tcp_input.c 180 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. int sysctl_tcp_timestamps __read_mostly = 1;
  76. int sysctl_tcp_window_scaling __read_mostly = 1;
  77. int sysctl_tcp_sack __read_mostly = 1;
  78. int sysctl_tcp_fack __read_mostly = 1;
  79. int sysctl_tcp_max_reordering __read_mostly = 300;
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 1000;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  91. int sysctl_tcp_thin_dupack __read_mostly;
  92. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  93. int sysctl_tcp_early_retrans __read_mostly = 3;
  94. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  95. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  96. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  97. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  98. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  99. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  100. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  101. #define FLAG_ECE 0x40 /* ECE in this ACK */
  102. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  103. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  104. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  105. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  106. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  107. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  108. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  109. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  110. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  111. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  112. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  113. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  114. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  115. #define REXMIT_NONE 0 /* no loss recovery to do */
  116. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  117. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  118. /* Adapt the MSS value used to make delayed ack decision to the
  119. * real world.
  120. */
  121. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  122. {
  123. struct inet_connection_sock *icsk = inet_csk(sk);
  124. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  125. unsigned int len;
  126. icsk->icsk_ack.last_seg_size = 0;
  127. /* skb->len may jitter because of SACKs, even if peer
  128. * sends good full-sized frames.
  129. */
  130. len = skb_shinfo(skb)->gso_size ? : skb->len;
  131. if (len >= icsk->icsk_ack.rcv_mss) {
  132. icsk->icsk_ack.rcv_mss = len;
  133. } else {
  134. /* Otherwise, we make more careful check taking into account,
  135. * that SACKs block is variable.
  136. *
  137. * "len" is invariant segment length, including TCP header.
  138. */
  139. len += skb->data - skb_transport_header(skb);
  140. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  141. /* If PSH is not set, packet should be
  142. * full sized, provided peer TCP is not badly broken.
  143. * This observation (if it is correct 8)) allows
  144. * to handle super-low mtu links fairly.
  145. */
  146. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  147. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  148. /* Subtract also invariant (if peer is RFC compliant),
  149. * tcp header plus fixed timestamp option length.
  150. * Resulting "len" is MSS free of SACK jitter.
  151. */
  152. len -= tcp_sk(sk)->tcp_header_len;
  153. icsk->icsk_ack.last_seg_size = len;
  154. if (len == lss) {
  155. icsk->icsk_ack.rcv_mss = len;
  156. return;
  157. }
  158. }
  159. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  160. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  161. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  162. }
  163. }
  164. static void tcp_incr_quickack(struct sock *sk)
  165. {
  166. struct inet_connection_sock *icsk = inet_csk(sk);
  167. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  168. if (quickacks == 0)
  169. quickacks = 2;
  170. if (quickacks > icsk->icsk_ack.quick)
  171. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  172. }
  173. static void tcp_enter_quickack_mode(struct sock *sk)
  174. {
  175. struct inet_connection_sock *icsk = inet_csk(sk);
  176. tcp_incr_quickack(sk);
  177. icsk->icsk_ack.pingpong = 0;
  178. icsk->icsk_ack.ato = TCP_ATO_MIN;
  179. }
  180. /* Send ACKs quickly, if "quick" count is not exhausted
  181. * and the session is not interactive.
  182. */
  183. static bool tcp_in_quickack_mode(struct sock *sk)
  184. {
  185. const struct inet_connection_sock *icsk = inet_csk(sk);
  186. const struct dst_entry *dst = __sk_dst_get(sk);
  187. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  188. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  189. }
  190. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  191. {
  192. if (tp->ecn_flags & TCP_ECN_OK)
  193. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  194. }
  195. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  196. {
  197. if (tcp_hdr(skb)->cwr)
  198. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  199. }
  200. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  201. {
  202. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  203. }
  204. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  205. {
  206. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  207. case INET_ECN_NOT_ECT:
  208. /* Funny extension: if ECT is not set on a segment,
  209. * and we already seen ECT on a previous segment,
  210. * it is probably a retransmit.
  211. */
  212. if (tp->ecn_flags & TCP_ECN_SEEN)
  213. tcp_enter_quickack_mode((struct sock *)tp);
  214. break;
  215. case INET_ECN_CE:
  216. if (tcp_ca_needs_ecn((struct sock *)tp))
  217. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  218. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  219. /* Better not delay acks, sender can have a very low cwnd */
  220. tcp_enter_quickack_mode((struct sock *)tp);
  221. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  222. }
  223. tp->ecn_flags |= TCP_ECN_SEEN;
  224. break;
  225. default:
  226. if (tcp_ca_needs_ecn((struct sock *)tp))
  227. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  228. tp->ecn_flags |= TCP_ECN_SEEN;
  229. break;
  230. }
  231. }
  232. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  233. {
  234. if (tp->ecn_flags & TCP_ECN_OK)
  235. __tcp_ecn_check_ce(tp, skb);
  236. }
  237. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  238. {
  239. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  240. tp->ecn_flags &= ~TCP_ECN_OK;
  241. }
  242. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  243. {
  244. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  245. tp->ecn_flags &= ~TCP_ECN_OK;
  246. }
  247. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  248. {
  249. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  250. return true;
  251. return false;
  252. }
  253. /* Buffer size and advertised window tuning.
  254. *
  255. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  256. */
  257. static void tcp_sndbuf_expand(struct sock *sk)
  258. {
  259. const struct tcp_sock *tp = tcp_sk(sk);
  260. int sndmem, per_mss;
  261. u32 nr_segs;
  262. /* Worst case is non GSO/TSO : each frame consumes one skb
  263. * and skb->head is kmalloced using power of two area of memory
  264. */
  265. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  266. MAX_TCP_HEADER +
  267. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  268. per_mss = roundup_pow_of_two(per_mss) +
  269. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  270. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  271. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  272. /* Fast Recovery (RFC 5681 3.2) :
  273. * Cubic needs 1.7 factor, rounded to 2 to include
  274. * extra cushion (application might react slowly to POLLOUT)
  275. */
  276. sndmem = 2 * nr_segs * per_mss;
  277. if (sk->sk_sndbuf < sndmem)
  278. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  279. }
  280. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  281. *
  282. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  283. * forward and advertised in receiver window (tp->rcv_wnd) and
  284. * "application buffer", required to isolate scheduling/application
  285. * latencies from network.
  286. * window_clamp is maximal advertised window. It can be less than
  287. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  288. * is reserved for "application" buffer. The less window_clamp is
  289. * the smoother our behaviour from viewpoint of network, but the lower
  290. * throughput and the higher sensitivity of the connection to losses. 8)
  291. *
  292. * rcv_ssthresh is more strict window_clamp used at "slow start"
  293. * phase to predict further behaviour of this connection.
  294. * It is used for two goals:
  295. * - to enforce header prediction at sender, even when application
  296. * requires some significant "application buffer". It is check #1.
  297. * - to prevent pruning of receive queue because of misprediction
  298. * of receiver window. Check #2.
  299. *
  300. * The scheme does not work when sender sends good segments opening
  301. * window and then starts to feed us spaghetti. But it should work
  302. * in common situations. Otherwise, we have to rely on queue collapsing.
  303. */
  304. /* Slow part of check#2. */
  305. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  306. {
  307. struct tcp_sock *tp = tcp_sk(sk);
  308. /* Optimize this! */
  309. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  310. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  311. while (tp->rcv_ssthresh <= window) {
  312. if (truesize <= skb->len)
  313. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  314. truesize >>= 1;
  315. window >>= 1;
  316. }
  317. return 0;
  318. }
  319. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  320. {
  321. struct tcp_sock *tp = tcp_sk(sk);
  322. /* Check #1 */
  323. if (tp->rcv_ssthresh < tp->window_clamp &&
  324. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  325. !tcp_under_memory_pressure(sk)) {
  326. int incr;
  327. /* Check #2. Increase window, if skb with such overhead
  328. * will fit to rcvbuf in future.
  329. */
  330. if (tcp_win_from_space(skb->truesize) <= skb->len)
  331. incr = 2 * tp->advmss;
  332. else
  333. incr = __tcp_grow_window(sk, skb);
  334. if (incr) {
  335. incr = max_t(int, incr, 2 * skb->len);
  336. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  337. tp->window_clamp);
  338. inet_csk(sk)->icsk_ack.quick |= 1;
  339. }
  340. }
  341. }
  342. /* 3. Tuning rcvbuf, when connection enters established state. */
  343. static void tcp_fixup_rcvbuf(struct sock *sk)
  344. {
  345. u32 mss = tcp_sk(sk)->advmss;
  346. int rcvmem;
  347. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  348. tcp_default_init_rwnd(mss);
  349. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  350. * Allow enough cushion so that sender is not limited by our window
  351. */
  352. if (sysctl_tcp_moderate_rcvbuf)
  353. rcvmem <<= 2;
  354. if (sk->sk_rcvbuf < rcvmem)
  355. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  356. }
  357. /* 4. Try to fixup all. It is made immediately after connection enters
  358. * established state.
  359. */
  360. void tcp_init_buffer_space(struct sock *sk)
  361. {
  362. struct tcp_sock *tp = tcp_sk(sk);
  363. int maxwin;
  364. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  365. tcp_fixup_rcvbuf(sk);
  366. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  367. tcp_sndbuf_expand(sk);
  368. tp->rcvq_space.space = tp->rcv_wnd;
  369. tp->rcvq_space.time = tcp_time_stamp;
  370. tp->rcvq_space.seq = tp->copied_seq;
  371. maxwin = tcp_full_space(sk);
  372. if (tp->window_clamp >= maxwin) {
  373. tp->window_clamp = maxwin;
  374. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  375. tp->window_clamp = max(maxwin -
  376. (maxwin >> sysctl_tcp_app_win),
  377. 4 * tp->advmss);
  378. }
  379. /* Force reservation of one segment. */
  380. if (sysctl_tcp_app_win &&
  381. tp->window_clamp > 2 * tp->advmss &&
  382. tp->window_clamp + tp->advmss > maxwin)
  383. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  384. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  385. tp->snd_cwnd_stamp = tcp_time_stamp;
  386. }
  387. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  388. static void tcp_clamp_window(struct sock *sk)
  389. {
  390. struct tcp_sock *tp = tcp_sk(sk);
  391. struct inet_connection_sock *icsk = inet_csk(sk);
  392. icsk->icsk_ack.quick = 0;
  393. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  394. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  395. !tcp_under_memory_pressure(sk) &&
  396. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  397. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  398. sysctl_tcp_rmem[2]);
  399. }
  400. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  401. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  402. }
  403. /* Initialize RCV_MSS value.
  404. * RCV_MSS is an our guess about MSS used by the peer.
  405. * We haven't any direct information about the MSS.
  406. * It's better to underestimate the RCV_MSS rather than overestimate.
  407. * Overestimations make us ACKing less frequently than needed.
  408. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  409. */
  410. void tcp_initialize_rcv_mss(struct sock *sk)
  411. {
  412. const struct tcp_sock *tp = tcp_sk(sk);
  413. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  414. hint = min(hint, tp->rcv_wnd / 2);
  415. hint = min(hint, TCP_MSS_DEFAULT);
  416. hint = max(hint, TCP_MIN_MSS);
  417. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  418. }
  419. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  420. /* Receiver "autotuning" code.
  421. *
  422. * The algorithm for RTT estimation w/o timestamps is based on
  423. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  424. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  425. *
  426. * More detail on this code can be found at
  427. * <http://staff.psc.edu/jheffner/>,
  428. * though this reference is out of date. A new paper
  429. * is pending.
  430. */
  431. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  432. {
  433. u32 new_sample = tp->rcv_rtt_est.rtt;
  434. long m = sample;
  435. if (m == 0)
  436. m = 1;
  437. if (new_sample != 0) {
  438. /* If we sample in larger samples in the non-timestamp
  439. * case, we could grossly overestimate the RTT especially
  440. * with chatty applications or bulk transfer apps which
  441. * are stalled on filesystem I/O.
  442. *
  443. * Also, since we are only going for a minimum in the
  444. * non-timestamp case, we do not smooth things out
  445. * else with timestamps disabled convergence takes too
  446. * long.
  447. */
  448. if (!win_dep) {
  449. m -= (new_sample >> 3);
  450. new_sample += m;
  451. } else {
  452. m <<= 3;
  453. if (m < new_sample)
  454. new_sample = m;
  455. }
  456. } else {
  457. /* No previous measure. */
  458. new_sample = m << 3;
  459. }
  460. if (tp->rcv_rtt_est.rtt != new_sample)
  461. tp->rcv_rtt_est.rtt = new_sample;
  462. }
  463. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  464. {
  465. if (tp->rcv_rtt_est.time == 0)
  466. goto new_measure;
  467. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  468. return;
  469. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  470. new_measure:
  471. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  472. tp->rcv_rtt_est.time = tcp_time_stamp;
  473. }
  474. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  475. const struct sk_buff *skb)
  476. {
  477. struct tcp_sock *tp = tcp_sk(sk);
  478. if (tp->rx_opt.rcv_tsecr &&
  479. (TCP_SKB_CB(skb)->end_seq -
  480. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  481. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  482. }
  483. /*
  484. * This function should be called every time data is copied to user space.
  485. * It calculates the appropriate TCP receive buffer space.
  486. */
  487. void tcp_rcv_space_adjust(struct sock *sk)
  488. {
  489. struct tcp_sock *tp = tcp_sk(sk);
  490. int time;
  491. int copied;
  492. time = tcp_time_stamp - tp->rcvq_space.time;
  493. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  494. return;
  495. /* Number of bytes copied to user in last RTT */
  496. copied = tp->copied_seq - tp->rcvq_space.seq;
  497. if (copied <= tp->rcvq_space.space)
  498. goto new_measure;
  499. /* A bit of theory :
  500. * copied = bytes received in previous RTT, our base window
  501. * To cope with packet losses, we need a 2x factor
  502. * To cope with slow start, and sender growing its cwin by 100 %
  503. * every RTT, we need a 4x factor, because the ACK we are sending
  504. * now is for the next RTT, not the current one :
  505. * <prev RTT . ><current RTT .. ><next RTT .... >
  506. */
  507. if (sysctl_tcp_moderate_rcvbuf &&
  508. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  509. int rcvwin, rcvmem, rcvbuf;
  510. /* minimal window to cope with packet losses, assuming
  511. * steady state. Add some cushion because of small variations.
  512. */
  513. rcvwin = (copied << 1) + 16 * tp->advmss;
  514. /* If rate increased by 25%,
  515. * assume slow start, rcvwin = 3 * copied
  516. * If rate increased by 50%,
  517. * assume sender can use 2x growth, rcvwin = 4 * copied
  518. */
  519. if (copied >=
  520. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  521. if (copied >=
  522. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  523. rcvwin <<= 1;
  524. else
  525. rcvwin += (rcvwin >> 1);
  526. }
  527. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  528. while (tcp_win_from_space(rcvmem) < tp->advmss)
  529. rcvmem += 128;
  530. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  531. if (rcvbuf > sk->sk_rcvbuf) {
  532. sk->sk_rcvbuf = rcvbuf;
  533. /* Make the window clamp follow along. */
  534. tp->window_clamp = rcvwin;
  535. }
  536. }
  537. tp->rcvq_space.space = copied;
  538. new_measure:
  539. tp->rcvq_space.seq = tp->copied_seq;
  540. tp->rcvq_space.time = tcp_time_stamp;
  541. }
  542. /* There is something which you must keep in mind when you analyze the
  543. * behavior of the tp->ato delayed ack timeout interval. When a
  544. * connection starts up, we want to ack as quickly as possible. The
  545. * problem is that "good" TCP's do slow start at the beginning of data
  546. * transmission. The means that until we send the first few ACK's the
  547. * sender will sit on his end and only queue most of his data, because
  548. * he can only send snd_cwnd unacked packets at any given time. For
  549. * each ACK we send, he increments snd_cwnd and transmits more of his
  550. * queue. -DaveM
  551. */
  552. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  553. {
  554. struct tcp_sock *tp = tcp_sk(sk);
  555. struct inet_connection_sock *icsk = inet_csk(sk);
  556. u32 now;
  557. inet_csk_schedule_ack(sk);
  558. tcp_measure_rcv_mss(sk, skb);
  559. tcp_rcv_rtt_measure(tp);
  560. now = tcp_time_stamp;
  561. if (!icsk->icsk_ack.ato) {
  562. /* The _first_ data packet received, initialize
  563. * delayed ACK engine.
  564. */
  565. tcp_incr_quickack(sk);
  566. icsk->icsk_ack.ato = TCP_ATO_MIN;
  567. } else {
  568. int m = now - icsk->icsk_ack.lrcvtime;
  569. if (m <= TCP_ATO_MIN / 2) {
  570. /* The fastest case is the first. */
  571. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  572. } else if (m < icsk->icsk_ack.ato) {
  573. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  574. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  575. icsk->icsk_ack.ato = icsk->icsk_rto;
  576. } else if (m > icsk->icsk_rto) {
  577. /* Too long gap. Apparently sender failed to
  578. * restart window, so that we send ACKs quickly.
  579. */
  580. tcp_incr_quickack(sk);
  581. sk_mem_reclaim(sk);
  582. }
  583. }
  584. icsk->icsk_ack.lrcvtime = now;
  585. tcp_ecn_check_ce(tp, skb);
  586. if (skb->len >= 128)
  587. tcp_grow_window(sk, skb);
  588. }
  589. /* Called to compute a smoothed rtt estimate. The data fed to this
  590. * routine either comes from timestamps, or from segments that were
  591. * known _not_ to have been retransmitted [see Karn/Partridge
  592. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  593. * piece by Van Jacobson.
  594. * NOTE: the next three routines used to be one big routine.
  595. * To save cycles in the RFC 1323 implementation it was better to break
  596. * it up into three procedures. -- erics
  597. */
  598. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  599. {
  600. struct tcp_sock *tp = tcp_sk(sk);
  601. long m = mrtt_us; /* RTT */
  602. u32 srtt = tp->srtt_us;
  603. /* The following amusing code comes from Jacobson's
  604. * article in SIGCOMM '88. Note that rtt and mdev
  605. * are scaled versions of rtt and mean deviation.
  606. * This is designed to be as fast as possible
  607. * m stands for "measurement".
  608. *
  609. * On a 1990 paper the rto value is changed to:
  610. * RTO = rtt + 4 * mdev
  611. *
  612. * Funny. This algorithm seems to be very broken.
  613. * These formulae increase RTO, when it should be decreased, increase
  614. * too slowly, when it should be increased quickly, decrease too quickly
  615. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  616. * does not matter how to _calculate_ it. Seems, it was trap
  617. * that VJ failed to avoid. 8)
  618. */
  619. if (srtt != 0) {
  620. m -= (srtt >> 3); /* m is now error in rtt est */
  621. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  622. if (m < 0) {
  623. m = -m; /* m is now abs(error) */
  624. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  625. /* This is similar to one of Eifel findings.
  626. * Eifel blocks mdev updates when rtt decreases.
  627. * This solution is a bit different: we use finer gain
  628. * for mdev in this case (alpha*beta).
  629. * Like Eifel it also prevents growth of rto,
  630. * but also it limits too fast rto decreases,
  631. * happening in pure Eifel.
  632. */
  633. if (m > 0)
  634. m >>= 3;
  635. } else {
  636. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  637. }
  638. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  639. if (tp->mdev_us > tp->mdev_max_us) {
  640. tp->mdev_max_us = tp->mdev_us;
  641. if (tp->mdev_max_us > tp->rttvar_us)
  642. tp->rttvar_us = tp->mdev_max_us;
  643. }
  644. if (after(tp->snd_una, tp->rtt_seq)) {
  645. if (tp->mdev_max_us < tp->rttvar_us)
  646. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  647. tp->rtt_seq = tp->snd_nxt;
  648. tp->mdev_max_us = tcp_rto_min_us(sk);
  649. }
  650. } else {
  651. /* no previous measure. */
  652. srtt = m << 3; /* take the measured time to be rtt */
  653. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  654. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  655. tp->mdev_max_us = tp->rttvar_us;
  656. tp->rtt_seq = tp->snd_nxt;
  657. }
  658. tp->srtt_us = max(1U, srtt);
  659. }
  660. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  661. * Note: TCP stack does not yet implement pacing.
  662. * FQ packet scheduler can be used to implement cheap but effective
  663. * TCP pacing, to smooth the burst on large writes when packets
  664. * in flight is significantly lower than cwnd (or rwin)
  665. */
  666. int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
  667. int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
  668. static void tcp_update_pacing_rate(struct sock *sk)
  669. {
  670. const struct tcp_sock *tp = tcp_sk(sk);
  671. u64 rate;
  672. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  673. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  674. /* current rate is (cwnd * mss) / srtt
  675. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  676. * In Congestion Avoidance phase, set it to 120 % the current rate.
  677. *
  678. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  679. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  680. * end of slow start and should slow down.
  681. */
  682. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  683. rate *= sysctl_tcp_pacing_ss_ratio;
  684. else
  685. rate *= sysctl_tcp_pacing_ca_ratio;
  686. rate *= max(tp->snd_cwnd, tp->packets_out);
  687. if (likely(tp->srtt_us))
  688. do_div(rate, tp->srtt_us);
  689. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  690. * without any lock. We want to make sure compiler wont store
  691. * intermediate values in this location.
  692. */
  693. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  694. sk->sk_max_pacing_rate);
  695. }
  696. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  697. * routine referred to above.
  698. */
  699. static void tcp_set_rto(struct sock *sk)
  700. {
  701. const struct tcp_sock *tp = tcp_sk(sk);
  702. /* Old crap is replaced with new one. 8)
  703. *
  704. * More seriously:
  705. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  706. * It cannot be less due to utterly erratic ACK generation made
  707. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  708. * to do with delayed acks, because at cwnd>2 true delack timeout
  709. * is invisible. Actually, Linux-2.4 also generates erratic
  710. * ACKs in some circumstances.
  711. */
  712. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  713. /* 2. Fixups made earlier cannot be right.
  714. * If we do not estimate RTO correctly without them,
  715. * all the algo is pure shit and should be replaced
  716. * with correct one. It is exactly, which we pretend to do.
  717. */
  718. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  719. * guarantees that rto is higher.
  720. */
  721. tcp_bound_rto(sk);
  722. }
  723. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  724. {
  725. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  726. if (!cwnd)
  727. cwnd = TCP_INIT_CWND;
  728. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  729. }
  730. /*
  731. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  732. * disables it when reordering is detected
  733. */
  734. void tcp_disable_fack(struct tcp_sock *tp)
  735. {
  736. /* RFC3517 uses different metric in lost marker => reset on change */
  737. if (tcp_is_fack(tp))
  738. tp->lost_skb_hint = NULL;
  739. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  740. }
  741. /* Take a notice that peer is sending D-SACKs */
  742. static void tcp_dsack_seen(struct tcp_sock *tp)
  743. {
  744. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  745. }
  746. static void tcp_update_reordering(struct sock *sk, const int metric,
  747. const int ts)
  748. {
  749. struct tcp_sock *tp = tcp_sk(sk);
  750. if (metric > tp->reordering) {
  751. int mib_idx;
  752. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  753. /* This exciting event is worth to be remembered. 8) */
  754. if (ts)
  755. mib_idx = LINUX_MIB_TCPTSREORDER;
  756. else if (tcp_is_reno(tp))
  757. mib_idx = LINUX_MIB_TCPRENOREORDER;
  758. else if (tcp_is_fack(tp))
  759. mib_idx = LINUX_MIB_TCPFACKREORDER;
  760. else
  761. mib_idx = LINUX_MIB_TCPSACKREORDER;
  762. NET_INC_STATS(sock_net(sk), mib_idx);
  763. #if FASTRETRANS_DEBUG > 1
  764. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  765. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  766. tp->reordering,
  767. tp->fackets_out,
  768. tp->sacked_out,
  769. tp->undo_marker ? tp->undo_retrans : 0);
  770. #endif
  771. tcp_disable_fack(tp);
  772. }
  773. if (metric > 0)
  774. tcp_disable_early_retrans(tp);
  775. tp->rack.reord = 1;
  776. }
  777. /* This must be called before lost_out is incremented */
  778. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  779. {
  780. if (!tp->retransmit_skb_hint ||
  781. before(TCP_SKB_CB(skb)->seq,
  782. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  783. tp->retransmit_skb_hint = skb;
  784. if (!tp->lost_out ||
  785. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  786. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  787. }
  788. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  789. {
  790. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  791. tcp_verify_retransmit_hint(tp, skb);
  792. tp->lost_out += tcp_skb_pcount(skb);
  793. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  794. }
  795. }
  796. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  797. {
  798. tcp_verify_retransmit_hint(tp, skb);
  799. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  800. tp->lost_out += tcp_skb_pcount(skb);
  801. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  802. }
  803. }
  804. /* This procedure tags the retransmission queue when SACKs arrive.
  805. *
  806. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  807. * Packets in queue with these bits set are counted in variables
  808. * sacked_out, retrans_out and lost_out, correspondingly.
  809. *
  810. * Valid combinations are:
  811. * Tag InFlight Description
  812. * 0 1 - orig segment is in flight.
  813. * S 0 - nothing flies, orig reached receiver.
  814. * L 0 - nothing flies, orig lost by net.
  815. * R 2 - both orig and retransmit are in flight.
  816. * L|R 1 - orig is lost, retransmit is in flight.
  817. * S|R 1 - orig reached receiver, retrans is still in flight.
  818. * (L|S|R is logically valid, it could occur when L|R is sacked,
  819. * but it is equivalent to plain S and code short-curcuits it to S.
  820. * L|S is logically invalid, it would mean -1 packet in flight 8))
  821. *
  822. * These 6 states form finite state machine, controlled by the following events:
  823. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  824. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  825. * 3. Loss detection event of two flavors:
  826. * A. Scoreboard estimator decided the packet is lost.
  827. * A'. Reno "three dupacks" marks head of queue lost.
  828. * A''. Its FACK modification, head until snd.fack is lost.
  829. * B. SACK arrives sacking SND.NXT at the moment, when the
  830. * segment was retransmitted.
  831. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  832. *
  833. * It is pleasant to note, that state diagram turns out to be commutative,
  834. * so that we are allowed not to be bothered by order of our actions,
  835. * when multiple events arrive simultaneously. (see the function below).
  836. *
  837. * Reordering detection.
  838. * --------------------
  839. * Reordering metric is maximal distance, which a packet can be displaced
  840. * in packet stream. With SACKs we can estimate it:
  841. *
  842. * 1. SACK fills old hole and the corresponding segment was not
  843. * ever retransmitted -> reordering. Alas, we cannot use it
  844. * when segment was retransmitted.
  845. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  846. * for retransmitted and already SACKed segment -> reordering..
  847. * Both of these heuristics are not used in Loss state, when we cannot
  848. * account for retransmits accurately.
  849. *
  850. * SACK block validation.
  851. * ----------------------
  852. *
  853. * SACK block range validation checks that the received SACK block fits to
  854. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  855. * Note that SND.UNA is not included to the range though being valid because
  856. * it means that the receiver is rather inconsistent with itself reporting
  857. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  858. * perfectly valid, however, in light of RFC2018 which explicitly states
  859. * that "SACK block MUST reflect the newest segment. Even if the newest
  860. * segment is going to be discarded ...", not that it looks very clever
  861. * in case of head skb. Due to potentional receiver driven attacks, we
  862. * choose to avoid immediate execution of a walk in write queue due to
  863. * reneging and defer head skb's loss recovery to standard loss recovery
  864. * procedure that will eventually trigger (nothing forbids us doing this).
  865. *
  866. * Implements also blockage to start_seq wrap-around. Problem lies in the
  867. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  868. * there's no guarantee that it will be before snd_nxt (n). The problem
  869. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  870. * wrap (s_w):
  871. *
  872. * <- outs wnd -> <- wrapzone ->
  873. * u e n u_w e_w s n_w
  874. * | | | | | | |
  875. * |<------------+------+----- TCP seqno space --------------+---------->|
  876. * ...-- <2^31 ->| |<--------...
  877. * ...---- >2^31 ------>| |<--------...
  878. *
  879. * Current code wouldn't be vulnerable but it's better still to discard such
  880. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  881. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  882. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  883. * equal to the ideal case (infinite seqno space without wrap caused issues).
  884. *
  885. * With D-SACK the lower bound is extended to cover sequence space below
  886. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  887. * again, D-SACK block must not to go across snd_una (for the same reason as
  888. * for the normal SACK blocks, explained above). But there all simplicity
  889. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  890. * fully below undo_marker they do not affect behavior in anyway and can
  891. * therefore be safely ignored. In rare cases (which are more or less
  892. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  893. * fragmentation and packet reordering past skb's retransmission. To consider
  894. * them correctly, the acceptable range must be extended even more though
  895. * the exact amount is rather hard to quantify. However, tp->max_window can
  896. * be used as an exaggerated estimate.
  897. */
  898. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  899. u32 start_seq, u32 end_seq)
  900. {
  901. /* Too far in future, or reversed (interpretation is ambiguous) */
  902. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  903. return false;
  904. /* Nasty start_seq wrap-around check (see comments above) */
  905. if (!before(start_seq, tp->snd_nxt))
  906. return false;
  907. /* In outstanding window? ...This is valid exit for D-SACKs too.
  908. * start_seq == snd_una is non-sensical (see comments above)
  909. */
  910. if (after(start_seq, tp->snd_una))
  911. return true;
  912. if (!is_dsack || !tp->undo_marker)
  913. return false;
  914. /* ...Then it's D-SACK, and must reside below snd_una completely */
  915. if (after(end_seq, tp->snd_una))
  916. return false;
  917. if (!before(start_seq, tp->undo_marker))
  918. return true;
  919. /* Too old */
  920. if (!after(end_seq, tp->undo_marker))
  921. return false;
  922. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  923. * start_seq < undo_marker and end_seq >= undo_marker.
  924. */
  925. return !before(start_seq, end_seq - tp->max_window);
  926. }
  927. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  928. struct tcp_sack_block_wire *sp, int num_sacks,
  929. u32 prior_snd_una)
  930. {
  931. struct tcp_sock *tp = tcp_sk(sk);
  932. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  933. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  934. bool dup_sack = false;
  935. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  936. dup_sack = true;
  937. tcp_dsack_seen(tp);
  938. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  939. } else if (num_sacks > 1) {
  940. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  941. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  942. if (!after(end_seq_0, end_seq_1) &&
  943. !before(start_seq_0, start_seq_1)) {
  944. dup_sack = true;
  945. tcp_dsack_seen(tp);
  946. NET_INC_STATS(sock_net(sk),
  947. LINUX_MIB_TCPDSACKOFORECV);
  948. }
  949. }
  950. /* D-SACK for already forgotten data... Do dumb counting. */
  951. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  952. !after(end_seq_0, prior_snd_una) &&
  953. after(end_seq_0, tp->undo_marker))
  954. tp->undo_retrans--;
  955. return dup_sack;
  956. }
  957. struct tcp_sacktag_state {
  958. int reord;
  959. int fack_count;
  960. /* Timestamps for earliest and latest never-retransmitted segment
  961. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  962. * but congestion control should still get an accurate delay signal.
  963. */
  964. struct skb_mstamp first_sackt;
  965. struct skb_mstamp last_sackt;
  966. int flag;
  967. };
  968. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  969. * the incoming SACK may not exactly match but we can find smaller MSS
  970. * aligned portion of it that matches. Therefore we might need to fragment
  971. * which may fail and creates some hassle (caller must handle error case
  972. * returns).
  973. *
  974. * FIXME: this could be merged to shift decision code
  975. */
  976. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  977. u32 start_seq, u32 end_seq)
  978. {
  979. int err;
  980. bool in_sack;
  981. unsigned int pkt_len;
  982. unsigned int mss;
  983. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  984. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  985. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  986. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  987. mss = tcp_skb_mss(skb);
  988. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  989. if (!in_sack) {
  990. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  991. if (pkt_len < mss)
  992. pkt_len = mss;
  993. } else {
  994. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  995. if (pkt_len < mss)
  996. return -EINVAL;
  997. }
  998. /* Round if necessary so that SACKs cover only full MSSes
  999. * and/or the remaining small portion (if present)
  1000. */
  1001. if (pkt_len > mss) {
  1002. unsigned int new_len = (pkt_len / mss) * mss;
  1003. if (!in_sack && new_len < pkt_len) {
  1004. new_len += mss;
  1005. if (new_len >= skb->len)
  1006. return 0;
  1007. }
  1008. pkt_len = new_len;
  1009. }
  1010. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1011. if (err < 0)
  1012. return err;
  1013. }
  1014. return in_sack;
  1015. }
  1016. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1017. static u8 tcp_sacktag_one(struct sock *sk,
  1018. struct tcp_sacktag_state *state, u8 sacked,
  1019. u32 start_seq, u32 end_seq,
  1020. int dup_sack, int pcount,
  1021. const struct skb_mstamp *xmit_time)
  1022. {
  1023. struct tcp_sock *tp = tcp_sk(sk);
  1024. int fack_count = state->fack_count;
  1025. /* Account D-SACK for retransmitted packet. */
  1026. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1027. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1028. after(end_seq, tp->undo_marker))
  1029. tp->undo_retrans--;
  1030. if (sacked & TCPCB_SACKED_ACKED)
  1031. state->reord = min(fack_count, state->reord);
  1032. }
  1033. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1034. if (!after(end_seq, tp->snd_una))
  1035. return sacked;
  1036. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1037. tcp_rack_advance(tp, xmit_time, sacked);
  1038. if (sacked & TCPCB_SACKED_RETRANS) {
  1039. /* If the segment is not tagged as lost,
  1040. * we do not clear RETRANS, believing
  1041. * that retransmission is still in flight.
  1042. */
  1043. if (sacked & TCPCB_LOST) {
  1044. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1045. tp->lost_out -= pcount;
  1046. tp->retrans_out -= pcount;
  1047. }
  1048. } else {
  1049. if (!(sacked & TCPCB_RETRANS)) {
  1050. /* New sack for not retransmitted frame,
  1051. * which was in hole. It is reordering.
  1052. */
  1053. if (before(start_seq,
  1054. tcp_highest_sack_seq(tp)))
  1055. state->reord = min(fack_count,
  1056. state->reord);
  1057. if (!after(end_seq, tp->high_seq))
  1058. state->flag |= FLAG_ORIG_SACK_ACKED;
  1059. if (state->first_sackt.v64 == 0)
  1060. state->first_sackt = *xmit_time;
  1061. state->last_sackt = *xmit_time;
  1062. }
  1063. if (sacked & TCPCB_LOST) {
  1064. sacked &= ~TCPCB_LOST;
  1065. tp->lost_out -= pcount;
  1066. }
  1067. }
  1068. sacked |= TCPCB_SACKED_ACKED;
  1069. state->flag |= FLAG_DATA_SACKED;
  1070. tp->sacked_out += pcount;
  1071. tp->delivered += pcount; /* Out-of-order packets delivered */
  1072. fack_count += pcount;
  1073. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1074. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1075. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1076. tp->lost_cnt_hint += pcount;
  1077. if (fack_count > tp->fackets_out)
  1078. tp->fackets_out = fack_count;
  1079. }
  1080. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1081. * frames and clear it. undo_retrans is decreased above, L|R frames
  1082. * are accounted above as well.
  1083. */
  1084. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1085. sacked &= ~TCPCB_SACKED_RETRANS;
  1086. tp->retrans_out -= pcount;
  1087. }
  1088. return sacked;
  1089. }
  1090. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1091. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1092. */
  1093. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1094. struct tcp_sacktag_state *state,
  1095. unsigned int pcount, int shifted, int mss,
  1096. bool dup_sack)
  1097. {
  1098. struct tcp_sock *tp = tcp_sk(sk);
  1099. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1100. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1101. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1102. BUG_ON(!pcount);
  1103. /* Adjust counters and hints for the newly sacked sequence
  1104. * range but discard the return value since prev is already
  1105. * marked. We must tag the range first because the seq
  1106. * advancement below implicitly advances
  1107. * tcp_highest_sack_seq() when skb is highest_sack.
  1108. */
  1109. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1110. start_seq, end_seq, dup_sack, pcount,
  1111. &skb->skb_mstamp);
  1112. if (skb == tp->lost_skb_hint)
  1113. tp->lost_cnt_hint += pcount;
  1114. TCP_SKB_CB(prev)->end_seq += shifted;
  1115. TCP_SKB_CB(skb)->seq += shifted;
  1116. tcp_skb_pcount_add(prev, pcount);
  1117. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1118. tcp_skb_pcount_add(skb, -pcount);
  1119. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1120. * in theory this shouldn't be necessary but as long as DSACK
  1121. * code can come after this skb later on it's better to keep
  1122. * setting gso_size to something.
  1123. */
  1124. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1125. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1126. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1127. if (tcp_skb_pcount(skb) <= 1)
  1128. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1129. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1130. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1131. if (skb->len > 0) {
  1132. BUG_ON(!tcp_skb_pcount(skb));
  1133. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1134. return false;
  1135. }
  1136. /* Whole SKB was eaten :-) */
  1137. if (skb == tp->retransmit_skb_hint)
  1138. tp->retransmit_skb_hint = prev;
  1139. if (skb == tp->lost_skb_hint) {
  1140. tp->lost_skb_hint = prev;
  1141. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1142. }
  1143. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1144. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1145. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1146. TCP_SKB_CB(prev)->end_seq++;
  1147. if (skb == tcp_highest_sack(sk))
  1148. tcp_advance_highest_sack(sk, skb);
  1149. tcp_skb_collapse_tstamp(prev, skb);
  1150. tcp_unlink_write_queue(skb, sk);
  1151. sk_wmem_free_skb(sk, skb);
  1152. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1153. return true;
  1154. }
  1155. /* I wish gso_size would have a bit more sane initialization than
  1156. * something-or-zero which complicates things
  1157. */
  1158. static int tcp_skb_seglen(const struct sk_buff *skb)
  1159. {
  1160. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1161. }
  1162. /* Shifting pages past head area doesn't work */
  1163. static int skb_can_shift(const struct sk_buff *skb)
  1164. {
  1165. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1166. }
  1167. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1168. * skb.
  1169. */
  1170. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1171. struct tcp_sacktag_state *state,
  1172. u32 start_seq, u32 end_seq,
  1173. bool dup_sack)
  1174. {
  1175. struct tcp_sock *tp = tcp_sk(sk);
  1176. struct sk_buff *prev;
  1177. int mss;
  1178. int pcount = 0;
  1179. int len;
  1180. int in_sack;
  1181. if (!sk_can_gso(sk))
  1182. goto fallback;
  1183. /* Normally R but no L won't result in plain S */
  1184. if (!dup_sack &&
  1185. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1186. goto fallback;
  1187. if (!skb_can_shift(skb))
  1188. goto fallback;
  1189. /* This frame is about to be dropped (was ACKed). */
  1190. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1191. goto fallback;
  1192. /* Can only happen with delayed DSACK + discard craziness */
  1193. if (unlikely(skb == tcp_write_queue_head(sk)))
  1194. goto fallback;
  1195. prev = tcp_write_queue_prev(sk, skb);
  1196. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1197. goto fallback;
  1198. if (!tcp_skb_can_collapse_to(prev))
  1199. goto fallback;
  1200. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1201. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1202. if (in_sack) {
  1203. len = skb->len;
  1204. pcount = tcp_skb_pcount(skb);
  1205. mss = tcp_skb_seglen(skb);
  1206. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1207. * drop this restriction as unnecessary
  1208. */
  1209. if (mss != tcp_skb_seglen(prev))
  1210. goto fallback;
  1211. } else {
  1212. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1213. goto noop;
  1214. /* CHECKME: This is non-MSS split case only?, this will
  1215. * cause skipped skbs due to advancing loop btw, original
  1216. * has that feature too
  1217. */
  1218. if (tcp_skb_pcount(skb) <= 1)
  1219. goto noop;
  1220. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1221. if (!in_sack) {
  1222. /* TODO: head merge to next could be attempted here
  1223. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1224. * though it might not be worth of the additional hassle
  1225. *
  1226. * ...we can probably just fallback to what was done
  1227. * previously. We could try merging non-SACKed ones
  1228. * as well but it probably isn't going to buy off
  1229. * because later SACKs might again split them, and
  1230. * it would make skb timestamp tracking considerably
  1231. * harder problem.
  1232. */
  1233. goto fallback;
  1234. }
  1235. len = end_seq - TCP_SKB_CB(skb)->seq;
  1236. BUG_ON(len < 0);
  1237. BUG_ON(len > skb->len);
  1238. /* MSS boundaries should be honoured or else pcount will
  1239. * severely break even though it makes things bit trickier.
  1240. * Optimize common case to avoid most of the divides
  1241. */
  1242. mss = tcp_skb_mss(skb);
  1243. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1244. * drop this restriction as unnecessary
  1245. */
  1246. if (mss != tcp_skb_seglen(prev))
  1247. goto fallback;
  1248. if (len == mss) {
  1249. pcount = 1;
  1250. } else if (len < mss) {
  1251. goto noop;
  1252. } else {
  1253. pcount = len / mss;
  1254. len = pcount * mss;
  1255. }
  1256. }
  1257. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1258. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1259. goto fallback;
  1260. if (!skb_shift(prev, skb, len))
  1261. goto fallback;
  1262. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1263. goto out;
  1264. /* Hole filled allows collapsing with the next as well, this is very
  1265. * useful when hole on every nth skb pattern happens
  1266. */
  1267. if (prev == tcp_write_queue_tail(sk))
  1268. goto out;
  1269. skb = tcp_write_queue_next(sk, prev);
  1270. if (!skb_can_shift(skb) ||
  1271. (skb == tcp_send_head(sk)) ||
  1272. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1273. (mss != tcp_skb_seglen(skb)))
  1274. goto out;
  1275. len = skb->len;
  1276. if (skb_shift(prev, skb, len)) {
  1277. pcount += tcp_skb_pcount(skb);
  1278. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1279. }
  1280. out:
  1281. state->fack_count += pcount;
  1282. return prev;
  1283. noop:
  1284. return skb;
  1285. fallback:
  1286. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1287. return NULL;
  1288. }
  1289. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1290. struct tcp_sack_block *next_dup,
  1291. struct tcp_sacktag_state *state,
  1292. u32 start_seq, u32 end_seq,
  1293. bool dup_sack_in)
  1294. {
  1295. struct tcp_sock *tp = tcp_sk(sk);
  1296. struct sk_buff *tmp;
  1297. tcp_for_write_queue_from(skb, sk) {
  1298. int in_sack = 0;
  1299. bool dup_sack = dup_sack_in;
  1300. if (skb == tcp_send_head(sk))
  1301. break;
  1302. /* queue is in-order => we can short-circuit the walk early */
  1303. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1304. break;
  1305. if (next_dup &&
  1306. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1307. in_sack = tcp_match_skb_to_sack(sk, skb,
  1308. next_dup->start_seq,
  1309. next_dup->end_seq);
  1310. if (in_sack > 0)
  1311. dup_sack = true;
  1312. }
  1313. /* skb reference here is a bit tricky to get right, since
  1314. * shifting can eat and free both this skb and the next,
  1315. * so not even _safe variant of the loop is enough.
  1316. */
  1317. if (in_sack <= 0) {
  1318. tmp = tcp_shift_skb_data(sk, skb, state,
  1319. start_seq, end_seq, dup_sack);
  1320. if (tmp) {
  1321. if (tmp != skb) {
  1322. skb = tmp;
  1323. continue;
  1324. }
  1325. in_sack = 0;
  1326. } else {
  1327. in_sack = tcp_match_skb_to_sack(sk, skb,
  1328. start_seq,
  1329. end_seq);
  1330. }
  1331. }
  1332. if (unlikely(in_sack < 0))
  1333. break;
  1334. if (in_sack) {
  1335. TCP_SKB_CB(skb)->sacked =
  1336. tcp_sacktag_one(sk,
  1337. state,
  1338. TCP_SKB_CB(skb)->sacked,
  1339. TCP_SKB_CB(skb)->seq,
  1340. TCP_SKB_CB(skb)->end_seq,
  1341. dup_sack,
  1342. tcp_skb_pcount(skb),
  1343. &skb->skb_mstamp);
  1344. if (!before(TCP_SKB_CB(skb)->seq,
  1345. tcp_highest_sack_seq(tp)))
  1346. tcp_advance_highest_sack(sk, skb);
  1347. }
  1348. state->fack_count += tcp_skb_pcount(skb);
  1349. }
  1350. return skb;
  1351. }
  1352. /* Avoid all extra work that is being done by sacktag while walking in
  1353. * a normal way
  1354. */
  1355. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1356. struct tcp_sacktag_state *state,
  1357. u32 skip_to_seq)
  1358. {
  1359. tcp_for_write_queue_from(skb, sk) {
  1360. if (skb == tcp_send_head(sk))
  1361. break;
  1362. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1363. break;
  1364. state->fack_count += tcp_skb_pcount(skb);
  1365. }
  1366. return skb;
  1367. }
  1368. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1369. struct sock *sk,
  1370. struct tcp_sack_block *next_dup,
  1371. struct tcp_sacktag_state *state,
  1372. u32 skip_to_seq)
  1373. {
  1374. if (!next_dup)
  1375. return skb;
  1376. if (before(next_dup->start_seq, skip_to_seq)) {
  1377. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1378. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1379. next_dup->start_seq, next_dup->end_seq,
  1380. 1);
  1381. }
  1382. return skb;
  1383. }
  1384. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1385. {
  1386. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1387. }
  1388. static int
  1389. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1390. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1391. {
  1392. struct tcp_sock *tp = tcp_sk(sk);
  1393. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1394. TCP_SKB_CB(ack_skb)->sacked);
  1395. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1396. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1397. struct tcp_sack_block *cache;
  1398. struct sk_buff *skb;
  1399. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1400. int used_sacks;
  1401. bool found_dup_sack = false;
  1402. int i, j;
  1403. int first_sack_index;
  1404. state->flag = 0;
  1405. state->reord = tp->packets_out;
  1406. if (!tp->sacked_out) {
  1407. if (WARN_ON(tp->fackets_out))
  1408. tp->fackets_out = 0;
  1409. tcp_highest_sack_reset(sk);
  1410. }
  1411. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1412. num_sacks, prior_snd_una);
  1413. if (found_dup_sack)
  1414. state->flag |= FLAG_DSACKING_ACK;
  1415. /* Eliminate too old ACKs, but take into
  1416. * account more or less fresh ones, they can
  1417. * contain valid SACK info.
  1418. */
  1419. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1420. return 0;
  1421. if (!tp->packets_out)
  1422. goto out;
  1423. used_sacks = 0;
  1424. first_sack_index = 0;
  1425. for (i = 0; i < num_sacks; i++) {
  1426. bool dup_sack = !i && found_dup_sack;
  1427. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1428. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1429. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1430. sp[used_sacks].start_seq,
  1431. sp[used_sacks].end_seq)) {
  1432. int mib_idx;
  1433. if (dup_sack) {
  1434. if (!tp->undo_marker)
  1435. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1436. else
  1437. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1438. } else {
  1439. /* Don't count olds caused by ACK reordering */
  1440. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1441. !after(sp[used_sacks].end_seq, tp->snd_una))
  1442. continue;
  1443. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1444. }
  1445. NET_INC_STATS(sock_net(sk), mib_idx);
  1446. if (i == 0)
  1447. first_sack_index = -1;
  1448. continue;
  1449. }
  1450. /* Ignore very old stuff early */
  1451. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1452. continue;
  1453. used_sacks++;
  1454. }
  1455. /* order SACK blocks to allow in order walk of the retrans queue */
  1456. for (i = used_sacks - 1; i > 0; i--) {
  1457. for (j = 0; j < i; j++) {
  1458. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1459. swap(sp[j], sp[j + 1]);
  1460. /* Track where the first SACK block goes to */
  1461. if (j == first_sack_index)
  1462. first_sack_index = j + 1;
  1463. }
  1464. }
  1465. }
  1466. skb = tcp_write_queue_head(sk);
  1467. state->fack_count = 0;
  1468. i = 0;
  1469. if (!tp->sacked_out) {
  1470. /* It's already past, so skip checking against it */
  1471. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1472. } else {
  1473. cache = tp->recv_sack_cache;
  1474. /* Skip empty blocks in at head of the cache */
  1475. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1476. !cache->end_seq)
  1477. cache++;
  1478. }
  1479. while (i < used_sacks) {
  1480. u32 start_seq = sp[i].start_seq;
  1481. u32 end_seq = sp[i].end_seq;
  1482. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1483. struct tcp_sack_block *next_dup = NULL;
  1484. if (found_dup_sack && ((i + 1) == first_sack_index))
  1485. next_dup = &sp[i + 1];
  1486. /* Skip too early cached blocks */
  1487. while (tcp_sack_cache_ok(tp, cache) &&
  1488. !before(start_seq, cache->end_seq))
  1489. cache++;
  1490. /* Can skip some work by looking recv_sack_cache? */
  1491. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1492. after(end_seq, cache->start_seq)) {
  1493. /* Head todo? */
  1494. if (before(start_seq, cache->start_seq)) {
  1495. skb = tcp_sacktag_skip(skb, sk, state,
  1496. start_seq);
  1497. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1498. state,
  1499. start_seq,
  1500. cache->start_seq,
  1501. dup_sack);
  1502. }
  1503. /* Rest of the block already fully processed? */
  1504. if (!after(end_seq, cache->end_seq))
  1505. goto advance_sp;
  1506. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1507. state,
  1508. cache->end_seq);
  1509. /* ...tail remains todo... */
  1510. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1511. /* ...but better entrypoint exists! */
  1512. skb = tcp_highest_sack(sk);
  1513. if (!skb)
  1514. break;
  1515. state->fack_count = tp->fackets_out;
  1516. cache++;
  1517. goto walk;
  1518. }
  1519. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1520. /* Check overlap against next cached too (past this one already) */
  1521. cache++;
  1522. continue;
  1523. }
  1524. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1525. skb = tcp_highest_sack(sk);
  1526. if (!skb)
  1527. break;
  1528. state->fack_count = tp->fackets_out;
  1529. }
  1530. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1531. walk:
  1532. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1533. start_seq, end_seq, dup_sack);
  1534. advance_sp:
  1535. i++;
  1536. }
  1537. /* Clear the head of the cache sack blocks so we can skip it next time */
  1538. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1539. tp->recv_sack_cache[i].start_seq = 0;
  1540. tp->recv_sack_cache[i].end_seq = 0;
  1541. }
  1542. for (j = 0; j < used_sacks; j++)
  1543. tp->recv_sack_cache[i++] = sp[j];
  1544. if ((state->reord < tp->fackets_out) &&
  1545. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1546. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1547. tcp_verify_left_out(tp);
  1548. out:
  1549. #if FASTRETRANS_DEBUG > 0
  1550. WARN_ON((int)tp->sacked_out < 0);
  1551. WARN_ON((int)tp->lost_out < 0);
  1552. WARN_ON((int)tp->retrans_out < 0);
  1553. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1554. #endif
  1555. return state->flag;
  1556. }
  1557. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1558. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1559. */
  1560. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1561. {
  1562. u32 holes;
  1563. holes = max(tp->lost_out, 1U);
  1564. holes = min(holes, tp->packets_out);
  1565. if ((tp->sacked_out + holes) > tp->packets_out) {
  1566. tp->sacked_out = tp->packets_out - holes;
  1567. return true;
  1568. }
  1569. return false;
  1570. }
  1571. /* If we receive more dupacks than we expected counting segments
  1572. * in assumption of absent reordering, interpret this as reordering.
  1573. * The only another reason could be bug in receiver TCP.
  1574. */
  1575. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1576. {
  1577. struct tcp_sock *tp = tcp_sk(sk);
  1578. if (tcp_limit_reno_sacked(tp))
  1579. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1580. }
  1581. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1582. static void tcp_add_reno_sack(struct sock *sk)
  1583. {
  1584. struct tcp_sock *tp = tcp_sk(sk);
  1585. u32 prior_sacked = tp->sacked_out;
  1586. tp->sacked_out++;
  1587. tcp_check_reno_reordering(sk, 0);
  1588. if (tp->sacked_out > prior_sacked)
  1589. tp->delivered++; /* Some out-of-order packet is delivered */
  1590. tcp_verify_left_out(tp);
  1591. }
  1592. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1593. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1594. {
  1595. struct tcp_sock *tp = tcp_sk(sk);
  1596. if (acked > 0) {
  1597. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1598. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1599. if (acked - 1 >= tp->sacked_out)
  1600. tp->sacked_out = 0;
  1601. else
  1602. tp->sacked_out -= acked - 1;
  1603. }
  1604. tcp_check_reno_reordering(sk, acked);
  1605. tcp_verify_left_out(tp);
  1606. }
  1607. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1608. {
  1609. tp->sacked_out = 0;
  1610. }
  1611. void tcp_clear_retrans(struct tcp_sock *tp)
  1612. {
  1613. tp->retrans_out = 0;
  1614. tp->lost_out = 0;
  1615. tp->undo_marker = 0;
  1616. tp->undo_retrans = -1;
  1617. tp->fackets_out = 0;
  1618. tp->sacked_out = 0;
  1619. }
  1620. static inline void tcp_init_undo(struct tcp_sock *tp)
  1621. {
  1622. tp->undo_marker = tp->snd_una;
  1623. /* Retransmission still in flight may cause DSACKs later. */
  1624. tp->undo_retrans = tp->retrans_out ? : -1;
  1625. }
  1626. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1627. * and reset tags completely, otherwise preserve SACKs. If receiver
  1628. * dropped its ofo queue, we will know this due to reneging detection.
  1629. */
  1630. void tcp_enter_loss(struct sock *sk)
  1631. {
  1632. const struct inet_connection_sock *icsk = inet_csk(sk);
  1633. struct tcp_sock *tp = tcp_sk(sk);
  1634. struct net *net = sock_net(sk);
  1635. struct sk_buff *skb;
  1636. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1637. bool is_reneg; /* is receiver reneging on SACKs? */
  1638. /* Reduce ssthresh if it has not yet been made inside this window. */
  1639. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1640. !after(tp->high_seq, tp->snd_una) ||
  1641. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1642. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1643. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1644. tcp_ca_event(sk, CA_EVENT_LOSS);
  1645. tcp_init_undo(tp);
  1646. }
  1647. tp->snd_cwnd = 1;
  1648. tp->snd_cwnd_cnt = 0;
  1649. tp->snd_cwnd_stamp = tcp_time_stamp;
  1650. tp->retrans_out = 0;
  1651. tp->lost_out = 0;
  1652. if (tcp_is_reno(tp))
  1653. tcp_reset_reno_sack(tp);
  1654. skb = tcp_write_queue_head(sk);
  1655. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1656. if (is_reneg) {
  1657. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1658. tp->sacked_out = 0;
  1659. tp->fackets_out = 0;
  1660. }
  1661. tcp_clear_all_retrans_hints(tp);
  1662. tcp_for_write_queue(skb, sk) {
  1663. if (skb == tcp_send_head(sk))
  1664. break;
  1665. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1666. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
  1667. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1668. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1669. tp->lost_out += tcp_skb_pcount(skb);
  1670. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1671. }
  1672. }
  1673. tcp_verify_left_out(tp);
  1674. /* Timeout in disordered state after receiving substantial DUPACKs
  1675. * suggests that the degree of reordering is over-estimated.
  1676. */
  1677. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1678. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1679. tp->reordering = min_t(unsigned int, tp->reordering,
  1680. net->ipv4.sysctl_tcp_reordering);
  1681. tcp_set_ca_state(sk, TCP_CA_Loss);
  1682. tp->high_seq = tp->snd_nxt;
  1683. tcp_ecn_queue_cwr(tp);
  1684. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1685. * loss recovery is underway except recurring timeout(s) on
  1686. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1687. */
  1688. tp->frto = sysctl_tcp_frto &&
  1689. (new_recovery || icsk->icsk_retransmits) &&
  1690. !inet_csk(sk)->icsk_mtup.probe_size;
  1691. }
  1692. /* If ACK arrived pointing to a remembered SACK, it means that our
  1693. * remembered SACKs do not reflect real state of receiver i.e.
  1694. * receiver _host_ is heavily congested (or buggy).
  1695. *
  1696. * To avoid big spurious retransmission bursts due to transient SACK
  1697. * scoreboard oddities that look like reneging, we give the receiver a
  1698. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1699. * restore sanity to the SACK scoreboard. If the apparent reneging
  1700. * persists until this RTO then we'll clear the SACK scoreboard.
  1701. */
  1702. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1703. {
  1704. if (flag & FLAG_SACK_RENEGING) {
  1705. struct tcp_sock *tp = tcp_sk(sk);
  1706. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1707. msecs_to_jiffies(10));
  1708. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1709. delay, TCP_RTO_MAX);
  1710. return true;
  1711. }
  1712. return false;
  1713. }
  1714. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1715. {
  1716. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1717. }
  1718. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1719. * counter when SACK is enabled (without SACK, sacked_out is used for
  1720. * that purpose).
  1721. *
  1722. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1723. * segments up to the highest received SACK block so far and holes in
  1724. * between them.
  1725. *
  1726. * With reordering, holes may still be in flight, so RFC3517 recovery
  1727. * uses pure sacked_out (total number of SACKed segments) even though
  1728. * it violates the RFC that uses duplicate ACKs, often these are equal
  1729. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1730. * they differ. Since neither occurs due to loss, TCP should really
  1731. * ignore them.
  1732. */
  1733. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1734. {
  1735. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1736. }
  1737. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1738. {
  1739. struct tcp_sock *tp = tcp_sk(sk);
  1740. unsigned long delay;
  1741. /* Delay early retransmit and entering fast recovery for
  1742. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1743. * available, or RTO is scheduled to fire first.
  1744. */
  1745. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1746. (flag & FLAG_ECE) || !tp->srtt_us)
  1747. return false;
  1748. delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
  1749. msecs_to_jiffies(2));
  1750. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1751. return false;
  1752. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1753. TCP_RTO_MAX);
  1754. return true;
  1755. }
  1756. /* Linux NewReno/SACK/FACK/ECN state machine.
  1757. * --------------------------------------
  1758. *
  1759. * "Open" Normal state, no dubious events, fast path.
  1760. * "Disorder" In all the respects it is "Open",
  1761. * but requires a bit more attention. It is entered when
  1762. * we see some SACKs or dupacks. It is split of "Open"
  1763. * mainly to move some processing from fast path to slow one.
  1764. * "CWR" CWND was reduced due to some Congestion Notification event.
  1765. * It can be ECN, ICMP source quench, local device congestion.
  1766. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1767. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1768. *
  1769. * tcp_fastretrans_alert() is entered:
  1770. * - each incoming ACK, if state is not "Open"
  1771. * - when arrived ACK is unusual, namely:
  1772. * * SACK
  1773. * * Duplicate ACK.
  1774. * * ECN ECE.
  1775. *
  1776. * Counting packets in flight is pretty simple.
  1777. *
  1778. * in_flight = packets_out - left_out + retrans_out
  1779. *
  1780. * packets_out is SND.NXT-SND.UNA counted in packets.
  1781. *
  1782. * retrans_out is number of retransmitted segments.
  1783. *
  1784. * left_out is number of segments left network, but not ACKed yet.
  1785. *
  1786. * left_out = sacked_out + lost_out
  1787. *
  1788. * sacked_out: Packets, which arrived to receiver out of order
  1789. * and hence not ACKed. With SACKs this number is simply
  1790. * amount of SACKed data. Even without SACKs
  1791. * it is easy to give pretty reliable estimate of this number,
  1792. * counting duplicate ACKs.
  1793. *
  1794. * lost_out: Packets lost by network. TCP has no explicit
  1795. * "loss notification" feedback from network (for now).
  1796. * It means that this number can be only _guessed_.
  1797. * Actually, it is the heuristics to predict lossage that
  1798. * distinguishes different algorithms.
  1799. *
  1800. * F.e. after RTO, when all the queue is considered as lost,
  1801. * lost_out = packets_out and in_flight = retrans_out.
  1802. *
  1803. * Essentially, we have now two algorithms counting
  1804. * lost packets.
  1805. *
  1806. * FACK: It is the simplest heuristics. As soon as we decided
  1807. * that something is lost, we decide that _all_ not SACKed
  1808. * packets until the most forward SACK are lost. I.e.
  1809. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1810. * It is absolutely correct estimate, if network does not reorder
  1811. * packets. And it loses any connection to reality when reordering
  1812. * takes place. We use FACK by default until reordering
  1813. * is suspected on the path to this destination.
  1814. *
  1815. * NewReno: when Recovery is entered, we assume that one segment
  1816. * is lost (classic Reno). While we are in Recovery and
  1817. * a partial ACK arrives, we assume that one more packet
  1818. * is lost (NewReno). This heuristics are the same in NewReno
  1819. * and SACK.
  1820. *
  1821. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1822. * deflation etc. CWND is real congestion window, never inflated, changes
  1823. * only according to classic VJ rules.
  1824. *
  1825. * Really tricky (and requiring careful tuning) part of algorithm
  1826. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1827. * The first determines the moment _when_ we should reduce CWND and,
  1828. * hence, slow down forward transmission. In fact, it determines the moment
  1829. * when we decide that hole is caused by loss, rather than by a reorder.
  1830. *
  1831. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1832. * holes, caused by lost packets.
  1833. *
  1834. * And the most logically complicated part of algorithm is undo
  1835. * heuristics. We detect false retransmits due to both too early
  1836. * fast retransmit (reordering) and underestimated RTO, analyzing
  1837. * timestamps and D-SACKs. When we detect that some segments were
  1838. * retransmitted by mistake and CWND reduction was wrong, we undo
  1839. * window reduction and abort recovery phase. This logic is hidden
  1840. * inside several functions named tcp_try_undo_<something>.
  1841. */
  1842. /* This function decides, when we should leave Disordered state
  1843. * and enter Recovery phase, reducing congestion window.
  1844. *
  1845. * Main question: may we further continue forward transmission
  1846. * with the same cwnd?
  1847. */
  1848. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1849. {
  1850. struct tcp_sock *tp = tcp_sk(sk);
  1851. __u32 packets_out;
  1852. int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
  1853. /* Trick#1: The loss is proven. */
  1854. if (tp->lost_out)
  1855. return true;
  1856. /* Not-A-Trick#2 : Classic rule... */
  1857. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1858. return true;
  1859. /* Trick#4: It is still not OK... But will it be useful to delay
  1860. * recovery more?
  1861. */
  1862. packets_out = tp->packets_out;
  1863. if (packets_out <= tp->reordering &&
  1864. tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
  1865. !tcp_may_send_now(sk)) {
  1866. /* We have nothing to send. This connection is limited
  1867. * either by receiver window or by application.
  1868. */
  1869. return true;
  1870. }
  1871. /* If a thin stream is detected, retransmit after first
  1872. * received dupack. Employ only if SACK is supported in order
  1873. * to avoid possible corner-case series of spurious retransmissions
  1874. * Use only if there are no unsent data.
  1875. */
  1876. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1877. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1878. tcp_is_sack(tp) && !tcp_send_head(sk))
  1879. return true;
  1880. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1881. * retransmissions due to small network reorderings, we implement
  1882. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1883. * interval if appropriate.
  1884. */
  1885. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1886. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1887. !tcp_may_send_now(sk))
  1888. return !tcp_pause_early_retransmit(sk, flag);
  1889. return false;
  1890. }
  1891. /* Detect loss in event "A" above by marking head of queue up as lost.
  1892. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1893. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1894. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1895. * the maximum SACKed segments to pass before reaching this limit.
  1896. */
  1897. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1898. {
  1899. struct tcp_sock *tp = tcp_sk(sk);
  1900. struct sk_buff *skb;
  1901. int cnt, oldcnt, lost;
  1902. unsigned int mss;
  1903. /* Use SACK to deduce losses of new sequences sent during recovery */
  1904. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1905. WARN_ON(packets > tp->packets_out);
  1906. if (tp->lost_skb_hint) {
  1907. skb = tp->lost_skb_hint;
  1908. cnt = tp->lost_cnt_hint;
  1909. /* Head already handled? */
  1910. if (mark_head && skb != tcp_write_queue_head(sk))
  1911. return;
  1912. } else {
  1913. skb = tcp_write_queue_head(sk);
  1914. cnt = 0;
  1915. }
  1916. tcp_for_write_queue_from(skb, sk) {
  1917. if (skb == tcp_send_head(sk))
  1918. break;
  1919. /* TODO: do this better */
  1920. /* this is not the most efficient way to do this... */
  1921. tp->lost_skb_hint = skb;
  1922. tp->lost_cnt_hint = cnt;
  1923. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1924. break;
  1925. oldcnt = cnt;
  1926. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1927. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1928. cnt += tcp_skb_pcount(skb);
  1929. if (cnt > packets) {
  1930. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1931. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1932. (oldcnt >= packets))
  1933. break;
  1934. mss = tcp_skb_mss(skb);
  1935. /* If needed, chop off the prefix to mark as lost. */
  1936. lost = (packets - oldcnt) * mss;
  1937. if (lost < skb->len &&
  1938. tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
  1939. break;
  1940. cnt = packets;
  1941. }
  1942. tcp_skb_mark_lost(tp, skb);
  1943. if (mark_head)
  1944. break;
  1945. }
  1946. tcp_verify_left_out(tp);
  1947. }
  1948. /* Account newly detected lost packet(s) */
  1949. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1950. {
  1951. struct tcp_sock *tp = tcp_sk(sk);
  1952. if (tcp_is_reno(tp)) {
  1953. tcp_mark_head_lost(sk, 1, 1);
  1954. } else if (tcp_is_fack(tp)) {
  1955. int lost = tp->fackets_out - tp->reordering;
  1956. if (lost <= 0)
  1957. lost = 1;
  1958. tcp_mark_head_lost(sk, lost, 0);
  1959. } else {
  1960. int sacked_upto = tp->sacked_out - tp->reordering;
  1961. if (sacked_upto >= 0)
  1962. tcp_mark_head_lost(sk, sacked_upto, 0);
  1963. else if (fast_rexmit)
  1964. tcp_mark_head_lost(sk, 1, 1);
  1965. }
  1966. }
  1967. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  1968. {
  1969. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1970. before(tp->rx_opt.rcv_tsecr, when);
  1971. }
  1972. /* skb is spurious retransmitted if the returned timestamp echo
  1973. * reply is prior to the skb transmission time
  1974. */
  1975. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  1976. const struct sk_buff *skb)
  1977. {
  1978. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  1979. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  1980. }
  1981. /* Nothing was retransmitted or returned timestamp is less
  1982. * than timestamp of the first retransmission.
  1983. */
  1984. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1985. {
  1986. return !tp->retrans_stamp ||
  1987. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  1988. }
  1989. /* Undo procedures. */
  1990. /* We can clear retrans_stamp when there are no retransmissions in the
  1991. * window. It would seem that it is trivially available for us in
  1992. * tp->retrans_out, however, that kind of assumptions doesn't consider
  1993. * what will happen if errors occur when sending retransmission for the
  1994. * second time. ...It could the that such segment has only
  1995. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  1996. * the head skb is enough except for some reneging corner cases that
  1997. * are not worth the effort.
  1998. *
  1999. * Main reason for all this complexity is the fact that connection dying
  2000. * time now depends on the validity of the retrans_stamp, in particular,
  2001. * that successive retransmissions of a segment must not advance
  2002. * retrans_stamp under any conditions.
  2003. */
  2004. static bool tcp_any_retrans_done(const struct sock *sk)
  2005. {
  2006. const struct tcp_sock *tp = tcp_sk(sk);
  2007. struct sk_buff *skb;
  2008. if (tp->retrans_out)
  2009. return true;
  2010. skb = tcp_write_queue_head(sk);
  2011. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2012. return true;
  2013. return false;
  2014. }
  2015. #if FASTRETRANS_DEBUG > 1
  2016. static void DBGUNDO(struct sock *sk, const char *msg)
  2017. {
  2018. struct tcp_sock *tp = tcp_sk(sk);
  2019. struct inet_sock *inet = inet_sk(sk);
  2020. if (sk->sk_family == AF_INET) {
  2021. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2022. msg,
  2023. &inet->inet_daddr, ntohs(inet->inet_dport),
  2024. tp->snd_cwnd, tcp_left_out(tp),
  2025. tp->snd_ssthresh, tp->prior_ssthresh,
  2026. tp->packets_out);
  2027. }
  2028. #if IS_ENABLED(CONFIG_IPV6)
  2029. else if (sk->sk_family == AF_INET6) {
  2030. struct ipv6_pinfo *np = inet6_sk(sk);
  2031. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2032. msg,
  2033. &np->daddr, ntohs(inet->inet_dport),
  2034. tp->snd_cwnd, tcp_left_out(tp),
  2035. tp->snd_ssthresh, tp->prior_ssthresh,
  2036. tp->packets_out);
  2037. }
  2038. #endif
  2039. }
  2040. #else
  2041. #define DBGUNDO(x...) do { } while (0)
  2042. #endif
  2043. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2044. {
  2045. struct tcp_sock *tp = tcp_sk(sk);
  2046. if (unmark_loss) {
  2047. struct sk_buff *skb;
  2048. tcp_for_write_queue(skb, sk) {
  2049. if (skb == tcp_send_head(sk))
  2050. break;
  2051. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2052. }
  2053. tp->lost_out = 0;
  2054. tcp_clear_all_retrans_hints(tp);
  2055. }
  2056. if (tp->prior_ssthresh) {
  2057. const struct inet_connection_sock *icsk = inet_csk(sk);
  2058. if (icsk->icsk_ca_ops->undo_cwnd)
  2059. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2060. else
  2061. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2062. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2063. tp->snd_ssthresh = tp->prior_ssthresh;
  2064. tcp_ecn_withdraw_cwr(tp);
  2065. }
  2066. }
  2067. tp->snd_cwnd_stamp = tcp_time_stamp;
  2068. tp->undo_marker = 0;
  2069. }
  2070. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2071. {
  2072. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2073. }
  2074. /* People celebrate: "We love our President!" */
  2075. static bool tcp_try_undo_recovery(struct sock *sk)
  2076. {
  2077. struct tcp_sock *tp = tcp_sk(sk);
  2078. if (tcp_may_undo(tp)) {
  2079. int mib_idx;
  2080. /* Happy end! We did not retransmit anything
  2081. * or our original transmission succeeded.
  2082. */
  2083. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2084. tcp_undo_cwnd_reduction(sk, false);
  2085. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2086. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2087. else
  2088. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2089. NET_INC_STATS(sock_net(sk), mib_idx);
  2090. }
  2091. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2092. /* Hold old state until something *above* high_seq
  2093. * is ACKed. For Reno it is MUST to prevent false
  2094. * fast retransmits (RFC2582). SACK TCP is safe. */
  2095. if (!tcp_any_retrans_done(sk))
  2096. tp->retrans_stamp = 0;
  2097. return true;
  2098. }
  2099. tcp_set_ca_state(sk, TCP_CA_Open);
  2100. return false;
  2101. }
  2102. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2103. static bool tcp_try_undo_dsack(struct sock *sk)
  2104. {
  2105. struct tcp_sock *tp = tcp_sk(sk);
  2106. if (tp->undo_marker && !tp->undo_retrans) {
  2107. DBGUNDO(sk, "D-SACK");
  2108. tcp_undo_cwnd_reduction(sk, false);
  2109. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2110. return true;
  2111. }
  2112. return false;
  2113. }
  2114. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2115. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2116. {
  2117. struct tcp_sock *tp = tcp_sk(sk);
  2118. if (frto_undo || tcp_may_undo(tp)) {
  2119. tcp_undo_cwnd_reduction(sk, true);
  2120. DBGUNDO(sk, "partial loss");
  2121. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2122. if (frto_undo)
  2123. NET_INC_STATS(sock_net(sk),
  2124. LINUX_MIB_TCPSPURIOUSRTOS);
  2125. inet_csk(sk)->icsk_retransmits = 0;
  2126. if (frto_undo || tcp_is_sack(tp))
  2127. tcp_set_ca_state(sk, TCP_CA_Open);
  2128. return true;
  2129. }
  2130. return false;
  2131. }
  2132. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2133. * It computes the number of packets to send (sndcnt) based on packets newly
  2134. * delivered:
  2135. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2136. * cwnd reductions across a full RTT.
  2137. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2138. * But when the retransmits are acked without further losses, PRR
  2139. * slow starts cwnd up to ssthresh to speed up the recovery.
  2140. */
  2141. static void tcp_init_cwnd_reduction(struct sock *sk)
  2142. {
  2143. struct tcp_sock *tp = tcp_sk(sk);
  2144. tp->high_seq = tp->snd_nxt;
  2145. tp->tlp_high_seq = 0;
  2146. tp->snd_cwnd_cnt = 0;
  2147. tp->prior_cwnd = tp->snd_cwnd;
  2148. tp->prr_delivered = 0;
  2149. tp->prr_out = 0;
  2150. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2151. tcp_ecn_queue_cwr(tp);
  2152. }
  2153. static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
  2154. int flag)
  2155. {
  2156. struct tcp_sock *tp = tcp_sk(sk);
  2157. int sndcnt = 0;
  2158. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2159. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2160. return;
  2161. tp->prr_delivered += newly_acked_sacked;
  2162. if (delta < 0) {
  2163. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2164. tp->prior_cwnd - 1;
  2165. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2166. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2167. !(flag & FLAG_LOST_RETRANS)) {
  2168. sndcnt = min_t(int, delta,
  2169. max_t(int, tp->prr_delivered - tp->prr_out,
  2170. newly_acked_sacked) + 1);
  2171. } else {
  2172. sndcnt = min(delta, newly_acked_sacked);
  2173. }
  2174. /* Force a fast retransmit upon entering fast recovery */
  2175. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2176. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2177. }
  2178. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2179. {
  2180. struct tcp_sock *tp = tcp_sk(sk);
  2181. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2182. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2183. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2184. tp->snd_cwnd = tp->snd_ssthresh;
  2185. tp->snd_cwnd_stamp = tcp_time_stamp;
  2186. }
  2187. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2188. }
  2189. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2190. void tcp_enter_cwr(struct sock *sk)
  2191. {
  2192. struct tcp_sock *tp = tcp_sk(sk);
  2193. tp->prior_ssthresh = 0;
  2194. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2195. tp->undo_marker = 0;
  2196. tcp_init_cwnd_reduction(sk);
  2197. tcp_set_ca_state(sk, TCP_CA_CWR);
  2198. }
  2199. }
  2200. EXPORT_SYMBOL(tcp_enter_cwr);
  2201. static void tcp_try_keep_open(struct sock *sk)
  2202. {
  2203. struct tcp_sock *tp = tcp_sk(sk);
  2204. int state = TCP_CA_Open;
  2205. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2206. state = TCP_CA_Disorder;
  2207. if (inet_csk(sk)->icsk_ca_state != state) {
  2208. tcp_set_ca_state(sk, state);
  2209. tp->high_seq = tp->snd_nxt;
  2210. }
  2211. }
  2212. static void tcp_try_to_open(struct sock *sk, int flag)
  2213. {
  2214. struct tcp_sock *tp = tcp_sk(sk);
  2215. tcp_verify_left_out(tp);
  2216. if (!tcp_any_retrans_done(sk))
  2217. tp->retrans_stamp = 0;
  2218. if (flag & FLAG_ECE)
  2219. tcp_enter_cwr(sk);
  2220. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2221. tcp_try_keep_open(sk);
  2222. }
  2223. }
  2224. static void tcp_mtup_probe_failed(struct sock *sk)
  2225. {
  2226. struct inet_connection_sock *icsk = inet_csk(sk);
  2227. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2228. icsk->icsk_mtup.probe_size = 0;
  2229. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2230. }
  2231. static void tcp_mtup_probe_success(struct sock *sk)
  2232. {
  2233. struct tcp_sock *tp = tcp_sk(sk);
  2234. struct inet_connection_sock *icsk = inet_csk(sk);
  2235. /* FIXME: breaks with very large cwnd */
  2236. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2237. tp->snd_cwnd = tp->snd_cwnd *
  2238. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2239. icsk->icsk_mtup.probe_size;
  2240. tp->snd_cwnd_cnt = 0;
  2241. tp->snd_cwnd_stamp = tcp_time_stamp;
  2242. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2243. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2244. icsk->icsk_mtup.probe_size = 0;
  2245. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2246. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2247. }
  2248. /* Do a simple retransmit without using the backoff mechanisms in
  2249. * tcp_timer. This is used for path mtu discovery.
  2250. * The socket is already locked here.
  2251. */
  2252. void tcp_simple_retransmit(struct sock *sk)
  2253. {
  2254. const struct inet_connection_sock *icsk = inet_csk(sk);
  2255. struct tcp_sock *tp = tcp_sk(sk);
  2256. struct sk_buff *skb;
  2257. unsigned int mss = tcp_current_mss(sk);
  2258. u32 prior_lost = tp->lost_out;
  2259. tcp_for_write_queue(skb, sk) {
  2260. if (skb == tcp_send_head(sk))
  2261. break;
  2262. if (tcp_skb_seglen(skb) > mss &&
  2263. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2264. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2265. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2266. tp->retrans_out -= tcp_skb_pcount(skb);
  2267. }
  2268. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2269. }
  2270. }
  2271. tcp_clear_retrans_hints_partial(tp);
  2272. if (prior_lost == tp->lost_out)
  2273. return;
  2274. if (tcp_is_reno(tp))
  2275. tcp_limit_reno_sacked(tp);
  2276. tcp_verify_left_out(tp);
  2277. /* Don't muck with the congestion window here.
  2278. * Reason is that we do not increase amount of _data_
  2279. * in network, but units changed and effective
  2280. * cwnd/ssthresh really reduced now.
  2281. */
  2282. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2283. tp->high_seq = tp->snd_nxt;
  2284. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2285. tp->prior_ssthresh = 0;
  2286. tp->undo_marker = 0;
  2287. tcp_set_ca_state(sk, TCP_CA_Loss);
  2288. }
  2289. tcp_xmit_retransmit_queue(sk);
  2290. }
  2291. EXPORT_SYMBOL(tcp_simple_retransmit);
  2292. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2293. {
  2294. struct tcp_sock *tp = tcp_sk(sk);
  2295. int mib_idx;
  2296. if (tcp_is_reno(tp))
  2297. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2298. else
  2299. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2300. NET_INC_STATS(sock_net(sk), mib_idx);
  2301. tp->prior_ssthresh = 0;
  2302. tcp_init_undo(tp);
  2303. if (!tcp_in_cwnd_reduction(sk)) {
  2304. if (!ece_ack)
  2305. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2306. tcp_init_cwnd_reduction(sk);
  2307. }
  2308. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2309. }
  2310. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2311. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2312. */
  2313. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2314. int *rexmit)
  2315. {
  2316. struct tcp_sock *tp = tcp_sk(sk);
  2317. bool recovered = !before(tp->snd_una, tp->high_seq);
  2318. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2319. tcp_try_undo_loss(sk, false))
  2320. return;
  2321. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2322. /* Step 3.b. A timeout is spurious if not all data are
  2323. * lost, i.e., never-retransmitted data are (s)acked.
  2324. */
  2325. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2326. tcp_try_undo_loss(sk, true))
  2327. return;
  2328. if (after(tp->snd_nxt, tp->high_seq)) {
  2329. if (flag & FLAG_DATA_SACKED || is_dupack)
  2330. tp->frto = 0; /* Step 3.a. loss was real */
  2331. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2332. tp->high_seq = tp->snd_nxt;
  2333. /* Step 2.b. Try send new data (but deferred until cwnd
  2334. * is updated in tcp_ack()). Otherwise fall back to
  2335. * the conventional recovery.
  2336. */
  2337. if (tcp_send_head(sk) &&
  2338. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2339. *rexmit = REXMIT_NEW;
  2340. return;
  2341. }
  2342. tp->frto = 0;
  2343. }
  2344. }
  2345. if (recovered) {
  2346. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2347. tcp_try_undo_recovery(sk);
  2348. return;
  2349. }
  2350. if (tcp_is_reno(tp)) {
  2351. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2352. * delivered. Lower inflight to clock out (re)tranmissions.
  2353. */
  2354. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2355. tcp_add_reno_sack(sk);
  2356. else if (flag & FLAG_SND_UNA_ADVANCED)
  2357. tcp_reset_reno_sack(tp);
  2358. }
  2359. *rexmit = REXMIT_LOST;
  2360. }
  2361. /* Undo during fast recovery after partial ACK. */
  2362. static bool tcp_try_undo_partial(struct sock *sk, const int acked)
  2363. {
  2364. struct tcp_sock *tp = tcp_sk(sk);
  2365. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2366. /* Plain luck! Hole if filled with delayed
  2367. * packet, rather than with a retransmit.
  2368. */
  2369. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2370. /* We are getting evidence that the reordering degree is higher
  2371. * than we realized. If there are no retransmits out then we
  2372. * can undo. Otherwise we clock out new packets but do not
  2373. * mark more packets lost or retransmit more.
  2374. */
  2375. if (tp->retrans_out)
  2376. return true;
  2377. if (!tcp_any_retrans_done(sk))
  2378. tp->retrans_stamp = 0;
  2379. DBGUNDO(sk, "partial recovery");
  2380. tcp_undo_cwnd_reduction(sk, true);
  2381. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2382. tcp_try_keep_open(sk);
  2383. return true;
  2384. }
  2385. return false;
  2386. }
  2387. /* Process an event, which can update packets-in-flight not trivially.
  2388. * Main goal of this function is to calculate new estimate for left_out,
  2389. * taking into account both packets sitting in receiver's buffer and
  2390. * packets lost by network.
  2391. *
  2392. * Besides that it updates the congestion state when packet loss or ECN
  2393. * is detected. But it does not reduce the cwnd, it is done by the
  2394. * congestion control later.
  2395. *
  2396. * It does _not_ decide what to send, it is made in function
  2397. * tcp_xmit_retransmit_queue().
  2398. */
  2399. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2400. bool is_dupack, int *ack_flag, int *rexmit)
  2401. {
  2402. struct inet_connection_sock *icsk = inet_csk(sk);
  2403. struct tcp_sock *tp = tcp_sk(sk);
  2404. int fast_rexmit = 0, flag = *ack_flag;
  2405. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2406. (tcp_fackets_out(tp) > tp->reordering));
  2407. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2408. tp->sacked_out = 0;
  2409. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2410. tp->fackets_out = 0;
  2411. /* Now state machine starts.
  2412. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2413. if (flag & FLAG_ECE)
  2414. tp->prior_ssthresh = 0;
  2415. /* B. In all the states check for reneging SACKs. */
  2416. if (tcp_check_sack_reneging(sk, flag))
  2417. return;
  2418. /* C. Check consistency of the current state. */
  2419. tcp_verify_left_out(tp);
  2420. /* D. Check state exit conditions. State can be terminated
  2421. * when high_seq is ACKed. */
  2422. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2423. WARN_ON(tp->retrans_out != 0);
  2424. tp->retrans_stamp = 0;
  2425. } else if (!before(tp->snd_una, tp->high_seq)) {
  2426. switch (icsk->icsk_ca_state) {
  2427. case TCP_CA_CWR:
  2428. /* CWR is to be held something *above* high_seq
  2429. * is ACKed for CWR bit to reach receiver. */
  2430. if (tp->snd_una != tp->high_seq) {
  2431. tcp_end_cwnd_reduction(sk);
  2432. tcp_set_ca_state(sk, TCP_CA_Open);
  2433. }
  2434. break;
  2435. case TCP_CA_Recovery:
  2436. if (tcp_is_reno(tp))
  2437. tcp_reset_reno_sack(tp);
  2438. if (tcp_try_undo_recovery(sk))
  2439. return;
  2440. tcp_end_cwnd_reduction(sk);
  2441. break;
  2442. }
  2443. }
  2444. /* Use RACK to detect loss */
  2445. if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
  2446. tcp_rack_mark_lost(sk)) {
  2447. flag |= FLAG_LOST_RETRANS;
  2448. *ack_flag |= FLAG_LOST_RETRANS;
  2449. }
  2450. /* E. Process state. */
  2451. switch (icsk->icsk_ca_state) {
  2452. case TCP_CA_Recovery:
  2453. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2454. if (tcp_is_reno(tp) && is_dupack)
  2455. tcp_add_reno_sack(sk);
  2456. } else {
  2457. if (tcp_try_undo_partial(sk, acked))
  2458. return;
  2459. /* Partial ACK arrived. Force fast retransmit. */
  2460. do_lost = tcp_is_reno(tp) ||
  2461. tcp_fackets_out(tp) > tp->reordering;
  2462. }
  2463. if (tcp_try_undo_dsack(sk)) {
  2464. tcp_try_keep_open(sk);
  2465. return;
  2466. }
  2467. break;
  2468. case TCP_CA_Loss:
  2469. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2470. if (icsk->icsk_ca_state != TCP_CA_Open &&
  2471. !(flag & FLAG_LOST_RETRANS))
  2472. return;
  2473. /* Change state if cwnd is undone or retransmits are lost */
  2474. default:
  2475. if (tcp_is_reno(tp)) {
  2476. if (flag & FLAG_SND_UNA_ADVANCED)
  2477. tcp_reset_reno_sack(tp);
  2478. if (is_dupack)
  2479. tcp_add_reno_sack(sk);
  2480. }
  2481. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2482. tcp_try_undo_dsack(sk);
  2483. if (!tcp_time_to_recover(sk, flag)) {
  2484. tcp_try_to_open(sk, flag);
  2485. return;
  2486. }
  2487. /* MTU probe failure: don't reduce cwnd */
  2488. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2489. icsk->icsk_mtup.probe_size &&
  2490. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2491. tcp_mtup_probe_failed(sk);
  2492. /* Restores the reduction we did in tcp_mtup_probe() */
  2493. tp->snd_cwnd++;
  2494. tcp_simple_retransmit(sk);
  2495. return;
  2496. }
  2497. /* Otherwise enter Recovery state */
  2498. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2499. fast_rexmit = 1;
  2500. }
  2501. if (do_lost)
  2502. tcp_update_scoreboard(sk, fast_rexmit);
  2503. *rexmit = REXMIT_LOST;
  2504. }
  2505. /* Kathleen Nichols' algorithm for tracking the minimum value of
  2506. * a data stream over some fixed time interval. (E.g., the minimum
  2507. * RTT over the past five minutes.) It uses constant space and constant
  2508. * time per update yet almost always delivers the same minimum as an
  2509. * implementation that has to keep all the data in the window.
  2510. *
  2511. * The algorithm keeps track of the best, 2nd best & 3rd best min
  2512. * values, maintaining an invariant that the measurement time of the
  2513. * n'th best >= n-1'th best. It also makes sure that the three values
  2514. * are widely separated in the time window since that bounds the worse
  2515. * case error when that data is monotonically increasing over the window.
  2516. *
  2517. * Upon getting a new min, we can forget everything earlier because it
  2518. * has no value - the new min is <= everything else in the window by
  2519. * definition and it's the most recent. So we restart fresh on every new min
  2520. * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
  2521. * best.
  2522. */
  2523. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2524. {
  2525. const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
  2526. struct rtt_meas *m = tcp_sk(sk)->rtt_min;
  2527. struct rtt_meas rttm = {
  2528. .rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
  2529. .ts = now,
  2530. };
  2531. u32 elapsed;
  2532. /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
  2533. if (unlikely(rttm.rtt <= m[0].rtt))
  2534. m[0] = m[1] = m[2] = rttm;
  2535. else if (rttm.rtt <= m[1].rtt)
  2536. m[1] = m[2] = rttm;
  2537. else if (rttm.rtt <= m[2].rtt)
  2538. m[2] = rttm;
  2539. elapsed = now - m[0].ts;
  2540. if (unlikely(elapsed > wlen)) {
  2541. /* Passed entire window without a new min so make 2nd choice
  2542. * the new min & 3rd choice the new 2nd. So forth and so on.
  2543. */
  2544. m[0] = m[1];
  2545. m[1] = m[2];
  2546. m[2] = rttm;
  2547. if (now - m[0].ts > wlen) {
  2548. m[0] = m[1];
  2549. m[1] = rttm;
  2550. if (now - m[0].ts > wlen)
  2551. m[0] = rttm;
  2552. }
  2553. } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
  2554. /* Passed a quarter of the window without a new min so
  2555. * take 2nd choice from the 2nd quarter of the window.
  2556. */
  2557. m[2] = m[1] = rttm;
  2558. } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
  2559. /* Passed half the window without a new min so take the 3rd
  2560. * choice from the last half of the window.
  2561. */
  2562. m[2] = rttm;
  2563. }
  2564. }
  2565. static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2566. long seq_rtt_us, long sack_rtt_us,
  2567. long ca_rtt_us)
  2568. {
  2569. const struct tcp_sock *tp = tcp_sk(sk);
  2570. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2571. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2572. * Karn's algorithm forbids taking RTT if some retransmitted data
  2573. * is acked (RFC6298).
  2574. */
  2575. if (seq_rtt_us < 0)
  2576. seq_rtt_us = sack_rtt_us;
  2577. /* RTTM Rule: A TSecr value received in a segment is used to
  2578. * update the averaged RTT measurement only if the segment
  2579. * acknowledges some new data, i.e., only if it advances the
  2580. * left edge of the send window.
  2581. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2582. */
  2583. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2584. flag & FLAG_ACKED)
  2585. seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
  2586. tp->rx_opt.rcv_tsecr);
  2587. if (seq_rtt_us < 0)
  2588. return false;
  2589. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2590. * always taken together with ACK, SACK, or TS-opts. Any negative
  2591. * values will be skipped with the seq_rtt_us < 0 check above.
  2592. */
  2593. tcp_update_rtt_min(sk, ca_rtt_us);
  2594. tcp_rtt_estimator(sk, seq_rtt_us);
  2595. tcp_set_rto(sk);
  2596. /* RFC6298: only reset backoff on valid RTT measurement. */
  2597. inet_csk(sk)->icsk_backoff = 0;
  2598. return true;
  2599. }
  2600. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2601. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2602. {
  2603. long rtt_us = -1L;
  2604. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
  2605. struct skb_mstamp now;
  2606. skb_mstamp_get(&now);
  2607. rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
  2608. }
  2609. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
  2610. }
  2611. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2612. {
  2613. const struct inet_connection_sock *icsk = inet_csk(sk);
  2614. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2615. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2616. }
  2617. /* Restart timer after forward progress on connection.
  2618. * RFC2988 recommends to restart timer to now+rto.
  2619. */
  2620. void tcp_rearm_rto(struct sock *sk)
  2621. {
  2622. const struct inet_connection_sock *icsk = inet_csk(sk);
  2623. struct tcp_sock *tp = tcp_sk(sk);
  2624. /* If the retrans timer is currently being used by Fast Open
  2625. * for SYN-ACK retrans purpose, stay put.
  2626. */
  2627. if (tp->fastopen_rsk)
  2628. return;
  2629. if (!tp->packets_out) {
  2630. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2631. } else {
  2632. u32 rto = inet_csk(sk)->icsk_rto;
  2633. /* Offset the time elapsed after installing regular RTO */
  2634. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2635. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2636. struct sk_buff *skb = tcp_write_queue_head(sk);
  2637. const u32 rto_time_stamp =
  2638. tcp_skb_timestamp(skb) + rto;
  2639. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2640. /* delta may not be positive if the socket is locked
  2641. * when the retrans timer fires and is rescheduled.
  2642. */
  2643. if (delta > 0)
  2644. rto = delta;
  2645. }
  2646. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2647. TCP_RTO_MAX);
  2648. }
  2649. }
  2650. /* This function is called when the delayed ER timer fires. TCP enters
  2651. * fast recovery and performs fast-retransmit.
  2652. */
  2653. void tcp_resume_early_retransmit(struct sock *sk)
  2654. {
  2655. struct tcp_sock *tp = tcp_sk(sk);
  2656. tcp_rearm_rto(sk);
  2657. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2658. if (!tp->do_early_retrans)
  2659. return;
  2660. tcp_enter_recovery(sk, false);
  2661. tcp_update_scoreboard(sk, 1);
  2662. tcp_xmit_retransmit_queue(sk);
  2663. }
  2664. /* If we get here, the whole TSO packet has not been acked. */
  2665. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2666. {
  2667. struct tcp_sock *tp = tcp_sk(sk);
  2668. u32 packets_acked;
  2669. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2670. packets_acked = tcp_skb_pcount(skb);
  2671. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2672. return 0;
  2673. packets_acked -= tcp_skb_pcount(skb);
  2674. if (packets_acked) {
  2675. BUG_ON(tcp_skb_pcount(skb) == 0);
  2676. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2677. }
  2678. return packets_acked;
  2679. }
  2680. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2681. u32 prior_snd_una)
  2682. {
  2683. const struct skb_shared_info *shinfo;
  2684. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2685. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2686. return;
  2687. shinfo = skb_shinfo(skb);
  2688. if (!before(shinfo->tskey, prior_snd_una) &&
  2689. before(shinfo->tskey, tcp_sk(sk)->snd_una))
  2690. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2691. }
  2692. /* Remove acknowledged frames from the retransmission queue. If our packet
  2693. * is before the ack sequence we can discard it as it's confirmed to have
  2694. * arrived at the other end.
  2695. */
  2696. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2697. u32 prior_snd_una, int *acked,
  2698. struct tcp_sacktag_state *sack)
  2699. {
  2700. const struct inet_connection_sock *icsk = inet_csk(sk);
  2701. struct skb_mstamp first_ackt, last_ackt, now;
  2702. struct tcp_sock *tp = tcp_sk(sk);
  2703. u32 prior_sacked = tp->sacked_out;
  2704. u32 reord = tp->packets_out;
  2705. bool fully_acked = true;
  2706. long sack_rtt_us = -1L;
  2707. long seq_rtt_us = -1L;
  2708. long ca_rtt_us = -1L;
  2709. struct sk_buff *skb;
  2710. u32 pkts_acked = 0;
  2711. bool rtt_update;
  2712. int flag = 0;
  2713. first_ackt.v64 = 0;
  2714. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2715. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2716. u8 sacked = scb->sacked;
  2717. u32 acked_pcount;
  2718. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2719. /* Determine how many packets and what bytes were acked, tso and else */
  2720. if (after(scb->end_seq, tp->snd_una)) {
  2721. if (tcp_skb_pcount(skb) == 1 ||
  2722. !after(tp->snd_una, scb->seq))
  2723. break;
  2724. acked_pcount = tcp_tso_acked(sk, skb);
  2725. if (!acked_pcount)
  2726. break;
  2727. fully_acked = false;
  2728. } else {
  2729. /* Speedup tcp_unlink_write_queue() and next loop */
  2730. prefetchw(skb->next);
  2731. acked_pcount = tcp_skb_pcount(skb);
  2732. }
  2733. if (unlikely(sacked & TCPCB_RETRANS)) {
  2734. if (sacked & TCPCB_SACKED_RETRANS)
  2735. tp->retrans_out -= acked_pcount;
  2736. flag |= FLAG_RETRANS_DATA_ACKED;
  2737. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2738. last_ackt = skb->skb_mstamp;
  2739. WARN_ON_ONCE(last_ackt.v64 == 0);
  2740. if (!first_ackt.v64)
  2741. first_ackt = last_ackt;
  2742. reord = min(pkts_acked, reord);
  2743. if (!after(scb->end_seq, tp->high_seq))
  2744. flag |= FLAG_ORIG_SACK_ACKED;
  2745. }
  2746. if (sacked & TCPCB_SACKED_ACKED) {
  2747. tp->sacked_out -= acked_pcount;
  2748. } else if (tcp_is_sack(tp)) {
  2749. tp->delivered += acked_pcount;
  2750. if (!tcp_skb_spurious_retrans(tp, skb))
  2751. tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
  2752. }
  2753. if (sacked & TCPCB_LOST)
  2754. tp->lost_out -= acked_pcount;
  2755. tp->packets_out -= acked_pcount;
  2756. pkts_acked += acked_pcount;
  2757. /* Initial outgoing SYN's get put onto the write_queue
  2758. * just like anything else we transmit. It is not
  2759. * true data, and if we misinform our callers that
  2760. * this ACK acks real data, we will erroneously exit
  2761. * connection startup slow start one packet too
  2762. * quickly. This is severely frowned upon behavior.
  2763. */
  2764. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2765. flag |= FLAG_DATA_ACKED;
  2766. } else {
  2767. flag |= FLAG_SYN_ACKED;
  2768. tp->retrans_stamp = 0;
  2769. }
  2770. if (!fully_acked)
  2771. break;
  2772. tcp_unlink_write_queue(skb, sk);
  2773. sk_wmem_free_skb(sk, skb);
  2774. if (unlikely(skb == tp->retransmit_skb_hint))
  2775. tp->retransmit_skb_hint = NULL;
  2776. if (unlikely(skb == tp->lost_skb_hint))
  2777. tp->lost_skb_hint = NULL;
  2778. }
  2779. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2780. tp->snd_up = tp->snd_una;
  2781. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2782. flag |= FLAG_SACK_RENEGING;
  2783. skb_mstamp_get(&now);
  2784. if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2785. seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
  2786. ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
  2787. }
  2788. if (sack->first_sackt.v64) {
  2789. sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
  2790. ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
  2791. }
  2792. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2793. ca_rtt_us);
  2794. if (flag & FLAG_ACKED) {
  2795. tcp_rearm_rto(sk);
  2796. if (unlikely(icsk->icsk_mtup.probe_size &&
  2797. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2798. tcp_mtup_probe_success(sk);
  2799. }
  2800. if (tcp_is_reno(tp)) {
  2801. tcp_remove_reno_sacks(sk, pkts_acked);
  2802. } else {
  2803. int delta;
  2804. /* Non-retransmitted hole got filled? That's reordering */
  2805. if (reord < prior_fackets)
  2806. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2807. delta = tcp_is_fack(tp) ? pkts_acked :
  2808. prior_sacked - tp->sacked_out;
  2809. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2810. }
  2811. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2812. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2813. sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
  2814. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2815. * after when the head was last (re)transmitted. Otherwise the
  2816. * timeout may continue to extend in loss recovery.
  2817. */
  2818. tcp_rearm_rto(sk);
  2819. }
  2820. if (icsk->icsk_ca_ops->pkts_acked) {
  2821. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2822. .rtt_us = ca_rtt_us };
  2823. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2824. }
  2825. #if FASTRETRANS_DEBUG > 0
  2826. WARN_ON((int)tp->sacked_out < 0);
  2827. WARN_ON((int)tp->lost_out < 0);
  2828. WARN_ON((int)tp->retrans_out < 0);
  2829. if (!tp->packets_out && tcp_is_sack(tp)) {
  2830. icsk = inet_csk(sk);
  2831. if (tp->lost_out) {
  2832. pr_debug("Leak l=%u %d\n",
  2833. tp->lost_out, icsk->icsk_ca_state);
  2834. tp->lost_out = 0;
  2835. }
  2836. if (tp->sacked_out) {
  2837. pr_debug("Leak s=%u %d\n",
  2838. tp->sacked_out, icsk->icsk_ca_state);
  2839. tp->sacked_out = 0;
  2840. }
  2841. if (tp->retrans_out) {
  2842. pr_debug("Leak r=%u %d\n",
  2843. tp->retrans_out, icsk->icsk_ca_state);
  2844. tp->retrans_out = 0;
  2845. }
  2846. }
  2847. #endif
  2848. *acked = pkts_acked;
  2849. return flag;
  2850. }
  2851. static void tcp_ack_probe(struct sock *sk)
  2852. {
  2853. const struct tcp_sock *tp = tcp_sk(sk);
  2854. struct inet_connection_sock *icsk = inet_csk(sk);
  2855. /* Was it a usable window open? */
  2856. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2857. icsk->icsk_backoff = 0;
  2858. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2859. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2860. * This function is not for random using!
  2861. */
  2862. } else {
  2863. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2864. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2865. when, TCP_RTO_MAX);
  2866. }
  2867. }
  2868. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2869. {
  2870. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2871. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2872. }
  2873. /* Decide wheather to run the increase function of congestion control. */
  2874. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2875. {
  2876. /* If reordering is high then always grow cwnd whenever data is
  2877. * delivered regardless of its ordering. Otherwise stay conservative
  2878. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2879. * new SACK or ECE mark may first advance cwnd here and later reduce
  2880. * cwnd in tcp_fastretrans_alert() based on more states.
  2881. */
  2882. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2883. return flag & FLAG_FORWARD_PROGRESS;
  2884. return flag & FLAG_DATA_ACKED;
  2885. }
  2886. /* The "ultimate" congestion control function that aims to replace the rigid
  2887. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2888. * It's called toward the end of processing an ACK with precise rate
  2889. * information. All transmission or retransmission are delayed afterwards.
  2890. */
  2891. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2892. int flag)
  2893. {
  2894. if (tcp_in_cwnd_reduction(sk)) {
  2895. /* Reduce cwnd if state mandates */
  2896. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2897. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2898. /* Advance cwnd if state allows */
  2899. tcp_cong_avoid(sk, ack, acked_sacked);
  2900. }
  2901. tcp_update_pacing_rate(sk);
  2902. }
  2903. /* Check that window update is acceptable.
  2904. * The function assumes that snd_una<=ack<=snd_next.
  2905. */
  2906. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2907. const u32 ack, const u32 ack_seq,
  2908. const u32 nwin)
  2909. {
  2910. return after(ack, tp->snd_una) ||
  2911. after(ack_seq, tp->snd_wl1) ||
  2912. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2913. }
  2914. /* If we update tp->snd_una, also update tp->bytes_acked */
  2915. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2916. {
  2917. u32 delta = ack - tp->snd_una;
  2918. sock_owned_by_me((struct sock *)tp);
  2919. u64_stats_update_begin_raw(&tp->syncp);
  2920. tp->bytes_acked += delta;
  2921. u64_stats_update_end_raw(&tp->syncp);
  2922. tp->snd_una = ack;
  2923. }
  2924. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2925. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2926. {
  2927. u32 delta = seq - tp->rcv_nxt;
  2928. sock_owned_by_me((struct sock *)tp);
  2929. u64_stats_update_begin_raw(&tp->syncp);
  2930. tp->bytes_received += delta;
  2931. u64_stats_update_end_raw(&tp->syncp);
  2932. tp->rcv_nxt = seq;
  2933. }
  2934. /* Update our send window.
  2935. *
  2936. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2937. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2938. */
  2939. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2940. u32 ack_seq)
  2941. {
  2942. struct tcp_sock *tp = tcp_sk(sk);
  2943. int flag = 0;
  2944. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2945. if (likely(!tcp_hdr(skb)->syn))
  2946. nwin <<= tp->rx_opt.snd_wscale;
  2947. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2948. flag |= FLAG_WIN_UPDATE;
  2949. tcp_update_wl(tp, ack_seq);
  2950. if (tp->snd_wnd != nwin) {
  2951. tp->snd_wnd = nwin;
  2952. /* Note, it is the only place, where
  2953. * fast path is recovered for sending TCP.
  2954. */
  2955. tp->pred_flags = 0;
  2956. tcp_fast_path_check(sk);
  2957. if (tcp_send_head(sk))
  2958. tcp_slow_start_after_idle_check(sk);
  2959. if (nwin > tp->max_window) {
  2960. tp->max_window = nwin;
  2961. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2962. }
  2963. }
  2964. }
  2965. tcp_snd_una_update(tp, ack);
  2966. return flag;
  2967. }
  2968. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2969. u32 *last_oow_ack_time)
  2970. {
  2971. if (*last_oow_ack_time) {
  2972. s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
  2973. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2974. NET_INC_STATS(net, mib_idx);
  2975. return true; /* rate-limited: don't send yet! */
  2976. }
  2977. }
  2978. *last_oow_ack_time = tcp_time_stamp;
  2979. return false; /* not rate-limited: go ahead, send dupack now! */
  2980. }
  2981. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2982. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2983. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2984. * attacks that send repeated SYNs or ACKs for the same connection. To
  2985. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2986. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2987. */
  2988. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2989. int mib_idx, u32 *last_oow_ack_time)
  2990. {
  2991. /* Data packets without SYNs are not likely part of an ACK loop. */
  2992. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2993. !tcp_hdr(skb)->syn)
  2994. return false;
  2995. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  2996. }
  2997. /* RFC 5961 7 [ACK Throttling] */
  2998. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2999. {
  3000. /* unprotected vars, we dont care of overwrites */
  3001. static u32 challenge_timestamp;
  3002. static unsigned int challenge_count;
  3003. struct tcp_sock *tp = tcp_sk(sk);
  3004. u32 count, now;
  3005. /* First check our per-socket dupack rate limit. */
  3006. if (__tcp_oow_rate_limited(sock_net(sk),
  3007. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  3008. &tp->last_oow_ack_time))
  3009. return;
  3010. /* Then check host-wide RFC 5961 rate limit. */
  3011. now = jiffies / HZ;
  3012. if (now != challenge_timestamp) {
  3013. u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
  3014. challenge_timestamp = now;
  3015. WRITE_ONCE(challenge_count, half +
  3016. prandom_u32_max(sysctl_tcp_challenge_ack_limit));
  3017. }
  3018. count = READ_ONCE(challenge_count);
  3019. if (count > 0) {
  3020. WRITE_ONCE(challenge_count, count - 1);
  3021. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  3022. tcp_send_ack(sk);
  3023. }
  3024. }
  3025. static void tcp_store_ts_recent(struct tcp_sock *tp)
  3026. {
  3027. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3028. tp->rx_opt.ts_recent_stamp = get_seconds();
  3029. }
  3030. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3031. {
  3032. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3033. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3034. * extra check below makes sure this can only happen
  3035. * for pure ACK frames. -DaveM
  3036. *
  3037. * Not only, also it occurs for expired timestamps.
  3038. */
  3039. if (tcp_paws_check(&tp->rx_opt, 0))
  3040. tcp_store_ts_recent(tp);
  3041. }
  3042. }
  3043. /* This routine deals with acks during a TLP episode.
  3044. * We mark the end of a TLP episode on receiving TLP dupack or when
  3045. * ack is after tlp_high_seq.
  3046. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  3047. */
  3048. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  3049. {
  3050. struct tcp_sock *tp = tcp_sk(sk);
  3051. if (before(ack, tp->tlp_high_seq))
  3052. return;
  3053. if (flag & FLAG_DSACKING_ACK) {
  3054. /* This DSACK means original and TLP probe arrived; no loss */
  3055. tp->tlp_high_seq = 0;
  3056. } else if (after(ack, tp->tlp_high_seq)) {
  3057. /* ACK advances: there was a loss, so reduce cwnd. Reset
  3058. * tlp_high_seq in tcp_init_cwnd_reduction()
  3059. */
  3060. tcp_init_cwnd_reduction(sk);
  3061. tcp_set_ca_state(sk, TCP_CA_CWR);
  3062. tcp_end_cwnd_reduction(sk);
  3063. tcp_try_keep_open(sk);
  3064. NET_INC_STATS(sock_net(sk),
  3065. LINUX_MIB_TCPLOSSPROBERECOVERY);
  3066. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  3067. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  3068. /* Pure dupack: original and TLP probe arrived; no loss */
  3069. tp->tlp_high_seq = 0;
  3070. }
  3071. }
  3072. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3073. {
  3074. const struct inet_connection_sock *icsk = inet_csk(sk);
  3075. if (icsk->icsk_ca_ops->in_ack_event)
  3076. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3077. }
  3078. /* Congestion control has updated the cwnd already. So if we're in
  3079. * loss recovery then now we do any new sends (for FRTO) or
  3080. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3081. */
  3082. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3083. {
  3084. struct tcp_sock *tp = tcp_sk(sk);
  3085. if (rexmit == REXMIT_NONE)
  3086. return;
  3087. if (unlikely(rexmit == 2)) {
  3088. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3089. TCP_NAGLE_OFF);
  3090. if (after(tp->snd_nxt, tp->high_seq))
  3091. return;
  3092. tp->frto = 0;
  3093. }
  3094. tcp_xmit_retransmit_queue(sk);
  3095. }
  3096. /* This routine deals with incoming acks, but not outgoing ones. */
  3097. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3098. {
  3099. struct inet_connection_sock *icsk = inet_csk(sk);
  3100. struct tcp_sock *tp = tcp_sk(sk);
  3101. struct tcp_sacktag_state sack_state;
  3102. u32 prior_snd_una = tp->snd_una;
  3103. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3104. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3105. bool is_dupack = false;
  3106. u32 prior_fackets;
  3107. int prior_packets = tp->packets_out;
  3108. u32 prior_delivered = tp->delivered;
  3109. int acked = 0; /* Number of packets newly acked */
  3110. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3111. sack_state.first_sackt.v64 = 0;
  3112. /* We very likely will need to access write queue head. */
  3113. prefetchw(sk->sk_write_queue.next);
  3114. /* If the ack is older than previous acks
  3115. * then we can probably ignore it.
  3116. */
  3117. if (before(ack, prior_snd_una)) {
  3118. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3119. if (before(ack, prior_snd_una - tp->max_window)) {
  3120. tcp_send_challenge_ack(sk, skb);
  3121. return -1;
  3122. }
  3123. goto old_ack;
  3124. }
  3125. /* If the ack includes data we haven't sent yet, discard
  3126. * this segment (RFC793 Section 3.9).
  3127. */
  3128. if (after(ack, tp->snd_nxt))
  3129. goto invalid_ack;
  3130. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  3131. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  3132. tcp_rearm_rto(sk);
  3133. if (after(ack, prior_snd_una)) {
  3134. flag |= FLAG_SND_UNA_ADVANCED;
  3135. icsk->icsk_retransmits = 0;
  3136. }
  3137. prior_fackets = tp->fackets_out;
  3138. /* ts_recent update must be made after we are sure that the packet
  3139. * is in window.
  3140. */
  3141. if (flag & FLAG_UPDATE_TS_RECENT)
  3142. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3143. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3144. /* Window is constant, pure forward advance.
  3145. * No more checks are required.
  3146. * Note, we use the fact that SND.UNA>=SND.WL2.
  3147. */
  3148. tcp_update_wl(tp, ack_seq);
  3149. tcp_snd_una_update(tp, ack);
  3150. flag |= FLAG_WIN_UPDATE;
  3151. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3152. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3153. } else {
  3154. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3155. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3156. flag |= FLAG_DATA;
  3157. else
  3158. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3159. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3160. if (TCP_SKB_CB(skb)->sacked)
  3161. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3162. &sack_state);
  3163. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3164. flag |= FLAG_ECE;
  3165. ack_ev_flags |= CA_ACK_ECE;
  3166. }
  3167. if (flag & FLAG_WIN_UPDATE)
  3168. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3169. tcp_in_ack_event(sk, ack_ev_flags);
  3170. }
  3171. /* We passed data and got it acked, remove any soft error
  3172. * log. Something worked...
  3173. */
  3174. sk->sk_err_soft = 0;
  3175. icsk->icsk_probes_out = 0;
  3176. tp->rcv_tstamp = tcp_time_stamp;
  3177. if (!prior_packets)
  3178. goto no_queue;
  3179. /* See if we can take anything off of the retransmit queue. */
  3180. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
  3181. &sack_state);
  3182. if (tcp_ack_is_dubious(sk, flag)) {
  3183. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3184. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3185. }
  3186. if (tp->tlp_high_seq)
  3187. tcp_process_tlp_ack(sk, ack, flag);
  3188. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3189. struct dst_entry *dst = __sk_dst_get(sk);
  3190. if (dst)
  3191. dst_confirm(dst);
  3192. }
  3193. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  3194. tcp_schedule_loss_probe(sk);
  3195. tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
  3196. tcp_xmit_recovery(sk, rexmit);
  3197. return 1;
  3198. no_queue:
  3199. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3200. if (flag & FLAG_DSACKING_ACK)
  3201. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3202. /* If this ack opens up a zero window, clear backoff. It was
  3203. * being used to time the probes, and is probably far higher than
  3204. * it needs to be for normal retransmission.
  3205. */
  3206. if (tcp_send_head(sk))
  3207. tcp_ack_probe(sk);
  3208. if (tp->tlp_high_seq)
  3209. tcp_process_tlp_ack(sk, ack, flag);
  3210. return 1;
  3211. invalid_ack:
  3212. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3213. return -1;
  3214. old_ack:
  3215. /* If data was SACKed, tag it and see if we should send more data.
  3216. * If data was DSACKed, see if we can undo a cwnd reduction.
  3217. */
  3218. if (TCP_SKB_CB(skb)->sacked) {
  3219. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3220. &sack_state);
  3221. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3222. tcp_xmit_recovery(sk, rexmit);
  3223. }
  3224. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3225. return 0;
  3226. }
  3227. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3228. bool syn, struct tcp_fastopen_cookie *foc,
  3229. bool exp_opt)
  3230. {
  3231. /* Valid only in SYN or SYN-ACK with an even length. */
  3232. if (!foc || !syn || len < 0 || (len & 1))
  3233. return;
  3234. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3235. len <= TCP_FASTOPEN_COOKIE_MAX)
  3236. memcpy(foc->val, cookie, len);
  3237. else if (len != 0)
  3238. len = -1;
  3239. foc->len = len;
  3240. foc->exp = exp_opt;
  3241. }
  3242. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3243. * But, this can also be called on packets in the established flow when
  3244. * the fast version below fails.
  3245. */
  3246. void tcp_parse_options(const struct sk_buff *skb,
  3247. struct tcp_options_received *opt_rx, int estab,
  3248. struct tcp_fastopen_cookie *foc)
  3249. {
  3250. const unsigned char *ptr;
  3251. const struct tcphdr *th = tcp_hdr(skb);
  3252. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3253. ptr = (const unsigned char *)(th + 1);
  3254. opt_rx->saw_tstamp = 0;
  3255. while (length > 0) {
  3256. int opcode = *ptr++;
  3257. int opsize;
  3258. switch (opcode) {
  3259. case TCPOPT_EOL:
  3260. return;
  3261. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3262. length--;
  3263. continue;
  3264. default:
  3265. opsize = *ptr++;
  3266. if (opsize < 2) /* "silly options" */
  3267. return;
  3268. if (opsize > length)
  3269. return; /* don't parse partial options */
  3270. switch (opcode) {
  3271. case TCPOPT_MSS:
  3272. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3273. u16 in_mss = get_unaligned_be16(ptr);
  3274. if (in_mss) {
  3275. if (opt_rx->user_mss &&
  3276. opt_rx->user_mss < in_mss)
  3277. in_mss = opt_rx->user_mss;
  3278. opt_rx->mss_clamp = in_mss;
  3279. }
  3280. }
  3281. break;
  3282. case TCPOPT_WINDOW:
  3283. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3284. !estab && sysctl_tcp_window_scaling) {
  3285. __u8 snd_wscale = *(__u8 *)ptr;
  3286. opt_rx->wscale_ok = 1;
  3287. if (snd_wscale > 14) {
  3288. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3289. __func__,
  3290. snd_wscale);
  3291. snd_wscale = 14;
  3292. }
  3293. opt_rx->snd_wscale = snd_wscale;
  3294. }
  3295. break;
  3296. case TCPOPT_TIMESTAMP:
  3297. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3298. ((estab && opt_rx->tstamp_ok) ||
  3299. (!estab && sysctl_tcp_timestamps))) {
  3300. opt_rx->saw_tstamp = 1;
  3301. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3302. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3303. }
  3304. break;
  3305. case TCPOPT_SACK_PERM:
  3306. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3307. !estab && sysctl_tcp_sack) {
  3308. opt_rx->sack_ok = TCP_SACK_SEEN;
  3309. tcp_sack_reset(opt_rx);
  3310. }
  3311. break;
  3312. case TCPOPT_SACK:
  3313. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3314. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3315. opt_rx->sack_ok) {
  3316. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3317. }
  3318. break;
  3319. #ifdef CONFIG_TCP_MD5SIG
  3320. case TCPOPT_MD5SIG:
  3321. /*
  3322. * The MD5 Hash has already been
  3323. * checked (see tcp_v{4,6}_do_rcv()).
  3324. */
  3325. break;
  3326. #endif
  3327. case TCPOPT_FASTOPEN:
  3328. tcp_parse_fastopen_option(
  3329. opsize - TCPOLEN_FASTOPEN_BASE,
  3330. ptr, th->syn, foc, false);
  3331. break;
  3332. case TCPOPT_EXP:
  3333. /* Fast Open option shares code 254 using a
  3334. * 16 bits magic number.
  3335. */
  3336. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3337. get_unaligned_be16(ptr) ==
  3338. TCPOPT_FASTOPEN_MAGIC)
  3339. tcp_parse_fastopen_option(opsize -
  3340. TCPOLEN_EXP_FASTOPEN_BASE,
  3341. ptr + 2, th->syn, foc, true);
  3342. break;
  3343. }
  3344. ptr += opsize-2;
  3345. length -= opsize;
  3346. }
  3347. }
  3348. }
  3349. EXPORT_SYMBOL(tcp_parse_options);
  3350. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3351. {
  3352. const __be32 *ptr = (const __be32 *)(th + 1);
  3353. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3354. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3355. tp->rx_opt.saw_tstamp = 1;
  3356. ++ptr;
  3357. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3358. ++ptr;
  3359. if (*ptr)
  3360. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3361. else
  3362. tp->rx_opt.rcv_tsecr = 0;
  3363. return true;
  3364. }
  3365. return false;
  3366. }
  3367. /* Fast parse options. This hopes to only see timestamps.
  3368. * If it is wrong it falls back on tcp_parse_options().
  3369. */
  3370. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3371. const struct tcphdr *th, struct tcp_sock *tp)
  3372. {
  3373. /* In the spirit of fast parsing, compare doff directly to constant
  3374. * values. Because equality is used, short doff can be ignored here.
  3375. */
  3376. if (th->doff == (sizeof(*th) / 4)) {
  3377. tp->rx_opt.saw_tstamp = 0;
  3378. return false;
  3379. } else if (tp->rx_opt.tstamp_ok &&
  3380. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3381. if (tcp_parse_aligned_timestamp(tp, th))
  3382. return true;
  3383. }
  3384. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3385. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3386. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3387. return true;
  3388. }
  3389. #ifdef CONFIG_TCP_MD5SIG
  3390. /*
  3391. * Parse MD5 Signature option
  3392. */
  3393. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3394. {
  3395. int length = (th->doff << 2) - sizeof(*th);
  3396. const u8 *ptr = (const u8 *)(th + 1);
  3397. /* If the TCP option is too short, we can short cut */
  3398. if (length < TCPOLEN_MD5SIG)
  3399. return NULL;
  3400. while (length > 0) {
  3401. int opcode = *ptr++;
  3402. int opsize;
  3403. switch (opcode) {
  3404. case TCPOPT_EOL:
  3405. return NULL;
  3406. case TCPOPT_NOP:
  3407. length--;
  3408. continue;
  3409. default:
  3410. opsize = *ptr++;
  3411. if (opsize < 2 || opsize > length)
  3412. return NULL;
  3413. if (opcode == TCPOPT_MD5SIG)
  3414. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3415. }
  3416. ptr += opsize - 2;
  3417. length -= opsize;
  3418. }
  3419. return NULL;
  3420. }
  3421. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3422. #endif
  3423. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3424. *
  3425. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3426. * it can pass through stack. So, the following predicate verifies that
  3427. * this segment is not used for anything but congestion avoidance or
  3428. * fast retransmit. Moreover, we even are able to eliminate most of such
  3429. * second order effects, if we apply some small "replay" window (~RTO)
  3430. * to timestamp space.
  3431. *
  3432. * All these measures still do not guarantee that we reject wrapped ACKs
  3433. * on networks with high bandwidth, when sequence space is recycled fastly,
  3434. * but it guarantees that such events will be very rare and do not affect
  3435. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3436. * buggy extension.
  3437. *
  3438. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3439. * states that events when retransmit arrives after original data are rare.
  3440. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3441. * the biggest problem on large power networks even with minor reordering.
  3442. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3443. * up to bandwidth of 18Gigabit/sec. 8) ]
  3444. */
  3445. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3446. {
  3447. const struct tcp_sock *tp = tcp_sk(sk);
  3448. const struct tcphdr *th = tcp_hdr(skb);
  3449. u32 seq = TCP_SKB_CB(skb)->seq;
  3450. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3451. return (/* 1. Pure ACK with correct sequence number. */
  3452. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3453. /* 2. ... and duplicate ACK. */
  3454. ack == tp->snd_una &&
  3455. /* 3. ... and does not update window. */
  3456. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3457. /* 4. ... and sits in replay window. */
  3458. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3459. }
  3460. static inline bool tcp_paws_discard(const struct sock *sk,
  3461. const struct sk_buff *skb)
  3462. {
  3463. const struct tcp_sock *tp = tcp_sk(sk);
  3464. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3465. !tcp_disordered_ack(sk, skb);
  3466. }
  3467. /* Check segment sequence number for validity.
  3468. *
  3469. * Segment controls are considered valid, if the segment
  3470. * fits to the window after truncation to the window. Acceptability
  3471. * of data (and SYN, FIN, of course) is checked separately.
  3472. * See tcp_data_queue(), for example.
  3473. *
  3474. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3475. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3476. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3477. * (borrowed from freebsd)
  3478. */
  3479. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3480. {
  3481. return !before(end_seq, tp->rcv_wup) &&
  3482. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3483. }
  3484. /* When we get a reset we do this. */
  3485. void tcp_reset(struct sock *sk)
  3486. {
  3487. /* We want the right error as BSD sees it (and indeed as we do). */
  3488. switch (sk->sk_state) {
  3489. case TCP_SYN_SENT:
  3490. sk->sk_err = ECONNREFUSED;
  3491. break;
  3492. case TCP_CLOSE_WAIT:
  3493. sk->sk_err = EPIPE;
  3494. break;
  3495. case TCP_CLOSE:
  3496. return;
  3497. default:
  3498. sk->sk_err = ECONNRESET;
  3499. }
  3500. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3501. smp_wmb();
  3502. if (!sock_flag(sk, SOCK_DEAD))
  3503. sk->sk_error_report(sk);
  3504. tcp_done(sk);
  3505. }
  3506. /*
  3507. * Process the FIN bit. This now behaves as it is supposed to work
  3508. * and the FIN takes effect when it is validly part of sequence
  3509. * space. Not before when we get holes.
  3510. *
  3511. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3512. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3513. * TIME-WAIT)
  3514. *
  3515. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3516. * close and we go into CLOSING (and later onto TIME-WAIT)
  3517. *
  3518. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3519. */
  3520. void tcp_fin(struct sock *sk)
  3521. {
  3522. struct tcp_sock *tp = tcp_sk(sk);
  3523. inet_csk_schedule_ack(sk);
  3524. sk->sk_shutdown |= RCV_SHUTDOWN;
  3525. sock_set_flag(sk, SOCK_DONE);
  3526. switch (sk->sk_state) {
  3527. case TCP_SYN_RECV:
  3528. case TCP_ESTABLISHED:
  3529. /* Move to CLOSE_WAIT */
  3530. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3531. inet_csk(sk)->icsk_ack.pingpong = 1;
  3532. break;
  3533. case TCP_CLOSE_WAIT:
  3534. case TCP_CLOSING:
  3535. /* Received a retransmission of the FIN, do
  3536. * nothing.
  3537. */
  3538. break;
  3539. case TCP_LAST_ACK:
  3540. /* RFC793: Remain in the LAST-ACK state. */
  3541. break;
  3542. case TCP_FIN_WAIT1:
  3543. /* This case occurs when a simultaneous close
  3544. * happens, we must ack the received FIN and
  3545. * enter the CLOSING state.
  3546. */
  3547. tcp_send_ack(sk);
  3548. tcp_set_state(sk, TCP_CLOSING);
  3549. break;
  3550. case TCP_FIN_WAIT2:
  3551. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3552. tcp_send_ack(sk);
  3553. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3554. break;
  3555. default:
  3556. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3557. * cases we should never reach this piece of code.
  3558. */
  3559. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3560. __func__, sk->sk_state);
  3561. break;
  3562. }
  3563. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3564. * Probably, we should reset in this case. For now drop them.
  3565. */
  3566. __skb_queue_purge(&tp->out_of_order_queue);
  3567. if (tcp_is_sack(tp))
  3568. tcp_sack_reset(&tp->rx_opt);
  3569. sk_mem_reclaim(sk);
  3570. if (!sock_flag(sk, SOCK_DEAD)) {
  3571. sk->sk_state_change(sk);
  3572. /* Do not send POLL_HUP for half duplex close. */
  3573. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3574. sk->sk_state == TCP_CLOSE)
  3575. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3576. else
  3577. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3578. }
  3579. }
  3580. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3581. u32 end_seq)
  3582. {
  3583. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3584. if (before(seq, sp->start_seq))
  3585. sp->start_seq = seq;
  3586. if (after(end_seq, sp->end_seq))
  3587. sp->end_seq = end_seq;
  3588. return true;
  3589. }
  3590. return false;
  3591. }
  3592. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3593. {
  3594. struct tcp_sock *tp = tcp_sk(sk);
  3595. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3596. int mib_idx;
  3597. if (before(seq, tp->rcv_nxt))
  3598. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3599. else
  3600. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3601. NET_INC_STATS(sock_net(sk), mib_idx);
  3602. tp->rx_opt.dsack = 1;
  3603. tp->duplicate_sack[0].start_seq = seq;
  3604. tp->duplicate_sack[0].end_seq = end_seq;
  3605. }
  3606. }
  3607. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3608. {
  3609. struct tcp_sock *tp = tcp_sk(sk);
  3610. if (!tp->rx_opt.dsack)
  3611. tcp_dsack_set(sk, seq, end_seq);
  3612. else
  3613. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3614. }
  3615. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3616. {
  3617. struct tcp_sock *tp = tcp_sk(sk);
  3618. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3619. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3620. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3621. tcp_enter_quickack_mode(sk);
  3622. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3623. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3624. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3625. end_seq = tp->rcv_nxt;
  3626. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3627. }
  3628. }
  3629. tcp_send_ack(sk);
  3630. }
  3631. /* These routines update the SACK block as out-of-order packets arrive or
  3632. * in-order packets close up the sequence space.
  3633. */
  3634. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3635. {
  3636. int this_sack;
  3637. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3638. struct tcp_sack_block *swalk = sp + 1;
  3639. /* See if the recent change to the first SACK eats into
  3640. * or hits the sequence space of other SACK blocks, if so coalesce.
  3641. */
  3642. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3643. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3644. int i;
  3645. /* Zap SWALK, by moving every further SACK up by one slot.
  3646. * Decrease num_sacks.
  3647. */
  3648. tp->rx_opt.num_sacks--;
  3649. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3650. sp[i] = sp[i + 1];
  3651. continue;
  3652. }
  3653. this_sack++, swalk++;
  3654. }
  3655. }
  3656. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3657. {
  3658. struct tcp_sock *tp = tcp_sk(sk);
  3659. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3660. int cur_sacks = tp->rx_opt.num_sacks;
  3661. int this_sack;
  3662. if (!cur_sacks)
  3663. goto new_sack;
  3664. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3665. if (tcp_sack_extend(sp, seq, end_seq)) {
  3666. /* Rotate this_sack to the first one. */
  3667. for (; this_sack > 0; this_sack--, sp--)
  3668. swap(*sp, *(sp - 1));
  3669. if (cur_sacks > 1)
  3670. tcp_sack_maybe_coalesce(tp);
  3671. return;
  3672. }
  3673. }
  3674. /* Could not find an adjacent existing SACK, build a new one,
  3675. * put it at the front, and shift everyone else down. We
  3676. * always know there is at least one SACK present already here.
  3677. *
  3678. * If the sack array is full, forget about the last one.
  3679. */
  3680. if (this_sack >= TCP_NUM_SACKS) {
  3681. this_sack--;
  3682. tp->rx_opt.num_sacks--;
  3683. sp--;
  3684. }
  3685. for (; this_sack > 0; this_sack--, sp--)
  3686. *sp = *(sp - 1);
  3687. new_sack:
  3688. /* Build the new head SACK, and we're done. */
  3689. sp->start_seq = seq;
  3690. sp->end_seq = end_seq;
  3691. tp->rx_opt.num_sacks++;
  3692. }
  3693. /* RCV.NXT advances, some SACKs should be eaten. */
  3694. static void tcp_sack_remove(struct tcp_sock *tp)
  3695. {
  3696. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3697. int num_sacks = tp->rx_opt.num_sacks;
  3698. int this_sack;
  3699. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3700. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3701. tp->rx_opt.num_sacks = 0;
  3702. return;
  3703. }
  3704. for (this_sack = 0; this_sack < num_sacks;) {
  3705. /* Check if the start of the sack is covered by RCV.NXT. */
  3706. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3707. int i;
  3708. /* RCV.NXT must cover all the block! */
  3709. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3710. /* Zap this SACK, by moving forward any other SACKS. */
  3711. for (i = this_sack+1; i < num_sacks; i++)
  3712. tp->selective_acks[i-1] = tp->selective_acks[i];
  3713. num_sacks--;
  3714. continue;
  3715. }
  3716. this_sack++;
  3717. sp++;
  3718. }
  3719. tp->rx_opt.num_sacks = num_sacks;
  3720. }
  3721. /**
  3722. * tcp_try_coalesce - try to merge skb to prior one
  3723. * @sk: socket
  3724. * @to: prior buffer
  3725. * @from: buffer to add in queue
  3726. * @fragstolen: pointer to boolean
  3727. *
  3728. * Before queueing skb @from after @to, try to merge them
  3729. * to reduce overall memory use and queue lengths, if cost is small.
  3730. * Packets in ofo or receive queues can stay a long time.
  3731. * Better try to coalesce them right now to avoid future collapses.
  3732. * Returns true if caller should free @from instead of queueing it
  3733. */
  3734. static bool tcp_try_coalesce(struct sock *sk,
  3735. struct sk_buff *to,
  3736. struct sk_buff *from,
  3737. bool *fragstolen)
  3738. {
  3739. int delta;
  3740. *fragstolen = false;
  3741. /* Its possible this segment overlaps with prior segment in queue */
  3742. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3743. return false;
  3744. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3745. return false;
  3746. atomic_add(delta, &sk->sk_rmem_alloc);
  3747. sk_mem_charge(sk, delta);
  3748. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3749. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3750. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3751. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3752. return true;
  3753. }
  3754. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3755. {
  3756. sk_drops_add(sk, skb);
  3757. __kfree_skb(skb);
  3758. }
  3759. /* This one checks to see if we can put data from the
  3760. * out_of_order queue into the receive_queue.
  3761. */
  3762. static void tcp_ofo_queue(struct sock *sk)
  3763. {
  3764. struct tcp_sock *tp = tcp_sk(sk);
  3765. __u32 dsack_high = tp->rcv_nxt;
  3766. struct sk_buff *skb, *tail;
  3767. bool fragstolen, eaten;
  3768. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3769. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3770. break;
  3771. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3772. __u32 dsack = dsack_high;
  3773. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3774. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3775. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3776. }
  3777. __skb_unlink(skb, &tp->out_of_order_queue);
  3778. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3779. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3780. tcp_drop(sk, skb);
  3781. continue;
  3782. }
  3783. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3784. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3785. TCP_SKB_CB(skb)->end_seq);
  3786. tail = skb_peek_tail(&sk->sk_receive_queue);
  3787. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3788. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3789. if (!eaten)
  3790. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3791. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3792. tcp_fin(sk);
  3793. if (eaten)
  3794. kfree_skb_partial(skb, fragstolen);
  3795. }
  3796. }
  3797. static bool tcp_prune_ofo_queue(struct sock *sk);
  3798. static int tcp_prune_queue(struct sock *sk);
  3799. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3800. unsigned int size)
  3801. {
  3802. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3803. !sk_rmem_schedule(sk, skb, size)) {
  3804. if (tcp_prune_queue(sk) < 0)
  3805. return -1;
  3806. if (!sk_rmem_schedule(sk, skb, size)) {
  3807. if (!tcp_prune_ofo_queue(sk))
  3808. return -1;
  3809. if (!sk_rmem_schedule(sk, skb, size))
  3810. return -1;
  3811. }
  3812. }
  3813. return 0;
  3814. }
  3815. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3816. {
  3817. struct tcp_sock *tp = tcp_sk(sk);
  3818. struct sk_buff *skb1;
  3819. u32 seq, end_seq;
  3820. tcp_ecn_check_ce(tp, skb);
  3821. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3822. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3823. tcp_drop(sk, skb);
  3824. return;
  3825. }
  3826. /* Disable header prediction. */
  3827. tp->pred_flags = 0;
  3828. inet_csk_schedule_ack(sk);
  3829. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3830. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3831. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3832. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3833. if (!skb1) {
  3834. /* Initial out of order segment, build 1 SACK. */
  3835. if (tcp_is_sack(tp)) {
  3836. tp->rx_opt.num_sacks = 1;
  3837. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3838. tp->selective_acks[0].end_seq =
  3839. TCP_SKB_CB(skb)->end_seq;
  3840. }
  3841. __skb_queue_head(&tp->out_of_order_queue, skb);
  3842. goto end;
  3843. }
  3844. seq = TCP_SKB_CB(skb)->seq;
  3845. end_seq = TCP_SKB_CB(skb)->end_seq;
  3846. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3847. bool fragstolen;
  3848. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3849. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3850. } else {
  3851. tcp_grow_window(sk, skb);
  3852. kfree_skb_partial(skb, fragstolen);
  3853. skb = NULL;
  3854. }
  3855. if (!tp->rx_opt.num_sacks ||
  3856. tp->selective_acks[0].end_seq != seq)
  3857. goto add_sack;
  3858. /* Common case: data arrive in order after hole. */
  3859. tp->selective_acks[0].end_seq = end_seq;
  3860. goto end;
  3861. }
  3862. /* Find place to insert this segment. */
  3863. while (1) {
  3864. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3865. break;
  3866. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3867. skb1 = NULL;
  3868. break;
  3869. }
  3870. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3871. }
  3872. /* Do skb overlap to previous one? */
  3873. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3874. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3875. /* All the bits are present. Drop. */
  3876. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3877. tcp_drop(sk, skb);
  3878. skb = NULL;
  3879. tcp_dsack_set(sk, seq, end_seq);
  3880. goto add_sack;
  3881. }
  3882. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3883. /* Partial overlap. */
  3884. tcp_dsack_set(sk, seq,
  3885. TCP_SKB_CB(skb1)->end_seq);
  3886. } else {
  3887. if (skb_queue_is_first(&tp->out_of_order_queue,
  3888. skb1))
  3889. skb1 = NULL;
  3890. else
  3891. skb1 = skb_queue_prev(
  3892. &tp->out_of_order_queue,
  3893. skb1);
  3894. }
  3895. }
  3896. if (!skb1)
  3897. __skb_queue_head(&tp->out_of_order_queue, skb);
  3898. else
  3899. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3900. /* And clean segments covered by new one as whole. */
  3901. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3902. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3903. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3904. break;
  3905. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3906. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3907. end_seq);
  3908. break;
  3909. }
  3910. __skb_unlink(skb1, &tp->out_of_order_queue);
  3911. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3912. TCP_SKB_CB(skb1)->end_seq);
  3913. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3914. tcp_drop(sk, skb1);
  3915. }
  3916. add_sack:
  3917. if (tcp_is_sack(tp))
  3918. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3919. end:
  3920. if (skb) {
  3921. tcp_grow_window(sk, skb);
  3922. skb_set_owner_r(skb, sk);
  3923. }
  3924. }
  3925. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3926. bool *fragstolen)
  3927. {
  3928. int eaten;
  3929. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3930. __skb_pull(skb, hdrlen);
  3931. eaten = (tail &&
  3932. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3933. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3934. if (!eaten) {
  3935. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3936. skb_set_owner_r(skb, sk);
  3937. }
  3938. return eaten;
  3939. }
  3940. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3941. {
  3942. struct sk_buff *skb;
  3943. int err = -ENOMEM;
  3944. int data_len = 0;
  3945. bool fragstolen;
  3946. if (size == 0)
  3947. return 0;
  3948. if (size > PAGE_SIZE) {
  3949. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3950. data_len = npages << PAGE_SHIFT;
  3951. size = data_len + (size & ~PAGE_MASK);
  3952. }
  3953. skb = alloc_skb_with_frags(size - data_len, data_len,
  3954. PAGE_ALLOC_COSTLY_ORDER,
  3955. &err, sk->sk_allocation);
  3956. if (!skb)
  3957. goto err;
  3958. skb_put(skb, size - data_len);
  3959. skb->data_len = data_len;
  3960. skb->len = size;
  3961. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3962. goto err_free;
  3963. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  3964. if (err)
  3965. goto err_free;
  3966. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3967. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3968. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3969. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3970. WARN_ON_ONCE(fragstolen); /* should not happen */
  3971. __kfree_skb(skb);
  3972. }
  3973. return size;
  3974. err_free:
  3975. kfree_skb(skb);
  3976. err:
  3977. return err;
  3978. }
  3979. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3980. {
  3981. struct tcp_sock *tp = tcp_sk(sk);
  3982. bool fragstolen = false;
  3983. int eaten = -1;
  3984. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  3985. __kfree_skb(skb);
  3986. return;
  3987. }
  3988. skb_dst_drop(skb);
  3989. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3990. tcp_ecn_accept_cwr(tp, skb);
  3991. tp->rx_opt.dsack = 0;
  3992. /* Queue data for delivery to the user.
  3993. * Packets in sequence go to the receive queue.
  3994. * Out of sequence packets to the out_of_order_queue.
  3995. */
  3996. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3997. if (tcp_receive_window(tp) == 0)
  3998. goto out_of_window;
  3999. /* Ok. In sequence. In window. */
  4000. if (tp->ucopy.task == current &&
  4001. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  4002. sock_owned_by_user(sk) && !tp->urg_data) {
  4003. int chunk = min_t(unsigned int, skb->len,
  4004. tp->ucopy.len);
  4005. __set_current_state(TASK_RUNNING);
  4006. if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
  4007. tp->ucopy.len -= chunk;
  4008. tp->copied_seq += chunk;
  4009. eaten = (chunk == skb->len);
  4010. tcp_rcv_space_adjust(sk);
  4011. }
  4012. }
  4013. if (eaten <= 0) {
  4014. queue_and_out:
  4015. if (eaten < 0) {
  4016. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  4017. sk_forced_mem_schedule(sk, skb->truesize);
  4018. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4019. goto drop;
  4020. }
  4021. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4022. }
  4023. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4024. if (skb->len)
  4025. tcp_event_data_recv(sk, skb);
  4026. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  4027. tcp_fin(sk);
  4028. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4029. tcp_ofo_queue(sk);
  4030. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4031. * gap in queue is filled.
  4032. */
  4033. if (skb_queue_empty(&tp->out_of_order_queue))
  4034. inet_csk(sk)->icsk_ack.pingpong = 0;
  4035. }
  4036. if (tp->rx_opt.num_sacks)
  4037. tcp_sack_remove(tp);
  4038. tcp_fast_path_check(sk);
  4039. if (eaten > 0)
  4040. kfree_skb_partial(skb, fragstolen);
  4041. if (!sock_flag(sk, SOCK_DEAD))
  4042. sk->sk_data_ready(sk);
  4043. return;
  4044. }
  4045. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4046. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4047. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4048. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4049. out_of_window:
  4050. tcp_enter_quickack_mode(sk);
  4051. inet_csk_schedule_ack(sk);
  4052. drop:
  4053. tcp_drop(sk, skb);
  4054. return;
  4055. }
  4056. /* Out of window. F.e. zero window probe. */
  4057. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4058. goto out_of_window;
  4059. tcp_enter_quickack_mode(sk);
  4060. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4061. /* Partial packet, seq < rcv_next < end_seq */
  4062. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4063. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4064. TCP_SKB_CB(skb)->end_seq);
  4065. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4066. /* If window is closed, drop tail of packet. But after
  4067. * remembering D-SACK for its head made in previous line.
  4068. */
  4069. if (!tcp_receive_window(tp))
  4070. goto out_of_window;
  4071. goto queue_and_out;
  4072. }
  4073. tcp_data_queue_ofo(sk, skb);
  4074. }
  4075. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4076. struct sk_buff_head *list)
  4077. {
  4078. struct sk_buff *next = NULL;
  4079. if (!skb_queue_is_last(list, skb))
  4080. next = skb_queue_next(list, skb);
  4081. __skb_unlink(skb, list);
  4082. __kfree_skb(skb);
  4083. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4084. return next;
  4085. }
  4086. /* Collapse contiguous sequence of skbs head..tail with
  4087. * sequence numbers start..end.
  4088. *
  4089. * If tail is NULL, this means until the end of the list.
  4090. *
  4091. * Segments with FIN/SYN are not collapsed (only because this
  4092. * simplifies code)
  4093. */
  4094. static void
  4095. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4096. struct sk_buff *head, struct sk_buff *tail,
  4097. u32 start, u32 end)
  4098. {
  4099. struct sk_buff *skb, *n;
  4100. bool end_of_skbs;
  4101. /* First, check that queue is collapsible and find
  4102. * the point where collapsing can be useful. */
  4103. skb = head;
  4104. restart:
  4105. end_of_skbs = true;
  4106. skb_queue_walk_from_safe(list, skb, n) {
  4107. if (skb == tail)
  4108. break;
  4109. /* No new bits? It is possible on ofo queue. */
  4110. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4111. skb = tcp_collapse_one(sk, skb, list);
  4112. if (!skb)
  4113. break;
  4114. goto restart;
  4115. }
  4116. /* The first skb to collapse is:
  4117. * - not SYN/FIN and
  4118. * - bloated or contains data before "start" or
  4119. * overlaps to the next one.
  4120. */
  4121. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4122. (tcp_win_from_space(skb->truesize) > skb->len ||
  4123. before(TCP_SKB_CB(skb)->seq, start))) {
  4124. end_of_skbs = false;
  4125. break;
  4126. }
  4127. if (!skb_queue_is_last(list, skb)) {
  4128. struct sk_buff *next = skb_queue_next(list, skb);
  4129. if (next != tail &&
  4130. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4131. end_of_skbs = false;
  4132. break;
  4133. }
  4134. }
  4135. /* Decided to skip this, advance start seq. */
  4136. start = TCP_SKB_CB(skb)->end_seq;
  4137. }
  4138. if (end_of_skbs ||
  4139. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4140. return;
  4141. while (before(start, end)) {
  4142. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4143. struct sk_buff *nskb;
  4144. nskb = alloc_skb(copy, GFP_ATOMIC);
  4145. if (!nskb)
  4146. return;
  4147. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4148. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4149. __skb_queue_before(list, skb, nskb);
  4150. skb_set_owner_r(nskb, sk);
  4151. /* Copy data, releasing collapsed skbs. */
  4152. while (copy > 0) {
  4153. int offset = start - TCP_SKB_CB(skb)->seq;
  4154. int size = TCP_SKB_CB(skb)->end_seq - start;
  4155. BUG_ON(offset < 0);
  4156. if (size > 0) {
  4157. size = min(copy, size);
  4158. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4159. BUG();
  4160. TCP_SKB_CB(nskb)->end_seq += size;
  4161. copy -= size;
  4162. start += size;
  4163. }
  4164. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4165. skb = tcp_collapse_one(sk, skb, list);
  4166. if (!skb ||
  4167. skb == tail ||
  4168. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4169. return;
  4170. }
  4171. }
  4172. }
  4173. }
  4174. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4175. * and tcp_collapse() them until all the queue is collapsed.
  4176. */
  4177. static void tcp_collapse_ofo_queue(struct sock *sk)
  4178. {
  4179. struct tcp_sock *tp = tcp_sk(sk);
  4180. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4181. struct sk_buff *head;
  4182. u32 start, end;
  4183. if (!skb)
  4184. return;
  4185. start = TCP_SKB_CB(skb)->seq;
  4186. end = TCP_SKB_CB(skb)->end_seq;
  4187. head = skb;
  4188. for (;;) {
  4189. struct sk_buff *next = NULL;
  4190. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4191. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4192. skb = next;
  4193. /* Segment is terminated when we see gap or when
  4194. * we are at the end of all the queue. */
  4195. if (!skb ||
  4196. after(TCP_SKB_CB(skb)->seq, end) ||
  4197. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4198. tcp_collapse(sk, &tp->out_of_order_queue,
  4199. head, skb, start, end);
  4200. head = skb;
  4201. if (!skb)
  4202. break;
  4203. /* Start new segment */
  4204. start = TCP_SKB_CB(skb)->seq;
  4205. end = TCP_SKB_CB(skb)->end_seq;
  4206. } else {
  4207. if (before(TCP_SKB_CB(skb)->seq, start))
  4208. start = TCP_SKB_CB(skb)->seq;
  4209. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4210. end = TCP_SKB_CB(skb)->end_seq;
  4211. }
  4212. }
  4213. }
  4214. /*
  4215. * Purge the out-of-order queue.
  4216. * Return true if queue was pruned.
  4217. */
  4218. static bool tcp_prune_ofo_queue(struct sock *sk)
  4219. {
  4220. struct tcp_sock *tp = tcp_sk(sk);
  4221. bool res = false;
  4222. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4223. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4224. __skb_queue_purge(&tp->out_of_order_queue);
  4225. /* Reset SACK state. A conforming SACK implementation will
  4226. * do the same at a timeout based retransmit. When a connection
  4227. * is in a sad state like this, we care only about integrity
  4228. * of the connection not performance.
  4229. */
  4230. if (tp->rx_opt.sack_ok)
  4231. tcp_sack_reset(&tp->rx_opt);
  4232. sk_mem_reclaim(sk);
  4233. res = true;
  4234. }
  4235. return res;
  4236. }
  4237. /* Reduce allocated memory if we can, trying to get
  4238. * the socket within its memory limits again.
  4239. *
  4240. * Return less than zero if we should start dropping frames
  4241. * until the socket owning process reads some of the data
  4242. * to stabilize the situation.
  4243. */
  4244. static int tcp_prune_queue(struct sock *sk)
  4245. {
  4246. struct tcp_sock *tp = tcp_sk(sk);
  4247. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4248. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4249. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4250. tcp_clamp_window(sk);
  4251. else if (tcp_under_memory_pressure(sk))
  4252. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4253. tcp_collapse_ofo_queue(sk);
  4254. if (!skb_queue_empty(&sk->sk_receive_queue))
  4255. tcp_collapse(sk, &sk->sk_receive_queue,
  4256. skb_peek(&sk->sk_receive_queue),
  4257. NULL,
  4258. tp->copied_seq, tp->rcv_nxt);
  4259. sk_mem_reclaim(sk);
  4260. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4261. return 0;
  4262. /* Collapsing did not help, destructive actions follow.
  4263. * This must not ever occur. */
  4264. tcp_prune_ofo_queue(sk);
  4265. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4266. return 0;
  4267. /* If we are really being abused, tell the caller to silently
  4268. * drop receive data on the floor. It will get retransmitted
  4269. * and hopefully then we'll have sufficient space.
  4270. */
  4271. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4272. /* Massive buffer overcommit. */
  4273. tp->pred_flags = 0;
  4274. return -1;
  4275. }
  4276. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4277. {
  4278. const struct tcp_sock *tp = tcp_sk(sk);
  4279. /* If the user specified a specific send buffer setting, do
  4280. * not modify it.
  4281. */
  4282. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4283. return false;
  4284. /* If we are under global TCP memory pressure, do not expand. */
  4285. if (tcp_under_memory_pressure(sk))
  4286. return false;
  4287. /* If we are under soft global TCP memory pressure, do not expand. */
  4288. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4289. return false;
  4290. /* If we filled the congestion window, do not expand. */
  4291. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4292. return false;
  4293. return true;
  4294. }
  4295. /* When incoming ACK allowed to free some skb from write_queue,
  4296. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4297. * on the exit from tcp input handler.
  4298. *
  4299. * PROBLEM: sndbuf expansion does not work well with largesend.
  4300. */
  4301. static void tcp_new_space(struct sock *sk)
  4302. {
  4303. struct tcp_sock *tp = tcp_sk(sk);
  4304. if (tcp_should_expand_sndbuf(sk)) {
  4305. tcp_sndbuf_expand(sk);
  4306. tp->snd_cwnd_stamp = tcp_time_stamp;
  4307. }
  4308. sk->sk_write_space(sk);
  4309. }
  4310. static void tcp_check_space(struct sock *sk)
  4311. {
  4312. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4313. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4314. /* pairs with tcp_poll() */
  4315. smp_mb__after_atomic();
  4316. if (sk->sk_socket &&
  4317. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4318. tcp_new_space(sk);
  4319. }
  4320. }
  4321. static inline void tcp_data_snd_check(struct sock *sk)
  4322. {
  4323. tcp_push_pending_frames(sk);
  4324. tcp_check_space(sk);
  4325. }
  4326. /*
  4327. * Check if sending an ack is needed.
  4328. */
  4329. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4330. {
  4331. struct tcp_sock *tp = tcp_sk(sk);
  4332. /* More than one full frame received... */
  4333. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4334. /* ... and right edge of window advances far enough.
  4335. * (tcp_recvmsg() will send ACK otherwise). Or...
  4336. */
  4337. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4338. /* We ACK each frame or... */
  4339. tcp_in_quickack_mode(sk) ||
  4340. /* We have out of order data. */
  4341. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4342. /* Then ack it now */
  4343. tcp_send_ack(sk);
  4344. } else {
  4345. /* Else, send delayed ack. */
  4346. tcp_send_delayed_ack(sk);
  4347. }
  4348. }
  4349. static inline void tcp_ack_snd_check(struct sock *sk)
  4350. {
  4351. if (!inet_csk_ack_scheduled(sk)) {
  4352. /* We sent a data segment already. */
  4353. return;
  4354. }
  4355. __tcp_ack_snd_check(sk, 1);
  4356. }
  4357. /*
  4358. * This routine is only called when we have urgent data
  4359. * signaled. Its the 'slow' part of tcp_urg. It could be
  4360. * moved inline now as tcp_urg is only called from one
  4361. * place. We handle URGent data wrong. We have to - as
  4362. * BSD still doesn't use the correction from RFC961.
  4363. * For 1003.1g we should support a new option TCP_STDURG to permit
  4364. * either form (or just set the sysctl tcp_stdurg).
  4365. */
  4366. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4367. {
  4368. struct tcp_sock *tp = tcp_sk(sk);
  4369. u32 ptr = ntohs(th->urg_ptr);
  4370. if (ptr && !sysctl_tcp_stdurg)
  4371. ptr--;
  4372. ptr += ntohl(th->seq);
  4373. /* Ignore urgent data that we've already seen and read. */
  4374. if (after(tp->copied_seq, ptr))
  4375. return;
  4376. /* Do not replay urg ptr.
  4377. *
  4378. * NOTE: interesting situation not covered by specs.
  4379. * Misbehaving sender may send urg ptr, pointing to segment,
  4380. * which we already have in ofo queue. We are not able to fetch
  4381. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4382. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4383. * situations. But it is worth to think about possibility of some
  4384. * DoSes using some hypothetical application level deadlock.
  4385. */
  4386. if (before(ptr, tp->rcv_nxt))
  4387. return;
  4388. /* Do we already have a newer (or duplicate) urgent pointer? */
  4389. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4390. return;
  4391. /* Tell the world about our new urgent pointer. */
  4392. sk_send_sigurg(sk);
  4393. /* We may be adding urgent data when the last byte read was
  4394. * urgent. To do this requires some care. We cannot just ignore
  4395. * tp->copied_seq since we would read the last urgent byte again
  4396. * as data, nor can we alter copied_seq until this data arrives
  4397. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4398. *
  4399. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4400. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4401. * and expect that both A and B disappear from stream. This is _wrong_.
  4402. * Though this happens in BSD with high probability, this is occasional.
  4403. * Any application relying on this is buggy. Note also, that fix "works"
  4404. * only in this artificial test. Insert some normal data between A and B and we will
  4405. * decline of BSD again. Verdict: it is better to remove to trap
  4406. * buggy users.
  4407. */
  4408. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4409. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4410. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4411. tp->copied_seq++;
  4412. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4413. __skb_unlink(skb, &sk->sk_receive_queue);
  4414. __kfree_skb(skb);
  4415. }
  4416. }
  4417. tp->urg_data = TCP_URG_NOTYET;
  4418. tp->urg_seq = ptr;
  4419. /* Disable header prediction. */
  4420. tp->pred_flags = 0;
  4421. }
  4422. /* This is the 'fast' part of urgent handling. */
  4423. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4424. {
  4425. struct tcp_sock *tp = tcp_sk(sk);
  4426. /* Check if we get a new urgent pointer - normally not. */
  4427. if (th->urg)
  4428. tcp_check_urg(sk, th);
  4429. /* Do we wait for any urgent data? - normally not... */
  4430. if (tp->urg_data == TCP_URG_NOTYET) {
  4431. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4432. th->syn;
  4433. /* Is the urgent pointer pointing into this packet? */
  4434. if (ptr < skb->len) {
  4435. u8 tmp;
  4436. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4437. BUG();
  4438. tp->urg_data = TCP_URG_VALID | tmp;
  4439. if (!sock_flag(sk, SOCK_DEAD))
  4440. sk->sk_data_ready(sk);
  4441. }
  4442. }
  4443. }
  4444. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4445. {
  4446. struct tcp_sock *tp = tcp_sk(sk);
  4447. int chunk = skb->len - hlen;
  4448. int err;
  4449. if (skb_csum_unnecessary(skb))
  4450. err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
  4451. else
  4452. err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
  4453. if (!err) {
  4454. tp->ucopy.len -= chunk;
  4455. tp->copied_seq += chunk;
  4456. tcp_rcv_space_adjust(sk);
  4457. }
  4458. return err;
  4459. }
  4460. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4461. * play significant role here.
  4462. */
  4463. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4464. const struct tcphdr *th, int syn_inerr)
  4465. {
  4466. struct tcp_sock *tp = tcp_sk(sk);
  4467. /* RFC1323: H1. Apply PAWS check first. */
  4468. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4469. tcp_paws_discard(sk, skb)) {
  4470. if (!th->rst) {
  4471. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4472. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4473. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4474. &tp->last_oow_ack_time))
  4475. tcp_send_dupack(sk, skb);
  4476. goto discard;
  4477. }
  4478. /* Reset is accepted even if it did not pass PAWS. */
  4479. }
  4480. /* Step 1: check sequence number */
  4481. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4482. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4483. * (RST) segments are validated by checking their SEQ-fields."
  4484. * And page 69: "If an incoming segment is not acceptable,
  4485. * an acknowledgment should be sent in reply (unless the RST
  4486. * bit is set, if so drop the segment and return)".
  4487. */
  4488. if (!th->rst) {
  4489. if (th->syn)
  4490. goto syn_challenge;
  4491. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4492. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4493. &tp->last_oow_ack_time))
  4494. tcp_send_dupack(sk, skb);
  4495. }
  4496. goto discard;
  4497. }
  4498. /* Step 2: check RST bit */
  4499. if (th->rst) {
  4500. /* RFC 5961 3.2 :
  4501. * If sequence number exactly matches RCV.NXT, then
  4502. * RESET the connection
  4503. * else
  4504. * Send a challenge ACK
  4505. */
  4506. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4507. tcp_reset(sk);
  4508. else
  4509. tcp_send_challenge_ack(sk, skb);
  4510. goto discard;
  4511. }
  4512. /* step 3: check security and precedence [ignored] */
  4513. /* step 4: Check for a SYN
  4514. * RFC 5961 4.2 : Send a challenge ack
  4515. */
  4516. if (th->syn) {
  4517. syn_challenge:
  4518. if (syn_inerr)
  4519. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4520. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4521. tcp_send_challenge_ack(sk, skb);
  4522. goto discard;
  4523. }
  4524. return true;
  4525. discard:
  4526. tcp_drop(sk, skb);
  4527. return false;
  4528. }
  4529. /*
  4530. * TCP receive function for the ESTABLISHED state.
  4531. *
  4532. * It is split into a fast path and a slow path. The fast path is
  4533. * disabled when:
  4534. * - A zero window was announced from us - zero window probing
  4535. * is only handled properly in the slow path.
  4536. * - Out of order segments arrived.
  4537. * - Urgent data is expected.
  4538. * - There is no buffer space left
  4539. * - Unexpected TCP flags/window values/header lengths are received
  4540. * (detected by checking the TCP header against pred_flags)
  4541. * - Data is sent in both directions. Fast path only supports pure senders
  4542. * or pure receivers (this means either the sequence number or the ack
  4543. * value must stay constant)
  4544. * - Unexpected TCP option.
  4545. *
  4546. * When these conditions are not satisfied it drops into a standard
  4547. * receive procedure patterned after RFC793 to handle all cases.
  4548. * The first three cases are guaranteed by proper pred_flags setting,
  4549. * the rest is checked inline. Fast processing is turned on in
  4550. * tcp_data_queue when everything is OK.
  4551. */
  4552. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4553. const struct tcphdr *th, unsigned int len)
  4554. {
  4555. struct tcp_sock *tp = tcp_sk(sk);
  4556. if (unlikely(!sk->sk_rx_dst))
  4557. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4558. /*
  4559. * Header prediction.
  4560. * The code loosely follows the one in the famous
  4561. * "30 instruction TCP receive" Van Jacobson mail.
  4562. *
  4563. * Van's trick is to deposit buffers into socket queue
  4564. * on a device interrupt, to call tcp_recv function
  4565. * on the receive process context and checksum and copy
  4566. * the buffer to user space. smart...
  4567. *
  4568. * Our current scheme is not silly either but we take the
  4569. * extra cost of the net_bh soft interrupt processing...
  4570. * We do checksum and copy also but from device to kernel.
  4571. */
  4572. tp->rx_opt.saw_tstamp = 0;
  4573. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4574. * if header_prediction is to be made
  4575. * 'S' will always be tp->tcp_header_len >> 2
  4576. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4577. * turn it off (when there are holes in the receive
  4578. * space for instance)
  4579. * PSH flag is ignored.
  4580. */
  4581. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4582. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4583. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4584. int tcp_header_len = tp->tcp_header_len;
  4585. /* Timestamp header prediction: tcp_header_len
  4586. * is automatically equal to th->doff*4 due to pred_flags
  4587. * match.
  4588. */
  4589. /* Check timestamp */
  4590. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4591. /* No? Slow path! */
  4592. if (!tcp_parse_aligned_timestamp(tp, th))
  4593. goto slow_path;
  4594. /* If PAWS failed, check it more carefully in slow path */
  4595. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4596. goto slow_path;
  4597. /* DO NOT update ts_recent here, if checksum fails
  4598. * and timestamp was corrupted part, it will result
  4599. * in a hung connection since we will drop all
  4600. * future packets due to the PAWS test.
  4601. */
  4602. }
  4603. if (len <= tcp_header_len) {
  4604. /* Bulk data transfer: sender */
  4605. if (len == tcp_header_len) {
  4606. /* Predicted packet is in window by definition.
  4607. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4608. * Hence, check seq<=rcv_wup reduces to:
  4609. */
  4610. if (tcp_header_len ==
  4611. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4612. tp->rcv_nxt == tp->rcv_wup)
  4613. tcp_store_ts_recent(tp);
  4614. /* We know that such packets are checksummed
  4615. * on entry.
  4616. */
  4617. tcp_ack(sk, skb, 0);
  4618. __kfree_skb(skb);
  4619. tcp_data_snd_check(sk);
  4620. return;
  4621. } else { /* Header too small */
  4622. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4623. goto discard;
  4624. }
  4625. } else {
  4626. int eaten = 0;
  4627. bool fragstolen = false;
  4628. if (tp->ucopy.task == current &&
  4629. tp->copied_seq == tp->rcv_nxt &&
  4630. len - tcp_header_len <= tp->ucopy.len &&
  4631. sock_owned_by_user(sk)) {
  4632. __set_current_state(TASK_RUNNING);
  4633. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
  4634. /* Predicted packet is in window by definition.
  4635. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4636. * Hence, check seq<=rcv_wup reduces to:
  4637. */
  4638. if (tcp_header_len ==
  4639. (sizeof(struct tcphdr) +
  4640. TCPOLEN_TSTAMP_ALIGNED) &&
  4641. tp->rcv_nxt == tp->rcv_wup)
  4642. tcp_store_ts_recent(tp);
  4643. tcp_rcv_rtt_measure_ts(sk, skb);
  4644. __skb_pull(skb, tcp_header_len);
  4645. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4646. NET_INC_STATS(sock_net(sk),
  4647. LINUX_MIB_TCPHPHITSTOUSER);
  4648. eaten = 1;
  4649. }
  4650. }
  4651. if (!eaten) {
  4652. if (tcp_checksum_complete(skb))
  4653. goto csum_error;
  4654. if ((int)skb->truesize > sk->sk_forward_alloc)
  4655. goto step5;
  4656. /* Predicted packet is in window by definition.
  4657. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4658. * Hence, check seq<=rcv_wup reduces to:
  4659. */
  4660. if (tcp_header_len ==
  4661. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4662. tp->rcv_nxt == tp->rcv_wup)
  4663. tcp_store_ts_recent(tp);
  4664. tcp_rcv_rtt_measure_ts(sk, skb);
  4665. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4666. /* Bulk data transfer: receiver */
  4667. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4668. &fragstolen);
  4669. }
  4670. tcp_event_data_recv(sk, skb);
  4671. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4672. /* Well, only one small jumplet in fast path... */
  4673. tcp_ack(sk, skb, FLAG_DATA);
  4674. tcp_data_snd_check(sk);
  4675. if (!inet_csk_ack_scheduled(sk))
  4676. goto no_ack;
  4677. }
  4678. __tcp_ack_snd_check(sk, 0);
  4679. no_ack:
  4680. if (eaten)
  4681. kfree_skb_partial(skb, fragstolen);
  4682. sk->sk_data_ready(sk);
  4683. return;
  4684. }
  4685. }
  4686. slow_path:
  4687. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4688. goto csum_error;
  4689. if (!th->ack && !th->rst && !th->syn)
  4690. goto discard;
  4691. /*
  4692. * Standard slow path.
  4693. */
  4694. if (!tcp_validate_incoming(sk, skb, th, 1))
  4695. return;
  4696. step5:
  4697. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4698. goto discard;
  4699. tcp_rcv_rtt_measure_ts(sk, skb);
  4700. /* Process urgent data. */
  4701. tcp_urg(sk, skb, th);
  4702. /* step 7: process the segment text */
  4703. tcp_data_queue(sk, skb);
  4704. tcp_data_snd_check(sk);
  4705. tcp_ack_snd_check(sk);
  4706. return;
  4707. csum_error:
  4708. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4709. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4710. discard:
  4711. tcp_drop(sk, skb);
  4712. }
  4713. EXPORT_SYMBOL(tcp_rcv_established);
  4714. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4715. {
  4716. struct tcp_sock *tp = tcp_sk(sk);
  4717. struct inet_connection_sock *icsk = inet_csk(sk);
  4718. tcp_set_state(sk, TCP_ESTABLISHED);
  4719. if (skb) {
  4720. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4721. security_inet_conn_established(sk, skb);
  4722. }
  4723. /* Make sure socket is routed, for correct metrics. */
  4724. icsk->icsk_af_ops->rebuild_header(sk);
  4725. tcp_init_metrics(sk);
  4726. tcp_init_congestion_control(sk);
  4727. /* Prevent spurious tcp_cwnd_restart() on first data
  4728. * packet.
  4729. */
  4730. tp->lsndtime = tcp_time_stamp;
  4731. tcp_init_buffer_space(sk);
  4732. if (sock_flag(sk, SOCK_KEEPOPEN))
  4733. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4734. if (!tp->rx_opt.snd_wscale)
  4735. __tcp_fast_path_on(tp, tp->snd_wnd);
  4736. else
  4737. tp->pred_flags = 0;
  4738. if (!sock_flag(sk, SOCK_DEAD)) {
  4739. sk->sk_state_change(sk);
  4740. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4741. }
  4742. }
  4743. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4744. struct tcp_fastopen_cookie *cookie)
  4745. {
  4746. struct tcp_sock *tp = tcp_sk(sk);
  4747. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4748. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4749. bool syn_drop = false;
  4750. if (mss == tp->rx_opt.user_mss) {
  4751. struct tcp_options_received opt;
  4752. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4753. tcp_clear_options(&opt);
  4754. opt.user_mss = opt.mss_clamp = 0;
  4755. tcp_parse_options(synack, &opt, 0, NULL);
  4756. mss = opt.mss_clamp;
  4757. }
  4758. if (!tp->syn_fastopen) {
  4759. /* Ignore an unsolicited cookie */
  4760. cookie->len = -1;
  4761. } else if (tp->total_retrans) {
  4762. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4763. * acknowledges data. Presumably the remote received only
  4764. * the retransmitted (regular) SYNs: either the original
  4765. * SYN-data or the corresponding SYN-ACK was dropped.
  4766. */
  4767. syn_drop = (cookie->len < 0 && data);
  4768. } else if (cookie->len < 0 && !tp->syn_data) {
  4769. /* We requested a cookie but didn't get it. If we did not use
  4770. * the (old) exp opt format then try so next time (try_exp=1).
  4771. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4772. */
  4773. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4774. }
  4775. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4776. if (data) { /* Retransmit unacked data in SYN */
  4777. tcp_for_write_queue_from(data, sk) {
  4778. if (data == tcp_send_head(sk) ||
  4779. __tcp_retransmit_skb(sk, data, 1))
  4780. break;
  4781. }
  4782. tcp_rearm_rto(sk);
  4783. NET_INC_STATS(sock_net(sk),
  4784. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4785. return true;
  4786. }
  4787. tp->syn_data_acked = tp->syn_data;
  4788. if (tp->syn_data_acked)
  4789. NET_INC_STATS(sock_net(sk),
  4790. LINUX_MIB_TCPFASTOPENACTIVE);
  4791. tcp_fastopen_add_skb(sk, synack);
  4792. return false;
  4793. }
  4794. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4795. const struct tcphdr *th)
  4796. {
  4797. struct inet_connection_sock *icsk = inet_csk(sk);
  4798. struct tcp_sock *tp = tcp_sk(sk);
  4799. struct tcp_fastopen_cookie foc = { .len = -1 };
  4800. int saved_clamp = tp->rx_opt.mss_clamp;
  4801. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4802. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4803. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4804. if (th->ack) {
  4805. /* rfc793:
  4806. * "If the state is SYN-SENT then
  4807. * first check the ACK bit
  4808. * If the ACK bit is set
  4809. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4810. * a reset (unless the RST bit is set, if so drop
  4811. * the segment and return)"
  4812. */
  4813. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4814. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4815. goto reset_and_undo;
  4816. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4817. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4818. tcp_time_stamp)) {
  4819. NET_INC_STATS(sock_net(sk),
  4820. LINUX_MIB_PAWSACTIVEREJECTED);
  4821. goto reset_and_undo;
  4822. }
  4823. /* Now ACK is acceptable.
  4824. *
  4825. * "If the RST bit is set
  4826. * If the ACK was acceptable then signal the user "error:
  4827. * connection reset", drop the segment, enter CLOSED state,
  4828. * delete TCB, and return."
  4829. */
  4830. if (th->rst) {
  4831. tcp_reset(sk);
  4832. goto discard;
  4833. }
  4834. /* rfc793:
  4835. * "fifth, if neither of the SYN or RST bits is set then
  4836. * drop the segment and return."
  4837. *
  4838. * See note below!
  4839. * --ANK(990513)
  4840. */
  4841. if (!th->syn)
  4842. goto discard_and_undo;
  4843. /* rfc793:
  4844. * "If the SYN bit is on ...
  4845. * are acceptable then ...
  4846. * (our SYN has been ACKed), change the connection
  4847. * state to ESTABLISHED..."
  4848. */
  4849. tcp_ecn_rcv_synack(tp, th);
  4850. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4851. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4852. /* Ok.. it's good. Set up sequence numbers and
  4853. * move to established.
  4854. */
  4855. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4856. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4857. /* RFC1323: The window in SYN & SYN/ACK segments is
  4858. * never scaled.
  4859. */
  4860. tp->snd_wnd = ntohs(th->window);
  4861. if (!tp->rx_opt.wscale_ok) {
  4862. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4863. tp->window_clamp = min(tp->window_clamp, 65535U);
  4864. }
  4865. if (tp->rx_opt.saw_tstamp) {
  4866. tp->rx_opt.tstamp_ok = 1;
  4867. tp->tcp_header_len =
  4868. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4869. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4870. tcp_store_ts_recent(tp);
  4871. } else {
  4872. tp->tcp_header_len = sizeof(struct tcphdr);
  4873. }
  4874. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4875. tcp_enable_fack(tp);
  4876. tcp_mtup_init(sk);
  4877. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4878. tcp_initialize_rcv_mss(sk);
  4879. /* Remember, tcp_poll() does not lock socket!
  4880. * Change state from SYN-SENT only after copied_seq
  4881. * is initialized. */
  4882. tp->copied_seq = tp->rcv_nxt;
  4883. smp_mb();
  4884. tcp_finish_connect(sk, skb);
  4885. if ((tp->syn_fastopen || tp->syn_data) &&
  4886. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4887. return -1;
  4888. if (sk->sk_write_pending ||
  4889. icsk->icsk_accept_queue.rskq_defer_accept ||
  4890. icsk->icsk_ack.pingpong) {
  4891. /* Save one ACK. Data will be ready after
  4892. * several ticks, if write_pending is set.
  4893. *
  4894. * It may be deleted, but with this feature tcpdumps
  4895. * look so _wonderfully_ clever, that I was not able
  4896. * to stand against the temptation 8) --ANK
  4897. */
  4898. inet_csk_schedule_ack(sk);
  4899. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4900. tcp_enter_quickack_mode(sk);
  4901. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4902. TCP_DELACK_MAX, TCP_RTO_MAX);
  4903. discard:
  4904. tcp_drop(sk, skb);
  4905. return 0;
  4906. } else {
  4907. tcp_send_ack(sk);
  4908. }
  4909. return -1;
  4910. }
  4911. /* No ACK in the segment */
  4912. if (th->rst) {
  4913. /* rfc793:
  4914. * "If the RST bit is set
  4915. *
  4916. * Otherwise (no ACK) drop the segment and return."
  4917. */
  4918. goto discard_and_undo;
  4919. }
  4920. /* PAWS check. */
  4921. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4922. tcp_paws_reject(&tp->rx_opt, 0))
  4923. goto discard_and_undo;
  4924. if (th->syn) {
  4925. /* We see SYN without ACK. It is attempt of
  4926. * simultaneous connect with crossed SYNs.
  4927. * Particularly, it can be connect to self.
  4928. */
  4929. tcp_set_state(sk, TCP_SYN_RECV);
  4930. if (tp->rx_opt.saw_tstamp) {
  4931. tp->rx_opt.tstamp_ok = 1;
  4932. tcp_store_ts_recent(tp);
  4933. tp->tcp_header_len =
  4934. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4935. } else {
  4936. tp->tcp_header_len = sizeof(struct tcphdr);
  4937. }
  4938. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4939. tp->copied_seq = tp->rcv_nxt;
  4940. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4941. /* RFC1323: The window in SYN & SYN/ACK segments is
  4942. * never scaled.
  4943. */
  4944. tp->snd_wnd = ntohs(th->window);
  4945. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4946. tp->max_window = tp->snd_wnd;
  4947. tcp_ecn_rcv_syn(tp, th);
  4948. tcp_mtup_init(sk);
  4949. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4950. tcp_initialize_rcv_mss(sk);
  4951. tcp_send_synack(sk);
  4952. #if 0
  4953. /* Note, we could accept data and URG from this segment.
  4954. * There are no obstacles to make this (except that we must
  4955. * either change tcp_recvmsg() to prevent it from returning data
  4956. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4957. *
  4958. * However, if we ignore data in ACKless segments sometimes,
  4959. * we have no reasons to accept it sometimes.
  4960. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4961. * is not flawless. So, discard packet for sanity.
  4962. * Uncomment this return to process the data.
  4963. */
  4964. return -1;
  4965. #else
  4966. goto discard;
  4967. #endif
  4968. }
  4969. /* "fifth, if neither of the SYN or RST bits is set then
  4970. * drop the segment and return."
  4971. */
  4972. discard_and_undo:
  4973. tcp_clear_options(&tp->rx_opt);
  4974. tp->rx_opt.mss_clamp = saved_clamp;
  4975. goto discard;
  4976. reset_and_undo:
  4977. tcp_clear_options(&tp->rx_opt);
  4978. tp->rx_opt.mss_clamp = saved_clamp;
  4979. return 1;
  4980. }
  4981. /*
  4982. * This function implements the receiving procedure of RFC 793 for
  4983. * all states except ESTABLISHED and TIME_WAIT.
  4984. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4985. * address independent.
  4986. */
  4987. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  4988. {
  4989. struct tcp_sock *tp = tcp_sk(sk);
  4990. struct inet_connection_sock *icsk = inet_csk(sk);
  4991. const struct tcphdr *th = tcp_hdr(skb);
  4992. struct request_sock *req;
  4993. int queued = 0;
  4994. bool acceptable;
  4995. switch (sk->sk_state) {
  4996. case TCP_CLOSE:
  4997. goto discard;
  4998. case TCP_LISTEN:
  4999. if (th->ack)
  5000. return 1;
  5001. if (th->rst)
  5002. goto discard;
  5003. if (th->syn) {
  5004. if (th->fin)
  5005. goto discard;
  5006. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5007. return 1;
  5008. consume_skb(skb);
  5009. return 0;
  5010. }
  5011. goto discard;
  5012. case TCP_SYN_SENT:
  5013. tp->rx_opt.saw_tstamp = 0;
  5014. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5015. if (queued >= 0)
  5016. return queued;
  5017. /* Do step6 onward by hand. */
  5018. tcp_urg(sk, skb, th);
  5019. __kfree_skb(skb);
  5020. tcp_data_snd_check(sk);
  5021. return 0;
  5022. }
  5023. tp->rx_opt.saw_tstamp = 0;
  5024. req = tp->fastopen_rsk;
  5025. if (req) {
  5026. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5027. sk->sk_state != TCP_FIN_WAIT1);
  5028. if (!tcp_check_req(sk, skb, req, true))
  5029. goto discard;
  5030. }
  5031. if (!th->ack && !th->rst && !th->syn)
  5032. goto discard;
  5033. if (!tcp_validate_incoming(sk, skb, th, 0))
  5034. return 0;
  5035. /* step 5: check the ACK field */
  5036. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5037. FLAG_UPDATE_TS_RECENT) > 0;
  5038. switch (sk->sk_state) {
  5039. case TCP_SYN_RECV:
  5040. if (!acceptable)
  5041. return 1;
  5042. if (!tp->srtt_us)
  5043. tcp_synack_rtt_meas(sk, req);
  5044. /* Once we leave TCP_SYN_RECV, we no longer need req
  5045. * so release it.
  5046. */
  5047. if (req) {
  5048. tp->total_retrans = req->num_retrans;
  5049. reqsk_fastopen_remove(sk, req, false);
  5050. } else {
  5051. /* Make sure socket is routed, for correct metrics. */
  5052. icsk->icsk_af_ops->rebuild_header(sk);
  5053. tcp_init_congestion_control(sk);
  5054. tcp_mtup_init(sk);
  5055. tp->copied_seq = tp->rcv_nxt;
  5056. tcp_init_buffer_space(sk);
  5057. }
  5058. smp_mb();
  5059. tcp_set_state(sk, TCP_ESTABLISHED);
  5060. sk->sk_state_change(sk);
  5061. /* Note, that this wakeup is only for marginal crossed SYN case.
  5062. * Passively open sockets are not waked up, because
  5063. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5064. */
  5065. if (sk->sk_socket)
  5066. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5067. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5068. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5069. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5070. if (tp->rx_opt.tstamp_ok)
  5071. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5072. if (req) {
  5073. /* Re-arm the timer because data may have been sent out.
  5074. * This is similar to the regular data transmission case
  5075. * when new data has just been ack'ed.
  5076. *
  5077. * (TFO) - we could try to be more aggressive and
  5078. * retransmitting any data sooner based on when they
  5079. * are sent out.
  5080. */
  5081. tcp_rearm_rto(sk);
  5082. } else
  5083. tcp_init_metrics(sk);
  5084. tcp_update_pacing_rate(sk);
  5085. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5086. tp->lsndtime = tcp_time_stamp;
  5087. tcp_initialize_rcv_mss(sk);
  5088. tcp_fast_path_on(tp);
  5089. break;
  5090. case TCP_FIN_WAIT1: {
  5091. struct dst_entry *dst;
  5092. int tmo;
  5093. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5094. * Fast Open socket and this is the first acceptable
  5095. * ACK we have received, this would have acknowledged
  5096. * our SYNACK so stop the SYNACK timer.
  5097. */
  5098. if (req) {
  5099. /* Return RST if ack_seq is invalid.
  5100. * Note that RFC793 only says to generate a
  5101. * DUPACK for it but for TCP Fast Open it seems
  5102. * better to treat this case like TCP_SYN_RECV
  5103. * above.
  5104. */
  5105. if (!acceptable)
  5106. return 1;
  5107. /* We no longer need the request sock. */
  5108. reqsk_fastopen_remove(sk, req, false);
  5109. tcp_rearm_rto(sk);
  5110. }
  5111. if (tp->snd_una != tp->write_seq)
  5112. break;
  5113. tcp_set_state(sk, TCP_FIN_WAIT2);
  5114. sk->sk_shutdown |= SEND_SHUTDOWN;
  5115. dst = __sk_dst_get(sk);
  5116. if (dst)
  5117. dst_confirm(dst);
  5118. if (!sock_flag(sk, SOCK_DEAD)) {
  5119. /* Wake up lingering close() */
  5120. sk->sk_state_change(sk);
  5121. break;
  5122. }
  5123. if (tp->linger2 < 0 ||
  5124. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5125. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5126. tcp_done(sk);
  5127. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5128. return 1;
  5129. }
  5130. tmo = tcp_fin_time(sk);
  5131. if (tmo > TCP_TIMEWAIT_LEN) {
  5132. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5133. } else if (th->fin || sock_owned_by_user(sk)) {
  5134. /* Bad case. We could lose such FIN otherwise.
  5135. * It is not a big problem, but it looks confusing
  5136. * and not so rare event. We still can lose it now,
  5137. * if it spins in bh_lock_sock(), but it is really
  5138. * marginal case.
  5139. */
  5140. inet_csk_reset_keepalive_timer(sk, tmo);
  5141. } else {
  5142. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5143. goto discard;
  5144. }
  5145. break;
  5146. }
  5147. case TCP_CLOSING:
  5148. if (tp->snd_una == tp->write_seq) {
  5149. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5150. goto discard;
  5151. }
  5152. break;
  5153. case TCP_LAST_ACK:
  5154. if (tp->snd_una == tp->write_seq) {
  5155. tcp_update_metrics(sk);
  5156. tcp_done(sk);
  5157. goto discard;
  5158. }
  5159. break;
  5160. }
  5161. /* step 6: check the URG bit */
  5162. tcp_urg(sk, skb, th);
  5163. /* step 7: process the segment text */
  5164. switch (sk->sk_state) {
  5165. case TCP_CLOSE_WAIT:
  5166. case TCP_CLOSING:
  5167. case TCP_LAST_ACK:
  5168. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5169. break;
  5170. case TCP_FIN_WAIT1:
  5171. case TCP_FIN_WAIT2:
  5172. /* RFC 793 says to queue data in these states,
  5173. * RFC 1122 says we MUST send a reset.
  5174. * BSD 4.4 also does reset.
  5175. */
  5176. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5177. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5178. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5179. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5180. tcp_reset(sk);
  5181. return 1;
  5182. }
  5183. }
  5184. /* Fall through */
  5185. case TCP_ESTABLISHED:
  5186. tcp_data_queue(sk, skb);
  5187. queued = 1;
  5188. break;
  5189. }
  5190. /* tcp_data could move socket to TIME-WAIT */
  5191. if (sk->sk_state != TCP_CLOSE) {
  5192. tcp_data_snd_check(sk);
  5193. tcp_ack_snd_check(sk);
  5194. }
  5195. if (!queued) {
  5196. discard:
  5197. tcp_drop(sk, skb);
  5198. }
  5199. return 0;
  5200. }
  5201. EXPORT_SYMBOL(tcp_rcv_state_process);
  5202. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5203. {
  5204. struct inet_request_sock *ireq = inet_rsk(req);
  5205. if (family == AF_INET)
  5206. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5207. &ireq->ir_rmt_addr, port);
  5208. #if IS_ENABLED(CONFIG_IPV6)
  5209. else if (family == AF_INET6)
  5210. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5211. &ireq->ir_v6_rmt_addr, port);
  5212. #endif
  5213. }
  5214. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5215. *
  5216. * If we receive a SYN packet with these bits set, it means a
  5217. * network is playing bad games with TOS bits. In order to
  5218. * avoid possible false congestion notifications, we disable
  5219. * TCP ECN negotiation.
  5220. *
  5221. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5222. * congestion control: Linux DCTCP asserts ECT on all packets,
  5223. * including SYN, which is most optimal solution; however,
  5224. * others, such as FreeBSD do not.
  5225. */
  5226. static void tcp_ecn_create_request(struct request_sock *req,
  5227. const struct sk_buff *skb,
  5228. const struct sock *listen_sk,
  5229. const struct dst_entry *dst)
  5230. {
  5231. const struct tcphdr *th = tcp_hdr(skb);
  5232. const struct net *net = sock_net(listen_sk);
  5233. bool th_ecn = th->ece && th->cwr;
  5234. bool ect, ecn_ok;
  5235. u32 ecn_ok_dst;
  5236. if (!th_ecn)
  5237. return;
  5238. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5239. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5240. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5241. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5242. (ecn_ok_dst & DST_FEATURE_ECN_CA))
  5243. inet_rsk(req)->ecn_ok = 1;
  5244. }
  5245. static void tcp_openreq_init(struct request_sock *req,
  5246. const struct tcp_options_received *rx_opt,
  5247. struct sk_buff *skb, const struct sock *sk)
  5248. {
  5249. struct inet_request_sock *ireq = inet_rsk(req);
  5250. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5251. req->cookie_ts = 0;
  5252. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5253. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5254. skb_mstamp_get(&tcp_rsk(req)->snt_synack);
  5255. tcp_rsk(req)->last_oow_ack_time = 0;
  5256. req->mss = rx_opt->mss_clamp;
  5257. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5258. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5259. ireq->sack_ok = rx_opt->sack_ok;
  5260. ireq->snd_wscale = rx_opt->snd_wscale;
  5261. ireq->wscale_ok = rx_opt->wscale_ok;
  5262. ireq->acked = 0;
  5263. ireq->ecn_ok = 0;
  5264. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5265. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5266. ireq->ir_mark = inet_request_mark(sk, skb);
  5267. }
  5268. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5269. struct sock *sk_listener,
  5270. bool attach_listener)
  5271. {
  5272. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5273. attach_listener);
  5274. if (req) {
  5275. struct inet_request_sock *ireq = inet_rsk(req);
  5276. kmemcheck_annotate_bitfield(ireq, flags);
  5277. ireq->opt = NULL;
  5278. atomic64_set(&ireq->ir_cookie, 0);
  5279. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5280. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5281. ireq->ireq_family = sk_listener->sk_family;
  5282. }
  5283. return req;
  5284. }
  5285. EXPORT_SYMBOL(inet_reqsk_alloc);
  5286. /*
  5287. * Return true if a syncookie should be sent
  5288. */
  5289. static bool tcp_syn_flood_action(const struct sock *sk,
  5290. const struct sk_buff *skb,
  5291. const char *proto)
  5292. {
  5293. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5294. const char *msg = "Dropping request";
  5295. bool want_cookie = false;
  5296. struct net *net = sock_net(sk);
  5297. #ifdef CONFIG_SYN_COOKIES
  5298. if (net->ipv4.sysctl_tcp_syncookies) {
  5299. msg = "Sending cookies";
  5300. want_cookie = true;
  5301. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5302. } else
  5303. #endif
  5304. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5305. if (!queue->synflood_warned &&
  5306. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5307. xchg(&queue->synflood_warned, 1) == 0)
  5308. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5309. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5310. return want_cookie;
  5311. }
  5312. static void tcp_reqsk_record_syn(const struct sock *sk,
  5313. struct request_sock *req,
  5314. const struct sk_buff *skb)
  5315. {
  5316. if (tcp_sk(sk)->save_syn) {
  5317. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5318. u32 *copy;
  5319. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5320. if (copy) {
  5321. copy[0] = len;
  5322. memcpy(&copy[1], skb_network_header(skb), len);
  5323. req->saved_syn = copy;
  5324. }
  5325. }
  5326. }
  5327. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5328. const struct tcp_request_sock_ops *af_ops,
  5329. struct sock *sk, struct sk_buff *skb)
  5330. {
  5331. struct tcp_fastopen_cookie foc = { .len = -1 };
  5332. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5333. struct tcp_options_received tmp_opt;
  5334. struct tcp_sock *tp = tcp_sk(sk);
  5335. struct net *net = sock_net(sk);
  5336. struct sock *fastopen_sk = NULL;
  5337. struct dst_entry *dst = NULL;
  5338. struct request_sock *req;
  5339. bool want_cookie = false;
  5340. struct flowi fl;
  5341. /* TW buckets are converted to open requests without
  5342. * limitations, they conserve resources and peer is
  5343. * evidently real one.
  5344. */
  5345. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5346. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5347. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5348. if (!want_cookie)
  5349. goto drop;
  5350. }
  5351. /* Accept backlog is full. If we have already queued enough
  5352. * of warm entries in syn queue, drop request. It is better than
  5353. * clogging syn queue with openreqs with exponentially increasing
  5354. * timeout.
  5355. */
  5356. if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
  5357. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5358. goto drop;
  5359. }
  5360. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5361. if (!req)
  5362. goto drop;
  5363. tcp_rsk(req)->af_specific = af_ops;
  5364. tcp_clear_options(&tmp_opt);
  5365. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5366. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5367. tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
  5368. if (want_cookie && !tmp_opt.saw_tstamp)
  5369. tcp_clear_options(&tmp_opt);
  5370. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5371. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5372. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5373. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5374. af_ops->init_req(req, sk, skb);
  5375. if (security_inet_conn_request(sk, skb, req))
  5376. goto drop_and_free;
  5377. if (!want_cookie && !isn) {
  5378. /* VJ's idea. We save last timestamp seen
  5379. * from the destination in peer table, when entering
  5380. * state TIME-WAIT, and check against it before
  5381. * accepting new connection request.
  5382. *
  5383. * If "isn" is not zero, this request hit alive
  5384. * timewait bucket, so that all the necessary checks
  5385. * are made in the function processing timewait state.
  5386. */
  5387. if (tcp_death_row.sysctl_tw_recycle) {
  5388. bool strict;
  5389. dst = af_ops->route_req(sk, &fl, req, &strict);
  5390. if (dst && strict &&
  5391. !tcp_peer_is_proven(req, dst, true,
  5392. tmp_opt.saw_tstamp)) {
  5393. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
  5394. goto drop_and_release;
  5395. }
  5396. }
  5397. /* Kill the following clause, if you dislike this way. */
  5398. else if (!net->ipv4.sysctl_tcp_syncookies &&
  5399. (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5400. (sysctl_max_syn_backlog >> 2)) &&
  5401. !tcp_peer_is_proven(req, dst, false,
  5402. tmp_opt.saw_tstamp)) {
  5403. /* Without syncookies last quarter of
  5404. * backlog is filled with destinations,
  5405. * proven to be alive.
  5406. * It means that we continue to communicate
  5407. * to destinations, already remembered
  5408. * to the moment of synflood.
  5409. */
  5410. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5411. rsk_ops->family);
  5412. goto drop_and_release;
  5413. }
  5414. isn = af_ops->init_seq(skb);
  5415. }
  5416. if (!dst) {
  5417. dst = af_ops->route_req(sk, &fl, req, NULL);
  5418. if (!dst)
  5419. goto drop_and_free;
  5420. }
  5421. tcp_ecn_create_request(req, skb, sk, dst);
  5422. if (want_cookie) {
  5423. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5424. req->cookie_ts = tmp_opt.tstamp_ok;
  5425. if (!tmp_opt.tstamp_ok)
  5426. inet_rsk(req)->ecn_ok = 0;
  5427. }
  5428. tcp_rsk(req)->snt_isn = isn;
  5429. tcp_rsk(req)->txhash = net_tx_rndhash();
  5430. tcp_openreq_init_rwin(req, sk, dst);
  5431. if (!want_cookie) {
  5432. tcp_reqsk_record_syn(sk, req, skb);
  5433. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
  5434. }
  5435. if (fastopen_sk) {
  5436. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5437. &foc, TCP_SYNACK_FASTOPEN);
  5438. /* Add the child socket directly into the accept queue */
  5439. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5440. sk->sk_data_ready(sk);
  5441. bh_unlock_sock(fastopen_sk);
  5442. sock_put(fastopen_sk);
  5443. } else {
  5444. tcp_rsk(req)->tfo_listener = false;
  5445. if (!want_cookie)
  5446. inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
  5447. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5448. !want_cookie ? TCP_SYNACK_NORMAL :
  5449. TCP_SYNACK_COOKIE);
  5450. if (want_cookie) {
  5451. reqsk_free(req);
  5452. return 0;
  5453. }
  5454. }
  5455. reqsk_put(req);
  5456. return 0;
  5457. drop_and_release:
  5458. dst_release(dst);
  5459. drop_and_free:
  5460. reqsk_free(req);
  5461. drop:
  5462. tcp_listendrop(sk);
  5463. return 0;
  5464. }
  5465. EXPORT_SYMBOL(tcp_conn_request);