amdgpu_amdkfd_gfx_v7.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/fdtable.h>
  23. #include <linux/uaccess.h>
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_amdkfd.h"
  28. #include "cikd.h"
  29. #include "cik_sdma.h"
  30. #include "amdgpu_ucode.h"
  31. #include "gfx_v7_0.h"
  32. #include "gca/gfx_7_2_d.h"
  33. #include "gca/gfx_7_2_enum.h"
  34. #include "gca/gfx_7_2_sh_mask.h"
  35. #include "oss/oss_2_0_d.h"
  36. #include "oss/oss_2_0_sh_mask.h"
  37. #include "gmc/gmc_7_1_d.h"
  38. #include "gmc/gmc_7_1_sh_mask.h"
  39. #include "cik_structs.h"
  40. enum hqd_dequeue_request_type {
  41. NO_ACTION = 0,
  42. DRAIN_PIPE,
  43. RESET_WAVES
  44. };
  45. enum {
  46. MAX_TRAPID = 8, /* 3 bits in the bitfield. */
  47. MAX_WATCH_ADDRESSES = 4
  48. };
  49. enum {
  50. ADDRESS_WATCH_REG_ADDR_HI = 0,
  51. ADDRESS_WATCH_REG_ADDR_LO,
  52. ADDRESS_WATCH_REG_CNTL,
  53. ADDRESS_WATCH_REG_MAX
  54. };
  55. /* not defined in the CI/KV reg file */
  56. enum {
  57. ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
  58. ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
  59. ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
  60. /* extend the mask to 26 bits to match the low address field */
  61. ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
  62. ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
  63. };
  64. static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
  65. mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
  66. mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
  67. mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
  68. mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
  69. };
  70. union TCP_WATCH_CNTL_BITS {
  71. struct {
  72. uint32_t mask:24;
  73. uint32_t vmid:4;
  74. uint32_t atc:1;
  75. uint32_t mode:2;
  76. uint32_t valid:1;
  77. } bitfields, bits;
  78. uint32_t u32All;
  79. signed int i32All;
  80. float f32All;
  81. };
  82. /*
  83. * Register access functions
  84. */
  85. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  86. uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
  87. uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
  88. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  89. unsigned int vmid);
  90. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  91. uint32_t hpd_size, uint64_t hpd_gpu_addr);
  92. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  93. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  94. uint32_t queue_id, uint32_t __user *wptr,
  95. uint32_t wptr_shift, uint32_t wptr_mask,
  96. struct mm_struct *mm);
  97. static int kgd_hqd_dump(struct kgd_dev *kgd,
  98. uint32_t pipe_id, uint32_t queue_id,
  99. uint32_t (**dump)[2], uint32_t *n_regs);
  100. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  101. uint32_t __user *wptr, struct mm_struct *mm);
  102. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  103. uint32_t engine_id, uint32_t queue_id,
  104. uint32_t (**dump)[2], uint32_t *n_regs);
  105. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  106. uint32_t pipe_id, uint32_t queue_id);
  107. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  108. enum kfd_preempt_type reset_type,
  109. unsigned int utimeout, uint32_t pipe_id,
  110. uint32_t queue_id);
  111. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  112. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  113. unsigned int utimeout);
  114. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  115. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  116. unsigned int watch_point_id,
  117. uint32_t cntl_val,
  118. uint32_t addr_hi,
  119. uint32_t addr_lo);
  120. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  121. uint32_t gfx_index_val,
  122. uint32_t sq_cmd);
  123. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  124. unsigned int watch_point_id,
  125. unsigned int reg_offset);
  126. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
  127. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  128. uint8_t vmid);
  129. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  130. static void set_scratch_backing_va(struct kgd_dev *kgd,
  131. uint64_t va, uint32_t vmid);
  132. static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
  133. uint32_t page_table_base);
  134. static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
  135. static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
  136. /* Because of REG_GET_FIELD() being used, we put this function in the
  137. * asic specific file.
  138. */
  139. static int get_tile_config(struct kgd_dev *kgd,
  140. struct tile_config *config)
  141. {
  142. struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
  143. config->gb_addr_config = adev->gfx.config.gb_addr_config;
  144. config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  145. MC_ARB_RAMCFG, NOOFBANK);
  146. config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  147. MC_ARB_RAMCFG, NOOFRANKS);
  148. config->tile_config_ptr = adev->gfx.config.tile_mode_array;
  149. config->num_tile_configs =
  150. ARRAY_SIZE(adev->gfx.config.tile_mode_array);
  151. config->macro_tile_config_ptr =
  152. adev->gfx.config.macrotile_mode_array;
  153. config->num_macro_tile_configs =
  154. ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
  155. return 0;
  156. }
  157. static const struct kfd2kgd_calls kfd2kgd = {
  158. .init_gtt_mem_allocation = alloc_gtt_mem,
  159. .free_gtt_mem = free_gtt_mem,
  160. .get_local_mem_info = get_local_mem_info,
  161. .get_gpu_clock_counter = get_gpu_clock_counter,
  162. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  163. .alloc_pasid = amdgpu_pasid_alloc,
  164. .free_pasid = amdgpu_pasid_free,
  165. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  166. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  167. .init_pipeline = kgd_init_pipeline,
  168. .init_interrupts = kgd_init_interrupts,
  169. .hqd_load = kgd_hqd_load,
  170. .hqd_sdma_load = kgd_hqd_sdma_load,
  171. .hqd_dump = kgd_hqd_dump,
  172. .hqd_sdma_dump = kgd_hqd_sdma_dump,
  173. .hqd_is_occupied = kgd_hqd_is_occupied,
  174. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  175. .hqd_destroy = kgd_hqd_destroy,
  176. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  177. .address_watch_disable = kgd_address_watch_disable,
  178. .address_watch_execute = kgd_address_watch_execute,
  179. .wave_control_execute = kgd_wave_control_execute,
  180. .address_watch_get_offset = kgd_address_watch_get_offset,
  181. .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
  182. .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
  183. .get_fw_version = get_fw_version,
  184. .set_scratch_backing_va = set_scratch_backing_va,
  185. .get_tile_config = get_tile_config,
  186. .get_cu_info = get_cu_info,
  187. .get_vram_usage = amdgpu_amdkfd_get_vram_usage,
  188. .create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
  189. .acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
  190. .destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
  191. .get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
  192. .set_vm_context_page_table_base = set_vm_context_page_table_base,
  193. .alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
  194. .free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
  195. .map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
  196. .unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
  197. .sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
  198. .map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
  199. .restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
  200. .invalidate_tlbs = invalidate_tlbs,
  201. .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
  202. .submit_ib = amdgpu_amdkfd_submit_ib,
  203. };
  204. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
  205. {
  206. return (struct kfd2kgd_calls *)&kfd2kgd;
  207. }
  208. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  209. {
  210. return (struct amdgpu_device *)kgd;
  211. }
  212. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  213. uint32_t queue, uint32_t vmid)
  214. {
  215. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  216. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  217. mutex_lock(&adev->srbm_mutex);
  218. WREG32(mmSRBM_GFX_CNTL, value);
  219. }
  220. static void unlock_srbm(struct kgd_dev *kgd)
  221. {
  222. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  223. WREG32(mmSRBM_GFX_CNTL, 0);
  224. mutex_unlock(&adev->srbm_mutex);
  225. }
  226. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  227. uint32_t queue_id)
  228. {
  229. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  230. uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  231. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  232. lock_srbm(kgd, mec, pipe, queue_id, 0);
  233. }
  234. static void release_queue(struct kgd_dev *kgd)
  235. {
  236. unlock_srbm(kgd);
  237. }
  238. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  239. uint32_t sh_mem_config,
  240. uint32_t sh_mem_ape1_base,
  241. uint32_t sh_mem_ape1_limit,
  242. uint32_t sh_mem_bases)
  243. {
  244. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  245. lock_srbm(kgd, 0, 0, 0, vmid);
  246. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  247. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  248. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  249. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  250. unlock_srbm(kgd);
  251. }
  252. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  253. unsigned int vmid)
  254. {
  255. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  256. /*
  257. * We have to assume that there is no outstanding mapping.
  258. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  259. * a mapping is in progress or because a mapping finished and the
  260. * SW cleared it. So the protocol is to always wait & clear.
  261. */
  262. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  263. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  264. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  265. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  266. cpu_relax();
  267. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  268. /* Mapping vmid to pasid also for IH block */
  269. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  270. return 0;
  271. }
  272. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  273. uint32_t hpd_size, uint64_t hpd_gpu_addr)
  274. {
  275. /* amdgpu owns the per-pipe state */
  276. return 0;
  277. }
  278. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  279. {
  280. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  281. uint32_t mec;
  282. uint32_t pipe;
  283. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  284. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  285. lock_srbm(kgd, mec, pipe, 0, 0);
  286. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
  287. CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
  288. unlock_srbm(kgd);
  289. return 0;
  290. }
  291. static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
  292. {
  293. uint32_t retval;
  294. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  295. m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  296. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  297. return retval;
  298. }
  299. static inline struct cik_mqd *get_mqd(void *mqd)
  300. {
  301. return (struct cik_mqd *)mqd;
  302. }
  303. static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  304. {
  305. return (struct cik_sdma_rlc_registers *)mqd;
  306. }
  307. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  308. uint32_t queue_id, uint32_t __user *wptr,
  309. uint32_t wptr_shift, uint32_t wptr_mask,
  310. struct mm_struct *mm)
  311. {
  312. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  313. struct cik_mqd *m;
  314. uint32_t *mqd_hqd;
  315. uint32_t reg, wptr_val, data;
  316. bool valid_wptr = false;
  317. m = get_mqd(mqd);
  318. acquire_queue(kgd, pipe_id, queue_id);
  319. /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
  320. mqd_hqd = &m->cp_mqd_base_addr_lo;
  321. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
  322. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  323. /* Copy userspace write pointer value to register.
  324. * Activate doorbell logic to monitor subsequent changes.
  325. */
  326. data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
  327. CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
  328. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
  329. /* read_user_ptr may take the mm->mmap_sem.
  330. * release srbm_mutex to avoid circular dependency between
  331. * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
  332. */
  333. release_queue(kgd);
  334. valid_wptr = read_user_wptr(mm, wptr, wptr_val);
  335. acquire_queue(kgd, pipe_id, queue_id);
  336. if (valid_wptr)
  337. WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
  338. data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
  339. WREG32(mmCP_HQD_ACTIVE, data);
  340. release_queue(kgd);
  341. return 0;
  342. }
  343. static int kgd_hqd_dump(struct kgd_dev *kgd,
  344. uint32_t pipe_id, uint32_t queue_id,
  345. uint32_t (**dump)[2], uint32_t *n_regs)
  346. {
  347. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  348. uint32_t i = 0, reg;
  349. #define HQD_N_REGS (35+4)
  350. #define DUMP_REG(addr) do { \
  351. if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
  352. break; \
  353. (*dump)[i][0] = (addr) << 2; \
  354. (*dump)[i++][1] = RREG32(addr); \
  355. } while (0)
  356. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  357. if (*dump == NULL)
  358. return -ENOMEM;
  359. acquire_queue(kgd, pipe_id, queue_id);
  360. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
  361. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
  362. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
  363. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
  364. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
  365. DUMP_REG(reg);
  366. release_queue(kgd);
  367. WARN_ON_ONCE(i != HQD_N_REGS);
  368. *n_regs = i;
  369. return 0;
  370. }
  371. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  372. uint32_t __user *wptr, struct mm_struct *mm)
  373. {
  374. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  375. struct cik_sdma_rlc_registers *m;
  376. unsigned long end_jiffies;
  377. uint32_t sdma_base_addr;
  378. uint32_t data;
  379. m = get_sdma_mqd(mqd);
  380. sdma_base_addr = get_sdma_base_addr(m);
  381. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  382. m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
  383. end_jiffies = msecs_to_jiffies(2000) + jiffies;
  384. while (true) {
  385. data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  386. if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  387. break;
  388. if (time_after(jiffies, end_jiffies))
  389. return -ETIME;
  390. usleep_range(500, 1000);
  391. }
  392. if (m->sdma_engine_id) {
  393. data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
  394. data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
  395. RESUME_CTX, 0);
  396. WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
  397. } else {
  398. data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
  399. data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
  400. RESUME_CTX, 0);
  401. WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
  402. }
  403. data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
  404. ENABLE, 1);
  405. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
  406. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
  407. if (read_user_wptr(mm, wptr, data))
  408. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
  409. else
  410. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
  411. m->sdma_rlc_rb_rptr);
  412. WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
  413. m->sdma_rlc_virtual_addr);
  414. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
  415. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
  416. m->sdma_rlc_rb_base_hi);
  417. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
  418. m->sdma_rlc_rb_rptr_addr_lo);
  419. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
  420. m->sdma_rlc_rb_rptr_addr_hi);
  421. data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
  422. RB_ENABLE, 1);
  423. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
  424. return 0;
  425. }
  426. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  427. uint32_t engine_id, uint32_t queue_id,
  428. uint32_t (**dump)[2], uint32_t *n_regs)
  429. {
  430. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  431. uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
  432. queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  433. uint32_t i = 0, reg;
  434. #undef HQD_N_REGS
  435. #define HQD_N_REGS (19+4)
  436. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  437. if (*dump == NULL)
  438. return -ENOMEM;
  439. for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
  440. DUMP_REG(sdma_offset + reg);
  441. for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
  442. reg++)
  443. DUMP_REG(sdma_offset + reg);
  444. WARN_ON_ONCE(i != HQD_N_REGS);
  445. *n_regs = i;
  446. return 0;
  447. }
  448. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  449. uint32_t pipe_id, uint32_t queue_id)
  450. {
  451. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  452. uint32_t act;
  453. bool retval = false;
  454. uint32_t low, high;
  455. acquire_queue(kgd, pipe_id, queue_id);
  456. act = RREG32(mmCP_HQD_ACTIVE);
  457. if (act) {
  458. low = lower_32_bits(queue_address >> 8);
  459. high = upper_32_bits(queue_address >> 8);
  460. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  461. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  462. retval = true;
  463. }
  464. release_queue(kgd);
  465. return retval;
  466. }
  467. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  468. {
  469. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  470. struct cik_sdma_rlc_registers *m;
  471. uint32_t sdma_base_addr;
  472. uint32_t sdma_rlc_rb_cntl;
  473. m = get_sdma_mqd(mqd);
  474. sdma_base_addr = get_sdma_base_addr(m);
  475. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  476. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  477. return true;
  478. return false;
  479. }
  480. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  481. enum kfd_preempt_type reset_type,
  482. unsigned int utimeout, uint32_t pipe_id,
  483. uint32_t queue_id)
  484. {
  485. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  486. uint32_t temp;
  487. enum hqd_dequeue_request_type type;
  488. unsigned long flags, end_jiffies;
  489. int retry;
  490. acquire_queue(kgd, pipe_id, queue_id);
  491. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
  492. switch (reset_type) {
  493. case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
  494. type = DRAIN_PIPE;
  495. break;
  496. case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
  497. type = RESET_WAVES;
  498. break;
  499. default:
  500. type = DRAIN_PIPE;
  501. break;
  502. }
  503. /* Workaround: If IQ timer is active and the wait time is close to or
  504. * equal to 0, dequeueing is not safe. Wait until either the wait time
  505. * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
  506. * cleared before continuing. Also, ensure wait times are set to at
  507. * least 0x3.
  508. */
  509. local_irq_save(flags);
  510. preempt_disable();
  511. retry = 5000; /* wait for 500 usecs at maximum */
  512. while (true) {
  513. temp = RREG32(mmCP_HQD_IQ_TIMER);
  514. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
  515. pr_debug("HW is processing IQ\n");
  516. goto loop;
  517. }
  518. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
  519. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
  520. == 3) /* SEM-rearm is safe */
  521. break;
  522. /* Wait time 3 is safe for CP, but our MMIO read/write
  523. * time is close to 1 microsecond, so check for 10 to
  524. * leave more buffer room
  525. */
  526. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
  527. >= 10)
  528. break;
  529. pr_debug("IQ timer is active\n");
  530. } else
  531. break;
  532. loop:
  533. if (!retry) {
  534. pr_err("CP HQD IQ timer status time out\n");
  535. break;
  536. }
  537. ndelay(100);
  538. --retry;
  539. }
  540. retry = 1000;
  541. while (true) {
  542. temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
  543. if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
  544. break;
  545. pr_debug("Dequeue request is pending\n");
  546. if (!retry) {
  547. pr_err("CP HQD dequeue request time out\n");
  548. break;
  549. }
  550. ndelay(100);
  551. --retry;
  552. }
  553. local_irq_restore(flags);
  554. preempt_enable();
  555. WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
  556. end_jiffies = (utimeout * HZ / 1000) + jiffies;
  557. while (true) {
  558. temp = RREG32(mmCP_HQD_ACTIVE);
  559. if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
  560. break;
  561. if (time_after(jiffies, end_jiffies)) {
  562. pr_err("cp queue preemption time out\n");
  563. release_queue(kgd);
  564. return -ETIME;
  565. }
  566. usleep_range(500, 1000);
  567. }
  568. release_queue(kgd);
  569. return 0;
  570. }
  571. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  572. unsigned int utimeout)
  573. {
  574. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  575. struct cik_sdma_rlc_registers *m;
  576. uint32_t sdma_base_addr;
  577. uint32_t temp;
  578. unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
  579. m = get_sdma_mqd(mqd);
  580. sdma_base_addr = get_sdma_base_addr(m);
  581. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  582. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  583. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  584. while (true) {
  585. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  586. if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
  587. break;
  588. if (time_after(jiffies, end_jiffies))
  589. return -ETIME;
  590. usleep_range(500, 1000);
  591. }
  592. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  593. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  594. RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
  595. SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
  596. m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
  597. return 0;
  598. }
  599. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  600. {
  601. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  602. union TCP_WATCH_CNTL_BITS cntl;
  603. unsigned int i;
  604. cntl.u32All = 0;
  605. cntl.bitfields.valid = 0;
  606. cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
  607. cntl.bitfields.atc = 1;
  608. /* Turning off this address until we set all the registers */
  609. for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
  610. WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
  611. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  612. return 0;
  613. }
  614. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  615. unsigned int watch_point_id,
  616. uint32_t cntl_val,
  617. uint32_t addr_hi,
  618. uint32_t addr_lo)
  619. {
  620. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  621. union TCP_WATCH_CNTL_BITS cntl;
  622. cntl.u32All = cntl_val;
  623. /* Turning off this watch point until we set all the registers */
  624. cntl.bitfields.valid = 0;
  625. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  626. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  627. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  628. ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
  629. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  630. ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
  631. /* Enable the watch point */
  632. cntl.bitfields.valid = 1;
  633. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  634. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  635. return 0;
  636. }
  637. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  638. uint32_t gfx_index_val,
  639. uint32_t sq_cmd)
  640. {
  641. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  642. uint32_t data;
  643. mutex_lock(&adev->grbm_idx_mutex);
  644. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  645. WREG32(mmSQ_CMD, sq_cmd);
  646. /* Restore the GRBM_GFX_INDEX register */
  647. data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
  648. GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
  649. GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
  650. WREG32(mmGRBM_GFX_INDEX, data);
  651. mutex_unlock(&adev->grbm_idx_mutex);
  652. return 0;
  653. }
  654. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  655. unsigned int watch_point_id,
  656. unsigned int reg_offset)
  657. {
  658. return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
  659. }
  660. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  661. uint8_t vmid)
  662. {
  663. uint32_t reg;
  664. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  665. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  666. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  667. }
  668. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  669. uint8_t vmid)
  670. {
  671. uint32_t reg;
  672. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  673. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  674. return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
  675. }
  676. static void set_scratch_backing_va(struct kgd_dev *kgd,
  677. uint64_t va, uint32_t vmid)
  678. {
  679. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  680. lock_srbm(kgd, 0, 0, 0, vmid);
  681. WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
  682. unlock_srbm(kgd);
  683. }
  684. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  685. {
  686. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  687. const union amdgpu_firmware_header *hdr;
  688. switch (type) {
  689. case KGD_ENGINE_PFP:
  690. hdr = (const union amdgpu_firmware_header *)
  691. adev->gfx.pfp_fw->data;
  692. break;
  693. case KGD_ENGINE_ME:
  694. hdr = (const union amdgpu_firmware_header *)
  695. adev->gfx.me_fw->data;
  696. break;
  697. case KGD_ENGINE_CE:
  698. hdr = (const union amdgpu_firmware_header *)
  699. adev->gfx.ce_fw->data;
  700. break;
  701. case KGD_ENGINE_MEC1:
  702. hdr = (const union amdgpu_firmware_header *)
  703. adev->gfx.mec_fw->data;
  704. break;
  705. case KGD_ENGINE_MEC2:
  706. hdr = (const union amdgpu_firmware_header *)
  707. adev->gfx.mec2_fw->data;
  708. break;
  709. case KGD_ENGINE_RLC:
  710. hdr = (const union amdgpu_firmware_header *)
  711. adev->gfx.rlc_fw->data;
  712. break;
  713. case KGD_ENGINE_SDMA1:
  714. hdr = (const union amdgpu_firmware_header *)
  715. adev->sdma.instance[0].fw->data;
  716. break;
  717. case KGD_ENGINE_SDMA2:
  718. hdr = (const union amdgpu_firmware_header *)
  719. adev->sdma.instance[1].fw->data;
  720. break;
  721. default:
  722. return 0;
  723. }
  724. if (hdr == NULL)
  725. return 0;
  726. /* Only 12 bit in use*/
  727. return hdr->common.ucode_version;
  728. }
  729. static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
  730. uint32_t page_table_base)
  731. {
  732. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  733. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
  734. pr_err("trying to set page table base for wrong VMID\n");
  735. return;
  736. }
  737. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
  738. }
  739. static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
  740. {
  741. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  742. int vmid;
  743. unsigned int tmp;
  744. for (vmid = 0; vmid < 16; vmid++) {
  745. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
  746. continue;
  747. tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  748. if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
  749. (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
  750. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  751. RREG32(mmVM_INVALIDATE_RESPONSE);
  752. break;
  753. }
  754. }
  755. return 0;
  756. }
  757. static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
  758. {
  759. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  760. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
  761. pr_err("non kfd vmid\n");
  762. return 0;
  763. }
  764. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  765. RREG32(mmVM_INVALIDATE_RESPONSE);
  766. return 0;
  767. }