sdma_v4_0.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729
  1. /*
  2. * Copyright 2016 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "amdgpu_ucode.h"
  27. #include "amdgpu_trace.h"
  28. #include "sdma0/sdma0_4_0_offset.h"
  29. #include "sdma0/sdma0_4_0_sh_mask.h"
  30. #include "sdma1/sdma1_4_0_offset.h"
  31. #include "sdma1/sdma1_4_0_sh_mask.h"
  32. #include "hdp/hdp_4_0_offset.h"
  33. #include "sdma0/sdma0_4_1_default.h"
  34. #include "soc15_common.h"
  35. #include "soc15.h"
  36. #include "vega10_sdma_pkt_open.h"
  37. MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  38. MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  39. MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
  40. MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
  41. MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  42. #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
  43. #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  44. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  45. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  46. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  47. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  48. static const struct soc15_reg_golden golden_settings_sdma_4[] = {
  49. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  50. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
  51. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  52. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  53. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  54. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  55. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
  56. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  57. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  58. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  59. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  60. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
  61. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
  62. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
  63. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  64. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  65. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  66. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  67. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
  68. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  69. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  70. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  71. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  72. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0)
  73. };
  74. static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
  75. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
  76. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
  77. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
  78. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
  79. };
  80. static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
  81. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
  82. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
  83. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
  84. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
  85. };
  86. static const struct soc15_reg_golden golden_settings_sdma_4_1[] =
  87. {
  88. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  89. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
  90. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
  91. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  92. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
  93. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
  94. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  95. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
  96. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  97. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0)
  98. };
  99. static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
  100. {
  101. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
  102. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
  103. };
  104. static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
  105. u32 instance, u32 offset)
  106. {
  107. return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
  108. (adev->reg_offset[SDMA1_HWIP][0][0] + offset));
  109. }
  110. static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
  111. {
  112. switch (adev->asic_type) {
  113. case CHIP_VEGA10:
  114. soc15_program_register_sequence(adev,
  115. golden_settings_sdma_4,
  116. ARRAY_SIZE(golden_settings_sdma_4));
  117. soc15_program_register_sequence(adev,
  118. golden_settings_sdma_vg10,
  119. ARRAY_SIZE(golden_settings_sdma_vg10));
  120. break;
  121. case CHIP_VEGA12:
  122. soc15_program_register_sequence(adev,
  123. golden_settings_sdma_4,
  124. ARRAY_SIZE(golden_settings_sdma_4));
  125. soc15_program_register_sequence(adev,
  126. golden_settings_sdma_vg12,
  127. ARRAY_SIZE(golden_settings_sdma_vg12));
  128. break;
  129. case CHIP_RAVEN:
  130. soc15_program_register_sequence(adev,
  131. golden_settings_sdma_4_1,
  132. ARRAY_SIZE(golden_settings_sdma_4_1));
  133. soc15_program_register_sequence(adev,
  134. golden_settings_sdma_rv1,
  135. ARRAY_SIZE(golden_settings_sdma_rv1));
  136. break;
  137. default:
  138. break;
  139. }
  140. }
  141. /**
  142. * sdma_v4_0_init_microcode - load ucode images from disk
  143. *
  144. * @adev: amdgpu_device pointer
  145. *
  146. * Use the firmware interface to load the ucode images into
  147. * the driver (not loaded into hw).
  148. * Returns 0 on success, error on failure.
  149. */
  150. // emulation only, won't work on real chip
  151. // vega10 real chip need to use PSP to load firmware
  152. static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
  153. {
  154. const char *chip_name;
  155. char fw_name[30];
  156. int err = 0, i;
  157. struct amdgpu_firmware_info *info = NULL;
  158. const struct common_firmware_header *header = NULL;
  159. const struct sdma_firmware_header_v1_0 *hdr;
  160. DRM_DEBUG("\n");
  161. switch (adev->asic_type) {
  162. case CHIP_VEGA10:
  163. chip_name = "vega10";
  164. break;
  165. case CHIP_VEGA12:
  166. chip_name = "vega12";
  167. break;
  168. case CHIP_RAVEN:
  169. chip_name = "raven";
  170. break;
  171. default:
  172. BUG();
  173. }
  174. for (i = 0; i < adev->sdma.num_instances; i++) {
  175. if (i == 0)
  176. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  177. else
  178. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  179. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  180. if (err)
  181. goto out;
  182. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  183. if (err)
  184. goto out;
  185. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  186. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  187. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  188. if (adev->sdma.instance[i].feature_version >= 20)
  189. adev->sdma.instance[i].burst_nop = true;
  190. DRM_DEBUG("psp_load == '%s'\n",
  191. adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
  192. if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
  193. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  194. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  195. info->fw = adev->sdma.instance[i].fw;
  196. header = (const struct common_firmware_header *)info->fw->data;
  197. adev->firmware.fw_size +=
  198. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  199. }
  200. }
  201. out:
  202. if (err) {
  203. DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
  204. for (i = 0; i < adev->sdma.num_instances; i++) {
  205. release_firmware(adev->sdma.instance[i].fw);
  206. adev->sdma.instance[i].fw = NULL;
  207. }
  208. }
  209. return err;
  210. }
  211. /**
  212. * sdma_v4_0_ring_get_rptr - get the current read pointer
  213. *
  214. * @ring: amdgpu ring pointer
  215. *
  216. * Get the current rptr from the hardware (VEGA10+).
  217. */
  218. static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
  219. {
  220. u64 *rptr;
  221. /* XXX check if swapping is necessary on BE */
  222. rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
  223. DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
  224. return ((*rptr) >> 2);
  225. }
  226. /**
  227. * sdma_v4_0_ring_get_wptr - get the current write pointer
  228. *
  229. * @ring: amdgpu ring pointer
  230. *
  231. * Get the current wptr from the hardware (VEGA10+).
  232. */
  233. static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
  234. {
  235. struct amdgpu_device *adev = ring->adev;
  236. u64 wptr;
  237. if (ring->use_doorbell) {
  238. /* XXX check if swapping is necessary on BE */
  239. wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
  240. DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
  241. } else {
  242. u32 lowbit, highbit;
  243. int me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
  244. lowbit = RREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR)) >> 2;
  245. highbit = RREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
  246. DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
  247. me, highbit, lowbit);
  248. wptr = highbit;
  249. wptr = wptr << 32;
  250. wptr |= lowbit;
  251. }
  252. return wptr >> 2;
  253. }
  254. /**
  255. * sdma_v4_0_ring_set_wptr - commit the write pointer
  256. *
  257. * @ring: amdgpu ring pointer
  258. *
  259. * Write the wptr back to the hardware (VEGA10+).
  260. */
  261. static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
  262. {
  263. struct amdgpu_device *adev = ring->adev;
  264. DRM_DEBUG("Setting write pointer\n");
  265. if (ring->use_doorbell) {
  266. u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
  267. DRM_DEBUG("Using doorbell -- "
  268. "wptr_offs == 0x%08x "
  269. "lower_32_bits(ring->wptr) << 2 == 0x%08x "
  270. "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
  271. ring->wptr_offs,
  272. lower_32_bits(ring->wptr << 2),
  273. upper_32_bits(ring->wptr << 2));
  274. /* XXX check if swapping is necessary on BE */
  275. WRITE_ONCE(*wb, (ring->wptr << 2));
  276. DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
  277. ring->doorbell_index, ring->wptr << 2);
  278. WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
  279. } else {
  280. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  281. DRM_DEBUG("Not using doorbell -- "
  282. "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
  283. "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
  284. me,
  285. lower_32_bits(ring->wptr << 2),
  286. me,
  287. upper_32_bits(ring->wptr << 2));
  288. WREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
  289. WREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
  290. }
  291. }
  292. static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  293. {
  294. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  295. int i;
  296. for (i = 0; i < count; i++)
  297. if (sdma && sdma->burst_nop && (i == 0))
  298. amdgpu_ring_write(ring, ring->funcs->nop |
  299. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  300. else
  301. amdgpu_ring_write(ring, ring->funcs->nop);
  302. }
  303. /**
  304. * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
  305. *
  306. * @ring: amdgpu ring pointer
  307. * @ib: IB object to schedule
  308. *
  309. * Schedule an IB in the DMA ring (VEGA10).
  310. */
  311. static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
  312. struct amdgpu_ib *ib,
  313. unsigned vmid, bool ctx_switch)
  314. {
  315. /* IB packet must end on a 8 DW boundary */
  316. sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  317. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  318. SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
  319. /* base must be 32 byte aligned */
  320. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  321. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  322. amdgpu_ring_write(ring, ib->length_dw);
  323. amdgpu_ring_write(ring, 0);
  324. amdgpu_ring_write(ring, 0);
  325. }
  326. /**
  327. * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  328. *
  329. * @ring: amdgpu ring pointer
  330. *
  331. * Emit an hdp flush packet on the requested DMA ring.
  332. */
  333. static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  334. {
  335. struct amdgpu_device *adev = ring->adev;
  336. u32 ref_and_mask = 0;
  337. const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
  338. if (ring == &ring->adev->sdma.instance[0].ring)
  339. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
  340. else
  341. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
  342. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  343. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  344. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  345. amdgpu_ring_write(ring, (adev->nbio_funcs->get_hdp_flush_done_offset(adev)) << 2);
  346. amdgpu_ring_write(ring, (adev->nbio_funcs->get_hdp_flush_req_offset(adev)) << 2);
  347. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  348. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  349. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  350. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  351. }
  352. /**
  353. * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
  354. *
  355. * @ring: amdgpu ring pointer
  356. * @fence: amdgpu fence object
  357. *
  358. * Add a DMA fence packet to the ring to write
  359. * the fence seq number and DMA trap packet to generate
  360. * an interrupt if needed (VEGA10).
  361. */
  362. static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  363. unsigned flags)
  364. {
  365. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  366. /* write the fence */
  367. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  368. /* zero in first two bits */
  369. BUG_ON(addr & 0x3);
  370. amdgpu_ring_write(ring, lower_32_bits(addr));
  371. amdgpu_ring_write(ring, upper_32_bits(addr));
  372. amdgpu_ring_write(ring, lower_32_bits(seq));
  373. /* optionally write high bits as well */
  374. if (write64bit) {
  375. addr += 4;
  376. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  377. /* zero in first two bits */
  378. BUG_ON(addr & 0x3);
  379. amdgpu_ring_write(ring, lower_32_bits(addr));
  380. amdgpu_ring_write(ring, upper_32_bits(addr));
  381. amdgpu_ring_write(ring, upper_32_bits(seq));
  382. }
  383. /* generate an interrupt */
  384. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  385. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  386. }
  387. /**
  388. * sdma_v4_0_gfx_stop - stop the gfx async dma engines
  389. *
  390. * @adev: amdgpu_device pointer
  391. *
  392. * Stop the gfx async dma ring buffers (VEGA10).
  393. */
  394. static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
  395. {
  396. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  397. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  398. u32 rb_cntl, ib_cntl;
  399. int i;
  400. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  401. (adev->mman.buffer_funcs_ring == sdma1))
  402. amdgpu_ttm_set_buffer_funcs_status(adev, false);
  403. for (i = 0; i < adev->sdma.num_instances; i++) {
  404. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
  405. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  406. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  407. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
  408. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  409. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  410. }
  411. sdma0->ready = false;
  412. sdma1->ready = false;
  413. }
  414. /**
  415. * sdma_v4_0_rlc_stop - stop the compute async dma engines
  416. *
  417. * @adev: amdgpu_device pointer
  418. *
  419. * Stop the compute async dma queues (VEGA10).
  420. */
  421. static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
  422. {
  423. /* XXX todo */
  424. }
  425. /**
  426. * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
  427. *
  428. * @adev: amdgpu_device pointer
  429. * @enable: enable/disable the DMA MEs context switch.
  430. *
  431. * Halt or unhalt the async dma engines context switch (VEGA10).
  432. */
  433. static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  434. {
  435. u32 f32_cntl, phase_quantum = 0;
  436. int i;
  437. if (amdgpu_sdma_phase_quantum) {
  438. unsigned value = amdgpu_sdma_phase_quantum;
  439. unsigned unit = 0;
  440. while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  441. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
  442. value = (value + 1) >> 1;
  443. unit++;
  444. }
  445. if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  446. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
  447. value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  448. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
  449. unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  450. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
  451. WARN_ONCE(1,
  452. "clamping sdma_phase_quantum to %uK clock cycles\n",
  453. value << unit);
  454. }
  455. phase_quantum =
  456. value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
  457. unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
  458. }
  459. for (i = 0; i < adev->sdma.num_instances; i++) {
  460. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
  461. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  462. AUTO_CTXSW_ENABLE, enable ? 1 : 0);
  463. if (enable && amdgpu_sdma_phase_quantum) {
  464. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
  465. phase_quantum);
  466. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
  467. phase_quantum);
  468. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
  469. phase_quantum);
  470. }
  471. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
  472. }
  473. }
  474. /**
  475. * sdma_v4_0_enable - stop the async dma engines
  476. *
  477. * @adev: amdgpu_device pointer
  478. * @enable: enable/disable the DMA MEs.
  479. *
  480. * Halt or unhalt the async dma engines (VEGA10).
  481. */
  482. static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
  483. {
  484. u32 f32_cntl;
  485. int i;
  486. if (enable == false) {
  487. sdma_v4_0_gfx_stop(adev);
  488. sdma_v4_0_rlc_stop(adev);
  489. }
  490. for (i = 0; i < adev->sdma.num_instances; i++) {
  491. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
  492. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
  493. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
  494. }
  495. }
  496. /**
  497. * sdma_v4_0_gfx_resume - setup and start the async dma engines
  498. *
  499. * @adev: amdgpu_device pointer
  500. *
  501. * Set up the gfx DMA ring buffers and enable them (VEGA10).
  502. * Returns 0 for success, error for failure.
  503. */
  504. static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
  505. {
  506. struct amdgpu_ring *ring;
  507. u32 rb_cntl, ib_cntl, wptr_poll_cntl;
  508. u32 rb_bufsz;
  509. u32 wb_offset;
  510. u32 doorbell;
  511. u32 doorbell_offset;
  512. u32 temp;
  513. u64 wptr_gpu_addr;
  514. int i, r;
  515. for (i = 0; i < adev->sdma.num_instances; i++) {
  516. ring = &adev->sdma.instance[i].ring;
  517. wb_offset = (ring->rptr_offs * 4);
  518. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
  519. /* Set ring buffer size in dwords */
  520. rb_bufsz = order_base_2(ring->ring_size / 4);
  521. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
  522. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  523. #ifdef __BIG_ENDIAN
  524. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  525. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  526. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  527. #endif
  528. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  529. /* Initialize the ring buffer's read and write pointers */
  530. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
  531. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
  532. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
  533. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
  534. /* set the wb address whether it's enabled or not */
  535. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
  536. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  537. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
  538. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  539. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  540. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
  541. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
  542. ring->wptr = 0;
  543. /* before programing wptr to a less value, need set minor_ptr_update first */
  544. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
  545. if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
  546. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
  547. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
  548. }
  549. doorbell = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
  550. doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
  551. if (ring->use_doorbell) {
  552. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  553. doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
  554. OFFSET, ring->doorbell_index);
  555. } else {
  556. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  557. }
  558. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
  559. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
  560. adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
  561. ring->doorbell_index);
  562. if (amdgpu_sriov_vf(adev))
  563. sdma_v4_0_ring_set_wptr(ring);
  564. /* set minor_ptr_update to 0 after wptr programed */
  565. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
  566. /* set utc l1 enable flag always to 1 */
  567. temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
  568. temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
  569. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
  570. if (!amdgpu_sriov_vf(adev)) {
  571. /* unhalt engine */
  572. temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
  573. temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
  574. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
  575. }
  576. /* setup the wptr shadow polling */
  577. wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
  578. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
  579. lower_32_bits(wptr_gpu_addr));
  580. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
  581. upper_32_bits(wptr_gpu_addr));
  582. wptr_poll_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
  583. if (amdgpu_sriov_vf(adev))
  584. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
  585. else
  586. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
  587. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl);
  588. /* enable DMA RB */
  589. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  590. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  591. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
  592. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  593. #ifdef __BIG_ENDIAN
  594. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  595. #endif
  596. /* enable DMA IBs */
  597. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  598. ring->ready = true;
  599. if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
  600. sdma_v4_0_ctx_switch_enable(adev, true);
  601. sdma_v4_0_enable(adev, true);
  602. }
  603. r = amdgpu_ring_test_ring(ring);
  604. if (r) {
  605. ring->ready = false;
  606. return r;
  607. }
  608. if (adev->mman.buffer_funcs_ring == ring)
  609. amdgpu_ttm_set_buffer_funcs_status(adev, true);
  610. }
  611. return 0;
  612. }
  613. static void
  614. sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
  615. {
  616. uint32_t def, data;
  617. if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
  618. /* disable idle interrupt */
  619. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  620. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  621. if (data != def)
  622. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  623. } else {
  624. /* disable idle interrupt */
  625. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  626. data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  627. if (data != def)
  628. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  629. }
  630. }
  631. static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
  632. {
  633. uint32_t def, data;
  634. /* Enable HW based PG. */
  635. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  636. data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
  637. if (data != def)
  638. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  639. /* enable interrupt */
  640. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  641. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  642. if (data != def)
  643. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  644. /* Configure hold time to filter in-valid power on/off request. Use default right now */
  645. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  646. data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
  647. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
  648. /* Configure switch time for hysteresis purpose. Use default right now */
  649. data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
  650. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
  651. if(data != def)
  652. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  653. }
  654. static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
  655. {
  656. if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
  657. return;
  658. switch (adev->asic_type) {
  659. case CHIP_RAVEN:
  660. sdma_v4_1_init_power_gating(adev);
  661. sdma_v4_1_update_power_gating(adev, true);
  662. break;
  663. default:
  664. break;
  665. }
  666. }
  667. /**
  668. * sdma_v4_0_rlc_resume - setup and start the async dma engines
  669. *
  670. * @adev: amdgpu_device pointer
  671. *
  672. * Set up the compute DMA queues and enable them (VEGA10).
  673. * Returns 0 for success, error for failure.
  674. */
  675. static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
  676. {
  677. sdma_v4_0_init_pg(adev);
  678. return 0;
  679. }
  680. /**
  681. * sdma_v4_0_load_microcode - load the sDMA ME ucode
  682. *
  683. * @adev: amdgpu_device pointer
  684. *
  685. * Loads the sDMA0/1 ucode.
  686. * Returns 0 for success, -EINVAL if the ucode is not available.
  687. */
  688. static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
  689. {
  690. const struct sdma_firmware_header_v1_0 *hdr;
  691. const __le32 *fw_data;
  692. u32 fw_size;
  693. int i, j;
  694. /* halt the MEs */
  695. sdma_v4_0_enable(adev, false);
  696. for (i = 0; i < adev->sdma.num_instances; i++) {
  697. if (!adev->sdma.instance[i].fw)
  698. return -EINVAL;
  699. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  700. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  701. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  702. fw_data = (const __le32 *)
  703. (adev->sdma.instance[i].fw->data +
  704. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  705. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
  706. for (j = 0; j < fw_size; j++)
  707. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
  708. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
  709. }
  710. return 0;
  711. }
  712. /**
  713. * sdma_v4_0_start - setup and start the async dma engines
  714. *
  715. * @adev: amdgpu_device pointer
  716. *
  717. * Set up the DMA engines and enable them (VEGA10).
  718. * Returns 0 for success, error for failure.
  719. */
  720. static int sdma_v4_0_start(struct amdgpu_device *adev)
  721. {
  722. int r = 0;
  723. if (amdgpu_sriov_vf(adev)) {
  724. sdma_v4_0_ctx_switch_enable(adev, false);
  725. sdma_v4_0_enable(adev, false);
  726. /* set RB registers */
  727. r = sdma_v4_0_gfx_resume(adev);
  728. return r;
  729. }
  730. if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
  731. r = sdma_v4_0_load_microcode(adev);
  732. if (r)
  733. return r;
  734. }
  735. /* unhalt the MEs */
  736. sdma_v4_0_enable(adev, true);
  737. /* enable sdma ring preemption */
  738. sdma_v4_0_ctx_switch_enable(adev, true);
  739. /* start the gfx rings and rlc compute queues */
  740. r = sdma_v4_0_gfx_resume(adev);
  741. if (r)
  742. return r;
  743. r = sdma_v4_0_rlc_resume(adev);
  744. return r;
  745. }
  746. /**
  747. * sdma_v4_0_ring_test_ring - simple async dma engine test
  748. *
  749. * @ring: amdgpu_ring structure holding ring information
  750. *
  751. * Test the DMA engine by writing using it to write an
  752. * value to memory. (VEGA10).
  753. * Returns 0 for success, error for failure.
  754. */
  755. static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
  756. {
  757. struct amdgpu_device *adev = ring->adev;
  758. unsigned i;
  759. unsigned index;
  760. int r;
  761. u32 tmp;
  762. u64 gpu_addr;
  763. r = amdgpu_device_wb_get(adev, &index);
  764. if (r) {
  765. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  766. return r;
  767. }
  768. gpu_addr = adev->wb.gpu_addr + (index * 4);
  769. tmp = 0xCAFEDEAD;
  770. adev->wb.wb[index] = cpu_to_le32(tmp);
  771. r = amdgpu_ring_alloc(ring, 5);
  772. if (r) {
  773. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  774. amdgpu_device_wb_free(adev, index);
  775. return r;
  776. }
  777. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  778. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  779. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  780. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  781. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
  782. amdgpu_ring_write(ring, 0xDEADBEEF);
  783. amdgpu_ring_commit(ring);
  784. for (i = 0; i < adev->usec_timeout; i++) {
  785. tmp = le32_to_cpu(adev->wb.wb[index]);
  786. if (tmp == 0xDEADBEEF)
  787. break;
  788. DRM_UDELAY(1);
  789. }
  790. if (i < adev->usec_timeout) {
  791. DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  792. } else {
  793. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  794. ring->idx, tmp);
  795. r = -EINVAL;
  796. }
  797. amdgpu_device_wb_free(adev, index);
  798. return r;
  799. }
  800. /**
  801. * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
  802. *
  803. * @ring: amdgpu_ring structure holding ring information
  804. *
  805. * Test a simple IB in the DMA ring (VEGA10).
  806. * Returns 0 on success, error on failure.
  807. */
  808. static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  809. {
  810. struct amdgpu_device *adev = ring->adev;
  811. struct amdgpu_ib ib;
  812. struct dma_fence *f = NULL;
  813. unsigned index;
  814. long r;
  815. u32 tmp = 0;
  816. u64 gpu_addr;
  817. r = amdgpu_device_wb_get(adev, &index);
  818. if (r) {
  819. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  820. return r;
  821. }
  822. gpu_addr = adev->wb.gpu_addr + (index * 4);
  823. tmp = 0xCAFEDEAD;
  824. adev->wb.wb[index] = cpu_to_le32(tmp);
  825. memset(&ib, 0, sizeof(ib));
  826. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  827. if (r) {
  828. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  829. goto err0;
  830. }
  831. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  832. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  833. ib.ptr[1] = lower_32_bits(gpu_addr);
  834. ib.ptr[2] = upper_32_bits(gpu_addr);
  835. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
  836. ib.ptr[4] = 0xDEADBEEF;
  837. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  838. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  839. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  840. ib.length_dw = 8;
  841. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  842. if (r)
  843. goto err1;
  844. r = dma_fence_wait_timeout(f, false, timeout);
  845. if (r == 0) {
  846. DRM_ERROR("amdgpu: IB test timed out\n");
  847. r = -ETIMEDOUT;
  848. goto err1;
  849. } else if (r < 0) {
  850. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  851. goto err1;
  852. }
  853. tmp = le32_to_cpu(adev->wb.wb[index]);
  854. if (tmp == 0xDEADBEEF) {
  855. DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
  856. r = 0;
  857. } else {
  858. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  859. r = -EINVAL;
  860. }
  861. err1:
  862. amdgpu_ib_free(adev, &ib, NULL);
  863. dma_fence_put(f);
  864. err0:
  865. amdgpu_device_wb_free(adev, index);
  866. return r;
  867. }
  868. /**
  869. * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
  870. *
  871. * @ib: indirect buffer to fill with commands
  872. * @pe: addr of the page entry
  873. * @src: src addr to copy from
  874. * @count: number of page entries to update
  875. *
  876. * Update PTEs by copying them from the GART using sDMA (VEGA10).
  877. */
  878. static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
  879. uint64_t pe, uint64_t src,
  880. unsigned count)
  881. {
  882. unsigned bytes = count * 8;
  883. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  884. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  885. ib->ptr[ib->length_dw++] = bytes - 1;
  886. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  887. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  888. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  889. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  890. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  891. }
  892. /**
  893. * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
  894. *
  895. * @ib: indirect buffer to fill with commands
  896. * @pe: addr of the page entry
  897. * @addr: dst addr to write into pe
  898. * @count: number of page entries to update
  899. * @incr: increase next addr by incr bytes
  900. * @flags: access flags
  901. *
  902. * Update PTEs by writing them manually using sDMA (VEGA10).
  903. */
  904. static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  905. uint64_t value, unsigned count,
  906. uint32_t incr)
  907. {
  908. unsigned ndw = count * 2;
  909. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  910. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  911. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  912. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  913. ib->ptr[ib->length_dw++] = ndw - 1;
  914. for (; ndw > 0; ndw -= 2) {
  915. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  916. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  917. value += incr;
  918. }
  919. }
  920. /**
  921. * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
  922. *
  923. * @ib: indirect buffer to fill with commands
  924. * @pe: addr of the page entry
  925. * @addr: dst addr to write into pe
  926. * @count: number of page entries to update
  927. * @incr: increase next addr by incr bytes
  928. * @flags: access flags
  929. *
  930. * Update the page tables using sDMA (VEGA10).
  931. */
  932. static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  933. uint64_t pe,
  934. uint64_t addr, unsigned count,
  935. uint32_t incr, uint64_t flags)
  936. {
  937. /* for physically contiguous pages (vram) */
  938. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
  939. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  940. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  941. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  942. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  943. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  944. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  945. ib->ptr[ib->length_dw++] = incr; /* increment size */
  946. ib->ptr[ib->length_dw++] = 0;
  947. ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
  948. }
  949. /**
  950. * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
  951. *
  952. * @ib: indirect buffer to fill with padding
  953. *
  954. */
  955. static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  956. {
  957. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  958. u32 pad_count;
  959. int i;
  960. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  961. for (i = 0; i < pad_count; i++)
  962. if (sdma && sdma->burst_nop && (i == 0))
  963. ib->ptr[ib->length_dw++] =
  964. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  965. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  966. else
  967. ib->ptr[ib->length_dw++] =
  968. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  969. }
  970. /**
  971. * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
  972. *
  973. * @ring: amdgpu_ring pointer
  974. *
  975. * Make sure all previous operations are completed (CIK).
  976. */
  977. static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  978. {
  979. uint32_t seq = ring->fence_drv.sync_seq;
  980. uint64_t addr = ring->fence_drv.gpu_addr;
  981. /* wait for idle */
  982. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  983. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  984. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  985. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  986. amdgpu_ring_write(ring, addr & 0xfffffffc);
  987. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  988. amdgpu_ring_write(ring, seq); /* reference */
  989. amdgpu_ring_write(ring, 0xffffffff); /* mask */
  990. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  991. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  992. }
  993. /**
  994. * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
  995. *
  996. * @ring: amdgpu_ring pointer
  997. * @vm: amdgpu_vm pointer
  998. *
  999. * Update the page table base and flush the VM TLB
  1000. * using sDMA (VEGA10).
  1001. */
  1002. static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  1003. unsigned vmid, uint64_t pd_addr)
  1004. {
  1005. amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
  1006. }
  1007. static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
  1008. uint32_t reg, uint32_t val)
  1009. {
  1010. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1011. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1012. amdgpu_ring_write(ring, reg);
  1013. amdgpu_ring_write(ring, val);
  1014. }
  1015. static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
  1016. uint32_t val, uint32_t mask)
  1017. {
  1018. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1019. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1020. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
  1021. amdgpu_ring_write(ring, reg << 2);
  1022. amdgpu_ring_write(ring, 0);
  1023. amdgpu_ring_write(ring, val); /* reference */
  1024. amdgpu_ring_write(ring, mask); /* mask */
  1025. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1026. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
  1027. }
  1028. static int sdma_v4_0_early_init(void *handle)
  1029. {
  1030. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1031. if (adev->asic_type == CHIP_RAVEN)
  1032. adev->sdma.num_instances = 1;
  1033. else
  1034. adev->sdma.num_instances = 2;
  1035. sdma_v4_0_set_ring_funcs(adev);
  1036. sdma_v4_0_set_buffer_funcs(adev);
  1037. sdma_v4_0_set_vm_pte_funcs(adev);
  1038. sdma_v4_0_set_irq_funcs(adev);
  1039. return 0;
  1040. }
  1041. static int sdma_v4_0_sw_init(void *handle)
  1042. {
  1043. struct amdgpu_ring *ring;
  1044. int r, i;
  1045. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1046. /* SDMA trap event */
  1047. r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, 224,
  1048. &adev->sdma.trap_irq);
  1049. if (r)
  1050. return r;
  1051. /* SDMA trap event */
  1052. r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, 224,
  1053. &adev->sdma.trap_irq);
  1054. if (r)
  1055. return r;
  1056. r = sdma_v4_0_init_microcode(adev);
  1057. if (r) {
  1058. DRM_ERROR("Failed to load sdma firmware!\n");
  1059. return r;
  1060. }
  1061. for (i = 0; i < adev->sdma.num_instances; i++) {
  1062. ring = &adev->sdma.instance[i].ring;
  1063. ring->ring_obj = NULL;
  1064. ring->use_doorbell = true;
  1065. DRM_INFO("use_doorbell being set to: [%s]\n",
  1066. ring->use_doorbell?"true":"false");
  1067. ring->doorbell_index = (i == 0) ?
  1068. (AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
  1069. : (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
  1070. sprintf(ring->name, "sdma%d", i);
  1071. r = amdgpu_ring_init(adev, ring, 1024,
  1072. &adev->sdma.trap_irq,
  1073. (i == 0) ?
  1074. AMDGPU_SDMA_IRQ_TRAP0 :
  1075. AMDGPU_SDMA_IRQ_TRAP1);
  1076. if (r)
  1077. return r;
  1078. }
  1079. return r;
  1080. }
  1081. static int sdma_v4_0_sw_fini(void *handle)
  1082. {
  1083. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1084. int i;
  1085. for (i = 0; i < adev->sdma.num_instances; i++)
  1086. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1087. for (i = 0; i < adev->sdma.num_instances; i++) {
  1088. release_firmware(adev->sdma.instance[i].fw);
  1089. adev->sdma.instance[i].fw = NULL;
  1090. }
  1091. return 0;
  1092. }
  1093. static int sdma_v4_0_hw_init(void *handle)
  1094. {
  1095. int r;
  1096. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1097. sdma_v4_0_init_golden_registers(adev);
  1098. r = sdma_v4_0_start(adev);
  1099. return r;
  1100. }
  1101. static int sdma_v4_0_hw_fini(void *handle)
  1102. {
  1103. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1104. if (amdgpu_sriov_vf(adev))
  1105. return 0;
  1106. sdma_v4_0_ctx_switch_enable(adev, false);
  1107. sdma_v4_0_enable(adev, false);
  1108. return 0;
  1109. }
  1110. static int sdma_v4_0_suspend(void *handle)
  1111. {
  1112. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1113. return sdma_v4_0_hw_fini(adev);
  1114. }
  1115. static int sdma_v4_0_resume(void *handle)
  1116. {
  1117. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1118. return sdma_v4_0_hw_init(adev);
  1119. }
  1120. static bool sdma_v4_0_is_idle(void *handle)
  1121. {
  1122. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1123. u32 i;
  1124. for (i = 0; i < adev->sdma.num_instances; i++) {
  1125. u32 tmp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
  1126. if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
  1127. return false;
  1128. }
  1129. return true;
  1130. }
  1131. static int sdma_v4_0_wait_for_idle(void *handle)
  1132. {
  1133. unsigned i;
  1134. u32 sdma0, sdma1;
  1135. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1136. for (i = 0; i < adev->usec_timeout; i++) {
  1137. sdma0 = RREG32(sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
  1138. sdma1 = RREG32(sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
  1139. if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
  1140. return 0;
  1141. udelay(1);
  1142. }
  1143. return -ETIMEDOUT;
  1144. }
  1145. static int sdma_v4_0_soft_reset(void *handle)
  1146. {
  1147. /* todo */
  1148. return 0;
  1149. }
  1150. static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
  1151. struct amdgpu_irq_src *source,
  1152. unsigned type,
  1153. enum amdgpu_interrupt_state state)
  1154. {
  1155. u32 sdma_cntl;
  1156. u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
  1157. sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
  1158. sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
  1159. sdma_cntl = RREG32(reg_offset);
  1160. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
  1161. state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
  1162. WREG32(reg_offset, sdma_cntl);
  1163. return 0;
  1164. }
  1165. static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
  1166. struct amdgpu_irq_src *source,
  1167. struct amdgpu_iv_entry *entry)
  1168. {
  1169. DRM_DEBUG("IH: SDMA trap\n");
  1170. switch (entry->client_id) {
  1171. case SOC15_IH_CLIENTID_SDMA0:
  1172. switch (entry->ring_id) {
  1173. case 0:
  1174. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1175. break;
  1176. case 1:
  1177. /* XXX compute */
  1178. break;
  1179. case 2:
  1180. /* XXX compute */
  1181. break;
  1182. case 3:
  1183. /* XXX page queue*/
  1184. break;
  1185. }
  1186. break;
  1187. case SOC15_IH_CLIENTID_SDMA1:
  1188. switch (entry->ring_id) {
  1189. case 0:
  1190. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1191. break;
  1192. case 1:
  1193. /* XXX compute */
  1194. break;
  1195. case 2:
  1196. /* XXX compute */
  1197. break;
  1198. case 3:
  1199. /* XXX page queue*/
  1200. break;
  1201. }
  1202. break;
  1203. }
  1204. return 0;
  1205. }
  1206. static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1207. struct amdgpu_irq_src *source,
  1208. struct amdgpu_iv_entry *entry)
  1209. {
  1210. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1211. schedule_work(&adev->reset_work);
  1212. return 0;
  1213. }
  1214. static void sdma_v4_0_update_medium_grain_clock_gating(
  1215. struct amdgpu_device *adev,
  1216. bool enable)
  1217. {
  1218. uint32_t data, def;
  1219. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1220. /* enable sdma0 clock gating */
  1221. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1222. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1223. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1224. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1225. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1226. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1227. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1228. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1229. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1230. if (def != data)
  1231. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1232. if (adev->sdma.num_instances > 1) {
  1233. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1234. data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1235. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1236. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1237. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1238. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1239. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1240. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1241. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1242. if (def != data)
  1243. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1244. }
  1245. } else {
  1246. /* disable sdma0 clock gating */
  1247. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1248. data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1249. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1250. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1251. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1252. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1253. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1254. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1255. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1256. if (def != data)
  1257. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1258. if (adev->sdma.num_instances > 1) {
  1259. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1260. data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1261. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1262. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1263. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1264. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1265. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1266. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1267. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1268. if (def != data)
  1269. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1270. }
  1271. }
  1272. }
  1273. static void sdma_v4_0_update_medium_grain_light_sleep(
  1274. struct amdgpu_device *adev,
  1275. bool enable)
  1276. {
  1277. uint32_t data, def;
  1278. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1279. /* 1-not override: enable sdma0 mem light sleep */
  1280. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1281. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1282. if (def != data)
  1283. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1284. /* 1-not override: enable sdma1 mem light sleep */
  1285. if (adev->sdma.num_instances > 1) {
  1286. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1287. data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1288. if (def != data)
  1289. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1290. }
  1291. } else {
  1292. /* 0-override:disable sdma0 mem light sleep */
  1293. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1294. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1295. if (def != data)
  1296. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1297. /* 0-override:disable sdma1 mem light sleep */
  1298. if (adev->sdma.num_instances > 1) {
  1299. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1300. data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1301. if (def != data)
  1302. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1303. }
  1304. }
  1305. }
  1306. static int sdma_v4_0_set_clockgating_state(void *handle,
  1307. enum amd_clockgating_state state)
  1308. {
  1309. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1310. if (amdgpu_sriov_vf(adev))
  1311. return 0;
  1312. switch (adev->asic_type) {
  1313. case CHIP_VEGA10:
  1314. case CHIP_VEGA12:
  1315. case CHIP_RAVEN:
  1316. sdma_v4_0_update_medium_grain_clock_gating(adev,
  1317. state == AMD_CG_STATE_GATE ? true : false);
  1318. sdma_v4_0_update_medium_grain_light_sleep(adev,
  1319. state == AMD_CG_STATE_GATE ? true : false);
  1320. break;
  1321. default:
  1322. break;
  1323. }
  1324. return 0;
  1325. }
  1326. static int sdma_v4_0_set_powergating_state(void *handle,
  1327. enum amd_powergating_state state)
  1328. {
  1329. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1330. switch (adev->asic_type) {
  1331. case CHIP_RAVEN:
  1332. sdma_v4_1_update_power_gating(adev,
  1333. state == AMD_PG_STATE_GATE ? true : false);
  1334. break;
  1335. default:
  1336. break;
  1337. }
  1338. return 0;
  1339. }
  1340. static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
  1341. {
  1342. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1343. int data;
  1344. if (amdgpu_sriov_vf(adev))
  1345. *flags = 0;
  1346. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1347. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1348. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
  1349. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1350. /* AMD_CG_SUPPORT_SDMA_LS */
  1351. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1352. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1353. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1354. }
  1355. const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
  1356. .name = "sdma_v4_0",
  1357. .early_init = sdma_v4_0_early_init,
  1358. .late_init = NULL,
  1359. .sw_init = sdma_v4_0_sw_init,
  1360. .sw_fini = sdma_v4_0_sw_fini,
  1361. .hw_init = sdma_v4_0_hw_init,
  1362. .hw_fini = sdma_v4_0_hw_fini,
  1363. .suspend = sdma_v4_0_suspend,
  1364. .resume = sdma_v4_0_resume,
  1365. .is_idle = sdma_v4_0_is_idle,
  1366. .wait_for_idle = sdma_v4_0_wait_for_idle,
  1367. .soft_reset = sdma_v4_0_soft_reset,
  1368. .set_clockgating_state = sdma_v4_0_set_clockgating_state,
  1369. .set_powergating_state = sdma_v4_0_set_powergating_state,
  1370. .get_clockgating_state = sdma_v4_0_get_clockgating_state,
  1371. };
  1372. static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
  1373. .type = AMDGPU_RING_TYPE_SDMA,
  1374. .align_mask = 0xf,
  1375. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1376. .support_64bit_ptrs = true,
  1377. .vmhub = AMDGPU_MMHUB,
  1378. .get_rptr = sdma_v4_0_ring_get_rptr,
  1379. .get_wptr = sdma_v4_0_ring_get_wptr,
  1380. .set_wptr = sdma_v4_0_ring_set_wptr,
  1381. .emit_frame_size =
  1382. 6 + /* sdma_v4_0_ring_emit_hdp_flush */
  1383. 3 + /* hdp invalidate */
  1384. 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
  1385. /* sdma_v4_0_ring_emit_vm_flush */
  1386. SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
  1387. SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
  1388. 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
  1389. .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
  1390. .emit_ib = sdma_v4_0_ring_emit_ib,
  1391. .emit_fence = sdma_v4_0_ring_emit_fence,
  1392. .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
  1393. .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
  1394. .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
  1395. .test_ring = sdma_v4_0_ring_test_ring,
  1396. .test_ib = sdma_v4_0_ring_test_ib,
  1397. .insert_nop = sdma_v4_0_ring_insert_nop,
  1398. .pad_ib = sdma_v4_0_ring_pad_ib,
  1399. .emit_wreg = sdma_v4_0_ring_emit_wreg,
  1400. .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
  1401. };
  1402. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
  1403. {
  1404. int i;
  1405. for (i = 0; i < adev->sdma.num_instances; i++)
  1406. adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
  1407. }
  1408. static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
  1409. .set = sdma_v4_0_set_trap_irq_state,
  1410. .process = sdma_v4_0_process_trap_irq,
  1411. };
  1412. static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
  1413. .process = sdma_v4_0_process_illegal_inst_irq,
  1414. };
  1415. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
  1416. {
  1417. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1418. adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
  1419. adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
  1420. }
  1421. /**
  1422. * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
  1423. *
  1424. * @ring: amdgpu_ring structure holding ring information
  1425. * @src_offset: src GPU address
  1426. * @dst_offset: dst GPU address
  1427. * @byte_count: number of bytes to xfer
  1428. *
  1429. * Copy GPU buffers using the DMA engine (VEGA10/12).
  1430. * Used by the amdgpu ttm implementation to move pages if
  1431. * registered as the asic copy callback.
  1432. */
  1433. static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1434. uint64_t src_offset,
  1435. uint64_t dst_offset,
  1436. uint32_t byte_count)
  1437. {
  1438. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1439. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1440. ib->ptr[ib->length_dw++] = byte_count - 1;
  1441. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1442. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1443. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1444. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1445. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1446. }
  1447. /**
  1448. * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
  1449. *
  1450. * @ring: amdgpu_ring structure holding ring information
  1451. * @src_data: value to write to buffer
  1452. * @dst_offset: dst GPU address
  1453. * @byte_count: number of bytes to xfer
  1454. *
  1455. * Fill GPU buffers using the DMA engine (VEGA10/12).
  1456. */
  1457. static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1458. uint32_t src_data,
  1459. uint64_t dst_offset,
  1460. uint32_t byte_count)
  1461. {
  1462. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1463. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1464. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1465. ib->ptr[ib->length_dw++] = src_data;
  1466. ib->ptr[ib->length_dw++] = byte_count - 1;
  1467. }
  1468. static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
  1469. .copy_max_bytes = 0x400000,
  1470. .copy_num_dw = 7,
  1471. .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
  1472. .fill_max_bytes = 0x400000,
  1473. .fill_num_dw = 5,
  1474. .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
  1475. };
  1476. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
  1477. {
  1478. if (adev->mman.buffer_funcs == NULL) {
  1479. adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
  1480. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1481. }
  1482. }
  1483. static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
  1484. .copy_pte_num_dw = 7,
  1485. .copy_pte = sdma_v4_0_vm_copy_pte,
  1486. .write_pte = sdma_v4_0_vm_write_pte,
  1487. .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
  1488. };
  1489. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1490. {
  1491. unsigned i;
  1492. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1493. adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
  1494. for (i = 0; i < adev->sdma.num_instances; i++)
  1495. adev->vm_manager.vm_pte_rings[i] =
  1496. &adev->sdma.instance[i].ring;
  1497. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1498. }
  1499. }
  1500. const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
  1501. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1502. .major = 4,
  1503. .minor = 0,
  1504. .rev = 0,
  1505. .funcs = &sdma_v4_0_ip_funcs,
  1506. };