm = (struct kvm *)arg;
  103. kvm_mips_init_tlbs(kvm);
  104. kvm_mips_callbacks->vm_init(kvm);
  105. }
  106. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  107. {
  108. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  109. kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
  110. __func__);
  111. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  112. }
  113. return 0;
  114. }
  115. void kvm_mips_free_vcpus(struct kvm *kvm)
  116. {
  117. unsigned int i;
  118. struct kvm_vcpu *vcpu;
  119. /* Put the pages we reserved for the guest pmap */
  120. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  121. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  122. kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
  123. }
  124. kfree(kvm->arch.guest_pmap);
  125. kvm_for_each_vcpu(i, vcpu, kvm) {
  126. kvm_arch_vcpu_free(vcpu);
  127. }
  128. mutex_lock(&kvm->lock);
  129. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  130. kvm->vcpus[i] = NULL;
  131. atomic_set(&kvm->online_vcpus, 0);
  132. mutex_unlock(&kvm->lock);
  133. }
  134. void kvm_arch_sync_events(struct kvm *kvm)
  135. {
  136. }
  137. static void kvm_mips_uninit_tlbs(void *arg)
  138. {
  139. /* Restore wired count */
  140. write_c0_wired(0);
  141. mtc0_tlbw_hazard();
  142. /* Clear out all the TLBs */
  143. kvm_local_flush_tlb_all();
  144. }
  145. void kvm_arch_destroy_vm(struct kvm *kvm)
  146. {
  147. kvm_mips_free_vcpus(kvm);
  148. /* If this is the last instance, restore wired count */
  149. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  150. kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
  151. __func__);
  152. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  153. }
  154. }
  155. long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
  156. unsigned long arg)
  157. {
  158. return -ENOIOCTLCMD;
  159. }
  160. void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
  161. struct kvm_memory_slot *dont)
  162. {
  163. }
  164. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  165. unsigned long npages)
  166. {
  167. return 0;
  168. }
  169. void kvm_arch_memslots_updated(struct kvm *kvm)
  170. {
  171. }
  172. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  173. struct kvm_memory_slot *memslot,
  174. struct kvm_userspace_memory_region *mem,
  175. enum kvm_mr_change change)
  176. {
  177. return 0;
  178. }
  179. void kvm_arch_commit_memory_region(struct kvm *kvm,
  180. struct kvm_userspace_memory_region *mem,
  181. const struct kvm_memory_slot *old,
  182. enum kvm_mr_change change)
  183. {
  184. unsigned long npages = 0;
  185. int i;
  186. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  187. __func__, kvm, mem->slot, mem->guest_phys_addr,
  188. mem->memory_size, mem->userspace_addr);
  189. /* Setup Guest PMAP table */
  190. if (!kvm->arch.guest_pmap) {
  191. if (mem->slot == 0)
  192. npages = mem->memory_size >> PAGE_SHIFT;
  193. if (npages) {
  194. kvm->arch.guest_pmap_npages = npages;
  195. kvm->arch.guest_pmap =
  196. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  197. if (!kvm->arch.guest_pmap) {
  198. kvm_err("Failed to allocate guest PMAP");
  199. return;
  200. }
  201. kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  202. npages, kvm->arch.guest_pmap);
  203. /* Now setup the page table */
  204. for (i = 0; i < npages; i++)
  205. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  206. }
  207. }
  208. }
  209. void kvm_arch_flush_shadow_all(struct kvm *kvm)
  210. {
  211. }
  212. void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
  213. struct kvm_memory_slot *slot)
  214. {
  215. }
  216. void kvm_arch_flush_shadow(struct kvm *kvm)
  217. {
  218. }
  219. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  220. {
  221. int err, size, offset;
  222. void *gebase;
  223. int i;
  224. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  225. if (!vcpu) {
  226. err = -ENOMEM;
  227. goto out;
  228. }
  229. err = kvm_vcpu_init(vcpu, kvm, id);
  230. if (err)
  231. goto out_free_cpu;
  232. kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  233. /*
  234. * Allocate space for host mode exception handlers that handle
  235. * guest mode exits
  236. */
  237. if (cpu_has_veic || cpu_has_vint)
  238. size = 0x200 + VECTORSPACING * 64;
  239. else
  240. size = 0x4000;
  241. /* Save Linux EBASE */
  242. vcpu->arch.host_ebase = (void *)read_c0_ebase();
  243. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  244. if (!gebase) {
  245. err = -ENOMEM;
  246. goto out_free_cpu;
  247. }
  248. kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  249. ALIGN(size, PAGE_SIZE), gebase);
  250. /* Save new ebase */
  251. vcpu->arch.guest_ebase = gebase;
  252. /* Copy L1 Guest Exception handler to correct offset */
  253. /* TLB Refill, EXL = 0 */
  254. memcpy(gebase, mips32_exception,
  255. mips32_exceptionEnd - mips32_exception);
  256. /* General Exception Entry point */
  257. memcpy(gebase + 0x180, mips32_exception,
  258. mips32_exceptionEnd - mips32_exception);
  259. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  260. for (i = 0; i < 8; i++) {
  261. kvm_debug("L1 Vectored handler @ %p\n",
  262. gebase + 0x200 + (i * VECTORSPACING));
  263. memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
  264. mips32_exceptionEnd - mips32_exception);
  265. }
  266. /* General handler, relocate to unmapped space for sanity's sake */
  267. offset = 0x2000;
  268. kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
  269. gebase + offset,
  270. mips32_GuestExceptionEnd - mips32_GuestException);
  271. memcpy(gebase + offset, mips32_GuestException,
  272. mips32_GuestExceptionEnd - mips32_GuestException);
  273. /* Invalidate the icache for these ranges */
  274. local_flush_icache_range((unsigned long)gebase,
  275. (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
  276. /*
  277. * Allocate comm page for guest kernel, a TLB will be reserved for
  278. * mapping GVA @ 0xFFFF8000 to this page
  279. */
  280. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  281. if (!vcpu->arch.kseg0_commpage) {
  282. err = -ENOMEM;
  283. goto out_free_gebase;
  284. }
  285. kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  286. kvm_mips_commpage_init(vcpu);
  287. /* Init */
  288. vcpu->arch.last_sched_cpu = -1;
  289. /* Start off the timer */
  290. kvm_mips_init_count(vcpu);
  291. return vcpu;
  292. out_free_gebase:
  293. kfree(gebase);
  294. out_free_cpu:
  295. kfree(vcpu);
  296. out:
  297. return ERR_PTR(err);
  298. }
  299. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  300. {
  301. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  302. kvm_vcpu_uninit(vcpu);
  303. kvm_mips_dump_stats(vcpu);
  304. kfree(vcpu->arch.guest_ebase);
  305. kfree(vcpu->arch.kseg0_commpage);
  306. kfree(vcpu);
  307. }
  308. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  309. {
  310. kvm_arch_vcpu_free(vcpu);
  311. }
  312. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  313. struct kvm_guest_debug *dbg)
  314. {
  315. return -ENOIOCTLCMD;
  316. }
  317. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  318. {
  319. int r = 0;
  320. sigset_t sigsaved;
  321. if (vcpu->sigset_active)
  322. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  323. if (vcpu->mmio_needed) {
  324. if (!vcpu->mmio_is_write)
  325. kvm_mips_complete_mmio_load(vcpu, run);
  326. vcpu->mmio_needed = 0;
  327. }
  328. local_irq_disable();
  329. /* Check if we have any exceptions/interrupts pending */
  330. kvm_mips_deliver_interrupts(vcpu,
  331. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  332. kvm_guest_enter();
  333. r = __kvm_mips_vcpu_run(run, vcpu);
  334. kvm_guest_exit();
  335. local_irq_enable();
  336. if (vcpu->sigset_active)
  337. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  338. return r;
  339. }
  340. int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  341. struct kvm_mips_interrupt *irq)
  342. {
  343. int intr = (int)irq->irq;
  344. struct kvm_vcpu *dvcpu = NULL;
  345. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  346. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  347. (int)intr);
  348. if (irq->cpu == -1)
  349. dvcpu = vcpu;
  350. else
  351. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  352. if (intr == 2 || intr == 3 || intr == 4) {
  353. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  354. } else if (intr == -2 || intr == -3 || intr == -4) {
  355. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  356. } else {
  357. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  358. irq->cpu, irq->irq);
  359. return -EINVAL;
  360. }
  361. dvcpu->arch.wait = 0;
  362. if (waitqueue_active(&dvcpu->wq))
  363. wake_up_interruptible(&dvcpu->wq);
  364. return 0;
  365. }
  366. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  367. struct kvm_mp_state *mp_state)
  368. {
  369. return -ENOIOCTLCMD;
  370. }
  371. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  372. struct kvm_mp_state *mp_state)
  373. {
  374. return -ENOIOCTLCMD;
  375. }
  376. static u64 kvm_mips_get_one_regs[] = {
  377. KVM_REG_MIPS_R0,
  378. KVM_REG_MIPS_R1,
  379. KVM_REG_MIPS_R2,
  380. KVM_REG_MIPS_R3,
  381. KVM_REG_MIPS_R4,
  382. KVM_REG_MIPS_R5,
  383. KVM_REG_MIPS_R6,
  384. KVM_REG_MIPS_R7,
  385. KVM_REG_MIPS_R8,
  386. KVM_REG_MIPS_R9,
  387. KVM_REG_MIPS_R10,
  388. KVM_REG_MIPS_R11,
  389. KVM_REG_MIPS_R12,
  390. KVM_REG_MIPS_R13,
  391. KVM_REG_MIPS_R14,
  392. KVM_REG_MIPS_R15,
  393. KVM_REG_MIPS_R16,
  394. KVM_REG_MIPS_R17,
  395. KVM_REG_MIPS_R18,
  396. KVM_REG_MIPS_R19,
  397. KVM_REG_MIPS_R20,
  398. KVM_REG_MIPS_R21,
  399. KVM_REG_MIPS_R22,
  400. KVM_REG_MIPS_R23,
  401. KVM_REG_MIPS_R24,
  402. KVM_REG_MIPS_R25,
  403. KVM_REG_MIPS_R26,
  404. KVM_REG_MIPS_R27,
  405. KVM_REG_MIPS_R28,
  406. KVM_REG_MIPS_R29,
  407. KVM_REG_MIPS_R30,
  408. KVM_REG_MIPS_R31,
  409. KVM_REG_MIPS_HI,
  410. KVM_REG_MIPS_LO,
  411. KVM_REG_MIPS_PC,
  412. KVM_REG_MIPS_CP0_INDEX,
  413. KVM_REG_MIPS_CP0_CONTEXT,
  414. KVM_REG_MIPS_CP0_USERLOCAL,
  415. KVM_REG_MIPS_CP0_PAGEMASK,
  416. KVM_REG_MIPS_CP0_WIRED,
  417. KVM_REG_MIPS_CP0_HWRENA,
  418. KVM_REG_MIPS_CP0_BADVADDR,
  419. KVM_REG_MIPS_CP0_COUNT,
  420. KVM_REG_MIPS_CP0_ENTRYHI,
  421. KVM_REG_MIPS_CP0_COMPARE,
  422. KVM_REG_MIPS_CP0_STATUS,
  423. KVM_REG_MIPS_CP0_CAUSE,
  424. KVM_REG_MIPS_CP0_EPC,
  425. KVM_REG_MIPS_CP0_CONFIG,
  426. KVM_REG_MIPS_CP0_CONFIG1,
  427. KVM_REG_MIPS_CP0_CONFIG2,
  428. KVM_REG_MIPS_CP0_CONFIG3,
  429. KVM_REG_MIPS_CP0_CONFIG7,
  430. KVM_REG_MIPS_CP0_ERROREPC,
  431. KVM_REG_MIPS_COUNT_CTL,
  432. KVM_REG_MIPS_COUNT_RESUME,
  433. KVM_REG_MIPS_COUNT_HZ,
  434. };
  435. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  436. const struct kvm_one_reg *reg)
  437. {
  438. struct mips_coproc *cop0 = vcpu->arch.cop0;
  439. int ret;
  440. s64 v;
  441. switch (reg->id) {
  442. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  443. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  444. break;
  445. case KVM_REG_MIPS_HI:
  446. v = (long)vcpu->arch.hi;
  447. break;
  448. case KVM_REG_MIPS_LO:
  449. v = (long)vcpu->arch.lo;
  450. break;
  451. case KVM_REG_MIPS_PC:
  452. v = (long)vcpu->arch.pc;
  453. break;
  454. case KVM_REG_MIPS_CP0_INDEX:
  455. v = (long)kvm_read_c0_guest_index(cop0);
  456. break;
  457. case KVM_REG_MIPS_CP0_CONTEXT:
  458. v = (long)kvm_read_c0_guest_context(cop0);
  459. break;
  460. case KVM_REG_MIPS_CP0_USERLOCAL:
  461. v = (long)kvm_read_c0_guest_userlocal(cop0);
  462. break;
  463. case KVM_REG_MIPS_CP0_PAGEMASK:
  464. v = (long)kvm_read_c0_guest_pagemask(cop0);
  465. break;
  466. case KVM_REG_MIPS_CP0_WIRED:
  467. v = (long)kvm_read_c0_guest_wired(cop0);
  468. break;
  469. case KVM_REG_MIPS_CP0_HWRENA:
  470. v = (long)kvm_read_c0_guest_hwrena(cop0);
  471. break;
  472. case KVM_REG_MIPS_CP0_BADVADDR:
  473. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  474. break;
  475. case KVM_REG_MIPS_CP0_ENTRYHI:
  476. v = (long)kvm_read_c0_guest_entryhi(cop0);
  477. break;
  478. case KVM_REG_MIPS_CP0_COMPARE:
  479. v = (long)kvm_read_c0_guest_compare(cop0);
  480. break;
  481. case KVM_REG_MIPS_CP0_STATUS:
  482. v = (long)kvm_read_c0_guest_status(cop0);
  483. break;
  484. case KVM_REG_MIPS_CP0_CAUSE:
  485. v = (long)kvm_read_c0_guest_cause(cop0);
  486. break;
  487. case KVM_REG_MIPS_CP0_EPC:
  488. v = (long)kvm_read_c0_guest_epc(cop0);
  489. break;
  490. case KVM_REG_MIPS_CP0_ERROREPC:
  491. v = (long)kvm_read_c0_guest_errorepc(cop0);
  492. break;
  493. case KVM_REG_MIPS_CP0_CONFIG:
  494. v = (long)kvm_read_c0_guest_config(cop0);
  495. break;
  496. case KVM_REG_MIPS_CP0_CONFIG1:
  497. v = (long)kvm_read_c0_guest_config1(cop0);
  498. break;
  499. case KVM_REG_MIPS_CP0_CONFIG2:
  500. v = (long)kvm_read_c0_guest_config2(cop0);
  501. break;
  502. case KVM_REG_MIPS_CP0_CONFIG3:
  503. v = (long)kvm_read_c0_guest_config3(cop0);
  504. break;
  505. case KVM_REG_MIPS_CP0_CONFIG7:
  506. v = (long)kvm_read_c0_guest_config7(cop0);
  507. break;
  508. /* registers to be handled specially */
  509. case KVM_REG_MIPS_CP0_COUNT:
  510. case KVM_REG_MIPS_COUNT_CTL:
  511. case KVM_REG_MIPS_COUNT_RESUME:
  512. case KVM_REG_MIPS_COUNT_HZ:
  513. ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
  514. if (ret)
  515. return ret;
  516. break;
  517. default:
  518. return -EINVAL;
  519. }
  520. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  521. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  522. return put_user(v, uaddr64);
  523. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  524. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  525. u32 v32 = (u32)v;
  526. return put_user(v32, uaddr32);
  527. } else {
  528. return -EINVAL;
  529. }
  530. }
  531. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  532. const struct kvm_one_reg *reg)
  533. {
  534. struct mips_coproc *cop0 = vcpu->arch.cop0;
  535. u64 v;
  536. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  537. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  538. if (get_user(v, uaddr64) != 0)
  539. return -EFAULT;
  540. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  541. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  542. s32 v32;
  543. if (get_user(v32, uaddr32) != 0)
  544. return -EFAULT;
  545. v = (s64)v32;
  546. } else {
  547. return -EINVAL;
  548. }
  549. switch (reg->id) {
  550. case KVM_REG_MIPS_R0:
  551. /* Silently ignore requests to set $0 */
  552. break;
  553. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  554. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  555. break;
  556. case KVM_REG_MIPS_HI:
  557. vcpu->arch.hi = v;
  558. break;
  559. case KVM_REG_MIPS_LO:
  560. vcpu->arch.lo = v;
  561. break;
  562. case KVM_REG_MIPS_PC:
  563. vcpu->arch.pc = v;
  564. break;
  565. case KVM_REG_MIPS_CP0_INDEX:
  566. kvm_write_c0_guest_index(cop0, v);
  567. break;
  568. case KVM_REG_MIPS_CP0_CONTEXT:
  569. kvm_write_c0_guest_context(cop0, v);
  570. break;
  571. case KVM_REG_MIPS_CP0_USERLOCAL:
  572. kvm_write_c0_guest_userlocal(cop0, v);
  573. break;
  574. case KVM_REG_MIPS_CP0_PAGEMASK:
  575. kvm_write_c0_guest_pagemask(cop0, v);
  576. break;
  577. case KVM_REG_MIPS_CP0_WIRED:
  578. kvm_write_c0_guest_wired(cop0, v);
  579. break;
  580. case KVM_REG_MIPS_CP0_HWRENA:
  581. kvm_write_c0_guest_hwrena(cop0, v);
  582. break;
  583. case KVM_REG_MIPS_CP0_BADVADDR:
  584. kvm_write_c0_guest_badvaddr(cop0, v);
  585. break;
  586. case KVM_REG_MIPS_CP0_ENTRYHI:
  587. kvm_write_c0_guest_entryhi(cop0, v);
  588. break;
  589. case KVM_REG_MIPS_CP0_STATUS:
  590. kvm_write_c0_guest_status(cop0, v);
  591. break;
  592. case KVM_REG_MIPS_CP0_EPC:
  593. kvm_write_c0_guest_epc(cop0, v);
  594. break;
  595. case KVM_REG_MIPS_CP0_ERROREPC:
  596. kvm_write_c0_guest_errorepc(cop0, v);
  597. break;
  598. /* registers to be handled specially */
  599. case KVM_REG_MIPS_CP0_COUNT:
  600. case KVM_REG_MIPS_CP0_COMPARE:
  601. case KVM_REG_MIPS_CP0_CAUSE:
  602. case KVM_REG_MIPS_COUNT_CTL:
  603. case KVM_REG_MIPS_COUNT_RESUME:
  604. case KVM_REG_MIPS_COUNT_HZ:
  605. return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
  606. default:
  607. return -EINVAL;
  608. }
  609. return 0;
  610. }
  611. long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
  612. unsigned long arg)
  613. {
  614. struct kvm_vcpu *vcpu = filp->private_data;
  615. void __user *argp = (void __user *)arg;
  616. long r;
  617. switch (ioctl) {
  618. case KVM_SET_ONE_REG:
  619. case KVM_GET_ONE_REG: {
  620. struct kvm_one_reg reg;
  621. if (copy_from_user(&reg, argp, sizeof(reg)))
  622. return -EFAULT;
  623. if (ioctl == KVM_SET_ONE_REG)
  624. return kvm_mips_set_reg(vcpu, &reg);
  625. else
  626. return kvm_mips_get_reg(vcpu, &reg);
  627. }
  628. case KVM_GET_REG_LIST: {
  629. struct kvm_reg_list __user *user_list = argp;
  630. u64 __user *reg_dest;
  631. struct kvm_reg_list reg_list;
  632. unsigned n;
  633. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  634. return -EFAULT;
  635. n = reg_list.n;
  636. reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
  637. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  638. return -EFAULT;
  639. if (n < reg_list.n)
  640. return -E2BIG;
  641. reg_dest = user_list->reg;
  642. if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
  643. sizeof(kvm_mips_get_one_regs)))
  644. return -EFAULT;
  645. return 0;
  646. }
  647. case KVM_NMI:
  648. /* Treat the NMI as a CPU reset */
  649. r = kvm_mips_reset_vcpu(vcpu);
  650. break;
  651. case KVM_INTERRUPT:
  652. {
  653. struct kvm_mips_interrupt irq;
  654. r = -EFAULT;
  655. if (copy_from_user(&irq, argp, sizeof(irq)))
  656. goto out;
  657. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  658. irq.irq);
  659. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  660. break;
  661. }
  662. default:
  663. r = -ENOIOCTLCMD;
  664. }
  665. out:
  666. return r;
  667. }
  668. /* Get (and clear) the dirty memory log for a memory slot. */
  669. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  670. {
  671. struct kvm_memory_slot *memslot;
  672. unsigned long ga, ga_end;
  673. int is_dirty = 0;
  674. int r;
  675. unsigned long n;
  676. mutex_lock(&kvm->slots_lock);
  677. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  678. if (r)
  679. goto out;
  680. /* If nothing is dirty, don't bother messing with page tables. */
  681. if (is_dirty) {
  682. memslot = &kvm->memslots->memslots[log->slot];
  683. ga = memslot->base_gfn << PAGE_SHIFT;
  684. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  685. kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  686. ga_end);
  687. n = kvm_dirty_bitmap_bytes(memslot);
  688. memset(memslot->dirty_bitmap, 0, n);
  689. }
  690. r = 0;
  691. out:
  692. mutex_unlock(&kvm->slots_lock);
  693. return r;
  694. }
  695. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  696. {
  697. long r;
  698. switch (ioctl) {
  699. default:
  700. r = -ENOIOCTLCMD;
  701. }
  702. return r;
  703. }
  704. int kvm_arch_init(void *opaque)
  705. {
  706. if (kvm_mips_callbacks) {
  707. kvm_err("kvm: module already exists\n");
  708. return -EEXIST;
  709. }
  710. return kvm_mips_emulation_init(&kvm_mips_callbacks);
  711. }
  712. void kvm_arch_exit(void)
  713. {
  714. kvm_mips_callbacks = NULL;
  715. }
  716. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  717. struct kvm_sregs *sregs)
  718. {
  719. return -ENOIOCTLCMD;
  720. }
  721. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  722. struct kvm_sregs *sregs)
  723. {
  724. return -ENOIOCTLCMD;
  725. }
  726. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  727. {
  728. return 0;
  729. }
  730. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  731. {
  732. return -ENOIOCTLCMD;
  733. }
  734. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  735. {
  736. return -ENOIOCTLCMD;
  737. }
  738. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  739. {
  740. return VM_FAULT_SIGBUS;
  741. }
  742. int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
  743. {
  744. int r;
  745. switch (ext) {
  746. case KVM_CAP_ONE_REG:
  747. r = 1;
  748. break;
  749. case KVM_CAP_COALESCED_MMIO:
  750. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  751. break;
  752. default:
  753. r = 0;
  754. break;
  755. }
  756. return r;
  757. }
  758. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  759. {
  760. return kvm_mips_pending_timer(vcpu);
  761. }
  762. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  763. {
  764. int i;
  765. struct mips_coproc *cop0;
  766. if (!vcpu)
  767. return -1;
  768. kvm_debug("VCPU Register Dump:\n");
  769. kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
  770. kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  771. for (i = 0; i < 32; i += 4) {
  772. kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  773. vcpu->arch.gprs[i],
  774. vcpu->arch.gprs[i + 1],
  775. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  776. }
  777. kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
  778. kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
  779. cop0 = vcpu->arch.cop0;
  780. kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  781. kvm_read_c0_guest_status(cop0),
  782. kvm_read_c0_guest_cause(cop0));
  783. kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  784. return 0;
  785. }
  786. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  787. {
  788. int i;
  789. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  790. vcpu->arch.gprs[i] = regs->gpr[i];
  791. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  792. vcpu->arch.hi = regs->hi;
  793. vcpu->arch.lo = regs->lo;
  794. vcpu->arch.pc = regs->pc;
  795. return 0;
  796. }
  797. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  798. {
  799. int i;
  800. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  801. regs->gpr[i] = vcpu->arch.gprs[i];
  802. regs->hi = vcpu->arch.hi;
  803. regs->lo = vcpu->arch.lo;
  804. regs->pc = vcpu->arch.pc;
  805. return 0;
  806. }
  807. static void kvm_mips_comparecount_func(unsigned long data)
  808. {
  809. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  810. kvm_mips_callbacks->queue_timer_int(vcpu);
  811. vcpu->arch.wait = 0;
  812. if (waitqueue_active(&vcpu->wq))
  813. wake_up_interruptible(&vcpu->wq);
  814. }
  815. /* low level hrtimer wake routine */
  816. static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  817. {
  818. struct kvm_vcpu *vcpu;
  819. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  820. kvm_mips_comparecount_func((unsigned long) vcpu);
  821. return kvm_mips_count_timeout(vcpu);
  822. }
  823. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  824. {
  825. kvm_mips_callbacks->vcpu_init(vcpu);
  826. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  827. HRTIMER_MODE_REL);
  828. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  829. return 0;
  830. }
  831. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  832. {
  833. }
  834. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  835. struct kvm_translation *tr)
  836. {
  837. return 0;
  838. }
  839. /* Initial guest state */
  840. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  841. {
  842. return kvm_mips_callbacks->vcpu_setup(vcpu);
  843. }
  844. static void kvm_mips_set_c0_status(void)
  845. {
  846. uint32_t status = read_c0_status();
  847. if (cpu_has_fpu)
  848. status |= (ST0_CU1);
  849. if (cpu_has_dsp)
  850. status |= (ST0_MX);
  851. write_c0_status(status);
  852. ehb();
  853. }
  854. /*
  855. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  856. */
  857. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  858. {
  859. uint32_t cause = vcpu->arch.host_cp0_cause;
  860. uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  861. uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
  862. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  863. enum emulation_result er = EMULATE_DONE;
  864. int ret = RESUME_GUEST;
  865. /* Set a default exit reason */
  866. run->exit_reason = KVM_EXIT_UNKNOWN;
  867. run->ready_for_interrupt_injection = 1;
  868. /*
  869. * Set the appropriate status bits based on host CPU features,
  870. * before we hit the scheduler
  871. */
  872. kvm_mips_set_c0_status();
  873. local_irq_enable();
  874. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  875. cause, opc, run, vcpu);
  876. /*
  877. * Do a privilege check, if in UM most of these exit conditions end up
  878. * causing an exception to be delivered to the Guest Kernel
  879. */
  880. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  881. if (er == EMULATE_PRIV_FAIL) {
  882. goto skip_emul;
  883. } else if (er == EMULATE_FAIL) {
  884. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  885. ret = RESUME_HOST;
  886. goto skip_emul;
  887. }
  888. switch (exccode) {
  889. case T_INT:
  890. kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
  891. ++vcpu->stat.int_exits;
  892. trace_kvm_exit(vcpu, INT_EXITS);
  893. if (need_resched())
  894. cond_resched();
  895. ret = RESUME_GUEST;
  896. break;
  897. case T_COP_UNUSABLE:
  898. kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
  899. ++vcpu->stat.cop_unusable_exits;
  900. trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
  901. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  902. /* XXXKYMA: Might need to return to user space */
  903. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
  904. ret = RESUME_HOST;
  905. break;
  906. case T_TLB_MOD:
  907. ++vcpu->stat.tlbmod_exits;
  908. trace_kvm_exit(vcpu, TLBMOD_EXITS);
  909. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  910. break;
  911. case T_TLB_ST_MISS:
  912. kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  913. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  914. badvaddr);
  915. ++vcpu->stat.tlbmiss_st_exits;
  916. trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
  917. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  918. break;
  919. case T_TLB_LD_MISS:
  920. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  921. cause, opc, badvaddr);
  922. ++vcpu->stat.tlbmiss_ld_exits;
  923. trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
  924. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  925. break;
  926. case T_ADDR_ERR_ST:
  927. ++vcpu->stat.addrerr_st_exits;
  928. trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
  929. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  930. break;
  931. case T_ADDR_ERR_LD:
  932. ++vcpu->stat.addrerr_ld_exits;
  933. trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
  934. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  935. break;
  936. case T_SYSCALL:
  937. ++vcpu->stat.syscall_exits;
  938. trace_kvm_exit(vcpu, SYSCALL_EXITS);
  939. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  940. break;
  941. case T_RES_INST:
  942. ++vcpu->stat.resvd_inst_exits;
  943. trace_kvm_exit(vcpu, RESVD_INST_EXITS);
  944. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  945. break;
  946. case T_BREAK:
  947. ++vcpu->stat.break_inst_exits;
  948. trace_kvm_exit(vcpu, BREAK_INST_EXITS);
  949. ret = kvm_mips_callbacks->handle_break(vcpu);
  950. break;
  951. default:
  952. kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  953. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  954. kvm_read_c0_guest_status(vcpu->arch.cop0));
  955. kvm_arch_vcpu_dump_regs(vcpu);
  956. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  957. ret = RESUME_HOST;
  958. break;
  959. }
  960. skip_emul:
  961. local_irq_disable();
  962. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  963. kvm_mips_deliver_interrupts(vcpu, cause);
  964. if (!(ret & RESUME_HOST)) {
  965. /* Only check for signals if not already exiting to userspace */
  966. if (signal_pending(current)) {
  967. run->exit_reason = KVM_EXIT_INTR;
  968. ret = (-EINTR << 2) | RESUME_HOST;
  969. ++vcpu->stat.signal_exits;
  970. trace_kvm_exit(vcpu, SIGNAL_EXITS);
  971. }
  972. }
  973. return ret;
  974. }
  975. int __init kvm_mips_init(void)
  976. {
  977. int ret;
  978. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  979. if (ret)
  980. return ret;
  981. /*
  982. * On MIPS, kernel modules are executed from "mapped space", which
  983. * requires TLBs. The TLB handling code is statically linked with
  984. * the rest of the kernel (tlb.c) to avoid the possibility of
  985. * double faulting. The issue is that the TLB code references
  986. * routines that are part of the the KVM module, which are only
  987. * available once the module is loaded.
  988. */
  989. kvm_mips_gfn_to_pfn = gfn_to_pfn;
  990. kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
  991. kvm_mips_is_error_pfn = is_error_pfn;
  992. pr_info("KVM/MIPS Initialized\n");
  993. return 0;
  994. }
  995. void __exit kvm_mips_exit(void)
  996. {
  997. kvm_exit();
  998. kvm_mips_gfn_to_pfn = NULL;
  999. kvm_mips_release_pfn_clean = NULL;
  1000. kvm_mips_is_error_pfn = NULL;
  1001. pr_info("KVM/MIPS unloaded\n");
  1002. }
  1003. module_init(kvm_mips_init);
  1004. module_exit(kvm_mips_exit);
  1005. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);