intel_pm.c 212 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/i915_powerwell.h>
  34. #include <linux/pm_runtime.h>
  35. /**
  36. * RC6 is a special power stage which allows the GPU to enter an very
  37. * low-voltage mode when idle, using down to 0V while at this stage. This
  38. * stage is entered automatically when the GPU is idle when RC6 support is
  39. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  40. *
  41. * There are different RC6 modes available in Intel GPU, which differentiate
  42. * among each other with the latency required to enter and leave RC6 and
  43. * voltage consumed by the GPU in different states.
  44. *
  45. * The combination of the following flags define which states GPU is allowed
  46. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  47. * RC6pp is deepest RC6. Their support by hardware varies according to the
  48. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  49. * which brings the most power savings; deeper states save more power, but
  50. * require higher latency to switch to and wake up.
  51. */
  52. #define INTEL_RC6_ENABLE (1<<0)
  53. #define INTEL_RC6p_ENABLE (1<<1)
  54. #define INTEL_RC6pp_ENABLE (1<<2)
  55. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  56. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  57. * during in-memory transfers and, therefore, reduce the power packet.
  58. *
  59. * The benefits of FBC are mostly visible with solid backgrounds and
  60. * variation-less patterns.
  61. *
  62. * FBC-related functionality can be enabled by the means of the
  63. * i915.i915_enable_fbc parameter
  64. */
  65. static void i8xx_disable_fbc(struct drm_device *dev)
  66. {
  67. struct drm_i915_private *dev_priv = dev->dev_private;
  68. u32 fbc_ctl;
  69. /* Disable compression */
  70. fbc_ctl = I915_READ(FBC_CONTROL);
  71. if ((fbc_ctl & FBC_CTL_EN) == 0)
  72. return;
  73. fbc_ctl &= ~FBC_CTL_EN;
  74. I915_WRITE(FBC_CONTROL, fbc_ctl);
  75. /* Wait for compressing bit to clear */
  76. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  77. DRM_DEBUG_KMS("FBC idle timed out\n");
  78. return;
  79. }
  80. DRM_DEBUG_KMS("disabled FBC\n");
  81. }
  82. static void i8xx_enable_fbc(struct drm_crtc *crtc)
  83. {
  84. struct drm_device *dev = crtc->dev;
  85. struct drm_i915_private *dev_priv = dev->dev_private;
  86. struct drm_framebuffer *fb = crtc->primary->fb;
  87. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  88. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  89. int cfb_pitch;
  90. int i;
  91. u32 fbc_ctl;
  92. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  93. if (fb->pitches[0] < cfb_pitch)
  94. cfb_pitch = fb->pitches[0];
  95. /* FBC_CTL wants 32B or 64B units */
  96. if (IS_GEN2(dev))
  97. cfb_pitch = (cfb_pitch / 32) - 1;
  98. else
  99. cfb_pitch = (cfb_pitch / 64) - 1;
  100. /* Clear old tags */
  101. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  102. I915_WRITE(FBC_TAG + (i * 4), 0);
  103. if (IS_GEN4(dev)) {
  104. u32 fbc_ctl2;
  105. /* Set it up... */
  106. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  107. fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
  108. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  109. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  110. }
  111. /* enable it... */
  112. fbc_ctl = I915_READ(FBC_CONTROL);
  113. fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
  114. fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
  115. if (IS_I945GM(dev))
  116. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  117. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  118. fbc_ctl |= obj->fence_reg;
  119. I915_WRITE(FBC_CONTROL, fbc_ctl);
  120. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
  121. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  122. }
  123. static bool i8xx_fbc_enabled(struct drm_device *dev)
  124. {
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  127. }
  128. static void g4x_enable_fbc(struct drm_crtc *crtc)
  129. {
  130. struct drm_device *dev = crtc->dev;
  131. struct drm_i915_private *dev_priv = dev->dev_private;
  132. struct drm_framebuffer *fb = crtc->primary->fb;
  133. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  134. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  135. u32 dpfc_ctl;
  136. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
  137. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  138. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  139. else
  140. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  141. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  142. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  143. /* enable it... */
  144. I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  145. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  146. }
  147. static void g4x_disable_fbc(struct drm_device *dev)
  148. {
  149. struct drm_i915_private *dev_priv = dev->dev_private;
  150. u32 dpfc_ctl;
  151. /* Disable compression */
  152. dpfc_ctl = I915_READ(DPFC_CONTROL);
  153. if (dpfc_ctl & DPFC_CTL_EN) {
  154. dpfc_ctl &= ~DPFC_CTL_EN;
  155. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  156. DRM_DEBUG_KMS("disabled FBC\n");
  157. }
  158. }
  159. static bool g4x_fbc_enabled(struct drm_device *dev)
  160. {
  161. struct drm_i915_private *dev_priv = dev->dev_private;
  162. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  163. }
  164. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  165. {
  166. struct drm_i915_private *dev_priv = dev->dev_private;
  167. u32 blt_ecoskpd;
  168. /* Make sure blitter notifies FBC of writes */
  169. /* Blitter is part of Media powerwell on VLV. No impact of
  170. * his param in other platforms for now */
  171. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
  172. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  173. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  174. GEN6_BLITTER_LOCK_SHIFT;
  175. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  176. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  177. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  178. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  179. GEN6_BLITTER_LOCK_SHIFT);
  180. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  181. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  182. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
  183. }
  184. static void ironlake_enable_fbc(struct drm_crtc *crtc)
  185. {
  186. struct drm_device *dev = crtc->dev;
  187. struct drm_i915_private *dev_priv = dev->dev_private;
  188. struct drm_framebuffer *fb = crtc->primary->fb;
  189. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  190. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  191. u32 dpfc_ctl;
  192. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
  193. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  194. dev_priv->fbc.threshold++;
  195. switch (dev_priv->fbc.threshold) {
  196. case 4:
  197. case 3:
  198. dpfc_ctl |= DPFC_CTL_LIMIT_4X;
  199. break;
  200. case 2:
  201. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  202. break;
  203. case 1:
  204. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  205. break;
  206. }
  207. dpfc_ctl |= DPFC_CTL_FENCE_EN;
  208. if (IS_GEN5(dev))
  209. dpfc_ctl |= obj->fence_reg;
  210. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  211. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  212. /* enable it... */
  213. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  214. if (IS_GEN6(dev)) {
  215. I915_WRITE(SNB_DPFC_CTL_SA,
  216. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  217. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  218. sandybridge_blit_fbc_update(dev);
  219. }
  220. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  221. }
  222. static void ironlake_disable_fbc(struct drm_device *dev)
  223. {
  224. struct drm_i915_private *dev_priv = dev->dev_private;
  225. u32 dpfc_ctl;
  226. /* Disable compression */
  227. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  228. if (dpfc_ctl & DPFC_CTL_EN) {
  229. dpfc_ctl &= ~DPFC_CTL_EN;
  230. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  231. DRM_DEBUG_KMS("disabled FBC\n");
  232. }
  233. }
  234. static bool ironlake_fbc_enabled(struct drm_device *dev)
  235. {
  236. struct drm_i915_private *dev_priv = dev->dev_private;
  237. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  238. }
  239. static void gen7_enable_fbc(struct drm_crtc *crtc)
  240. {
  241. struct drm_device *dev = crtc->dev;
  242. struct drm_i915_private *dev_priv = dev->dev_private;
  243. struct drm_framebuffer *fb = crtc->primary->fb;
  244. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  245. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  246. u32 dpfc_ctl;
  247. dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
  248. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  249. dev_priv->fbc.threshold++;
  250. switch (dev_priv->fbc.threshold) {
  251. case 4:
  252. case 3:
  253. dpfc_ctl |= DPFC_CTL_LIMIT_4X;
  254. break;
  255. case 2:
  256. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  257. break;
  258. case 1:
  259. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  260. break;
  261. }
  262. dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
  263. if (dev_priv->fbc.false_color)
  264. dpfc_ctl |= FBC_CTL_FALSE_COLOR;
  265. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  266. if (IS_IVYBRIDGE(dev)) {
  267. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  268. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  269. I915_READ(ILK_DISPLAY_CHICKEN1) |
  270. ILK_FBCQ_DIS);
  271. } else {
  272. /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
  273. I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
  274. I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
  275. HSW_FBCQ_DIS);
  276. }
  277. I915_WRITE(SNB_DPFC_CTL_SA,
  278. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  279. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  280. sandybridge_blit_fbc_update(dev);
  281. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  282. }
  283. bool intel_fbc_enabled(struct drm_device *dev)
  284. {
  285. struct drm_i915_private *dev_priv = dev->dev_private;
  286. if (!dev_priv->display.fbc_enabled)
  287. return false;
  288. return dev_priv->display.fbc_enabled(dev);
  289. }
  290. void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
  291. {
  292. struct drm_i915_private *dev_priv = dev->dev_private;
  293. if (!IS_GEN8(dev))
  294. return;
  295. I915_WRITE(MSG_FBC_REND_STATE, value);
  296. }
  297. static void intel_fbc_work_fn(struct work_struct *__work)
  298. {
  299. struct intel_fbc_work *work =
  300. container_of(to_delayed_work(__work),
  301. struct intel_fbc_work, work);
  302. struct drm_device *dev = work->crtc->dev;
  303. struct drm_i915_private *dev_priv = dev->dev_private;
  304. mutex_lock(&dev->struct_mutex);
  305. if (work == dev_priv->fbc.fbc_work) {
  306. /* Double check that we haven't switched fb without cancelling
  307. * the prior work.
  308. */
  309. if (work->crtc->primary->fb == work->fb) {
  310. dev_priv->display.enable_fbc(work->crtc);
  311. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  312. dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
  313. dev_priv->fbc.y = work->crtc->y;
  314. }
  315. dev_priv->fbc.fbc_work = NULL;
  316. }
  317. mutex_unlock(&dev->struct_mutex);
  318. kfree(work);
  319. }
  320. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  321. {
  322. if (dev_priv->fbc.fbc_work == NULL)
  323. return;
  324. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  325. /* Synchronisation is provided by struct_mutex and checking of
  326. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  327. * entirely asynchronously.
  328. */
  329. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  330. /* tasklet was killed before being run, clean up */
  331. kfree(dev_priv->fbc.fbc_work);
  332. /* Mark the work as no longer wanted so that if it does
  333. * wake-up (because the work was already running and waiting
  334. * for our mutex), it will discover that is no longer
  335. * necessary to run.
  336. */
  337. dev_priv->fbc.fbc_work = NULL;
  338. }
  339. static void intel_enable_fbc(struct drm_crtc *crtc)
  340. {
  341. struct intel_fbc_work *work;
  342. struct drm_device *dev = crtc->dev;
  343. struct drm_i915_private *dev_priv = dev->dev_private;
  344. if (!dev_priv->display.enable_fbc)
  345. return;
  346. intel_cancel_fbc_work(dev_priv);
  347. work = kzalloc(sizeof(*work), GFP_KERNEL);
  348. if (work == NULL) {
  349. DRM_ERROR("Failed to allocate FBC work structure\n");
  350. dev_priv->display.enable_fbc(crtc);
  351. return;
  352. }
  353. work->crtc = crtc;
  354. work->fb = crtc->primary->fb;
  355. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  356. dev_priv->fbc.fbc_work = work;
  357. /* Delay the actual enabling to let pageflipping cease and the
  358. * display to settle before starting the compression. Note that
  359. * this delay also serves a second purpose: it allows for a
  360. * vblank to pass after disabling the FBC before we attempt
  361. * to modify the control registers.
  362. *
  363. * A more complicated solution would involve tracking vblanks
  364. * following the termination of the page-flipping sequence
  365. * and indeed performing the enable as a co-routine and not
  366. * waiting synchronously upon the vblank.
  367. *
  368. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  369. */
  370. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  371. }
  372. void intel_disable_fbc(struct drm_device *dev)
  373. {
  374. struct drm_i915_private *dev_priv = dev->dev_private;
  375. intel_cancel_fbc_work(dev_priv);
  376. if (!dev_priv->display.disable_fbc)
  377. return;
  378. dev_priv->display.disable_fbc(dev);
  379. dev_priv->fbc.plane = -1;
  380. }
  381. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  382. enum no_fbc_reason reason)
  383. {
  384. if (dev_priv->fbc.no_fbc_reason == reason)
  385. return false;
  386. dev_priv->fbc.no_fbc_reason = reason;
  387. return true;
  388. }
  389. /**
  390. * intel_update_fbc - enable/disable FBC as needed
  391. * @dev: the drm_device
  392. *
  393. * Set up the framebuffer compression hardware at mode set time. We
  394. * enable it if possible:
  395. * - plane A only (on pre-965)
  396. * - no pixel mulitply/line duplication
  397. * - no alpha buffer discard
  398. * - no dual wide
  399. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  400. *
  401. * We can't assume that any compression will take place (worst case),
  402. * so the compressed buffer has to be the same size as the uncompressed
  403. * one. It also must reside (along with the line length buffer) in
  404. * stolen memory.
  405. *
  406. * We need to enable/disable FBC on a global basis.
  407. */
  408. void intel_update_fbc(struct drm_device *dev)
  409. {
  410. struct drm_i915_private *dev_priv = dev->dev_private;
  411. struct drm_crtc *crtc = NULL, *tmp_crtc;
  412. struct intel_crtc *intel_crtc;
  413. struct drm_framebuffer *fb;
  414. struct drm_i915_gem_object *obj;
  415. const struct drm_display_mode *adjusted_mode;
  416. unsigned int max_width, max_height;
  417. if (!HAS_FBC(dev)) {
  418. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  419. return;
  420. }
  421. if (!i915.powersave) {
  422. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  423. DRM_DEBUG_KMS("fbc disabled per module param\n");
  424. return;
  425. }
  426. /*
  427. * If FBC is already on, we just have to verify that we can
  428. * keep it that way...
  429. * Need to disable if:
  430. * - more than one pipe is active
  431. * - changing FBC params (stride, fence, mode)
  432. * - new fb is too large to fit in compressed buffer
  433. * - going to an unsupported config (interlace, pixel multiply, etc.)
  434. */
  435. for_each_crtc(dev, tmp_crtc) {
  436. if (intel_crtc_active(tmp_crtc) &&
  437. to_intel_crtc(tmp_crtc)->primary_enabled) {
  438. if (crtc) {
  439. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  440. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  441. goto out_disable;
  442. }
  443. crtc = tmp_crtc;
  444. }
  445. }
  446. if (!crtc || crtc->primary->fb == NULL) {
  447. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  448. DRM_DEBUG_KMS("no output, disabling\n");
  449. goto out_disable;
  450. }
  451. intel_crtc = to_intel_crtc(crtc);
  452. fb = crtc->primary->fb;
  453. obj = intel_fb_obj(fb);
  454. adjusted_mode = &intel_crtc->config.adjusted_mode;
  455. if (i915.enable_fbc < 0) {
  456. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  457. DRM_DEBUG_KMS("disabled per chip default\n");
  458. goto out_disable;
  459. }
  460. if (!i915.enable_fbc) {
  461. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  462. DRM_DEBUG_KMS("fbc disabled per module param\n");
  463. goto out_disable;
  464. }
  465. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  466. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  467. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  468. DRM_DEBUG_KMS("mode incompatible with compression, "
  469. "disabling\n");
  470. goto out_disable;
  471. }
  472. if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
  473. max_width = 4096;
  474. max_height = 4096;
  475. } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  476. max_width = 4096;
  477. max_height = 2048;
  478. } else {
  479. max_width = 2048;
  480. max_height = 1536;
  481. }
  482. if (intel_crtc->config.pipe_src_w > max_width ||
  483. intel_crtc->config.pipe_src_h > max_height) {
  484. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  485. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  486. goto out_disable;
  487. }
  488. if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
  489. intel_crtc->plane != PLANE_A) {
  490. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  491. DRM_DEBUG_KMS("plane not A, disabling compression\n");
  492. goto out_disable;
  493. }
  494. /* The use of a CPU fence is mandatory in order to detect writes
  495. * by the CPU to the scanout and trigger updates to the FBC.
  496. */
  497. if (obj->tiling_mode != I915_TILING_X ||
  498. obj->fence_reg == I915_FENCE_REG_NONE) {
  499. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  500. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  501. goto out_disable;
  502. }
  503. if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
  504. to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
  505. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  506. DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
  507. goto out_disable;
  508. }
  509. /* If the kernel debugger is active, always disable compression */
  510. if (in_dbg_master())
  511. goto out_disable;
  512. if (i915_gem_stolen_setup_compression(dev, obj->base.size,
  513. drm_format_plane_cpp(fb->pixel_format, 0))) {
  514. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  515. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  516. goto out_disable;
  517. }
  518. /* If the scanout has not changed, don't modify the FBC settings.
  519. * Note that we make the fundamental assumption that the fb->obj
  520. * cannot be unpinned (and have its GTT offset and fence revoked)
  521. * without first being decoupled from the scanout and FBC disabled.
  522. */
  523. if (dev_priv->fbc.plane == intel_crtc->plane &&
  524. dev_priv->fbc.fb_id == fb->base.id &&
  525. dev_priv->fbc.y == crtc->y)
  526. return;
  527. if (intel_fbc_enabled(dev)) {
  528. /* We update FBC along two paths, after changing fb/crtc
  529. * configuration (modeswitching) and after page-flipping
  530. * finishes. For the latter, we know that not only did
  531. * we disable the FBC at the start of the page-flip
  532. * sequence, but also more than one vblank has passed.
  533. *
  534. * For the former case of modeswitching, it is possible
  535. * to switch between two FBC valid configurations
  536. * instantaneously so we do need to disable the FBC
  537. * before we can modify its control registers. We also
  538. * have to wait for the next vblank for that to take
  539. * effect. However, since we delay enabling FBC we can
  540. * assume that a vblank has passed since disabling and
  541. * that we can safely alter the registers in the deferred
  542. * callback.
  543. *
  544. * In the scenario that we go from a valid to invalid
  545. * and then back to valid FBC configuration we have
  546. * no strict enforcement that a vblank occurred since
  547. * disabling the FBC. However, along all current pipe
  548. * disabling paths we do need to wait for a vblank at
  549. * some point. And we wait before enabling FBC anyway.
  550. */
  551. DRM_DEBUG_KMS("disabling active FBC for update\n");
  552. intel_disable_fbc(dev);
  553. }
  554. intel_enable_fbc(crtc);
  555. dev_priv->fbc.no_fbc_reason = FBC_OK;
  556. return;
  557. out_disable:
  558. /* Multiple disables should be harmless */
  559. if (intel_fbc_enabled(dev)) {
  560. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  561. intel_disable_fbc(dev);
  562. }
  563. i915_gem_stolen_cleanup_compression(dev);
  564. }
  565. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  566. {
  567. struct drm_i915_private *dev_priv = dev->dev_private;
  568. u32 tmp;
  569. tmp = I915_READ(CLKCFG);
  570. switch (tmp & CLKCFG_FSB_MASK) {
  571. case CLKCFG_FSB_533:
  572. dev_priv->fsb_freq = 533; /* 133*4 */
  573. break;
  574. case CLKCFG_FSB_800:
  575. dev_priv->fsb_freq = 800; /* 200*4 */
  576. break;
  577. case CLKCFG_FSB_667:
  578. dev_priv->fsb_freq = 667; /* 167*4 */
  579. break;
  580. case CLKCFG_FSB_400:
  581. dev_priv->fsb_freq = 400; /* 100*4 */
  582. break;
  583. }
  584. switch (tmp & CLKCFG_MEM_MASK) {
  585. case CLKCFG_MEM_533:
  586. dev_priv->mem_freq = 533;
  587. break;
  588. case CLKCFG_MEM_667:
  589. dev_priv->mem_freq = 667;
  590. break;
  591. case CLKCFG_MEM_800:
  592. dev_priv->mem_freq = 800;
  593. break;
  594. }
  595. /* detect pineview DDR3 setting */
  596. tmp = I915_READ(CSHRDDR3CTL);
  597. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  598. }
  599. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  600. {
  601. struct drm_i915_private *dev_priv = dev->dev_private;
  602. u16 ddrpll, csipll;
  603. ddrpll = I915_READ16(DDRMPLL1);
  604. csipll = I915_READ16(CSIPLL0);
  605. switch (ddrpll & 0xff) {
  606. case 0xc:
  607. dev_priv->mem_freq = 800;
  608. break;
  609. case 0x10:
  610. dev_priv->mem_freq = 1066;
  611. break;
  612. case 0x14:
  613. dev_priv->mem_freq = 1333;
  614. break;
  615. case 0x18:
  616. dev_priv->mem_freq = 1600;
  617. break;
  618. default:
  619. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  620. ddrpll & 0xff);
  621. dev_priv->mem_freq = 0;
  622. break;
  623. }
  624. dev_priv->ips.r_t = dev_priv->mem_freq;
  625. switch (csipll & 0x3ff) {
  626. case 0x00c:
  627. dev_priv->fsb_freq = 3200;
  628. break;
  629. case 0x00e:
  630. dev_priv->fsb_freq = 3733;
  631. break;
  632. case 0x010:
  633. dev_priv->fsb_freq = 4266;
  634. break;
  635. case 0x012:
  636. dev_priv->fsb_freq = 4800;
  637. break;
  638. case 0x014:
  639. dev_priv->fsb_freq = 5333;
  640. break;
  641. case 0x016:
  642. dev_priv->fsb_freq = 5866;
  643. break;
  644. case 0x018:
  645. dev_priv->fsb_freq = 6400;
  646. break;
  647. default:
  648. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  649. csipll & 0x3ff);
  650. dev_priv->fsb_freq = 0;
  651. break;
  652. }
  653. if (dev_priv->fsb_freq == 3200) {
  654. dev_priv->ips.c_m = 0;
  655. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  656. dev_priv->ips.c_m = 1;
  657. } else {
  658. dev_priv->ips.c_m = 2;
  659. }
  660. }
  661. static const struct cxsr_latency cxsr_latency_table[] = {
  662. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  663. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  664. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  665. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  666. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  667. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  668. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  669. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  670. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  671. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  672. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  673. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  674. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  675. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  676. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  677. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  678. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  679. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  680. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  681. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  682. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  683. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  684. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  685. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  686. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  687. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  688. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  689. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  690. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  691. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  692. };
  693. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  694. int is_ddr3,
  695. int fsb,
  696. int mem)
  697. {
  698. const struct cxsr_latency *latency;
  699. int i;
  700. if (fsb == 0 || mem == 0)
  701. return NULL;
  702. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  703. latency = &cxsr_latency_table[i];
  704. if (is_desktop == latency->is_desktop &&
  705. is_ddr3 == latency->is_ddr3 &&
  706. fsb == latency->fsb_freq && mem == latency->mem_freq)
  707. return latency;
  708. }
  709. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  710. return NULL;
  711. }
  712. void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  713. {
  714. struct drm_device *dev = dev_priv->dev;
  715. u32 val;
  716. if (IS_VALLEYVIEW(dev)) {
  717. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  718. } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
  719. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  720. } else if (IS_PINEVIEW(dev)) {
  721. val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
  722. val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
  723. I915_WRITE(DSPFW3, val);
  724. } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  725. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  726. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  727. I915_WRITE(FW_BLC_SELF, val);
  728. } else if (IS_I915GM(dev)) {
  729. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  730. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  731. I915_WRITE(INSTPM, val);
  732. } else {
  733. return;
  734. }
  735. DRM_DEBUG_KMS("memory self-refresh is %s\n",
  736. enable ? "enabled" : "disabled");
  737. }
  738. /*
  739. * Latency for FIFO fetches is dependent on several factors:
  740. * - memory configuration (speed, channels)
  741. * - chipset
  742. * - current MCH state
  743. * It can be fairly high in some situations, so here we assume a fairly
  744. * pessimal value. It's a tradeoff between extra memory fetches (if we
  745. * set this value too high, the FIFO will fetch frequently to stay full)
  746. * and power consumption (set it too low to save power and we might see
  747. * FIFO underruns and display "flicker").
  748. *
  749. * A value of 5us seems to be a good balance; safe for very low end
  750. * platforms but not overly aggressive on lower latency configs.
  751. */
  752. static const int latency_ns = 5000;
  753. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  754. {
  755. struct drm_i915_private *dev_priv = dev->dev_private;
  756. uint32_t dsparb = I915_READ(DSPARB);
  757. int size;
  758. size = dsparb & 0x7f;
  759. if (plane)
  760. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  761. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  762. plane ? "B" : "A", size);
  763. return size;
  764. }
  765. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  766. {
  767. struct drm_i915_private *dev_priv = dev->dev_private;
  768. uint32_t dsparb = I915_READ(DSPARB);
  769. int size;
  770. size = dsparb & 0x1ff;
  771. if (plane)
  772. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  773. size >>= 1; /* Convert to cachelines */
  774. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  775. plane ? "B" : "A", size);
  776. return size;
  777. }
  778. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  779. {
  780. struct drm_i915_private *dev_priv = dev->dev_private;
  781. uint32_t dsparb = I915_READ(DSPARB);
  782. int size;
  783. size = dsparb & 0x7f;
  784. size >>= 2; /* Convert to cachelines */
  785. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  786. plane ? "B" : "A",
  787. size);
  788. return size;
  789. }
  790. /* Pineview has different values for various configs */
  791. static const struct intel_watermark_params pineview_display_wm = {
  792. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  793. .max_wm = PINEVIEW_MAX_WM,
  794. .default_wm = PINEVIEW_DFT_WM,
  795. .guard_size = PINEVIEW_GUARD_WM,
  796. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  797. };
  798. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  799. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  800. .max_wm = PINEVIEW_MAX_WM,
  801. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  802. .guard_size = PINEVIEW_GUARD_WM,
  803. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  804. };
  805. static const struct intel_watermark_params pineview_cursor_wm = {
  806. .fifo_size = PINEVIEW_CURSOR_FIFO,
  807. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  808. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  809. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  810. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  811. };
  812. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  813. .fifo_size = PINEVIEW_CURSOR_FIFO,
  814. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  815. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  816. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  817. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  818. };
  819. static const struct intel_watermark_params g4x_wm_info = {
  820. .fifo_size = G4X_FIFO_SIZE,
  821. .max_wm = G4X_MAX_WM,
  822. .default_wm = G4X_MAX_WM,
  823. .guard_size = 2,
  824. .cacheline_size = G4X_FIFO_LINE_SIZE,
  825. };
  826. static const struct intel_watermark_params g4x_cursor_wm_info = {
  827. .fifo_size = I965_CURSOR_FIFO,
  828. .max_wm = I965_CURSOR_MAX_WM,
  829. .default_wm = I965_CURSOR_DFT_WM,
  830. .guard_size = 2,
  831. .cacheline_size = G4X_FIFO_LINE_SIZE,
  832. };
  833. static const struct intel_watermark_params valleyview_wm_info = {
  834. .fifo_size = VALLEYVIEW_FIFO_SIZE,
  835. .max_wm = VALLEYVIEW_MAX_WM,
  836. .default_wm = VALLEYVIEW_MAX_WM,
  837. .guard_size = 2,
  838. .cacheline_size = G4X_FIFO_LINE_SIZE,
  839. };
  840. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  841. .fifo_size = I965_CURSOR_FIFO,
  842. .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
  843. .default_wm = I965_CURSOR_DFT_WM,
  844. .guard_size = 2,
  845. .cacheline_size = G4X_FIFO_LINE_SIZE,
  846. };
  847. static const struct intel_watermark_params i965_cursor_wm_info = {
  848. .fifo_size = I965_CURSOR_FIFO,
  849. .max_wm = I965_CURSOR_MAX_WM,
  850. .default_wm = I965_CURSOR_DFT_WM,
  851. .guard_size = 2,
  852. .cacheline_size = I915_FIFO_LINE_SIZE,
  853. };
  854. static const struct intel_watermark_params i945_wm_info = {
  855. .fifo_size = I945_FIFO_SIZE,
  856. .max_wm = I915_MAX_WM,
  857. .default_wm = 1,
  858. .guard_size = 2,
  859. .cacheline_size = I915_FIFO_LINE_SIZE,
  860. };
  861. static const struct intel_watermark_params i915_wm_info = {
  862. .fifo_size = I915_FIFO_SIZE,
  863. .max_wm = I915_MAX_WM,
  864. .default_wm = 1,
  865. .guard_size = 2,
  866. .cacheline_size = I915_FIFO_LINE_SIZE,
  867. };
  868. static const struct intel_watermark_params i830_a_wm_info = {
  869. .fifo_size = I855GM_FIFO_SIZE,
  870. .max_wm = I915_MAX_WM,
  871. .default_wm = 1,
  872. .guard_size = 2,
  873. .cacheline_size = I830_FIFO_LINE_SIZE,
  874. };
  875. static const struct intel_watermark_params i830_bc_wm_info = {
  876. .fifo_size = I855GM_FIFO_SIZE,
  877. .max_wm = I915_MAX_WM/2,
  878. .default_wm = 1,
  879. .guard_size = 2,
  880. .cacheline_size = I830_FIFO_LINE_SIZE,
  881. };
  882. static const struct intel_watermark_params i845_wm_info = {
  883. .fifo_size = I830_FIFO_SIZE,
  884. .max_wm = I915_MAX_WM,
  885. .default_wm = 1,
  886. .guard_size = 2,
  887. .cacheline_size = I830_FIFO_LINE_SIZE,
  888. };
  889. /**
  890. * intel_calculate_wm - calculate watermark level
  891. * @clock_in_khz: pixel clock
  892. * @wm: chip FIFO params
  893. * @pixel_size: display pixel size
  894. * @latency_ns: memory latency for the platform
  895. *
  896. * Calculate the watermark level (the level at which the display plane will
  897. * start fetching from memory again). Each chip has a different display
  898. * FIFO size and allocation, so the caller needs to figure that out and pass
  899. * in the correct intel_watermark_params structure.
  900. *
  901. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  902. * on the pixel size. When it reaches the watermark level, it'll start
  903. * fetching FIFO line sized based chunks from memory until the FIFO fills
  904. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  905. * will occur, and a display engine hang could result.
  906. */
  907. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  908. const struct intel_watermark_params *wm,
  909. int fifo_size,
  910. int pixel_size,
  911. unsigned long latency_ns)
  912. {
  913. long entries_required, wm_size;
  914. /*
  915. * Note: we need to make sure we don't overflow for various clock &
  916. * latency values.
  917. * clocks go from a few thousand to several hundred thousand.
  918. * latency is usually a few thousand
  919. */
  920. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  921. 1000;
  922. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  923. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  924. wm_size = fifo_size - (entries_required + wm->guard_size);
  925. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  926. /* Don't promote wm_size to unsigned... */
  927. if (wm_size > (long)wm->max_wm)
  928. wm_size = wm->max_wm;
  929. if (wm_size <= 0)
  930. wm_size = wm->default_wm;
  931. return wm_size;
  932. }
  933. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  934. {
  935. struct drm_crtc *crtc, *enabled = NULL;
  936. for_each_crtc(dev, crtc) {
  937. if (intel_crtc_active(crtc)) {
  938. if (enabled)
  939. return NULL;
  940. enabled = crtc;
  941. }
  942. }
  943. return enabled;
  944. }
  945. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  946. {
  947. struct drm_device *dev = unused_crtc->dev;
  948. struct drm_i915_private *dev_priv = dev->dev_private;
  949. struct drm_crtc *crtc;
  950. const struct cxsr_latency *latency;
  951. u32 reg;
  952. unsigned long wm;
  953. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  954. dev_priv->fsb_freq, dev_priv->mem_freq);
  955. if (!latency) {
  956. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  957. intel_set_memory_cxsr(dev_priv, false);
  958. return;
  959. }
  960. crtc = single_enabled_crtc(dev);
  961. if (crtc) {
  962. const struct drm_display_mode *adjusted_mode;
  963. int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  964. int clock;
  965. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  966. clock = adjusted_mode->crtc_clock;
  967. /* Display SR */
  968. wm = intel_calculate_wm(clock, &pineview_display_wm,
  969. pineview_display_wm.fifo_size,
  970. pixel_size, latency->display_sr);
  971. reg = I915_READ(DSPFW1);
  972. reg &= ~DSPFW_SR_MASK;
  973. reg |= wm << DSPFW_SR_SHIFT;
  974. I915_WRITE(DSPFW1, reg);
  975. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  976. /* cursor SR */
  977. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  978. pineview_display_wm.fifo_size,
  979. pixel_size, latency->cursor_sr);
  980. reg = I915_READ(DSPFW3);
  981. reg &= ~DSPFW_CURSOR_SR_MASK;
  982. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  983. I915_WRITE(DSPFW3, reg);
  984. /* Display HPLL off SR */
  985. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  986. pineview_display_hplloff_wm.fifo_size,
  987. pixel_size, latency->display_hpll_disable);
  988. reg = I915_READ(DSPFW3);
  989. reg &= ~DSPFW_HPLL_SR_MASK;
  990. reg |= wm & DSPFW_HPLL_SR_MASK;
  991. I915_WRITE(DSPFW3, reg);
  992. /* cursor HPLL off SR */
  993. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  994. pineview_display_hplloff_wm.fifo_size,
  995. pixel_size, latency->cursor_hpll_disable);
  996. reg = I915_READ(DSPFW3);
  997. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  998. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  999. I915_WRITE(DSPFW3, reg);
  1000. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  1001. intel_set_memory_cxsr(dev_priv, true);
  1002. } else {
  1003. intel_set_memory_cxsr(dev_priv, false);
  1004. }
  1005. }
  1006. static bool g4x_compute_wm0(struct drm_device *dev,
  1007. int plane,
  1008. const struct intel_watermark_params *display,
  1009. int display_latency_ns,
  1010. const struct intel_watermark_params *cursor,
  1011. int cursor_latency_ns,
  1012. int *plane_wm,
  1013. int *cursor_wm)
  1014. {
  1015. struct drm_crtc *crtc;
  1016. const struct drm_display_mode *adjusted_mode;
  1017. int htotal, hdisplay, clock, pixel_size;
  1018. int line_time_us, line_count;
  1019. int entries, tlb_miss;
  1020. crtc = intel_get_crtc_for_plane(dev, plane);
  1021. if (!intel_crtc_active(crtc)) {
  1022. *cursor_wm = cursor->guard_size;
  1023. *plane_wm = display->guard_size;
  1024. return false;
  1025. }
  1026. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1027. clock = adjusted_mode->crtc_clock;
  1028. htotal = adjusted_mode->crtc_htotal;
  1029. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1030. pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1031. /* Use the small buffer method to calculate plane watermark */
  1032. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1033. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1034. if (tlb_miss > 0)
  1035. entries += tlb_miss;
  1036. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1037. *plane_wm = entries + display->guard_size;
  1038. if (*plane_wm > (int)display->max_wm)
  1039. *plane_wm = display->max_wm;
  1040. /* Use the large buffer method to calculate cursor watermark */
  1041. line_time_us = max(htotal * 1000 / clock, 1);
  1042. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1043. entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
  1044. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1045. if (tlb_miss > 0)
  1046. entries += tlb_miss;
  1047. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1048. *cursor_wm = entries + cursor->guard_size;
  1049. if (*cursor_wm > (int)cursor->max_wm)
  1050. *cursor_wm = (int)cursor->max_wm;
  1051. return true;
  1052. }
  1053. /*
  1054. * Check the wm result.
  1055. *
  1056. * If any calculated watermark values is larger than the maximum value that
  1057. * can be programmed into the associated watermark register, that watermark
  1058. * must be disabled.
  1059. */
  1060. static bool g4x_check_srwm(struct drm_device *dev,
  1061. int display_wm, int cursor_wm,
  1062. const struct intel_watermark_params *display,
  1063. const struct intel_watermark_params *cursor)
  1064. {
  1065. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1066. display_wm, cursor_wm);
  1067. if (display_wm > display->max_wm) {
  1068. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1069. display_wm, display->max_wm);
  1070. return false;
  1071. }
  1072. if (cursor_wm > cursor->max_wm) {
  1073. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1074. cursor_wm, cursor->max_wm);
  1075. return false;
  1076. }
  1077. if (!(display_wm || cursor_wm)) {
  1078. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1079. return false;
  1080. }
  1081. return true;
  1082. }
  1083. static bool g4x_compute_srwm(struct drm_device *dev,
  1084. int plane,
  1085. int latency_ns,
  1086. const struct intel_watermark_params *display,
  1087. const struct intel_watermark_params *cursor,
  1088. int *display_wm, int *cursor_wm)
  1089. {
  1090. struct drm_crtc *crtc;
  1091. const struct drm_display_mode *adjusted_mode;
  1092. int hdisplay, htotal, pixel_size, clock;
  1093. unsigned long line_time_us;
  1094. int line_count, line_size;
  1095. int small, large;
  1096. int entries;
  1097. if (!latency_ns) {
  1098. *display_wm = *cursor_wm = 0;
  1099. return false;
  1100. }
  1101. crtc = intel_get_crtc_for_plane(dev, plane);
  1102. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1103. clock = adjusted_mode->crtc_clock;
  1104. htotal = adjusted_mode->crtc_htotal;
  1105. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1106. pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1107. line_time_us = max(htotal * 1000 / clock, 1);
  1108. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1109. line_size = hdisplay * pixel_size;
  1110. /* Use the minimum of the small and large buffer method for primary */
  1111. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1112. large = line_count * line_size;
  1113. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1114. *display_wm = entries + display->guard_size;
  1115. /* calculate the self-refresh watermark for display cursor */
  1116. entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
  1117. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1118. *cursor_wm = entries + cursor->guard_size;
  1119. return g4x_check_srwm(dev,
  1120. *display_wm, *cursor_wm,
  1121. display, cursor);
  1122. }
  1123. static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
  1124. int pixel_size,
  1125. int *prec_mult,
  1126. int *drain_latency)
  1127. {
  1128. int entries;
  1129. int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1130. if (WARN(clock == 0, "Pixel clock is zero!\n"))
  1131. return false;
  1132. if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
  1133. return false;
  1134. entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
  1135. *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
  1136. DRAIN_LATENCY_PRECISION_32;
  1137. *drain_latency = (64 * (*prec_mult) * 4) / entries;
  1138. if (*drain_latency > DRAIN_LATENCY_MASK)
  1139. *drain_latency = DRAIN_LATENCY_MASK;
  1140. return true;
  1141. }
  1142. /*
  1143. * Update drain latency registers of memory arbiter
  1144. *
  1145. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1146. * to be programmed. Each plane has a drain latency multiplier and a drain
  1147. * latency value.
  1148. */
  1149. static void vlv_update_drain_latency(struct drm_crtc *crtc)
  1150. {
  1151. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1152. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1153. int pixel_size;
  1154. int drain_latency;
  1155. enum pipe pipe = intel_crtc->pipe;
  1156. int plane_prec, prec_mult, plane_dl;
  1157. plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
  1158. DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
  1159. (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
  1160. if (!intel_crtc_active(crtc)) {
  1161. I915_WRITE(VLV_DDL(pipe), plane_dl);
  1162. return;
  1163. }
  1164. /* Primary plane Drain Latency */
  1165. pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
  1166. if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
  1167. plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
  1168. DDL_PLANE_PRECISION_64 :
  1169. DDL_PLANE_PRECISION_32;
  1170. plane_dl |= plane_prec | drain_latency;
  1171. }
  1172. /* Cursor Drain Latency
  1173. * BPP is always 4 for cursor
  1174. */
  1175. pixel_size = 4;
  1176. /* Program cursor DL only if it is enabled */
  1177. if (intel_crtc->cursor_base &&
  1178. vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
  1179. plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
  1180. DDL_CURSOR_PRECISION_64 :
  1181. DDL_CURSOR_PRECISION_32;
  1182. plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
  1183. }
  1184. I915_WRITE(VLV_DDL(pipe), plane_dl);
  1185. }
  1186. #define single_plane_enabled(mask) is_power_of_2(mask)
  1187. static void valleyview_update_wm(struct drm_crtc *crtc)
  1188. {
  1189. struct drm_device *dev = crtc->dev;
  1190. static const int sr_latency_ns = 12000;
  1191. struct drm_i915_private *dev_priv = dev->dev_private;
  1192. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1193. int plane_sr, cursor_sr;
  1194. int ignore_plane_sr, ignore_cursor_sr;
  1195. unsigned int enabled = 0;
  1196. bool cxsr_enabled;
  1197. vlv_update_drain_latency(crtc);
  1198. if (g4x_compute_wm0(dev, PIPE_A,
  1199. &valleyview_wm_info, latency_ns,
  1200. &valleyview_cursor_wm_info, latency_ns,
  1201. &planea_wm, &cursora_wm))
  1202. enabled |= 1 << PIPE_A;
  1203. if (g4x_compute_wm0(dev, PIPE_B,
  1204. &valleyview_wm_info, latency_ns,
  1205. &valleyview_cursor_wm_info, latency_ns,
  1206. &planeb_wm, &cursorb_wm))
  1207. enabled |= 1 << PIPE_B;
  1208. if (single_plane_enabled(enabled) &&
  1209. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1210. sr_latency_ns,
  1211. &valleyview_wm_info,
  1212. &valleyview_cursor_wm_info,
  1213. &plane_sr, &ignore_cursor_sr) &&
  1214. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1215. 2*sr_latency_ns,
  1216. &valleyview_wm_info,
  1217. &valleyview_cursor_wm_info,
  1218. &ignore_plane_sr, &cursor_sr)) {
  1219. cxsr_enabled = true;
  1220. } else {
  1221. cxsr_enabled = false;
  1222. intel_set_memory_cxsr(dev_priv, false);
  1223. plane_sr = cursor_sr = 0;
  1224. }
  1225. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1226. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1227. planea_wm, cursora_wm,
  1228. planeb_wm, cursorb_wm,
  1229. plane_sr, cursor_sr);
  1230. I915_WRITE(DSPFW1,
  1231. (plane_sr << DSPFW_SR_SHIFT) |
  1232. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1233. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1234. (planea_wm << DSPFW_PLANEA_SHIFT));
  1235. I915_WRITE(DSPFW2,
  1236. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1237. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1238. I915_WRITE(DSPFW3,
  1239. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1240. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1241. if (cxsr_enabled)
  1242. intel_set_memory_cxsr(dev_priv, true);
  1243. }
  1244. static void cherryview_update_wm(struct drm_crtc *crtc)
  1245. {
  1246. struct drm_device *dev = crtc->dev;
  1247. static const int sr_latency_ns = 12000;
  1248. struct drm_i915_private *dev_priv = dev->dev_private;
  1249. int planea_wm, planeb_wm, planec_wm;
  1250. int cursora_wm, cursorb_wm, cursorc_wm;
  1251. int plane_sr, cursor_sr;
  1252. int ignore_plane_sr, ignore_cursor_sr;
  1253. unsigned int enabled = 0;
  1254. bool cxsr_enabled;
  1255. vlv_update_drain_latency(crtc);
  1256. if (g4x_compute_wm0(dev, PIPE_A,
  1257. &valleyview_wm_info, latency_ns,
  1258. &valleyview_cursor_wm_info, latency_ns,
  1259. &planea_wm, &cursora_wm))
  1260. enabled |= 1 << PIPE_A;
  1261. if (g4x_compute_wm0(dev, PIPE_B,
  1262. &valleyview_wm_info, latency_ns,
  1263. &valleyview_cursor_wm_info, latency_ns,
  1264. &planeb_wm, &cursorb_wm))
  1265. enabled |= 1 << PIPE_B;
  1266. if (g4x_compute_wm0(dev, PIPE_C,
  1267. &valleyview_wm_info, latency_ns,
  1268. &valleyview_cursor_wm_info, latency_ns,
  1269. &planec_wm, &cursorc_wm))
  1270. enabled |= 1 << PIPE_C;
  1271. if (single_plane_enabled(enabled) &&
  1272. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1273. sr_latency_ns,
  1274. &valleyview_wm_info,
  1275. &valleyview_cursor_wm_info,
  1276. &plane_sr, &ignore_cursor_sr) &&
  1277. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1278. 2*sr_latency_ns,
  1279. &valleyview_wm_info,
  1280. &valleyview_cursor_wm_info,
  1281. &ignore_plane_sr, &cursor_sr)) {
  1282. cxsr_enabled = true;
  1283. } else {
  1284. cxsr_enabled = false;
  1285. intel_set_memory_cxsr(dev_priv, false);
  1286. plane_sr = cursor_sr = 0;
  1287. }
  1288. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1289. "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
  1290. "SR: plane=%d, cursor=%d\n",
  1291. planea_wm, cursora_wm,
  1292. planeb_wm, cursorb_wm,
  1293. planec_wm, cursorc_wm,
  1294. plane_sr, cursor_sr);
  1295. I915_WRITE(DSPFW1,
  1296. (plane_sr << DSPFW_SR_SHIFT) |
  1297. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1298. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1299. (planea_wm << DSPFW_PLANEA_SHIFT));
  1300. I915_WRITE(DSPFW2,
  1301. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1302. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1303. I915_WRITE(DSPFW3,
  1304. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1305. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1306. I915_WRITE(DSPFW9_CHV,
  1307. (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
  1308. DSPFW_CURSORC_MASK)) |
  1309. (planec_wm << DSPFW_PLANEC_SHIFT) |
  1310. (cursorc_wm << DSPFW_CURSORC_SHIFT));
  1311. if (cxsr_enabled)
  1312. intel_set_memory_cxsr(dev_priv, true);
  1313. }
  1314. static void valleyview_update_sprite_wm(struct drm_plane *plane,
  1315. struct drm_crtc *crtc,
  1316. uint32_t sprite_width,
  1317. uint32_t sprite_height,
  1318. int pixel_size,
  1319. bool enabled, bool scaled)
  1320. {
  1321. struct drm_device *dev = crtc->dev;
  1322. struct drm_i915_private *dev_priv = dev->dev_private;
  1323. int pipe = to_intel_plane(plane)->pipe;
  1324. int sprite = to_intel_plane(plane)->plane;
  1325. int drain_latency;
  1326. int plane_prec;
  1327. int sprite_dl;
  1328. int prec_mult;
  1329. sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
  1330. (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
  1331. if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
  1332. &drain_latency)) {
  1333. plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
  1334. DDL_SPRITE_PRECISION_64(sprite) :
  1335. DDL_SPRITE_PRECISION_32(sprite);
  1336. sprite_dl |= plane_prec |
  1337. (drain_latency << DDL_SPRITE_SHIFT(sprite));
  1338. }
  1339. I915_WRITE(VLV_DDL(pipe), sprite_dl);
  1340. }
  1341. static void g4x_update_wm(struct drm_crtc *crtc)
  1342. {
  1343. struct drm_device *dev = crtc->dev;
  1344. static const int sr_latency_ns = 12000;
  1345. struct drm_i915_private *dev_priv = dev->dev_private;
  1346. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1347. int plane_sr, cursor_sr;
  1348. unsigned int enabled = 0;
  1349. bool cxsr_enabled;
  1350. if (g4x_compute_wm0(dev, PIPE_A,
  1351. &g4x_wm_info, latency_ns,
  1352. &g4x_cursor_wm_info, latency_ns,
  1353. &planea_wm, &cursora_wm))
  1354. enabled |= 1 << PIPE_A;
  1355. if (g4x_compute_wm0(dev, PIPE_B,
  1356. &g4x_wm_info, latency_ns,
  1357. &g4x_cursor_wm_info, latency_ns,
  1358. &planeb_wm, &cursorb_wm))
  1359. enabled |= 1 << PIPE_B;
  1360. if (single_plane_enabled(enabled) &&
  1361. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1362. sr_latency_ns,
  1363. &g4x_wm_info,
  1364. &g4x_cursor_wm_info,
  1365. &plane_sr, &cursor_sr)) {
  1366. cxsr_enabled = true;
  1367. } else {
  1368. cxsr_enabled = false;
  1369. intel_set_memory_cxsr(dev_priv, false);
  1370. plane_sr = cursor_sr = 0;
  1371. }
  1372. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1373. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1374. planea_wm, cursora_wm,
  1375. planeb_wm, cursorb_wm,
  1376. plane_sr, cursor_sr);
  1377. I915_WRITE(DSPFW1,
  1378. (plane_sr << DSPFW_SR_SHIFT) |
  1379. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1380. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1381. (planea_wm << DSPFW_PLANEA_SHIFT));
  1382. I915_WRITE(DSPFW2,
  1383. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1384. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1385. /* HPLL off in SR has some issues on G4x... disable it */
  1386. I915_WRITE(DSPFW3,
  1387. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1388. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1389. if (cxsr_enabled)
  1390. intel_set_memory_cxsr(dev_priv, true);
  1391. }
  1392. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1393. {
  1394. struct drm_device *dev = unused_crtc->dev;
  1395. struct drm_i915_private *dev_priv = dev->dev_private;
  1396. struct drm_crtc *crtc;
  1397. int srwm = 1;
  1398. int cursor_sr = 16;
  1399. bool cxsr_enabled;
  1400. /* Calc sr entries for one plane configs */
  1401. crtc = single_enabled_crtc(dev);
  1402. if (crtc) {
  1403. /* self-refresh has much higher latency */
  1404. static const int sr_latency_ns = 12000;
  1405. const struct drm_display_mode *adjusted_mode =
  1406. &to_intel_crtc(crtc)->config.adjusted_mode;
  1407. int clock = adjusted_mode->crtc_clock;
  1408. int htotal = adjusted_mode->crtc_htotal;
  1409. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1410. int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1411. unsigned long line_time_us;
  1412. int entries;
  1413. line_time_us = max(htotal * 1000 / clock, 1);
  1414. /* Use ns/us then divide to preserve precision */
  1415. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1416. pixel_size * hdisplay;
  1417. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1418. srwm = I965_FIFO_SIZE - entries;
  1419. if (srwm < 0)
  1420. srwm = 1;
  1421. srwm &= 0x1ff;
  1422. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1423. entries, srwm);
  1424. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1425. pixel_size * to_intel_crtc(crtc)->cursor_width;
  1426. entries = DIV_ROUND_UP(entries,
  1427. i965_cursor_wm_info.cacheline_size);
  1428. cursor_sr = i965_cursor_wm_info.fifo_size -
  1429. (entries + i965_cursor_wm_info.guard_size);
  1430. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1431. cursor_sr = i965_cursor_wm_info.max_wm;
  1432. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1433. "cursor %d\n", srwm, cursor_sr);
  1434. cxsr_enabled = true;
  1435. } else {
  1436. cxsr_enabled = false;
  1437. /* Turn off self refresh if both pipes are enabled */
  1438. intel_set_memory_cxsr(dev_priv, false);
  1439. }
  1440. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1441. srwm);
  1442. /* 965 has limitations... */
  1443. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1444. (8 << DSPFW_CURSORB_SHIFT) |
  1445. (8 << DSPFW_PLANEB_SHIFT) |
  1446. (8 << DSPFW_PLANEA_SHIFT));
  1447. I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
  1448. (8 << DSPFW_PLANEC_SHIFT_OLD));
  1449. /* update cursor SR watermark */
  1450. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1451. if (cxsr_enabled)
  1452. intel_set_memory_cxsr(dev_priv, true);
  1453. }
  1454. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1455. {
  1456. struct drm_device *dev = unused_crtc->dev;
  1457. struct drm_i915_private *dev_priv = dev->dev_private;
  1458. const struct intel_watermark_params *wm_info;
  1459. uint32_t fwater_lo;
  1460. uint32_t fwater_hi;
  1461. int cwm, srwm = 1;
  1462. int fifo_size;
  1463. int planea_wm, planeb_wm;
  1464. struct drm_crtc *crtc, *enabled = NULL;
  1465. if (IS_I945GM(dev))
  1466. wm_info = &i945_wm_info;
  1467. else if (!IS_GEN2(dev))
  1468. wm_info = &i915_wm_info;
  1469. else
  1470. wm_info = &i830_a_wm_info;
  1471. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1472. crtc = intel_get_crtc_for_plane(dev, 0);
  1473. if (intel_crtc_active(crtc)) {
  1474. const struct drm_display_mode *adjusted_mode;
  1475. int cpp = crtc->primary->fb->bits_per_pixel / 8;
  1476. if (IS_GEN2(dev))
  1477. cpp = 4;
  1478. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1479. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1480. wm_info, fifo_size, cpp,
  1481. latency_ns);
  1482. enabled = crtc;
  1483. } else {
  1484. planea_wm = fifo_size - wm_info->guard_size;
  1485. if (planea_wm > (long)wm_info->max_wm)
  1486. planea_wm = wm_info->max_wm;
  1487. }
  1488. if (IS_GEN2(dev))
  1489. wm_info = &i830_bc_wm_info;
  1490. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1491. crtc = intel_get_crtc_for_plane(dev, 1);
  1492. if (intel_crtc_active(crtc)) {
  1493. const struct drm_display_mode *adjusted_mode;
  1494. int cpp = crtc->primary->fb->bits_per_pixel / 8;
  1495. if (IS_GEN2(dev))
  1496. cpp = 4;
  1497. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1498. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1499. wm_info, fifo_size, cpp,
  1500. latency_ns);
  1501. if (enabled == NULL)
  1502. enabled = crtc;
  1503. else
  1504. enabled = NULL;
  1505. } else {
  1506. planeb_wm = fifo_size - wm_info->guard_size;
  1507. if (planeb_wm > (long)wm_info->max_wm)
  1508. planeb_wm = wm_info->max_wm;
  1509. }
  1510. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1511. if (IS_I915GM(dev) && enabled) {
  1512. struct drm_i915_gem_object *obj;
  1513. obj = intel_fb_obj(enabled->primary->fb);
  1514. /* self-refresh seems busted with untiled */
  1515. if (obj->tiling_mode == I915_TILING_NONE)
  1516. enabled = NULL;
  1517. }
  1518. /*
  1519. * Overlay gets an aggressive default since video jitter is bad.
  1520. */
  1521. cwm = 2;
  1522. /* Play safe and disable self-refresh before adjusting watermarks. */
  1523. intel_set_memory_cxsr(dev_priv, false);
  1524. /* Calc sr entries for one plane configs */
  1525. if (HAS_FW_BLC(dev) && enabled) {
  1526. /* self-refresh has much higher latency */
  1527. static const int sr_latency_ns = 6000;
  1528. const struct drm_display_mode *adjusted_mode =
  1529. &to_intel_crtc(enabled)->config.adjusted_mode;
  1530. int clock = adjusted_mode->crtc_clock;
  1531. int htotal = adjusted_mode->crtc_htotal;
  1532. int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
  1533. int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
  1534. unsigned long line_time_us;
  1535. int entries;
  1536. line_time_us = max(htotal * 1000 / clock, 1);
  1537. /* Use ns/us then divide to preserve precision */
  1538. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1539. pixel_size * hdisplay;
  1540. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1541. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1542. srwm = wm_info->fifo_size - entries;
  1543. if (srwm < 0)
  1544. srwm = 1;
  1545. if (IS_I945G(dev) || IS_I945GM(dev))
  1546. I915_WRITE(FW_BLC_SELF,
  1547. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1548. else if (IS_I915GM(dev))
  1549. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1550. }
  1551. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1552. planea_wm, planeb_wm, cwm, srwm);
  1553. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1554. fwater_hi = (cwm & 0x1f);
  1555. /* Set request length to 8 cachelines per fetch */
  1556. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1557. fwater_hi = fwater_hi | (1 << 8);
  1558. I915_WRITE(FW_BLC, fwater_lo);
  1559. I915_WRITE(FW_BLC2, fwater_hi);
  1560. if (enabled)
  1561. intel_set_memory_cxsr(dev_priv, true);
  1562. }
  1563. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1564. {
  1565. struct drm_device *dev = unused_crtc->dev;
  1566. struct drm_i915_private *dev_priv = dev->dev_private;
  1567. struct drm_crtc *crtc;
  1568. const struct drm_display_mode *adjusted_mode;
  1569. uint32_t fwater_lo;
  1570. int planea_wm;
  1571. crtc = single_enabled_crtc(dev);
  1572. if (crtc == NULL)
  1573. return;
  1574. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1575. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1576. &i845_wm_info,
  1577. dev_priv->display.get_fifo_size(dev, 0),
  1578. 4, latency_ns);
  1579. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1580. fwater_lo |= (3<<8) | planea_wm;
  1581. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1582. I915_WRITE(FW_BLC, fwater_lo);
  1583. }
  1584. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1585. struct drm_crtc *crtc)
  1586. {
  1587. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1588. uint32_t pixel_rate;
  1589. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1590. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1591. * adjust the pixel_rate here. */
  1592. if (intel_crtc->config.pch_pfit.enabled) {
  1593. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1594. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1595. pipe_w = intel_crtc->config.pipe_src_w;
  1596. pipe_h = intel_crtc->config.pipe_src_h;
  1597. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1598. pfit_h = pfit_size & 0xFFFF;
  1599. if (pipe_w < pfit_w)
  1600. pipe_w = pfit_w;
  1601. if (pipe_h < pfit_h)
  1602. pipe_h = pfit_h;
  1603. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1604. pfit_w * pfit_h);
  1605. }
  1606. return pixel_rate;
  1607. }
  1608. /* latency must be in 0.1us units. */
  1609. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1610. uint32_t latency)
  1611. {
  1612. uint64_t ret;
  1613. if (WARN(latency == 0, "Latency value missing\n"))
  1614. return UINT_MAX;
  1615. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1616. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1617. return ret;
  1618. }
  1619. /* latency must be in 0.1us units. */
  1620. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1621. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1622. uint32_t latency)
  1623. {
  1624. uint32_t ret;
  1625. if (WARN(latency == 0, "Latency value missing\n"))
  1626. return UINT_MAX;
  1627. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1628. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1629. ret = DIV_ROUND_UP(ret, 64) + 2;
  1630. return ret;
  1631. }
  1632. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1633. uint8_t bytes_per_pixel)
  1634. {
  1635. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1636. }
  1637. struct ilk_pipe_wm_parameters {
  1638. bool active;
  1639. uint32_t pipe_htotal;
  1640. uint32_t pixel_rate;
  1641. struct intel_plane_wm_parameters pri;
  1642. struct intel_plane_wm_parameters spr;
  1643. struct intel_plane_wm_parameters cur;
  1644. };
  1645. struct ilk_wm_maximums {
  1646. uint16_t pri;
  1647. uint16_t spr;
  1648. uint16_t cur;
  1649. uint16_t fbc;
  1650. };
  1651. /* used in computing the new watermarks state */
  1652. struct intel_wm_config {
  1653. unsigned int num_pipes_active;
  1654. bool sprites_enabled;
  1655. bool sprites_scaled;
  1656. };
  1657. /*
  1658. * For both WM_PIPE and WM_LP.
  1659. * mem_value must be in 0.1us units.
  1660. */
  1661. static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
  1662. uint32_t mem_value,
  1663. bool is_lp)
  1664. {
  1665. uint32_t method1, method2;
  1666. if (!params->active || !params->pri.enabled)
  1667. return 0;
  1668. method1 = ilk_wm_method1(params->pixel_rate,
  1669. params->pri.bytes_per_pixel,
  1670. mem_value);
  1671. if (!is_lp)
  1672. return method1;
  1673. method2 = ilk_wm_method2(params->pixel_rate,
  1674. params->pipe_htotal,
  1675. params->pri.horiz_pixels,
  1676. params->pri.bytes_per_pixel,
  1677. mem_value);
  1678. return min(method1, method2);
  1679. }
  1680. /*
  1681. * For both WM_PIPE and WM_LP.
  1682. * mem_value must be in 0.1us units.
  1683. */
  1684. static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
  1685. uint32_t mem_value)
  1686. {
  1687. uint32_t method1, method2;
  1688. if (!params->active || !params->spr.enabled)
  1689. return 0;
  1690. method1 = ilk_wm_method1(params->pixel_rate,
  1691. params->spr.bytes_per_pixel,
  1692. mem_value);
  1693. method2 = ilk_wm_method2(params->pixel_rate,
  1694. params->pipe_htotal,
  1695. params->spr.horiz_pixels,
  1696. params->spr.bytes_per_pixel,
  1697. mem_value);
  1698. return min(method1, method2);
  1699. }
  1700. /*
  1701. * For both WM_PIPE and WM_LP.
  1702. * mem_value must be in 0.1us units.
  1703. */
  1704. static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
  1705. uint32_t mem_value)
  1706. {
  1707. if (!params->active || !params->cur.enabled)
  1708. return 0;
  1709. return ilk_wm_method2(params->pixel_rate,
  1710. params->pipe_htotal,
  1711. params->cur.horiz_pixels,
  1712. params->cur.bytes_per_pixel,
  1713. mem_value);
  1714. }
  1715. /* Only for WM_LP. */
  1716. static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
  1717. uint32_t pri_val)
  1718. {
  1719. if (!params->active || !params->pri.enabled)
  1720. return 0;
  1721. return ilk_wm_fbc(pri_val,
  1722. params->pri.horiz_pixels,
  1723. params->pri.bytes_per_pixel);
  1724. }
  1725. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1726. {
  1727. if (INTEL_INFO(dev)->gen >= 8)
  1728. return 3072;
  1729. else if (INTEL_INFO(dev)->gen >= 7)
  1730. return 768;
  1731. else
  1732. return 512;
  1733. }
  1734. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1735. int level, bool is_sprite)
  1736. {
  1737. if (INTEL_INFO(dev)->gen >= 8)
  1738. /* BDW primary/sprite plane watermarks */
  1739. return level == 0 ? 255 : 2047;
  1740. else if (INTEL_INFO(dev)->gen >= 7)
  1741. /* IVB/HSW primary/sprite plane watermarks */
  1742. return level == 0 ? 127 : 1023;
  1743. else if (!is_sprite)
  1744. /* ILK/SNB primary plane watermarks */
  1745. return level == 0 ? 127 : 511;
  1746. else
  1747. /* ILK/SNB sprite plane watermarks */
  1748. return level == 0 ? 63 : 255;
  1749. }
  1750. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1751. int level)
  1752. {
  1753. if (INTEL_INFO(dev)->gen >= 7)
  1754. return level == 0 ? 63 : 255;
  1755. else
  1756. return level == 0 ? 31 : 63;
  1757. }
  1758. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1759. {
  1760. if (INTEL_INFO(dev)->gen >= 8)
  1761. return 31;
  1762. else
  1763. return 15;
  1764. }
  1765. /* Calculate the maximum primary/sprite plane watermark */
  1766. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1767. int level,
  1768. const struct intel_wm_config *config,
  1769. enum intel_ddb_partitioning ddb_partitioning,
  1770. bool is_sprite)
  1771. {
  1772. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1773. /* if sprites aren't enabled, sprites get nothing */
  1774. if (is_sprite && !config->sprites_enabled)
  1775. return 0;
  1776. /* HSW allows LP1+ watermarks even with multiple pipes */
  1777. if (level == 0 || config->num_pipes_active > 1) {
  1778. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1779. /*
  1780. * For some reason the non self refresh
  1781. * FIFO size is only half of the self
  1782. * refresh FIFO size on ILK/SNB.
  1783. */
  1784. if (INTEL_INFO(dev)->gen <= 6)
  1785. fifo_size /= 2;
  1786. }
  1787. if (config->sprites_enabled) {
  1788. /* level 0 is always calculated with 1:1 split */
  1789. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1790. if (is_sprite)
  1791. fifo_size *= 5;
  1792. fifo_size /= 6;
  1793. } else {
  1794. fifo_size /= 2;
  1795. }
  1796. }
  1797. /* clamp to max that the registers can hold */
  1798. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1799. }
  1800. /* Calculate the maximum cursor plane watermark */
  1801. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1802. int level,
  1803. const struct intel_wm_config *config)
  1804. {
  1805. /* HSW LP1+ watermarks w/ multiple pipes */
  1806. if (level > 0 && config->num_pipes_active > 1)
  1807. return 64;
  1808. /* otherwise just report max that registers can hold */
  1809. return ilk_cursor_wm_reg_max(dev, level);
  1810. }
  1811. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1812. int level,
  1813. const struct intel_wm_config *config,
  1814. enum intel_ddb_partitioning ddb_partitioning,
  1815. struct ilk_wm_maximums *max)
  1816. {
  1817. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1818. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1819. max->cur = ilk_cursor_wm_max(dev, level, config);
  1820. max->fbc = ilk_fbc_wm_reg_max(dev);
  1821. }
  1822. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1823. int level,
  1824. struct ilk_wm_maximums *max)
  1825. {
  1826. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1827. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1828. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1829. max->fbc = ilk_fbc_wm_reg_max(dev);
  1830. }
  1831. static bool ilk_validate_wm_level(int level,
  1832. const struct ilk_wm_maximums *max,
  1833. struct intel_wm_level *result)
  1834. {
  1835. bool ret;
  1836. /* already determined to be invalid? */
  1837. if (!result->enable)
  1838. return false;
  1839. result->enable = result->pri_val <= max->pri &&
  1840. result->spr_val <= max->spr &&
  1841. result->cur_val <= max->cur;
  1842. ret = result->enable;
  1843. /*
  1844. * HACK until we can pre-compute everything,
  1845. * and thus fail gracefully if LP0 watermarks
  1846. * are exceeded...
  1847. */
  1848. if (level == 0 && !result->enable) {
  1849. if (result->pri_val > max->pri)
  1850. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1851. level, result->pri_val, max->pri);
  1852. if (result->spr_val > max->spr)
  1853. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1854. level, result->spr_val, max->spr);
  1855. if (result->cur_val > max->cur)
  1856. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1857. level, result->cur_val, max->cur);
  1858. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1859. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1860. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1861. result->enable = true;
  1862. }
  1863. return ret;
  1864. }
  1865. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1866. int level,
  1867. const struct ilk_pipe_wm_parameters *p,
  1868. struct intel_wm_level *result)
  1869. {
  1870. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1871. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1872. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1873. /* WM1+ latency values stored in 0.5us units */
  1874. if (level > 0) {
  1875. pri_latency *= 5;
  1876. spr_latency *= 5;
  1877. cur_latency *= 5;
  1878. }
  1879. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  1880. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  1881. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  1882. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  1883. result->enable = true;
  1884. }
  1885. static uint32_t
  1886. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  1887. {
  1888. struct drm_i915_private *dev_priv = dev->dev_private;
  1889. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1890. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  1891. u32 linetime, ips_linetime;
  1892. if (!intel_crtc_active(crtc))
  1893. return 0;
  1894. /* The WM are computed with base on how long it takes to fill a single
  1895. * row at the given clock rate, multiplied by 8.
  1896. * */
  1897. linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1898. mode->crtc_clock);
  1899. ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1900. intel_ddi_get_cdclk_freq(dev_priv));
  1901. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1902. PIPE_WM_LINETIME_TIME(linetime);
  1903. }
  1904. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1905. {
  1906. struct drm_i915_private *dev_priv = dev->dev_private;
  1907. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1908. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1909. wm[0] = (sskpd >> 56) & 0xFF;
  1910. if (wm[0] == 0)
  1911. wm[0] = sskpd & 0xF;
  1912. wm[1] = (sskpd >> 4) & 0xFF;
  1913. wm[2] = (sskpd >> 12) & 0xFF;
  1914. wm[3] = (sskpd >> 20) & 0x1FF;
  1915. wm[4] = (sskpd >> 32) & 0x1FF;
  1916. } else if (INTEL_INFO(dev)->gen >= 6) {
  1917. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1918. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1919. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1920. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1921. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1922. } else if (INTEL_INFO(dev)->gen >= 5) {
  1923. uint32_t mltr = I915_READ(MLTR_ILK);
  1924. /* ILK primary LP0 latency is 700 ns */
  1925. wm[0] = 7;
  1926. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1927. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1928. }
  1929. }
  1930. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1931. {
  1932. /* ILK sprite LP0 latency is 1300 ns */
  1933. if (INTEL_INFO(dev)->gen == 5)
  1934. wm[0] = 13;
  1935. }
  1936. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1937. {
  1938. /* ILK cursor LP0 latency is 1300 ns */
  1939. if (INTEL_INFO(dev)->gen == 5)
  1940. wm[0] = 13;
  1941. /* WaDoubleCursorLP3Latency:ivb */
  1942. if (IS_IVYBRIDGE(dev))
  1943. wm[3] *= 2;
  1944. }
  1945. int ilk_wm_max_level(const struct drm_device *dev)
  1946. {
  1947. /* how many WM levels are we expecting */
  1948. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1949. return 4;
  1950. else if (INTEL_INFO(dev)->gen >= 6)
  1951. return 3;
  1952. else
  1953. return 2;
  1954. }
  1955. static void intel_print_wm_latency(struct drm_device *dev,
  1956. const char *name,
  1957. const uint16_t wm[5])
  1958. {
  1959. int level, max_level = ilk_wm_max_level(dev);
  1960. for (level = 0; level <= max_level; level++) {
  1961. unsigned int latency = wm[level];
  1962. if (latency == 0) {
  1963. DRM_ERROR("%s WM%d latency not provided\n",
  1964. name, level);
  1965. continue;
  1966. }
  1967. /* WM1+ latency values in 0.5us units */
  1968. if (level > 0)
  1969. latency *= 5;
  1970. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1971. name, level, wm[level],
  1972. latency / 10, latency % 10);
  1973. }
  1974. }
  1975. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1976. uint16_t wm[5], uint16_t min)
  1977. {
  1978. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1979. if (wm[0] >= min)
  1980. return false;
  1981. wm[0] = max(wm[0], min);
  1982. for (level = 1; level <= max_level; level++)
  1983. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1984. return true;
  1985. }
  1986. static void snb_wm_latency_quirk(struct drm_device *dev)
  1987. {
  1988. struct drm_i915_private *dev_priv = dev->dev_private;
  1989. bool changed;
  1990. /*
  1991. * The BIOS provided WM memory latency values are often
  1992. * inadequate for high resolution displays. Adjust them.
  1993. */
  1994. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1995. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1996. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1997. if (!changed)
  1998. return;
  1999. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  2000. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2001. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2002. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2003. }
  2004. static void ilk_setup_wm_latency(struct drm_device *dev)
  2005. {
  2006. struct drm_i915_private *dev_priv = dev->dev_private;
  2007. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  2008. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2009. sizeof(dev_priv->wm.pri_latency));
  2010. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2011. sizeof(dev_priv->wm.pri_latency));
  2012. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  2013. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  2014. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2015. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2016. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2017. if (IS_GEN6(dev))
  2018. snb_wm_latency_quirk(dev);
  2019. }
  2020. static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
  2021. struct ilk_pipe_wm_parameters *p)
  2022. {
  2023. struct drm_device *dev = crtc->dev;
  2024. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2025. enum pipe pipe = intel_crtc->pipe;
  2026. struct drm_plane *plane;
  2027. if (!intel_crtc_active(crtc))
  2028. return;
  2029. p->active = true;
  2030. p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
  2031. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  2032. p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
  2033. p->cur.bytes_per_pixel = 4;
  2034. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  2035. p->cur.horiz_pixels = intel_crtc->cursor_width;
  2036. /* TODO: for now, assume primary and cursor planes are always enabled. */
  2037. p->pri.enabled = true;
  2038. p->cur.enabled = true;
  2039. drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
  2040. struct intel_plane *intel_plane = to_intel_plane(plane);
  2041. if (intel_plane->pipe == pipe) {
  2042. p->spr = intel_plane->wm;
  2043. break;
  2044. }
  2045. }
  2046. }
  2047. static void ilk_compute_wm_config(struct drm_device *dev,
  2048. struct intel_wm_config *config)
  2049. {
  2050. struct intel_crtc *intel_crtc;
  2051. /* Compute the currently _active_ config */
  2052. for_each_intel_crtc(dev, intel_crtc) {
  2053. const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
  2054. if (!wm->pipe_enabled)
  2055. continue;
  2056. config->sprites_enabled |= wm->sprites_enabled;
  2057. config->sprites_scaled |= wm->sprites_scaled;
  2058. config->num_pipes_active++;
  2059. }
  2060. }
  2061. /* Compute new watermarks for the pipe */
  2062. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  2063. const struct ilk_pipe_wm_parameters *params,
  2064. struct intel_pipe_wm *pipe_wm)
  2065. {
  2066. struct drm_device *dev = crtc->dev;
  2067. const struct drm_i915_private *dev_priv = dev->dev_private;
  2068. int level, max_level = ilk_wm_max_level(dev);
  2069. /* LP0 watermark maximums depend on this pipe alone */
  2070. struct intel_wm_config config = {
  2071. .num_pipes_active = 1,
  2072. .sprites_enabled = params->spr.enabled,
  2073. .sprites_scaled = params->spr.scaled,
  2074. };
  2075. struct ilk_wm_maximums max;
  2076. pipe_wm->pipe_enabled = params->active;
  2077. pipe_wm->sprites_enabled = params->spr.enabled;
  2078. pipe_wm->sprites_scaled = params->spr.scaled;
  2079. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  2080. if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
  2081. max_level = 1;
  2082. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  2083. if (params->spr.scaled)
  2084. max_level = 0;
  2085. ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
  2086. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2087. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  2088. /* LP0 watermarks always use 1/2 DDB partitioning */
  2089. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2090. /* At least LP0 must be valid */
  2091. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  2092. return false;
  2093. ilk_compute_wm_reg_maximums(dev, 1, &max);
  2094. for (level = 1; level <= max_level; level++) {
  2095. struct intel_wm_level wm = {};
  2096. ilk_compute_wm_level(dev_priv, level, params, &wm);
  2097. /*
  2098. * Disable any watermark level that exceeds the
  2099. * register maximums since such watermarks are
  2100. * always invalid.
  2101. */
  2102. if (!ilk_validate_wm_level(level, &max, &wm))
  2103. break;
  2104. pipe_wm->wm[level] = wm;
  2105. }
  2106. return true;
  2107. }
  2108. /*
  2109. * Merge the watermarks from all active pipes for a specific level.
  2110. */
  2111. static void ilk_merge_wm_level(struct drm_device *dev,
  2112. int level,
  2113. struct intel_wm_level *ret_wm)
  2114. {
  2115. const struct intel_crtc *intel_crtc;
  2116. ret_wm->enable = true;
  2117. for_each_intel_crtc(dev, intel_crtc) {
  2118. const struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2119. const struct intel_wm_level *wm = &active->wm[level];
  2120. if (!active->pipe_enabled)
  2121. continue;
  2122. /*
  2123. * The watermark values may have been used in the past,
  2124. * so we must maintain them in the registers for some
  2125. * time even if the level is now disabled.
  2126. */
  2127. if (!wm->enable)
  2128. ret_wm->enable = false;
  2129. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2130. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2131. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2132. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2133. }
  2134. }
  2135. /*
  2136. * Merge all low power watermarks for all active pipes.
  2137. */
  2138. static void ilk_wm_merge(struct drm_device *dev,
  2139. const struct intel_wm_config *config,
  2140. const struct ilk_wm_maximums *max,
  2141. struct intel_pipe_wm *merged)
  2142. {
  2143. int level, max_level = ilk_wm_max_level(dev);
  2144. int last_enabled_level = max_level;
  2145. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2146. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  2147. config->num_pipes_active > 1)
  2148. return;
  2149. /* ILK: FBC WM must be disabled always */
  2150. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  2151. /* merge each WM1+ level */
  2152. for (level = 1; level <= max_level; level++) {
  2153. struct intel_wm_level *wm = &merged->wm[level];
  2154. ilk_merge_wm_level(dev, level, wm);
  2155. if (level > last_enabled_level)
  2156. wm->enable = false;
  2157. else if (!ilk_validate_wm_level(level, max, wm))
  2158. /* make sure all following levels get disabled */
  2159. last_enabled_level = level - 1;
  2160. /*
  2161. * The spec says it is preferred to disable
  2162. * FBC WMs instead of disabling a WM level.
  2163. */
  2164. if (wm->fbc_val > max->fbc) {
  2165. if (wm->enable)
  2166. merged->fbc_wm_enabled = false;
  2167. wm->fbc_val = 0;
  2168. }
  2169. }
  2170. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2171. /*
  2172. * FIXME this is racy. FBC might get enabled later.
  2173. * What we should check here is whether FBC can be
  2174. * enabled sometime later.
  2175. */
  2176. if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
  2177. for (level = 2; level <= max_level; level++) {
  2178. struct intel_wm_level *wm = &merged->wm[level];
  2179. wm->enable = false;
  2180. }
  2181. }
  2182. }
  2183. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2184. {
  2185. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2186. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2187. }
  2188. /* The value we need to program into the WM_LPx latency field */
  2189. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2190. {
  2191. struct drm_i915_private *dev_priv = dev->dev_private;
  2192. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2193. return 2 * level;
  2194. else
  2195. return dev_priv->wm.pri_latency[level];
  2196. }
  2197. static void ilk_compute_wm_results(struct drm_device *dev,
  2198. const struct intel_pipe_wm *merged,
  2199. enum intel_ddb_partitioning partitioning,
  2200. struct ilk_wm_values *results)
  2201. {
  2202. struct intel_crtc *intel_crtc;
  2203. int level, wm_lp;
  2204. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2205. results->partitioning = partitioning;
  2206. /* LP1+ register values */
  2207. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2208. const struct intel_wm_level *r;
  2209. level = ilk_wm_lp_to_level(wm_lp, merged);
  2210. r = &merged->wm[level];
  2211. /*
  2212. * Maintain the watermark values even if the level is
  2213. * disabled. Doing otherwise could cause underruns.
  2214. */
  2215. results->wm_lp[wm_lp - 1] =
  2216. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2217. (r->pri_val << WM1_LP_SR_SHIFT) |
  2218. r->cur_val;
  2219. if (r->enable)
  2220. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2221. if (INTEL_INFO(dev)->gen >= 8)
  2222. results->wm_lp[wm_lp - 1] |=
  2223. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2224. else
  2225. results->wm_lp[wm_lp - 1] |=
  2226. r->fbc_val << WM1_LP_FBC_SHIFT;
  2227. /*
  2228. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2229. * level is disabled. Doing otherwise could cause underruns.
  2230. */
  2231. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  2232. WARN_ON(wm_lp != 1);
  2233. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2234. } else
  2235. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2236. }
  2237. /* LP0 register values */
  2238. for_each_intel_crtc(dev, intel_crtc) {
  2239. enum pipe pipe = intel_crtc->pipe;
  2240. const struct intel_wm_level *r =
  2241. &intel_crtc->wm.active.wm[0];
  2242. if (WARN_ON(!r->enable))
  2243. continue;
  2244. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2245. results->wm_pipe[pipe] =
  2246. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2247. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2248. r->cur_val;
  2249. }
  2250. }
  2251. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2252. * case both are at the same level. Prefer r1 in case they're the same. */
  2253. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2254. struct intel_pipe_wm *r1,
  2255. struct intel_pipe_wm *r2)
  2256. {
  2257. int level, max_level = ilk_wm_max_level(dev);
  2258. int level1 = 0, level2 = 0;
  2259. for (level = 1; level <= max_level; level++) {
  2260. if (r1->wm[level].enable)
  2261. level1 = level;
  2262. if (r2->wm[level].enable)
  2263. level2 = level;
  2264. }
  2265. if (level1 == level2) {
  2266. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2267. return r2;
  2268. else
  2269. return r1;
  2270. } else if (level1 > level2) {
  2271. return r1;
  2272. } else {
  2273. return r2;
  2274. }
  2275. }
  2276. /* dirty bits used to track which watermarks need changes */
  2277. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2278. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2279. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2280. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2281. #define WM_DIRTY_FBC (1 << 24)
  2282. #define WM_DIRTY_DDB (1 << 25)
  2283. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2284. const struct ilk_wm_values *old,
  2285. const struct ilk_wm_values *new)
  2286. {
  2287. unsigned int dirty = 0;
  2288. enum pipe pipe;
  2289. int wm_lp;
  2290. for_each_pipe(dev_priv, pipe) {
  2291. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2292. dirty |= WM_DIRTY_LINETIME(pipe);
  2293. /* Must disable LP1+ watermarks too */
  2294. dirty |= WM_DIRTY_LP_ALL;
  2295. }
  2296. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2297. dirty |= WM_DIRTY_PIPE(pipe);
  2298. /* Must disable LP1+ watermarks too */
  2299. dirty |= WM_DIRTY_LP_ALL;
  2300. }
  2301. }
  2302. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2303. dirty |= WM_DIRTY_FBC;
  2304. /* Must disable LP1+ watermarks too */
  2305. dirty |= WM_DIRTY_LP_ALL;
  2306. }
  2307. if (old->partitioning != new->partitioning) {
  2308. dirty |= WM_DIRTY_DDB;
  2309. /* Must disable LP1+ watermarks too */
  2310. dirty |= WM_DIRTY_LP_ALL;
  2311. }
  2312. /* LP1+ watermarks already deemed dirty, no need to continue */
  2313. if (dirty & WM_DIRTY_LP_ALL)
  2314. return dirty;
  2315. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2316. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2317. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2318. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2319. break;
  2320. }
  2321. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2322. for (; wm_lp <= 3; wm_lp++)
  2323. dirty |= WM_DIRTY_LP(wm_lp);
  2324. return dirty;
  2325. }
  2326. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2327. unsigned int dirty)
  2328. {
  2329. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2330. bool changed = false;
  2331. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2332. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2333. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2334. changed = true;
  2335. }
  2336. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2337. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2338. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2339. changed = true;
  2340. }
  2341. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2342. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2343. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2344. changed = true;
  2345. }
  2346. /*
  2347. * Don't touch WM1S_LP_EN here.
  2348. * Doing so could cause underruns.
  2349. */
  2350. return changed;
  2351. }
  2352. /*
  2353. * The spec says we shouldn't write when we don't need, because every write
  2354. * causes WMs to be re-evaluated, expending some power.
  2355. */
  2356. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2357. struct ilk_wm_values *results)
  2358. {
  2359. struct drm_device *dev = dev_priv->dev;
  2360. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2361. unsigned int dirty;
  2362. uint32_t val;
  2363. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2364. if (!dirty)
  2365. return;
  2366. _ilk_disable_lp_wm(dev_priv, dirty);
  2367. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2368. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2369. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2370. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2371. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2372. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2373. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2374. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2375. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2376. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2377. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2378. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2379. if (dirty & WM_DIRTY_DDB) {
  2380. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2381. val = I915_READ(WM_MISC);
  2382. if (results->partitioning == INTEL_DDB_PART_1_2)
  2383. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2384. else
  2385. val |= WM_MISC_DATA_PARTITION_5_6;
  2386. I915_WRITE(WM_MISC, val);
  2387. } else {
  2388. val = I915_READ(DISP_ARB_CTL2);
  2389. if (results->partitioning == INTEL_DDB_PART_1_2)
  2390. val &= ~DISP_DATA_PARTITION_5_6;
  2391. else
  2392. val |= DISP_DATA_PARTITION_5_6;
  2393. I915_WRITE(DISP_ARB_CTL2, val);
  2394. }
  2395. }
  2396. if (dirty & WM_DIRTY_FBC) {
  2397. val = I915_READ(DISP_ARB_CTL);
  2398. if (results->enable_fbc_wm)
  2399. val &= ~DISP_FBC_WM_DIS;
  2400. else
  2401. val |= DISP_FBC_WM_DIS;
  2402. I915_WRITE(DISP_ARB_CTL, val);
  2403. }
  2404. if (dirty & WM_DIRTY_LP(1) &&
  2405. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2406. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2407. if (INTEL_INFO(dev)->gen >= 7) {
  2408. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2409. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2410. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2411. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2412. }
  2413. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2414. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2415. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2416. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2417. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2418. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2419. dev_priv->wm.hw = *results;
  2420. }
  2421. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2422. {
  2423. struct drm_i915_private *dev_priv = dev->dev_private;
  2424. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2425. }
  2426. static void ilk_update_wm(struct drm_crtc *crtc)
  2427. {
  2428. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2429. struct drm_device *dev = crtc->dev;
  2430. struct drm_i915_private *dev_priv = dev->dev_private;
  2431. struct ilk_wm_maximums max;
  2432. struct ilk_pipe_wm_parameters params = {};
  2433. struct ilk_wm_values results = {};
  2434. enum intel_ddb_partitioning partitioning;
  2435. struct intel_pipe_wm pipe_wm = {};
  2436. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2437. struct intel_wm_config config = {};
  2438. ilk_compute_wm_parameters(crtc, &params);
  2439. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2440. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2441. return;
  2442. intel_crtc->wm.active = pipe_wm;
  2443. ilk_compute_wm_config(dev, &config);
  2444. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2445. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  2446. /* 5/6 split only in single pipe config on IVB+ */
  2447. if (INTEL_INFO(dev)->gen >= 7 &&
  2448. config.num_pipes_active == 1 && config.sprites_enabled) {
  2449. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2450. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  2451. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2452. } else {
  2453. best_lp_wm = &lp_wm_1_2;
  2454. }
  2455. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2456. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2457. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2458. ilk_write_wm_values(dev_priv, &results);
  2459. }
  2460. static void
  2461. ilk_update_sprite_wm(struct drm_plane *plane,
  2462. struct drm_crtc *crtc,
  2463. uint32_t sprite_width, uint32_t sprite_height,
  2464. int pixel_size, bool enabled, bool scaled)
  2465. {
  2466. struct drm_device *dev = plane->dev;
  2467. struct intel_plane *intel_plane = to_intel_plane(plane);
  2468. intel_plane->wm.enabled = enabled;
  2469. intel_plane->wm.scaled = scaled;
  2470. intel_plane->wm.horiz_pixels = sprite_width;
  2471. intel_plane->wm.vert_pixels = sprite_width;
  2472. intel_plane->wm.bytes_per_pixel = pixel_size;
  2473. /*
  2474. * IVB workaround: must disable low power watermarks for at least
  2475. * one frame before enabling scaling. LP watermarks can be re-enabled
  2476. * when scaling is disabled.
  2477. *
  2478. * WaCxSRDisabledForSpriteScaling:ivb
  2479. */
  2480. if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
  2481. intel_wait_for_vblank(dev, intel_plane->pipe);
  2482. ilk_update_wm(crtc);
  2483. }
  2484. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2485. {
  2486. struct drm_device *dev = crtc->dev;
  2487. struct drm_i915_private *dev_priv = dev->dev_private;
  2488. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2489. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2490. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2491. enum pipe pipe = intel_crtc->pipe;
  2492. static const unsigned int wm0_pipe_reg[] = {
  2493. [PIPE_A] = WM0_PIPEA_ILK,
  2494. [PIPE_B] = WM0_PIPEB_ILK,
  2495. [PIPE_C] = WM0_PIPEC_IVB,
  2496. };
  2497. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  2498. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2499. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2500. active->pipe_enabled = intel_crtc_active(crtc);
  2501. if (active->pipe_enabled) {
  2502. u32 tmp = hw->wm_pipe[pipe];
  2503. /*
  2504. * For active pipes LP0 watermark is marked as
  2505. * enabled, and LP1+ watermaks as disabled since
  2506. * we can't really reverse compute them in case
  2507. * multiple pipes are active.
  2508. */
  2509. active->wm[0].enable = true;
  2510. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  2511. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  2512. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  2513. active->linetime = hw->wm_linetime[pipe];
  2514. } else {
  2515. int level, max_level = ilk_wm_max_level(dev);
  2516. /*
  2517. * For inactive pipes, all watermark levels
  2518. * should be marked as enabled but zeroed,
  2519. * which is what we'd compute them to.
  2520. */
  2521. for (level = 0; level <= max_level; level++)
  2522. active->wm[level].enable = true;
  2523. }
  2524. }
  2525. void ilk_wm_get_hw_state(struct drm_device *dev)
  2526. {
  2527. struct drm_i915_private *dev_priv = dev->dev_private;
  2528. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2529. struct drm_crtc *crtc;
  2530. for_each_crtc(dev, crtc)
  2531. ilk_pipe_wm_get_hw_state(crtc);
  2532. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  2533. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  2534. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  2535. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2536. if (INTEL_INFO(dev)->gen >= 7) {
  2537. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2538. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2539. }
  2540. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2541. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2542. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2543. else if (IS_IVYBRIDGE(dev))
  2544. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  2545. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2546. hw->enable_fbc_wm =
  2547. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2548. }
  2549. /**
  2550. * intel_update_watermarks - update FIFO watermark values based on current modes
  2551. *
  2552. * Calculate watermark values for the various WM regs based on current mode
  2553. * and plane configuration.
  2554. *
  2555. * There are several cases to deal with here:
  2556. * - normal (i.e. non-self-refresh)
  2557. * - self-refresh (SR) mode
  2558. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2559. * - lines are small relative to FIFO size (buffer can hold more than 2
  2560. * lines), so need to account for TLB latency
  2561. *
  2562. * The normal calculation is:
  2563. * watermark = dotclock * bytes per pixel * latency
  2564. * where latency is platform & configuration dependent (we assume pessimal
  2565. * values here).
  2566. *
  2567. * The SR calculation is:
  2568. * watermark = (trunc(latency/line time)+1) * surface width *
  2569. * bytes per pixel
  2570. * where
  2571. * line time = htotal / dotclock
  2572. * surface width = hdisplay for normal plane and 64 for cursor
  2573. * and latency is assumed to be high, as above.
  2574. *
  2575. * The final value programmed to the register should always be rounded up,
  2576. * and include an extra 2 entries to account for clock crossings.
  2577. *
  2578. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2579. * to set the non-SR watermarks to 8.
  2580. */
  2581. void intel_update_watermarks(struct drm_crtc *crtc)
  2582. {
  2583. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2584. if (dev_priv->display.update_wm)
  2585. dev_priv->display.update_wm(crtc);
  2586. }
  2587. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2588. struct drm_crtc *crtc,
  2589. uint32_t sprite_width,
  2590. uint32_t sprite_height,
  2591. int pixel_size,
  2592. bool enabled, bool scaled)
  2593. {
  2594. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2595. if (dev_priv->display.update_sprite_wm)
  2596. dev_priv->display.update_sprite_wm(plane, crtc,
  2597. sprite_width, sprite_height,
  2598. pixel_size, enabled, scaled);
  2599. }
  2600. static struct drm_i915_gem_object *
  2601. intel_alloc_context_page(struct drm_device *dev)
  2602. {
  2603. struct drm_i915_gem_object *ctx;
  2604. int ret;
  2605. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2606. ctx = i915_gem_alloc_object(dev, 4096);
  2607. if (!ctx) {
  2608. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2609. return NULL;
  2610. }
  2611. ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
  2612. if (ret) {
  2613. DRM_ERROR("failed to pin power context: %d\n", ret);
  2614. goto err_unref;
  2615. }
  2616. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2617. if (ret) {
  2618. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2619. goto err_unpin;
  2620. }
  2621. return ctx;
  2622. err_unpin:
  2623. i915_gem_object_ggtt_unpin(ctx);
  2624. err_unref:
  2625. drm_gem_object_unreference(&ctx->base);
  2626. return NULL;
  2627. }
  2628. /**
  2629. * Lock protecting IPS related data structures
  2630. */
  2631. DEFINE_SPINLOCK(mchdev_lock);
  2632. /* Global for IPS driver to get at the current i915 device. Protected by
  2633. * mchdev_lock. */
  2634. static struct drm_i915_private *i915_mch_dev;
  2635. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2636. {
  2637. struct drm_i915_private *dev_priv = dev->dev_private;
  2638. u16 rgvswctl;
  2639. assert_spin_locked(&mchdev_lock);
  2640. rgvswctl = I915_READ16(MEMSWCTL);
  2641. if (rgvswctl & MEMCTL_CMD_STS) {
  2642. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2643. return false; /* still busy with another command */
  2644. }
  2645. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2646. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2647. I915_WRITE16(MEMSWCTL, rgvswctl);
  2648. POSTING_READ16(MEMSWCTL);
  2649. rgvswctl |= MEMCTL_CMD_STS;
  2650. I915_WRITE16(MEMSWCTL, rgvswctl);
  2651. return true;
  2652. }
  2653. static void ironlake_enable_drps(struct drm_device *dev)
  2654. {
  2655. struct drm_i915_private *dev_priv = dev->dev_private;
  2656. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2657. u8 fmax, fmin, fstart, vstart;
  2658. spin_lock_irq(&mchdev_lock);
  2659. /* Enable temp reporting */
  2660. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2661. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2662. /* 100ms RC evaluation intervals */
  2663. I915_WRITE(RCUPEI, 100000);
  2664. I915_WRITE(RCDNEI, 100000);
  2665. /* Set max/min thresholds to 90ms and 80ms respectively */
  2666. I915_WRITE(RCBMAXAVG, 90000);
  2667. I915_WRITE(RCBMINAVG, 80000);
  2668. I915_WRITE(MEMIHYST, 1);
  2669. /* Set up min, max, and cur for interrupt handling */
  2670. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2671. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2672. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2673. MEMMODE_FSTART_SHIFT;
  2674. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2675. PXVFREQ_PX_SHIFT;
  2676. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2677. dev_priv->ips.fstart = fstart;
  2678. dev_priv->ips.max_delay = fstart;
  2679. dev_priv->ips.min_delay = fmin;
  2680. dev_priv->ips.cur_delay = fstart;
  2681. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2682. fmax, fmin, fstart);
  2683. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2684. /*
  2685. * Interrupts will be enabled in ironlake_irq_postinstall
  2686. */
  2687. I915_WRITE(VIDSTART, vstart);
  2688. POSTING_READ(VIDSTART);
  2689. rgvmodectl |= MEMMODE_SWMODE_EN;
  2690. I915_WRITE(MEMMODECTL, rgvmodectl);
  2691. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2692. DRM_ERROR("stuck trying to change perf mode\n");
  2693. mdelay(1);
  2694. ironlake_set_drps(dev, fstart);
  2695. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2696. I915_READ(0x112e0);
  2697. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2698. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2699. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  2700. spin_unlock_irq(&mchdev_lock);
  2701. }
  2702. static void ironlake_disable_drps(struct drm_device *dev)
  2703. {
  2704. struct drm_i915_private *dev_priv = dev->dev_private;
  2705. u16 rgvswctl;
  2706. spin_lock_irq(&mchdev_lock);
  2707. rgvswctl = I915_READ16(MEMSWCTL);
  2708. /* Ack interrupts, disable EFC interrupt */
  2709. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2710. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2711. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2712. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2713. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2714. /* Go back to the starting frequency */
  2715. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2716. mdelay(1);
  2717. rgvswctl |= MEMCTL_CMD_STS;
  2718. I915_WRITE(MEMSWCTL, rgvswctl);
  2719. mdelay(1);
  2720. spin_unlock_irq(&mchdev_lock);
  2721. }
  2722. /* There's a funny hw issue where the hw returns all 0 when reading from
  2723. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2724. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2725. * all limits and the gpu stuck at whatever frequency it is at atm).
  2726. */
  2727. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  2728. {
  2729. u32 limits;
  2730. /* Only set the down limit when we've reached the lowest level to avoid
  2731. * getting more interrupts, otherwise leave this clear. This prevents a
  2732. * race in the hw when coming out of rc6: There's a tiny window where
  2733. * the hw runs at the minimal clock before selecting the desired
  2734. * frequency, if the down threshold expires in that window we will not
  2735. * receive a down interrupt. */
  2736. limits = dev_priv->rps.max_freq_softlimit << 24;
  2737. if (val <= dev_priv->rps.min_freq_softlimit)
  2738. limits |= dev_priv->rps.min_freq_softlimit << 16;
  2739. return limits;
  2740. }
  2741. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2742. {
  2743. int new_power;
  2744. if (dev_priv->rps.is_bdw_sw_turbo)
  2745. return;
  2746. new_power = dev_priv->rps.power;
  2747. switch (dev_priv->rps.power) {
  2748. case LOW_POWER:
  2749. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  2750. new_power = BETWEEN;
  2751. break;
  2752. case BETWEEN:
  2753. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  2754. new_power = LOW_POWER;
  2755. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  2756. new_power = HIGH_POWER;
  2757. break;
  2758. case HIGH_POWER:
  2759. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  2760. new_power = BETWEEN;
  2761. break;
  2762. }
  2763. /* Max/min bins are special */
  2764. if (val == dev_priv->rps.min_freq_softlimit)
  2765. new_power = LOW_POWER;
  2766. if (val == dev_priv->rps.max_freq_softlimit)
  2767. new_power = HIGH_POWER;
  2768. if (new_power == dev_priv->rps.power)
  2769. return;
  2770. /* Note the units here are not exactly 1us, but 1280ns. */
  2771. switch (new_power) {
  2772. case LOW_POWER:
  2773. /* Upclock if more than 95% busy over 16ms */
  2774. I915_WRITE(GEN6_RP_UP_EI, 12500);
  2775. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  2776. /* Downclock if less than 85% busy over 32ms */
  2777. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2778. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  2779. I915_WRITE(GEN6_RP_CONTROL,
  2780. GEN6_RP_MEDIA_TURBO |
  2781. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2782. GEN6_RP_MEDIA_IS_GFX |
  2783. GEN6_RP_ENABLE |
  2784. GEN6_RP_UP_BUSY_AVG |
  2785. GEN6_RP_DOWN_IDLE_AVG);
  2786. break;
  2787. case BETWEEN:
  2788. /* Upclock if more than 90% busy over 13ms */
  2789. I915_WRITE(GEN6_RP_UP_EI, 10250);
  2790. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  2791. /* Downclock if less than 75% busy over 32ms */
  2792. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2793. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  2794. I915_WRITE(GEN6_RP_CONTROL,
  2795. GEN6_RP_MEDIA_TURBO |
  2796. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2797. GEN6_RP_MEDIA_IS_GFX |
  2798. GEN6_RP_ENABLE |
  2799. GEN6_RP_UP_BUSY_AVG |
  2800. GEN6_RP_DOWN_IDLE_AVG);
  2801. break;
  2802. case HIGH_POWER:
  2803. /* Upclock if more than 85% busy over 10ms */
  2804. I915_WRITE(GEN6_RP_UP_EI, 8000);
  2805. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  2806. /* Downclock if less than 60% busy over 32ms */
  2807. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2808. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  2809. I915_WRITE(GEN6_RP_CONTROL,
  2810. GEN6_RP_MEDIA_TURBO |
  2811. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2812. GEN6_RP_MEDIA_IS_GFX |
  2813. GEN6_RP_ENABLE |
  2814. GEN6_RP_UP_BUSY_AVG |
  2815. GEN6_RP_DOWN_IDLE_AVG);
  2816. break;
  2817. }
  2818. dev_priv->rps.power = new_power;
  2819. dev_priv->rps.last_adj = 0;
  2820. }
  2821. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  2822. {
  2823. u32 mask = 0;
  2824. if (val > dev_priv->rps.min_freq_softlimit)
  2825. mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  2826. if (val < dev_priv->rps.max_freq_softlimit)
  2827. mask |= GEN6_PM_RP_UP_THRESHOLD;
  2828. mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
  2829. mask &= dev_priv->pm_rps_events;
  2830. /* IVB and SNB hard hangs on looping batchbuffer
  2831. * if GEN6_PM_UP_EI_EXPIRED is masked.
  2832. */
  2833. if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
  2834. mask |= GEN6_PM_RP_UP_EI_EXPIRED;
  2835. if (IS_GEN8(dev_priv->dev))
  2836. mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
  2837. return ~mask;
  2838. }
  2839. /* gen6_set_rps is called to update the frequency request, but should also be
  2840. * called when the range (min_delay and max_delay) is modified so that we can
  2841. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  2842. void gen6_set_rps(struct drm_device *dev, u8 val)
  2843. {
  2844. struct drm_i915_private *dev_priv = dev->dev_private;
  2845. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2846. WARN_ON(val > dev_priv->rps.max_freq_softlimit);
  2847. WARN_ON(val < dev_priv->rps.min_freq_softlimit);
  2848. /* min/max delay may still have been modified so be sure to
  2849. * write the limits value.
  2850. */
  2851. if (val != dev_priv->rps.cur_freq) {
  2852. gen6_set_rps_thresholds(dev_priv, val);
  2853. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2854. I915_WRITE(GEN6_RPNSWREQ,
  2855. HSW_FREQUENCY(val));
  2856. else
  2857. I915_WRITE(GEN6_RPNSWREQ,
  2858. GEN6_FREQUENCY(val) |
  2859. GEN6_OFFSET(0) |
  2860. GEN6_AGGRESSIVE_TURBO);
  2861. }
  2862. /* Make sure we continue to get interrupts
  2863. * until we hit the minimum or maximum frequencies.
  2864. */
  2865. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
  2866. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  2867. POSTING_READ(GEN6_RPNSWREQ);
  2868. dev_priv->rps.cur_freq = val;
  2869. trace_intel_gpu_freq_change(val * 50);
  2870. }
  2871. /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
  2872. *
  2873. * * If Gfx is Idle, then
  2874. * 1. Mask Turbo interrupts
  2875. * 2. Bring up Gfx clock
  2876. * 3. Change the freq to Rpn and wait till P-Unit updates freq
  2877. * 4. Clear the Force GFX CLK ON bit so that Gfx can down
  2878. * 5. Unmask Turbo interrupts
  2879. */
  2880. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  2881. {
  2882. struct drm_device *dev = dev_priv->dev;
  2883. /* Latest VLV doesn't need to force the gfx clock */
  2884. if (dev->pdev->revision >= 0xd) {
  2885. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2886. return;
  2887. }
  2888. /*
  2889. * When we are idle. Drop to min voltage state.
  2890. */
  2891. if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
  2892. return;
  2893. /* Mask turbo interrupt so that they will not come in between */
  2894. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2895. vlv_force_gfx_clock(dev_priv, true);
  2896. dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
  2897. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
  2898. dev_priv->rps.min_freq_softlimit);
  2899. if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
  2900. & GENFREQSTATUS) == 0, 5))
  2901. DRM_ERROR("timed out waiting for Punit\n");
  2902. vlv_force_gfx_clock(dev_priv, false);
  2903. I915_WRITE(GEN6_PMINTRMSK,
  2904. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  2905. }
  2906. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  2907. {
  2908. struct drm_device *dev = dev_priv->dev;
  2909. mutex_lock(&dev_priv->rps.hw_lock);
  2910. if (dev_priv->rps.enabled) {
  2911. if (IS_CHERRYVIEW(dev))
  2912. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2913. else if (IS_VALLEYVIEW(dev))
  2914. vlv_set_rps_idle(dev_priv);
  2915. else if (!dev_priv->rps.is_bdw_sw_turbo
  2916. || atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
  2917. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2918. }
  2919. dev_priv->rps.last_adj = 0;
  2920. }
  2921. mutex_unlock(&dev_priv->rps.hw_lock);
  2922. }
  2923. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  2924. {
  2925. struct drm_device *dev = dev_priv->dev;
  2926. mutex_lock(&dev_priv->rps.hw_lock);
  2927. if (dev_priv->rps.enabled) {
  2928. if (IS_VALLEYVIEW(dev))
  2929. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
  2930. else if (!dev_priv->rps.is_bdw_sw_turbo
  2931. || atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
  2932. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
  2933. }
  2934. dev_priv->rps.last_adj = 0;
  2935. }
  2936. mutex_unlock(&dev_priv->rps.hw_lock);
  2937. }
  2938. void valleyview_set_rps(struct drm_device *dev, u8 val)
  2939. {
  2940. struct drm_i915_private *dev_priv = dev->dev_private;
  2941. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2942. WARN_ON(val > dev_priv->rps.max_freq_softlimit);
  2943. WARN_ON(val < dev_priv->rps.min_freq_softlimit);
  2944. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  2945. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  2946. dev_priv->rps.cur_freq,
  2947. vlv_gpu_freq(dev_priv, val), val);
  2948. if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
  2949. "Odd GPU freq value\n"))
  2950. val &= ~1;
  2951. if (val != dev_priv->rps.cur_freq)
  2952. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  2953. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  2954. dev_priv->rps.cur_freq = val;
  2955. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
  2956. }
  2957. static void gen8_disable_rps_interrupts(struct drm_device *dev)
  2958. {
  2959. struct drm_i915_private *dev_priv = dev->dev_private;
  2960. if (IS_BROADWELL(dev) && dev_priv->rps.is_bdw_sw_turbo){
  2961. if (atomic_read(&dev_priv->rps.sw_turbo.flip_received))
  2962. del_timer(&dev_priv->rps.sw_turbo.flip_timer);
  2963. dev_priv-> rps.is_bdw_sw_turbo = false;
  2964. } else {
  2965. I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
  2966. I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
  2967. ~dev_priv->pm_rps_events);
  2968. /* Complete PM interrupt masking here doesn't race with the rps work
  2969. * item again unmasking PM interrupts because that is using a different
  2970. * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
  2971. * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
  2972. * gen8_enable_rps will clean up. */
  2973. spin_lock_irq(&dev_priv->irq_lock);
  2974. dev_priv->rps.pm_iir = 0;
  2975. spin_unlock_irq(&dev_priv->irq_lock);
  2976. I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
  2977. }
  2978. }
  2979. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  2980. {
  2981. struct drm_i915_private *dev_priv = dev->dev_private;
  2982. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2983. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
  2984. ~dev_priv->pm_rps_events);
  2985. /* Complete PM interrupt masking here doesn't race with the rps work
  2986. * item again unmasking PM interrupts because that is using a different
  2987. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2988. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2989. spin_lock_irq(&dev_priv->irq_lock);
  2990. dev_priv->rps.pm_iir = 0;
  2991. spin_unlock_irq(&dev_priv->irq_lock);
  2992. I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
  2993. }
  2994. static void gen6_disable_rps(struct drm_device *dev)
  2995. {
  2996. struct drm_i915_private *dev_priv = dev->dev_private;
  2997. I915_WRITE(GEN6_RC_CONTROL, 0);
  2998. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  2999. if (IS_BROADWELL(dev))
  3000. gen8_disable_rps_interrupts(dev);
  3001. else
  3002. gen6_disable_rps_interrupts(dev);
  3003. }
  3004. static void cherryview_disable_rps(struct drm_device *dev)
  3005. {
  3006. struct drm_i915_private *dev_priv = dev->dev_private;
  3007. I915_WRITE(GEN6_RC_CONTROL, 0);
  3008. gen8_disable_rps_interrupts(dev);
  3009. }
  3010. static void valleyview_disable_rps(struct drm_device *dev)
  3011. {
  3012. struct drm_i915_private *dev_priv = dev->dev_private;
  3013. /* we're doing forcewake before Disabling RC6,
  3014. * This what the BIOS expects when going into suspend */
  3015. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3016. I915_WRITE(GEN6_RC_CONTROL, 0);
  3017. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3018. gen6_disable_rps_interrupts(dev);
  3019. }
  3020. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3021. {
  3022. if (IS_VALLEYVIEW(dev)) {
  3023. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  3024. mode = GEN6_RC_CTL_RC6_ENABLE;
  3025. else
  3026. mode = 0;
  3027. }
  3028. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  3029. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3030. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3031. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3032. }
  3033. static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  3034. {
  3035. /* No RC6 before Ironlake */
  3036. if (INTEL_INFO(dev)->gen < 5)
  3037. return 0;
  3038. /* RC6 is only on Ironlake mobile not on desktop */
  3039. if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
  3040. return 0;
  3041. /* Respect the kernel parameter if it is set */
  3042. if (enable_rc6 >= 0) {
  3043. int mask;
  3044. if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
  3045. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  3046. INTEL_RC6pp_ENABLE;
  3047. else
  3048. mask = INTEL_RC6_ENABLE;
  3049. if ((enable_rc6 & mask) != enable_rc6)
  3050. DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  3051. enable_rc6 & mask, enable_rc6, mask);
  3052. return enable_rc6 & mask;
  3053. }
  3054. /* Disable RC6 on Ironlake */
  3055. if (INTEL_INFO(dev)->gen == 5)
  3056. return 0;
  3057. if (IS_IVYBRIDGE(dev))
  3058. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3059. return INTEL_RC6_ENABLE;
  3060. }
  3061. int intel_enable_rc6(const struct drm_device *dev)
  3062. {
  3063. return i915.enable_rc6;
  3064. }
  3065. static void gen8_enable_rps_interrupts(struct drm_device *dev)
  3066. {
  3067. struct drm_i915_private *dev_priv = dev->dev_private;
  3068. spin_lock_irq(&dev_priv->irq_lock);
  3069. WARN_ON(dev_priv->rps.pm_iir);
  3070. gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  3071. I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
  3072. spin_unlock_irq(&dev_priv->irq_lock);
  3073. }
  3074. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  3075. {
  3076. struct drm_i915_private *dev_priv = dev->dev_private;
  3077. spin_lock_irq(&dev_priv->irq_lock);
  3078. WARN_ON(dev_priv->rps.pm_iir);
  3079. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  3080. I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
  3081. spin_unlock_irq(&dev_priv->irq_lock);
  3082. }
  3083. static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
  3084. {
  3085. /* All of these values are in units of 50MHz */
  3086. dev_priv->rps.cur_freq = 0;
  3087. /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
  3088. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3089. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  3090. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  3091. /* XXX: only BYT has a special efficient freq */
  3092. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  3093. /* hw_max = RP0 until we check for overclocking */
  3094. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  3095. /* Preserve min/max settings in case of re-init */
  3096. if (dev_priv->rps.max_freq_softlimit == 0)
  3097. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3098. if (dev_priv->rps.min_freq_softlimit == 0)
  3099. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3100. }
  3101. static void bdw_sw_calculate_freq(struct drm_device *dev,
  3102. struct intel_rps_bdw_cal *c, u32 *cur_time, u32 *c0)
  3103. {
  3104. struct drm_i915_private *dev_priv = dev->dev_private;
  3105. u64 busy = 0;
  3106. u32 busyness_pct = 0;
  3107. u32 elapsed_time = 0;
  3108. u16 new_freq = 0;
  3109. if (!c || !cur_time || !c0)
  3110. return;
  3111. if (0 == c->last_c0)
  3112. goto out;
  3113. /* Check Evaluation interval */
  3114. elapsed_time = *cur_time - c->last_ts;
  3115. if (elapsed_time < c->eval_interval)
  3116. return;
  3117. mutex_lock(&dev_priv->rps.hw_lock);
  3118. /*
  3119. * c0 unit in 32*1.28 usec, elapsed_time unit in 1 usec.
  3120. * Whole busyness_pct calculation should be
  3121. * busy = ((u64)(*c0 - c->last_c0) << 5 << 7) / 100;
  3122. * busyness_pct = (u32)(busy * 100 / elapsed_time);
  3123. * The final formula is to simplify CPU calculation
  3124. */
  3125. busy = (u64)(*c0 - c->last_c0) << 12;
  3126. do_div(busy, elapsed_time);
  3127. busyness_pct = (u32)busy;
  3128. if (c->is_up && busyness_pct >= c->it_threshold_pct)
  3129. new_freq = (u16)dev_priv->rps.cur_freq + 3;
  3130. if (!c->is_up && busyness_pct <= c->it_threshold_pct)
  3131. new_freq = (u16)dev_priv->rps.cur_freq - 1;
  3132. /* Adjust to new frequency busyness and compare with threshold */
  3133. if (0 != new_freq) {
  3134. if (new_freq > dev_priv->rps.max_freq_softlimit)
  3135. new_freq = dev_priv->rps.max_freq_softlimit;
  3136. else if (new_freq < dev_priv->rps.min_freq_softlimit)
  3137. new_freq = dev_priv->rps.min_freq_softlimit;
  3138. gen6_set_rps(dev, new_freq);
  3139. }
  3140. mutex_unlock(&dev_priv->rps.hw_lock);
  3141. out:
  3142. c->last_c0 = *c0;
  3143. c->last_ts = *cur_time;
  3144. }
  3145. static void gen8_set_frequency_RP0(struct work_struct *work)
  3146. {
  3147. struct intel_rps_bdw_turbo *p_bdw_turbo =
  3148. container_of(work, struct intel_rps_bdw_turbo, work_max_freq);
  3149. struct intel_gen6_power_mgmt *p_power_mgmt =
  3150. container_of(p_bdw_turbo, struct intel_gen6_power_mgmt, sw_turbo);
  3151. struct drm_i915_private *dev_priv =
  3152. container_of(p_power_mgmt, struct drm_i915_private, rps);
  3153. mutex_lock(&dev_priv->rps.hw_lock);
  3154. gen6_set_rps(dev_priv->dev, dev_priv->rps.rp0_freq);
  3155. mutex_unlock(&dev_priv->rps.hw_lock);
  3156. }
  3157. static void flip_active_timeout_handler(unsigned long var)
  3158. {
  3159. struct drm_i915_private *dev_priv = (struct drm_i915_private *) var;
  3160. del_timer(&dev_priv->rps.sw_turbo.flip_timer);
  3161. atomic_set(&dev_priv->rps.sw_turbo.flip_received, false);
  3162. queue_work(dev_priv->wq, &dev_priv->rps.sw_turbo.work_max_freq);
  3163. }
  3164. void bdw_software_turbo(struct drm_device *dev)
  3165. {
  3166. struct drm_i915_private *dev_priv = dev->dev_private;
  3167. u32 current_time = I915_READ(TIMESTAMP_CTR); /* unit in usec */
  3168. u32 current_c0 = I915_READ(MCHBAR_PCU_C0); /* unit in 32*1.28 usec */
  3169. bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.up,
  3170. &current_time, &current_c0);
  3171. bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.down,
  3172. &current_time, &current_c0);
  3173. }
  3174. static void gen8_enable_rps(struct drm_device *dev)
  3175. {
  3176. struct drm_i915_private *dev_priv = dev->dev_private;
  3177. struct intel_engine_cs *ring;
  3178. uint32_t rc6_mask = 0, rp_state_cap;
  3179. uint32_t threshold_up_pct, threshold_down_pct;
  3180. uint32_t ei_up, ei_down; /* up and down evaluation interval */
  3181. u32 rp_ctl_flag;
  3182. int unused;
  3183. /* Use software Turbo for BDW */
  3184. dev_priv->rps.is_bdw_sw_turbo = IS_BROADWELL(dev);
  3185. /* 1a: Software RC state - RC0 */
  3186. I915_WRITE(GEN6_RC_STATE, 0);
  3187. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  3188. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3189. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3190. /* 2a: Disable RC states. */
  3191. I915_WRITE(GEN6_RC_CONTROL, 0);
  3192. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3193. parse_rp_state_cap(dev_priv, rp_state_cap);
  3194. /* 2b: Program RC6 thresholds.*/
  3195. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3196. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3197. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3198. for_each_ring(ring, dev_priv, unused)
  3199. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3200. I915_WRITE(GEN6_RC_SLEEP, 0);
  3201. if (IS_BROADWELL(dev))
  3202. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  3203. else
  3204. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3205. /* 3: Enable RC6 */
  3206. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3207. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3208. intel_print_rc6_info(dev, rc6_mask);
  3209. if (IS_BROADWELL(dev))
  3210. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3211. GEN7_RC_CTL_TO_MODE |
  3212. rc6_mask);
  3213. else
  3214. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3215. GEN6_RC_CTL_EI_MODE(1) |
  3216. rc6_mask);
  3217. /* 4 Program defaults and thresholds for RPS*/
  3218. I915_WRITE(GEN6_RPNSWREQ,
  3219. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  3220. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3221. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  3222. ei_up = 84480; /* 84.48ms */
  3223. ei_down = 448000;
  3224. threshold_up_pct = 90; /* x percent busy */
  3225. threshold_down_pct = 70;
  3226. if (dev_priv->rps.is_bdw_sw_turbo) {
  3227. dev_priv->rps.sw_turbo.up.it_threshold_pct = threshold_up_pct;
  3228. dev_priv->rps.sw_turbo.up.eval_interval = ei_up;
  3229. dev_priv->rps.sw_turbo.up.is_up = true;
  3230. dev_priv->rps.sw_turbo.up.last_ts = 0;
  3231. dev_priv->rps.sw_turbo.up.last_c0 = 0;
  3232. dev_priv->rps.sw_turbo.down.it_threshold_pct = threshold_down_pct;
  3233. dev_priv->rps.sw_turbo.down.eval_interval = ei_down;
  3234. dev_priv->rps.sw_turbo.down.is_up = false;
  3235. dev_priv->rps.sw_turbo.down.last_ts = 0;
  3236. dev_priv->rps.sw_turbo.down.last_c0 = 0;
  3237. /* Start the timer to track if flip comes*/
  3238. dev_priv->rps.sw_turbo.timeout = 200*1000; /* in us */
  3239. init_timer(&dev_priv->rps.sw_turbo.flip_timer);
  3240. dev_priv->rps.sw_turbo.flip_timer.function = flip_active_timeout_handler;
  3241. dev_priv->rps.sw_turbo.flip_timer.data = (unsigned long) dev_priv;
  3242. dev_priv->rps.sw_turbo.flip_timer.expires =
  3243. usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies;
  3244. add_timer(&dev_priv->rps.sw_turbo.flip_timer);
  3245. INIT_WORK(&dev_priv->rps.sw_turbo.work_max_freq, gen8_set_frequency_RP0);
  3246. atomic_set(&dev_priv->rps.sw_turbo.flip_received, true);
  3247. } else {
  3248. /* NB: Docs say 1s, and 1000000 - which aren't equivalent
  3249. * 1 second timeout*/
  3250. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, FREQ_1_28_US(1000000));
  3251. /* Docs recommend 900MHz, and 300 MHz respectively */
  3252. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3253. dev_priv->rps.max_freq_softlimit << 24 |
  3254. dev_priv->rps.min_freq_softlimit << 16);
  3255. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  3256. FREQ_1_28_US(ei_up * threshold_up_pct / 100));
  3257. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  3258. FREQ_1_28_US(ei_down * threshold_down_pct / 100));
  3259. I915_WRITE(GEN6_RP_UP_EI,
  3260. FREQ_1_28_US(ei_up));
  3261. I915_WRITE(GEN6_RP_DOWN_EI,
  3262. FREQ_1_28_US(ei_down));
  3263. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3264. }
  3265. /* 5: Enable RPS */
  3266. rp_ctl_flag = GEN6_RP_MEDIA_TURBO |
  3267. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3268. GEN6_RP_MEDIA_IS_GFX |
  3269. GEN6_RP_UP_BUSY_AVG |
  3270. GEN6_RP_DOWN_IDLE_AVG;
  3271. if (!dev_priv->rps.is_bdw_sw_turbo)
  3272. rp_ctl_flag |= GEN6_RP_ENABLE;
  3273. I915_WRITE(GEN6_RP_CONTROL, rp_ctl_flag);
  3274. /* 6: Ring frequency + overclocking
  3275. * (our driver does this later */
  3276. gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
  3277. if (!dev_priv->rps.is_bdw_sw_turbo)
  3278. gen8_enable_rps_interrupts(dev);
  3279. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3280. }
  3281. static void gen6_enable_rps(struct drm_device *dev)
  3282. {
  3283. struct drm_i915_private *dev_priv = dev->dev_private;
  3284. struct intel_engine_cs *ring;
  3285. u32 rp_state_cap;
  3286. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  3287. u32 gtfifodbg;
  3288. int rc6_mode;
  3289. int i, ret;
  3290. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3291. /* Here begins a magic sequence of register writes to enable
  3292. * auto-downclocking.
  3293. *
  3294. * Perhaps there might be some value in exposing these to
  3295. * userspace...
  3296. */
  3297. I915_WRITE(GEN6_RC_STATE, 0);
  3298. /* Clear the DBG now so we don't confuse earlier errors */
  3299. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3300. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3301. I915_WRITE(GTFIFODBG, gtfifodbg);
  3302. }
  3303. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3304. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3305. parse_rp_state_cap(dev_priv, rp_state_cap);
  3306. /* disable the counters and set deterministic thresholds */
  3307. I915_WRITE(GEN6_RC_CONTROL, 0);
  3308. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3309. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3310. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3311. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3312. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3313. for_each_ring(ring, dev_priv, i)
  3314. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3315. I915_WRITE(GEN6_RC_SLEEP, 0);
  3316. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3317. if (IS_IVYBRIDGE(dev))
  3318. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3319. else
  3320. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3321. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3322. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3323. /* Check if we are enabling RC6 */
  3324. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3325. if (rc6_mode & INTEL_RC6_ENABLE)
  3326. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3327. /* We don't use those on Haswell */
  3328. if (!IS_HASWELL(dev)) {
  3329. if (rc6_mode & INTEL_RC6p_ENABLE)
  3330. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3331. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3332. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3333. }
  3334. intel_print_rc6_info(dev, rc6_mask);
  3335. I915_WRITE(GEN6_RC_CONTROL,
  3336. rc6_mask |
  3337. GEN6_RC_CTL_EI_MODE(1) |
  3338. GEN6_RC_CTL_HW_ENABLE);
  3339. /* Power down if completely idle for over 50ms */
  3340. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3341. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3342. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3343. if (ret)
  3344. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3345. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3346. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3347. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3348. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  3349. (pcu_mbox & 0xff) * 50);
  3350. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  3351. }
  3352. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3353. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  3354. gen6_enable_rps_interrupts(dev);
  3355. rc6vids = 0;
  3356. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3357. if (IS_GEN6(dev) && ret) {
  3358. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3359. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3360. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3361. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3362. rc6vids &= 0xffff00;
  3363. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3364. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3365. if (ret)
  3366. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3367. }
  3368. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3369. }
  3370. static void __gen6_update_ring_freq(struct drm_device *dev)
  3371. {
  3372. struct drm_i915_private *dev_priv = dev->dev_private;
  3373. int min_freq = 15;
  3374. unsigned int gpu_freq;
  3375. unsigned int max_ia_freq, min_ring_freq;
  3376. int scaling_factor = 180;
  3377. struct cpufreq_policy *policy;
  3378. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3379. policy = cpufreq_cpu_get(0);
  3380. if (policy) {
  3381. max_ia_freq = policy->cpuinfo.max_freq;
  3382. cpufreq_cpu_put(policy);
  3383. } else {
  3384. /*
  3385. * Default to measured freq if none found, PCU will ensure we
  3386. * don't go over
  3387. */
  3388. max_ia_freq = tsc_khz;
  3389. }
  3390. /* Convert from kHz to MHz */
  3391. max_ia_freq /= 1000;
  3392. min_ring_freq = I915_READ(DCLK) & 0xf;
  3393. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3394. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3395. /*
  3396. * For each potential GPU frequency, load a ring frequency we'd like
  3397. * to use for memory access. We do this by specifying the IA frequency
  3398. * the PCU should use as a reference to determine the ring frequency.
  3399. */
  3400. for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
  3401. gpu_freq--) {
  3402. int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
  3403. unsigned int ia_freq = 0, ring_freq = 0;
  3404. if (INTEL_INFO(dev)->gen >= 8) {
  3405. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3406. ring_freq = max(min_ring_freq, gpu_freq);
  3407. } else if (IS_HASWELL(dev)) {
  3408. ring_freq = mult_frac(gpu_freq, 5, 4);
  3409. ring_freq = max(min_ring_freq, ring_freq);
  3410. /* leave ia_freq as the default, chosen by cpufreq */
  3411. } else {
  3412. /* On older processors, there is no separate ring
  3413. * clock domain, so in order to boost the bandwidth
  3414. * of the ring, we need to upclock the CPU (ia_freq).
  3415. *
  3416. * For GPU frequencies less than 750MHz,
  3417. * just use the lowest ring freq.
  3418. */
  3419. if (gpu_freq < min_freq)
  3420. ia_freq = 800;
  3421. else
  3422. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3423. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3424. }
  3425. sandybridge_pcode_write(dev_priv,
  3426. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3427. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3428. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3429. gpu_freq);
  3430. }
  3431. }
  3432. void gen6_update_ring_freq(struct drm_device *dev)
  3433. {
  3434. struct drm_i915_private *dev_priv = dev->dev_private;
  3435. if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
  3436. return;
  3437. mutex_lock(&dev_priv->rps.hw_lock);
  3438. __gen6_update_ring_freq(dev);
  3439. mutex_unlock(&dev_priv->rps.hw_lock);
  3440. }
  3441. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  3442. {
  3443. u32 val, rp0;
  3444. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3445. rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
  3446. return rp0;
  3447. }
  3448. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3449. {
  3450. u32 val, rpe;
  3451. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  3452. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  3453. return rpe;
  3454. }
  3455. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3456. {
  3457. u32 val, rp1;
  3458. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3459. rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
  3460. return rp1;
  3461. }
  3462. static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
  3463. {
  3464. u32 val, rpn;
  3465. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3466. rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
  3467. return rpn;
  3468. }
  3469. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3470. {
  3471. u32 val, rp1;
  3472. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3473. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  3474. return rp1;
  3475. }
  3476. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3477. {
  3478. u32 val, rp0;
  3479. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3480. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3481. /* Clamp to max */
  3482. rp0 = min_t(u32, rp0, 0xea);
  3483. return rp0;
  3484. }
  3485. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3486. {
  3487. u32 val, rpe;
  3488. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3489. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3490. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3491. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3492. return rpe;
  3493. }
  3494. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3495. {
  3496. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3497. }
  3498. /* Check that the pctx buffer wasn't move under us. */
  3499. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  3500. {
  3501. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3502. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  3503. dev_priv->vlv_pctx->stolen->start);
  3504. }
  3505. /* Check that the pcbr address is not empty. */
  3506. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  3507. {
  3508. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3509. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  3510. }
  3511. static void cherryview_setup_pctx(struct drm_device *dev)
  3512. {
  3513. struct drm_i915_private *dev_priv = dev->dev_private;
  3514. unsigned long pctx_paddr, paddr;
  3515. struct i915_gtt *gtt = &dev_priv->gtt;
  3516. u32 pcbr;
  3517. int pctx_size = 32*1024;
  3518. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3519. pcbr = I915_READ(VLV_PCBR);
  3520. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  3521. paddr = (dev_priv->mm.stolen_base +
  3522. (gtt->stolen_size - pctx_size));
  3523. pctx_paddr = (paddr & (~4095));
  3524. I915_WRITE(VLV_PCBR, pctx_paddr);
  3525. }
  3526. }
  3527. static void valleyview_setup_pctx(struct drm_device *dev)
  3528. {
  3529. struct drm_i915_private *dev_priv = dev->dev_private;
  3530. struct drm_i915_gem_object *pctx;
  3531. unsigned long pctx_paddr;
  3532. u32 pcbr;
  3533. int pctx_size = 24*1024;
  3534. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3535. pcbr = I915_READ(VLV_PCBR);
  3536. if (pcbr) {
  3537. /* BIOS set it up already, grab the pre-alloc'd space */
  3538. int pcbr_offset;
  3539. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3540. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3541. pcbr_offset,
  3542. I915_GTT_OFFSET_NONE,
  3543. pctx_size);
  3544. goto out;
  3545. }
  3546. /*
  3547. * From the Gunit register HAS:
  3548. * The Gfx driver is expected to program this register and ensure
  3549. * proper allocation within Gfx stolen memory. For example, this
  3550. * register should be programmed such than the PCBR range does not
  3551. * overlap with other ranges, such as the frame buffer, protected
  3552. * memory, or any other relevant ranges.
  3553. */
  3554. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3555. if (!pctx) {
  3556. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3557. return;
  3558. }
  3559. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3560. I915_WRITE(VLV_PCBR, pctx_paddr);
  3561. out:
  3562. dev_priv->vlv_pctx = pctx;
  3563. }
  3564. static void valleyview_cleanup_pctx(struct drm_device *dev)
  3565. {
  3566. struct drm_i915_private *dev_priv = dev->dev_private;
  3567. if (WARN_ON(!dev_priv->vlv_pctx))
  3568. return;
  3569. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3570. dev_priv->vlv_pctx = NULL;
  3571. }
  3572. static void valleyview_init_gt_powersave(struct drm_device *dev)
  3573. {
  3574. struct drm_i915_private *dev_priv = dev->dev_private;
  3575. u32 val;
  3576. valleyview_setup_pctx(dev);
  3577. mutex_lock(&dev_priv->rps.hw_lock);
  3578. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3579. switch ((val >> 6) & 3) {
  3580. case 0:
  3581. case 1:
  3582. dev_priv->mem_freq = 800;
  3583. break;
  3584. case 2:
  3585. dev_priv->mem_freq = 1066;
  3586. break;
  3587. case 3:
  3588. dev_priv->mem_freq = 1333;
  3589. break;
  3590. }
  3591. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  3592. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  3593. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  3594. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3595. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  3596. dev_priv->rps.max_freq);
  3597. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  3598. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3599. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3600. dev_priv->rps.efficient_freq);
  3601. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  3602. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  3603. vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  3604. dev_priv->rps.rp1_freq);
  3605. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  3606. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3607. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  3608. dev_priv->rps.min_freq);
  3609. /* Preserve min/max settings in case of re-init */
  3610. if (dev_priv->rps.max_freq_softlimit == 0)
  3611. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3612. if (dev_priv->rps.min_freq_softlimit == 0)
  3613. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3614. mutex_unlock(&dev_priv->rps.hw_lock);
  3615. }
  3616. static void cherryview_init_gt_powersave(struct drm_device *dev)
  3617. {
  3618. struct drm_i915_private *dev_priv = dev->dev_private;
  3619. u32 val;
  3620. cherryview_setup_pctx(dev);
  3621. mutex_lock(&dev_priv->rps.hw_lock);
  3622. val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
  3623. switch ((val >> 2) & 0x7) {
  3624. case 0:
  3625. case 1:
  3626. dev_priv->rps.cz_freq = 200;
  3627. dev_priv->mem_freq = 1600;
  3628. break;
  3629. case 2:
  3630. dev_priv->rps.cz_freq = 267;
  3631. dev_priv->mem_freq = 1600;
  3632. break;
  3633. case 3:
  3634. dev_priv->rps.cz_freq = 333;
  3635. dev_priv->mem_freq = 2000;
  3636. break;
  3637. case 4:
  3638. dev_priv->rps.cz_freq = 320;
  3639. dev_priv->mem_freq = 1600;
  3640. break;
  3641. case 5:
  3642. dev_priv->rps.cz_freq = 400;
  3643. dev_priv->mem_freq = 1600;
  3644. break;
  3645. }
  3646. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  3647. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  3648. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  3649. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3650. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  3651. dev_priv->rps.max_freq);
  3652. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  3653. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3654. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3655. dev_priv->rps.efficient_freq);
  3656. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  3657. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  3658. vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  3659. dev_priv->rps.rp1_freq);
  3660. dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
  3661. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3662. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  3663. dev_priv->rps.min_freq);
  3664. WARN_ONCE((dev_priv->rps.max_freq |
  3665. dev_priv->rps.efficient_freq |
  3666. dev_priv->rps.rp1_freq |
  3667. dev_priv->rps.min_freq) & 1,
  3668. "Odd GPU freq values\n");
  3669. /* Preserve min/max settings in case of re-init */
  3670. if (dev_priv->rps.max_freq_softlimit == 0)
  3671. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3672. if (dev_priv->rps.min_freq_softlimit == 0)
  3673. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3674. mutex_unlock(&dev_priv->rps.hw_lock);
  3675. }
  3676. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  3677. {
  3678. valleyview_cleanup_pctx(dev);
  3679. }
  3680. static void cherryview_enable_rps(struct drm_device *dev)
  3681. {
  3682. struct drm_i915_private *dev_priv = dev->dev_private;
  3683. struct intel_engine_cs *ring;
  3684. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  3685. int i;
  3686. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3687. gtfifodbg = I915_READ(GTFIFODBG);
  3688. if (gtfifodbg) {
  3689. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3690. gtfifodbg);
  3691. I915_WRITE(GTFIFODBG, gtfifodbg);
  3692. }
  3693. cherryview_check_pctx(dev_priv);
  3694. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  3695. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3696. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3697. /* 2a: Program RC6 thresholds.*/
  3698. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3699. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3700. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3701. for_each_ring(ring, dev_priv, i)
  3702. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3703. I915_WRITE(GEN6_RC_SLEEP, 0);
  3704. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3705. /* allows RC6 residency counter to work */
  3706. I915_WRITE(VLV_COUNTER_CONTROL,
  3707. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3708. VLV_MEDIA_RC6_COUNT_EN |
  3709. VLV_RENDER_RC6_COUNT_EN));
  3710. /* For now we assume BIOS is allocating and populating the PCBR */
  3711. pcbr = I915_READ(VLV_PCBR);
  3712. DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
  3713. /* 3: Enable RC6 */
  3714. if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  3715. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  3716. rc6_mode = GEN6_RC_CTL_EI_MODE(1);
  3717. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3718. /* 4 Program defaults and thresholds for RPS*/
  3719. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3720. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3721. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3722. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3723. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3724. /* WaDisablePwrmtrEvent:chv (pre-production hw) */
  3725. I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
  3726. I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
  3727. /* 5: Enable RPS */
  3728. I915_WRITE(GEN6_RP_CONTROL,
  3729. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3730. GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
  3731. GEN6_RP_ENABLE |
  3732. GEN6_RP_UP_BUSY_AVG |
  3733. GEN6_RP_DOWN_IDLE_AVG);
  3734. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3735. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3736. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3737. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  3738. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3739. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  3740. dev_priv->rps.cur_freq);
  3741. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3742. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3743. dev_priv->rps.efficient_freq);
  3744. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  3745. gen8_enable_rps_interrupts(dev);
  3746. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3747. }
  3748. static void valleyview_enable_rps(struct drm_device *dev)
  3749. {
  3750. struct drm_i915_private *dev_priv = dev->dev_private;
  3751. struct intel_engine_cs *ring;
  3752. u32 gtfifodbg, val, rc6_mode = 0;
  3753. int i;
  3754. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3755. valleyview_check_pctx(dev_priv);
  3756. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3757. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3758. gtfifodbg);
  3759. I915_WRITE(GTFIFODBG, gtfifodbg);
  3760. }
  3761. /* If VLV, Forcewake all wells, else re-direct to regular path */
  3762. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3763. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3764. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3765. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3766. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3767. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3768. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
  3769. I915_WRITE(GEN6_RP_CONTROL,
  3770. GEN6_RP_MEDIA_TURBO |
  3771. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3772. GEN6_RP_MEDIA_IS_GFX |
  3773. GEN6_RP_ENABLE |
  3774. GEN6_RP_UP_BUSY_AVG |
  3775. GEN6_RP_DOWN_IDLE_CONT);
  3776. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3777. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3778. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3779. for_each_ring(ring, dev_priv, i)
  3780. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3781. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  3782. /* allows RC6 residency counter to work */
  3783. I915_WRITE(VLV_COUNTER_CONTROL,
  3784. _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  3785. VLV_RENDER_RC0_COUNT_EN |
  3786. VLV_MEDIA_RC6_COUNT_EN |
  3787. VLV_RENDER_RC6_COUNT_EN));
  3788. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3789. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  3790. intel_print_rc6_info(dev, rc6_mode);
  3791. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3792. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3793. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3794. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3795. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  3796. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3797. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  3798. dev_priv->rps.cur_freq);
  3799. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3800. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3801. dev_priv->rps.efficient_freq);
  3802. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  3803. gen6_enable_rps_interrupts(dev);
  3804. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3805. }
  3806. void ironlake_teardown_rc6(struct drm_device *dev)
  3807. {
  3808. struct drm_i915_private *dev_priv = dev->dev_private;
  3809. if (dev_priv->ips.renderctx) {
  3810. i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
  3811. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3812. dev_priv->ips.renderctx = NULL;
  3813. }
  3814. if (dev_priv->ips.pwrctx) {
  3815. i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
  3816. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3817. dev_priv->ips.pwrctx = NULL;
  3818. }
  3819. }
  3820. static void ironlake_disable_rc6(struct drm_device *dev)
  3821. {
  3822. struct drm_i915_private *dev_priv = dev->dev_private;
  3823. if (I915_READ(PWRCTXA)) {
  3824. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3825. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3826. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3827. 50);
  3828. I915_WRITE(PWRCTXA, 0);
  3829. POSTING_READ(PWRCTXA);
  3830. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3831. POSTING_READ(RSTDBYCTL);
  3832. }
  3833. }
  3834. static int ironlake_setup_rc6(struct drm_device *dev)
  3835. {
  3836. struct drm_i915_private *dev_priv = dev->dev_private;
  3837. if (dev_priv->ips.renderctx == NULL)
  3838. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3839. if (!dev_priv->ips.renderctx)
  3840. return -ENOMEM;
  3841. if (dev_priv->ips.pwrctx == NULL)
  3842. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3843. if (!dev_priv->ips.pwrctx) {
  3844. ironlake_teardown_rc6(dev);
  3845. return -ENOMEM;
  3846. }
  3847. return 0;
  3848. }
  3849. static void ironlake_enable_rc6(struct drm_device *dev)
  3850. {
  3851. struct drm_i915_private *dev_priv = dev->dev_private;
  3852. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  3853. bool was_interruptible;
  3854. int ret;
  3855. /* rc6 disabled by default due to repeated reports of hanging during
  3856. * boot and resume.
  3857. */
  3858. if (!intel_enable_rc6(dev))
  3859. return;
  3860. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3861. ret = ironlake_setup_rc6(dev);
  3862. if (ret)
  3863. return;
  3864. was_interruptible = dev_priv->mm.interruptible;
  3865. dev_priv->mm.interruptible = false;
  3866. /*
  3867. * GPU can automatically power down the render unit if given a page
  3868. * to save state.
  3869. */
  3870. ret = intel_ring_begin(ring, 6);
  3871. if (ret) {
  3872. ironlake_teardown_rc6(dev);
  3873. dev_priv->mm.interruptible = was_interruptible;
  3874. return;
  3875. }
  3876. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3877. intel_ring_emit(ring, MI_SET_CONTEXT);
  3878. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3879. MI_MM_SPACE_GTT |
  3880. MI_SAVE_EXT_STATE_EN |
  3881. MI_RESTORE_EXT_STATE_EN |
  3882. MI_RESTORE_INHIBIT);
  3883. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3884. intel_ring_emit(ring, MI_NOOP);
  3885. intel_ring_emit(ring, MI_FLUSH);
  3886. intel_ring_advance(ring);
  3887. /*
  3888. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3889. * does an implicit flush, combined with MI_FLUSH above, it should be
  3890. * safe to assume that renderctx is valid
  3891. */
  3892. ret = intel_ring_idle(ring);
  3893. dev_priv->mm.interruptible = was_interruptible;
  3894. if (ret) {
  3895. DRM_ERROR("failed to enable ironlake power savings\n");
  3896. ironlake_teardown_rc6(dev);
  3897. return;
  3898. }
  3899. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3900. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3901. intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
  3902. }
  3903. static unsigned long intel_pxfreq(u32 vidfreq)
  3904. {
  3905. unsigned long freq;
  3906. int div = (vidfreq & 0x3f0000) >> 16;
  3907. int post = (vidfreq & 0x3000) >> 12;
  3908. int pre = (vidfreq & 0x7);
  3909. if (!pre)
  3910. return 0;
  3911. freq = ((div * 133333) / ((1<<post) * pre));
  3912. return freq;
  3913. }
  3914. static const struct cparams {
  3915. u16 i;
  3916. u16 t;
  3917. u16 m;
  3918. u16 c;
  3919. } cparams[] = {
  3920. { 1, 1333, 301, 28664 },
  3921. { 1, 1066, 294, 24460 },
  3922. { 1, 800, 294, 25192 },
  3923. { 0, 1333, 276, 27605 },
  3924. { 0, 1066, 276, 27605 },
  3925. { 0, 800, 231, 23784 },
  3926. };
  3927. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3928. {
  3929. u64 total_count, diff, ret;
  3930. u32 count1, count2, count3, m = 0, c = 0;
  3931. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3932. int i;
  3933. assert_spin_locked(&mchdev_lock);
  3934. diff1 = now - dev_priv->ips.last_time1;
  3935. /* Prevent division-by-zero if we are asking too fast.
  3936. * Also, we don't get interesting results if we are polling
  3937. * faster than once in 10ms, so just return the saved value
  3938. * in such cases.
  3939. */
  3940. if (diff1 <= 10)
  3941. return dev_priv->ips.chipset_power;
  3942. count1 = I915_READ(DMIEC);
  3943. count2 = I915_READ(DDREC);
  3944. count3 = I915_READ(CSIEC);
  3945. total_count = count1 + count2 + count3;
  3946. /* FIXME: handle per-counter overflow */
  3947. if (total_count < dev_priv->ips.last_count1) {
  3948. diff = ~0UL - dev_priv->ips.last_count1;
  3949. diff += total_count;
  3950. } else {
  3951. diff = total_count - dev_priv->ips.last_count1;
  3952. }
  3953. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3954. if (cparams[i].i == dev_priv->ips.c_m &&
  3955. cparams[i].t == dev_priv->ips.r_t) {
  3956. m = cparams[i].m;
  3957. c = cparams[i].c;
  3958. break;
  3959. }
  3960. }
  3961. diff = div_u64(diff, diff1);
  3962. ret = ((m * diff) + c);
  3963. ret = div_u64(ret, 10);
  3964. dev_priv->ips.last_count1 = total_count;
  3965. dev_priv->ips.last_time1 = now;
  3966. dev_priv->ips.chipset_power = ret;
  3967. return ret;
  3968. }
  3969. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3970. {
  3971. struct drm_device *dev = dev_priv->dev;
  3972. unsigned long val;
  3973. if (INTEL_INFO(dev)->gen != 5)
  3974. return 0;
  3975. spin_lock_irq(&mchdev_lock);
  3976. val = __i915_chipset_val(dev_priv);
  3977. spin_unlock_irq(&mchdev_lock);
  3978. return val;
  3979. }
  3980. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3981. {
  3982. unsigned long m, x, b;
  3983. u32 tsfs;
  3984. tsfs = I915_READ(TSFS);
  3985. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3986. x = I915_READ8(TR1);
  3987. b = tsfs & TSFS_INTR_MASK;
  3988. return ((m * x) / 127) - b;
  3989. }
  3990. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3991. {
  3992. struct drm_device *dev = dev_priv->dev;
  3993. static const struct v_table {
  3994. u16 vd; /* in .1 mil */
  3995. u16 vm; /* in .1 mil */
  3996. } v_table[] = {
  3997. { 0, 0, },
  3998. { 375, 0, },
  3999. { 500, 0, },
  4000. { 625, 0, },
  4001. { 750, 0, },
  4002. { 875, 0, },
  4003. { 1000, 0, },
  4004. { 1125, 0, },
  4005. { 4125, 3000, },
  4006. { 4125, 3000, },
  4007. { 4125, 3000, },
  4008. { 4125, 3000, },
  4009. { 4125, 3000, },
  4010. { 4125, 3000, },
  4011. { 4125, 3000, },
  4012. { 4125, 3000, },
  4013. { 4125, 3000, },
  4014. { 4125, 3000, },
  4015. { 4125, 3000, },
  4016. { 4125, 3000, },
  4017. { 4125, 3000, },
  4018. { 4125, 3000, },
  4019. { 4125, 3000, },
  4020. { 4125, 3000, },
  4021. { 4125, 3000, },
  4022. { 4125, 3000, },
  4023. { 4125, 3000, },
  4024. { 4125, 3000, },
  4025. { 4125, 3000, },
  4026. { 4125, 3000, },
  4027. { 4125, 3000, },
  4028. { 4125, 3000, },
  4029. { 4250, 3125, },
  4030. { 4375, 3250, },
  4031. { 4500, 3375, },
  4032. { 4625, 3500, },
  4033. { 4750, 3625, },
  4034. { 4875, 3750, },
  4035. { 5000, 3875, },
  4036. { 5125, 4000, },
  4037. { 5250, 4125, },
  4038. { 5375, 4250, },
  4039. { 5500, 4375, },
  4040. { 5625, 4500, },
  4041. { 5750, 4625, },
  4042. { 5875, 4750, },
  4043. { 6000, 4875, },
  4044. { 6125, 5000, },
  4045. { 6250, 5125, },
  4046. { 6375, 5250, },
  4047. { 6500, 5375, },
  4048. { 6625, 5500, },
  4049. { 6750, 5625, },
  4050. { 6875, 5750, },
  4051. { 7000, 5875, },
  4052. { 7125, 6000, },
  4053. { 7250, 6125, },
  4054. { 7375, 6250, },
  4055. { 7500, 6375, },
  4056. { 7625, 6500, },
  4057. { 7750, 6625, },
  4058. { 7875, 6750, },
  4059. { 8000, 6875, },
  4060. { 8125, 7000, },
  4061. { 8250, 7125, },
  4062. { 8375, 7250, },
  4063. { 8500, 7375, },
  4064. { 8625, 7500, },
  4065. { 8750, 7625, },
  4066. { 8875, 7750, },
  4067. { 9000, 7875, },
  4068. { 9125, 8000, },
  4069. { 9250, 8125, },
  4070. { 9375, 8250, },
  4071. { 9500, 8375, },
  4072. { 9625, 8500, },
  4073. { 9750, 8625, },
  4074. { 9875, 8750, },
  4075. { 10000, 8875, },
  4076. { 10125, 9000, },
  4077. { 10250, 9125, },
  4078. { 10375, 9250, },
  4079. { 10500, 9375, },
  4080. { 10625, 9500, },
  4081. { 10750, 9625, },
  4082. { 10875, 9750, },
  4083. { 11000, 9875, },
  4084. { 11125, 10000, },
  4085. { 11250, 10125, },
  4086. { 11375, 10250, },
  4087. { 11500, 10375, },
  4088. { 11625, 10500, },
  4089. { 11750, 10625, },
  4090. { 11875, 10750, },
  4091. { 12000, 10875, },
  4092. { 12125, 11000, },
  4093. { 12250, 11125, },
  4094. { 12375, 11250, },
  4095. { 12500, 11375, },
  4096. { 12625, 11500, },
  4097. { 12750, 11625, },
  4098. { 12875, 11750, },
  4099. { 13000, 11875, },
  4100. { 13125, 12000, },
  4101. { 13250, 12125, },
  4102. { 13375, 12250, },
  4103. { 13500, 12375, },
  4104. { 13625, 12500, },
  4105. { 13750, 12625, },
  4106. { 13875, 12750, },
  4107. { 14000, 12875, },
  4108. { 14125, 13000, },
  4109. { 14250, 13125, },
  4110. { 14375, 13250, },
  4111. { 14500, 13375, },
  4112. { 14625, 13500, },
  4113. { 14750, 13625, },
  4114. { 14875, 13750, },
  4115. { 15000, 13875, },
  4116. { 15125, 14000, },
  4117. { 15250, 14125, },
  4118. { 15375, 14250, },
  4119. { 15500, 14375, },
  4120. { 15625, 14500, },
  4121. { 15750, 14625, },
  4122. { 15875, 14750, },
  4123. { 16000, 14875, },
  4124. { 16125, 15000, },
  4125. };
  4126. if (INTEL_INFO(dev)->is_mobile)
  4127. return v_table[pxvid].vm;
  4128. else
  4129. return v_table[pxvid].vd;
  4130. }
  4131. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4132. {
  4133. u64 now, diff, diffms;
  4134. u32 count;
  4135. assert_spin_locked(&mchdev_lock);
  4136. now = ktime_get_raw_ns();
  4137. diffms = now - dev_priv->ips.last_time2;
  4138. do_div(diffms, NSEC_PER_MSEC);
  4139. /* Don't divide by 0 */
  4140. if (!diffms)
  4141. return;
  4142. count = I915_READ(GFXEC);
  4143. if (count < dev_priv->ips.last_count2) {
  4144. diff = ~0UL - dev_priv->ips.last_count2;
  4145. diff += count;
  4146. } else {
  4147. diff = count - dev_priv->ips.last_count2;
  4148. }
  4149. dev_priv->ips.last_count2 = count;
  4150. dev_priv->ips.last_time2 = now;
  4151. /* More magic constants... */
  4152. diff = diff * 1181;
  4153. diff = div_u64(diff, diffms * 10);
  4154. dev_priv->ips.gfx_power = diff;
  4155. }
  4156. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4157. {
  4158. struct drm_device *dev = dev_priv->dev;
  4159. if (INTEL_INFO(dev)->gen != 5)
  4160. return;
  4161. spin_lock_irq(&mchdev_lock);
  4162. __i915_update_gfx_val(dev_priv);
  4163. spin_unlock_irq(&mchdev_lock);
  4164. }
  4165. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  4166. {
  4167. unsigned long t, corr, state1, corr2, state2;
  4168. u32 pxvid, ext_v;
  4169. assert_spin_locked(&mchdev_lock);
  4170. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
  4171. pxvid = (pxvid >> 24) & 0x7f;
  4172. ext_v = pvid_to_extvid(dev_priv, pxvid);
  4173. state1 = ext_v;
  4174. t = i915_mch_val(dev_priv);
  4175. /* Revel in the empirically derived constants */
  4176. /* Correction factor in 1/100000 units */
  4177. if (t > 80)
  4178. corr = ((t * 2349) + 135940);
  4179. else if (t >= 50)
  4180. corr = ((t * 964) + 29317);
  4181. else /* < 50 */
  4182. corr = ((t * 301) + 1004);
  4183. corr = corr * ((150142 * state1) / 10000 - 78642);
  4184. corr /= 100000;
  4185. corr2 = (corr * dev_priv->ips.corr);
  4186. state2 = (corr2 * state1) / 10000;
  4187. state2 /= 100; /* convert to mW */
  4188. __i915_update_gfx_val(dev_priv);
  4189. return dev_priv->ips.gfx_power + state2;
  4190. }
  4191. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  4192. {
  4193. struct drm_device *dev = dev_priv->dev;
  4194. unsigned long val;
  4195. if (INTEL_INFO(dev)->gen != 5)
  4196. return 0;
  4197. spin_lock_irq(&mchdev_lock);
  4198. val = __i915_gfx_val(dev_priv);
  4199. spin_unlock_irq(&mchdev_lock);
  4200. return val;
  4201. }
  4202. /**
  4203. * i915_read_mch_val - return value for IPS use
  4204. *
  4205. * Calculate and return a value for the IPS driver to use when deciding whether
  4206. * we have thermal and power headroom to increase CPU or GPU power budget.
  4207. */
  4208. unsigned long i915_read_mch_val(void)
  4209. {
  4210. struct drm_i915_private *dev_priv;
  4211. unsigned long chipset_val, graphics_val, ret = 0;
  4212. spin_lock_irq(&mchdev_lock);
  4213. if (!i915_mch_dev)
  4214. goto out_unlock;
  4215. dev_priv = i915_mch_dev;
  4216. chipset_val = __i915_chipset_val(dev_priv);
  4217. graphics_val = __i915_gfx_val(dev_priv);
  4218. ret = chipset_val + graphics_val;
  4219. out_unlock:
  4220. spin_unlock_irq(&mchdev_lock);
  4221. return ret;
  4222. }
  4223. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  4224. /**
  4225. * i915_gpu_raise - raise GPU frequency limit
  4226. *
  4227. * Raise the limit; IPS indicates we have thermal headroom.
  4228. */
  4229. bool i915_gpu_raise(void)
  4230. {
  4231. struct drm_i915_private *dev_priv;
  4232. bool ret = true;
  4233. spin_lock_irq(&mchdev_lock);
  4234. if (!i915_mch_dev) {
  4235. ret = false;
  4236. goto out_unlock;
  4237. }
  4238. dev_priv = i915_mch_dev;
  4239. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  4240. dev_priv->ips.max_delay--;
  4241. out_unlock:
  4242. spin_unlock_irq(&mchdev_lock);
  4243. return ret;
  4244. }
  4245. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  4246. /**
  4247. * i915_gpu_lower - lower GPU frequency limit
  4248. *
  4249. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  4250. * frequency maximum.
  4251. */
  4252. bool i915_gpu_lower(void)
  4253. {
  4254. struct drm_i915_private *dev_priv;
  4255. bool ret = true;
  4256. spin_lock_irq(&mchdev_lock);
  4257. if (!i915_mch_dev) {
  4258. ret = false;
  4259. goto out_unlock;
  4260. }
  4261. dev_priv = i915_mch_dev;
  4262. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  4263. dev_priv->ips.max_delay++;
  4264. out_unlock:
  4265. spin_unlock_irq(&mchdev_lock);
  4266. return ret;
  4267. }
  4268. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  4269. /**
  4270. * i915_gpu_busy - indicate GPU business to IPS
  4271. *
  4272. * Tell the IPS driver whether or not the GPU is busy.
  4273. */
  4274. bool i915_gpu_busy(void)
  4275. {
  4276. struct drm_i915_private *dev_priv;
  4277. struct intel_engine_cs *ring;
  4278. bool ret = false;
  4279. int i;
  4280. spin_lock_irq(&mchdev_lock);
  4281. if (!i915_mch_dev)
  4282. goto out_unlock;
  4283. dev_priv = i915_mch_dev;
  4284. for_each_ring(ring, dev_priv, i)
  4285. ret |= !list_empty(&ring->request_list);
  4286. out_unlock:
  4287. spin_unlock_irq(&mchdev_lock);
  4288. return ret;
  4289. }
  4290. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  4291. /**
  4292. * i915_gpu_turbo_disable - disable graphics turbo
  4293. *
  4294. * Disable graphics turbo by resetting the max frequency and setting the
  4295. * current frequency to the default.
  4296. */
  4297. bool i915_gpu_turbo_disable(void)
  4298. {
  4299. struct drm_i915_private *dev_priv;
  4300. bool ret = true;
  4301. spin_lock_irq(&mchdev_lock);
  4302. if (!i915_mch_dev) {
  4303. ret = false;
  4304. goto out_unlock;
  4305. }
  4306. dev_priv = i915_mch_dev;
  4307. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  4308. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4309. ret = false;
  4310. out_unlock:
  4311. spin_unlock_irq(&mchdev_lock);
  4312. return ret;
  4313. }
  4314. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4315. /**
  4316. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4317. * IPS got loaded first.
  4318. *
  4319. * This awkward dance is so that neither module has to depend on the
  4320. * other in order for IPS to do the appropriate communication of
  4321. * GPU turbo limits to i915.
  4322. */
  4323. static void
  4324. ips_ping_for_i915_load(void)
  4325. {
  4326. void (*link)(void);
  4327. link = symbol_get(ips_link_to_i915_driver);
  4328. if (link) {
  4329. link();
  4330. symbol_put(ips_link_to_i915_driver);
  4331. }
  4332. }
  4333. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4334. {
  4335. /* We only register the i915 ips part with intel-ips once everything is
  4336. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4337. spin_lock_irq(&mchdev_lock);
  4338. i915_mch_dev = dev_priv;
  4339. spin_unlock_irq(&mchdev_lock);
  4340. ips_ping_for_i915_load();
  4341. }
  4342. void intel_gpu_ips_teardown(void)
  4343. {
  4344. spin_lock_irq(&mchdev_lock);
  4345. i915_mch_dev = NULL;
  4346. spin_unlock_irq(&mchdev_lock);
  4347. }
  4348. static void intel_init_emon(struct drm_device *dev)
  4349. {
  4350. struct drm_i915_private *dev_priv = dev->dev_private;
  4351. u32 lcfuse;
  4352. u8 pxw[16];
  4353. int i;
  4354. /* Disable to program */
  4355. I915_WRITE(ECR, 0);
  4356. POSTING_READ(ECR);
  4357. /* Program energy weights for various events */
  4358. I915_WRITE(SDEW, 0x15040d00);
  4359. I915_WRITE(CSIEW0, 0x007f0000);
  4360. I915_WRITE(CSIEW1, 0x1e220004);
  4361. I915_WRITE(CSIEW2, 0x04000004);
  4362. for (i = 0; i < 5; i++)
  4363. I915_WRITE(PEW + (i * 4), 0);
  4364. for (i = 0; i < 3; i++)
  4365. I915_WRITE(DEW + (i * 4), 0);
  4366. /* Program P-state weights to account for frequency power adjustment */
  4367. for (i = 0; i < 16; i++) {
  4368. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4369. unsigned long freq = intel_pxfreq(pxvidfreq);
  4370. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4371. PXVFREQ_PX_SHIFT;
  4372. unsigned long val;
  4373. val = vid * vid;
  4374. val *= (freq / 1000);
  4375. val *= 255;
  4376. val /= (127*127*900);
  4377. if (val > 0xff)
  4378. DRM_ERROR("bad pxval: %ld\n", val);
  4379. pxw[i] = val;
  4380. }
  4381. /* Render standby states get 0 weight */
  4382. pxw[14] = 0;
  4383. pxw[15] = 0;
  4384. for (i = 0; i < 4; i++) {
  4385. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4386. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4387. I915_WRITE(PXW + (i * 4), val);
  4388. }
  4389. /* Adjust magic regs to magic values (more experimental results) */
  4390. I915_WRITE(OGW0, 0);
  4391. I915_WRITE(OGW1, 0);
  4392. I915_WRITE(EG0, 0x00007f00);
  4393. I915_WRITE(EG1, 0x0000000e);
  4394. I915_WRITE(EG2, 0x000e0000);
  4395. I915_WRITE(EG3, 0x68000300);
  4396. I915_WRITE(EG4, 0x42000000);
  4397. I915_WRITE(EG5, 0x00140031);
  4398. I915_WRITE(EG6, 0);
  4399. I915_WRITE(EG7, 0);
  4400. for (i = 0; i < 8; i++)
  4401. I915_WRITE(PXWL + (i * 4), 0);
  4402. /* Enable PMON + select events */
  4403. I915_WRITE(ECR, 0x80000019);
  4404. lcfuse = I915_READ(LCFUSE02);
  4405. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4406. }
  4407. void intel_init_gt_powersave(struct drm_device *dev)
  4408. {
  4409. i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
  4410. if (IS_CHERRYVIEW(dev))
  4411. cherryview_init_gt_powersave(dev);
  4412. else if (IS_VALLEYVIEW(dev))
  4413. valleyview_init_gt_powersave(dev);
  4414. }
  4415. void intel_cleanup_gt_powersave(struct drm_device *dev)
  4416. {
  4417. if (IS_CHERRYVIEW(dev))
  4418. return;
  4419. else if (IS_VALLEYVIEW(dev))
  4420. valleyview_cleanup_gt_powersave(dev);
  4421. }
  4422. /**
  4423. * intel_suspend_gt_powersave - suspend PM work and helper threads
  4424. * @dev: drm device
  4425. *
  4426. * We don't want to disable RC6 or other features here, we just want
  4427. * to make sure any work we've queued has finished and won't bother
  4428. * us while we're suspended.
  4429. */
  4430. void intel_suspend_gt_powersave(struct drm_device *dev)
  4431. {
  4432. struct drm_i915_private *dev_priv = dev->dev_private;
  4433. /* Interrupts should be disabled already to avoid re-arming. */
  4434. WARN_ON(intel_irqs_enabled(dev_priv));
  4435. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4436. cancel_work_sync(&dev_priv->rps.work);
  4437. /* Force GPU to min freq during suspend */
  4438. gen6_rps_idle(dev_priv);
  4439. }
  4440. void intel_disable_gt_powersave(struct drm_device *dev)
  4441. {
  4442. struct drm_i915_private *dev_priv = dev->dev_private;
  4443. /* Interrupts should be disabled already to avoid re-arming. */
  4444. WARN_ON(intel_irqs_enabled(dev_priv));
  4445. if (IS_IRONLAKE_M(dev)) {
  4446. ironlake_disable_drps(dev);
  4447. ironlake_disable_rc6(dev);
  4448. } else if (INTEL_INFO(dev)->gen >= 6) {
  4449. intel_suspend_gt_powersave(dev);
  4450. mutex_lock(&dev_priv->rps.hw_lock);
  4451. if (IS_CHERRYVIEW(dev))
  4452. cherryview_disable_rps(dev);
  4453. else if (IS_VALLEYVIEW(dev))
  4454. valleyview_disable_rps(dev);
  4455. else
  4456. gen6_disable_rps(dev);
  4457. dev_priv->rps.enabled = false;
  4458. mutex_unlock(&dev_priv->rps.hw_lock);
  4459. }
  4460. }
  4461. static void intel_gen6_powersave_work(struct work_struct *work)
  4462. {
  4463. struct drm_i915_private *dev_priv =
  4464. container_of(work, struct drm_i915_private,
  4465. rps.delayed_resume_work.work);
  4466. struct drm_device *dev = dev_priv->dev;
  4467. dev_priv->rps.is_bdw_sw_turbo = false;
  4468. mutex_lock(&dev_priv->rps.hw_lock);
  4469. if (IS_CHERRYVIEW(dev)) {
  4470. cherryview_enable_rps(dev);
  4471. } else if (IS_VALLEYVIEW(dev)) {
  4472. valleyview_enable_rps(dev);
  4473. } else if (IS_BROADWELL(dev)) {
  4474. gen8_enable_rps(dev);
  4475. __gen6_update_ring_freq(dev);
  4476. } else {
  4477. gen6_enable_rps(dev);
  4478. __gen6_update_ring_freq(dev);
  4479. }
  4480. dev_priv->rps.enabled = true;
  4481. mutex_unlock(&dev_priv->rps.hw_lock);
  4482. intel_runtime_pm_put(dev_priv);
  4483. }
  4484. void intel_enable_gt_powersave(struct drm_device *dev)
  4485. {
  4486. struct drm_i915_private *dev_priv = dev->dev_private;
  4487. if (IS_IRONLAKE_M(dev)) {
  4488. mutex_lock(&dev->struct_mutex);
  4489. ironlake_enable_drps(dev);
  4490. ironlake_enable_rc6(dev);
  4491. intel_init_emon(dev);
  4492. mutex_unlock(&dev->struct_mutex);
  4493. } else if (INTEL_INFO(dev)->gen >= 6) {
  4494. /*
  4495. * PCU communication is slow and this doesn't need to be
  4496. * done at any specific time, so do this out of our fast path
  4497. * to make resume and init faster.
  4498. *
  4499. * We depend on the HW RC6 power context save/restore
  4500. * mechanism when entering D3 through runtime PM suspend. So
  4501. * disable RPM until RPS/RC6 is properly setup. We can only
  4502. * get here via the driver load/system resume/runtime resume
  4503. * paths, so the _noresume version is enough (and in case of
  4504. * runtime resume it's necessary).
  4505. */
  4506. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4507. round_jiffies_up_relative(HZ)))
  4508. intel_runtime_pm_get_noresume(dev_priv);
  4509. }
  4510. }
  4511. void intel_reset_gt_powersave(struct drm_device *dev)
  4512. {
  4513. struct drm_i915_private *dev_priv = dev->dev_private;
  4514. dev_priv->rps.enabled = false;
  4515. intel_enable_gt_powersave(dev);
  4516. }
  4517. static void ibx_init_clock_gating(struct drm_device *dev)
  4518. {
  4519. struct drm_i915_private *dev_priv = dev->dev_private;
  4520. /*
  4521. * On Ibex Peak and Cougar Point, we need to disable clock
  4522. * gating for the panel power sequencer or it will fail to
  4523. * start up when no ports are active.
  4524. */
  4525. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4526. }
  4527. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4528. {
  4529. struct drm_i915_private *dev_priv = dev->dev_private;
  4530. int pipe;
  4531. for_each_pipe(dev_priv, pipe) {
  4532. I915_WRITE(DSPCNTR(pipe),
  4533. I915_READ(DSPCNTR(pipe)) |
  4534. DISPPLANE_TRICKLE_FEED_DISABLE);
  4535. intel_flush_primary_plane(dev_priv, pipe);
  4536. }
  4537. }
  4538. static void ilk_init_lp_watermarks(struct drm_device *dev)
  4539. {
  4540. struct drm_i915_private *dev_priv = dev->dev_private;
  4541. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  4542. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  4543. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  4544. /*
  4545. * Don't touch WM1S_LP_EN here.
  4546. * Doing so could cause underruns.
  4547. */
  4548. }
  4549. static void ironlake_init_clock_gating(struct drm_device *dev)
  4550. {
  4551. struct drm_i915_private *dev_priv = dev->dev_private;
  4552. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4553. /*
  4554. * Required for FBC
  4555. * WaFbcDisableDpfcClockGating:ilk
  4556. */
  4557. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4558. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4559. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4560. I915_WRITE(PCH_3DCGDIS0,
  4561. MARIUNIT_CLOCK_GATE_DISABLE |
  4562. SVSMUNIT_CLOCK_GATE_DISABLE);
  4563. I915_WRITE(PCH_3DCGDIS1,
  4564. VFMUNIT_CLOCK_GATE_DISABLE);
  4565. /*
  4566. * According to the spec the following bits should be set in
  4567. * order to enable memory self-refresh
  4568. * The bit 22/21 of 0x42004
  4569. * The bit 5 of 0x42020
  4570. * The bit 15 of 0x45000
  4571. */
  4572. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4573. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4574. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4575. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4576. I915_WRITE(DISP_ARB_CTL,
  4577. (I915_READ(DISP_ARB_CTL) |
  4578. DISP_FBC_WM_DIS));
  4579. ilk_init_lp_watermarks(dev);
  4580. /*
  4581. * Based on the document from hardware guys the following bits
  4582. * should be set unconditionally in order to enable FBC.
  4583. * The bit 22 of 0x42000
  4584. * The bit 22 of 0x42004
  4585. * The bit 7,8,9 of 0x42020.
  4586. */
  4587. if (IS_IRONLAKE_M(dev)) {
  4588. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4589. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4590. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4591. ILK_FBCQ_DIS);
  4592. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4593. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4594. ILK_DPARB_GATE);
  4595. }
  4596. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4597. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4598. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4599. ILK_ELPIN_409_SELECT);
  4600. I915_WRITE(_3D_CHICKEN2,
  4601. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4602. _3D_CHICKEN2_WM_READ_PIPELINED);
  4603. /* WaDisableRenderCachePipelinedFlush:ilk */
  4604. I915_WRITE(CACHE_MODE_0,
  4605. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4606. /* WaDisable_RenderCache_OperationalFlush:ilk */
  4607. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4608. g4x_disable_trickle_feed(dev);
  4609. ibx_init_clock_gating(dev);
  4610. }
  4611. static void cpt_init_clock_gating(struct drm_device *dev)
  4612. {
  4613. struct drm_i915_private *dev_priv = dev->dev_private;
  4614. int pipe;
  4615. uint32_t val;
  4616. /*
  4617. * On Ibex Peak and Cougar Point, we need to disable clock
  4618. * gating for the panel power sequencer or it will fail to
  4619. * start up when no ports are active.
  4620. */
  4621. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4622. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4623. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4624. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4625. DPLS_EDP_PPS_FIX_DIS);
  4626. /* The below fixes the weird display corruption, a few pixels shifted
  4627. * downward, on (only) LVDS of some HP laptops with IVY.
  4628. */
  4629. for_each_pipe(dev_priv, pipe) {
  4630. val = I915_READ(TRANS_CHICKEN2(pipe));
  4631. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4632. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4633. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4634. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4635. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4636. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4637. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4638. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4639. }
  4640. /* WADP0ClockGatingDisable */
  4641. for_each_pipe(dev_priv, pipe) {
  4642. I915_WRITE(TRANS_CHICKEN1(pipe),
  4643. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4644. }
  4645. }
  4646. static void gen6_check_mch_setup(struct drm_device *dev)
  4647. {
  4648. struct drm_i915_private *dev_priv = dev->dev_private;
  4649. uint32_t tmp;
  4650. tmp = I915_READ(MCH_SSKPD);
  4651. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  4652. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  4653. tmp);
  4654. }
  4655. static void gen6_init_clock_gating(struct drm_device *dev)
  4656. {
  4657. struct drm_i915_private *dev_priv = dev->dev_private;
  4658. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4659. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4660. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4661. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4662. ILK_ELPIN_409_SELECT);
  4663. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4664. I915_WRITE(_3D_CHICKEN,
  4665. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4666. /* WaSetupGtModeTdRowDispatch:snb */
  4667. if (IS_SNB_GT1(dev))
  4668. I915_WRITE(GEN6_GT_MODE,
  4669. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4670. /* WaDisable_RenderCache_OperationalFlush:snb */
  4671. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4672. /*
  4673. * BSpec recoomends 8x4 when MSAA is used,
  4674. * however in practice 16x4 seems fastest.
  4675. *
  4676. * Note that PS/WM thread counts depend on the WIZ hashing
  4677. * disable bit, which we don't touch here, but it's good
  4678. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4679. */
  4680. I915_WRITE(GEN6_GT_MODE,
  4681. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4682. ilk_init_lp_watermarks(dev);
  4683. I915_WRITE(CACHE_MODE_0,
  4684. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4685. I915_WRITE(GEN6_UCGCTL1,
  4686. I915_READ(GEN6_UCGCTL1) |
  4687. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4688. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4689. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4690. * gating disable must be set. Failure to set it results in
  4691. * flickering pixels due to Z write ordering failures after
  4692. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4693. * Sanctuary and Tropics, and apparently anything else with
  4694. * alpha test or pixel discard.
  4695. *
  4696. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4697. * but we didn't debug actual testcases to find it out.
  4698. *
  4699. * WaDisableRCCUnitClockGating:snb
  4700. * WaDisableRCPBUnitClockGating:snb
  4701. */
  4702. I915_WRITE(GEN6_UCGCTL2,
  4703. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4704. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4705. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  4706. I915_WRITE(_3D_CHICKEN3,
  4707. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  4708. /*
  4709. * Bspec says:
  4710. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  4711. * 3DSTATE_SF number of SF output attributes is more than 16."
  4712. */
  4713. I915_WRITE(_3D_CHICKEN3,
  4714. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  4715. /*
  4716. * According to the spec the following bits should be
  4717. * set in order to enable memory self-refresh and fbc:
  4718. * The bit21 and bit22 of 0x42000
  4719. * The bit21 and bit22 of 0x42004
  4720. * The bit5 and bit7 of 0x42020
  4721. * The bit14 of 0x70180
  4722. * The bit14 of 0x71180
  4723. *
  4724. * WaFbcAsynchFlipDisableFbcQueue:snb
  4725. */
  4726. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4727. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4728. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4729. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4730. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4731. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4732. I915_WRITE(ILK_DSPCLK_GATE_D,
  4733. I915_READ(ILK_DSPCLK_GATE_D) |
  4734. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4735. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4736. g4x_disable_trickle_feed(dev);
  4737. cpt_init_clock_gating(dev);
  4738. gen6_check_mch_setup(dev);
  4739. }
  4740. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4741. {
  4742. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4743. /*
  4744. * WaVSThreadDispatchOverride:ivb,vlv
  4745. *
  4746. * This actually overrides the dispatch
  4747. * mode for all thread types.
  4748. */
  4749. reg &= ~GEN7_FF_SCHED_MASK;
  4750. reg |= GEN7_FF_TS_SCHED_HW;
  4751. reg |= GEN7_FF_VS_SCHED_HW;
  4752. reg |= GEN7_FF_DS_SCHED_HW;
  4753. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4754. }
  4755. static void lpt_init_clock_gating(struct drm_device *dev)
  4756. {
  4757. struct drm_i915_private *dev_priv = dev->dev_private;
  4758. /*
  4759. * TODO: this bit should only be enabled when really needed, then
  4760. * disabled when not needed anymore in order to save power.
  4761. */
  4762. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4763. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4764. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4765. PCH_LP_PARTITION_LEVEL_DISABLE);
  4766. /* WADPOClockGatingDisable:hsw */
  4767. I915_WRITE(_TRANSA_CHICKEN1,
  4768. I915_READ(_TRANSA_CHICKEN1) |
  4769. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4770. }
  4771. static void lpt_suspend_hw(struct drm_device *dev)
  4772. {
  4773. struct drm_i915_private *dev_priv = dev->dev_private;
  4774. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4775. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4776. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4777. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4778. }
  4779. }
  4780. static void broadwell_init_clock_gating(struct drm_device *dev)
  4781. {
  4782. struct drm_i915_private *dev_priv = dev->dev_private;
  4783. enum pipe pipe;
  4784. I915_WRITE(WM3_LP_ILK, 0);
  4785. I915_WRITE(WM2_LP_ILK, 0);
  4786. I915_WRITE(WM1_LP_ILK, 0);
  4787. /* FIXME(BDW): Check all the w/a, some might only apply to
  4788. * pre-production hw. */
  4789. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
  4790. I915_WRITE(_3D_CHICKEN3,
  4791. _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
  4792. /* WaSwitchSolVfFArbitrationPriority:bdw */
  4793. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4794. /* WaPsrDPAMaskVBlankInSRD:bdw */
  4795. I915_WRITE(CHICKEN_PAR1_1,
  4796. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  4797. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  4798. for_each_pipe(dev_priv, pipe) {
  4799. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  4800. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  4801. BDW_DPRS_MASK_VBLANK_SRD);
  4802. }
  4803. /* WaVSRefCountFullforceMissDisable:bdw */
  4804. /* WaDSRefCountFullforceMissDisable:bdw */
  4805. I915_WRITE(GEN7_FF_THREAD_MODE,
  4806. I915_READ(GEN7_FF_THREAD_MODE) &
  4807. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  4808. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4809. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  4810. /* WaDisableSDEUnitClockGating:bdw */
  4811. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  4812. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  4813. lpt_init_clock_gating(dev);
  4814. }
  4815. static void haswell_init_clock_gating(struct drm_device *dev)
  4816. {
  4817. struct drm_i915_private *dev_priv = dev->dev_private;
  4818. ilk_init_lp_watermarks(dev);
  4819. /* L3 caching of data atomics doesn't work -- disable it. */
  4820. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  4821. I915_WRITE(HSW_ROW_CHICKEN3,
  4822. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  4823. /* This is required by WaCatErrorRejectionIssue:hsw */
  4824. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4825. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4826. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4827. /* WaVSRefCountFullforceMissDisable:hsw */
  4828. I915_WRITE(GEN7_FF_THREAD_MODE,
  4829. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  4830. /* WaDisable_RenderCache_OperationalFlush:hsw */
  4831. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4832. /* enable HiZ Raw Stall Optimization */
  4833. I915_WRITE(CACHE_MODE_0_GEN7,
  4834. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  4835. /* WaDisable4x2SubspanOptimization:hsw */
  4836. I915_WRITE(CACHE_MODE_1,
  4837. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4838. /*
  4839. * BSpec recommends 8x4 when MSAA is used,
  4840. * however in practice 16x4 seems fastest.
  4841. *
  4842. * Note that PS/WM thread counts depend on the WIZ hashing
  4843. * disable bit, which we don't touch here, but it's good
  4844. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4845. */
  4846. I915_WRITE(GEN7_GT_MODE,
  4847. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4848. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4849. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4850. /* WaRsPkgCStateDisplayPMReq:hsw */
  4851. I915_WRITE(CHICKEN_PAR1_1,
  4852. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4853. lpt_init_clock_gating(dev);
  4854. }
  4855. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4856. {
  4857. struct drm_i915_private *dev_priv = dev->dev_private;
  4858. uint32_t snpcr;
  4859. ilk_init_lp_watermarks(dev);
  4860. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4861. /* WaDisableEarlyCull:ivb */
  4862. I915_WRITE(_3D_CHICKEN3,
  4863. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4864. /* WaDisableBackToBackFlipFix:ivb */
  4865. I915_WRITE(IVB_CHICKEN3,
  4866. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4867. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4868. /* WaDisablePSDDualDispatchEnable:ivb */
  4869. if (IS_IVB_GT1(dev))
  4870. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4871. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4872. /* WaDisable_RenderCache_OperationalFlush:ivb */
  4873. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4874. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4875. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4876. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4877. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4878. I915_WRITE(GEN7_L3CNTLREG1,
  4879. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4880. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4881. GEN7_WA_L3_CHICKEN_MODE);
  4882. if (IS_IVB_GT1(dev))
  4883. I915_WRITE(GEN7_ROW_CHICKEN2,
  4884. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4885. else {
  4886. /* must write both registers */
  4887. I915_WRITE(GEN7_ROW_CHICKEN2,
  4888. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4889. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4890. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4891. }
  4892. /* WaForceL3Serialization:ivb */
  4893. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4894. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4895. /*
  4896. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4897. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4898. */
  4899. I915_WRITE(GEN6_UCGCTL2,
  4900. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4901. /* This is required by WaCatErrorRejectionIssue:ivb */
  4902. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4903. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4904. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4905. g4x_disable_trickle_feed(dev);
  4906. gen7_setup_fixed_func_scheduler(dev_priv);
  4907. if (0) { /* causes HiZ corruption on ivb:gt1 */
  4908. /* enable HiZ Raw Stall Optimization */
  4909. I915_WRITE(CACHE_MODE_0_GEN7,
  4910. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  4911. }
  4912. /* WaDisable4x2SubspanOptimization:ivb */
  4913. I915_WRITE(CACHE_MODE_1,
  4914. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4915. /*
  4916. * BSpec recommends 8x4 when MSAA is used,
  4917. * however in practice 16x4 seems fastest.
  4918. *
  4919. * Note that PS/WM thread counts depend on the WIZ hashing
  4920. * disable bit, which we don't touch here, but it's good
  4921. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4922. */
  4923. I915_WRITE(GEN7_GT_MODE,
  4924. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4925. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4926. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4927. snpcr |= GEN6_MBC_SNPCR_MED;
  4928. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4929. if (!HAS_PCH_NOP(dev))
  4930. cpt_init_clock_gating(dev);
  4931. gen6_check_mch_setup(dev);
  4932. }
  4933. static void valleyview_init_clock_gating(struct drm_device *dev)
  4934. {
  4935. struct drm_i915_private *dev_priv = dev->dev_private;
  4936. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4937. /* WaDisableEarlyCull:vlv */
  4938. I915_WRITE(_3D_CHICKEN3,
  4939. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4940. /* WaDisableBackToBackFlipFix:vlv */
  4941. I915_WRITE(IVB_CHICKEN3,
  4942. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4943. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4944. /* WaPsdDispatchEnable:vlv */
  4945. /* WaDisablePSDDualDispatchEnable:vlv */
  4946. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4947. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4948. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4949. /* WaDisable_RenderCache_OperationalFlush:vlv */
  4950. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4951. /* WaForceL3Serialization:vlv */
  4952. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4953. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4954. /* WaDisableDopClockGating:vlv */
  4955. I915_WRITE(GEN7_ROW_CHICKEN2,
  4956. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4957. /* This is required by WaCatErrorRejectionIssue:vlv */
  4958. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4959. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4960. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4961. gen7_setup_fixed_func_scheduler(dev_priv);
  4962. /*
  4963. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4964. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4965. */
  4966. I915_WRITE(GEN6_UCGCTL2,
  4967. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4968. /* WaDisableL3Bank2xClockGate:vlv
  4969. * Disabling L3 clock gating- MMIO 940c[25] = 1
  4970. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  4971. I915_WRITE(GEN7_UCGCTL4,
  4972. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4973. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4974. /*
  4975. * BSpec says this must be set, even though
  4976. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  4977. */
  4978. I915_WRITE(CACHE_MODE_1,
  4979. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4980. /*
  4981. * WaIncreaseL3CreditsForVLVB0:vlv
  4982. * This is the hardware default actually.
  4983. */
  4984. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  4985. /*
  4986. * WaDisableVLVClockGating_VBIIssue:vlv
  4987. * Disable clock gating on th GCFG unit to prevent a delay
  4988. * in the reporting of vblank events.
  4989. */
  4990. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  4991. }
  4992. static void cherryview_init_clock_gating(struct drm_device *dev)
  4993. {
  4994. struct drm_i915_private *dev_priv = dev->dev_private;
  4995. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4996. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4997. /* WaVSRefCountFullforceMissDisable:chv */
  4998. /* WaDSRefCountFullforceMissDisable:chv */
  4999. I915_WRITE(GEN7_FF_THREAD_MODE,
  5000. I915_READ(GEN7_FF_THREAD_MODE) &
  5001. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5002. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  5003. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5004. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5005. /* WaDisableCSUnitClockGating:chv */
  5006. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5007. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5008. /* WaDisableSDEUnitClockGating:chv */
  5009. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5010. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5011. /* WaDisableGunitClockGating:chv (pre-production hw) */
  5012. I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
  5013. GINT_DIS);
  5014. /* WaDisableFfDopClockGating:chv (pre-production hw) */
  5015. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5016. _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
  5017. /* WaDisableDopClockGating:chv (pre-production hw) */
  5018. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5019. GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
  5020. }
  5021. static void g4x_init_clock_gating(struct drm_device *dev)
  5022. {
  5023. struct drm_i915_private *dev_priv = dev->dev_private;
  5024. uint32_t dspclk_gate;
  5025. I915_WRITE(RENCLK_GATE_D1, 0);
  5026. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  5027. GS_UNIT_CLOCK_GATE_DISABLE |
  5028. CL_UNIT_CLOCK_GATE_DISABLE);
  5029. I915_WRITE(RAMCLK_GATE_D, 0);
  5030. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  5031. OVRUNIT_CLOCK_GATE_DISABLE |
  5032. OVCUNIT_CLOCK_GATE_DISABLE;
  5033. if (IS_GM45(dev))
  5034. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  5035. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  5036. /* WaDisableRenderCachePipelinedFlush */
  5037. I915_WRITE(CACHE_MODE_0,
  5038. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5039. /* WaDisable_RenderCache_OperationalFlush:g4x */
  5040. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5041. g4x_disable_trickle_feed(dev);
  5042. }
  5043. static void crestline_init_clock_gating(struct drm_device *dev)
  5044. {
  5045. struct drm_i915_private *dev_priv = dev->dev_private;
  5046. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  5047. I915_WRITE(RENCLK_GATE_D2, 0);
  5048. I915_WRITE(DSPCLK_GATE_D, 0);
  5049. I915_WRITE(RAMCLK_GATE_D, 0);
  5050. I915_WRITE16(DEUC, 0);
  5051. I915_WRITE(MI_ARB_STATE,
  5052. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5053. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5054. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5055. }
  5056. static void broadwater_init_clock_gating(struct drm_device *dev)
  5057. {
  5058. struct drm_i915_private *dev_priv = dev->dev_private;
  5059. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  5060. I965_RCC_CLOCK_GATE_DISABLE |
  5061. I965_RCPB_CLOCK_GATE_DISABLE |
  5062. I965_ISC_CLOCK_GATE_DISABLE |
  5063. I965_FBC_CLOCK_GATE_DISABLE);
  5064. I915_WRITE(RENCLK_GATE_D2, 0);
  5065. I915_WRITE(MI_ARB_STATE,
  5066. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5067. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5068. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5069. }
  5070. static void gen3_init_clock_gating(struct drm_device *dev)
  5071. {
  5072. struct drm_i915_private *dev_priv = dev->dev_private;
  5073. u32 dstate = I915_READ(D_STATE);
  5074. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  5075. DSTATE_DOT_CLOCK_GATING;
  5076. I915_WRITE(D_STATE, dstate);
  5077. if (IS_PINEVIEW(dev))
  5078. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  5079. /* IIR "flip pending" means done if this bit is set */
  5080. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  5081. /* interrupts should cause a wake up from C3 */
  5082. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  5083. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  5084. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  5085. I915_WRITE(MI_ARB_STATE,
  5086. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5087. }
  5088. static void i85x_init_clock_gating(struct drm_device *dev)
  5089. {
  5090. struct drm_i915_private *dev_priv = dev->dev_private;
  5091. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  5092. /* interrupts should cause a wake up from C3 */
  5093. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  5094. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  5095. I915_WRITE(MEM_MODE,
  5096. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  5097. }
  5098. static void i830_init_clock_gating(struct drm_device *dev)
  5099. {
  5100. struct drm_i915_private *dev_priv = dev->dev_private;
  5101. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  5102. I915_WRITE(MEM_MODE,
  5103. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  5104. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  5105. }
  5106. void intel_init_clock_gating(struct drm_device *dev)
  5107. {
  5108. struct drm_i915_private *dev_priv = dev->dev_private;
  5109. dev_priv->display.init_clock_gating(dev);
  5110. }
  5111. void intel_suspend_hw(struct drm_device *dev)
  5112. {
  5113. if (HAS_PCH_LPT(dev))
  5114. lpt_suspend_hw(dev);
  5115. }
  5116. #define for_each_power_well(i, power_well, domain_mask, power_domains) \
  5117. for (i = 0; \
  5118. i < (power_domains)->power_well_count && \
  5119. ((power_well) = &(power_domains)->power_wells[i]); \
  5120. i++) \
  5121. if ((power_well)->domains & (domain_mask))
  5122. #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
  5123. for (i = (power_domains)->power_well_count - 1; \
  5124. i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
  5125. i--) \
  5126. if ((power_well)->domains & (domain_mask))
  5127. /**
  5128. * We should only use the power well if we explicitly asked the hardware to
  5129. * enable it, so check if it's enabled and also check if we've requested it to
  5130. * be enabled.
  5131. */
  5132. static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
  5133. struct i915_power_well *power_well)
  5134. {
  5135. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  5136. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  5137. }
  5138. bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
  5139. enum intel_display_power_domain domain)
  5140. {
  5141. struct i915_power_domains *power_domains;
  5142. struct i915_power_well *power_well;
  5143. bool is_enabled;
  5144. int i;
  5145. if (dev_priv->pm.suspended)
  5146. return false;
  5147. power_domains = &dev_priv->power_domains;
  5148. is_enabled = true;
  5149. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  5150. if (power_well->always_on)
  5151. continue;
  5152. if (!power_well->hw_enabled) {
  5153. is_enabled = false;
  5154. break;
  5155. }
  5156. }
  5157. return is_enabled;
  5158. }
  5159. bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
  5160. enum intel_display_power_domain domain)
  5161. {
  5162. struct i915_power_domains *power_domains;
  5163. bool ret;
  5164. power_domains = &dev_priv->power_domains;
  5165. mutex_lock(&power_domains->lock);
  5166. ret = intel_display_power_enabled_unlocked(dev_priv, domain);
  5167. mutex_unlock(&power_domains->lock);
  5168. return ret;
  5169. }
  5170. /*
  5171. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  5172. * when not needed anymore. We have 4 registers that can request the power well
  5173. * to be enabled, and it will only be disabled if none of the registers is
  5174. * requesting it to be enabled.
  5175. */
  5176. static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
  5177. {
  5178. struct drm_device *dev = dev_priv->dev;
  5179. /*
  5180. * After we re-enable the power well, if we touch VGA register 0x3d5
  5181. * we'll get unclaimed register interrupts. This stops after we write
  5182. * anything to the VGA MSR register. The vgacon module uses this
  5183. * register all the time, so if we unbind our driver and, as a
  5184. * consequence, bind vgacon, we'll get stuck in an infinite loop at
  5185. * console_unlock(). So make here we touch the VGA MSR register, making
  5186. * sure vgacon can keep working normally without triggering interrupts
  5187. * and error messages.
  5188. */
  5189. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  5190. outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
  5191. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  5192. if (IS_BROADWELL(dev))
  5193. gen8_irq_power_well_post_enable(dev_priv);
  5194. }
  5195. static void hsw_set_power_well(struct drm_i915_private *dev_priv,
  5196. struct i915_power_well *power_well, bool enable)
  5197. {
  5198. bool is_enabled, enable_requested;
  5199. uint32_t tmp;
  5200. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  5201. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  5202. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  5203. if (enable) {
  5204. if (!enable_requested)
  5205. I915_WRITE(HSW_PWR_WELL_DRIVER,
  5206. HSW_PWR_WELL_ENABLE_REQUEST);
  5207. if (!is_enabled) {
  5208. DRM_DEBUG_KMS("Enabling power well\n");
  5209. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  5210. HSW_PWR_WELL_STATE_ENABLED), 20))
  5211. DRM_ERROR("Timeout enabling power well\n");
  5212. }
  5213. hsw_power_well_post_enable(dev_priv);
  5214. } else {
  5215. if (enable_requested) {
  5216. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  5217. POSTING_READ(HSW_PWR_WELL_DRIVER);
  5218. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  5219. }
  5220. }
  5221. }
  5222. static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
  5223. struct i915_power_well *power_well)
  5224. {
  5225. hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
  5226. /*
  5227. * We're taking over the BIOS, so clear any requests made by it since
  5228. * the driver is in charge now.
  5229. */
  5230. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  5231. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  5232. }
  5233. static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
  5234. struct i915_power_well *power_well)
  5235. {
  5236. hsw_set_power_well(dev_priv, power_well, true);
  5237. }
  5238. static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
  5239. struct i915_power_well *power_well)
  5240. {
  5241. hsw_set_power_well(dev_priv, power_well, false);
  5242. }
  5243. static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
  5244. struct i915_power_well *power_well)
  5245. {
  5246. }
  5247. static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
  5248. struct i915_power_well *power_well)
  5249. {
  5250. return true;
  5251. }
  5252. static void vlv_set_power_well(struct drm_i915_private *dev_priv,
  5253. struct i915_power_well *power_well, bool enable)
  5254. {
  5255. enum punit_power_well power_well_id = power_well->data;
  5256. u32 mask;
  5257. u32 state;
  5258. u32 ctrl;
  5259. mask = PUNIT_PWRGT_MASK(power_well_id);
  5260. state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
  5261. PUNIT_PWRGT_PWR_GATE(power_well_id);
  5262. mutex_lock(&dev_priv->rps.hw_lock);
  5263. #define COND \
  5264. ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
  5265. if (COND)
  5266. goto out;
  5267. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
  5268. ctrl &= ~mask;
  5269. ctrl |= state;
  5270. vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
  5271. if (wait_for(COND, 100))
  5272. DRM_ERROR("timout setting power well state %08x (%08x)\n",
  5273. state,
  5274. vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
  5275. #undef COND
  5276. out:
  5277. mutex_unlock(&dev_priv->rps.hw_lock);
  5278. }
  5279. static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
  5280. struct i915_power_well *power_well)
  5281. {
  5282. vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
  5283. }
  5284. static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
  5285. struct i915_power_well *power_well)
  5286. {
  5287. vlv_set_power_well(dev_priv, power_well, true);
  5288. }
  5289. static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
  5290. struct i915_power_well *power_well)
  5291. {
  5292. vlv_set_power_well(dev_priv, power_well, false);
  5293. }
  5294. static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
  5295. struct i915_power_well *power_well)
  5296. {
  5297. int power_well_id = power_well->data;
  5298. bool enabled = false;
  5299. u32 mask;
  5300. u32 state;
  5301. u32 ctrl;
  5302. mask = PUNIT_PWRGT_MASK(power_well_id);
  5303. ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
  5304. mutex_lock(&dev_priv->rps.hw_lock);
  5305. state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
  5306. /*
  5307. * We only ever set the power-on and power-gate states, anything
  5308. * else is unexpected.
  5309. */
  5310. WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
  5311. state != PUNIT_PWRGT_PWR_GATE(power_well_id));
  5312. if (state == ctrl)
  5313. enabled = true;
  5314. /*
  5315. * A transient state at this point would mean some unexpected party
  5316. * is poking at the power controls too.
  5317. */
  5318. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
  5319. WARN_ON(ctrl != state);
  5320. mutex_unlock(&dev_priv->rps.hw_lock);
  5321. return enabled;
  5322. }
  5323. static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
  5324. struct i915_power_well *power_well)
  5325. {
  5326. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
  5327. vlv_set_power_well(dev_priv, power_well, true);
  5328. spin_lock_irq(&dev_priv->irq_lock);
  5329. valleyview_enable_display_irqs(dev_priv);
  5330. spin_unlock_irq(&dev_priv->irq_lock);
  5331. /*
  5332. * During driver initialization/resume we can avoid restoring the
  5333. * part of the HW/SW state that will be inited anyway explicitly.
  5334. */
  5335. if (dev_priv->power_domains.initializing)
  5336. return;
  5337. intel_hpd_init(dev_priv->dev);
  5338. i915_redisable_vga_power_on(dev_priv->dev);
  5339. }
  5340. static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
  5341. struct i915_power_well *power_well)
  5342. {
  5343. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
  5344. spin_lock_irq(&dev_priv->irq_lock);
  5345. valleyview_disable_display_irqs(dev_priv);
  5346. spin_unlock_irq(&dev_priv->irq_lock);
  5347. vlv_set_power_well(dev_priv, power_well, false);
  5348. }
  5349. static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
  5350. struct i915_power_well *power_well)
  5351. {
  5352. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
  5353. /*
  5354. * Enable the CRI clock source so we can get at the
  5355. * display and the reference clock for VGA
  5356. * hotplug / manual detection.
  5357. */
  5358. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  5359. DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
  5360. udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
  5361. vlv_set_power_well(dev_priv, power_well, true);
  5362. /*
  5363. * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
  5364. * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
  5365. * a. GUnit 0x2110 bit[0] set to 1 (def 0)
  5366. * b. The other bits such as sfr settings / modesel may all
  5367. * be set to 0.
  5368. *
  5369. * This should only be done on init and resume from S3 with
  5370. * both PLLs disabled, or we risk losing DPIO and PLL
  5371. * synchronization.
  5372. */
  5373. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
  5374. }
  5375. static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
  5376. struct i915_power_well *power_well)
  5377. {
  5378. enum pipe pipe;
  5379. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
  5380. for_each_pipe(dev_priv, pipe)
  5381. assert_pll_disabled(dev_priv, pipe);
  5382. /* Assert common reset */
  5383. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
  5384. vlv_set_power_well(dev_priv, power_well, false);
  5385. }
  5386. static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
  5387. struct i915_power_well *power_well)
  5388. {
  5389. enum dpio_phy phy;
  5390. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
  5391. power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
  5392. /*
  5393. * Enable the CRI clock source so we can get at the
  5394. * display and the reference clock for VGA
  5395. * hotplug / manual detection.
  5396. */
  5397. if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
  5398. phy = DPIO_PHY0;
  5399. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  5400. DPLL_REFA_CLK_ENABLE_VLV);
  5401. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  5402. DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
  5403. } else {
  5404. phy = DPIO_PHY1;
  5405. I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
  5406. DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
  5407. }
  5408. udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
  5409. vlv_set_power_well(dev_priv, power_well, true);
  5410. /* Poll for phypwrgood signal */
  5411. if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
  5412. DRM_ERROR("Display PHY %d is not power up\n", phy);
  5413. I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
  5414. PHY_COM_LANE_RESET_DEASSERT(phy));
  5415. }
  5416. static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
  5417. struct i915_power_well *power_well)
  5418. {
  5419. enum dpio_phy phy;
  5420. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
  5421. power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
  5422. if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
  5423. phy = DPIO_PHY0;
  5424. assert_pll_disabled(dev_priv, PIPE_A);
  5425. assert_pll_disabled(dev_priv, PIPE_B);
  5426. } else {
  5427. phy = DPIO_PHY1;
  5428. assert_pll_disabled(dev_priv, PIPE_C);
  5429. }
  5430. I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
  5431. ~PHY_COM_LANE_RESET_DEASSERT(phy));
  5432. vlv_set_power_well(dev_priv, power_well, false);
  5433. }
  5434. static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
  5435. struct i915_power_well *power_well)
  5436. {
  5437. enum pipe pipe = power_well->data;
  5438. bool enabled;
  5439. u32 state, ctrl;
  5440. mutex_lock(&dev_priv->rps.hw_lock);
  5441. state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
  5442. /*
  5443. * We only ever set the power-on and power-gate states, anything
  5444. * else is unexpected.
  5445. */
  5446. WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
  5447. enabled = state == DP_SSS_PWR_ON(pipe);
  5448. /*
  5449. * A transient state at this point would mean some unexpected party
  5450. * is poking at the power controls too.
  5451. */
  5452. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
  5453. WARN_ON(ctrl << 16 != state);
  5454. mutex_unlock(&dev_priv->rps.hw_lock);
  5455. return enabled;
  5456. }
  5457. static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
  5458. struct i915_power_well *power_well,
  5459. bool enable)
  5460. {
  5461. enum pipe pipe = power_well->data;
  5462. u32 state;
  5463. u32 ctrl;
  5464. state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
  5465. mutex_lock(&dev_priv->rps.hw_lock);
  5466. #define COND \
  5467. ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
  5468. if (COND)
  5469. goto out;
  5470. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  5471. ctrl &= ~DP_SSC_MASK(pipe);
  5472. ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
  5473. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
  5474. if (wait_for(COND, 100))
  5475. DRM_ERROR("timout setting power well state %08x (%08x)\n",
  5476. state,
  5477. vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
  5478. #undef COND
  5479. out:
  5480. mutex_unlock(&dev_priv->rps.hw_lock);
  5481. }
  5482. static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
  5483. struct i915_power_well *power_well)
  5484. {
  5485. chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
  5486. }
  5487. static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
  5488. struct i915_power_well *power_well)
  5489. {
  5490. WARN_ON_ONCE(power_well->data != PIPE_A &&
  5491. power_well->data != PIPE_B &&
  5492. power_well->data != PIPE_C);
  5493. chv_set_pipe_power_well(dev_priv, power_well, true);
  5494. }
  5495. static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
  5496. struct i915_power_well *power_well)
  5497. {
  5498. WARN_ON_ONCE(power_well->data != PIPE_A &&
  5499. power_well->data != PIPE_B &&
  5500. power_well->data != PIPE_C);
  5501. chv_set_pipe_power_well(dev_priv, power_well, false);
  5502. }
  5503. static void check_power_well_state(struct drm_i915_private *dev_priv,
  5504. struct i915_power_well *power_well)
  5505. {
  5506. bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
  5507. if (power_well->always_on || !i915.disable_power_well) {
  5508. if (!enabled)
  5509. goto mismatch;
  5510. return;
  5511. }
  5512. if (enabled != (power_well->count > 0))
  5513. goto mismatch;
  5514. return;
  5515. mismatch:
  5516. WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
  5517. power_well->name, power_well->always_on, enabled,
  5518. power_well->count, i915.disable_power_well);
  5519. }
  5520. void intel_display_power_get(struct drm_i915_private *dev_priv,
  5521. enum intel_display_power_domain domain)
  5522. {
  5523. struct i915_power_domains *power_domains;
  5524. struct i915_power_well *power_well;
  5525. int i;
  5526. intel_runtime_pm_get(dev_priv);
  5527. power_domains = &dev_priv->power_domains;
  5528. mutex_lock(&power_domains->lock);
  5529. for_each_power_well(i, power_well, BIT(domain), power_domains) {
  5530. if (!power_well->count++) {
  5531. DRM_DEBUG_KMS("enabling %s\n", power_well->name);
  5532. power_well->ops->enable(dev_priv, power_well);
  5533. power_well->hw_enabled = true;
  5534. }
  5535. check_power_well_state(dev_priv, power_well);
  5536. }
  5537. power_domains->domain_use_count[domain]++;
  5538. mutex_unlock(&power_domains->lock);
  5539. }
  5540. void intel_display_power_put(struct drm_i915_private *dev_priv,
  5541. enum intel_display_power_domain domain)
  5542. {
  5543. struct i915_power_domains *power_domains;
  5544. struct i915_power_well *power_well;
  5545. int i;
  5546. power_domains = &dev_priv->power_domains;
  5547. mutex_lock(&power_domains->lock);
  5548. WARN_ON(!power_domains->domain_use_count[domain]);
  5549. power_domains->domain_use_count[domain]--;
  5550. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  5551. WARN_ON(!power_well->count);
  5552. if (!--power_well->count && i915.disable_power_well) {
  5553. DRM_DEBUG_KMS("disabling %s\n", power_well->name);
  5554. power_well->hw_enabled = false;
  5555. power_well->ops->disable(dev_priv, power_well);
  5556. }
  5557. check_power_well_state(dev_priv, power_well);
  5558. }
  5559. mutex_unlock(&power_domains->lock);
  5560. intel_runtime_pm_put(dev_priv);
  5561. }
  5562. static struct i915_power_domains *hsw_pwr;
  5563. /* Display audio driver power well request */
  5564. int i915_request_power_well(void)
  5565. {
  5566. struct drm_i915_private *dev_priv;
  5567. if (!hsw_pwr)
  5568. return -ENODEV;
  5569. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5570. power_domains);
  5571. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  5572. return 0;
  5573. }
  5574. EXPORT_SYMBOL_GPL(i915_request_power_well);
  5575. /* Display audio driver power well release */
  5576. int i915_release_power_well(void)
  5577. {
  5578. struct drm_i915_private *dev_priv;
  5579. if (!hsw_pwr)
  5580. return -ENODEV;
  5581. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5582. power_domains);
  5583. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  5584. return 0;
  5585. }
  5586. EXPORT_SYMBOL_GPL(i915_release_power_well);
  5587. /*
  5588. * Private interface for the audio driver to get CDCLK in kHz.
  5589. *
  5590. * Caller must request power well using i915_request_power_well() prior to
  5591. * making the call.
  5592. */
  5593. int i915_get_cdclk_freq(void)
  5594. {
  5595. struct drm_i915_private *dev_priv;
  5596. if (!hsw_pwr)
  5597. return -ENODEV;
  5598. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5599. power_domains);
  5600. return intel_ddi_get_cdclk_freq(dev_priv);
  5601. }
  5602. EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
  5603. #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
  5604. #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
  5605. BIT(POWER_DOMAIN_PIPE_A) | \
  5606. BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
  5607. BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
  5608. BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
  5609. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5610. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5611. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5612. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5613. BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
  5614. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5615. BIT(POWER_DOMAIN_PORT_CRT) | \
  5616. BIT(POWER_DOMAIN_PLLS) | \
  5617. BIT(POWER_DOMAIN_INIT))
  5618. #define HSW_DISPLAY_POWER_DOMAINS ( \
  5619. (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
  5620. BIT(POWER_DOMAIN_INIT))
  5621. #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
  5622. HSW_ALWAYS_ON_POWER_DOMAINS | \
  5623. BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
  5624. #define BDW_DISPLAY_POWER_DOMAINS ( \
  5625. (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
  5626. BIT(POWER_DOMAIN_INIT))
  5627. #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
  5628. #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
  5629. #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
  5630. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5631. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5632. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5633. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5634. BIT(POWER_DOMAIN_PORT_CRT) | \
  5635. BIT(POWER_DOMAIN_INIT))
  5636. #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
  5637. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5638. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5639. BIT(POWER_DOMAIN_INIT))
  5640. #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
  5641. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5642. BIT(POWER_DOMAIN_INIT))
  5643. #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
  5644. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5645. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5646. BIT(POWER_DOMAIN_INIT))
  5647. #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
  5648. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5649. BIT(POWER_DOMAIN_INIT))
  5650. #define CHV_PIPE_A_POWER_DOMAINS ( \
  5651. BIT(POWER_DOMAIN_PIPE_A) | \
  5652. BIT(POWER_DOMAIN_INIT))
  5653. #define CHV_PIPE_B_POWER_DOMAINS ( \
  5654. BIT(POWER_DOMAIN_PIPE_B) | \
  5655. BIT(POWER_DOMAIN_INIT))
  5656. #define CHV_PIPE_C_POWER_DOMAINS ( \
  5657. BIT(POWER_DOMAIN_PIPE_C) | \
  5658. BIT(POWER_DOMAIN_INIT))
  5659. #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
  5660. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5661. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5662. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5663. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5664. BIT(POWER_DOMAIN_INIT))
  5665. #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
  5666. BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
  5667. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5668. BIT(POWER_DOMAIN_INIT))
  5669. #define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS ( \
  5670. BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
  5671. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5672. BIT(POWER_DOMAIN_INIT))
  5673. #define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS ( \
  5674. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5675. BIT(POWER_DOMAIN_INIT))
  5676. static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
  5677. .sync_hw = i9xx_always_on_power_well_noop,
  5678. .enable = i9xx_always_on_power_well_noop,
  5679. .disable = i9xx_always_on_power_well_noop,
  5680. .is_enabled = i9xx_always_on_power_well_enabled,
  5681. };
  5682. static const struct i915_power_well_ops chv_pipe_power_well_ops = {
  5683. .sync_hw = chv_pipe_power_well_sync_hw,
  5684. .enable = chv_pipe_power_well_enable,
  5685. .disable = chv_pipe_power_well_disable,
  5686. .is_enabled = chv_pipe_power_well_enabled,
  5687. };
  5688. static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
  5689. .sync_hw = vlv_power_well_sync_hw,
  5690. .enable = chv_dpio_cmn_power_well_enable,
  5691. .disable = chv_dpio_cmn_power_well_disable,
  5692. .is_enabled = vlv_power_well_enabled,
  5693. };
  5694. static struct i915_power_well i9xx_always_on_power_well[] = {
  5695. {
  5696. .name = "always-on",
  5697. .always_on = 1,
  5698. .domains = POWER_DOMAIN_MASK,
  5699. .ops = &i9xx_always_on_power_well_ops,
  5700. },
  5701. };
  5702. static const struct i915_power_well_ops hsw_power_well_ops = {
  5703. .sync_hw = hsw_power_well_sync_hw,
  5704. .enable = hsw_power_well_enable,
  5705. .disable = hsw_power_well_disable,
  5706. .is_enabled = hsw_power_well_enabled,
  5707. };
  5708. static struct i915_power_well hsw_power_wells[] = {
  5709. {
  5710. .name = "always-on",
  5711. .always_on = 1,
  5712. .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
  5713. .ops = &i9xx_always_on_power_well_ops,
  5714. },
  5715. {
  5716. .name = "display",
  5717. .domains = HSW_DISPLAY_POWER_DOMAINS,
  5718. .ops = &hsw_power_well_ops,
  5719. },
  5720. };
  5721. static struct i915_power_well bdw_power_wells[] = {
  5722. {
  5723. .name = "always-on",
  5724. .always_on = 1,
  5725. .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
  5726. .ops = &i9xx_always_on_power_well_ops,
  5727. },
  5728. {
  5729. .name = "display",
  5730. .domains = BDW_DISPLAY_POWER_DOMAINS,
  5731. .ops = &hsw_power_well_ops,
  5732. },
  5733. };
  5734. static const struct i915_power_well_ops vlv_display_power_well_ops = {
  5735. .sync_hw = vlv_power_well_sync_hw,
  5736. .enable = vlv_display_power_well_enable,
  5737. .disable = vlv_display_power_well_disable,
  5738. .is_enabled = vlv_power_well_enabled,
  5739. };
  5740. static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
  5741. .sync_hw = vlv_power_well_sync_hw,
  5742. .enable = vlv_dpio_cmn_power_well_enable,
  5743. .disable = vlv_dpio_cmn_power_well_disable,
  5744. .is_enabled = vlv_power_well_enabled,
  5745. };
  5746. static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
  5747. .sync_hw = vlv_power_well_sync_hw,
  5748. .enable = vlv_power_well_enable,
  5749. .disable = vlv_power_well_disable,
  5750. .is_enabled = vlv_power_well_enabled,
  5751. };
  5752. static struct i915_power_well vlv_power_wells[] = {
  5753. {
  5754. .name = "always-on",
  5755. .always_on = 1,
  5756. .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
  5757. .ops = &i9xx_always_on_power_well_ops,
  5758. },
  5759. {
  5760. .name = "display",
  5761. .domains = VLV_DISPLAY_POWER_DOMAINS,
  5762. .data = PUNIT_POWER_WELL_DISP2D,
  5763. .ops = &vlv_display_power_well_ops,
  5764. },
  5765. {
  5766. .name = "dpio-tx-b-01",
  5767. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5768. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5769. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5770. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5771. .ops = &vlv_dpio_power_well_ops,
  5772. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
  5773. },
  5774. {
  5775. .name = "dpio-tx-b-23",
  5776. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5777. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5778. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5779. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5780. .ops = &vlv_dpio_power_well_ops,
  5781. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
  5782. },
  5783. {
  5784. .name = "dpio-tx-c-01",
  5785. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5786. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5787. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5788. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5789. .ops = &vlv_dpio_power_well_ops,
  5790. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
  5791. },
  5792. {
  5793. .name = "dpio-tx-c-23",
  5794. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5795. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5796. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5797. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5798. .ops = &vlv_dpio_power_well_ops,
  5799. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
  5800. },
  5801. {
  5802. .name = "dpio-common",
  5803. .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
  5804. .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
  5805. .ops = &vlv_dpio_cmn_power_well_ops,
  5806. },
  5807. };
  5808. static struct i915_power_well chv_power_wells[] = {
  5809. {
  5810. .name = "always-on",
  5811. .always_on = 1,
  5812. .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
  5813. .ops = &i9xx_always_on_power_well_ops,
  5814. },
  5815. #if 0
  5816. {
  5817. .name = "display",
  5818. .domains = VLV_DISPLAY_POWER_DOMAINS,
  5819. .data = PUNIT_POWER_WELL_DISP2D,
  5820. .ops = &vlv_display_power_well_ops,
  5821. },
  5822. {
  5823. .name = "pipe-a",
  5824. .domains = CHV_PIPE_A_POWER_DOMAINS,
  5825. .data = PIPE_A,
  5826. .ops = &chv_pipe_power_well_ops,
  5827. },
  5828. {
  5829. .name = "pipe-b",
  5830. .domains = CHV_PIPE_B_POWER_DOMAINS,
  5831. .data = PIPE_B,
  5832. .ops = &chv_pipe_power_well_ops,
  5833. },
  5834. {
  5835. .name = "pipe-c",
  5836. .domains = CHV_PIPE_C_POWER_DOMAINS,
  5837. .data = PIPE_C,
  5838. .ops = &chv_pipe_power_well_ops,
  5839. },
  5840. #endif
  5841. {
  5842. .name = "dpio-common-bc",
  5843. /*
  5844. * XXX: cmnreset for one PHY seems to disturb the other.
  5845. * As a workaround keep both powered on at the same
  5846. * time for now.
  5847. */
  5848. .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
  5849. .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
  5850. .ops = &chv_dpio_cmn_power_well_ops,
  5851. },
  5852. {
  5853. .name = "dpio-common-d",
  5854. /*
  5855. * XXX: cmnreset for one PHY seems to disturb the other.
  5856. * As a workaround keep both powered on at the same
  5857. * time for now.
  5858. */
  5859. .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
  5860. .data = PUNIT_POWER_WELL_DPIO_CMN_D,
  5861. .ops = &chv_dpio_cmn_power_well_ops,
  5862. },
  5863. #if 0
  5864. {
  5865. .name = "dpio-tx-b-01",
  5866. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5867. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
  5868. .ops = &vlv_dpio_power_well_ops,
  5869. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
  5870. },
  5871. {
  5872. .name = "dpio-tx-b-23",
  5873. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5874. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
  5875. .ops = &vlv_dpio_power_well_ops,
  5876. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
  5877. },
  5878. {
  5879. .name = "dpio-tx-c-01",
  5880. .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5881. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5882. .ops = &vlv_dpio_power_well_ops,
  5883. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
  5884. },
  5885. {
  5886. .name = "dpio-tx-c-23",
  5887. .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5888. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5889. .ops = &vlv_dpio_power_well_ops,
  5890. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
  5891. },
  5892. {
  5893. .name = "dpio-tx-d-01",
  5894. .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
  5895. CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
  5896. .ops = &vlv_dpio_power_well_ops,
  5897. .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
  5898. },
  5899. {
  5900. .name = "dpio-tx-d-23",
  5901. .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
  5902. CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
  5903. .ops = &vlv_dpio_power_well_ops,
  5904. .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
  5905. },
  5906. #endif
  5907. };
  5908. static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
  5909. enum punit_power_well power_well_id)
  5910. {
  5911. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5912. struct i915_power_well *power_well;
  5913. int i;
  5914. for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
  5915. if (power_well->data == power_well_id)
  5916. return power_well;
  5917. }
  5918. return NULL;
  5919. }
  5920. #define set_power_wells(power_domains, __power_wells) ({ \
  5921. (power_domains)->power_wells = (__power_wells); \
  5922. (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
  5923. })
  5924. int intel_power_domains_init(struct drm_i915_private *dev_priv)
  5925. {
  5926. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5927. mutex_init(&power_domains->lock);
  5928. /*
  5929. * The enabling order will be from lower to higher indexed wells,
  5930. * the disabling order is reversed.
  5931. */
  5932. if (IS_HASWELL(dev_priv->dev)) {
  5933. set_power_wells(power_domains, hsw_power_wells);
  5934. hsw_pwr = power_domains;
  5935. } else if (IS_BROADWELL(dev_priv->dev)) {
  5936. set_power_wells(power_domains, bdw_power_wells);
  5937. hsw_pwr = power_domains;
  5938. } else if (IS_CHERRYVIEW(dev_priv->dev)) {
  5939. set_power_wells(power_domains, chv_power_wells);
  5940. } else if (IS_VALLEYVIEW(dev_priv->dev)) {
  5941. set_power_wells(power_domains, vlv_power_wells);
  5942. } else {
  5943. set_power_wells(power_domains, i9xx_always_on_power_well);
  5944. }
  5945. return 0;
  5946. }
  5947. void intel_power_domains_remove(struct drm_i915_private *dev_priv)
  5948. {
  5949. hsw_pwr = NULL;
  5950. }
  5951. static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
  5952. {
  5953. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5954. struct i915_power_well *power_well;
  5955. int i;
  5956. mutex_lock(&power_domains->lock);
  5957. for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
  5958. power_well->ops->sync_hw(dev_priv, power_well);
  5959. power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
  5960. power_well);
  5961. }
  5962. mutex_unlock(&power_domains->lock);
  5963. }
  5964. static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
  5965. {
  5966. struct i915_power_well *cmn =
  5967. lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
  5968. struct i915_power_well *disp2d =
  5969. lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
  5970. /* nothing to do if common lane is already off */
  5971. if (!cmn->ops->is_enabled(dev_priv, cmn))
  5972. return;
  5973. /* If the display might be already active skip this */
  5974. if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
  5975. I915_READ(DPIO_CTL) & DPIO_CMNRST)
  5976. return;
  5977. DRM_DEBUG_KMS("toggling display PHY side reset\n");
  5978. /* cmnlane needs DPLL registers */
  5979. disp2d->ops->enable(dev_priv, disp2d);
  5980. /*
  5981. * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
  5982. * Need to assert and de-assert PHY SB reset by gating the
  5983. * common lane power, then un-gating it.
  5984. * Simply ungating isn't enough to reset the PHY enough to get
  5985. * ports and lanes running.
  5986. */
  5987. cmn->ops->disable(dev_priv, cmn);
  5988. }
  5989. void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
  5990. {
  5991. struct drm_device *dev = dev_priv->dev;
  5992. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5993. power_domains->initializing = true;
  5994. if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
  5995. mutex_lock(&power_domains->lock);
  5996. vlv_cmnlane_wa(dev_priv);
  5997. mutex_unlock(&power_domains->lock);
  5998. }
  5999. /* For now, we need the power well to be always enabled. */
  6000. intel_display_set_init_power(dev_priv, true);
  6001. intel_power_domains_resume(dev_priv);
  6002. power_domains->initializing = false;
  6003. }
  6004. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  6005. {
  6006. intel_runtime_pm_get(dev_priv);
  6007. }
  6008. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  6009. {
  6010. intel_runtime_pm_put(dev_priv);
  6011. }
  6012. void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
  6013. {
  6014. struct drm_device *dev = dev_priv->dev;
  6015. struct device *device = &dev->pdev->dev;
  6016. if (!HAS_RUNTIME_PM(dev))
  6017. return;
  6018. pm_runtime_get_sync(device);
  6019. WARN(dev_priv->pm.suspended, "Device still suspended.\n");
  6020. }
  6021. void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
  6022. {
  6023. struct drm_device *dev = dev_priv->dev;
  6024. struct device *device = &dev->pdev->dev;
  6025. if (!HAS_RUNTIME_PM(dev))
  6026. return;
  6027. WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
  6028. pm_runtime_get_noresume(device);
  6029. }
  6030. void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
  6031. {
  6032. struct drm_device *dev = dev_priv->dev;
  6033. struct device *device = &dev->pdev->dev;
  6034. if (!HAS_RUNTIME_PM(dev))
  6035. return;
  6036. pm_runtime_mark_last_busy(device);
  6037. pm_runtime_put_autosuspend(device);
  6038. }
  6039. void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
  6040. {
  6041. struct drm_device *dev = dev_priv->dev;
  6042. struct device *device = &dev->pdev->dev;
  6043. if (!HAS_RUNTIME_PM(dev))
  6044. return;
  6045. pm_runtime_set_active(device);
  6046. /*
  6047. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  6048. * requirement.
  6049. */
  6050. if (!intel_enable_rc6(dev)) {
  6051. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  6052. return;
  6053. }
  6054. pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
  6055. pm_runtime_mark_last_busy(device);
  6056. pm_runtime_use_autosuspend(device);
  6057. pm_runtime_put_autosuspend(device);
  6058. }
  6059. void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
  6060. {
  6061. struct drm_device *dev = dev_priv->dev;
  6062. struct device *device = &dev->pdev->dev;
  6063. if (!HAS_RUNTIME_PM(dev))
  6064. return;
  6065. if (!intel_enable_rc6(dev))
  6066. return;
  6067. /* Make sure we're not suspended first. */
  6068. pm_runtime_get_sync(device);
  6069. pm_runtime_disable(device);
  6070. }
  6071. /* Set up chip specific power management-related functions */
  6072. void intel_init_pm(struct drm_device *dev)
  6073. {
  6074. struct drm_i915_private *dev_priv = dev->dev_private;
  6075. if (HAS_FBC(dev)) {
  6076. if (INTEL_INFO(dev)->gen >= 7) {
  6077. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  6078. dev_priv->display.enable_fbc = gen7_enable_fbc;
  6079. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  6080. } else if (INTEL_INFO(dev)->gen >= 5) {
  6081. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  6082. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  6083. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  6084. } else if (IS_GM45(dev)) {
  6085. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  6086. dev_priv->display.enable_fbc = g4x_enable_fbc;
  6087. dev_priv->display.disable_fbc = g4x_disable_fbc;
  6088. } else {
  6089. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  6090. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  6091. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  6092. /* This value was pulled out of someone's hat */
  6093. I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
  6094. }
  6095. }
  6096. /* For cxsr */
  6097. if (IS_PINEVIEW(dev))
  6098. i915_pineview_get_mem_freq(dev);
  6099. else if (IS_GEN5(dev))
  6100. i915_ironlake_get_mem_freq(dev);
  6101. /* For FIFO watermark updates */
  6102. if (HAS_PCH_SPLIT(dev)) {
  6103. ilk_setup_wm_latency(dev);
  6104. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  6105. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  6106. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  6107. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  6108. dev_priv->display.update_wm = ilk_update_wm;
  6109. dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
  6110. } else {
  6111. DRM_DEBUG_KMS("Failed to read display plane latency. "
  6112. "Disable CxSR\n");
  6113. }
  6114. if (IS_GEN5(dev))
  6115. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  6116. else if (IS_GEN6(dev))
  6117. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  6118. else if (IS_IVYBRIDGE(dev))
  6119. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  6120. else if (IS_HASWELL(dev))
  6121. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  6122. else if (INTEL_INFO(dev)->gen == 8)
  6123. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  6124. } else if (IS_CHERRYVIEW(dev)) {
  6125. dev_priv->display.update_wm = cherryview_update_wm;
  6126. dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
  6127. dev_priv->display.init_clock_gating =
  6128. cherryview_init_clock_gating;
  6129. } else if (IS_VALLEYVIEW(dev)) {
  6130. dev_priv->display.update_wm = valleyview_update_wm;
  6131. dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
  6132. dev_priv->display.init_clock_gating =
  6133. valleyview_init_clock_gating;
  6134. } else if (IS_PINEVIEW(dev)) {
  6135. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  6136. dev_priv->is_ddr3,
  6137. dev_priv->fsb_freq,
  6138. dev_priv->mem_freq)) {
  6139. DRM_INFO("failed to find known CxSR latency "
  6140. "(found ddr%s fsb freq %d, mem freq %d), "
  6141. "disabling CxSR\n",
  6142. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  6143. dev_priv->fsb_freq, dev_priv->mem_freq);
  6144. /* Disable CxSR and never update its watermark again */
  6145. intel_set_memory_cxsr(dev_priv, false);
  6146. dev_priv->display.update_wm = NULL;
  6147. } else
  6148. dev_priv->display.update_wm = pineview_update_wm;
  6149. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  6150. } else if (IS_G4X(dev)) {
  6151. dev_priv->display.update_wm = g4x_update_wm;
  6152. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  6153. } else if (IS_GEN4(dev)) {
  6154. dev_priv->display.update_wm = i965_update_wm;
  6155. if (IS_CRESTLINE(dev))
  6156. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  6157. else if (IS_BROADWATER(dev))
  6158. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  6159. } else if (IS_GEN3(dev)) {
  6160. dev_priv->display.update_wm = i9xx_update_wm;
  6161. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  6162. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  6163. } else if (IS_GEN2(dev)) {
  6164. if (INTEL_INFO(dev)->num_pipes == 1) {
  6165. dev_priv->display.update_wm = i845_update_wm;
  6166. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  6167. } else {
  6168. dev_priv->display.update_wm = i9xx_update_wm;
  6169. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  6170. }
  6171. if (IS_I85X(dev) || IS_I865G(dev))
  6172. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  6173. else
  6174. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  6175. } else {
  6176. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  6177. }
  6178. }
  6179. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  6180. {
  6181. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  6182. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  6183. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  6184. return -EAGAIN;
  6185. }
  6186. I915_WRITE(GEN6_PCODE_DATA, *val);
  6187. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  6188. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6189. 500)) {
  6190. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  6191. return -ETIMEDOUT;
  6192. }
  6193. *val = I915_READ(GEN6_PCODE_DATA);
  6194. I915_WRITE(GEN6_PCODE_DATA, 0);
  6195. return 0;
  6196. }
  6197. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  6198. {
  6199. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  6200. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  6201. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  6202. return -EAGAIN;
  6203. }
  6204. I915_WRITE(GEN6_PCODE_DATA, val);
  6205. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  6206. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6207. 500)) {
  6208. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  6209. return -ETIMEDOUT;
  6210. }
  6211. I915_WRITE(GEN6_PCODE_DATA, 0);
  6212. return 0;
  6213. }
  6214. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6215. {
  6216. int div;
  6217. /* 4 x czclk */
  6218. switch (dev_priv->mem_freq) {
  6219. case 800:
  6220. div = 10;
  6221. break;
  6222. case 1066:
  6223. div = 12;
  6224. break;
  6225. case 1333:
  6226. div = 16;
  6227. break;
  6228. default:
  6229. return -1;
  6230. }
  6231. return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
  6232. }
  6233. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6234. {
  6235. int mul;
  6236. /* 4 x czclk */
  6237. switch (dev_priv->mem_freq) {
  6238. case 800:
  6239. mul = 10;
  6240. break;
  6241. case 1066:
  6242. mul = 12;
  6243. break;
  6244. case 1333:
  6245. mul = 16;
  6246. break;
  6247. default:
  6248. return -1;
  6249. }
  6250. return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
  6251. }
  6252. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6253. {
  6254. int div, freq;
  6255. switch (dev_priv->rps.cz_freq) {
  6256. case 200:
  6257. div = 5;
  6258. break;
  6259. case 267:
  6260. div = 6;
  6261. break;
  6262. case 320:
  6263. case 333:
  6264. case 400:
  6265. div = 8;
  6266. break;
  6267. default:
  6268. return -1;
  6269. }
  6270. freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
  6271. return freq;
  6272. }
  6273. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6274. {
  6275. int mul, opcode;
  6276. switch (dev_priv->rps.cz_freq) {
  6277. case 200:
  6278. mul = 5;
  6279. break;
  6280. case 267:
  6281. mul = 6;
  6282. break;
  6283. case 320:
  6284. case 333:
  6285. case 400:
  6286. mul = 8;
  6287. break;
  6288. default:
  6289. return -1;
  6290. }
  6291. /* CHV needs even values */
  6292. opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
  6293. return opcode;
  6294. }
  6295. int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6296. {
  6297. int ret = -1;
  6298. if (IS_CHERRYVIEW(dev_priv->dev))
  6299. ret = chv_gpu_freq(dev_priv, val);
  6300. else if (IS_VALLEYVIEW(dev_priv->dev))
  6301. ret = byt_gpu_freq(dev_priv, val);
  6302. return ret;
  6303. }
  6304. int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6305. {
  6306. int ret = -1;
  6307. if (IS_CHERRYVIEW(dev_priv->dev))
  6308. ret = chv_freq_opcode(dev_priv, val);
  6309. else if (IS_VALLEYVIEW(dev_priv->dev))
  6310. ret = byt_freq_opcode(dev_priv, val);
  6311. return ret;
  6312. }
  6313. void intel_pm_setup(struct drm_device *dev)
  6314. {
  6315. struct drm_i915_private *dev_priv = dev->dev_private;
  6316. mutex_init(&dev_priv->rps.hw_lock);
  6317. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  6318. intel_gen6_powersave_work);
  6319. dev_priv->pm.suspended = false;
  6320. dev_priv->pm._irqs_disabled = false;
  6321. }