cpuset.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <linux/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. #include <linux/wait.h>
  61. struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
  62. /* See "Frequency meter" comments, below. */
  63. struct fmeter {
  64. int cnt; /* unprocessed events count */
  65. int val; /* most recent output value */
  66. time_t time; /* clock (secs) when val computed */
  67. spinlock_t lock; /* guards read or write of above */
  68. };
  69. struct cpuset {
  70. struct cgroup_subsys_state css;
  71. unsigned long flags; /* "unsigned long" so bitops work */
  72. /*
  73. * On default hierarchy:
  74. *
  75. * The user-configured masks can only be changed by writing to
  76. * cpuset.cpus and cpuset.mems, and won't be limited by the
  77. * parent masks.
  78. *
  79. * The effective masks is the real masks that apply to the tasks
  80. * in the cpuset. They may be changed if the configured masks are
  81. * changed or hotplug happens.
  82. *
  83. * effective_mask == configured_mask & parent's effective_mask,
  84. * and if it ends up empty, it will inherit the parent's mask.
  85. *
  86. *
  87. * On legacy hierachy:
  88. *
  89. * The user-configured masks are always the same with effective masks.
  90. */
  91. /* user-configured CPUs and Memory Nodes allow to tasks */
  92. cpumask_var_t cpus_allowed;
  93. nodemask_t mems_allowed;
  94. /* effective CPUs and Memory Nodes allow to tasks */
  95. cpumask_var_t effective_cpus;
  96. nodemask_t effective_mems;
  97. /*
  98. * This is old Memory Nodes tasks took on.
  99. *
  100. * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
  101. * - A new cpuset's old_mems_allowed is initialized when some
  102. * task is moved into it.
  103. * - old_mems_allowed is used in cpuset_migrate_mm() when we change
  104. * cpuset.mems_allowed and have tasks' nodemask updated, and
  105. * then old_mems_allowed is updated to mems_allowed.
  106. */
  107. nodemask_t old_mems_allowed;
  108. struct fmeter fmeter; /* memory_pressure filter */
  109. /*
  110. * Tasks are being attached to this cpuset. Used to prevent
  111. * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
  112. */
  113. int attach_in_progress;
  114. /* partition number for rebuild_sched_domains() */
  115. int pn;
  116. /* for custom sched domain */
  117. int relax_domain_level;
  118. };
  119. static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
  120. {
  121. return css ? container_of(css, struct cpuset, css) : NULL;
  122. }
  123. /* Retrieve the cpuset for a task */
  124. static inline struct cpuset *task_cs(struct task_struct *task)
  125. {
  126. return css_cs(task_css(task, cpuset_cgrp_id));
  127. }
  128. static inline struct cpuset *parent_cs(struct cpuset *cs)
  129. {
  130. return css_cs(cs->css.parent);
  131. }
  132. #ifdef CONFIG_NUMA
  133. static inline bool task_has_mempolicy(struct task_struct *task)
  134. {
  135. return task->mempolicy;
  136. }
  137. #else
  138. static inline bool task_has_mempolicy(struct task_struct *task)
  139. {
  140. return false;
  141. }
  142. #endif
  143. /* bits in struct cpuset flags field */
  144. typedef enum {
  145. CS_ONLINE,
  146. CS_CPU_EXCLUSIVE,
  147. CS_MEM_EXCLUSIVE,
  148. CS_MEM_HARDWALL,
  149. CS_MEMORY_MIGRATE,
  150. CS_SCHED_LOAD_BALANCE,
  151. CS_SPREAD_PAGE,
  152. CS_SPREAD_SLAB,
  153. } cpuset_flagbits_t;
  154. /* convenient tests for these bits */
  155. static inline bool is_cpuset_online(const struct cpuset *cs)
  156. {
  157. return test_bit(CS_ONLINE, &cs->flags);
  158. }
  159. static inline int is_cpu_exclusive(const struct cpuset *cs)
  160. {
  161. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  162. }
  163. static inline int is_mem_exclusive(const struct cpuset *cs)
  164. {
  165. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  166. }
  167. static inline int is_mem_hardwall(const struct cpuset *cs)
  168. {
  169. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  170. }
  171. static inline int is_sched_load_balance(const struct cpuset *cs)
  172. {
  173. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  174. }
  175. static inline int is_memory_migrate(const struct cpuset *cs)
  176. {
  177. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  178. }
  179. static inline int is_spread_page(const struct cpuset *cs)
  180. {
  181. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  182. }
  183. static inline int is_spread_slab(const struct cpuset *cs)
  184. {
  185. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  186. }
  187. static struct cpuset top_cpuset = {
  188. .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
  189. (1 << CS_MEM_EXCLUSIVE)),
  190. };
  191. /**
  192. * cpuset_for_each_child - traverse online children of a cpuset
  193. * @child_cs: loop cursor pointing to the current child
  194. * @pos_css: used for iteration
  195. * @parent_cs: target cpuset to walk children of
  196. *
  197. * Walk @child_cs through the online children of @parent_cs. Must be used
  198. * with RCU read locked.
  199. */
  200. #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
  201. css_for_each_child((pos_css), &(parent_cs)->css) \
  202. if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
  203. /**
  204. * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
  205. * @des_cs: loop cursor pointing to the current descendant
  206. * @pos_css: used for iteration
  207. * @root_cs: target cpuset to walk ancestor of
  208. *
  209. * Walk @des_cs through the online descendants of @root_cs. Must be used
  210. * with RCU read locked. The caller may modify @pos_css by calling
  211. * css_rightmost_descendant() to skip subtree. @root_cs is included in the
  212. * iteration and the first node to be visited.
  213. */
  214. #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
  215. css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
  216. if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
  217. /*
  218. * There are two global locks guarding cpuset structures - cpuset_mutex and
  219. * callback_lock. We also require taking task_lock() when dereferencing a
  220. * task's cpuset pointer. See "The task_lock() exception", at the end of this
  221. * comment.
  222. *
  223. * A task must hold both locks to modify cpusets. If a task holds
  224. * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
  225. * is the only task able to also acquire callback_lock and be able to
  226. * modify cpusets. It can perform various checks on the cpuset structure
  227. * first, knowing nothing will change. It can also allocate memory while
  228. * just holding cpuset_mutex. While it is performing these checks, various
  229. * callback routines can briefly acquire callback_lock to query cpusets.
  230. * Once it is ready to make the changes, it takes callback_lock, blocking
  231. * everyone else.
  232. *
  233. * Calls to the kernel memory allocator can not be made while holding
  234. * callback_lock, as that would risk double tripping on callback_lock
  235. * from one of the callbacks into the cpuset code from within
  236. * __alloc_pages().
  237. *
  238. * If a task is only holding callback_lock, then it has read-only
  239. * access to cpusets.
  240. *
  241. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  242. * by other task, we use alloc_lock in the task_struct fields to protect
  243. * them.
  244. *
  245. * The cpuset_common_file_read() handlers only hold callback_lock across
  246. * small pieces of code, such as when reading out possibly multi-word
  247. * cpumasks and nodemasks.
  248. *
  249. * Accessing a task's cpuset should be done in accordance with the
  250. * guidelines for accessing subsystem state in kernel/cgroup.c
  251. */
  252. static DEFINE_MUTEX(cpuset_mutex);
  253. static DEFINE_SPINLOCK(callback_lock);
  254. /*
  255. * CPU / memory hotplug is handled asynchronously.
  256. */
  257. static void cpuset_hotplug_workfn(struct work_struct *work);
  258. static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
  259. static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
  260. /*
  261. * This is ugly, but preserves the userspace API for existing cpuset
  262. * users. If someone tries to mount the "cpuset" filesystem, we
  263. * silently switch it to mount "cgroup" instead
  264. */
  265. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  266. int flags, const char *unused_dev_name, void *data)
  267. {
  268. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  269. struct dentry *ret = ERR_PTR(-ENODEV);
  270. if (cgroup_fs) {
  271. char mountopts[] =
  272. "cpuset,noprefix,"
  273. "release_agent=/sbin/cpuset_release_agent";
  274. ret = cgroup_fs->mount(cgroup_fs, flags,
  275. unused_dev_name, mountopts);
  276. put_filesystem(cgroup_fs);
  277. }
  278. return ret;
  279. }
  280. static struct file_system_type cpuset_fs_type = {
  281. .name = "cpuset",
  282. .mount = cpuset_mount,
  283. };
  284. /*
  285. * Return in pmask the portion of a cpusets's cpus_allowed that
  286. * are online. If none are online, walk up the cpuset hierarchy
  287. * until we find one that does have some online cpus. The top
  288. * cpuset always has some cpus online.
  289. *
  290. * One way or another, we guarantee to return some non-empty subset
  291. * of cpu_online_mask.
  292. *
  293. * Call with callback_lock or cpuset_mutex held.
  294. */
  295. static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
  296. {
  297. while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
  298. cs = parent_cs(cs);
  299. cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
  300. }
  301. /*
  302. * Return in *pmask the portion of a cpusets's mems_allowed that
  303. * are online, with memory. If none are online with memory, walk
  304. * up the cpuset hierarchy until we find one that does have some
  305. * online mems. The top cpuset always has some mems online.
  306. *
  307. * One way or another, we guarantee to return some non-empty subset
  308. * of node_states[N_MEMORY].
  309. *
  310. * Call with callback_lock or cpuset_mutex held.
  311. */
  312. static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
  313. {
  314. while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
  315. cs = parent_cs(cs);
  316. nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
  317. }
  318. /*
  319. * update task's spread flag if cpuset's page/slab spread flag is set
  320. *
  321. * Call with callback_lock or cpuset_mutex held.
  322. */
  323. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  324. struct task_struct *tsk)
  325. {
  326. if (is_spread_page(cs))
  327. task_set_spread_page(tsk);
  328. else
  329. task_clear_spread_page(tsk);
  330. if (is_spread_slab(cs))
  331. task_set_spread_slab(tsk);
  332. else
  333. task_clear_spread_slab(tsk);
  334. }
  335. /*
  336. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  337. *
  338. * One cpuset is a subset of another if all its allowed CPUs and
  339. * Memory Nodes are a subset of the other, and its exclusive flags
  340. * are only set if the other's are set. Call holding cpuset_mutex.
  341. */
  342. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  343. {
  344. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  345. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  346. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  347. is_mem_exclusive(p) <= is_mem_exclusive(q);
  348. }
  349. /**
  350. * alloc_trial_cpuset - allocate a trial cpuset
  351. * @cs: the cpuset that the trial cpuset duplicates
  352. */
  353. static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
  354. {
  355. struct cpuset *trial;
  356. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  357. if (!trial)
  358. return NULL;
  359. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
  360. goto free_cs;
  361. if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
  362. goto free_cpus;
  363. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  364. cpumask_copy(trial->effective_cpus, cs->effective_cpus);
  365. return trial;
  366. free_cpus:
  367. free_cpumask_var(trial->cpus_allowed);
  368. free_cs:
  369. kfree(trial);
  370. return NULL;
  371. }
  372. /**
  373. * free_trial_cpuset - free the trial cpuset
  374. * @trial: the trial cpuset to be freed
  375. */
  376. static void free_trial_cpuset(struct cpuset *trial)
  377. {
  378. free_cpumask_var(trial->effective_cpus);
  379. free_cpumask_var(trial->cpus_allowed);
  380. kfree(trial);
  381. }
  382. /*
  383. * validate_change() - Used to validate that any proposed cpuset change
  384. * follows the structural rules for cpusets.
  385. *
  386. * If we replaced the flag and mask values of the current cpuset
  387. * (cur) with those values in the trial cpuset (trial), would
  388. * our various subset and exclusive rules still be valid? Presumes
  389. * cpuset_mutex held.
  390. *
  391. * 'cur' is the address of an actual, in-use cpuset. Operations
  392. * such as list traversal that depend on the actual address of the
  393. * cpuset in the list must use cur below, not trial.
  394. *
  395. * 'trial' is the address of bulk structure copy of cur, with
  396. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  397. * or flags changed to new, trial values.
  398. *
  399. * Return 0 if valid, -errno if not.
  400. */
  401. static int validate_change(struct cpuset *cur, struct cpuset *trial)
  402. {
  403. struct cgroup_subsys_state *css;
  404. struct cpuset *c, *par;
  405. int ret;
  406. rcu_read_lock();
  407. /* Each of our child cpusets must be a subset of us */
  408. ret = -EBUSY;
  409. cpuset_for_each_child(c, css, cur)
  410. if (!is_cpuset_subset(c, trial))
  411. goto out;
  412. /* Remaining checks don't apply to root cpuset */
  413. ret = 0;
  414. if (cur == &top_cpuset)
  415. goto out;
  416. par = parent_cs(cur);
  417. /* On legacy hiearchy, we must be a subset of our parent cpuset. */
  418. ret = -EACCES;
  419. if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
  420. goto out;
  421. /*
  422. * If either I or some sibling (!= me) is exclusive, we can't
  423. * overlap
  424. */
  425. ret = -EINVAL;
  426. cpuset_for_each_child(c, css, par) {
  427. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  428. c != cur &&
  429. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  430. goto out;
  431. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  432. c != cur &&
  433. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  434. goto out;
  435. }
  436. /*
  437. * Cpusets with tasks - existing or newly being attached - can't
  438. * be changed to have empty cpus_allowed or mems_allowed.
  439. */
  440. ret = -ENOSPC;
  441. if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
  442. if (!cpumask_empty(cur->cpus_allowed) &&
  443. cpumask_empty(trial->cpus_allowed))
  444. goto out;
  445. if (!nodes_empty(cur->mems_allowed) &&
  446. nodes_empty(trial->mems_allowed))
  447. goto out;
  448. }
  449. /*
  450. * We can't shrink if we won't have enough room for SCHED_DEADLINE
  451. * tasks.
  452. */
  453. ret = -EBUSY;
  454. if (is_cpu_exclusive(cur) &&
  455. !cpuset_cpumask_can_shrink(cur->cpus_allowed,
  456. trial->cpus_allowed))
  457. goto out;
  458. ret = 0;
  459. out:
  460. rcu_read_unlock();
  461. return ret;
  462. }
  463. #ifdef CONFIG_SMP
  464. /*
  465. * Helper routine for generate_sched_domains().
  466. * Do cpusets a, b have overlapping effective cpus_allowed masks?
  467. */
  468. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  469. {
  470. return cpumask_intersects(a->effective_cpus, b->effective_cpus);
  471. }
  472. static void
  473. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  474. {
  475. if (dattr->relax_domain_level < c->relax_domain_level)
  476. dattr->relax_domain_level = c->relax_domain_level;
  477. return;
  478. }
  479. static void update_domain_attr_tree(struct sched_domain_attr *dattr,
  480. struct cpuset *root_cs)
  481. {
  482. struct cpuset *cp;
  483. struct cgroup_subsys_state *pos_css;
  484. rcu_read_lock();
  485. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  486. if (cp == root_cs)
  487. continue;
  488. /* skip the whole subtree if @cp doesn't have any CPU */
  489. if (cpumask_empty(cp->cpus_allowed)) {
  490. pos_css = css_rightmost_descendant(pos_css);
  491. continue;
  492. }
  493. if (is_sched_load_balance(cp))
  494. update_domain_attr(dattr, cp);
  495. }
  496. rcu_read_unlock();
  497. }
  498. /*
  499. * generate_sched_domains()
  500. *
  501. * This function builds a partial partition of the systems CPUs
  502. * A 'partial partition' is a set of non-overlapping subsets whose
  503. * union is a subset of that set.
  504. * The output of this function needs to be passed to kernel/sched/core.c
  505. * partition_sched_domains() routine, which will rebuild the scheduler's
  506. * load balancing domains (sched domains) as specified by that partial
  507. * partition.
  508. *
  509. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  510. * for a background explanation of this.
  511. *
  512. * Does not return errors, on the theory that the callers of this
  513. * routine would rather not worry about failures to rebuild sched
  514. * domains when operating in the severe memory shortage situations
  515. * that could cause allocation failures below.
  516. *
  517. * Must be called with cpuset_mutex held.
  518. *
  519. * The three key local variables below are:
  520. * q - a linked-list queue of cpuset pointers, used to implement a
  521. * top-down scan of all cpusets. This scan loads a pointer
  522. * to each cpuset marked is_sched_load_balance into the
  523. * array 'csa'. For our purposes, rebuilding the schedulers
  524. * sched domains, we can ignore !is_sched_load_balance cpusets.
  525. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  526. * that need to be load balanced, for convenient iterative
  527. * access by the subsequent code that finds the best partition,
  528. * i.e the set of domains (subsets) of CPUs such that the
  529. * cpus_allowed of every cpuset marked is_sched_load_balance
  530. * is a subset of one of these domains, while there are as
  531. * many such domains as possible, each as small as possible.
  532. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  533. * the kernel/sched/core.c routine partition_sched_domains() in a
  534. * convenient format, that can be easily compared to the prior
  535. * value to determine what partition elements (sched domains)
  536. * were changed (added or removed.)
  537. *
  538. * Finding the best partition (set of domains):
  539. * The triple nested loops below over i, j, k scan over the
  540. * load balanced cpusets (using the array of cpuset pointers in
  541. * csa[]) looking for pairs of cpusets that have overlapping
  542. * cpus_allowed, but which don't have the same 'pn' partition
  543. * number and gives them in the same partition number. It keeps
  544. * looping on the 'restart' label until it can no longer find
  545. * any such pairs.
  546. *
  547. * The union of the cpus_allowed masks from the set of
  548. * all cpusets having the same 'pn' value then form the one
  549. * element of the partition (one sched domain) to be passed to
  550. * partition_sched_domains().
  551. */
  552. static int generate_sched_domains(cpumask_var_t **domains,
  553. struct sched_domain_attr **attributes)
  554. {
  555. struct cpuset *cp; /* scans q */
  556. struct cpuset **csa; /* array of all cpuset ptrs */
  557. int csn; /* how many cpuset ptrs in csa so far */
  558. int i, j, k; /* indices for partition finding loops */
  559. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  560. struct sched_domain_attr *dattr; /* attributes for custom domains */
  561. int ndoms = 0; /* number of sched domains in result */
  562. int nslot; /* next empty doms[] struct cpumask slot */
  563. struct cgroup_subsys_state *pos_css;
  564. doms = NULL;
  565. dattr = NULL;
  566. csa = NULL;
  567. /* Special case for the 99% of systems with one, full, sched domain */
  568. if (is_sched_load_balance(&top_cpuset)) {
  569. ndoms = 1;
  570. doms = alloc_sched_domains(ndoms);
  571. if (!doms)
  572. goto done;
  573. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  574. if (dattr) {
  575. *dattr = SD_ATTR_INIT;
  576. update_domain_attr_tree(dattr, &top_cpuset);
  577. }
  578. cpumask_copy(doms[0], top_cpuset.effective_cpus);
  579. goto done;
  580. }
  581. csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
  582. if (!csa)
  583. goto done;
  584. csn = 0;
  585. rcu_read_lock();
  586. cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
  587. if (cp == &top_cpuset)
  588. continue;
  589. /*
  590. * Continue traversing beyond @cp iff @cp has some CPUs and
  591. * isn't load balancing. The former is obvious. The
  592. * latter: All child cpusets contain a subset of the
  593. * parent's cpus, so just skip them, and then we call
  594. * update_domain_attr_tree() to calc relax_domain_level of
  595. * the corresponding sched domain.
  596. */
  597. if (!cpumask_empty(cp->cpus_allowed) &&
  598. !is_sched_load_balance(cp))
  599. continue;
  600. if (is_sched_load_balance(cp))
  601. csa[csn++] = cp;
  602. /* skip @cp's subtree */
  603. pos_css = css_rightmost_descendant(pos_css);
  604. }
  605. rcu_read_unlock();
  606. for (i = 0; i < csn; i++)
  607. csa[i]->pn = i;
  608. ndoms = csn;
  609. restart:
  610. /* Find the best partition (set of sched domains) */
  611. for (i = 0; i < csn; i++) {
  612. struct cpuset *a = csa[i];
  613. int apn = a->pn;
  614. for (j = 0; j < csn; j++) {
  615. struct cpuset *b = csa[j];
  616. int bpn = b->pn;
  617. if (apn != bpn && cpusets_overlap(a, b)) {
  618. for (k = 0; k < csn; k++) {
  619. struct cpuset *c = csa[k];
  620. if (c->pn == bpn)
  621. c->pn = apn;
  622. }
  623. ndoms--; /* one less element */
  624. goto restart;
  625. }
  626. }
  627. }
  628. /*
  629. * Now we know how many domains to create.
  630. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  631. */
  632. doms = alloc_sched_domains(ndoms);
  633. if (!doms)
  634. goto done;
  635. /*
  636. * The rest of the code, including the scheduler, can deal with
  637. * dattr==NULL case. No need to abort if alloc fails.
  638. */
  639. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  640. for (nslot = 0, i = 0; i < csn; i++) {
  641. struct cpuset *a = csa[i];
  642. struct cpumask *dp;
  643. int apn = a->pn;
  644. if (apn < 0) {
  645. /* Skip completed partitions */
  646. continue;
  647. }
  648. dp = doms[nslot];
  649. if (nslot == ndoms) {
  650. static int warnings = 10;
  651. if (warnings) {
  652. pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
  653. nslot, ndoms, csn, i, apn);
  654. warnings--;
  655. }
  656. continue;
  657. }
  658. cpumask_clear(dp);
  659. if (dattr)
  660. *(dattr + nslot) = SD_ATTR_INIT;
  661. for (j = i; j < csn; j++) {
  662. struct cpuset *b = csa[j];
  663. if (apn == b->pn) {
  664. cpumask_or(dp, dp, b->effective_cpus);
  665. if (dattr)
  666. update_domain_attr_tree(dattr + nslot, b);
  667. /* Done with this partition */
  668. b->pn = -1;
  669. }
  670. }
  671. nslot++;
  672. }
  673. BUG_ON(nslot != ndoms);
  674. done:
  675. kfree(csa);
  676. /*
  677. * Fallback to the default domain if kmalloc() failed.
  678. * See comments in partition_sched_domains().
  679. */
  680. if (doms == NULL)
  681. ndoms = 1;
  682. *domains = doms;
  683. *attributes = dattr;
  684. return ndoms;
  685. }
  686. /*
  687. * Rebuild scheduler domains.
  688. *
  689. * If the flag 'sched_load_balance' of any cpuset with non-empty
  690. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  691. * which has that flag enabled, or if any cpuset with a non-empty
  692. * 'cpus' is removed, then call this routine to rebuild the
  693. * scheduler's dynamic sched domains.
  694. *
  695. * Call with cpuset_mutex held. Takes get_online_cpus().
  696. */
  697. static void rebuild_sched_domains_locked(void)
  698. {
  699. struct sched_domain_attr *attr;
  700. cpumask_var_t *doms;
  701. int ndoms;
  702. lockdep_assert_held(&cpuset_mutex);
  703. get_online_cpus();
  704. /*
  705. * We have raced with CPU hotplug. Don't do anything to avoid
  706. * passing doms with offlined cpu to partition_sched_domains().
  707. * Anyways, hotplug work item will rebuild sched domains.
  708. */
  709. if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
  710. goto out;
  711. /* Generate domain masks and attrs */
  712. ndoms = generate_sched_domains(&doms, &attr);
  713. /* Have scheduler rebuild the domains */
  714. partition_sched_domains(ndoms, doms, attr);
  715. out:
  716. put_online_cpus();
  717. }
  718. #else /* !CONFIG_SMP */
  719. static void rebuild_sched_domains_locked(void)
  720. {
  721. }
  722. #endif /* CONFIG_SMP */
  723. void rebuild_sched_domains(void)
  724. {
  725. mutex_lock(&cpuset_mutex);
  726. rebuild_sched_domains_locked();
  727. mutex_unlock(&cpuset_mutex);
  728. }
  729. /**
  730. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  731. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  732. *
  733. * Iterate through each task of @cs updating its cpus_allowed to the
  734. * effective cpuset's. As this function is called with cpuset_mutex held,
  735. * cpuset membership stays stable.
  736. */
  737. static void update_tasks_cpumask(struct cpuset *cs)
  738. {
  739. struct css_task_iter it;
  740. struct task_struct *task;
  741. css_task_iter_start(&cs->css, &it);
  742. while ((task = css_task_iter_next(&it)))
  743. set_cpus_allowed_ptr(task, cs->effective_cpus);
  744. css_task_iter_end(&it);
  745. }
  746. /*
  747. * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
  748. * @cs: the cpuset to consider
  749. * @new_cpus: temp variable for calculating new effective_cpus
  750. *
  751. * When congifured cpumask is changed, the effective cpumasks of this cpuset
  752. * and all its descendants need to be updated.
  753. *
  754. * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
  755. *
  756. * Called with cpuset_mutex held
  757. */
  758. static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
  759. {
  760. struct cpuset *cp;
  761. struct cgroup_subsys_state *pos_css;
  762. bool need_rebuild_sched_domains = false;
  763. rcu_read_lock();
  764. cpuset_for_each_descendant_pre(cp, pos_css, cs) {
  765. struct cpuset *parent = parent_cs(cp);
  766. cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
  767. /*
  768. * If it becomes empty, inherit the effective mask of the
  769. * parent, which is guaranteed to have some CPUs.
  770. */
  771. if (cpumask_empty(new_cpus))
  772. cpumask_copy(new_cpus, parent->effective_cpus);
  773. /* Skip the whole subtree if the cpumask remains the same. */
  774. if (cpumask_equal(new_cpus, cp->effective_cpus)) {
  775. pos_css = css_rightmost_descendant(pos_css);
  776. continue;
  777. }
  778. if (!css_tryget_online(&cp->css))
  779. continue;
  780. rcu_read_unlock();
  781. spin_lock_irq(&callback_lock);
  782. cpumask_copy(cp->effective_cpus, new_cpus);
  783. spin_unlock_irq(&callback_lock);
  784. WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
  785. !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
  786. update_tasks_cpumask(cp);
  787. /*
  788. * If the effective cpumask of any non-empty cpuset is changed,
  789. * we need to rebuild sched domains.
  790. */
  791. if (!cpumask_empty(cp->cpus_allowed) &&
  792. is_sched_load_balance(cp))
  793. need_rebuild_sched_domains = true;
  794. rcu_read_lock();
  795. css_put(&cp->css);
  796. }
  797. rcu_read_unlock();
  798. if (need_rebuild_sched_domains)
  799. rebuild_sched_domains_locked();
  800. }
  801. /**
  802. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  803. * @cs: the cpuset to consider
  804. * @trialcs: trial cpuset
  805. * @buf: buffer of cpu numbers written to this cpuset
  806. */
  807. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  808. const char *buf)
  809. {
  810. int retval;
  811. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  812. if (cs == &top_cpuset)
  813. return -EACCES;
  814. /*
  815. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  816. * Since cpulist_parse() fails on an empty mask, we special case
  817. * that parsing. The validate_change() call ensures that cpusets
  818. * with tasks have cpus.
  819. */
  820. if (!*buf) {
  821. cpumask_clear(trialcs->cpus_allowed);
  822. } else {
  823. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  824. if (retval < 0)
  825. return retval;
  826. if (!cpumask_subset(trialcs->cpus_allowed,
  827. top_cpuset.cpus_allowed))
  828. return -EINVAL;
  829. }
  830. /* Nothing to do if the cpus didn't change */
  831. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  832. return 0;
  833. retval = validate_change(cs, trialcs);
  834. if (retval < 0)
  835. return retval;
  836. spin_lock_irq(&callback_lock);
  837. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  838. spin_unlock_irq(&callback_lock);
  839. /* use trialcs->cpus_allowed as a temp variable */
  840. update_cpumasks_hier(cs, trialcs->cpus_allowed);
  841. return 0;
  842. }
  843. /*
  844. * cpuset_migrate_mm
  845. *
  846. * Migrate memory region from one set of nodes to another.
  847. *
  848. * Temporarilly set tasks mems_allowed to target nodes of migration,
  849. * so that the migration code can allocate pages on these nodes.
  850. *
  851. * While the mm_struct we are migrating is typically from some
  852. * other task, the task_struct mems_allowed that we are hacking
  853. * is for our current task, which must allocate new pages for that
  854. * migrating memory region.
  855. */
  856. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  857. const nodemask_t *to)
  858. {
  859. struct task_struct *tsk = current;
  860. tsk->mems_allowed = *to;
  861. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  862. rcu_read_lock();
  863. guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
  864. rcu_read_unlock();
  865. }
  866. /*
  867. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  868. * @tsk: the task to change
  869. * @newmems: new nodes that the task will be set
  870. *
  871. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  872. * we structure updates as setting all new allowed nodes, then clearing newly
  873. * disallowed ones.
  874. */
  875. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  876. nodemask_t *newmems)
  877. {
  878. bool need_loop;
  879. /*
  880. * Allow tasks that have access to memory reserves because they have
  881. * been OOM killed to get memory anywhere.
  882. */
  883. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  884. return;
  885. if (current->flags & PF_EXITING) /* Let dying task have memory */
  886. return;
  887. task_lock(tsk);
  888. /*
  889. * Determine if a loop is necessary if another thread is doing
  890. * read_mems_allowed_begin(). If at least one node remains unchanged and
  891. * tsk does not have a mempolicy, then an empty nodemask will not be
  892. * possible when mems_allowed is larger than a word.
  893. */
  894. need_loop = task_has_mempolicy(tsk) ||
  895. !nodes_intersects(*newmems, tsk->mems_allowed);
  896. if (need_loop) {
  897. local_irq_disable();
  898. write_seqcount_begin(&tsk->mems_allowed_seq);
  899. }
  900. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  901. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  902. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  903. tsk->mems_allowed = *newmems;
  904. if (need_loop) {
  905. write_seqcount_end(&tsk->mems_allowed_seq);
  906. local_irq_enable();
  907. }
  908. task_unlock(tsk);
  909. }
  910. static void *cpuset_being_rebound;
  911. /**
  912. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  913. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  914. *
  915. * Iterate through each task of @cs updating its mems_allowed to the
  916. * effective cpuset's. As this function is called with cpuset_mutex held,
  917. * cpuset membership stays stable.
  918. */
  919. static void update_tasks_nodemask(struct cpuset *cs)
  920. {
  921. static nodemask_t newmems; /* protected by cpuset_mutex */
  922. struct css_task_iter it;
  923. struct task_struct *task;
  924. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  925. guarantee_online_mems(cs, &newmems);
  926. /*
  927. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  928. * take while holding tasklist_lock. Forks can happen - the
  929. * mpol_dup() cpuset_being_rebound check will catch such forks,
  930. * and rebind their vma mempolicies too. Because we still hold
  931. * the global cpuset_mutex, we know that no other rebind effort
  932. * will be contending for the global variable cpuset_being_rebound.
  933. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  934. * is idempotent. Also migrate pages in each mm to new nodes.
  935. */
  936. css_task_iter_start(&cs->css, &it);
  937. while ((task = css_task_iter_next(&it))) {
  938. struct mm_struct *mm;
  939. bool migrate;
  940. cpuset_change_task_nodemask(task, &newmems);
  941. mm = get_task_mm(task);
  942. if (!mm)
  943. continue;
  944. migrate = is_memory_migrate(cs);
  945. mpol_rebind_mm(mm, &cs->mems_allowed);
  946. if (migrate)
  947. cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
  948. mmput(mm);
  949. }
  950. css_task_iter_end(&it);
  951. /*
  952. * All the tasks' nodemasks have been updated, update
  953. * cs->old_mems_allowed.
  954. */
  955. cs->old_mems_allowed = newmems;
  956. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  957. cpuset_being_rebound = NULL;
  958. }
  959. /*
  960. * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
  961. * @cs: the cpuset to consider
  962. * @new_mems: a temp variable for calculating new effective_mems
  963. *
  964. * When configured nodemask is changed, the effective nodemasks of this cpuset
  965. * and all its descendants need to be updated.
  966. *
  967. * On legacy hiearchy, effective_mems will be the same with mems_allowed.
  968. *
  969. * Called with cpuset_mutex held
  970. */
  971. static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
  972. {
  973. struct cpuset *cp;
  974. struct cgroup_subsys_state *pos_css;
  975. rcu_read_lock();
  976. cpuset_for_each_descendant_pre(cp, pos_css, cs) {
  977. struct cpuset *parent = parent_cs(cp);
  978. nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
  979. /*
  980. * If it becomes empty, inherit the effective mask of the
  981. * parent, which is guaranteed to have some MEMs.
  982. */
  983. if (nodes_empty(*new_mems))
  984. *new_mems = parent->effective_mems;
  985. /* Skip the whole subtree if the nodemask remains the same. */
  986. if (nodes_equal(*new_mems, cp->effective_mems)) {
  987. pos_css = css_rightmost_descendant(pos_css);
  988. continue;
  989. }
  990. if (!css_tryget_online(&cp->css))
  991. continue;
  992. rcu_read_unlock();
  993. spin_lock_irq(&callback_lock);
  994. cp->effective_mems = *new_mems;
  995. spin_unlock_irq(&callback_lock);
  996. WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
  997. !nodes_equal(cp->mems_allowed, cp->effective_mems));
  998. update_tasks_nodemask(cp);
  999. rcu_read_lock();
  1000. css_put(&cp->css);
  1001. }
  1002. rcu_read_unlock();
  1003. }
  1004. /*
  1005. * Handle user request to change the 'mems' memory placement
  1006. * of a cpuset. Needs to validate the request, update the
  1007. * cpusets mems_allowed, and for each task in the cpuset,
  1008. * update mems_allowed and rebind task's mempolicy and any vma
  1009. * mempolicies and if the cpuset is marked 'memory_migrate',
  1010. * migrate the tasks pages to the new memory.
  1011. *
  1012. * Call with cpuset_mutex held. May take callback_lock during call.
  1013. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  1014. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  1015. * their mempolicies to the cpusets new mems_allowed.
  1016. */
  1017. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  1018. const char *buf)
  1019. {
  1020. int retval;
  1021. /*
  1022. * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
  1023. * it's read-only
  1024. */
  1025. if (cs == &top_cpuset) {
  1026. retval = -EACCES;
  1027. goto done;
  1028. }
  1029. /*
  1030. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  1031. * Since nodelist_parse() fails on an empty mask, we special case
  1032. * that parsing. The validate_change() call ensures that cpusets
  1033. * with tasks have memory.
  1034. */
  1035. if (!*buf) {
  1036. nodes_clear(trialcs->mems_allowed);
  1037. } else {
  1038. retval = nodelist_parse(buf, trialcs->mems_allowed);
  1039. if (retval < 0)
  1040. goto done;
  1041. if (!nodes_subset(trialcs->mems_allowed,
  1042. top_cpuset.mems_allowed)) {
  1043. retval = -EINVAL;
  1044. goto done;
  1045. }
  1046. }
  1047. if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
  1048. retval = 0; /* Too easy - nothing to do */
  1049. goto done;
  1050. }
  1051. retval = validate_change(cs, trialcs);
  1052. if (retval < 0)
  1053. goto done;
  1054. spin_lock_irq(&callback_lock);
  1055. cs->mems_allowed = trialcs->mems_allowed;
  1056. spin_unlock_irq(&callback_lock);
  1057. /* use trialcs->mems_allowed as a temp variable */
  1058. update_nodemasks_hier(cs, &cs->mems_allowed);
  1059. done:
  1060. return retval;
  1061. }
  1062. int current_cpuset_is_being_rebound(void)
  1063. {
  1064. int ret;
  1065. rcu_read_lock();
  1066. ret = task_cs(current) == cpuset_being_rebound;
  1067. rcu_read_unlock();
  1068. return ret;
  1069. }
  1070. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1071. {
  1072. #ifdef CONFIG_SMP
  1073. if (val < -1 || val >= sched_domain_level_max)
  1074. return -EINVAL;
  1075. #endif
  1076. if (val != cs->relax_domain_level) {
  1077. cs->relax_domain_level = val;
  1078. if (!cpumask_empty(cs->cpus_allowed) &&
  1079. is_sched_load_balance(cs))
  1080. rebuild_sched_domains_locked();
  1081. }
  1082. return 0;
  1083. }
  1084. /**
  1085. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1086. * @cs: the cpuset in which each task's spread flags needs to be changed
  1087. *
  1088. * Iterate through each task of @cs updating its spread flags. As this
  1089. * function is called with cpuset_mutex held, cpuset membership stays
  1090. * stable.
  1091. */
  1092. static void update_tasks_flags(struct cpuset *cs)
  1093. {
  1094. struct css_task_iter it;
  1095. struct task_struct *task;
  1096. css_task_iter_start(&cs->css, &it);
  1097. while ((task = css_task_iter_next(&it)))
  1098. cpuset_update_task_spread_flag(cs, task);
  1099. css_task_iter_end(&it);
  1100. }
  1101. /*
  1102. * update_flag - read a 0 or a 1 in a file and update associated flag
  1103. * bit: the bit to update (see cpuset_flagbits_t)
  1104. * cs: the cpuset to update
  1105. * turning_on: whether the flag is being set or cleared
  1106. *
  1107. * Call with cpuset_mutex held.
  1108. */
  1109. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1110. int turning_on)
  1111. {
  1112. struct cpuset *trialcs;
  1113. int balance_flag_changed;
  1114. int spread_flag_changed;
  1115. int err;
  1116. trialcs = alloc_trial_cpuset(cs);
  1117. if (!trialcs)
  1118. return -ENOMEM;
  1119. if (turning_on)
  1120. set_bit(bit, &trialcs->flags);
  1121. else
  1122. clear_bit(bit, &trialcs->flags);
  1123. err = validate_change(cs, trialcs);
  1124. if (err < 0)
  1125. goto out;
  1126. balance_flag_changed = (is_sched_load_balance(cs) !=
  1127. is_sched_load_balance(trialcs));
  1128. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1129. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1130. spin_lock_irq(&callback_lock);
  1131. cs->flags = trialcs->flags;
  1132. spin_unlock_irq(&callback_lock);
  1133. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1134. rebuild_sched_domains_locked();
  1135. if (spread_flag_changed)
  1136. update_tasks_flags(cs);
  1137. out:
  1138. free_trial_cpuset(trialcs);
  1139. return err;
  1140. }
  1141. /*
  1142. * Frequency meter - How fast is some event occurring?
  1143. *
  1144. * These routines manage a digitally filtered, constant time based,
  1145. * event frequency meter. There are four routines:
  1146. * fmeter_init() - initialize a frequency meter.
  1147. * fmeter_markevent() - called each time the event happens.
  1148. * fmeter_getrate() - returns the recent rate of such events.
  1149. * fmeter_update() - internal routine used to update fmeter.
  1150. *
  1151. * A common data structure is passed to each of these routines,
  1152. * which is used to keep track of the state required to manage the
  1153. * frequency meter and its digital filter.
  1154. *
  1155. * The filter works on the number of events marked per unit time.
  1156. * The filter is single-pole low-pass recursive (IIR). The time unit
  1157. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1158. * simulate 3 decimal digits of precision (multiplied by 1000).
  1159. *
  1160. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1161. * has a half-life of 10 seconds, meaning that if the events quit
  1162. * happening, then the rate returned from the fmeter_getrate()
  1163. * will be cut in half each 10 seconds, until it converges to zero.
  1164. *
  1165. * It is not worth doing a real infinitely recursive filter. If more
  1166. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1167. * just compute FM_MAXTICKS ticks worth, by which point the level
  1168. * will be stable.
  1169. *
  1170. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1171. * arithmetic overflow in the fmeter_update() routine.
  1172. *
  1173. * Given the simple 32 bit integer arithmetic used, this meter works
  1174. * best for reporting rates between one per millisecond (msec) and
  1175. * one per 32 (approx) seconds. At constant rates faster than one
  1176. * per msec it maxes out at values just under 1,000,000. At constant
  1177. * rates between one per msec, and one per second it will stabilize
  1178. * to a value N*1000, where N is the rate of events per second.
  1179. * At constant rates between one per second and one per 32 seconds,
  1180. * it will be choppy, moving up on the seconds that have an event,
  1181. * and then decaying until the next event. At rates slower than
  1182. * about one in 32 seconds, it decays all the way back to zero between
  1183. * each event.
  1184. */
  1185. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1186. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1187. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1188. #define FM_SCALE 1000 /* faux fixed point scale */
  1189. /* Initialize a frequency meter */
  1190. static void fmeter_init(struct fmeter *fmp)
  1191. {
  1192. fmp->cnt = 0;
  1193. fmp->val = 0;
  1194. fmp->time = 0;
  1195. spin_lock_init(&fmp->lock);
  1196. }
  1197. /* Internal meter update - process cnt events and update value */
  1198. static void fmeter_update(struct fmeter *fmp)
  1199. {
  1200. time_t now = get_seconds();
  1201. time_t ticks = now - fmp->time;
  1202. if (ticks == 0)
  1203. return;
  1204. ticks = min(FM_MAXTICKS, ticks);
  1205. while (ticks-- > 0)
  1206. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1207. fmp->time = now;
  1208. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1209. fmp->cnt = 0;
  1210. }
  1211. /* Process any previous ticks, then bump cnt by one (times scale). */
  1212. static void fmeter_markevent(struct fmeter *fmp)
  1213. {
  1214. spin_lock(&fmp->lock);
  1215. fmeter_update(fmp);
  1216. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1217. spin_unlock(&fmp->lock);
  1218. }
  1219. /* Process any previous ticks, then return current value. */
  1220. static int fmeter_getrate(struct fmeter *fmp)
  1221. {
  1222. int val;
  1223. spin_lock(&fmp->lock);
  1224. fmeter_update(fmp);
  1225. val = fmp->val;
  1226. spin_unlock(&fmp->lock);
  1227. return val;
  1228. }
  1229. static struct cpuset *cpuset_attach_old_cs;
  1230. /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
  1231. static int cpuset_can_attach(struct cgroup_subsys_state *css,
  1232. struct cgroup_taskset *tset)
  1233. {
  1234. struct cpuset *cs = css_cs(css);
  1235. struct task_struct *task;
  1236. int ret;
  1237. /* used later by cpuset_attach() */
  1238. cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
  1239. mutex_lock(&cpuset_mutex);
  1240. /* allow moving tasks into an empty cpuset if on default hierarchy */
  1241. ret = -ENOSPC;
  1242. if (!cgroup_on_dfl(css->cgroup) &&
  1243. (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
  1244. goto out_unlock;
  1245. cgroup_taskset_for_each(task, tset) {
  1246. ret = task_can_attach(task, cs->cpus_allowed);
  1247. if (ret)
  1248. goto out_unlock;
  1249. ret = security_task_setscheduler(task);
  1250. if (ret)
  1251. goto out_unlock;
  1252. }
  1253. /*
  1254. * Mark attach is in progress. This makes validate_change() fail
  1255. * changes which zero cpus/mems_allowed.
  1256. */
  1257. cs->attach_in_progress++;
  1258. ret = 0;
  1259. out_unlock:
  1260. mutex_unlock(&cpuset_mutex);
  1261. return ret;
  1262. }
  1263. static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
  1264. struct cgroup_taskset *tset)
  1265. {
  1266. mutex_lock(&cpuset_mutex);
  1267. css_cs(css)->attach_in_progress--;
  1268. mutex_unlock(&cpuset_mutex);
  1269. }
  1270. /*
  1271. * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
  1272. * but we can't allocate it dynamically there. Define it global and
  1273. * allocate from cpuset_init().
  1274. */
  1275. static cpumask_var_t cpus_attach;
  1276. static void cpuset_attach(struct cgroup_subsys_state *css,
  1277. struct cgroup_taskset *tset)
  1278. {
  1279. /* static buf protected by cpuset_mutex */
  1280. static nodemask_t cpuset_attach_nodemask_to;
  1281. struct mm_struct *mm;
  1282. struct task_struct *task;
  1283. struct task_struct *leader = cgroup_taskset_first(tset);
  1284. struct cpuset *cs = css_cs(css);
  1285. struct cpuset *oldcs = cpuset_attach_old_cs;
  1286. mutex_lock(&cpuset_mutex);
  1287. /* prepare for attach */
  1288. if (cs == &top_cpuset)
  1289. cpumask_copy(cpus_attach, cpu_possible_mask);
  1290. else
  1291. guarantee_online_cpus(cs, cpus_attach);
  1292. guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
  1293. cgroup_taskset_for_each(task, tset) {
  1294. /*
  1295. * can_attach beforehand should guarantee that this doesn't
  1296. * fail. TODO: have a better way to handle failure here
  1297. */
  1298. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1299. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1300. cpuset_update_task_spread_flag(cs, task);
  1301. }
  1302. /*
  1303. * Change mm, possibly for multiple threads in a threadgroup. This is
  1304. * expensive and may sleep.
  1305. */
  1306. cpuset_attach_nodemask_to = cs->effective_mems;
  1307. mm = get_task_mm(leader);
  1308. if (mm) {
  1309. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1310. /*
  1311. * old_mems_allowed is the same with mems_allowed here, except
  1312. * if this task is being moved automatically due to hotplug.
  1313. * In that case @mems_allowed has been updated and is empty,
  1314. * so @old_mems_allowed is the right nodesets that we migrate
  1315. * mm from.
  1316. */
  1317. if (is_memory_migrate(cs)) {
  1318. cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
  1319. &cpuset_attach_nodemask_to);
  1320. }
  1321. mmput(mm);
  1322. }
  1323. cs->old_mems_allowed = cpuset_attach_nodemask_to;
  1324. cs->attach_in_progress--;
  1325. if (!cs->attach_in_progress)
  1326. wake_up(&cpuset_attach_wq);
  1327. mutex_unlock(&cpuset_mutex);
  1328. }
  1329. /* The various types of files and directories in a cpuset file system */
  1330. typedef enum {
  1331. FILE_MEMORY_MIGRATE,
  1332. FILE_CPULIST,
  1333. FILE_MEMLIST,
  1334. FILE_EFFECTIVE_CPULIST,
  1335. FILE_EFFECTIVE_MEMLIST,
  1336. FILE_CPU_EXCLUSIVE,
  1337. FILE_MEM_EXCLUSIVE,
  1338. FILE_MEM_HARDWALL,
  1339. FILE_SCHED_LOAD_BALANCE,
  1340. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1341. FILE_MEMORY_PRESSURE_ENABLED,
  1342. FILE_MEMORY_PRESSURE,
  1343. FILE_SPREAD_PAGE,
  1344. FILE_SPREAD_SLAB,
  1345. } cpuset_filetype_t;
  1346. static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
  1347. u64 val)
  1348. {
  1349. struct cpuset *cs = css_cs(css);
  1350. cpuset_filetype_t type = cft->private;
  1351. int retval = 0;
  1352. mutex_lock(&cpuset_mutex);
  1353. if (!is_cpuset_online(cs)) {
  1354. retval = -ENODEV;
  1355. goto out_unlock;
  1356. }
  1357. switch (type) {
  1358. case FILE_CPU_EXCLUSIVE:
  1359. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1360. break;
  1361. case FILE_MEM_EXCLUSIVE:
  1362. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1363. break;
  1364. case FILE_MEM_HARDWALL:
  1365. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1366. break;
  1367. case FILE_SCHED_LOAD_BALANCE:
  1368. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1369. break;
  1370. case FILE_MEMORY_MIGRATE:
  1371. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1372. break;
  1373. case FILE_MEMORY_PRESSURE_ENABLED:
  1374. cpuset_memory_pressure_enabled = !!val;
  1375. break;
  1376. case FILE_MEMORY_PRESSURE:
  1377. retval = -EACCES;
  1378. break;
  1379. case FILE_SPREAD_PAGE:
  1380. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1381. break;
  1382. case FILE_SPREAD_SLAB:
  1383. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1384. break;
  1385. default:
  1386. retval = -EINVAL;
  1387. break;
  1388. }
  1389. out_unlock:
  1390. mutex_unlock(&cpuset_mutex);
  1391. return retval;
  1392. }
  1393. static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
  1394. s64 val)
  1395. {
  1396. struct cpuset *cs = css_cs(css);
  1397. cpuset_filetype_t type = cft->private;
  1398. int retval = -ENODEV;
  1399. mutex_lock(&cpuset_mutex);
  1400. if (!is_cpuset_online(cs))
  1401. goto out_unlock;
  1402. switch (type) {
  1403. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1404. retval = update_relax_domain_level(cs, val);
  1405. break;
  1406. default:
  1407. retval = -EINVAL;
  1408. break;
  1409. }
  1410. out_unlock:
  1411. mutex_unlock(&cpuset_mutex);
  1412. return retval;
  1413. }
  1414. /*
  1415. * Common handling for a write to a "cpus" or "mems" file.
  1416. */
  1417. static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
  1418. char *buf, size_t nbytes, loff_t off)
  1419. {
  1420. struct cpuset *cs = css_cs(of_css(of));
  1421. struct cpuset *trialcs;
  1422. int retval = -ENODEV;
  1423. buf = strstrip(buf);
  1424. /*
  1425. * CPU or memory hotunplug may leave @cs w/o any execution
  1426. * resources, in which case the hotplug code asynchronously updates
  1427. * configuration and transfers all tasks to the nearest ancestor
  1428. * which can execute.
  1429. *
  1430. * As writes to "cpus" or "mems" may restore @cs's execution
  1431. * resources, wait for the previously scheduled operations before
  1432. * proceeding, so that we don't end up keep removing tasks added
  1433. * after execution capability is restored.
  1434. *
  1435. * cpuset_hotplug_work calls back into cgroup core via
  1436. * cgroup_transfer_tasks() and waiting for it from a cgroupfs
  1437. * operation like this one can lead to a deadlock through kernfs
  1438. * active_ref protection. Let's break the protection. Losing the
  1439. * protection is okay as we check whether @cs is online after
  1440. * grabbing cpuset_mutex anyway. This only happens on the legacy
  1441. * hierarchies.
  1442. */
  1443. css_get(&cs->css);
  1444. kernfs_break_active_protection(of->kn);
  1445. flush_work(&cpuset_hotplug_work);
  1446. mutex_lock(&cpuset_mutex);
  1447. if (!is_cpuset_online(cs))
  1448. goto out_unlock;
  1449. trialcs = alloc_trial_cpuset(cs);
  1450. if (!trialcs) {
  1451. retval = -ENOMEM;
  1452. goto out_unlock;
  1453. }
  1454. switch (of_cft(of)->private) {
  1455. case FILE_CPULIST:
  1456. retval = update_cpumask(cs, trialcs, buf);
  1457. break;
  1458. case FILE_MEMLIST:
  1459. retval = update_nodemask(cs, trialcs, buf);
  1460. break;
  1461. default:
  1462. retval = -EINVAL;
  1463. break;
  1464. }
  1465. free_trial_cpuset(trialcs);
  1466. out_unlock:
  1467. mutex_unlock(&cpuset_mutex);
  1468. kernfs_unbreak_active_protection(of->kn);
  1469. css_put(&cs->css);
  1470. return retval ?: nbytes;
  1471. }
  1472. /*
  1473. * These ascii lists should be read in a single call, by using a user
  1474. * buffer large enough to hold the entire map. If read in smaller
  1475. * chunks, there is no guarantee of atomicity. Since the display format
  1476. * used, list of ranges of sequential numbers, is variable length,
  1477. * and since these maps can change value dynamically, one could read
  1478. * gibberish by doing partial reads while a list was changing.
  1479. */
  1480. static int cpuset_common_seq_show(struct seq_file *sf, void *v)
  1481. {
  1482. struct cpuset *cs = css_cs(seq_css(sf));
  1483. cpuset_filetype_t type = seq_cft(sf)->private;
  1484. int ret = 0;
  1485. spin_lock_irq(&callback_lock);
  1486. switch (type) {
  1487. case FILE_CPULIST:
  1488. seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
  1489. break;
  1490. case FILE_MEMLIST:
  1491. seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
  1492. break;
  1493. case FILE_EFFECTIVE_CPULIST:
  1494. seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
  1495. break;
  1496. case FILE_EFFECTIVE_MEMLIST:
  1497. seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
  1498. break;
  1499. default:
  1500. ret = -EINVAL;
  1501. }
  1502. spin_unlock_irq(&callback_lock);
  1503. return ret;
  1504. }
  1505. static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
  1506. {
  1507. struct cpuset *cs = css_cs(css);
  1508. cpuset_filetype_t type = cft->private;
  1509. switch (type) {
  1510. case FILE_CPU_EXCLUSIVE:
  1511. return is_cpu_exclusive(cs);
  1512. case FILE_MEM_EXCLUSIVE:
  1513. return is_mem_exclusive(cs);
  1514. case FILE_MEM_HARDWALL:
  1515. return is_mem_hardwall(cs);
  1516. case FILE_SCHED_LOAD_BALANCE:
  1517. return is_sched_load_balance(cs);
  1518. case FILE_MEMORY_MIGRATE:
  1519. return is_memory_migrate(cs);
  1520. case FILE_MEMORY_PRESSURE_ENABLED:
  1521. return cpuset_memory_pressure_enabled;
  1522. case FILE_MEMORY_PRESSURE:
  1523. return fmeter_getrate(&cs->fmeter);
  1524. case FILE_SPREAD_PAGE:
  1525. return is_spread_page(cs);
  1526. case FILE_SPREAD_SLAB:
  1527. return is_spread_slab(cs);
  1528. default:
  1529. BUG();
  1530. }
  1531. /* Unreachable but makes gcc happy */
  1532. return 0;
  1533. }
  1534. static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
  1535. {
  1536. struct cpuset *cs = css_cs(css);
  1537. cpuset_filetype_t type = cft->private;
  1538. switch (type) {
  1539. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1540. return cs->relax_domain_level;
  1541. default:
  1542. BUG();
  1543. }
  1544. /* Unrechable but makes gcc happy */
  1545. return 0;
  1546. }
  1547. /*
  1548. * for the common functions, 'private' gives the type of file
  1549. */
  1550. static struct cftype files[] = {
  1551. {
  1552. .name = "cpus",
  1553. .seq_show = cpuset_common_seq_show,
  1554. .write = cpuset_write_resmask,
  1555. .max_write_len = (100U + 6 * NR_CPUS),
  1556. .private = FILE_CPULIST,
  1557. },
  1558. {
  1559. .name = "mems",
  1560. .seq_show = cpuset_common_seq_show,
  1561. .write = cpuset_write_resmask,
  1562. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1563. .private = FILE_MEMLIST,
  1564. },
  1565. {
  1566. .name = "effective_cpus",
  1567. .seq_show = cpuset_common_seq_show,
  1568. .private = FILE_EFFECTIVE_CPULIST,
  1569. },
  1570. {
  1571. .name = "effective_mems",
  1572. .seq_show = cpuset_common_seq_show,
  1573. .private = FILE_EFFECTIVE_MEMLIST,
  1574. },
  1575. {
  1576. .name = "cpu_exclusive",
  1577. .read_u64 = cpuset_read_u64,
  1578. .write_u64 = cpuset_write_u64,
  1579. .private = FILE_CPU_EXCLUSIVE,
  1580. },
  1581. {
  1582. .name = "mem_exclusive",
  1583. .read_u64 = cpuset_read_u64,
  1584. .write_u64 = cpuset_write_u64,
  1585. .private = FILE_MEM_EXCLUSIVE,
  1586. },
  1587. {
  1588. .name = "mem_hardwall",
  1589. .read_u64 = cpuset_read_u64,
  1590. .write_u64 = cpuset_write_u64,
  1591. .private = FILE_MEM_HARDWALL,
  1592. },
  1593. {
  1594. .name = "sched_load_balance",
  1595. .read_u64 = cpuset_read_u64,
  1596. .write_u64 = cpuset_write_u64,
  1597. .private = FILE_SCHED_LOAD_BALANCE,
  1598. },
  1599. {
  1600. .name = "sched_relax_domain_level",
  1601. .read_s64 = cpuset_read_s64,
  1602. .write_s64 = cpuset_write_s64,
  1603. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1604. },
  1605. {
  1606. .name = "memory_migrate",
  1607. .read_u64 = cpuset_read_u64,
  1608. .write_u64 = cpuset_write_u64,
  1609. .private = FILE_MEMORY_MIGRATE,
  1610. },
  1611. {
  1612. .name = "memory_pressure",
  1613. .read_u64 = cpuset_read_u64,
  1614. .write_u64 = cpuset_write_u64,
  1615. .private = FILE_MEMORY_PRESSURE,
  1616. .mode = S_IRUGO,
  1617. },
  1618. {
  1619. .name = "memory_spread_page",
  1620. .read_u64 = cpuset_read_u64,
  1621. .write_u64 = cpuset_write_u64,
  1622. .private = FILE_SPREAD_PAGE,
  1623. },
  1624. {
  1625. .name = "memory_spread_slab",
  1626. .read_u64 = cpuset_read_u64,
  1627. .write_u64 = cpuset_write_u64,
  1628. .private = FILE_SPREAD_SLAB,
  1629. },
  1630. {
  1631. .name = "memory_pressure_enabled",
  1632. .flags = CFTYPE_ONLY_ON_ROOT,
  1633. .read_u64 = cpuset_read_u64,
  1634. .write_u64 = cpuset_write_u64,
  1635. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1636. },
  1637. { } /* terminate */
  1638. };
  1639. /*
  1640. * cpuset_css_alloc - allocate a cpuset css
  1641. * cgrp: control group that the new cpuset will be part of
  1642. */
  1643. static struct cgroup_subsys_state *
  1644. cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
  1645. {
  1646. struct cpuset *cs;
  1647. if (!parent_css)
  1648. return &top_cpuset.css;
  1649. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  1650. if (!cs)
  1651. return ERR_PTR(-ENOMEM);
  1652. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
  1653. goto free_cs;
  1654. if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
  1655. goto free_cpus;
  1656. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1657. cpumask_clear(cs->cpus_allowed);
  1658. nodes_clear(cs->mems_allowed);
  1659. cpumask_clear(cs->effective_cpus);
  1660. nodes_clear(cs->effective_mems);
  1661. fmeter_init(&cs->fmeter);
  1662. cs->relax_domain_level = -1;
  1663. return &cs->css;
  1664. free_cpus:
  1665. free_cpumask_var(cs->cpus_allowed);
  1666. free_cs:
  1667. kfree(cs);
  1668. return ERR_PTR(-ENOMEM);
  1669. }
  1670. static int cpuset_css_online(struct cgroup_subsys_state *css)
  1671. {
  1672. struct cpuset *cs = css_cs(css);
  1673. struct cpuset *parent = parent_cs(cs);
  1674. struct cpuset *tmp_cs;
  1675. struct cgroup_subsys_state *pos_css;
  1676. if (!parent)
  1677. return 0;
  1678. mutex_lock(&cpuset_mutex);
  1679. set_bit(CS_ONLINE, &cs->flags);
  1680. if (is_spread_page(parent))
  1681. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1682. if (is_spread_slab(parent))
  1683. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1684. cpuset_inc();
  1685. spin_lock_irq(&callback_lock);
  1686. if (cgroup_on_dfl(cs->css.cgroup)) {
  1687. cpumask_copy(cs->effective_cpus, parent->effective_cpus);
  1688. cs->effective_mems = parent->effective_mems;
  1689. }
  1690. spin_unlock_irq(&callback_lock);
  1691. if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
  1692. goto out_unlock;
  1693. /*
  1694. * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
  1695. * set. This flag handling is implemented in cgroup core for
  1696. * histrical reasons - the flag may be specified during mount.
  1697. *
  1698. * Currently, if any sibling cpusets have exclusive cpus or mem, we
  1699. * refuse to clone the configuration - thereby refusing the task to
  1700. * be entered, and as a result refusing the sys_unshare() or
  1701. * clone() which initiated it. If this becomes a problem for some
  1702. * users who wish to allow that scenario, then this could be
  1703. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1704. * (and likewise for mems) to the new cgroup.
  1705. */
  1706. rcu_read_lock();
  1707. cpuset_for_each_child(tmp_cs, pos_css, parent) {
  1708. if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
  1709. rcu_read_unlock();
  1710. goto out_unlock;
  1711. }
  1712. }
  1713. rcu_read_unlock();
  1714. spin_lock_irq(&callback_lock);
  1715. cs->mems_allowed = parent->mems_allowed;
  1716. cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
  1717. spin_unlock_irq(&callback_lock);
  1718. out_unlock:
  1719. mutex_unlock(&cpuset_mutex);
  1720. return 0;
  1721. }
  1722. /*
  1723. * If the cpuset being removed has its flag 'sched_load_balance'
  1724. * enabled, then simulate turning sched_load_balance off, which
  1725. * will call rebuild_sched_domains_locked().
  1726. */
  1727. static void cpuset_css_offline(struct cgroup_subsys_state *css)
  1728. {
  1729. struct cpuset *cs = css_cs(css);
  1730. mutex_lock(&cpuset_mutex);
  1731. if (is_sched_load_balance(cs))
  1732. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1733. cpuset_dec();
  1734. clear_bit(CS_ONLINE, &cs->flags);
  1735. mutex_unlock(&cpuset_mutex);
  1736. }
  1737. static void cpuset_css_free(struct cgroup_subsys_state *css)
  1738. {
  1739. struct cpuset *cs = css_cs(css);
  1740. free_cpumask_var(cs->effective_cpus);
  1741. free_cpumask_var(cs->cpus_allowed);
  1742. kfree(cs);
  1743. }
  1744. static void cpuset_bind(struct cgroup_subsys_state *root_css)
  1745. {
  1746. mutex_lock(&cpuset_mutex);
  1747. spin_lock_irq(&callback_lock);
  1748. if (cgroup_on_dfl(root_css->cgroup)) {
  1749. cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
  1750. top_cpuset.mems_allowed = node_possible_map;
  1751. } else {
  1752. cpumask_copy(top_cpuset.cpus_allowed,
  1753. top_cpuset.effective_cpus);
  1754. top_cpuset.mems_allowed = top_cpuset.effective_mems;
  1755. }
  1756. spin_unlock_irq(&callback_lock);
  1757. mutex_unlock(&cpuset_mutex);
  1758. }
  1759. struct cgroup_subsys cpuset_cgrp_subsys = {
  1760. .css_alloc = cpuset_css_alloc,
  1761. .css_online = cpuset_css_online,
  1762. .css_offline = cpuset_css_offline,
  1763. .css_free = cpuset_css_free,
  1764. .can_attach = cpuset_can_attach,
  1765. .cancel_attach = cpuset_cancel_attach,
  1766. .attach = cpuset_attach,
  1767. .bind = cpuset_bind,
  1768. .legacy_cftypes = files,
  1769. .early_init = 1,
  1770. };
  1771. /**
  1772. * cpuset_init - initialize cpusets at system boot
  1773. *
  1774. * Description: Initialize top_cpuset and the cpuset internal file system,
  1775. **/
  1776. int __init cpuset_init(void)
  1777. {
  1778. int err = 0;
  1779. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1780. BUG();
  1781. if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
  1782. BUG();
  1783. cpumask_setall(top_cpuset.cpus_allowed);
  1784. nodes_setall(top_cpuset.mems_allowed);
  1785. cpumask_setall(top_cpuset.effective_cpus);
  1786. nodes_setall(top_cpuset.effective_mems);
  1787. fmeter_init(&top_cpuset.fmeter);
  1788. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1789. top_cpuset.relax_domain_level = -1;
  1790. err = register_filesystem(&cpuset_fs_type);
  1791. if (err < 0)
  1792. return err;
  1793. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1794. BUG();
  1795. return 0;
  1796. }
  1797. /*
  1798. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1799. * or memory nodes, we need to walk over the cpuset hierarchy,
  1800. * removing that CPU or node from all cpusets. If this removes the
  1801. * last CPU or node from a cpuset, then move the tasks in the empty
  1802. * cpuset to its next-highest non-empty parent.
  1803. */
  1804. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1805. {
  1806. struct cpuset *parent;
  1807. /*
  1808. * Find its next-highest non-empty parent, (top cpuset
  1809. * has online cpus, so can't be empty).
  1810. */
  1811. parent = parent_cs(cs);
  1812. while (cpumask_empty(parent->cpus_allowed) ||
  1813. nodes_empty(parent->mems_allowed))
  1814. parent = parent_cs(parent);
  1815. if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
  1816. pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
  1817. pr_cont_cgroup_name(cs->css.cgroup);
  1818. pr_cont("\n");
  1819. }
  1820. }
  1821. static void
  1822. hotplug_update_tasks_legacy(struct cpuset *cs,
  1823. struct cpumask *new_cpus, nodemask_t *new_mems,
  1824. bool cpus_updated, bool mems_updated)
  1825. {
  1826. bool is_empty;
  1827. spin_lock_irq(&callback_lock);
  1828. cpumask_copy(cs->cpus_allowed, new_cpus);
  1829. cpumask_copy(cs->effective_cpus, new_cpus);
  1830. cs->mems_allowed = *new_mems;
  1831. cs->effective_mems = *new_mems;
  1832. spin_unlock_irq(&callback_lock);
  1833. /*
  1834. * Don't call update_tasks_cpumask() if the cpuset becomes empty,
  1835. * as the tasks will be migratecd to an ancestor.
  1836. */
  1837. if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
  1838. update_tasks_cpumask(cs);
  1839. if (mems_updated && !nodes_empty(cs->mems_allowed))
  1840. update_tasks_nodemask(cs);
  1841. is_empty = cpumask_empty(cs->cpus_allowed) ||
  1842. nodes_empty(cs->mems_allowed);
  1843. mutex_unlock(&cpuset_mutex);
  1844. /*
  1845. * Move tasks to the nearest ancestor with execution resources,
  1846. * This is full cgroup operation which will also call back into
  1847. * cpuset. Should be done outside any lock.
  1848. */
  1849. if (is_empty)
  1850. remove_tasks_in_empty_cpuset(cs);
  1851. mutex_lock(&cpuset_mutex);
  1852. }
  1853. static void
  1854. hotplug_update_tasks(struct cpuset *cs,
  1855. struct cpumask *new_cpus, nodemask_t *new_mems,
  1856. bool cpus_updated, bool mems_updated)
  1857. {
  1858. if (cpumask_empty(new_cpus))
  1859. cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
  1860. if (nodes_empty(*new_mems))
  1861. *new_mems = parent_cs(cs)->effective_mems;
  1862. spin_lock_irq(&callback_lock);
  1863. cpumask_copy(cs->effective_cpus, new_cpus);
  1864. cs->effective_mems = *new_mems;
  1865. spin_unlock_irq(&callback_lock);
  1866. if (cpus_updated)
  1867. update_tasks_cpumask(cs);
  1868. if (mems_updated)
  1869. update_tasks_nodemask(cs);
  1870. }
  1871. /**
  1872. * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
  1873. * @cs: cpuset in interest
  1874. *
  1875. * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
  1876. * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
  1877. * all its tasks are moved to the nearest ancestor with both resources.
  1878. */
  1879. static void cpuset_hotplug_update_tasks(struct cpuset *cs)
  1880. {
  1881. static cpumask_t new_cpus;
  1882. static nodemask_t new_mems;
  1883. bool cpus_updated;
  1884. bool mems_updated;
  1885. retry:
  1886. wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
  1887. mutex_lock(&cpuset_mutex);
  1888. /*
  1889. * We have raced with task attaching. We wait until attaching
  1890. * is finished, so we won't attach a task to an empty cpuset.
  1891. */
  1892. if (cs->attach_in_progress) {
  1893. mutex_unlock(&cpuset_mutex);
  1894. goto retry;
  1895. }
  1896. cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
  1897. nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
  1898. cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
  1899. mems_updated = !nodes_equal(new_mems, cs->effective_mems);
  1900. if (cgroup_on_dfl(cs->css.cgroup))
  1901. hotplug_update_tasks(cs, &new_cpus, &new_mems,
  1902. cpus_updated, mems_updated);
  1903. else
  1904. hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
  1905. cpus_updated, mems_updated);
  1906. mutex_unlock(&cpuset_mutex);
  1907. }
  1908. /**
  1909. * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
  1910. *
  1911. * This function is called after either CPU or memory configuration has
  1912. * changed and updates cpuset accordingly. The top_cpuset is always
  1913. * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
  1914. * order to make cpusets transparent (of no affect) on systems that are
  1915. * actively using CPU hotplug but making no active use of cpusets.
  1916. *
  1917. * Non-root cpusets are only affected by offlining. If any CPUs or memory
  1918. * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
  1919. * all descendants.
  1920. *
  1921. * Note that CPU offlining during suspend is ignored. We don't modify
  1922. * cpusets across suspend/resume cycles at all.
  1923. */
  1924. static void cpuset_hotplug_workfn(struct work_struct *work)
  1925. {
  1926. static cpumask_t new_cpus;
  1927. static nodemask_t new_mems;
  1928. bool cpus_updated, mems_updated;
  1929. bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
  1930. mutex_lock(&cpuset_mutex);
  1931. /* fetch the available cpus/mems and find out which changed how */
  1932. cpumask_copy(&new_cpus, cpu_active_mask);
  1933. new_mems = node_states[N_MEMORY];
  1934. cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
  1935. mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
  1936. /* synchronize cpus_allowed to cpu_active_mask */
  1937. if (cpus_updated) {
  1938. spin_lock_irq(&callback_lock);
  1939. if (!on_dfl)
  1940. cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
  1941. cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
  1942. spin_unlock_irq(&callback_lock);
  1943. /* we don't mess with cpumasks of tasks in top_cpuset */
  1944. }
  1945. /* synchronize mems_allowed to N_MEMORY */
  1946. if (mems_updated) {
  1947. spin_lock_irq(&callback_lock);
  1948. if (!on_dfl)
  1949. top_cpuset.mems_allowed = new_mems;
  1950. top_cpuset.effective_mems = new_mems;
  1951. spin_unlock_irq(&callback_lock);
  1952. update_tasks_nodemask(&top_cpuset);
  1953. }
  1954. mutex_unlock(&cpuset_mutex);
  1955. /* if cpus or mems changed, we need to propagate to descendants */
  1956. if (cpus_updated || mems_updated) {
  1957. struct cpuset *cs;
  1958. struct cgroup_subsys_state *pos_css;
  1959. rcu_read_lock();
  1960. cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
  1961. if (cs == &top_cpuset || !css_tryget_online(&cs->css))
  1962. continue;
  1963. rcu_read_unlock();
  1964. cpuset_hotplug_update_tasks(cs);
  1965. rcu_read_lock();
  1966. css_put(&cs->css);
  1967. }
  1968. rcu_read_unlock();
  1969. }
  1970. /* rebuild sched domains if cpus_allowed has changed */
  1971. if (cpus_updated)
  1972. rebuild_sched_domains();
  1973. }
  1974. void cpuset_update_active_cpus(bool cpu_online)
  1975. {
  1976. /*
  1977. * We're inside cpu hotplug critical region which usually nests
  1978. * inside cgroup synchronization. Bounce actual hotplug processing
  1979. * to a work item to avoid reverse locking order.
  1980. *
  1981. * We still need to do partition_sched_domains() synchronously;
  1982. * otherwise, the scheduler will get confused and put tasks to the
  1983. * dead CPU. Fall back to the default single domain.
  1984. * cpuset_hotplug_workfn() will rebuild it as necessary.
  1985. */
  1986. partition_sched_domains(1, NULL, NULL);
  1987. schedule_work(&cpuset_hotplug_work);
  1988. }
  1989. /*
  1990. * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
  1991. * Call this routine anytime after node_states[N_MEMORY] changes.
  1992. * See cpuset_update_active_cpus() for CPU hotplug handling.
  1993. */
  1994. static int cpuset_track_online_nodes(struct notifier_block *self,
  1995. unsigned long action, void *arg)
  1996. {
  1997. schedule_work(&cpuset_hotplug_work);
  1998. return NOTIFY_OK;
  1999. }
  2000. static struct notifier_block cpuset_track_online_nodes_nb = {
  2001. .notifier_call = cpuset_track_online_nodes,
  2002. .priority = 10, /* ??! */
  2003. };
  2004. /**
  2005. * cpuset_init_smp - initialize cpus_allowed
  2006. *
  2007. * Description: Finish top cpuset after cpu, node maps are initialized
  2008. */
  2009. void __init cpuset_init_smp(void)
  2010. {
  2011. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  2012. top_cpuset.mems_allowed = node_states[N_MEMORY];
  2013. top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
  2014. cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
  2015. top_cpuset.effective_mems = node_states[N_MEMORY];
  2016. register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
  2017. }
  2018. /**
  2019. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  2020. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  2021. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  2022. *
  2023. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  2024. * attached to the specified @tsk. Guaranteed to return some non-empty
  2025. * subset of cpu_online_mask, even if this means going outside the
  2026. * tasks cpuset.
  2027. **/
  2028. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  2029. {
  2030. unsigned long flags;
  2031. spin_lock_irqsave(&callback_lock, flags);
  2032. rcu_read_lock();
  2033. guarantee_online_cpus(task_cs(tsk), pmask);
  2034. rcu_read_unlock();
  2035. spin_unlock_irqrestore(&callback_lock, flags);
  2036. }
  2037. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  2038. {
  2039. rcu_read_lock();
  2040. do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
  2041. rcu_read_unlock();
  2042. /*
  2043. * We own tsk->cpus_allowed, nobody can change it under us.
  2044. *
  2045. * But we used cs && cs->cpus_allowed lockless and thus can
  2046. * race with cgroup_attach_task() or update_cpumask() and get
  2047. * the wrong tsk->cpus_allowed. However, both cases imply the
  2048. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  2049. * which takes task_rq_lock().
  2050. *
  2051. * If we are called after it dropped the lock we must see all
  2052. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  2053. * set any mask even if it is not right from task_cs() pov,
  2054. * the pending set_cpus_allowed_ptr() will fix things.
  2055. *
  2056. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  2057. * if required.
  2058. */
  2059. }
  2060. void __init cpuset_init_current_mems_allowed(void)
  2061. {
  2062. nodes_setall(current->mems_allowed);
  2063. }
  2064. /**
  2065. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  2066. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  2067. *
  2068. * Description: Returns the nodemask_t mems_allowed of the cpuset
  2069. * attached to the specified @tsk. Guaranteed to return some non-empty
  2070. * subset of node_states[N_MEMORY], even if this means going outside the
  2071. * tasks cpuset.
  2072. **/
  2073. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  2074. {
  2075. nodemask_t mask;
  2076. unsigned long flags;
  2077. spin_lock_irqsave(&callback_lock, flags);
  2078. rcu_read_lock();
  2079. guarantee_online_mems(task_cs(tsk), &mask);
  2080. rcu_read_unlock();
  2081. spin_unlock_irqrestore(&callback_lock, flags);
  2082. return mask;
  2083. }
  2084. /**
  2085. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  2086. * @nodemask: the nodemask to be checked
  2087. *
  2088. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  2089. */
  2090. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  2091. {
  2092. return nodes_intersects(*nodemask, current->mems_allowed);
  2093. }
  2094. /*
  2095. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  2096. * mem_hardwall ancestor to the specified cpuset. Call holding
  2097. * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
  2098. * (an unusual configuration), then returns the root cpuset.
  2099. */
  2100. static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
  2101. {
  2102. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
  2103. cs = parent_cs(cs);
  2104. return cs;
  2105. }
  2106. /**
  2107. * cpuset_node_allowed - Can we allocate on a memory node?
  2108. * @node: is this an allowed node?
  2109. * @gfp_mask: memory allocation flags
  2110. *
  2111. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2112. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2113. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  2114. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  2115. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  2116. * flag, yes.
  2117. * Otherwise, no.
  2118. *
  2119. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2120. * by forcibly using a zonelist starting at a specified node, and by
  2121. * (in get_page_from_freelist()) refusing to consider the zones for
  2122. * any node on the zonelist except the first. By the time any such
  2123. * calls get to this routine, we should just shut up and say 'yes'.
  2124. *
  2125. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2126. * and do not allow allocations outside the current tasks cpuset
  2127. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2128. * GFP_KERNEL allocations are not so marked, so can escape to the
  2129. * nearest enclosing hardwalled ancestor cpuset.
  2130. *
  2131. * Scanning up parent cpusets requires callback_lock. The
  2132. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2133. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2134. * current tasks mems_allowed came up empty on the first pass over
  2135. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2136. * cpuset are short of memory, might require taking the callback_lock.
  2137. *
  2138. * The first call here from mm/page_alloc:get_page_from_freelist()
  2139. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2140. * so no allocation on a node outside the cpuset is allowed (unless
  2141. * in interrupt, of course).
  2142. *
  2143. * The second pass through get_page_from_freelist() doesn't even call
  2144. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2145. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2146. * in alloc_flags. That logic and the checks below have the combined
  2147. * affect that:
  2148. * in_interrupt - any node ok (current task context irrelevant)
  2149. * GFP_ATOMIC - any node ok
  2150. * TIF_MEMDIE - any node ok
  2151. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2152. * GFP_USER - only nodes in current tasks mems allowed ok.
  2153. */
  2154. int __cpuset_node_allowed(int node, gfp_t gfp_mask)
  2155. {
  2156. struct cpuset *cs; /* current cpuset ancestors */
  2157. int allowed; /* is allocation in zone z allowed? */
  2158. unsigned long flags;
  2159. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2160. return 1;
  2161. if (node_isset(node, current->mems_allowed))
  2162. return 1;
  2163. /*
  2164. * Allow tasks that have access to memory reserves because they have
  2165. * been OOM killed to get memory anywhere.
  2166. */
  2167. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2168. return 1;
  2169. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2170. return 0;
  2171. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2172. return 1;
  2173. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2174. spin_lock_irqsave(&callback_lock, flags);
  2175. rcu_read_lock();
  2176. cs = nearest_hardwall_ancestor(task_cs(current));
  2177. allowed = node_isset(node, cs->mems_allowed);
  2178. rcu_read_unlock();
  2179. spin_unlock_irqrestore(&callback_lock, flags);
  2180. return allowed;
  2181. }
  2182. /**
  2183. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2184. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2185. *
  2186. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2187. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2188. * and if the memory allocation used cpuset_mem_spread_node()
  2189. * to determine on which node to start looking, as it will for
  2190. * certain page cache or slab cache pages such as used for file
  2191. * system buffers and inode caches, then instead of starting on the
  2192. * local node to look for a free page, rather spread the starting
  2193. * node around the tasks mems_allowed nodes.
  2194. *
  2195. * We don't have to worry about the returned node being offline
  2196. * because "it can't happen", and even if it did, it would be ok.
  2197. *
  2198. * The routines calling guarantee_online_mems() are careful to
  2199. * only set nodes in task->mems_allowed that are online. So it
  2200. * should not be possible for the following code to return an
  2201. * offline node. But if it did, that would be ok, as this routine
  2202. * is not returning the node where the allocation must be, only
  2203. * the node where the search should start. The zonelist passed to
  2204. * __alloc_pages() will include all nodes. If the slab allocator
  2205. * is passed an offline node, it will fall back to the local node.
  2206. * See kmem_cache_alloc_node().
  2207. */
  2208. static int cpuset_spread_node(int *rotor)
  2209. {
  2210. int node;
  2211. node = next_node(*rotor, current->mems_allowed);
  2212. if (node == MAX_NUMNODES)
  2213. node = first_node(current->mems_allowed);
  2214. *rotor = node;
  2215. return node;
  2216. }
  2217. int cpuset_mem_spread_node(void)
  2218. {
  2219. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2220. current->cpuset_mem_spread_rotor =
  2221. node_random(&current->mems_allowed);
  2222. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2223. }
  2224. int cpuset_slab_spread_node(void)
  2225. {
  2226. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2227. current->cpuset_slab_spread_rotor =
  2228. node_random(&current->mems_allowed);
  2229. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2230. }
  2231. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2232. /**
  2233. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2234. * @tsk1: pointer to task_struct of some task.
  2235. * @tsk2: pointer to task_struct of some other task.
  2236. *
  2237. * Description: Return true if @tsk1's mems_allowed intersects the
  2238. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2239. * one of the task's memory usage might impact the memory available
  2240. * to the other.
  2241. **/
  2242. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2243. const struct task_struct *tsk2)
  2244. {
  2245. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2246. }
  2247. /**
  2248. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2249. * @tsk: pointer to task_struct of some task.
  2250. *
  2251. * Description: Prints @task's name, cpuset name, and cached copy of its
  2252. * mems_allowed to the kernel log.
  2253. */
  2254. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2255. {
  2256. struct cgroup *cgrp;
  2257. rcu_read_lock();
  2258. cgrp = task_cs(tsk)->css.cgroup;
  2259. pr_info("%s cpuset=", tsk->comm);
  2260. pr_cont_cgroup_name(cgrp);
  2261. pr_cont(" mems_allowed=%*pbl\n", nodemask_pr_args(&tsk->mems_allowed));
  2262. rcu_read_unlock();
  2263. }
  2264. /*
  2265. * Collection of memory_pressure is suppressed unless
  2266. * this flag is enabled by writing "1" to the special
  2267. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2268. */
  2269. int cpuset_memory_pressure_enabled __read_mostly;
  2270. /**
  2271. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2272. *
  2273. * Keep a running average of the rate of synchronous (direct)
  2274. * page reclaim efforts initiated by tasks in each cpuset.
  2275. *
  2276. * This represents the rate at which some task in the cpuset
  2277. * ran low on memory on all nodes it was allowed to use, and
  2278. * had to enter the kernels page reclaim code in an effort to
  2279. * create more free memory by tossing clean pages or swapping
  2280. * or writing dirty pages.
  2281. *
  2282. * Display to user space in the per-cpuset read-only file
  2283. * "memory_pressure". Value displayed is an integer
  2284. * representing the recent rate of entry into the synchronous
  2285. * (direct) page reclaim by any task attached to the cpuset.
  2286. **/
  2287. void __cpuset_memory_pressure_bump(void)
  2288. {
  2289. rcu_read_lock();
  2290. fmeter_markevent(&task_cs(current)->fmeter);
  2291. rcu_read_unlock();
  2292. }
  2293. #ifdef CONFIG_PROC_PID_CPUSET
  2294. /*
  2295. * proc_cpuset_show()
  2296. * - Print tasks cpuset path into seq_file.
  2297. * - Used for /proc/<pid>/cpuset.
  2298. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2299. * doesn't really matter if tsk->cpuset changes after we read it,
  2300. * and we take cpuset_mutex, keeping cpuset_attach() from changing it
  2301. * anyway.
  2302. */
  2303. int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
  2304. struct pid *pid, struct task_struct *tsk)
  2305. {
  2306. char *buf, *p;
  2307. struct cgroup_subsys_state *css;
  2308. int retval;
  2309. retval = -ENOMEM;
  2310. buf = kmalloc(PATH_MAX, GFP_KERNEL);
  2311. if (!buf)
  2312. goto out;
  2313. retval = -ENAMETOOLONG;
  2314. rcu_read_lock();
  2315. css = task_css(tsk, cpuset_cgrp_id);
  2316. p = cgroup_path(css->cgroup, buf, PATH_MAX);
  2317. rcu_read_unlock();
  2318. if (!p)
  2319. goto out_free;
  2320. seq_puts(m, p);
  2321. seq_putc(m, '\n');
  2322. retval = 0;
  2323. out_free:
  2324. kfree(buf);
  2325. out:
  2326. return retval;
  2327. }
  2328. #endif /* CONFIG_PROC_PID_CPUSET */
  2329. /* Display task mems_allowed in /proc/<pid>/status file. */
  2330. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2331. {
  2332. seq_printf(m, "Mems_allowed:\t%*pb\n",
  2333. nodemask_pr_args(&task->mems_allowed));
  2334. seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
  2335. nodemask_pr_args(&task->mems_allowed));
  2336. }