i40e_txrx.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216
  1. /*******************************************************************************
  2. *
  3. * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
  4. * Copyright(c) 2013 - 2016 Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * The full GNU General Public License is included in this distribution in
  19. * the file called "COPYING".
  20. *
  21. * Contact Information:
  22. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24. *
  25. ******************************************************************************/
  26. #include <linux/prefetch.h>
  27. #include <net/busy_poll.h>
  28. #include "i40evf.h"
  29. #include "i40e_prototype.h"
  30. static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  31. u32 td_tag)
  32. {
  33. return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  34. ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
  35. ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  36. ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  37. ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
  38. }
  39. #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  40. /**
  41. * i40e_unmap_and_free_tx_resource - Release a Tx buffer
  42. * @ring: the ring that owns the buffer
  43. * @tx_buffer: the buffer to free
  44. **/
  45. static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
  46. struct i40e_tx_buffer *tx_buffer)
  47. {
  48. if (tx_buffer->skb) {
  49. dev_kfree_skb_any(tx_buffer->skb);
  50. if (dma_unmap_len(tx_buffer, len))
  51. dma_unmap_single(ring->dev,
  52. dma_unmap_addr(tx_buffer, dma),
  53. dma_unmap_len(tx_buffer, len),
  54. DMA_TO_DEVICE);
  55. } else if (dma_unmap_len(tx_buffer, len)) {
  56. dma_unmap_page(ring->dev,
  57. dma_unmap_addr(tx_buffer, dma),
  58. dma_unmap_len(tx_buffer, len),
  59. DMA_TO_DEVICE);
  60. }
  61. if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
  62. kfree(tx_buffer->raw_buf);
  63. tx_buffer->next_to_watch = NULL;
  64. tx_buffer->skb = NULL;
  65. dma_unmap_len_set(tx_buffer, len, 0);
  66. /* tx_buffer must be completely set up in the transmit path */
  67. }
  68. /**
  69. * i40evf_clean_tx_ring - Free any empty Tx buffers
  70. * @tx_ring: ring to be cleaned
  71. **/
  72. void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
  73. {
  74. unsigned long bi_size;
  75. u16 i;
  76. /* ring already cleared, nothing to do */
  77. if (!tx_ring->tx_bi)
  78. return;
  79. /* Free all the Tx ring sk_buffs */
  80. for (i = 0; i < tx_ring->count; i++)
  81. i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  82. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  83. memset(tx_ring->tx_bi, 0, bi_size);
  84. /* Zero out the descriptor ring */
  85. memset(tx_ring->desc, 0, tx_ring->size);
  86. tx_ring->next_to_use = 0;
  87. tx_ring->next_to_clean = 0;
  88. if (!tx_ring->netdev)
  89. return;
  90. /* cleanup Tx queue statistics */
  91. netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
  92. tx_ring->queue_index));
  93. }
  94. /**
  95. * i40evf_free_tx_resources - Free Tx resources per queue
  96. * @tx_ring: Tx descriptor ring for a specific queue
  97. *
  98. * Free all transmit software resources
  99. **/
  100. void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
  101. {
  102. i40evf_clean_tx_ring(tx_ring);
  103. kfree(tx_ring->tx_bi);
  104. tx_ring->tx_bi = NULL;
  105. if (tx_ring->desc) {
  106. dma_free_coherent(tx_ring->dev, tx_ring->size,
  107. tx_ring->desc, tx_ring->dma);
  108. tx_ring->desc = NULL;
  109. }
  110. }
  111. /**
  112. * i40evf_get_tx_pending - how many Tx descriptors not processed
  113. * @tx_ring: the ring of descriptors
  114. * @in_sw: is tx_pending being checked in SW or HW
  115. *
  116. * Since there is no access to the ring head register
  117. * in XL710, we need to use our local copies
  118. **/
  119. u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
  120. {
  121. u32 head, tail;
  122. if (!in_sw)
  123. head = i40e_get_head(ring);
  124. else
  125. head = ring->next_to_clean;
  126. tail = readl(ring->tail);
  127. if (head != tail)
  128. return (head < tail) ?
  129. tail - head : (tail + ring->count - head);
  130. return 0;
  131. }
  132. #define WB_STRIDE 0x3
  133. /**
  134. * i40e_clean_tx_irq - Reclaim resources after transmit completes
  135. * @vsi: the VSI we care about
  136. * @tx_ring: Tx ring to clean
  137. * @napi_budget: Used to determine if we are in netpoll
  138. *
  139. * Returns true if there's any budget left (e.g. the clean is finished)
  140. **/
  141. static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
  142. struct i40e_ring *tx_ring, int napi_budget)
  143. {
  144. u16 i = tx_ring->next_to_clean;
  145. struct i40e_tx_buffer *tx_buf;
  146. struct i40e_tx_desc *tx_head;
  147. struct i40e_tx_desc *tx_desc;
  148. unsigned int total_bytes = 0, total_packets = 0;
  149. unsigned int budget = vsi->work_limit;
  150. tx_buf = &tx_ring->tx_bi[i];
  151. tx_desc = I40E_TX_DESC(tx_ring, i);
  152. i -= tx_ring->count;
  153. tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
  154. do {
  155. struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
  156. /* if next_to_watch is not set then there is no work pending */
  157. if (!eop_desc)
  158. break;
  159. /* prevent any other reads prior to eop_desc */
  160. read_barrier_depends();
  161. /* we have caught up to head, no work left to do */
  162. if (tx_head == tx_desc)
  163. break;
  164. /* clear next_to_watch to prevent false hangs */
  165. tx_buf->next_to_watch = NULL;
  166. /* update the statistics for this packet */
  167. total_bytes += tx_buf->bytecount;
  168. total_packets += tx_buf->gso_segs;
  169. /* free the skb */
  170. napi_consume_skb(tx_buf->skb, napi_budget);
  171. /* unmap skb header data */
  172. dma_unmap_single(tx_ring->dev,
  173. dma_unmap_addr(tx_buf, dma),
  174. dma_unmap_len(tx_buf, len),
  175. DMA_TO_DEVICE);
  176. /* clear tx_buffer data */
  177. tx_buf->skb = NULL;
  178. dma_unmap_len_set(tx_buf, len, 0);
  179. /* unmap remaining buffers */
  180. while (tx_desc != eop_desc) {
  181. tx_buf++;
  182. tx_desc++;
  183. i++;
  184. if (unlikely(!i)) {
  185. i -= tx_ring->count;
  186. tx_buf = tx_ring->tx_bi;
  187. tx_desc = I40E_TX_DESC(tx_ring, 0);
  188. }
  189. /* unmap any remaining paged data */
  190. if (dma_unmap_len(tx_buf, len)) {
  191. dma_unmap_page(tx_ring->dev,
  192. dma_unmap_addr(tx_buf, dma),
  193. dma_unmap_len(tx_buf, len),
  194. DMA_TO_DEVICE);
  195. dma_unmap_len_set(tx_buf, len, 0);
  196. }
  197. }
  198. /* move us one more past the eop_desc for start of next pkt */
  199. tx_buf++;
  200. tx_desc++;
  201. i++;
  202. if (unlikely(!i)) {
  203. i -= tx_ring->count;
  204. tx_buf = tx_ring->tx_bi;
  205. tx_desc = I40E_TX_DESC(tx_ring, 0);
  206. }
  207. prefetch(tx_desc);
  208. /* update budget accounting */
  209. budget--;
  210. } while (likely(budget));
  211. i += tx_ring->count;
  212. tx_ring->next_to_clean = i;
  213. u64_stats_update_begin(&tx_ring->syncp);
  214. tx_ring->stats.bytes += total_bytes;
  215. tx_ring->stats.packets += total_packets;
  216. u64_stats_update_end(&tx_ring->syncp);
  217. tx_ring->q_vector->tx.total_bytes += total_bytes;
  218. tx_ring->q_vector->tx.total_packets += total_packets;
  219. if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
  220. unsigned int j = 0;
  221. /* check to see if there are < 4 descriptors
  222. * waiting to be written back, then kick the hardware to force
  223. * them to be written back in case we stay in NAPI.
  224. * In this mode on X722 we do not enable Interrupt.
  225. */
  226. j = i40evf_get_tx_pending(tx_ring, false);
  227. if (budget &&
  228. ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
  229. !test_bit(__I40E_DOWN, &vsi->state) &&
  230. (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
  231. tx_ring->arm_wb = true;
  232. }
  233. netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
  234. tx_ring->queue_index),
  235. total_packets, total_bytes);
  236. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  237. if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
  238. (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
  239. /* Make sure that anybody stopping the queue after this
  240. * sees the new next_to_clean.
  241. */
  242. smp_mb();
  243. if (__netif_subqueue_stopped(tx_ring->netdev,
  244. tx_ring->queue_index) &&
  245. !test_bit(__I40E_DOWN, &vsi->state)) {
  246. netif_wake_subqueue(tx_ring->netdev,
  247. tx_ring->queue_index);
  248. ++tx_ring->tx_stats.restart_queue;
  249. }
  250. }
  251. return !!budget;
  252. }
  253. /**
  254. * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
  255. * @vsi: the VSI we care about
  256. * @q_vector: the vector on which to enable writeback
  257. *
  258. **/
  259. static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
  260. struct i40e_q_vector *q_vector)
  261. {
  262. u16 flags = q_vector->tx.ring[0].flags;
  263. u32 val;
  264. if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
  265. return;
  266. if (q_vector->arm_wb_state)
  267. return;
  268. val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
  269. I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
  270. wr32(&vsi->back->hw,
  271. I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
  272. vsi->base_vector - 1), val);
  273. q_vector->arm_wb_state = true;
  274. }
  275. /**
  276. * i40evf_force_wb - Issue SW Interrupt so HW does a wb
  277. * @vsi: the VSI we care about
  278. * @q_vector: the vector on which to force writeback
  279. *
  280. **/
  281. void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
  282. {
  283. u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  284. I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
  285. I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
  286. I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
  287. /* allow 00 to be written to the index */;
  288. wr32(&vsi->back->hw,
  289. I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
  290. val);
  291. }
  292. /**
  293. * i40e_set_new_dynamic_itr - Find new ITR level
  294. * @rc: structure containing ring performance data
  295. *
  296. * Returns true if ITR changed, false if not
  297. *
  298. * Stores a new ITR value based on packets and byte counts during
  299. * the last interrupt. The advantage of per interrupt computation
  300. * is faster updates and more accurate ITR for the current traffic
  301. * pattern. Constants in this function were computed based on
  302. * theoretical maximum wire speed and thresholds were set based on
  303. * testing data as well as attempting to minimize response time
  304. * while increasing bulk throughput.
  305. **/
  306. static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
  307. {
  308. enum i40e_latency_range new_latency_range = rc->latency_range;
  309. struct i40e_q_vector *qv = rc->ring->q_vector;
  310. u32 new_itr = rc->itr;
  311. int bytes_per_int;
  312. int usecs;
  313. if (rc->total_packets == 0 || !rc->itr)
  314. return false;
  315. /* simple throttlerate management
  316. * 0-10MB/s lowest (50000 ints/s)
  317. * 10-20MB/s low (20000 ints/s)
  318. * 20-1249MB/s bulk (18000 ints/s)
  319. * > 40000 Rx packets per second (8000 ints/s)
  320. *
  321. * The math works out because the divisor is in 10^(-6) which
  322. * turns the bytes/us input value into MB/s values, but
  323. * make sure to use usecs, as the register values written
  324. * are in 2 usec increments in the ITR registers, and make sure
  325. * to use the smoothed values that the countdown timer gives us.
  326. */
  327. usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
  328. bytes_per_int = rc->total_bytes / usecs;
  329. switch (new_latency_range) {
  330. case I40E_LOWEST_LATENCY:
  331. if (bytes_per_int > 10)
  332. new_latency_range = I40E_LOW_LATENCY;
  333. break;
  334. case I40E_LOW_LATENCY:
  335. if (bytes_per_int > 20)
  336. new_latency_range = I40E_BULK_LATENCY;
  337. else if (bytes_per_int <= 10)
  338. new_latency_range = I40E_LOWEST_LATENCY;
  339. break;
  340. case I40E_BULK_LATENCY:
  341. case I40E_ULTRA_LATENCY:
  342. default:
  343. if (bytes_per_int <= 20)
  344. new_latency_range = I40E_LOW_LATENCY;
  345. break;
  346. }
  347. /* this is to adjust RX more aggressively when streaming small
  348. * packets. The value of 40000 was picked as it is just beyond
  349. * what the hardware can receive per second if in low latency
  350. * mode.
  351. */
  352. #define RX_ULTRA_PACKET_RATE 40000
  353. if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
  354. (&qv->rx == rc))
  355. new_latency_range = I40E_ULTRA_LATENCY;
  356. rc->latency_range = new_latency_range;
  357. switch (new_latency_range) {
  358. case I40E_LOWEST_LATENCY:
  359. new_itr = I40E_ITR_50K;
  360. break;
  361. case I40E_LOW_LATENCY:
  362. new_itr = I40E_ITR_20K;
  363. break;
  364. case I40E_BULK_LATENCY:
  365. new_itr = I40E_ITR_18K;
  366. break;
  367. case I40E_ULTRA_LATENCY:
  368. new_itr = I40E_ITR_8K;
  369. break;
  370. default:
  371. break;
  372. }
  373. rc->total_bytes = 0;
  374. rc->total_packets = 0;
  375. if (new_itr != rc->itr) {
  376. rc->itr = new_itr;
  377. return true;
  378. }
  379. return false;
  380. }
  381. /**
  382. * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
  383. * @tx_ring: the tx ring to set up
  384. *
  385. * Return 0 on success, negative on error
  386. **/
  387. int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
  388. {
  389. struct device *dev = tx_ring->dev;
  390. int bi_size;
  391. if (!dev)
  392. return -ENOMEM;
  393. /* warn if we are about to overwrite the pointer */
  394. WARN_ON(tx_ring->tx_bi);
  395. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  396. tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
  397. if (!tx_ring->tx_bi)
  398. goto err;
  399. /* round up to nearest 4K */
  400. tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
  401. /* add u32 for head writeback, align after this takes care of
  402. * guaranteeing this is at least one cache line in size
  403. */
  404. tx_ring->size += sizeof(u32);
  405. tx_ring->size = ALIGN(tx_ring->size, 4096);
  406. tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
  407. &tx_ring->dma, GFP_KERNEL);
  408. if (!tx_ring->desc) {
  409. dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
  410. tx_ring->size);
  411. goto err;
  412. }
  413. tx_ring->next_to_use = 0;
  414. tx_ring->next_to_clean = 0;
  415. return 0;
  416. err:
  417. kfree(tx_ring->tx_bi);
  418. tx_ring->tx_bi = NULL;
  419. return -ENOMEM;
  420. }
  421. /**
  422. * i40evf_clean_rx_ring - Free Rx buffers
  423. * @rx_ring: ring to be cleaned
  424. **/
  425. void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
  426. {
  427. struct device *dev = rx_ring->dev;
  428. unsigned long bi_size;
  429. u16 i;
  430. /* ring already cleared, nothing to do */
  431. if (!rx_ring->rx_bi)
  432. return;
  433. /* Free all the Rx ring sk_buffs */
  434. for (i = 0; i < rx_ring->count; i++) {
  435. struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
  436. if (rx_bi->skb) {
  437. dev_kfree_skb(rx_bi->skb);
  438. rx_bi->skb = NULL;
  439. }
  440. if (!rx_bi->page)
  441. continue;
  442. dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
  443. __free_pages(rx_bi->page, 0);
  444. rx_bi->page = NULL;
  445. rx_bi->page_offset = 0;
  446. }
  447. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  448. memset(rx_ring->rx_bi, 0, bi_size);
  449. /* Zero out the descriptor ring */
  450. memset(rx_ring->desc, 0, rx_ring->size);
  451. rx_ring->next_to_alloc = 0;
  452. rx_ring->next_to_clean = 0;
  453. rx_ring->next_to_use = 0;
  454. }
  455. /**
  456. * i40evf_free_rx_resources - Free Rx resources
  457. * @rx_ring: ring to clean the resources from
  458. *
  459. * Free all receive software resources
  460. **/
  461. void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
  462. {
  463. i40evf_clean_rx_ring(rx_ring);
  464. kfree(rx_ring->rx_bi);
  465. rx_ring->rx_bi = NULL;
  466. if (rx_ring->desc) {
  467. dma_free_coherent(rx_ring->dev, rx_ring->size,
  468. rx_ring->desc, rx_ring->dma);
  469. rx_ring->desc = NULL;
  470. }
  471. }
  472. /**
  473. * i40evf_setup_rx_descriptors - Allocate Rx descriptors
  474. * @rx_ring: Rx descriptor ring (for a specific queue) to setup
  475. *
  476. * Returns 0 on success, negative on failure
  477. **/
  478. int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
  479. {
  480. struct device *dev = rx_ring->dev;
  481. int bi_size;
  482. /* warn if we are about to overwrite the pointer */
  483. WARN_ON(rx_ring->rx_bi);
  484. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  485. rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
  486. if (!rx_ring->rx_bi)
  487. goto err;
  488. u64_stats_init(&rx_ring->syncp);
  489. /* Round up to nearest 4K */
  490. rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
  491. rx_ring->size = ALIGN(rx_ring->size, 4096);
  492. rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
  493. &rx_ring->dma, GFP_KERNEL);
  494. if (!rx_ring->desc) {
  495. dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
  496. rx_ring->size);
  497. goto err;
  498. }
  499. rx_ring->next_to_alloc = 0;
  500. rx_ring->next_to_clean = 0;
  501. rx_ring->next_to_use = 0;
  502. return 0;
  503. err:
  504. kfree(rx_ring->rx_bi);
  505. rx_ring->rx_bi = NULL;
  506. return -ENOMEM;
  507. }
  508. /**
  509. * i40e_release_rx_desc - Store the new tail and head values
  510. * @rx_ring: ring to bump
  511. * @val: new head index
  512. **/
  513. static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
  514. {
  515. rx_ring->next_to_use = val;
  516. /* update next to alloc since we have filled the ring */
  517. rx_ring->next_to_alloc = val;
  518. /* Force memory writes to complete before letting h/w
  519. * know there are new descriptors to fetch. (Only
  520. * applicable for weak-ordered memory model archs,
  521. * such as IA-64).
  522. */
  523. wmb();
  524. writel(val, rx_ring->tail);
  525. }
  526. /**
  527. * i40e_alloc_mapped_page - recycle or make a new page
  528. * @rx_ring: ring to use
  529. * @bi: rx_buffer struct to modify
  530. *
  531. * Returns true if the page was successfully allocated or
  532. * reused.
  533. **/
  534. static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
  535. struct i40e_rx_buffer *bi)
  536. {
  537. struct page *page = bi->page;
  538. dma_addr_t dma;
  539. /* since we are recycling buffers we should seldom need to alloc */
  540. if (likely(page)) {
  541. rx_ring->rx_stats.page_reuse_count++;
  542. return true;
  543. }
  544. /* alloc new page for storage */
  545. page = dev_alloc_page();
  546. if (unlikely(!page)) {
  547. rx_ring->rx_stats.alloc_page_failed++;
  548. return false;
  549. }
  550. /* map page for use */
  551. dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  552. /* if mapping failed free memory back to system since
  553. * there isn't much point in holding memory we can't use
  554. */
  555. if (dma_mapping_error(rx_ring->dev, dma)) {
  556. __free_pages(page, 0);
  557. rx_ring->rx_stats.alloc_page_failed++;
  558. return false;
  559. }
  560. bi->dma = dma;
  561. bi->page = page;
  562. bi->page_offset = 0;
  563. return true;
  564. }
  565. /**
  566. * i40e_receive_skb - Send a completed packet up the stack
  567. * @rx_ring: rx ring in play
  568. * @skb: packet to send up
  569. * @vlan_tag: vlan tag for packet
  570. **/
  571. static void i40e_receive_skb(struct i40e_ring *rx_ring,
  572. struct sk_buff *skb, u16 vlan_tag)
  573. {
  574. struct i40e_q_vector *q_vector = rx_ring->q_vector;
  575. if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
  576. (vlan_tag & VLAN_VID_MASK))
  577. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
  578. napi_gro_receive(&q_vector->napi, skb);
  579. }
  580. /**
  581. * i40evf_alloc_rx_buffers - Replace used receive buffers
  582. * @rx_ring: ring to place buffers on
  583. * @cleaned_count: number of buffers to replace
  584. *
  585. * Returns false if all allocations were successful, true if any fail
  586. **/
  587. bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
  588. {
  589. u16 ntu = rx_ring->next_to_use;
  590. union i40e_rx_desc *rx_desc;
  591. struct i40e_rx_buffer *bi;
  592. /* do nothing if no valid netdev defined */
  593. if (!rx_ring->netdev || !cleaned_count)
  594. return false;
  595. rx_desc = I40E_RX_DESC(rx_ring, ntu);
  596. bi = &rx_ring->rx_bi[ntu];
  597. do {
  598. if (!i40e_alloc_mapped_page(rx_ring, bi))
  599. goto no_buffers;
  600. /* Refresh the desc even if buffer_addrs didn't change
  601. * because each write-back erases this info.
  602. */
  603. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
  604. rx_desc->read.hdr_addr = 0;
  605. rx_desc++;
  606. bi++;
  607. ntu++;
  608. if (unlikely(ntu == rx_ring->count)) {
  609. rx_desc = I40E_RX_DESC(rx_ring, 0);
  610. bi = rx_ring->rx_bi;
  611. ntu = 0;
  612. }
  613. /* clear the status bits for the next_to_use descriptor */
  614. rx_desc->wb.qword1.status_error_len = 0;
  615. cleaned_count--;
  616. } while (cleaned_count);
  617. if (rx_ring->next_to_use != ntu)
  618. i40e_release_rx_desc(rx_ring, ntu);
  619. return false;
  620. no_buffers:
  621. if (rx_ring->next_to_use != ntu)
  622. i40e_release_rx_desc(rx_ring, ntu);
  623. /* make sure to come back via polling to try again after
  624. * allocation failure
  625. */
  626. return true;
  627. }
  628. /**
  629. * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
  630. * @vsi: the VSI we care about
  631. * @skb: skb currently being received and modified
  632. * @rx_desc: the receive descriptor
  633. *
  634. * skb->protocol must be set before this function is called
  635. **/
  636. static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
  637. struct sk_buff *skb,
  638. union i40e_rx_desc *rx_desc)
  639. {
  640. struct i40e_rx_ptype_decoded decoded;
  641. u32 rx_error, rx_status;
  642. bool ipv4, ipv6;
  643. u8 ptype;
  644. u64 qword;
  645. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  646. ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
  647. rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
  648. I40E_RXD_QW1_ERROR_SHIFT;
  649. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  650. I40E_RXD_QW1_STATUS_SHIFT;
  651. decoded = decode_rx_desc_ptype(ptype);
  652. skb->ip_summed = CHECKSUM_NONE;
  653. skb_checksum_none_assert(skb);
  654. /* Rx csum enabled and ip headers found? */
  655. if (!(vsi->netdev->features & NETIF_F_RXCSUM))
  656. return;
  657. /* did the hardware decode the packet and checksum? */
  658. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
  659. return;
  660. /* both known and outer_ip must be set for the below code to work */
  661. if (!(decoded.known && decoded.outer_ip))
  662. return;
  663. ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
  664. (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
  665. ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
  666. (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
  667. if (ipv4 &&
  668. (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
  669. BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
  670. goto checksum_fail;
  671. /* likely incorrect csum if alternate IP extension headers found */
  672. if (ipv6 &&
  673. rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
  674. /* don't increment checksum err here, non-fatal err */
  675. return;
  676. /* there was some L4 error, count error and punt packet to the stack */
  677. if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
  678. goto checksum_fail;
  679. /* handle packets that were not able to be checksummed due
  680. * to arrival speed, in this case the stack can compute
  681. * the csum.
  682. */
  683. if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
  684. return;
  685. /* If there is an outer header present that might contain a checksum
  686. * we need to bump the checksum level by 1 to reflect the fact that
  687. * we are indicating we validated the inner checksum.
  688. */
  689. if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
  690. skb->csum_level = 1;
  691. /* Only report checksum unnecessary for TCP, UDP, or SCTP */
  692. switch (decoded.inner_prot) {
  693. case I40E_RX_PTYPE_INNER_PROT_TCP:
  694. case I40E_RX_PTYPE_INNER_PROT_UDP:
  695. case I40E_RX_PTYPE_INNER_PROT_SCTP:
  696. skb->ip_summed = CHECKSUM_UNNECESSARY;
  697. /* fall though */
  698. default:
  699. break;
  700. }
  701. return;
  702. checksum_fail:
  703. vsi->back->hw_csum_rx_error++;
  704. }
  705. /**
  706. * i40e_ptype_to_htype - get a hash type
  707. * @ptype: the ptype value from the descriptor
  708. *
  709. * Returns a hash type to be used by skb_set_hash
  710. **/
  711. static inline int i40e_ptype_to_htype(u8 ptype)
  712. {
  713. struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
  714. if (!decoded.known)
  715. return PKT_HASH_TYPE_NONE;
  716. if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  717. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
  718. return PKT_HASH_TYPE_L4;
  719. else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  720. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
  721. return PKT_HASH_TYPE_L3;
  722. else
  723. return PKT_HASH_TYPE_L2;
  724. }
  725. /**
  726. * i40e_rx_hash - set the hash value in the skb
  727. * @ring: descriptor ring
  728. * @rx_desc: specific descriptor
  729. **/
  730. static inline void i40e_rx_hash(struct i40e_ring *ring,
  731. union i40e_rx_desc *rx_desc,
  732. struct sk_buff *skb,
  733. u8 rx_ptype)
  734. {
  735. u32 hash;
  736. const __le64 rss_mask =
  737. cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
  738. I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
  739. if (ring->netdev->features & NETIF_F_RXHASH)
  740. return;
  741. if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
  742. hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
  743. skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
  744. }
  745. }
  746. /**
  747. * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
  748. * @rx_ring: rx descriptor ring packet is being transacted on
  749. * @rx_desc: pointer to the EOP Rx descriptor
  750. * @skb: pointer to current skb being populated
  751. * @rx_ptype: the packet type decoded by hardware
  752. *
  753. * This function checks the ring, descriptor, and packet information in
  754. * order to populate the hash, checksum, VLAN, protocol, and
  755. * other fields within the skb.
  756. **/
  757. static inline
  758. void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
  759. union i40e_rx_desc *rx_desc, struct sk_buff *skb,
  760. u8 rx_ptype)
  761. {
  762. i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
  763. /* modifies the skb - consumes the enet header */
  764. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  765. i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
  766. skb_record_rx_queue(skb, rx_ring->queue_index);
  767. }
  768. /**
  769. * i40e_pull_tail - i40e specific version of skb_pull_tail
  770. * @rx_ring: rx descriptor ring packet is being transacted on
  771. * @skb: pointer to current skb being adjusted
  772. *
  773. * This function is an i40e specific version of __pskb_pull_tail. The
  774. * main difference between this version and the original function is that
  775. * this function can make several assumptions about the state of things
  776. * that allow for significant optimizations versus the standard function.
  777. * As a result we can do things like drop a frag and maintain an accurate
  778. * truesize for the skb.
  779. */
  780. static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
  781. {
  782. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
  783. unsigned char *va;
  784. unsigned int pull_len;
  785. /* it is valid to use page_address instead of kmap since we are
  786. * working with pages allocated out of the lomem pool per
  787. * alloc_page(GFP_ATOMIC)
  788. */
  789. va = skb_frag_address(frag);
  790. /* we need the header to contain the greater of either ETH_HLEN or
  791. * 60 bytes if the skb->len is less than 60 for skb_pad.
  792. */
  793. pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
  794. /* align pull length to size of long to optimize memcpy performance */
  795. skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
  796. /* update all of the pointers */
  797. skb_frag_size_sub(frag, pull_len);
  798. frag->page_offset += pull_len;
  799. skb->data_len -= pull_len;
  800. skb->tail += pull_len;
  801. }
  802. /**
  803. * i40e_cleanup_headers - Correct empty headers
  804. * @rx_ring: rx descriptor ring packet is being transacted on
  805. * @skb: pointer to current skb being fixed
  806. *
  807. * Also address the case where we are pulling data in on pages only
  808. * and as such no data is present in the skb header.
  809. *
  810. * In addition if skb is not at least 60 bytes we need to pad it so that
  811. * it is large enough to qualify as a valid Ethernet frame.
  812. *
  813. * Returns true if an error was encountered and skb was freed.
  814. **/
  815. static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
  816. {
  817. /* place header in linear portion of buffer */
  818. if (skb_is_nonlinear(skb))
  819. i40e_pull_tail(rx_ring, skb);
  820. /* if eth_skb_pad returns an error the skb was freed */
  821. if (eth_skb_pad(skb))
  822. return true;
  823. return false;
  824. }
  825. /**
  826. * i40e_reuse_rx_page - page flip buffer and store it back on the ring
  827. * @rx_ring: rx descriptor ring to store buffers on
  828. * @old_buff: donor buffer to have page reused
  829. *
  830. * Synchronizes page for reuse by the adapter
  831. **/
  832. static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
  833. struct i40e_rx_buffer *old_buff)
  834. {
  835. struct i40e_rx_buffer *new_buff;
  836. u16 nta = rx_ring->next_to_alloc;
  837. new_buff = &rx_ring->rx_bi[nta];
  838. /* update, and store next to alloc */
  839. nta++;
  840. rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
  841. /* transfer page from old buffer to new buffer */
  842. *new_buff = *old_buff;
  843. }
  844. /**
  845. * i40e_page_is_reserved - check if reuse is possible
  846. * @page: page struct to check
  847. */
  848. static inline bool i40e_page_is_reserved(struct page *page)
  849. {
  850. return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
  851. }
  852. /**
  853. * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
  854. * @rx_ring: rx descriptor ring to transact packets on
  855. * @rx_buffer: buffer containing page to add
  856. * @rx_desc: descriptor containing length of buffer written by hardware
  857. * @skb: sk_buff to place the data into
  858. *
  859. * This function will add the data contained in rx_buffer->page to the skb.
  860. * This is done either through a direct copy if the data in the buffer is
  861. * less than the skb header size, otherwise it will just attach the page as
  862. * a frag to the skb.
  863. *
  864. * The function will then update the page offset if necessary and return
  865. * true if the buffer can be reused by the adapter.
  866. **/
  867. static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
  868. struct i40e_rx_buffer *rx_buffer,
  869. union i40e_rx_desc *rx_desc,
  870. struct sk_buff *skb)
  871. {
  872. struct page *page = rx_buffer->page;
  873. u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  874. unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
  875. I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
  876. #if (PAGE_SIZE < 8192)
  877. unsigned int truesize = I40E_RXBUFFER_2048;
  878. #else
  879. unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
  880. unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
  881. #endif
  882. /* will the data fit in the skb we allocated? if so, just
  883. * copy it as it is pretty small anyway
  884. */
  885. if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
  886. unsigned char *va = page_address(page) + rx_buffer->page_offset;
  887. memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
  888. /* page is not reserved, we can reuse buffer as-is */
  889. if (likely(!i40e_page_is_reserved(page)))
  890. return true;
  891. /* this page cannot be reused so discard it */
  892. __free_pages(page, 0);
  893. return false;
  894. }
  895. skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
  896. rx_buffer->page_offset, size, truesize);
  897. /* avoid re-using remote pages */
  898. if (unlikely(i40e_page_is_reserved(page)))
  899. return false;
  900. #if (PAGE_SIZE < 8192)
  901. /* if we are only owner of page we can reuse it */
  902. if (unlikely(page_count(page) != 1))
  903. return false;
  904. /* flip page offset to other buffer */
  905. rx_buffer->page_offset ^= truesize;
  906. #else
  907. /* move offset up to the next cache line */
  908. rx_buffer->page_offset += truesize;
  909. if (rx_buffer->page_offset > last_offset)
  910. return false;
  911. #endif
  912. /* Even if we own the page, we are not allowed to use atomic_set()
  913. * This would break get_page_unless_zero() users.
  914. */
  915. get_page(rx_buffer->page);
  916. return true;
  917. }
  918. /**
  919. * i40evf_fetch_rx_buffer - Allocate skb and populate it
  920. * @rx_ring: rx descriptor ring to transact packets on
  921. * @rx_desc: descriptor containing info written by hardware
  922. *
  923. * This function allocates an skb on the fly, and populates it with the page
  924. * data from the current receive descriptor, taking care to set up the skb
  925. * correctly, as well as handling calling the page recycle function if
  926. * necessary.
  927. */
  928. static inline
  929. struct sk_buff *i40evf_fetch_rx_buffer(struct i40e_ring *rx_ring,
  930. union i40e_rx_desc *rx_desc)
  931. {
  932. struct i40e_rx_buffer *rx_buffer;
  933. struct sk_buff *skb;
  934. struct page *page;
  935. rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
  936. page = rx_buffer->page;
  937. prefetchw(page);
  938. skb = rx_buffer->skb;
  939. if (likely(!skb)) {
  940. void *page_addr = page_address(page) + rx_buffer->page_offset;
  941. /* prefetch first cache line of first page */
  942. prefetch(page_addr);
  943. #if L1_CACHE_BYTES < 128
  944. prefetch(page_addr + L1_CACHE_BYTES);
  945. #endif
  946. /* allocate a skb to store the frags */
  947. skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
  948. I40E_RX_HDR_SIZE,
  949. GFP_ATOMIC | __GFP_NOWARN);
  950. if (unlikely(!skb)) {
  951. rx_ring->rx_stats.alloc_buff_failed++;
  952. return NULL;
  953. }
  954. /* we will be copying header into skb->data in
  955. * pskb_may_pull so it is in our interest to prefetch
  956. * it now to avoid a possible cache miss
  957. */
  958. prefetchw(skb->data);
  959. } else {
  960. rx_buffer->skb = NULL;
  961. }
  962. /* we are reusing so sync this buffer for CPU use */
  963. dma_sync_single_range_for_cpu(rx_ring->dev,
  964. rx_buffer->dma,
  965. rx_buffer->page_offset,
  966. I40E_RXBUFFER_2048,
  967. DMA_FROM_DEVICE);
  968. /* pull page into skb */
  969. if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
  970. /* hand second half of page back to the ring */
  971. i40e_reuse_rx_page(rx_ring, rx_buffer);
  972. rx_ring->rx_stats.page_reuse_count++;
  973. } else {
  974. /* we are not reusing the buffer so unmap it */
  975. dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
  976. DMA_FROM_DEVICE);
  977. }
  978. /* clear contents of buffer_info */
  979. rx_buffer->page = NULL;
  980. return skb;
  981. }
  982. /**
  983. * i40e_is_non_eop - process handling of non-EOP buffers
  984. * @rx_ring: Rx ring being processed
  985. * @rx_desc: Rx descriptor for current buffer
  986. * @skb: Current socket buffer containing buffer in progress
  987. *
  988. * This function updates next to clean. If the buffer is an EOP buffer
  989. * this function exits returning false, otherwise it will place the
  990. * sk_buff in the next buffer to be chained and return true indicating
  991. * that this is in fact a non-EOP buffer.
  992. **/
  993. static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
  994. union i40e_rx_desc *rx_desc,
  995. struct sk_buff *skb)
  996. {
  997. u32 ntc = rx_ring->next_to_clean + 1;
  998. /* fetch, update, and store next to clean */
  999. ntc = (ntc < rx_ring->count) ? ntc : 0;
  1000. rx_ring->next_to_clean = ntc;
  1001. prefetch(I40E_RX_DESC(rx_ring, ntc));
  1002. /* if we are the last buffer then there is nothing else to do */
  1003. #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
  1004. if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
  1005. return false;
  1006. /* place skb in next buffer to be received */
  1007. rx_ring->rx_bi[ntc].skb = skb;
  1008. rx_ring->rx_stats.non_eop_descs++;
  1009. return true;
  1010. }
  1011. /**
  1012. * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
  1013. * @rx_ring: rx descriptor ring to transact packets on
  1014. * @budget: Total limit on number of packets to process
  1015. *
  1016. * This function provides a "bounce buffer" approach to Rx interrupt
  1017. * processing. The advantage to this is that on systems that have
  1018. * expensive overhead for IOMMU access this provides a means of avoiding
  1019. * it by maintaining the mapping of the page to the system.
  1020. *
  1021. * Returns amount of work completed
  1022. **/
  1023. static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
  1024. {
  1025. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  1026. u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
  1027. bool failure = false;
  1028. while (likely(total_rx_packets < budget)) {
  1029. union i40e_rx_desc *rx_desc;
  1030. struct sk_buff *skb;
  1031. u32 rx_status;
  1032. u16 vlan_tag;
  1033. u8 rx_ptype;
  1034. u64 qword;
  1035. /* return some buffers to hardware, one at a time is too slow */
  1036. if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
  1037. failure = failure ||
  1038. i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
  1039. cleaned_count = 0;
  1040. }
  1041. rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
  1042. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  1043. rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
  1044. I40E_RXD_QW1_PTYPE_SHIFT;
  1045. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  1046. I40E_RXD_QW1_STATUS_SHIFT;
  1047. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
  1048. break;
  1049. /* status_error_len will always be zero for unused descriptors
  1050. * because it's cleared in cleanup, and overlaps with hdr_addr
  1051. * which is always zero because packet split isn't used, if the
  1052. * hardware wrote DD then it will be non-zero
  1053. */
  1054. if (!rx_desc->wb.qword1.status_error_len)
  1055. break;
  1056. /* This memory barrier is needed to keep us from reading
  1057. * any other fields out of the rx_desc until we know the
  1058. * DD bit is set.
  1059. */
  1060. dma_rmb();
  1061. skb = i40evf_fetch_rx_buffer(rx_ring, rx_desc);
  1062. if (!skb)
  1063. break;
  1064. cleaned_count++;
  1065. if (i40e_is_non_eop(rx_ring, rx_desc, skb))
  1066. continue;
  1067. /* ERR_MASK will only have valid bits if EOP set, and
  1068. * what we are doing here is actually checking
  1069. * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
  1070. * the error field
  1071. */
  1072. if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
  1073. dev_kfree_skb_any(skb);
  1074. continue;
  1075. }
  1076. if (i40e_cleanup_headers(rx_ring, skb))
  1077. continue;
  1078. /* probably a little skewed due to removing CRC */
  1079. total_rx_bytes += skb->len;
  1080. /* populate checksum, VLAN, and protocol */
  1081. i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
  1082. vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
  1083. le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
  1084. i40e_receive_skb(rx_ring, skb, vlan_tag);
  1085. /* update budget accounting */
  1086. total_rx_packets++;
  1087. }
  1088. u64_stats_update_begin(&rx_ring->syncp);
  1089. rx_ring->stats.packets += total_rx_packets;
  1090. rx_ring->stats.bytes += total_rx_bytes;
  1091. u64_stats_update_end(&rx_ring->syncp);
  1092. rx_ring->q_vector->rx.total_packets += total_rx_packets;
  1093. rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
  1094. /* guarantee a trip back through this routine if there was a failure */
  1095. return failure ? budget : total_rx_packets;
  1096. }
  1097. static u32 i40e_buildreg_itr(const int type, const u16 itr)
  1098. {
  1099. u32 val;
  1100. val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  1101. /* Don't clear PBA because that can cause lost interrupts that
  1102. * came in while we were cleaning/polling
  1103. */
  1104. (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
  1105. (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
  1106. return val;
  1107. }
  1108. /* a small macro to shorten up some long lines */
  1109. #define INTREG I40E_VFINT_DYN_CTLN1
  1110. /**
  1111. * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
  1112. * @vsi: the VSI we care about
  1113. * @q_vector: q_vector for which itr is being updated and interrupt enabled
  1114. *
  1115. **/
  1116. static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
  1117. struct i40e_q_vector *q_vector)
  1118. {
  1119. struct i40e_hw *hw = &vsi->back->hw;
  1120. bool rx = false, tx = false;
  1121. u32 rxval, txval;
  1122. int vector;
  1123. vector = (q_vector->v_idx + vsi->base_vector);
  1124. /* avoid dynamic calculation if in countdown mode OR if
  1125. * all dynamic is disabled
  1126. */
  1127. rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
  1128. if (q_vector->itr_countdown > 0 ||
  1129. (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
  1130. !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
  1131. goto enable_int;
  1132. }
  1133. if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
  1134. rx = i40e_set_new_dynamic_itr(&q_vector->rx);
  1135. rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
  1136. }
  1137. if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
  1138. tx = i40e_set_new_dynamic_itr(&q_vector->tx);
  1139. txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
  1140. }
  1141. if (rx || tx) {
  1142. /* get the higher of the two ITR adjustments and
  1143. * use the same value for both ITR registers
  1144. * when in adaptive mode (Rx and/or Tx)
  1145. */
  1146. u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
  1147. q_vector->tx.itr = q_vector->rx.itr = itr;
  1148. txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
  1149. tx = true;
  1150. rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
  1151. rx = true;
  1152. }
  1153. /* only need to enable the interrupt once, but need
  1154. * to possibly update both ITR values
  1155. */
  1156. if (rx) {
  1157. /* set the INTENA_MSK_MASK so that this first write
  1158. * won't actually enable the interrupt, instead just
  1159. * updating the ITR (it's bit 31 PF and VF)
  1160. */
  1161. rxval |= BIT(31);
  1162. /* don't check _DOWN because interrupt isn't being enabled */
  1163. wr32(hw, INTREG(vector - 1), rxval);
  1164. }
  1165. enable_int:
  1166. if (!test_bit(__I40E_DOWN, &vsi->state))
  1167. wr32(hw, INTREG(vector - 1), txval);
  1168. if (q_vector->itr_countdown)
  1169. q_vector->itr_countdown--;
  1170. else
  1171. q_vector->itr_countdown = ITR_COUNTDOWN_START;
  1172. }
  1173. /**
  1174. * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
  1175. * @napi: napi struct with our devices info in it
  1176. * @budget: amount of work driver is allowed to do this pass, in packets
  1177. *
  1178. * This function will clean all queues associated with a q_vector.
  1179. *
  1180. * Returns the amount of work done
  1181. **/
  1182. int i40evf_napi_poll(struct napi_struct *napi, int budget)
  1183. {
  1184. struct i40e_q_vector *q_vector =
  1185. container_of(napi, struct i40e_q_vector, napi);
  1186. struct i40e_vsi *vsi = q_vector->vsi;
  1187. struct i40e_ring *ring;
  1188. bool clean_complete = true;
  1189. bool arm_wb = false;
  1190. int budget_per_ring;
  1191. int work_done = 0;
  1192. if (test_bit(__I40E_DOWN, &vsi->state)) {
  1193. napi_complete(napi);
  1194. return 0;
  1195. }
  1196. /* Since the actual Tx work is minimal, we can give the Tx a larger
  1197. * budget and be more aggressive about cleaning up the Tx descriptors.
  1198. */
  1199. i40e_for_each_ring(ring, q_vector->tx) {
  1200. if (!i40e_clean_tx_irq(vsi, ring, budget)) {
  1201. clean_complete = false;
  1202. continue;
  1203. }
  1204. arm_wb |= ring->arm_wb;
  1205. ring->arm_wb = false;
  1206. }
  1207. /* Handle case where we are called by netpoll with a budget of 0 */
  1208. if (budget <= 0)
  1209. goto tx_only;
  1210. /* We attempt to distribute budget to each Rx queue fairly, but don't
  1211. * allow the budget to go below 1 because that would exit polling early.
  1212. */
  1213. budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
  1214. i40e_for_each_ring(ring, q_vector->rx) {
  1215. int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
  1216. work_done += cleaned;
  1217. /* if we clean as many as budgeted, we must not be done */
  1218. if (cleaned >= budget_per_ring)
  1219. clean_complete = false;
  1220. }
  1221. /* If work not completed, return budget and polling will return */
  1222. if (!clean_complete) {
  1223. tx_only:
  1224. if (arm_wb) {
  1225. q_vector->tx.ring[0].tx_stats.tx_force_wb++;
  1226. i40e_enable_wb_on_itr(vsi, q_vector);
  1227. }
  1228. return budget;
  1229. }
  1230. if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
  1231. q_vector->arm_wb_state = false;
  1232. /* Work is done so exit the polling mode and re-enable the interrupt */
  1233. napi_complete_done(napi, work_done);
  1234. i40e_update_enable_itr(vsi, q_vector);
  1235. return 0;
  1236. }
  1237. /**
  1238. * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
  1239. * @skb: send buffer
  1240. * @tx_ring: ring to send buffer on
  1241. * @flags: the tx flags to be set
  1242. *
  1243. * Checks the skb and set up correspondingly several generic transmit flags
  1244. * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
  1245. *
  1246. * Returns error code indicate the frame should be dropped upon error and the
  1247. * otherwise returns 0 to indicate the flags has been set properly.
  1248. **/
  1249. static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
  1250. struct i40e_ring *tx_ring,
  1251. u32 *flags)
  1252. {
  1253. __be16 protocol = skb->protocol;
  1254. u32 tx_flags = 0;
  1255. if (protocol == htons(ETH_P_8021Q) &&
  1256. !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
  1257. /* When HW VLAN acceleration is turned off by the user the
  1258. * stack sets the protocol to 8021q so that the driver
  1259. * can take any steps required to support the SW only
  1260. * VLAN handling. In our case the driver doesn't need
  1261. * to take any further steps so just set the protocol
  1262. * to the encapsulated ethertype.
  1263. */
  1264. skb->protocol = vlan_get_protocol(skb);
  1265. goto out;
  1266. }
  1267. /* if we have a HW VLAN tag being added, default to the HW one */
  1268. if (skb_vlan_tag_present(skb)) {
  1269. tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
  1270. tx_flags |= I40E_TX_FLAGS_HW_VLAN;
  1271. /* else if it is a SW VLAN, check the next protocol and store the tag */
  1272. } else if (protocol == htons(ETH_P_8021Q)) {
  1273. struct vlan_hdr *vhdr, _vhdr;
  1274. vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
  1275. if (!vhdr)
  1276. return -EINVAL;
  1277. protocol = vhdr->h_vlan_encapsulated_proto;
  1278. tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
  1279. tx_flags |= I40E_TX_FLAGS_SW_VLAN;
  1280. }
  1281. out:
  1282. *flags = tx_flags;
  1283. return 0;
  1284. }
  1285. /**
  1286. * i40e_tso - set up the tso context descriptor
  1287. * @skb: ptr to the skb we're sending
  1288. * @hdr_len: ptr to the size of the packet header
  1289. * @cd_type_cmd_tso_mss: Quad Word 1
  1290. *
  1291. * Returns 0 if no TSO can happen, 1 if tso is going, or error
  1292. **/
  1293. static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
  1294. {
  1295. u64 cd_cmd, cd_tso_len, cd_mss;
  1296. union {
  1297. struct iphdr *v4;
  1298. struct ipv6hdr *v6;
  1299. unsigned char *hdr;
  1300. } ip;
  1301. union {
  1302. struct tcphdr *tcp;
  1303. struct udphdr *udp;
  1304. unsigned char *hdr;
  1305. } l4;
  1306. u32 paylen, l4_offset;
  1307. int err;
  1308. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1309. return 0;
  1310. if (!skb_is_gso(skb))
  1311. return 0;
  1312. err = skb_cow_head(skb, 0);
  1313. if (err < 0)
  1314. return err;
  1315. ip.hdr = skb_network_header(skb);
  1316. l4.hdr = skb_transport_header(skb);
  1317. /* initialize outer IP header fields */
  1318. if (ip.v4->version == 4) {
  1319. ip.v4->tot_len = 0;
  1320. ip.v4->check = 0;
  1321. } else {
  1322. ip.v6->payload_len = 0;
  1323. }
  1324. if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
  1325. SKB_GSO_GRE_CSUM |
  1326. SKB_GSO_IPXIP4 |
  1327. SKB_GSO_IPXIP6 |
  1328. SKB_GSO_UDP_TUNNEL |
  1329. SKB_GSO_UDP_TUNNEL_CSUM)) {
  1330. if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
  1331. (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
  1332. l4.udp->len = 0;
  1333. /* determine offset of outer transport header */
  1334. l4_offset = l4.hdr - skb->data;
  1335. /* remove payload length from outer checksum */
  1336. paylen = skb->len - l4_offset;
  1337. csum_replace_by_diff(&l4.udp->check, htonl(paylen));
  1338. }
  1339. /* reset pointers to inner headers */
  1340. ip.hdr = skb_inner_network_header(skb);
  1341. l4.hdr = skb_inner_transport_header(skb);
  1342. /* initialize inner IP header fields */
  1343. if (ip.v4->version == 4) {
  1344. ip.v4->tot_len = 0;
  1345. ip.v4->check = 0;
  1346. } else {
  1347. ip.v6->payload_len = 0;
  1348. }
  1349. }
  1350. /* determine offset of inner transport header */
  1351. l4_offset = l4.hdr - skb->data;
  1352. /* remove payload length from inner checksum */
  1353. paylen = skb->len - l4_offset;
  1354. csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
  1355. /* compute length of segmentation header */
  1356. *hdr_len = (l4.tcp->doff * 4) + l4_offset;
  1357. /* find the field values */
  1358. cd_cmd = I40E_TX_CTX_DESC_TSO;
  1359. cd_tso_len = skb->len - *hdr_len;
  1360. cd_mss = skb_shinfo(skb)->gso_size;
  1361. *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
  1362. (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
  1363. (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
  1364. return 1;
  1365. }
  1366. /**
  1367. * i40e_tx_enable_csum - Enable Tx checksum offloads
  1368. * @skb: send buffer
  1369. * @tx_flags: pointer to Tx flags currently set
  1370. * @td_cmd: Tx descriptor command bits to set
  1371. * @td_offset: Tx descriptor header offsets to set
  1372. * @tx_ring: Tx descriptor ring
  1373. * @cd_tunneling: ptr to context desc bits
  1374. **/
  1375. static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
  1376. u32 *td_cmd, u32 *td_offset,
  1377. struct i40e_ring *tx_ring,
  1378. u32 *cd_tunneling)
  1379. {
  1380. union {
  1381. struct iphdr *v4;
  1382. struct ipv6hdr *v6;
  1383. unsigned char *hdr;
  1384. } ip;
  1385. union {
  1386. struct tcphdr *tcp;
  1387. struct udphdr *udp;
  1388. unsigned char *hdr;
  1389. } l4;
  1390. unsigned char *exthdr;
  1391. u32 offset, cmd = 0;
  1392. __be16 frag_off;
  1393. u8 l4_proto = 0;
  1394. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1395. return 0;
  1396. ip.hdr = skb_network_header(skb);
  1397. l4.hdr = skb_transport_header(skb);
  1398. /* compute outer L2 header size */
  1399. offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
  1400. if (skb->encapsulation) {
  1401. u32 tunnel = 0;
  1402. /* define outer network header type */
  1403. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  1404. tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
  1405. I40E_TX_CTX_EXT_IP_IPV4 :
  1406. I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
  1407. l4_proto = ip.v4->protocol;
  1408. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  1409. tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
  1410. exthdr = ip.hdr + sizeof(*ip.v6);
  1411. l4_proto = ip.v6->nexthdr;
  1412. if (l4.hdr != exthdr)
  1413. ipv6_skip_exthdr(skb, exthdr - skb->data,
  1414. &l4_proto, &frag_off);
  1415. }
  1416. /* define outer transport */
  1417. switch (l4_proto) {
  1418. case IPPROTO_UDP:
  1419. tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
  1420. *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
  1421. break;
  1422. case IPPROTO_GRE:
  1423. tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
  1424. *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
  1425. break;
  1426. case IPPROTO_IPIP:
  1427. case IPPROTO_IPV6:
  1428. *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
  1429. l4.hdr = skb_inner_network_header(skb);
  1430. break;
  1431. default:
  1432. if (*tx_flags & I40E_TX_FLAGS_TSO)
  1433. return -1;
  1434. skb_checksum_help(skb);
  1435. return 0;
  1436. }
  1437. /* compute outer L3 header size */
  1438. tunnel |= ((l4.hdr - ip.hdr) / 4) <<
  1439. I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
  1440. /* switch IP header pointer from outer to inner header */
  1441. ip.hdr = skb_inner_network_header(skb);
  1442. /* compute tunnel header size */
  1443. tunnel |= ((ip.hdr - l4.hdr) / 2) <<
  1444. I40E_TXD_CTX_QW0_NATLEN_SHIFT;
  1445. /* indicate if we need to offload outer UDP header */
  1446. if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
  1447. !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
  1448. (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
  1449. tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
  1450. /* record tunnel offload values */
  1451. *cd_tunneling |= tunnel;
  1452. /* switch L4 header pointer from outer to inner */
  1453. l4.hdr = skb_inner_transport_header(skb);
  1454. l4_proto = 0;
  1455. /* reset type as we transition from outer to inner headers */
  1456. *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
  1457. if (ip.v4->version == 4)
  1458. *tx_flags |= I40E_TX_FLAGS_IPV4;
  1459. if (ip.v6->version == 6)
  1460. *tx_flags |= I40E_TX_FLAGS_IPV6;
  1461. }
  1462. /* Enable IP checksum offloads */
  1463. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  1464. l4_proto = ip.v4->protocol;
  1465. /* the stack computes the IP header already, the only time we
  1466. * need the hardware to recompute it is in the case of TSO.
  1467. */
  1468. cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
  1469. I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
  1470. I40E_TX_DESC_CMD_IIPT_IPV4;
  1471. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  1472. cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
  1473. exthdr = ip.hdr + sizeof(*ip.v6);
  1474. l4_proto = ip.v6->nexthdr;
  1475. if (l4.hdr != exthdr)
  1476. ipv6_skip_exthdr(skb, exthdr - skb->data,
  1477. &l4_proto, &frag_off);
  1478. }
  1479. /* compute inner L3 header size */
  1480. offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
  1481. /* Enable L4 checksum offloads */
  1482. switch (l4_proto) {
  1483. case IPPROTO_TCP:
  1484. /* enable checksum offloads */
  1485. cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
  1486. offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1487. break;
  1488. case IPPROTO_SCTP:
  1489. /* enable SCTP checksum offload */
  1490. cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
  1491. offset |= (sizeof(struct sctphdr) >> 2) <<
  1492. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1493. break;
  1494. case IPPROTO_UDP:
  1495. /* enable UDP checksum offload */
  1496. cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
  1497. offset |= (sizeof(struct udphdr) >> 2) <<
  1498. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1499. break;
  1500. default:
  1501. if (*tx_flags & I40E_TX_FLAGS_TSO)
  1502. return -1;
  1503. skb_checksum_help(skb);
  1504. return 0;
  1505. }
  1506. *td_cmd |= cmd;
  1507. *td_offset |= offset;
  1508. return 1;
  1509. }
  1510. /**
  1511. * i40e_create_tx_ctx Build the Tx context descriptor
  1512. * @tx_ring: ring to create the descriptor on
  1513. * @cd_type_cmd_tso_mss: Quad Word 1
  1514. * @cd_tunneling: Quad Word 0 - bits 0-31
  1515. * @cd_l2tag2: Quad Word 0 - bits 32-63
  1516. **/
  1517. static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
  1518. const u64 cd_type_cmd_tso_mss,
  1519. const u32 cd_tunneling, const u32 cd_l2tag2)
  1520. {
  1521. struct i40e_tx_context_desc *context_desc;
  1522. int i = tx_ring->next_to_use;
  1523. if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
  1524. !cd_tunneling && !cd_l2tag2)
  1525. return;
  1526. /* grab the next descriptor */
  1527. context_desc = I40E_TX_CTXTDESC(tx_ring, i);
  1528. i++;
  1529. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  1530. /* cpu_to_le32 and assign to struct fields */
  1531. context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
  1532. context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
  1533. context_desc->rsvd = cpu_to_le16(0);
  1534. context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
  1535. }
  1536. /**
  1537. * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
  1538. * @skb: send buffer
  1539. *
  1540. * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
  1541. * and so we need to figure out the cases where we need to linearize the skb.
  1542. *
  1543. * For TSO we need to count the TSO header and segment payload separately.
  1544. * As such we need to check cases where we have 7 fragments or more as we
  1545. * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
  1546. * the segment payload in the first descriptor, and another 7 for the
  1547. * fragments.
  1548. **/
  1549. bool __i40evf_chk_linearize(struct sk_buff *skb)
  1550. {
  1551. const struct skb_frag_struct *frag, *stale;
  1552. int nr_frags, sum;
  1553. /* no need to check if number of frags is less than 7 */
  1554. nr_frags = skb_shinfo(skb)->nr_frags;
  1555. if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
  1556. return false;
  1557. /* We need to walk through the list and validate that each group
  1558. * of 6 fragments totals at least gso_size. However we don't need
  1559. * to perform such validation on the last 6 since the last 6 cannot
  1560. * inherit any data from a descriptor after them.
  1561. */
  1562. nr_frags -= I40E_MAX_BUFFER_TXD - 2;
  1563. frag = &skb_shinfo(skb)->frags[0];
  1564. /* Initialize size to the negative value of gso_size minus 1. We
  1565. * use this as the worst case scenerio in which the frag ahead
  1566. * of us only provides one byte which is why we are limited to 6
  1567. * descriptors for a single transmit as the header and previous
  1568. * fragment are already consuming 2 descriptors.
  1569. */
  1570. sum = 1 - skb_shinfo(skb)->gso_size;
  1571. /* Add size of frags 0 through 4 to create our initial sum */
  1572. sum += skb_frag_size(frag++);
  1573. sum += skb_frag_size(frag++);
  1574. sum += skb_frag_size(frag++);
  1575. sum += skb_frag_size(frag++);
  1576. sum += skb_frag_size(frag++);
  1577. /* Walk through fragments adding latest fragment, testing it, and
  1578. * then removing stale fragments from the sum.
  1579. */
  1580. stale = &skb_shinfo(skb)->frags[0];
  1581. for (;;) {
  1582. sum += skb_frag_size(frag++);
  1583. /* if sum is negative we failed to make sufficient progress */
  1584. if (sum < 0)
  1585. return true;
  1586. /* use pre-decrement to avoid processing last fragment */
  1587. if (!--nr_frags)
  1588. break;
  1589. sum -= skb_frag_size(stale++);
  1590. }
  1591. return false;
  1592. }
  1593. /**
  1594. * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
  1595. * @tx_ring: the ring to be checked
  1596. * @size: the size buffer we want to assure is available
  1597. *
  1598. * Returns -EBUSY if a stop is needed, else 0
  1599. **/
  1600. int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  1601. {
  1602. netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
  1603. /* Memory barrier before checking head and tail */
  1604. smp_mb();
  1605. /* Check again in a case another CPU has just made room available. */
  1606. if (likely(I40E_DESC_UNUSED(tx_ring) < size))
  1607. return -EBUSY;
  1608. /* A reprieve! - use start_queue because it doesn't call schedule */
  1609. netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
  1610. ++tx_ring->tx_stats.restart_queue;
  1611. return 0;
  1612. }
  1613. /**
  1614. * i40evf_tx_map - Build the Tx descriptor
  1615. * @tx_ring: ring to send buffer on
  1616. * @skb: send buffer
  1617. * @first: first buffer info buffer to use
  1618. * @tx_flags: collected send information
  1619. * @hdr_len: size of the packet header
  1620. * @td_cmd: the command field in the descriptor
  1621. * @td_offset: offset for checksum or crc
  1622. **/
  1623. static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
  1624. struct i40e_tx_buffer *first, u32 tx_flags,
  1625. const u8 hdr_len, u32 td_cmd, u32 td_offset)
  1626. {
  1627. unsigned int data_len = skb->data_len;
  1628. unsigned int size = skb_headlen(skb);
  1629. struct skb_frag_struct *frag;
  1630. struct i40e_tx_buffer *tx_bi;
  1631. struct i40e_tx_desc *tx_desc;
  1632. u16 i = tx_ring->next_to_use;
  1633. u32 td_tag = 0;
  1634. dma_addr_t dma;
  1635. u16 gso_segs;
  1636. u16 desc_count = 0;
  1637. bool tail_bump = true;
  1638. bool do_rs = false;
  1639. if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
  1640. td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
  1641. td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
  1642. I40E_TX_FLAGS_VLAN_SHIFT;
  1643. }
  1644. if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
  1645. gso_segs = skb_shinfo(skb)->gso_segs;
  1646. else
  1647. gso_segs = 1;
  1648. /* multiply data chunks by size of headers */
  1649. first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
  1650. first->gso_segs = gso_segs;
  1651. first->skb = skb;
  1652. first->tx_flags = tx_flags;
  1653. dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
  1654. tx_desc = I40E_TX_DESC(tx_ring, i);
  1655. tx_bi = first;
  1656. for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
  1657. unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
  1658. if (dma_mapping_error(tx_ring->dev, dma))
  1659. goto dma_error;
  1660. /* record length, and DMA address */
  1661. dma_unmap_len_set(tx_bi, len, size);
  1662. dma_unmap_addr_set(tx_bi, dma, dma);
  1663. /* align size to end of page */
  1664. max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
  1665. tx_desc->buffer_addr = cpu_to_le64(dma);
  1666. while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
  1667. tx_desc->cmd_type_offset_bsz =
  1668. build_ctob(td_cmd, td_offset,
  1669. max_data, td_tag);
  1670. tx_desc++;
  1671. i++;
  1672. desc_count++;
  1673. if (i == tx_ring->count) {
  1674. tx_desc = I40E_TX_DESC(tx_ring, 0);
  1675. i = 0;
  1676. }
  1677. dma += max_data;
  1678. size -= max_data;
  1679. max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
  1680. tx_desc->buffer_addr = cpu_to_le64(dma);
  1681. }
  1682. if (likely(!data_len))
  1683. break;
  1684. tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
  1685. size, td_tag);
  1686. tx_desc++;
  1687. i++;
  1688. desc_count++;
  1689. if (i == tx_ring->count) {
  1690. tx_desc = I40E_TX_DESC(tx_ring, 0);
  1691. i = 0;
  1692. }
  1693. size = skb_frag_size(frag);
  1694. data_len -= size;
  1695. dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
  1696. DMA_TO_DEVICE);
  1697. tx_bi = &tx_ring->tx_bi[i];
  1698. }
  1699. /* set next_to_watch value indicating a packet is present */
  1700. first->next_to_watch = tx_desc;
  1701. i++;
  1702. if (i == tx_ring->count)
  1703. i = 0;
  1704. tx_ring->next_to_use = i;
  1705. netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
  1706. tx_ring->queue_index),
  1707. first->bytecount);
  1708. i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
  1709. /* Algorithm to optimize tail and RS bit setting:
  1710. * if xmit_more is supported
  1711. * if xmit_more is true
  1712. * do not update tail and do not mark RS bit.
  1713. * if xmit_more is false and last xmit_more was false
  1714. * if every packet spanned less than 4 desc
  1715. * then set RS bit on 4th packet and update tail
  1716. * on every packet
  1717. * else
  1718. * update tail and set RS bit on every packet.
  1719. * if xmit_more is false and last_xmit_more was true
  1720. * update tail and set RS bit.
  1721. *
  1722. * Optimization: wmb to be issued only in case of tail update.
  1723. * Also optimize the Descriptor WB path for RS bit with the same
  1724. * algorithm.
  1725. *
  1726. * Note: If there are less than 4 packets
  1727. * pending and interrupts were disabled the service task will
  1728. * trigger a force WB.
  1729. */
  1730. if (skb->xmit_more &&
  1731. !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
  1732. tx_ring->queue_index))) {
  1733. tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
  1734. tail_bump = false;
  1735. } else if (!skb->xmit_more &&
  1736. !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
  1737. tx_ring->queue_index)) &&
  1738. (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
  1739. (tx_ring->packet_stride < WB_STRIDE) &&
  1740. (desc_count < WB_STRIDE)) {
  1741. tx_ring->packet_stride++;
  1742. } else {
  1743. tx_ring->packet_stride = 0;
  1744. tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
  1745. do_rs = true;
  1746. }
  1747. if (do_rs)
  1748. tx_ring->packet_stride = 0;
  1749. tx_desc->cmd_type_offset_bsz =
  1750. build_ctob(td_cmd, td_offset, size, td_tag) |
  1751. cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
  1752. I40E_TX_DESC_CMD_EOP) <<
  1753. I40E_TXD_QW1_CMD_SHIFT);
  1754. /* notify HW of packet */
  1755. if (!tail_bump)
  1756. prefetchw(tx_desc + 1);
  1757. if (tail_bump) {
  1758. /* Force memory writes to complete before letting h/w
  1759. * know there are new descriptors to fetch. (Only
  1760. * applicable for weak-ordered memory model archs,
  1761. * such as IA-64).
  1762. */
  1763. wmb();
  1764. writel(i, tx_ring->tail);
  1765. }
  1766. return;
  1767. dma_error:
  1768. dev_info(tx_ring->dev, "TX DMA map failed\n");
  1769. /* clear dma mappings for failed tx_bi map */
  1770. for (;;) {
  1771. tx_bi = &tx_ring->tx_bi[i];
  1772. i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
  1773. if (tx_bi == first)
  1774. break;
  1775. if (i == 0)
  1776. i = tx_ring->count;
  1777. i--;
  1778. }
  1779. tx_ring->next_to_use = i;
  1780. }
  1781. /**
  1782. * i40e_xmit_frame_ring - Sends buffer on Tx ring
  1783. * @skb: send buffer
  1784. * @tx_ring: ring to send buffer on
  1785. *
  1786. * Returns NETDEV_TX_OK if sent, else an error code
  1787. **/
  1788. static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
  1789. struct i40e_ring *tx_ring)
  1790. {
  1791. u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
  1792. u32 cd_tunneling = 0, cd_l2tag2 = 0;
  1793. struct i40e_tx_buffer *first;
  1794. u32 td_offset = 0;
  1795. u32 tx_flags = 0;
  1796. __be16 protocol;
  1797. u32 td_cmd = 0;
  1798. u8 hdr_len = 0;
  1799. int tso, count;
  1800. /* prefetch the data, we'll need it later */
  1801. prefetch(skb->data);
  1802. count = i40e_xmit_descriptor_count(skb);
  1803. if (i40e_chk_linearize(skb, count)) {
  1804. if (__skb_linearize(skb))
  1805. goto out_drop;
  1806. count = i40e_txd_use_count(skb->len);
  1807. tx_ring->tx_stats.tx_linearize++;
  1808. }
  1809. /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
  1810. * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
  1811. * + 4 desc gap to avoid the cache line where head is,
  1812. * + 1 desc for context descriptor,
  1813. * otherwise try next time
  1814. */
  1815. if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
  1816. tx_ring->tx_stats.tx_busy++;
  1817. return NETDEV_TX_BUSY;
  1818. }
  1819. /* prepare the xmit flags */
  1820. if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
  1821. goto out_drop;
  1822. /* obtain protocol of skb */
  1823. protocol = vlan_get_protocol(skb);
  1824. /* record the location of the first descriptor for this packet */
  1825. first = &tx_ring->tx_bi[tx_ring->next_to_use];
  1826. /* setup IPv4/IPv6 offloads */
  1827. if (protocol == htons(ETH_P_IP))
  1828. tx_flags |= I40E_TX_FLAGS_IPV4;
  1829. else if (protocol == htons(ETH_P_IPV6))
  1830. tx_flags |= I40E_TX_FLAGS_IPV6;
  1831. tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
  1832. if (tso < 0)
  1833. goto out_drop;
  1834. else if (tso)
  1835. tx_flags |= I40E_TX_FLAGS_TSO;
  1836. /* Always offload the checksum, since it's in the data descriptor */
  1837. tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
  1838. tx_ring, &cd_tunneling);
  1839. if (tso < 0)
  1840. goto out_drop;
  1841. skb_tx_timestamp(skb);
  1842. /* always enable CRC insertion offload */
  1843. td_cmd |= I40E_TX_DESC_CMD_ICRC;
  1844. i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
  1845. cd_tunneling, cd_l2tag2);
  1846. i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
  1847. td_cmd, td_offset);
  1848. return NETDEV_TX_OK;
  1849. out_drop:
  1850. dev_kfree_skb_any(skb);
  1851. return NETDEV_TX_OK;
  1852. }
  1853. /**
  1854. * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
  1855. * @skb: send buffer
  1856. * @netdev: network interface device structure
  1857. *
  1858. * Returns NETDEV_TX_OK if sent, else an error code
  1859. **/
  1860. netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  1861. {
  1862. struct i40evf_adapter *adapter = netdev_priv(netdev);
  1863. struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
  1864. /* hardware can't handle really short frames, hardware padding works
  1865. * beyond this point
  1866. */
  1867. if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
  1868. if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
  1869. return NETDEV_TX_OK;
  1870. skb->len = I40E_MIN_TX_LEN;
  1871. skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
  1872. }
  1873. return i40e_xmit_frame_ring(skb, tx_ring);
  1874. }