udp.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The User Datagram Protocol (UDP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  11. * Alan Cox, <alan@lxorguk.ukuu.org.uk>
  12. * Hirokazu Takahashi, <taka@valinux.co.jp>
  13. *
  14. * Fixes:
  15. * Alan Cox : verify_area() calls
  16. * Alan Cox : stopped close while in use off icmp
  17. * messages. Not a fix but a botch that
  18. * for udp at least is 'valid'.
  19. * Alan Cox : Fixed icmp handling properly
  20. * Alan Cox : Correct error for oversized datagrams
  21. * Alan Cox : Tidied select() semantics.
  22. * Alan Cox : udp_err() fixed properly, also now
  23. * select and read wake correctly on errors
  24. * Alan Cox : udp_send verify_area moved to avoid mem leak
  25. * Alan Cox : UDP can count its memory
  26. * Alan Cox : send to an unknown connection causes
  27. * an ECONNREFUSED off the icmp, but
  28. * does NOT close.
  29. * Alan Cox : Switched to new sk_buff handlers. No more backlog!
  30. * Alan Cox : Using generic datagram code. Even smaller and the PEEK
  31. * bug no longer crashes it.
  32. * Fred Van Kempen : Net2e support for sk->broadcast.
  33. * Alan Cox : Uses skb_free_datagram
  34. * Alan Cox : Added get/set sockopt support.
  35. * Alan Cox : Broadcasting without option set returns EACCES.
  36. * Alan Cox : No wakeup calls. Instead we now use the callbacks.
  37. * Alan Cox : Use ip_tos and ip_ttl
  38. * Alan Cox : SNMP Mibs
  39. * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
  40. * Matt Dillon : UDP length checks.
  41. * Alan Cox : Smarter af_inet used properly.
  42. * Alan Cox : Use new kernel side addressing.
  43. * Alan Cox : Incorrect return on truncated datagram receive.
  44. * Arnt Gulbrandsen : New udp_send and stuff
  45. * Alan Cox : Cache last socket
  46. * Alan Cox : Route cache
  47. * Jon Peatfield : Minor efficiency fix to sendto().
  48. * Mike Shaver : RFC1122 checks.
  49. * Alan Cox : Nonblocking error fix.
  50. * Willy Konynenberg : Transparent proxying support.
  51. * Mike McLagan : Routing by source
  52. * David S. Miller : New socket lookup architecture.
  53. * Last socket cache retained as it
  54. * does have a high hit rate.
  55. * Olaf Kirch : Don't linearise iovec on sendmsg.
  56. * Andi Kleen : Some cleanups, cache destination entry
  57. * for connect.
  58. * Vitaly E. Lavrov : Transparent proxy revived after year coma.
  59. * Melvin Smith : Check msg_name not msg_namelen in sendto(),
  60. * return ENOTCONN for unconnected sockets (POSIX)
  61. * Janos Farkas : don't deliver multi/broadcasts to a different
  62. * bound-to-device socket
  63. * Hirokazu Takahashi : HW checksumming for outgoing UDP
  64. * datagrams.
  65. * Hirokazu Takahashi : sendfile() on UDP works now.
  66. * Arnaldo C. Melo : convert /proc/net/udp to seq_file
  67. * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
  68. * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
  69. * a single port at the same time.
  70. * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  71. * James Chapman : Add L2TP encapsulation type.
  72. *
  73. *
  74. * This program is free software; you can redistribute it and/or
  75. * modify it under the terms of the GNU General Public License
  76. * as published by the Free Software Foundation; either version
  77. * 2 of the License, or (at your option) any later version.
  78. */
  79. #define pr_fmt(fmt) "UDP: " fmt
  80. #include <asm/uaccess.h>
  81. #include <asm/ioctls.h>
  82. #include <linux/bootmem.h>
  83. #include <linux/highmem.h>
  84. #include <linux/swap.h>
  85. #include <linux/types.h>
  86. #include <linux/fcntl.h>
  87. #include <linux/module.h>
  88. #include <linux/socket.h>
  89. #include <linux/sockios.h>
  90. #include <linux/igmp.h>
  91. #include <linux/inetdevice.h>
  92. #include <linux/in.h>
  93. #include <linux/errno.h>
  94. #include <linux/timer.h>
  95. #include <linux/mm.h>
  96. #include <linux/inet.h>
  97. #include <linux/netdevice.h>
  98. #include <linux/slab.h>
  99. #include <net/tcp_states.h>
  100. #include <linux/skbuff.h>
  101. #include <linux/proc_fs.h>
  102. #include <linux/seq_file.h>
  103. #include <net/net_namespace.h>
  104. #include <net/icmp.h>
  105. #include <net/inet_hashtables.h>
  106. #include <net/route.h>
  107. #include <net/checksum.h>
  108. #include <net/xfrm.h>
  109. #include <trace/events/udp.h>
  110. #include <linux/static_key.h>
  111. #include <trace/events/skb.h>
  112. #include <net/busy_poll.h>
  113. #include "udp_impl.h"
  114. #include <net/sock_reuseport.h>
  115. struct udp_table udp_table __read_mostly;
  116. EXPORT_SYMBOL(udp_table);
  117. long sysctl_udp_mem[3] __read_mostly;
  118. EXPORT_SYMBOL(sysctl_udp_mem);
  119. int sysctl_udp_rmem_min __read_mostly;
  120. EXPORT_SYMBOL(sysctl_udp_rmem_min);
  121. int sysctl_udp_wmem_min __read_mostly;
  122. EXPORT_SYMBOL(sysctl_udp_wmem_min);
  123. atomic_long_t udp_memory_allocated;
  124. EXPORT_SYMBOL(udp_memory_allocated);
  125. #define MAX_UDP_PORTS 65536
  126. #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
  127. static int udp_lib_lport_inuse(struct net *net, __u16 num,
  128. const struct udp_hslot *hslot,
  129. unsigned long *bitmap,
  130. struct sock *sk,
  131. int (*saddr_comp)(const struct sock *sk1,
  132. const struct sock *sk2,
  133. bool match_wildcard),
  134. unsigned int log)
  135. {
  136. struct sock *sk2;
  137. kuid_t uid = sock_i_uid(sk);
  138. sk_for_each(sk2, &hslot->head) {
  139. if (net_eq(sock_net(sk2), net) &&
  140. sk2 != sk &&
  141. (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
  142. (!sk2->sk_reuse || !sk->sk_reuse) &&
  143. (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
  144. sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  145. (!sk2->sk_reuseport || !sk->sk_reuseport ||
  146. rcu_access_pointer(sk->sk_reuseport_cb) ||
  147. !uid_eq(uid, sock_i_uid(sk2))) &&
  148. saddr_comp(sk, sk2, true)) {
  149. if (!bitmap)
  150. return 1;
  151. __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
  152. }
  153. }
  154. return 0;
  155. }
  156. /*
  157. * Note: we still hold spinlock of primary hash chain, so no other writer
  158. * can insert/delete a socket with local_port == num
  159. */
  160. static int udp_lib_lport_inuse2(struct net *net, __u16 num,
  161. struct udp_hslot *hslot2,
  162. struct sock *sk,
  163. int (*saddr_comp)(const struct sock *sk1,
  164. const struct sock *sk2,
  165. bool match_wildcard))
  166. {
  167. struct sock *sk2;
  168. kuid_t uid = sock_i_uid(sk);
  169. int res = 0;
  170. spin_lock(&hslot2->lock);
  171. udp_portaddr_for_each_entry(sk2, &hslot2->head) {
  172. if (net_eq(sock_net(sk2), net) &&
  173. sk2 != sk &&
  174. (udp_sk(sk2)->udp_port_hash == num) &&
  175. (!sk2->sk_reuse || !sk->sk_reuse) &&
  176. (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
  177. sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  178. (!sk2->sk_reuseport || !sk->sk_reuseport ||
  179. rcu_access_pointer(sk->sk_reuseport_cb) ||
  180. !uid_eq(uid, sock_i_uid(sk2))) &&
  181. saddr_comp(sk, sk2, true)) {
  182. res = 1;
  183. break;
  184. }
  185. }
  186. spin_unlock(&hslot2->lock);
  187. return res;
  188. }
  189. static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
  190. int (*saddr_same)(const struct sock *sk1,
  191. const struct sock *sk2,
  192. bool match_wildcard))
  193. {
  194. struct net *net = sock_net(sk);
  195. kuid_t uid = sock_i_uid(sk);
  196. struct sock *sk2;
  197. sk_for_each(sk2, &hslot->head) {
  198. if (net_eq(sock_net(sk2), net) &&
  199. sk2 != sk &&
  200. sk2->sk_family == sk->sk_family &&
  201. ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
  202. (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
  203. (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  204. sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
  205. (*saddr_same)(sk, sk2, false)) {
  206. return reuseport_add_sock(sk, sk2);
  207. }
  208. }
  209. /* Initial allocation may have already happened via setsockopt */
  210. if (!rcu_access_pointer(sk->sk_reuseport_cb))
  211. return reuseport_alloc(sk);
  212. return 0;
  213. }
  214. /**
  215. * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
  216. *
  217. * @sk: socket struct in question
  218. * @snum: port number to look up
  219. * @saddr_comp: AF-dependent comparison of bound local IP addresses
  220. * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
  221. * with NULL address
  222. */
  223. int udp_lib_get_port(struct sock *sk, unsigned short snum,
  224. int (*saddr_comp)(const struct sock *sk1,
  225. const struct sock *sk2,
  226. bool match_wildcard),
  227. unsigned int hash2_nulladdr)
  228. {
  229. struct udp_hslot *hslot, *hslot2;
  230. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  231. int error = 1;
  232. struct net *net = sock_net(sk);
  233. if (!snum) {
  234. int low, high, remaining;
  235. unsigned int rand;
  236. unsigned short first, last;
  237. DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
  238. inet_get_local_port_range(net, &low, &high);
  239. remaining = (high - low) + 1;
  240. rand = prandom_u32();
  241. first = reciprocal_scale(rand, remaining) + low;
  242. /*
  243. * force rand to be an odd multiple of UDP_HTABLE_SIZE
  244. */
  245. rand = (rand | 1) * (udptable->mask + 1);
  246. last = first + udptable->mask + 1;
  247. do {
  248. hslot = udp_hashslot(udptable, net, first);
  249. bitmap_zero(bitmap, PORTS_PER_CHAIN);
  250. spin_lock_bh(&hslot->lock);
  251. udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
  252. saddr_comp, udptable->log);
  253. snum = first;
  254. /*
  255. * Iterate on all possible values of snum for this hash.
  256. * Using steps of an odd multiple of UDP_HTABLE_SIZE
  257. * give us randomization and full range coverage.
  258. */
  259. do {
  260. if (low <= snum && snum <= high &&
  261. !test_bit(snum >> udptable->log, bitmap) &&
  262. !inet_is_local_reserved_port(net, snum))
  263. goto found;
  264. snum += rand;
  265. } while (snum != first);
  266. spin_unlock_bh(&hslot->lock);
  267. } while (++first != last);
  268. goto fail;
  269. } else {
  270. hslot = udp_hashslot(udptable, net, snum);
  271. spin_lock_bh(&hslot->lock);
  272. if (hslot->count > 10) {
  273. int exist;
  274. unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
  275. slot2 &= udptable->mask;
  276. hash2_nulladdr &= udptable->mask;
  277. hslot2 = udp_hashslot2(udptable, slot2);
  278. if (hslot->count < hslot2->count)
  279. goto scan_primary_hash;
  280. exist = udp_lib_lport_inuse2(net, snum, hslot2,
  281. sk, saddr_comp);
  282. if (!exist && (hash2_nulladdr != slot2)) {
  283. hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
  284. exist = udp_lib_lport_inuse2(net, snum, hslot2,
  285. sk, saddr_comp);
  286. }
  287. if (exist)
  288. goto fail_unlock;
  289. else
  290. goto found;
  291. }
  292. scan_primary_hash:
  293. if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
  294. saddr_comp, 0))
  295. goto fail_unlock;
  296. }
  297. found:
  298. inet_sk(sk)->inet_num = snum;
  299. udp_sk(sk)->udp_port_hash = snum;
  300. udp_sk(sk)->udp_portaddr_hash ^= snum;
  301. if (sk_unhashed(sk)) {
  302. if (sk->sk_reuseport &&
  303. udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
  304. inet_sk(sk)->inet_num = 0;
  305. udp_sk(sk)->udp_port_hash = 0;
  306. udp_sk(sk)->udp_portaddr_hash ^= snum;
  307. goto fail_unlock;
  308. }
  309. sk_add_node_rcu(sk, &hslot->head);
  310. hslot->count++;
  311. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
  312. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  313. spin_lock(&hslot2->lock);
  314. if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
  315. sk->sk_family == AF_INET6)
  316. hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
  317. &hslot2->head);
  318. else
  319. hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
  320. &hslot2->head);
  321. hslot2->count++;
  322. spin_unlock(&hslot2->lock);
  323. }
  324. sock_set_flag(sk, SOCK_RCU_FREE);
  325. error = 0;
  326. fail_unlock:
  327. spin_unlock_bh(&hslot->lock);
  328. fail:
  329. return error;
  330. }
  331. EXPORT_SYMBOL(udp_lib_get_port);
  332. /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
  333. * match_wildcard == false: addresses must be exactly the same, i.e.
  334. * 0.0.0.0 only equals to 0.0.0.0
  335. */
  336. int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
  337. bool match_wildcard)
  338. {
  339. struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
  340. if (!ipv6_only_sock(sk2)) {
  341. if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
  342. return 1;
  343. if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
  344. return match_wildcard;
  345. }
  346. return 0;
  347. }
  348. static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
  349. unsigned int port)
  350. {
  351. return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
  352. }
  353. int udp_v4_get_port(struct sock *sk, unsigned short snum)
  354. {
  355. unsigned int hash2_nulladdr =
  356. udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
  357. unsigned int hash2_partial =
  358. udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
  359. /* precompute partial secondary hash */
  360. udp_sk(sk)->udp_portaddr_hash = hash2_partial;
  361. return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
  362. }
  363. static int compute_score(struct sock *sk, struct net *net,
  364. __be32 saddr, __be16 sport,
  365. __be32 daddr, unsigned short hnum, int dif)
  366. {
  367. int score;
  368. struct inet_sock *inet;
  369. if (!net_eq(sock_net(sk), net) ||
  370. udp_sk(sk)->udp_port_hash != hnum ||
  371. ipv6_only_sock(sk))
  372. return -1;
  373. score = (sk->sk_family == PF_INET) ? 2 : 1;
  374. inet = inet_sk(sk);
  375. if (inet->inet_rcv_saddr) {
  376. if (inet->inet_rcv_saddr != daddr)
  377. return -1;
  378. score += 4;
  379. }
  380. if (inet->inet_daddr) {
  381. if (inet->inet_daddr != saddr)
  382. return -1;
  383. score += 4;
  384. }
  385. if (inet->inet_dport) {
  386. if (inet->inet_dport != sport)
  387. return -1;
  388. score += 4;
  389. }
  390. if (sk->sk_bound_dev_if) {
  391. if (sk->sk_bound_dev_if != dif)
  392. return -1;
  393. score += 4;
  394. }
  395. if (sk->sk_incoming_cpu == raw_smp_processor_id())
  396. score++;
  397. return score;
  398. }
  399. static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
  400. const __u16 lport, const __be32 faddr,
  401. const __be16 fport)
  402. {
  403. static u32 udp_ehash_secret __read_mostly;
  404. net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
  405. return __inet_ehashfn(laddr, lport, faddr, fport,
  406. udp_ehash_secret + net_hash_mix(net));
  407. }
  408. /* called with rcu_read_lock() */
  409. static struct sock *udp4_lib_lookup2(struct net *net,
  410. __be32 saddr, __be16 sport,
  411. __be32 daddr, unsigned int hnum, int dif,
  412. struct udp_hslot *hslot2,
  413. struct sk_buff *skb)
  414. {
  415. struct sock *sk, *result;
  416. int score, badness, matches = 0, reuseport = 0;
  417. u32 hash = 0;
  418. result = NULL;
  419. badness = 0;
  420. udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
  421. score = compute_score(sk, net, saddr, sport,
  422. daddr, hnum, dif);
  423. if (score > badness) {
  424. reuseport = sk->sk_reuseport;
  425. if (reuseport) {
  426. hash = udp_ehashfn(net, daddr, hnum,
  427. saddr, sport);
  428. result = reuseport_select_sock(sk, hash, skb,
  429. sizeof(struct udphdr));
  430. if (result)
  431. return result;
  432. matches = 1;
  433. }
  434. badness = score;
  435. result = sk;
  436. } else if (score == badness && reuseport) {
  437. matches++;
  438. if (reciprocal_scale(hash, matches) == 0)
  439. result = sk;
  440. hash = next_pseudo_random32(hash);
  441. }
  442. }
  443. return result;
  444. }
  445. /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
  446. * harder than this. -DaveM
  447. */
  448. struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
  449. __be16 sport, __be32 daddr, __be16 dport,
  450. int dif, struct udp_table *udptable, struct sk_buff *skb)
  451. {
  452. struct sock *sk, *result;
  453. unsigned short hnum = ntohs(dport);
  454. unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
  455. struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
  456. int score, badness, matches = 0, reuseport = 0;
  457. u32 hash = 0;
  458. if (hslot->count > 10) {
  459. hash2 = udp4_portaddr_hash(net, daddr, hnum);
  460. slot2 = hash2 & udptable->mask;
  461. hslot2 = &udptable->hash2[slot2];
  462. if (hslot->count < hslot2->count)
  463. goto begin;
  464. result = udp4_lib_lookup2(net, saddr, sport,
  465. daddr, hnum, dif,
  466. hslot2, skb);
  467. if (!result) {
  468. unsigned int old_slot2 = slot2;
  469. hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
  470. slot2 = hash2 & udptable->mask;
  471. /* avoid searching the same slot again. */
  472. if (unlikely(slot2 == old_slot2))
  473. return result;
  474. hslot2 = &udptable->hash2[slot2];
  475. if (hslot->count < hslot2->count)
  476. goto begin;
  477. result = udp4_lib_lookup2(net, saddr, sport,
  478. daddr, hnum, dif,
  479. hslot2, skb);
  480. }
  481. return result;
  482. }
  483. begin:
  484. result = NULL;
  485. badness = 0;
  486. sk_for_each_rcu(sk, &hslot->head) {
  487. score = compute_score(sk, net, saddr, sport,
  488. daddr, hnum, dif);
  489. if (score > badness) {
  490. reuseport = sk->sk_reuseport;
  491. if (reuseport) {
  492. hash = udp_ehashfn(net, daddr, hnum,
  493. saddr, sport);
  494. result = reuseport_select_sock(sk, hash, skb,
  495. sizeof(struct udphdr));
  496. if (result)
  497. return result;
  498. matches = 1;
  499. }
  500. result = sk;
  501. badness = score;
  502. } else if (score == badness && reuseport) {
  503. matches++;
  504. if (reciprocal_scale(hash, matches) == 0)
  505. result = sk;
  506. hash = next_pseudo_random32(hash);
  507. }
  508. }
  509. return result;
  510. }
  511. EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
  512. static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
  513. __be16 sport, __be16 dport,
  514. struct udp_table *udptable)
  515. {
  516. const struct iphdr *iph = ip_hdr(skb);
  517. return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
  518. iph->daddr, dport, inet_iif(skb),
  519. udptable, skb);
  520. }
  521. struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
  522. __be16 sport, __be16 dport)
  523. {
  524. return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
  525. }
  526. EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
  527. /* Must be called under rcu_read_lock().
  528. * Does increment socket refcount.
  529. */
  530. #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
  531. IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY)
  532. struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
  533. __be32 daddr, __be16 dport, int dif)
  534. {
  535. struct sock *sk;
  536. sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
  537. dif, &udp_table, NULL);
  538. if (sk && !atomic_inc_not_zero(&sk->sk_refcnt))
  539. sk = NULL;
  540. return sk;
  541. }
  542. EXPORT_SYMBOL_GPL(udp4_lib_lookup);
  543. #endif
  544. static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
  545. __be16 loc_port, __be32 loc_addr,
  546. __be16 rmt_port, __be32 rmt_addr,
  547. int dif, unsigned short hnum)
  548. {
  549. struct inet_sock *inet = inet_sk(sk);
  550. if (!net_eq(sock_net(sk), net) ||
  551. udp_sk(sk)->udp_port_hash != hnum ||
  552. (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
  553. (inet->inet_dport != rmt_port && inet->inet_dport) ||
  554. (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
  555. ipv6_only_sock(sk) ||
  556. (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
  557. return false;
  558. if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
  559. return false;
  560. return true;
  561. }
  562. /*
  563. * This routine is called by the ICMP module when it gets some
  564. * sort of error condition. If err < 0 then the socket should
  565. * be closed and the error returned to the user. If err > 0
  566. * it's just the icmp type << 8 | icmp code.
  567. * Header points to the ip header of the error packet. We move
  568. * on past this. Then (as it used to claim before adjustment)
  569. * header points to the first 8 bytes of the udp header. We need
  570. * to find the appropriate port.
  571. */
  572. void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
  573. {
  574. struct inet_sock *inet;
  575. const struct iphdr *iph = (const struct iphdr *)skb->data;
  576. struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
  577. const int type = icmp_hdr(skb)->type;
  578. const int code = icmp_hdr(skb)->code;
  579. struct sock *sk;
  580. int harderr;
  581. int err;
  582. struct net *net = dev_net(skb->dev);
  583. sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
  584. iph->saddr, uh->source, skb->dev->ifindex, udptable,
  585. NULL);
  586. if (!sk) {
  587. __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
  588. return; /* No socket for error */
  589. }
  590. err = 0;
  591. harderr = 0;
  592. inet = inet_sk(sk);
  593. switch (type) {
  594. default:
  595. case ICMP_TIME_EXCEEDED:
  596. err = EHOSTUNREACH;
  597. break;
  598. case ICMP_SOURCE_QUENCH:
  599. goto out;
  600. case ICMP_PARAMETERPROB:
  601. err = EPROTO;
  602. harderr = 1;
  603. break;
  604. case ICMP_DEST_UNREACH:
  605. if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
  606. ipv4_sk_update_pmtu(skb, sk, info);
  607. if (inet->pmtudisc != IP_PMTUDISC_DONT) {
  608. err = EMSGSIZE;
  609. harderr = 1;
  610. break;
  611. }
  612. goto out;
  613. }
  614. err = EHOSTUNREACH;
  615. if (code <= NR_ICMP_UNREACH) {
  616. harderr = icmp_err_convert[code].fatal;
  617. err = icmp_err_convert[code].errno;
  618. }
  619. break;
  620. case ICMP_REDIRECT:
  621. ipv4_sk_redirect(skb, sk);
  622. goto out;
  623. }
  624. /*
  625. * RFC1122: OK. Passes ICMP errors back to application, as per
  626. * 4.1.3.3.
  627. */
  628. if (!inet->recverr) {
  629. if (!harderr || sk->sk_state != TCP_ESTABLISHED)
  630. goto out;
  631. } else
  632. ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
  633. sk->sk_err = err;
  634. sk->sk_error_report(sk);
  635. out:
  636. return;
  637. }
  638. void udp_err(struct sk_buff *skb, u32 info)
  639. {
  640. __udp4_lib_err(skb, info, &udp_table);
  641. }
  642. /*
  643. * Throw away all pending data and cancel the corking. Socket is locked.
  644. */
  645. void udp_flush_pending_frames(struct sock *sk)
  646. {
  647. struct udp_sock *up = udp_sk(sk);
  648. if (up->pending) {
  649. up->len = 0;
  650. up->pending = 0;
  651. ip_flush_pending_frames(sk);
  652. }
  653. }
  654. EXPORT_SYMBOL(udp_flush_pending_frames);
  655. /**
  656. * udp4_hwcsum - handle outgoing HW checksumming
  657. * @skb: sk_buff containing the filled-in UDP header
  658. * (checksum field must be zeroed out)
  659. * @src: source IP address
  660. * @dst: destination IP address
  661. */
  662. void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
  663. {
  664. struct udphdr *uh = udp_hdr(skb);
  665. int offset = skb_transport_offset(skb);
  666. int len = skb->len - offset;
  667. int hlen = len;
  668. __wsum csum = 0;
  669. if (!skb_has_frag_list(skb)) {
  670. /*
  671. * Only one fragment on the socket.
  672. */
  673. skb->csum_start = skb_transport_header(skb) - skb->head;
  674. skb->csum_offset = offsetof(struct udphdr, check);
  675. uh->check = ~csum_tcpudp_magic(src, dst, len,
  676. IPPROTO_UDP, 0);
  677. } else {
  678. struct sk_buff *frags;
  679. /*
  680. * HW-checksum won't work as there are two or more
  681. * fragments on the socket so that all csums of sk_buffs
  682. * should be together
  683. */
  684. skb_walk_frags(skb, frags) {
  685. csum = csum_add(csum, frags->csum);
  686. hlen -= frags->len;
  687. }
  688. csum = skb_checksum(skb, offset, hlen, csum);
  689. skb->ip_summed = CHECKSUM_NONE;
  690. uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
  691. if (uh->check == 0)
  692. uh->check = CSUM_MANGLED_0;
  693. }
  694. }
  695. EXPORT_SYMBOL_GPL(udp4_hwcsum);
  696. /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
  697. * for the simple case like when setting the checksum for a UDP tunnel.
  698. */
  699. void udp_set_csum(bool nocheck, struct sk_buff *skb,
  700. __be32 saddr, __be32 daddr, int len)
  701. {
  702. struct udphdr *uh = udp_hdr(skb);
  703. if (nocheck) {
  704. uh->check = 0;
  705. } else if (skb_is_gso(skb)) {
  706. uh->check = ~udp_v4_check(len, saddr, daddr, 0);
  707. } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
  708. uh->check = 0;
  709. uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
  710. if (uh->check == 0)
  711. uh->check = CSUM_MANGLED_0;
  712. } else {
  713. skb->ip_summed = CHECKSUM_PARTIAL;
  714. skb->csum_start = skb_transport_header(skb) - skb->head;
  715. skb->csum_offset = offsetof(struct udphdr, check);
  716. uh->check = ~udp_v4_check(len, saddr, daddr, 0);
  717. }
  718. }
  719. EXPORT_SYMBOL(udp_set_csum);
  720. static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
  721. {
  722. struct sock *sk = skb->sk;
  723. struct inet_sock *inet = inet_sk(sk);
  724. struct udphdr *uh;
  725. int err = 0;
  726. int is_udplite = IS_UDPLITE(sk);
  727. int offset = skb_transport_offset(skb);
  728. int len = skb->len - offset;
  729. __wsum csum = 0;
  730. /*
  731. * Create a UDP header
  732. */
  733. uh = udp_hdr(skb);
  734. uh->source = inet->inet_sport;
  735. uh->dest = fl4->fl4_dport;
  736. uh->len = htons(len);
  737. uh->check = 0;
  738. if (is_udplite) /* UDP-Lite */
  739. csum = udplite_csum(skb);
  740. else if (sk->sk_no_check_tx) { /* UDP csum disabled */
  741. skb->ip_summed = CHECKSUM_NONE;
  742. goto send;
  743. } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
  744. udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
  745. goto send;
  746. } else
  747. csum = udp_csum(skb);
  748. /* add protocol-dependent pseudo-header */
  749. uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
  750. sk->sk_protocol, csum);
  751. if (uh->check == 0)
  752. uh->check = CSUM_MANGLED_0;
  753. send:
  754. err = ip_send_skb(sock_net(sk), skb);
  755. if (err) {
  756. if (err == -ENOBUFS && !inet->recverr) {
  757. UDP_INC_STATS(sock_net(sk),
  758. UDP_MIB_SNDBUFERRORS, is_udplite);
  759. err = 0;
  760. }
  761. } else
  762. UDP_INC_STATS(sock_net(sk),
  763. UDP_MIB_OUTDATAGRAMS, is_udplite);
  764. return err;
  765. }
  766. /*
  767. * Push out all pending data as one UDP datagram. Socket is locked.
  768. */
  769. int udp_push_pending_frames(struct sock *sk)
  770. {
  771. struct udp_sock *up = udp_sk(sk);
  772. struct inet_sock *inet = inet_sk(sk);
  773. struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
  774. struct sk_buff *skb;
  775. int err = 0;
  776. skb = ip_finish_skb(sk, fl4);
  777. if (!skb)
  778. goto out;
  779. err = udp_send_skb(skb, fl4);
  780. out:
  781. up->len = 0;
  782. up->pending = 0;
  783. return err;
  784. }
  785. EXPORT_SYMBOL(udp_push_pending_frames);
  786. int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
  787. {
  788. struct inet_sock *inet = inet_sk(sk);
  789. struct udp_sock *up = udp_sk(sk);
  790. struct flowi4 fl4_stack;
  791. struct flowi4 *fl4;
  792. int ulen = len;
  793. struct ipcm_cookie ipc;
  794. struct rtable *rt = NULL;
  795. int free = 0;
  796. int connected = 0;
  797. __be32 daddr, faddr, saddr;
  798. __be16 dport;
  799. u8 tos;
  800. int err, is_udplite = IS_UDPLITE(sk);
  801. int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
  802. int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
  803. struct sk_buff *skb;
  804. struct ip_options_data opt_copy;
  805. if (len > 0xFFFF)
  806. return -EMSGSIZE;
  807. /*
  808. * Check the flags.
  809. */
  810. if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
  811. return -EOPNOTSUPP;
  812. ipc.opt = NULL;
  813. ipc.tx_flags = 0;
  814. ipc.ttl = 0;
  815. ipc.tos = -1;
  816. getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
  817. fl4 = &inet->cork.fl.u.ip4;
  818. if (up->pending) {
  819. /*
  820. * There are pending frames.
  821. * The socket lock must be held while it's corked.
  822. */
  823. lock_sock(sk);
  824. if (likely(up->pending)) {
  825. if (unlikely(up->pending != AF_INET)) {
  826. release_sock(sk);
  827. return -EINVAL;
  828. }
  829. goto do_append_data;
  830. }
  831. release_sock(sk);
  832. }
  833. ulen += sizeof(struct udphdr);
  834. /*
  835. * Get and verify the address.
  836. */
  837. if (msg->msg_name) {
  838. DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
  839. if (msg->msg_namelen < sizeof(*usin))
  840. return -EINVAL;
  841. if (usin->sin_family != AF_INET) {
  842. if (usin->sin_family != AF_UNSPEC)
  843. return -EAFNOSUPPORT;
  844. }
  845. daddr = usin->sin_addr.s_addr;
  846. dport = usin->sin_port;
  847. if (dport == 0)
  848. return -EINVAL;
  849. } else {
  850. if (sk->sk_state != TCP_ESTABLISHED)
  851. return -EDESTADDRREQ;
  852. daddr = inet->inet_daddr;
  853. dport = inet->inet_dport;
  854. /* Open fast path for connected socket.
  855. Route will not be used, if at least one option is set.
  856. */
  857. connected = 1;
  858. }
  859. ipc.sockc.tsflags = sk->sk_tsflags;
  860. ipc.addr = inet->inet_saddr;
  861. ipc.oif = sk->sk_bound_dev_if;
  862. if (msg->msg_controllen) {
  863. err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
  864. if (unlikely(err)) {
  865. kfree(ipc.opt);
  866. return err;
  867. }
  868. if (ipc.opt)
  869. free = 1;
  870. connected = 0;
  871. }
  872. if (!ipc.opt) {
  873. struct ip_options_rcu *inet_opt;
  874. rcu_read_lock();
  875. inet_opt = rcu_dereference(inet->inet_opt);
  876. if (inet_opt) {
  877. memcpy(&opt_copy, inet_opt,
  878. sizeof(*inet_opt) + inet_opt->opt.optlen);
  879. ipc.opt = &opt_copy.opt;
  880. }
  881. rcu_read_unlock();
  882. }
  883. saddr = ipc.addr;
  884. ipc.addr = faddr = daddr;
  885. sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
  886. if (ipc.opt && ipc.opt->opt.srr) {
  887. if (!daddr)
  888. return -EINVAL;
  889. faddr = ipc.opt->opt.faddr;
  890. connected = 0;
  891. }
  892. tos = get_rttos(&ipc, inet);
  893. if (sock_flag(sk, SOCK_LOCALROUTE) ||
  894. (msg->msg_flags & MSG_DONTROUTE) ||
  895. (ipc.opt && ipc.opt->opt.is_strictroute)) {
  896. tos |= RTO_ONLINK;
  897. connected = 0;
  898. }
  899. if (ipv4_is_multicast(daddr)) {
  900. if (!ipc.oif)
  901. ipc.oif = inet->mc_index;
  902. if (!saddr)
  903. saddr = inet->mc_addr;
  904. connected = 0;
  905. } else if (!ipc.oif)
  906. ipc.oif = inet->uc_index;
  907. if (connected)
  908. rt = (struct rtable *)sk_dst_check(sk, 0);
  909. if (!rt) {
  910. struct net *net = sock_net(sk);
  911. __u8 flow_flags = inet_sk_flowi_flags(sk);
  912. fl4 = &fl4_stack;
  913. flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
  914. RT_SCOPE_UNIVERSE, sk->sk_protocol,
  915. flow_flags,
  916. faddr, saddr, dport, inet->inet_sport);
  917. if (!saddr && ipc.oif) {
  918. err = l3mdev_get_saddr(net, ipc.oif, fl4);
  919. if (err < 0)
  920. goto out;
  921. }
  922. security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
  923. rt = ip_route_output_flow(net, fl4, sk);
  924. if (IS_ERR(rt)) {
  925. err = PTR_ERR(rt);
  926. rt = NULL;
  927. if (err == -ENETUNREACH)
  928. IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
  929. goto out;
  930. }
  931. err = -EACCES;
  932. if ((rt->rt_flags & RTCF_BROADCAST) &&
  933. !sock_flag(sk, SOCK_BROADCAST))
  934. goto out;
  935. if (connected)
  936. sk_dst_set(sk, dst_clone(&rt->dst));
  937. }
  938. if (msg->msg_flags&MSG_CONFIRM)
  939. goto do_confirm;
  940. back_from_confirm:
  941. saddr = fl4->saddr;
  942. if (!ipc.addr)
  943. daddr = ipc.addr = fl4->daddr;
  944. /* Lockless fast path for the non-corking case. */
  945. if (!corkreq) {
  946. skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
  947. sizeof(struct udphdr), &ipc, &rt,
  948. msg->msg_flags);
  949. err = PTR_ERR(skb);
  950. if (!IS_ERR_OR_NULL(skb))
  951. err = udp_send_skb(skb, fl4);
  952. goto out;
  953. }
  954. lock_sock(sk);
  955. if (unlikely(up->pending)) {
  956. /* The socket is already corked while preparing it. */
  957. /* ... which is an evident application bug. --ANK */
  958. release_sock(sk);
  959. net_dbg_ratelimited("cork app bug 2\n");
  960. err = -EINVAL;
  961. goto out;
  962. }
  963. /*
  964. * Now cork the socket to pend data.
  965. */
  966. fl4 = &inet->cork.fl.u.ip4;
  967. fl4->daddr = daddr;
  968. fl4->saddr = saddr;
  969. fl4->fl4_dport = dport;
  970. fl4->fl4_sport = inet->inet_sport;
  971. up->pending = AF_INET;
  972. do_append_data:
  973. up->len += ulen;
  974. err = ip_append_data(sk, fl4, getfrag, msg, ulen,
  975. sizeof(struct udphdr), &ipc, &rt,
  976. corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
  977. if (err)
  978. udp_flush_pending_frames(sk);
  979. else if (!corkreq)
  980. err = udp_push_pending_frames(sk);
  981. else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
  982. up->pending = 0;
  983. release_sock(sk);
  984. out:
  985. ip_rt_put(rt);
  986. if (free)
  987. kfree(ipc.opt);
  988. if (!err)
  989. return len;
  990. /*
  991. * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
  992. * ENOBUFS might not be good (it's not tunable per se), but otherwise
  993. * we don't have a good statistic (IpOutDiscards but it can be too many
  994. * things). We could add another new stat but at least for now that
  995. * seems like overkill.
  996. */
  997. if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  998. UDP_INC_STATS(sock_net(sk),
  999. UDP_MIB_SNDBUFERRORS, is_udplite);
  1000. }
  1001. return err;
  1002. do_confirm:
  1003. dst_confirm(&rt->dst);
  1004. if (!(msg->msg_flags&MSG_PROBE) || len)
  1005. goto back_from_confirm;
  1006. err = 0;
  1007. goto out;
  1008. }
  1009. EXPORT_SYMBOL(udp_sendmsg);
  1010. int udp_sendpage(struct sock *sk, struct page *page, int offset,
  1011. size_t size, int flags)
  1012. {
  1013. struct inet_sock *inet = inet_sk(sk);
  1014. struct udp_sock *up = udp_sk(sk);
  1015. int ret;
  1016. if (flags & MSG_SENDPAGE_NOTLAST)
  1017. flags |= MSG_MORE;
  1018. if (!up->pending) {
  1019. struct msghdr msg = { .msg_flags = flags|MSG_MORE };
  1020. /* Call udp_sendmsg to specify destination address which
  1021. * sendpage interface can't pass.
  1022. * This will succeed only when the socket is connected.
  1023. */
  1024. ret = udp_sendmsg(sk, &msg, 0);
  1025. if (ret < 0)
  1026. return ret;
  1027. }
  1028. lock_sock(sk);
  1029. if (unlikely(!up->pending)) {
  1030. release_sock(sk);
  1031. net_dbg_ratelimited("udp cork app bug 3\n");
  1032. return -EINVAL;
  1033. }
  1034. ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
  1035. page, offset, size, flags);
  1036. if (ret == -EOPNOTSUPP) {
  1037. release_sock(sk);
  1038. return sock_no_sendpage(sk->sk_socket, page, offset,
  1039. size, flags);
  1040. }
  1041. if (ret < 0) {
  1042. udp_flush_pending_frames(sk);
  1043. goto out;
  1044. }
  1045. up->len += size;
  1046. if (!(up->corkflag || (flags&MSG_MORE)))
  1047. ret = udp_push_pending_frames(sk);
  1048. if (!ret)
  1049. ret = size;
  1050. out:
  1051. release_sock(sk);
  1052. return ret;
  1053. }
  1054. /**
  1055. * first_packet_length - return length of first packet in receive queue
  1056. * @sk: socket
  1057. *
  1058. * Drops all bad checksum frames, until a valid one is found.
  1059. * Returns the length of found skb, or 0 if none is found.
  1060. */
  1061. static unsigned int first_packet_length(struct sock *sk)
  1062. {
  1063. struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
  1064. struct sk_buff *skb;
  1065. unsigned int res;
  1066. __skb_queue_head_init(&list_kill);
  1067. spin_lock_bh(&rcvq->lock);
  1068. while ((skb = skb_peek(rcvq)) != NULL &&
  1069. udp_lib_checksum_complete(skb)) {
  1070. __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
  1071. IS_UDPLITE(sk));
  1072. __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
  1073. IS_UDPLITE(sk));
  1074. atomic_inc(&sk->sk_drops);
  1075. __skb_unlink(skb, rcvq);
  1076. __skb_queue_tail(&list_kill, skb);
  1077. }
  1078. res = skb ? skb->len : 0;
  1079. spin_unlock_bh(&rcvq->lock);
  1080. if (!skb_queue_empty(&list_kill)) {
  1081. bool slow = lock_sock_fast(sk);
  1082. __skb_queue_purge(&list_kill);
  1083. sk_mem_reclaim_partial(sk);
  1084. unlock_sock_fast(sk, slow);
  1085. }
  1086. return res;
  1087. }
  1088. /*
  1089. * IOCTL requests applicable to the UDP protocol
  1090. */
  1091. int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
  1092. {
  1093. switch (cmd) {
  1094. case SIOCOUTQ:
  1095. {
  1096. int amount = sk_wmem_alloc_get(sk);
  1097. return put_user(amount, (int __user *)arg);
  1098. }
  1099. case SIOCINQ:
  1100. {
  1101. unsigned int amount = first_packet_length(sk);
  1102. return put_user(amount, (int __user *)arg);
  1103. }
  1104. default:
  1105. return -ENOIOCTLCMD;
  1106. }
  1107. return 0;
  1108. }
  1109. EXPORT_SYMBOL(udp_ioctl);
  1110. /*
  1111. * This should be easy, if there is something there we
  1112. * return it, otherwise we block.
  1113. */
  1114. int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
  1115. int flags, int *addr_len)
  1116. {
  1117. struct inet_sock *inet = inet_sk(sk);
  1118. DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
  1119. struct sk_buff *skb;
  1120. unsigned int ulen, copied;
  1121. int peeked, peeking, off;
  1122. int err;
  1123. int is_udplite = IS_UDPLITE(sk);
  1124. bool checksum_valid = false;
  1125. bool slow;
  1126. if (flags & MSG_ERRQUEUE)
  1127. return ip_recv_error(sk, msg, len, addr_len);
  1128. try_again:
  1129. peeking = off = sk_peek_offset(sk, flags);
  1130. skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
  1131. &peeked, &off, &err);
  1132. if (!skb)
  1133. return err;
  1134. ulen = skb->len;
  1135. copied = len;
  1136. if (copied > ulen - off)
  1137. copied = ulen - off;
  1138. else if (copied < ulen)
  1139. msg->msg_flags |= MSG_TRUNC;
  1140. /*
  1141. * If checksum is needed at all, try to do it while copying the
  1142. * data. If the data is truncated, or if we only want a partial
  1143. * coverage checksum (UDP-Lite), do it before the copy.
  1144. */
  1145. if (copied < ulen || UDP_SKB_CB(skb)->partial_cov || peeking) {
  1146. checksum_valid = !udp_lib_checksum_complete(skb);
  1147. if (!checksum_valid)
  1148. goto csum_copy_err;
  1149. }
  1150. if (checksum_valid || skb_csum_unnecessary(skb))
  1151. err = skb_copy_datagram_msg(skb, off, msg, copied);
  1152. else {
  1153. err = skb_copy_and_csum_datagram_msg(skb, off, msg);
  1154. if (err == -EINVAL)
  1155. goto csum_copy_err;
  1156. }
  1157. if (unlikely(err)) {
  1158. trace_kfree_skb(skb, udp_recvmsg);
  1159. if (!peeked) {
  1160. atomic_inc(&sk->sk_drops);
  1161. UDP_INC_STATS(sock_net(sk),
  1162. UDP_MIB_INERRORS, is_udplite);
  1163. }
  1164. skb_free_datagram_locked(sk, skb);
  1165. return err;
  1166. }
  1167. if (!peeked)
  1168. UDP_INC_STATS(sock_net(sk),
  1169. UDP_MIB_INDATAGRAMS, is_udplite);
  1170. sock_recv_ts_and_drops(msg, sk, skb);
  1171. /* Copy the address. */
  1172. if (sin) {
  1173. sin->sin_family = AF_INET;
  1174. sin->sin_port = udp_hdr(skb)->source;
  1175. sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
  1176. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1177. *addr_len = sizeof(*sin);
  1178. }
  1179. if (inet->cmsg_flags)
  1180. ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr) + off);
  1181. err = copied;
  1182. if (flags & MSG_TRUNC)
  1183. err = ulen;
  1184. __skb_free_datagram_locked(sk, skb, peeking ? -err : err);
  1185. return err;
  1186. csum_copy_err:
  1187. slow = lock_sock_fast(sk);
  1188. if (!skb_kill_datagram(sk, skb, flags)) {
  1189. UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
  1190. UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1191. }
  1192. unlock_sock_fast(sk, slow);
  1193. /* starting over for a new packet, but check if we need to yield */
  1194. cond_resched();
  1195. msg->msg_flags &= ~MSG_TRUNC;
  1196. goto try_again;
  1197. }
  1198. int udp_disconnect(struct sock *sk, int flags)
  1199. {
  1200. struct inet_sock *inet = inet_sk(sk);
  1201. /*
  1202. * 1003.1g - break association.
  1203. */
  1204. sk->sk_state = TCP_CLOSE;
  1205. inet->inet_daddr = 0;
  1206. inet->inet_dport = 0;
  1207. sock_rps_reset_rxhash(sk);
  1208. sk->sk_bound_dev_if = 0;
  1209. if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
  1210. inet_reset_saddr(sk);
  1211. if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
  1212. sk->sk_prot->unhash(sk);
  1213. inet->inet_sport = 0;
  1214. }
  1215. sk_dst_reset(sk);
  1216. return 0;
  1217. }
  1218. EXPORT_SYMBOL(udp_disconnect);
  1219. void udp_lib_unhash(struct sock *sk)
  1220. {
  1221. if (sk_hashed(sk)) {
  1222. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  1223. struct udp_hslot *hslot, *hslot2;
  1224. hslot = udp_hashslot(udptable, sock_net(sk),
  1225. udp_sk(sk)->udp_port_hash);
  1226. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  1227. spin_lock_bh(&hslot->lock);
  1228. if (rcu_access_pointer(sk->sk_reuseport_cb))
  1229. reuseport_detach_sock(sk);
  1230. if (sk_del_node_init_rcu(sk)) {
  1231. hslot->count--;
  1232. inet_sk(sk)->inet_num = 0;
  1233. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
  1234. spin_lock(&hslot2->lock);
  1235. hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
  1236. hslot2->count--;
  1237. spin_unlock(&hslot2->lock);
  1238. }
  1239. spin_unlock_bh(&hslot->lock);
  1240. }
  1241. }
  1242. EXPORT_SYMBOL(udp_lib_unhash);
  1243. /*
  1244. * inet_rcv_saddr was changed, we must rehash secondary hash
  1245. */
  1246. void udp_lib_rehash(struct sock *sk, u16 newhash)
  1247. {
  1248. if (sk_hashed(sk)) {
  1249. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  1250. struct udp_hslot *hslot, *hslot2, *nhslot2;
  1251. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  1252. nhslot2 = udp_hashslot2(udptable, newhash);
  1253. udp_sk(sk)->udp_portaddr_hash = newhash;
  1254. if (hslot2 != nhslot2 ||
  1255. rcu_access_pointer(sk->sk_reuseport_cb)) {
  1256. hslot = udp_hashslot(udptable, sock_net(sk),
  1257. udp_sk(sk)->udp_port_hash);
  1258. /* we must lock primary chain too */
  1259. spin_lock_bh(&hslot->lock);
  1260. if (rcu_access_pointer(sk->sk_reuseport_cb))
  1261. reuseport_detach_sock(sk);
  1262. if (hslot2 != nhslot2) {
  1263. spin_lock(&hslot2->lock);
  1264. hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
  1265. hslot2->count--;
  1266. spin_unlock(&hslot2->lock);
  1267. spin_lock(&nhslot2->lock);
  1268. hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
  1269. &nhslot2->head);
  1270. nhslot2->count++;
  1271. spin_unlock(&nhslot2->lock);
  1272. }
  1273. spin_unlock_bh(&hslot->lock);
  1274. }
  1275. }
  1276. }
  1277. EXPORT_SYMBOL(udp_lib_rehash);
  1278. static void udp_v4_rehash(struct sock *sk)
  1279. {
  1280. u16 new_hash = udp4_portaddr_hash(sock_net(sk),
  1281. inet_sk(sk)->inet_rcv_saddr,
  1282. inet_sk(sk)->inet_num);
  1283. udp_lib_rehash(sk, new_hash);
  1284. }
  1285. static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1286. {
  1287. int rc;
  1288. if (inet_sk(sk)->inet_daddr) {
  1289. sock_rps_save_rxhash(sk, skb);
  1290. sk_mark_napi_id(sk, skb);
  1291. sk_incoming_cpu_update(sk);
  1292. }
  1293. rc = __sock_queue_rcv_skb(sk, skb);
  1294. if (rc < 0) {
  1295. int is_udplite = IS_UDPLITE(sk);
  1296. /* Note that an ENOMEM error is charged twice */
  1297. if (rc == -ENOMEM)
  1298. UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1299. is_udplite);
  1300. UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1301. kfree_skb(skb);
  1302. trace_udp_fail_queue_rcv_skb(rc, sk);
  1303. return -1;
  1304. }
  1305. return 0;
  1306. }
  1307. static struct static_key udp_encap_needed __read_mostly;
  1308. void udp_encap_enable(void)
  1309. {
  1310. if (!static_key_enabled(&udp_encap_needed))
  1311. static_key_slow_inc(&udp_encap_needed);
  1312. }
  1313. EXPORT_SYMBOL(udp_encap_enable);
  1314. /* returns:
  1315. * -1: error
  1316. * 0: success
  1317. * >0: "udp encap" protocol resubmission
  1318. *
  1319. * Note that in the success and error cases, the skb is assumed to
  1320. * have either been requeued or freed.
  1321. */
  1322. int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1323. {
  1324. struct udp_sock *up = udp_sk(sk);
  1325. int rc;
  1326. int is_udplite = IS_UDPLITE(sk);
  1327. /*
  1328. * Charge it to the socket, dropping if the queue is full.
  1329. */
  1330. if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
  1331. goto drop;
  1332. nf_reset(skb);
  1333. if (static_key_false(&udp_encap_needed) && up->encap_type) {
  1334. int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
  1335. /*
  1336. * This is an encapsulation socket so pass the skb to
  1337. * the socket's udp_encap_rcv() hook. Otherwise, just
  1338. * fall through and pass this up the UDP socket.
  1339. * up->encap_rcv() returns the following value:
  1340. * =0 if skb was successfully passed to the encap
  1341. * handler or was discarded by it.
  1342. * >0 if skb should be passed on to UDP.
  1343. * <0 if skb should be resubmitted as proto -N
  1344. */
  1345. /* if we're overly short, let UDP handle it */
  1346. encap_rcv = ACCESS_ONCE(up->encap_rcv);
  1347. if (encap_rcv) {
  1348. int ret;
  1349. /* Verify checksum before giving to encap */
  1350. if (udp_lib_checksum_complete(skb))
  1351. goto csum_error;
  1352. ret = encap_rcv(sk, skb);
  1353. if (ret <= 0) {
  1354. __UDP_INC_STATS(sock_net(sk),
  1355. UDP_MIB_INDATAGRAMS,
  1356. is_udplite);
  1357. return -ret;
  1358. }
  1359. }
  1360. /* FALLTHROUGH -- it's a UDP Packet */
  1361. }
  1362. /*
  1363. * UDP-Lite specific tests, ignored on UDP sockets
  1364. */
  1365. if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
  1366. /*
  1367. * MIB statistics other than incrementing the error count are
  1368. * disabled for the following two types of errors: these depend
  1369. * on the application settings, not on the functioning of the
  1370. * protocol stack as such.
  1371. *
  1372. * RFC 3828 here recommends (sec 3.3): "There should also be a
  1373. * way ... to ... at least let the receiving application block
  1374. * delivery of packets with coverage values less than a value
  1375. * provided by the application."
  1376. */
  1377. if (up->pcrlen == 0) { /* full coverage was set */
  1378. net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
  1379. UDP_SKB_CB(skb)->cscov, skb->len);
  1380. goto drop;
  1381. }
  1382. /* The next case involves violating the min. coverage requested
  1383. * by the receiver. This is subtle: if receiver wants x and x is
  1384. * greater than the buffersize/MTU then receiver will complain
  1385. * that it wants x while sender emits packets of smaller size y.
  1386. * Therefore the above ...()->partial_cov statement is essential.
  1387. */
  1388. if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
  1389. net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
  1390. UDP_SKB_CB(skb)->cscov, up->pcrlen);
  1391. goto drop;
  1392. }
  1393. }
  1394. if (rcu_access_pointer(sk->sk_filter) &&
  1395. udp_lib_checksum_complete(skb))
  1396. goto csum_error;
  1397. if (sk_filter(sk, skb))
  1398. goto drop;
  1399. if (unlikely(skb->len < sizeof(struct udphdr)))
  1400. goto drop;
  1401. udp_csum_pull_header(skb);
  1402. if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
  1403. __UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1404. is_udplite);
  1405. goto drop;
  1406. }
  1407. rc = 0;
  1408. ipv4_pktinfo_prepare(sk, skb);
  1409. bh_lock_sock(sk);
  1410. if (!sock_owned_by_user(sk))
  1411. rc = __udp_queue_rcv_skb(sk, skb);
  1412. else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  1413. bh_unlock_sock(sk);
  1414. goto drop;
  1415. }
  1416. bh_unlock_sock(sk);
  1417. return rc;
  1418. csum_error:
  1419. __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
  1420. drop:
  1421. __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1422. atomic_inc(&sk->sk_drops);
  1423. kfree_skb(skb);
  1424. return -1;
  1425. }
  1426. /* For TCP sockets, sk_rx_dst is protected by socket lock
  1427. * For UDP, we use xchg() to guard against concurrent changes.
  1428. */
  1429. static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
  1430. {
  1431. struct dst_entry *old;
  1432. dst_hold(dst);
  1433. old = xchg(&sk->sk_rx_dst, dst);
  1434. dst_release(old);
  1435. }
  1436. /*
  1437. * Multicasts and broadcasts go to each listener.
  1438. *
  1439. * Note: called only from the BH handler context.
  1440. */
  1441. static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
  1442. struct udphdr *uh,
  1443. __be32 saddr, __be32 daddr,
  1444. struct udp_table *udptable,
  1445. int proto)
  1446. {
  1447. struct sock *sk, *first = NULL;
  1448. unsigned short hnum = ntohs(uh->dest);
  1449. struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
  1450. unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
  1451. unsigned int offset = offsetof(typeof(*sk), sk_node);
  1452. int dif = skb->dev->ifindex;
  1453. struct hlist_node *node;
  1454. struct sk_buff *nskb;
  1455. if (use_hash2) {
  1456. hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
  1457. udp_table.mask;
  1458. hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
  1459. start_lookup:
  1460. hslot = &udp_table.hash2[hash2];
  1461. offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
  1462. }
  1463. sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
  1464. if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
  1465. uh->source, saddr, dif, hnum))
  1466. continue;
  1467. if (!first) {
  1468. first = sk;
  1469. continue;
  1470. }
  1471. nskb = skb_clone(skb, GFP_ATOMIC);
  1472. if (unlikely(!nskb)) {
  1473. atomic_inc(&sk->sk_drops);
  1474. __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
  1475. IS_UDPLITE(sk));
  1476. __UDP_INC_STATS(net, UDP_MIB_INERRORS,
  1477. IS_UDPLITE(sk));
  1478. continue;
  1479. }
  1480. if (udp_queue_rcv_skb(sk, nskb) > 0)
  1481. consume_skb(nskb);
  1482. }
  1483. /* Also lookup *:port if we are using hash2 and haven't done so yet. */
  1484. if (use_hash2 && hash2 != hash2_any) {
  1485. hash2 = hash2_any;
  1486. goto start_lookup;
  1487. }
  1488. if (first) {
  1489. if (udp_queue_rcv_skb(first, skb) > 0)
  1490. consume_skb(skb);
  1491. } else {
  1492. kfree_skb(skb);
  1493. __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
  1494. proto == IPPROTO_UDPLITE);
  1495. }
  1496. return 0;
  1497. }
  1498. /* Initialize UDP checksum. If exited with zero value (success),
  1499. * CHECKSUM_UNNECESSARY means, that no more checks are required.
  1500. * Otherwise, csum completion requires chacksumming packet body,
  1501. * including udp header and folding it to skb->csum.
  1502. */
  1503. static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
  1504. int proto)
  1505. {
  1506. int err;
  1507. UDP_SKB_CB(skb)->partial_cov = 0;
  1508. UDP_SKB_CB(skb)->cscov = skb->len;
  1509. if (proto == IPPROTO_UDPLITE) {
  1510. err = udplite_checksum_init(skb, uh);
  1511. if (err)
  1512. return err;
  1513. }
  1514. /* Note, we are only interested in != 0 or == 0, thus the
  1515. * force to int.
  1516. */
  1517. return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
  1518. inet_compute_pseudo);
  1519. }
  1520. /*
  1521. * All we need to do is get the socket, and then do a checksum.
  1522. */
  1523. int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
  1524. int proto)
  1525. {
  1526. struct sock *sk;
  1527. struct udphdr *uh;
  1528. unsigned short ulen;
  1529. struct rtable *rt = skb_rtable(skb);
  1530. __be32 saddr, daddr;
  1531. struct net *net = dev_net(skb->dev);
  1532. /*
  1533. * Validate the packet.
  1534. */
  1535. if (!pskb_may_pull(skb, sizeof(struct udphdr)))
  1536. goto drop; /* No space for header. */
  1537. uh = udp_hdr(skb);
  1538. ulen = ntohs(uh->len);
  1539. saddr = ip_hdr(skb)->saddr;
  1540. daddr = ip_hdr(skb)->daddr;
  1541. if (ulen > skb->len)
  1542. goto short_packet;
  1543. if (proto == IPPROTO_UDP) {
  1544. /* UDP validates ulen. */
  1545. if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
  1546. goto short_packet;
  1547. uh = udp_hdr(skb);
  1548. }
  1549. if (udp4_csum_init(skb, uh, proto))
  1550. goto csum_error;
  1551. sk = skb_steal_sock(skb);
  1552. if (sk) {
  1553. struct dst_entry *dst = skb_dst(skb);
  1554. int ret;
  1555. if (unlikely(sk->sk_rx_dst != dst))
  1556. udp_sk_rx_dst_set(sk, dst);
  1557. ret = udp_queue_rcv_skb(sk, skb);
  1558. sock_put(sk);
  1559. /* a return value > 0 means to resubmit the input, but
  1560. * it wants the return to be -protocol, or 0
  1561. */
  1562. if (ret > 0)
  1563. return -ret;
  1564. return 0;
  1565. }
  1566. if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
  1567. return __udp4_lib_mcast_deliver(net, skb, uh,
  1568. saddr, daddr, udptable, proto);
  1569. sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
  1570. if (sk) {
  1571. int ret;
  1572. if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
  1573. skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
  1574. inet_compute_pseudo);
  1575. ret = udp_queue_rcv_skb(sk, skb);
  1576. /* a return value > 0 means to resubmit the input, but
  1577. * it wants the return to be -protocol, or 0
  1578. */
  1579. if (ret > 0)
  1580. return -ret;
  1581. return 0;
  1582. }
  1583. if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
  1584. goto drop;
  1585. nf_reset(skb);
  1586. /* No socket. Drop packet silently, if checksum is wrong */
  1587. if (udp_lib_checksum_complete(skb))
  1588. goto csum_error;
  1589. __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
  1590. icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
  1591. /*
  1592. * Hmm. We got an UDP packet to a port to which we
  1593. * don't wanna listen. Ignore it.
  1594. */
  1595. kfree_skb(skb);
  1596. return 0;
  1597. short_packet:
  1598. net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
  1599. proto == IPPROTO_UDPLITE ? "Lite" : "",
  1600. &saddr, ntohs(uh->source),
  1601. ulen, skb->len,
  1602. &daddr, ntohs(uh->dest));
  1603. goto drop;
  1604. csum_error:
  1605. /*
  1606. * RFC1122: OK. Discards the bad packet silently (as far as
  1607. * the network is concerned, anyway) as per 4.1.3.4 (MUST).
  1608. */
  1609. net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
  1610. proto == IPPROTO_UDPLITE ? "Lite" : "",
  1611. &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
  1612. ulen);
  1613. __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
  1614. drop:
  1615. __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
  1616. kfree_skb(skb);
  1617. return 0;
  1618. }
  1619. /* We can only early demux multicast if there is a single matching socket.
  1620. * If more than one socket found returns NULL
  1621. */
  1622. static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
  1623. __be16 loc_port, __be32 loc_addr,
  1624. __be16 rmt_port, __be32 rmt_addr,
  1625. int dif)
  1626. {
  1627. struct sock *sk, *result;
  1628. unsigned short hnum = ntohs(loc_port);
  1629. unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
  1630. struct udp_hslot *hslot = &udp_table.hash[slot];
  1631. /* Do not bother scanning a too big list */
  1632. if (hslot->count > 10)
  1633. return NULL;
  1634. result = NULL;
  1635. sk_for_each_rcu(sk, &hslot->head) {
  1636. if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
  1637. rmt_port, rmt_addr, dif, hnum)) {
  1638. if (result)
  1639. return NULL;
  1640. result = sk;
  1641. }
  1642. }
  1643. return result;
  1644. }
  1645. /* For unicast we should only early demux connected sockets or we can
  1646. * break forwarding setups. The chains here can be long so only check
  1647. * if the first socket is an exact match and if not move on.
  1648. */
  1649. static struct sock *__udp4_lib_demux_lookup(struct net *net,
  1650. __be16 loc_port, __be32 loc_addr,
  1651. __be16 rmt_port, __be32 rmt_addr,
  1652. int dif)
  1653. {
  1654. unsigned short hnum = ntohs(loc_port);
  1655. unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
  1656. unsigned int slot2 = hash2 & udp_table.mask;
  1657. struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
  1658. INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
  1659. const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
  1660. struct sock *sk;
  1661. udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
  1662. if (INET_MATCH(sk, net, acookie, rmt_addr,
  1663. loc_addr, ports, dif))
  1664. return sk;
  1665. /* Only check first socket in chain */
  1666. break;
  1667. }
  1668. return NULL;
  1669. }
  1670. void udp_v4_early_demux(struct sk_buff *skb)
  1671. {
  1672. struct net *net = dev_net(skb->dev);
  1673. const struct iphdr *iph;
  1674. const struct udphdr *uh;
  1675. struct sock *sk = NULL;
  1676. struct dst_entry *dst;
  1677. int dif = skb->dev->ifindex;
  1678. int ours;
  1679. /* validate the packet */
  1680. if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
  1681. return;
  1682. iph = ip_hdr(skb);
  1683. uh = udp_hdr(skb);
  1684. if (skb->pkt_type == PACKET_BROADCAST ||
  1685. skb->pkt_type == PACKET_MULTICAST) {
  1686. struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
  1687. if (!in_dev)
  1688. return;
  1689. /* we are supposed to accept bcast packets */
  1690. if (skb->pkt_type == PACKET_MULTICAST) {
  1691. ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
  1692. iph->protocol);
  1693. if (!ours)
  1694. return;
  1695. }
  1696. sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
  1697. uh->source, iph->saddr, dif);
  1698. } else if (skb->pkt_type == PACKET_HOST) {
  1699. sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
  1700. uh->source, iph->saddr, dif);
  1701. }
  1702. if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2))
  1703. return;
  1704. skb->sk = sk;
  1705. skb->destructor = sock_efree;
  1706. dst = READ_ONCE(sk->sk_rx_dst);
  1707. if (dst)
  1708. dst = dst_check(dst, 0);
  1709. if (dst) {
  1710. /* DST_NOCACHE can not be used without taking a reference */
  1711. if (dst->flags & DST_NOCACHE) {
  1712. if (likely(atomic_inc_not_zero(&dst->__refcnt)))
  1713. skb_dst_set(skb, dst);
  1714. } else {
  1715. skb_dst_set_noref(skb, dst);
  1716. }
  1717. }
  1718. }
  1719. int udp_rcv(struct sk_buff *skb)
  1720. {
  1721. return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
  1722. }
  1723. void udp_destroy_sock(struct sock *sk)
  1724. {
  1725. struct udp_sock *up = udp_sk(sk);
  1726. bool slow = lock_sock_fast(sk);
  1727. udp_flush_pending_frames(sk);
  1728. unlock_sock_fast(sk, slow);
  1729. if (static_key_false(&udp_encap_needed) && up->encap_type) {
  1730. void (*encap_destroy)(struct sock *sk);
  1731. encap_destroy = ACCESS_ONCE(up->encap_destroy);
  1732. if (encap_destroy)
  1733. encap_destroy(sk);
  1734. }
  1735. }
  1736. /*
  1737. * Socket option code for UDP
  1738. */
  1739. int udp_lib_setsockopt(struct sock *sk, int level, int optname,
  1740. char __user *optval, unsigned int optlen,
  1741. int (*push_pending_frames)(struct sock *))
  1742. {
  1743. struct udp_sock *up = udp_sk(sk);
  1744. int val, valbool;
  1745. int err = 0;
  1746. int is_udplite = IS_UDPLITE(sk);
  1747. if (optlen < sizeof(int))
  1748. return -EINVAL;
  1749. if (get_user(val, (int __user *)optval))
  1750. return -EFAULT;
  1751. valbool = val ? 1 : 0;
  1752. switch (optname) {
  1753. case UDP_CORK:
  1754. if (val != 0) {
  1755. up->corkflag = 1;
  1756. } else {
  1757. up->corkflag = 0;
  1758. lock_sock(sk);
  1759. push_pending_frames(sk);
  1760. release_sock(sk);
  1761. }
  1762. break;
  1763. case UDP_ENCAP:
  1764. switch (val) {
  1765. case 0:
  1766. case UDP_ENCAP_ESPINUDP:
  1767. case UDP_ENCAP_ESPINUDP_NON_IKE:
  1768. up->encap_rcv = xfrm4_udp_encap_rcv;
  1769. /* FALLTHROUGH */
  1770. case UDP_ENCAP_L2TPINUDP:
  1771. up->encap_type = val;
  1772. udp_encap_enable();
  1773. break;
  1774. default:
  1775. err = -ENOPROTOOPT;
  1776. break;
  1777. }
  1778. break;
  1779. case UDP_NO_CHECK6_TX:
  1780. up->no_check6_tx = valbool;
  1781. break;
  1782. case UDP_NO_CHECK6_RX:
  1783. up->no_check6_rx = valbool;
  1784. break;
  1785. /*
  1786. * UDP-Lite's partial checksum coverage (RFC 3828).
  1787. */
  1788. /* The sender sets actual checksum coverage length via this option.
  1789. * The case coverage > packet length is handled by send module. */
  1790. case UDPLITE_SEND_CSCOV:
  1791. if (!is_udplite) /* Disable the option on UDP sockets */
  1792. return -ENOPROTOOPT;
  1793. if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
  1794. val = 8;
  1795. else if (val > USHRT_MAX)
  1796. val = USHRT_MAX;
  1797. up->pcslen = val;
  1798. up->pcflag |= UDPLITE_SEND_CC;
  1799. break;
  1800. /* The receiver specifies a minimum checksum coverage value. To make
  1801. * sense, this should be set to at least 8 (as done below). If zero is
  1802. * used, this again means full checksum coverage. */
  1803. case UDPLITE_RECV_CSCOV:
  1804. if (!is_udplite) /* Disable the option on UDP sockets */
  1805. return -ENOPROTOOPT;
  1806. if (val != 0 && val < 8) /* Avoid silly minimal values. */
  1807. val = 8;
  1808. else if (val > USHRT_MAX)
  1809. val = USHRT_MAX;
  1810. up->pcrlen = val;
  1811. up->pcflag |= UDPLITE_RECV_CC;
  1812. break;
  1813. default:
  1814. err = -ENOPROTOOPT;
  1815. break;
  1816. }
  1817. return err;
  1818. }
  1819. EXPORT_SYMBOL(udp_lib_setsockopt);
  1820. int udp_setsockopt(struct sock *sk, int level, int optname,
  1821. char __user *optval, unsigned int optlen)
  1822. {
  1823. if (level == SOL_UDP || level == SOL_UDPLITE)
  1824. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1825. udp_push_pending_frames);
  1826. return ip_setsockopt(sk, level, optname, optval, optlen);
  1827. }
  1828. #ifdef CONFIG_COMPAT
  1829. int compat_udp_setsockopt(struct sock *sk, int level, int optname,
  1830. char __user *optval, unsigned int optlen)
  1831. {
  1832. if (level == SOL_UDP || level == SOL_UDPLITE)
  1833. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1834. udp_push_pending_frames);
  1835. return compat_ip_setsockopt(sk, level, optname, optval, optlen);
  1836. }
  1837. #endif
  1838. int udp_lib_getsockopt(struct sock *sk, int level, int optname,
  1839. char __user *optval, int __user *optlen)
  1840. {
  1841. struct udp_sock *up = udp_sk(sk);
  1842. int val, len;
  1843. if (get_user(len, optlen))
  1844. return -EFAULT;
  1845. len = min_t(unsigned int, len, sizeof(int));
  1846. if (len < 0)
  1847. return -EINVAL;
  1848. switch (optname) {
  1849. case UDP_CORK:
  1850. val = up->corkflag;
  1851. break;
  1852. case UDP_ENCAP:
  1853. val = up->encap_type;
  1854. break;
  1855. case UDP_NO_CHECK6_TX:
  1856. val = up->no_check6_tx;
  1857. break;
  1858. case UDP_NO_CHECK6_RX:
  1859. val = up->no_check6_rx;
  1860. break;
  1861. /* The following two cannot be changed on UDP sockets, the return is
  1862. * always 0 (which corresponds to the full checksum coverage of UDP). */
  1863. case UDPLITE_SEND_CSCOV:
  1864. val = up->pcslen;
  1865. break;
  1866. case UDPLITE_RECV_CSCOV:
  1867. val = up->pcrlen;
  1868. break;
  1869. default:
  1870. return -ENOPROTOOPT;
  1871. }
  1872. if (put_user(len, optlen))
  1873. return -EFAULT;
  1874. if (copy_to_user(optval, &val, len))
  1875. return -EFAULT;
  1876. return 0;
  1877. }
  1878. EXPORT_SYMBOL(udp_lib_getsockopt);
  1879. int udp_getsockopt(struct sock *sk, int level, int optname,
  1880. char __user *optval, int __user *optlen)
  1881. {
  1882. if (level == SOL_UDP || level == SOL_UDPLITE)
  1883. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  1884. return ip_getsockopt(sk, level, optname, optval, optlen);
  1885. }
  1886. #ifdef CONFIG_COMPAT
  1887. int compat_udp_getsockopt(struct sock *sk, int level, int optname,
  1888. char __user *optval, int __user *optlen)
  1889. {
  1890. if (level == SOL_UDP || level == SOL_UDPLITE)
  1891. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  1892. return compat_ip_getsockopt(sk, level, optname, optval, optlen);
  1893. }
  1894. #endif
  1895. /**
  1896. * udp_poll - wait for a UDP event.
  1897. * @file - file struct
  1898. * @sock - socket
  1899. * @wait - poll table
  1900. *
  1901. * This is same as datagram poll, except for the special case of
  1902. * blocking sockets. If application is using a blocking fd
  1903. * and a packet with checksum error is in the queue;
  1904. * then it could get return from select indicating data available
  1905. * but then block when reading it. Add special case code
  1906. * to work around these arguably broken applications.
  1907. */
  1908. unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
  1909. {
  1910. unsigned int mask = datagram_poll(file, sock, wait);
  1911. struct sock *sk = sock->sk;
  1912. sock_rps_record_flow(sk);
  1913. /* Check for false positives due to checksum errors */
  1914. if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
  1915. !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
  1916. mask &= ~(POLLIN | POLLRDNORM);
  1917. return mask;
  1918. }
  1919. EXPORT_SYMBOL(udp_poll);
  1920. struct proto udp_prot = {
  1921. .name = "UDP",
  1922. .owner = THIS_MODULE,
  1923. .close = udp_lib_close,
  1924. .connect = ip4_datagram_connect,
  1925. .disconnect = udp_disconnect,
  1926. .ioctl = udp_ioctl,
  1927. .destroy = udp_destroy_sock,
  1928. .setsockopt = udp_setsockopt,
  1929. .getsockopt = udp_getsockopt,
  1930. .sendmsg = udp_sendmsg,
  1931. .recvmsg = udp_recvmsg,
  1932. .sendpage = udp_sendpage,
  1933. .backlog_rcv = __udp_queue_rcv_skb,
  1934. .release_cb = ip4_datagram_release_cb,
  1935. .hash = udp_lib_hash,
  1936. .unhash = udp_lib_unhash,
  1937. .rehash = udp_v4_rehash,
  1938. .get_port = udp_v4_get_port,
  1939. .memory_allocated = &udp_memory_allocated,
  1940. .sysctl_mem = sysctl_udp_mem,
  1941. .sysctl_wmem = &sysctl_udp_wmem_min,
  1942. .sysctl_rmem = &sysctl_udp_rmem_min,
  1943. .obj_size = sizeof(struct udp_sock),
  1944. .slab_flags = SLAB_DESTROY_BY_RCU,
  1945. .h.udp_table = &udp_table,
  1946. #ifdef CONFIG_COMPAT
  1947. .compat_setsockopt = compat_udp_setsockopt,
  1948. .compat_getsockopt = compat_udp_getsockopt,
  1949. #endif
  1950. .clear_sk = sk_prot_clear_portaddr_nulls,
  1951. };
  1952. EXPORT_SYMBOL(udp_prot);
  1953. /* ------------------------------------------------------------------------ */
  1954. #ifdef CONFIG_PROC_FS
  1955. static struct sock *udp_get_first(struct seq_file *seq, int start)
  1956. {
  1957. struct sock *sk;
  1958. struct udp_iter_state *state = seq->private;
  1959. struct net *net = seq_file_net(seq);
  1960. for (state->bucket = start; state->bucket <= state->udp_table->mask;
  1961. ++state->bucket) {
  1962. struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
  1963. if (hlist_empty(&hslot->head))
  1964. continue;
  1965. spin_lock_bh(&hslot->lock);
  1966. sk_for_each(sk, &hslot->head) {
  1967. if (!net_eq(sock_net(sk), net))
  1968. continue;
  1969. if (sk->sk_family == state->family)
  1970. goto found;
  1971. }
  1972. spin_unlock_bh(&hslot->lock);
  1973. }
  1974. sk = NULL;
  1975. found:
  1976. return sk;
  1977. }
  1978. static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
  1979. {
  1980. struct udp_iter_state *state = seq->private;
  1981. struct net *net = seq_file_net(seq);
  1982. do {
  1983. sk = sk_next(sk);
  1984. } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
  1985. if (!sk) {
  1986. if (state->bucket <= state->udp_table->mask)
  1987. spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
  1988. return udp_get_first(seq, state->bucket + 1);
  1989. }
  1990. return sk;
  1991. }
  1992. static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
  1993. {
  1994. struct sock *sk = udp_get_first(seq, 0);
  1995. if (sk)
  1996. while (pos && (sk = udp_get_next(seq, sk)) != NULL)
  1997. --pos;
  1998. return pos ? NULL : sk;
  1999. }
  2000. static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
  2001. {
  2002. struct udp_iter_state *state = seq->private;
  2003. state->bucket = MAX_UDP_PORTS;
  2004. return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
  2005. }
  2006. static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2007. {
  2008. struct sock *sk;
  2009. if (v == SEQ_START_TOKEN)
  2010. sk = udp_get_idx(seq, 0);
  2011. else
  2012. sk = udp_get_next(seq, v);
  2013. ++*pos;
  2014. return sk;
  2015. }
  2016. static void udp_seq_stop(struct seq_file *seq, void *v)
  2017. {
  2018. struct udp_iter_state *state = seq->private;
  2019. if (state->bucket <= state->udp_table->mask)
  2020. spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
  2021. }
  2022. int udp_seq_open(struct inode *inode, struct file *file)
  2023. {
  2024. struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
  2025. struct udp_iter_state *s;
  2026. int err;
  2027. err = seq_open_net(inode, file, &afinfo->seq_ops,
  2028. sizeof(struct udp_iter_state));
  2029. if (err < 0)
  2030. return err;
  2031. s = ((struct seq_file *)file->private_data)->private;
  2032. s->family = afinfo->family;
  2033. s->udp_table = afinfo->udp_table;
  2034. return err;
  2035. }
  2036. EXPORT_SYMBOL(udp_seq_open);
  2037. /* ------------------------------------------------------------------------ */
  2038. int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
  2039. {
  2040. struct proc_dir_entry *p;
  2041. int rc = 0;
  2042. afinfo->seq_ops.start = udp_seq_start;
  2043. afinfo->seq_ops.next = udp_seq_next;
  2044. afinfo->seq_ops.stop = udp_seq_stop;
  2045. p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
  2046. afinfo->seq_fops, afinfo);
  2047. if (!p)
  2048. rc = -ENOMEM;
  2049. return rc;
  2050. }
  2051. EXPORT_SYMBOL(udp_proc_register);
  2052. void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
  2053. {
  2054. remove_proc_entry(afinfo->name, net->proc_net);
  2055. }
  2056. EXPORT_SYMBOL(udp_proc_unregister);
  2057. /* ------------------------------------------------------------------------ */
  2058. static void udp4_format_sock(struct sock *sp, struct seq_file *f,
  2059. int bucket)
  2060. {
  2061. struct inet_sock *inet = inet_sk(sp);
  2062. __be32 dest = inet->inet_daddr;
  2063. __be32 src = inet->inet_rcv_saddr;
  2064. __u16 destp = ntohs(inet->inet_dport);
  2065. __u16 srcp = ntohs(inet->inet_sport);
  2066. seq_printf(f, "%5d: %08X:%04X %08X:%04X"
  2067. " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
  2068. bucket, src, srcp, dest, destp, sp->sk_state,
  2069. sk_wmem_alloc_get(sp),
  2070. sk_rmem_alloc_get(sp),
  2071. 0, 0L, 0,
  2072. from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
  2073. 0, sock_i_ino(sp),
  2074. atomic_read(&sp->sk_refcnt), sp,
  2075. atomic_read(&sp->sk_drops));
  2076. }
  2077. int udp4_seq_show(struct seq_file *seq, void *v)
  2078. {
  2079. seq_setwidth(seq, 127);
  2080. if (v == SEQ_START_TOKEN)
  2081. seq_puts(seq, " sl local_address rem_address st tx_queue "
  2082. "rx_queue tr tm->when retrnsmt uid timeout "
  2083. "inode ref pointer drops");
  2084. else {
  2085. struct udp_iter_state *state = seq->private;
  2086. udp4_format_sock(v, seq, state->bucket);
  2087. }
  2088. seq_pad(seq, '\n');
  2089. return 0;
  2090. }
  2091. static const struct file_operations udp_afinfo_seq_fops = {
  2092. .owner = THIS_MODULE,
  2093. .open = udp_seq_open,
  2094. .read = seq_read,
  2095. .llseek = seq_lseek,
  2096. .release = seq_release_net
  2097. };
  2098. /* ------------------------------------------------------------------------ */
  2099. static struct udp_seq_afinfo udp4_seq_afinfo = {
  2100. .name = "udp",
  2101. .family = AF_INET,
  2102. .udp_table = &udp_table,
  2103. .seq_fops = &udp_afinfo_seq_fops,
  2104. .seq_ops = {
  2105. .show = udp4_seq_show,
  2106. },
  2107. };
  2108. static int __net_init udp4_proc_init_net(struct net *net)
  2109. {
  2110. return udp_proc_register(net, &udp4_seq_afinfo);
  2111. }
  2112. static void __net_exit udp4_proc_exit_net(struct net *net)
  2113. {
  2114. udp_proc_unregister(net, &udp4_seq_afinfo);
  2115. }
  2116. static struct pernet_operations udp4_net_ops = {
  2117. .init = udp4_proc_init_net,
  2118. .exit = udp4_proc_exit_net,
  2119. };
  2120. int __init udp4_proc_init(void)
  2121. {
  2122. return register_pernet_subsys(&udp4_net_ops);
  2123. }
  2124. void udp4_proc_exit(void)
  2125. {
  2126. unregister_pernet_subsys(&udp4_net_ops);
  2127. }
  2128. #endif /* CONFIG_PROC_FS */
  2129. static __initdata unsigned long uhash_entries;
  2130. static int __init set_uhash_entries(char *str)
  2131. {
  2132. ssize_t ret;
  2133. if (!str)
  2134. return 0;
  2135. ret = kstrtoul(str, 0, &uhash_entries);
  2136. if (ret)
  2137. return 0;
  2138. if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
  2139. uhash_entries = UDP_HTABLE_SIZE_MIN;
  2140. return 1;
  2141. }
  2142. __setup("uhash_entries=", set_uhash_entries);
  2143. void __init udp_table_init(struct udp_table *table, const char *name)
  2144. {
  2145. unsigned int i;
  2146. table->hash = alloc_large_system_hash(name,
  2147. 2 * sizeof(struct udp_hslot),
  2148. uhash_entries,
  2149. 21, /* one slot per 2 MB */
  2150. 0,
  2151. &table->log,
  2152. &table->mask,
  2153. UDP_HTABLE_SIZE_MIN,
  2154. 64 * 1024);
  2155. table->hash2 = table->hash + (table->mask + 1);
  2156. for (i = 0; i <= table->mask; i++) {
  2157. INIT_HLIST_HEAD(&table->hash[i].head);
  2158. table->hash[i].count = 0;
  2159. spin_lock_init(&table->hash[i].lock);
  2160. }
  2161. for (i = 0; i <= table->mask; i++) {
  2162. INIT_HLIST_HEAD(&table->hash2[i].head);
  2163. table->hash2[i].count = 0;
  2164. spin_lock_init(&table->hash2[i].lock);
  2165. }
  2166. }
  2167. u32 udp_flow_hashrnd(void)
  2168. {
  2169. static u32 hashrnd __read_mostly;
  2170. net_get_random_once(&hashrnd, sizeof(hashrnd));
  2171. return hashrnd;
  2172. }
  2173. EXPORT_SYMBOL(udp_flow_hashrnd);
  2174. void __init udp_init(void)
  2175. {
  2176. unsigned long limit;
  2177. udp_table_init(&udp_table, "UDP");
  2178. limit = nr_free_buffer_pages() / 8;
  2179. limit = max(limit, 128UL);
  2180. sysctl_udp_mem[0] = limit / 4 * 3;
  2181. sysctl_udp_mem[1] = limit;
  2182. sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
  2183. sysctl_udp_rmem_min = SK_MEM_QUANTUM;
  2184. sysctl_udp_wmem_min = SK_MEM_QUANTUM;
  2185. }