setup.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102
  1. /*
  2. * linux/arch/arm/kernel/setup.c
  3. *
  4. * Copyright (C) 1995-2001 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/export.h>
  11. #include <linux/kernel.h>
  12. #include <linux/stddef.h>
  13. #include <linux/ioport.h>
  14. #include <linux/delay.h>
  15. #include <linux/utsname.h>
  16. #include <linux/initrd.h>
  17. #include <linux/console.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/screen_info.h>
  21. #include <linux/of_platform.h>
  22. #include <linux/init.h>
  23. #include <linux/kexec.h>
  24. #include <linux/of_fdt.h>
  25. #include <linux/cpu.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/smp.h>
  28. #include <linux/proc_fs.h>
  29. #include <linux/memblock.h>
  30. #include <linux/bug.h>
  31. #include <linux/compiler.h>
  32. #include <linux/sort.h>
  33. #include <asm/unified.h>
  34. #include <asm/cp15.h>
  35. #include <asm/cpu.h>
  36. #include <asm/cputype.h>
  37. #include <asm/elf.h>
  38. #include <asm/procinfo.h>
  39. #include <asm/psci.h>
  40. #include <asm/sections.h>
  41. #include <asm/setup.h>
  42. #include <asm/smp_plat.h>
  43. #include <asm/mach-types.h>
  44. #include <asm/cacheflush.h>
  45. #include <asm/cachetype.h>
  46. #include <asm/tlbflush.h>
  47. #include <asm/prom.h>
  48. #include <asm/mach/arch.h>
  49. #include <asm/mach/irq.h>
  50. #include <asm/mach/time.h>
  51. #include <asm/system_info.h>
  52. #include <asm/system_misc.h>
  53. #include <asm/traps.h>
  54. #include <asm/unwind.h>
  55. #include <asm/memblock.h>
  56. #include <asm/virt.h>
  57. #include "atags.h"
  58. #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  59. char fpe_type[8];
  60. static int __init fpe_setup(char *line)
  61. {
  62. memcpy(fpe_type, line, 8);
  63. return 1;
  64. }
  65. __setup("fpe=", fpe_setup);
  66. #endif
  67. extern void init_default_cache_policy(unsigned long);
  68. extern void paging_init(const struct machine_desc *desc);
  69. extern void early_paging_init(const struct machine_desc *,
  70. struct proc_info_list *);
  71. extern void sanity_check_meminfo(void);
  72. extern enum reboot_mode reboot_mode;
  73. extern void setup_dma_zone(const struct machine_desc *desc);
  74. unsigned int processor_id;
  75. EXPORT_SYMBOL(processor_id);
  76. unsigned int __machine_arch_type __read_mostly;
  77. EXPORT_SYMBOL(__machine_arch_type);
  78. unsigned int cacheid __read_mostly;
  79. EXPORT_SYMBOL(cacheid);
  80. unsigned int __atags_pointer __initdata;
  81. unsigned int system_rev;
  82. EXPORT_SYMBOL(system_rev);
  83. unsigned int system_serial_low;
  84. EXPORT_SYMBOL(system_serial_low);
  85. unsigned int system_serial_high;
  86. EXPORT_SYMBOL(system_serial_high);
  87. unsigned int elf_hwcap __read_mostly;
  88. EXPORT_SYMBOL(elf_hwcap);
  89. unsigned int elf_hwcap2 __read_mostly;
  90. EXPORT_SYMBOL(elf_hwcap2);
  91. #ifdef MULTI_CPU
  92. struct processor processor __read_mostly;
  93. #endif
  94. #ifdef MULTI_TLB
  95. struct cpu_tlb_fns cpu_tlb __read_mostly;
  96. #endif
  97. #ifdef MULTI_USER
  98. struct cpu_user_fns cpu_user __read_mostly;
  99. #endif
  100. #ifdef MULTI_CACHE
  101. struct cpu_cache_fns cpu_cache __read_mostly;
  102. #endif
  103. #ifdef CONFIG_OUTER_CACHE
  104. struct outer_cache_fns outer_cache __read_mostly;
  105. EXPORT_SYMBOL(outer_cache);
  106. #endif
  107. /*
  108. * Cached cpu_architecture() result for use by assembler code.
  109. * C code should use the cpu_architecture() function instead of accessing this
  110. * variable directly.
  111. */
  112. int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
  113. struct stack {
  114. u32 irq[3];
  115. u32 abt[3];
  116. u32 und[3];
  117. } ____cacheline_aligned;
  118. #ifndef CONFIG_CPU_V7M
  119. static struct stack stacks[NR_CPUS];
  120. #endif
  121. char elf_platform[ELF_PLATFORM_SIZE];
  122. EXPORT_SYMBOL(elf_platform);
  123. static const char *cpu_name;
  124. static const char *machine_name;
  125. static char __initdata cmd_line[COMMAND_LINE_SIZE];
  126. const struct machine_desc *machine_desc __initdata;
  127. static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
  128. #define ENDIANNESS ((char)endian_test.l)
  129. DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
  130. /*
  131. * Standard memory resources
  132. */
  133. static struct resource mem_res[] = {
  134. {
  135. .name = "Video RAM",
  136. .start = 0,
  137. .end = 0,
  138. .flags = IORESOURCE_MEM
  139. },
  140. {
  141. .name = "Kernel code",
  142. .start = 0,
  143. .end = 0,
  144. .flags = IORESOURCE_MEM
  145. },
  146. {
  147. .name = "Kernel data",
  148. .start = 0,
  149. .end = 0,
  150. .flags = IORESOURCE_MEM
  151. }
  152. };
  153. #define video_ram mem_res[0]
  154. #define kernel_code mem_res[1]
  155. #define kernel_data mem_res[2]
  156. static struct resource io_res[] = {
  157. {
  158. .name = "reserved",
  159. .start = 0x3bc,
  160. .end = 0x3be,
  161. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  162. },
  163. {
  164. .name = "reserved",
  165. .start = 0x378,
  166. .end = 0x37f,
  167. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  168. },
  169. {
  170. .name = "reserved",
  171. .start = 0x278,
  172. .end = 0x27f,
  173. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  174. }
  175. };
  176. #define lp0 io_res[0]
  177. #define lp1 io_res[1]
  178. #define lp2 io_res[2]
  179. static const char *proc_arch[] = {
  180. "undefined/unknown",
  181. "3",
  182. "4",
  183. "4T",
  184. "5",
  185. "5T",
  186. "5TE",
  187. "5TEJ",
  188. "6TEJ",
  189. "7",
  190. "7M",
  191. "?(12)",
  192. "?(13)",
  193. "?(14)",
  194. "?(15)",
  195. "?(16)",
  196. "?(17)",
  197. };
  198. #ifdef CONFIG_CPU_V7M
  199. static int __get_cpu_architecture(void)
  200. {
  201. return CPU_ARCH_ARMv7M;
  202. }
  203. #else
  204. static int __get_cpu_architecture(void)
  205. {
  206. int cpu_arch;
  207. if ((read_cpuid_id() & 0x0008f000) == 0) {
  208. cpu_arch = CPU_ARCH_UNKNOWN;
  209. } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  210. cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
  211. } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
  212. cpu_arch = (read_cpuid_id() >> 16) & 7;
  213. if (cpu_arch)
  214. cpu_arch += CPU_ARCH_ARMv3;
  215. } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
  216. unsigned int mmfr0;
  217. /* Revised CPUID format. Read the Memory Model Feature
  218. * Register 0 and check for VMSAv7 or PMSAv7 */
  219. asm("mrc p15, 0, %0, c0, c1, 4"
  220. : "=r" (mmfr0));
  221. if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
  222. (mmfr0 & 0x000000f0) >= 0x00000030)
  223. cpu_arch = CPU_ARCH_ARMv7;
  224. else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
  225. (mmfr0 & 0x000000f0) == 0x00000020)
  226. cpu_arch = CPU_ARCH_ARMv6;
  227. else
  228. cpu_arch = CPU_ARCH_UNKNOWN;
  229. } else
  230. cpu_arch = CPU_ARCH_UNKNOWN;
  231. return cpu_arch;
  232. }
  233. #endif
  234. int __pure cpu_architecture(void)
  235. {
  236. BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
  237. return __cpu_architecture;
  238. }
  239. static int cpu_has_aliasing_icache(unsigned int arch)
  240. {
  241. int aliasing_icache;
  242. unsigned int id_reg, num_sets, line_size;
  243. /* PIPT caches never alias. */
  244. if (icache_is_pipt())
  245. return 0;
  246. /* arch specifies the register format */
  247. switch (arch) {
  248. case CPU_ARCH_ARMv7:
  249. asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
  250. : /* No output operands */
  251. : "r" (1));
  252. isb();
  253. asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
  254. : "=r" (id_reg));
  255. line_size = 4 << ((id_reg & 0x7) + 2);
  256. num_sets = ((id_reg >> 13) & 0x7fff) + 1;
  257. aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
  258. break;
  259. case CPU_ARCH_ARMv6:
  260. aliasing_icache = read_cpuid_cachetype() & (1 << 11);
  261. break;
  262. default:
  263. /* I-cache aliases will be handled by D-cache aliasing code */
  264. aliasing_icache = 0;
  265. }
  266. return aliasing_icache;
  267. }
  268. static void __init cacheid_init(void)
  269. {
  270. unsigned int arch = cpu_architecture();
  271. if (arch == CPU_ARCH_ARMv7M) {
  272. cacheid = 0;
  273. } else if (arch >= CPU_ARCH_ARMv6) {
  274. unsigned int cachetype = read_cpuid_cachetype();
  275. if ((cachetype & (7 << 29)) == 4 << 29) {
  276. /* ARMv7 register format */
  277. arch = CPU_ARCH_ARMv7;
  278. cacheid = CACHEID_VIPT_NONALIASING;
  279. switch (cachetype & (3 << 14)) {
  280. case (1 << 14):
  281. cacheid |= CACHEID_ASID_TAGGED;
  282. break;
  283. case (3 << 14):
  284. cacheid |= CACHEID_PIPT;
  285. break;
  286. }
  287. } else {
  288. arch = CPU_ARCH_ARMv6;
  289. if (cachetype & (1 << 23))
  290. cacheid = CACHEID_VIPT_ALIASING;
  291. else
  292. cacheid = CACHEID_VIPT_NONALIASING;
  293. }
  294. if (cpu_has_aliasing_icache(arch))
  295. cacheid |= CACHEID_VIPT_I_ALIASING;
  296. } else {
  297. cacheid = CACHEID_VIVT;
  298. }
  299. pr_info("CPU: %s data cache, %s instruction cache\n",
  300. cache_is_vivt() ? "VIVT" :
  301. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  302. cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
  303. cache_is_vivt() ? "VIVT" :
  304. icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
  305. icache_is_vipt_aliasing() ? "VIPT aliasing" :
  306. icache_is_pipt() ? "PIPT" :
  307. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
  308. }
  309. /*
  310. * These functions re-use the assembly code in head.S, which
  311. * already provide the required functionality.
  312. */
  313. extern struct proc_info_list *lookup_processor_type(unsigned int);
  314. void __init early_print(const char *str, ...)
  315. {
  316. extern void printascii(const char *);
  317. char buf[256];
  318. va_list ap;
  319. va_start(ap, str);
  320. vsnprintf(buf, sizeof(buf), str, ap);
  321. va_end(ap);
  322. #ifdef CONFIG_DEBUG_LL
  323. printascii(buf);
  324. #endif
  325. printk("%s", buf);
  326. }
  327. static void __init cpuid_init_hwcaps(void)
  328. {
  329. unsigned int divide_instrs, vmsa;
  330. if (cpu_architecture() < CPU_ARCH_ARMv7)
  331. return;
  332. divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
  333. switch (divide_instrs) {
  334. case 2:
  335. elf_hwcap |= HWCAP_IDIVA;
  336. case 1:
  337. elf_hwcap |= HWCAP_IDIVT;
  338. }
  339. /* LPAE implies atomic ldrd/strd instructions */
  340. vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
  341. if (vmsa >= 5)
  342. elf_hwcap |= HWCAP_LPAE;
  343. }
  344. static void __init elf_hwcap_fixup(void)
  345. {
  346. unsigned id = read_cpuid_id();
  347. unsigned sync_prim;
  348. /*
  349. * HWCAP_TLS is available only on 1136 r1p0 and later,
  350. * see also kuser_get_tls_init.
  351. */
  352. if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
  353. ((id >> 20) & 3) == 0) {
  354. elf_hwcap &= ~HWCAP_TLS;
  355. return;
  356. }
  357. /* Verify if CPUID scheme is implemented */
  358. if ((id & 0x000f0000) != 0x000f0000)
  359. return;
  360. /*
  361. * If the CPU supports LDREX/STREX and LDREXB/STREXB,
  362. * avoid advertising SWP; it may not be atomic with
  363. * multiprocessing cores.
  364. */
  365. sync_prim = ((read_cpuid_ext(CPUID_EXT_ISAR3) >> 8) & 0xf0) |
  366. ((read_cpuid_ext(CPUID_EXT_ISAR4) >> 20) & 0x0f);
  367. if (sync_prim >= 0x13)
  368. elf_hwcap &= ~HWCAP_SWP;
  369. }
  370. /*
  371. * cpu_init - initialise one CPU.
  372. *
  373. * cpu_init sets up the per-CPU stacks.
  374. */
  375. void notrace cpu_init(void)
  376. {
  377. #ifndef CONFIG_CPU_V7M
  378. unsigned int cpu = smp_processor_id();
  379. struct stack *stk = &stacks[cpu];
  380. if (cpu >= NR_CPUS) {
  381. pr_crit("CPU%u: bad primary CPU number\n", cpu);
  382. BUG();
  383. }
  384. /*
  385. * This only works on resume and secondary cores. For booting on the
  386. * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
  387. */
  388. set_my_cpu_offset(per_cpu_offset(cpu));
  389. cpu_proc_init();
  390. /*
  391. * Define the placement constraint for the inline asm directive below.
  392. * In Thumb-2, msr with an immediate value is not allowed.
  393. */
  394. #ifdef CONFIG_THUMB2_KERNEL
  395. #define PLC "r"
  396. #else
  397. #define PLC "I"
  398. #endif
  399. /*
  400. * setup stacks for re-entrant exception handlers
  401. */
  402. __asm__ (
  403. "msr cpsr_c, %1\n\t"
  404. "add r14, %0, %2\n\t"
  405. "mov sp, r14\n\t"
  406. "msr cpsr_c, %3\n\t"
  407. "add r14, %0, %4\n\t"
  408. "mov sp, r14\n\t"
  409. "msr cpsr_c, %5\n\t"
  410. "add r14, %0, %6\n\t"
  411. "mov sp, r14\n\t"
  412. "msr cpsr_c, %7"
  413. :
  414. : "r" (stk),
  415. PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
  416. "I" (offsetof(struct stack, irq[0])),
  417. PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
  418. "I" (offsetof(struct stack, abt[0])),
  419. PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
  420. "I" (offsetof(struct stack, und[0])),
  421. PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
  422. : "r14");
  423. #endif
  424. }
  425. u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
  426. void __init smp_setup_processor_id(void)
  427. {
  428. int i;
  429. u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
  430. u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
  431. cpu_logical_map(0) = cpu;
  432. for (i = 1; i < nr_cpu_ids; ++i)
  433. cpu_logical_map(i) = i == cpu ? 0 : i;
  434. /*
  435. * clear __my_cpu_offset on boot CPU to avoid hang caused by
  436. * using percpu variable early, for example, lockdep will
  437. * access percpu variable inside lock_release
  438. */
  439. set_my_cpu_offset(0);
  440. pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
  441. }
  442. struct mpidr_hash mpidr_hash;
  443. #ifdef CONFIG_SMP
  444. /**
  445. * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
  446. * level in order to build a linear index from an
  447. * MPIDR value. Resulting algorithm is a collision
  448. * free hash carried out through shifting and ORing
  449. */
  450. static void __init smp_build_mpidr_hash(void)
  451. {
  452. u32 i, affinity;
  453. u32 fs[3], bits[3], ls, mask = 0;
  454. /*
  455. * Pre-scan the list of MPIDRS and filter out bits that do
  456. * not contribute to affinity levels, ie they never toggle.
  457. */
  458. for_each_possible_cpu(i)
  459. mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
  460. pr_debug("mask of set bits 0x%x\n", mask);
  461. /*
  462. * Find and stash the last and first bit set at all affinity levels to
  463. * check how many bits are required to represent them.
  464. */
  465. for (i = 0; i < 3; i++) {
  466. affinity = MPIDR_AFFINITY_LEVEL(mask, i);
  467. /*
  468. * Find the MSB bit and LSB bits position
  469. * to determine how many bits are required
  470. * to express the affinity level.
  471. */
  472. ls = fls(affinity);
  473. fs[i] = affinity ? ffs(affinity) - 1 : 0;
  474. bits[i] = ls - fs[i];
  475. }
  476. /*
  477. * An index can be created from the MPIDR by isolating the
  478. * significant bits at each affinity level and by shifting
  479. * them in order to compress the 24 bits values space to a
  480. * compressed set of values. This is equivalent to hashing
  481. * the MPIDR through shifting and ORing. It is a collision free
  482. * hash though not minimal since some levels might contain a number
  483. * of CPUs that is not an exact power of 2 and their bit
  484. * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
  485. */
  486. mpidr_hash.shift_aff[0] = fs[0];
  487. mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
  488. mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
  489. (bits[1] + bits[0]);
  490. mpidr_hash.mask = mask;
  491. mpidr_hash.bits = bits[2] + bits[1] + bits[0];
  492. pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
  493. mpidr_hash.shift_aff[0],
  494. mpidr_hash.shift_aff[1],
  495. mpidr_hash.shift_aff[2],
  496. mpidr_hash.mask,
  497. mpidr_hash.bits);
  498. /*
  499. * 4x is an arbitrary value used to warn on a hash table much bigger
  500. * than expected on most systems.
  501. */
  502. if (mpidr_hash_size() > 4 * num_possible_cpus())
  503. pr_warn("Large number of MPIDR hash buckets detected\n");
  504. sync_cache_w(&mpidr_hash);
  505. }
  506. #endif
  507. static void __init setup_processor(void)
  508. {
  509. struct proc_info_list *list;
  510. /*
  511. * locate processor in the list of supported processor
  512. * types. The linker builds this table for us from the
  513. * entries in arch/arm/mm/proc-*.S
  514. */
  515. list = lookup_processor_type(read_cpuid_id());
  516. if (!list) {
  517. pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
  518. read_cpuid_id());
  519. while (1);
  520. }
  521. cpu_name = list->cpu_name;
  522. __cpu_architecture = __get_cpu_architecture();
  523. #ifdef MULTI_CPU
  524. processor = *list->proc;
  525. #endif
  526. #ifdef MULTI_TLB
  527. cpu_tlb = *list->tlb;
  528. #endif
  529. #ifdef MULTI_USER
  530. cpu_user = *list->user;
  531. #endif
  532. #ifdef MULTI_CACHE
  533. cpu_cache = *list->cache;
  534. #endif
  535. pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
  536. cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
  537. proc_arch[cpu_architecture()], get_cr());
  538. snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
  539. list->arch_name, ENDIANNESS);
  540. snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
  541. list->elf_name, ENDIANNESS);
  542. elf_hwcap = list->elf_hwcap;
  543. cpuid_init_hwcaps();
  544. #ifndef CONFIG_ARM_THUMB
  545. elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
  546. #endif
  547. #ifdef CONFIG_MMU
  548. init_default_cache_policy(list->__cpu_mm_mmu_flags);
  549. #endif
  550. erratum_a15_798181_init();
  551. elf_hwcap_fixup();
  552. cacheid_init();
  553. cpu_init();
  554. }
  555. void __init dump_machine_table(void)
  556. {
  557. const struct machine_desc *p;
  558. early_print("Available machine support:\n\nID (hex)\tNAME\n");
  559. for_each_machine_desc(p)
  560. early_print("%08x\t%s\n", p->nr, p->name);
  561. early_print("\nPlease check your kernel config and/or bootloader.\n");
  562. while (true)
  563. /* can't use cpu_relax() here as it may require MMU setup */;
  564. }
  565. int __init arm_add_memory(u64 start, u64 size)
  566. {
  567. u64 aligned_start;
  568. /*
  569. * Ensure that start/size are aligned to a page boundary.
  570. * Size is appropriately rounded down, start is rounded up.
  571. */
  572. size -= start & ~PAGE_MASK;
  573. aligned_start = PAGE_ALIGN(start);
  574. #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
  575. if (aligned_start > ULONG_MAX) {
  576. pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
  577. (long long)start);
  578. return -EINVAL;
  579. }
  580. if (aligned_start + size > ULONG_MAX) {
  581. pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
  582. (long long)start);
  583. /*
  584. * To ensure bank->start + bank->size is representable in
  585. * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
  586. * This means we lose a page after masking.
  587. */
  588. size = ULONG_MAX - aligned_start;
  589. }
  590. #endif
  591. if (aligned_start < PHYS_OFFSET) {
  592. if (aligned_start + size <= PHYS_OFFSET) {
  593. pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
  594. aligned_start, aligned_start + size);
  595. return -EINVAL;
  596. }
  597. pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
  598. aligned_start, (u64)PHYS_OFFSET);
  599. size -= PHYS_OFFSET - aligned_start;
  600. aligned_start = PHYS_OFFSET;
  601. }
  602. start = aligned_start;
  603. size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
  604. /*
  605. * Check whether this memory region has non-zero size or
  606. * invalid node number.
  607. */
  608. if (size == 0)
  609. return -EINVAL;
  610. memblock_add(start, size);
  611. return 0;
  612. }
  613. /*
  614. * Pick out the memory size. We look for mem=size@start,
  615. * where start and size are "size[KkMm]"
  616. */
  617. static int __init early_mem(char *p)
  618. {
  619. static int usermem __initdata = 0;
  620. u64 size;
  621. u64 start;
  622. char *endp;
  623. /*
  624. * If the user specifies memory size, we
  625. * blow away any automatically generated
  626. * size.
  627. */
  628. if (usermem == 0) {
  629. usermem = 1;
  630. memblock_remove(memblock_start_of_DRAM(),
  631. memblock_end_of_DRAM() - memblock_start_of_DRAM());
  632. }
  633. start = PHYS_OFFSET;
  634. size = memparse(p, &endp);
  635. if (*endp == '@')
  636. start = memparse(endp + 1, NULL);
  637. arm_add_memory(start, size);
  638. return 0;
  639. }
  640. early_param("mem", early_mem);
  641. static void __init request_standard_resources(const struct machine_desc *mdesc)
  642. {
  643. struct memblock_region *region;
  644. struct resource *res;
  645. kernel_code.start = virt_to_phys(_text);
  646. kernel_code.end = virt_to_phys(_etext - 1);
  647. kernel_data.start = virt_to_phys(_sdata);
  648. kernel_data.end = virt_to_phys(_end - 1);
  649. for_each_memblock(memory, region) {
  650. res = memblock_virt_alloc(sizeof(*res), 0);
  651. res->name = "System RAM";
  652. res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
  653. res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
  654. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  655. request_resource(&iomem_resource, res);
  656. if (kernel_code.start >= res->start &&
  657. kernel_code.end <= res->end)
  658. request_resource(res, &kernel_code);
  659. if (kernel_data.start >= res->start &&
  660. kernel_data.end <= res->end)
  661. request_resource(res, &kernel_data);
  662. }
  663. if (mdesc->video_start) {
  664. video_ram.start = mdesc->video_start;
  665. video_ram.end = mdesc->video_end;
  666. request_resource(&iomem_resource, &video_ram);
  667. }
  668. /*
  669. * Some machines don't have the possibility of ever
  670. * possessing lp0, lp1 or lp2
  671. */
  672. if (mdesc->reserve_lp0)
  673. request_resource(&ioport_resource, &lp0);
  674. if (mdesc->reserve_lp1)
  675. request_resource(&ioport_resource, &lp1);
  676. if (mdesc->reserve_lp2)
  677. request_resource(&ioport_resource, &lp2);
  678. }
  679. #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
  680. struct screen_info screen_info = {
  681. .orig_video_lines = 30,
  682. .orig_video_cols = 80,
  683. .orig_video_mode = 0,
  684. .orig_video_ega_bx = 0,
  685. .orig_video_isVGA = 1,
  686. .orig_video_points = 8
  687. };
  688. #endif
  689. static int __init customize_machine(void)
  690. {
  691. /*
  692. * customizes platform devices, or adds new ones
  693. * On DT based machines, we fall back to populating the
  694. * machine from the device tree, if no callback is provided,
  695. * otherwise we would always need an init_machine callback.
  696. */
  697. if (machine_desc->init_machine)
  698. machine_desc->init_machine();
  699. #ifdef CONFIG_OF
  700. else
  701. of_platform_populate(NULL, of_default_bus_match_table,
  702. NULL, NULL);
  703. #endif
  704. return 0;
  705. }
  706. arch_initcall(customize_machine);
  707. static int __init init_machine_late(void)
  708. {
  709. if (machine_desc->init_late)
  710. machine_desc->init_late();
  711. return 0;
  712. }
  713. late_initcall(init_machine_late);
  714. #ifdef CONFIG_KEXEC
  715. static inline unsigned long long get_total_mem(void)
  716. {
  717. unsigned long total;
  718. total = max_low_pfn - min_low_pfn;
  719. return total << PAGE_SHIFT;
  720. }
  721. /**
  722. * reserve_crashkernel() - reserves memory are for crash kernel
  723. *
  724. * This function reserves memory area given in "crashkernel=" kernel command
  725. * line parameter. The memory reserved is used by a dump capture kernel when
  726. * primary kernel is crashing.
  727. */
  728. static void __init reserve_crashkernel(void)
  729. {
  730. unsigned long long crash_size, crash_base;
  731. unsigned long long total_mem;
  732. int ret;
  733. total_mem = get_total_mem();
  734. ret = parse_crashkernel(boot_command_line, total_mem,
  735. &crash_size, &crash_base);
  736. if (ret)
  737. return;
  738. ret = memblock_reserve(crash_base, crash_size);
  739. if (ret < 0) {
  740. pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
  741. (unsigned long)crash_base);
  742. return;
  743. }
  744. pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
  745. (unsigned long)(crash_size >> 20),
  746. (unsigned long)(crash_base >> 20),
  747. (unsigned long)(total_mem >> 20));
  748. crashk_res.start = crash_base;
  749. crashk_res.end = crash_base + crash_size - 1;
  750. insert_resource(&iomem_resource, &crashk_res);
  751. }
  752. #else
  753. static inline void reserve_crashkernel(void) {}
  754. #endif /* CONFIG_KEXEC */
  755. void __init hyp_mode_check(void)
  756. {
  757. #ifdef CONFIG_ARM_VIRT_EXT
  758. sync_boot_mode();
  759. if (is_hyp_mode_available()) {
  760. pr_info("CPU: All CPU(s) started in HYP mode.\n");
  761. pr_info("CPU: Virtualization extensions available.\n");
  762. } else if (is_hyp_mode_mismatched()) {
  763. pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
  764. __boot_cpu_mode & MODE_MASK);
  765. pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
  766. } else
  767. pr_info("CPU: All CPU(s) started in SVC mode.\n");
  768. #endif
  769. }
  770. void __init setup_arch(char **cmdline_p)
  771. {
  772. const struct machine_desc *mdesc;
  773. setup_processor();
  774. mdesc = setup_machine_fdt(__atags_pointer);
  775. if (!mdesc)
  776. mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
  777. machine_desc = mdesc;
  778. machine_name = mdesc->name;
  779. if (mdesc->reboot_mode != REBOOT_HARD)
  780. reboot_mode = mdesc->reboot_mode;
  781. init_mm.start_code = (unsigned long) _text;
  782. init_mm.end_code = (unsigned long) _etext;
  783. init_mm.end_data = (unsigned long) _edata;
  784. init_mm.brk = (unsigned long) _end;
  785. /* populate cmd_line too for later use, preserving boot_command_line */
  786. strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
  787. *cmdline_p = cmd_line;
  788. parse_early_param();
  789. early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
  790. setup_dma_zone(mdesc);
  791. sanity_check_meminfo();
  792. arm_memblock_init(mdesc);
  793. paging_init(mdesc);
  794. request_standard_resources(mdesc);
  795. if (mdesc->restart)
  796. arm_pm_restart = mdesc->restart;
  797. unflatten_device_tree();
  798. arm_dt_init_cpu_maps();
  799. psci_init();
  800. #ifdef CONFIG_SMP
  801. if (is_smp()) {
  802. if (!mdesc->smp_init || !mdesc->smp_init()) {
  803. if (psci_smp_available())
  804. smp_set_ops(&psci_smp_ops);
  805. else if (mdesc->smp)
  806. smp_set_ops(mdesc->smp);
  807. }
  808. smp_init_cpus();
  809. smp_build_mpidr_hash();
  810. }
  811. #endif
  812. if (!is_smp())
  813. hyp_mode_check();
  814. reserve_crashkernel();
  815. #ifdef CONFIG_MULTI_IRQ_HANDLER
  816. handle_arch_irq = mdesc->handle_irq;
  817. #endif
  818. #ifdef CONFIG_VT
  819. #if defined(CONFIG_VGA_CONSOLE)
  820. conswitchp = &vga_con;
  821. #elif defined(CONFIG_DUMMY_CONSOLE)
  822. conswitchp = &dummy_con;
  823. #endif
  824. #endif
  825. if (mdesc->init_early)
  826. mdesc->init_early();
  827. }
  828. static int __init topology_init(void)
  829. {
  830. int cpu;
  831. for_each_possible_cpu(cpu) {
  832. struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
  833. cpuinfo->cpu.hotpluggable = 1;
  834. register_cpu(&cpuinfo->cpu, cpu);
  835. }
  836. return 0;
  837. }
  838. subsys_initcall(topology_init);
  839. #ifdef CONFIG_HAVE_PROC_CPU
  840. static int __init proc_cpu_init(void)
  841. {
  842. struct proc_dir_entry *res;
  843. res = proc_mkdir("cpu", NULL);
  844. if (!res)
  845. return -ENOMEM;
  846. return 0;
  847. }
  848. fs_initcall(proc_cpu_init);
  849. #endif
  850. static const char *hwcap_str[] = {
  851. "swp",
  852. "half",
  853. "thumb",
  854. "26bit",
  855. "fastmult",
  856. "fpa",
  857. "vfp",
  858. "edsp",
  859. "java",
  860. "iwmmxt",
  861. "crunch",
  862. "thumbee",
  863. "neon",
  864. "vfpv3",
  865. "vfpv3d16",
  866. "tls",
  867. "vfpv4",
  868. "idiva",
  869. "idivt",
  870. "vfpd32",
  871. "lpae",
  872. "evtstrm",
  873. NULL
  874. };
  875. static const char *hwcap2_str[] = {
  876. "aes",
  877. "pmull",
  878. "sha1",
  879. "sha2",
  880. "crc32",
  881. NULL
  882. };
  883. static int c_show(struct seq_file *m, void *v)
  884. {
  885. int i, j;
  886. u32 cpuid;
  887. for_each_online_cpu(i) {
  888. /*
  889. * glibc reads /proc/cpuinfo to determine the number of
  890. * online processors, looking for lines beginning with
  891. * "processor". Give glibc what it expects.
  892. */
  893. seq_printf(m, "processor\t: %d\n", i);
  894. cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
  895. seq_printf(m, "model name\t: %s rev %d (%s)\n",
  896. cpu_name, cpuid & 15, elf_platform);
  897. /* dump out the processor features */
  898. seq_puts(m, "Features\t: ");
  899. for (j = 0; hwcap_str[j]; j++)
  900. if (elf_hwcap & (1 << j))
  901. seq_printf(m, "%s ", hwcap_str[j]);
  902. for (j = 0; hwcap2_str[j]; j++)
  903. if (elf_hwcap2 & (1 << j))
  904. seq_printf(m, "%s ", hwcap2_str[j]);
  905. seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
  906. seq_printf(m, "CPU architecture: %s\n",
  907. proc_arch[cpu_architecture()]);
  908. if ((cpuid & 0x0008f000) == 0x00000000) {
  909. /* pre-ARM7 */
  910. seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
  911. } else {
  912. if ((cpuid & 0x0008f000) == 0x00007000) {
  913. /* ARM7 */
  914. seq_printf(m, "CPU variant\t: 0x%02x\n",
  915. (cpuid >> 16) & 127);
  916. } else {
  917. /* post-ARM7 */
  918. seq_printf(m, "CPU variant\t: 0x%x\n",
  919. (cpuid >> 20) & 15);
  920. }
  921. seq_printf(m, "CPU part\t: 0x%03x\n",
  922. (cpuid >> 4) & 0xfff);
  923. }
  924. seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
  925. }
  926. seq_printf(m, "Hardware\t: %s\n", machine_name);
  927. seq_printf(m, "Revision\t: %04x\n", system_rev);
  928. seq_printf(m, "Serial\t\t: %08x%08x\n",
  929. system_serial_high, system_serial_low);
  930. return 0;
  931. }
  932. static void *c_start(struct seq_file *m, loff_t *pos)
  933. {
  934. return *pos < 1 ? (void *)1 : NULL;
  935. }
  936. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  937. {
  938. ++*pos;
  939. return NULL;
  940. }
  941. static void c_stop(struct seq_file *m, void *v)
  942. {
  943. }
  944. const struct seq_operations cpuinfo_op = {
  945. .start = c_start,
  946. .next = c_next,
  947. .stop = c_stop,
  948. .show = c_show
  949. };