mlock.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759
  1. /*
  2. * linux/mm/mlock.c
  3. *
  4. * (C) Copyright 1995 Linus Torvalds
  5. * (C) Copyright 2002 Christoph Hellwig
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/mman.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/pagevec.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/syscalls.h>
  16. #include <linux/sched.h>
  17. #include <linux/export.h>
  18. #include <linux/rmap.h>
  19. #include <linux/mmzone.h>
  20. #include <linux/hugetlb.h>
  21. #include <linux/memcontrol.h>
  22. #include <linux/mm_inline.h>
  23. #include "internal.h"
  24. int can_do_mlock(void)
  25. {
  26. if (rlimit(RLIMIT_MEMLOCK) != 0)
  27. return 1;
  28. if (capable(CAP_IPC_LOCK))
  29. return 1;
  30. return 0;
  31. }
  32. EXPORT_SYMBOL(can_do_mlock);
  33. /*
  34. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  35. * in vmscan and, possibly, the fault path; and to support semi-accurate
  36. * statistics.
  37. *
  38. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  39. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  40. * The unevictable list is an LRU sibling list to the [in]active lists.
  41. * PageUnevictable is set to indicate the unevictable state.
  42. *
  43. * When lazy mlocking via vmscan, it is important to ensure that the
  44. * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  45. * may have mlocked a page that is being munlocked. So lazy mlock must take
  46. * the mmap_sem for read, and verify that the vma really is locked
  47. * (see mm/rmap.c).
  48. */
  49. /*
  50. * LRU accounting for clear_page_mlock()
  51. */
  52. void clear_page_mlock(struct page *page)
  53. {
  54. if (!TestClearPageMlocked(page))
  55. return;
  56. mod_zone_page_state(page_zone(page), NR_MLOCK,
  57. -hpage_nr_pages(page));
  58. count_vm_event(UNEVICTABLE_PGCLEARED);
  59. if (!isolate_lru_page(page)) {
  60. putback_lru_page(page);
  61. } else {
  62. /*
  63. * We lost the race. the page already moved to evictable list.
  64. */
  65. if (PageUnevictable(page))
  66. count_vm_event(UNEVICTABLE_PGSTRANDED);
  67. }
  68. }
  69. /*
  70. * Mark page as mlocked if not already.
  71. * If page on LRU, isolate and putback to move to unevictable list.
  72. */
  73. void mlock_vma_page(struct page *page)
  74. {
  75. /* Serialize with page migration */
  76. BUG_ON(!PageLocked(page));
  77. if (!TestSetPageMlocked(page)) {
  78. mod_zone_page_state(page_zone(page), NR_MLOCK,
  79. hpage_nr_pages(page));
  80. count_vm_event(UNEVICTABLE_PGMLOCKED);
  81. if (!isolate_lru_page(page))
  82. putback_lru_page(page);
  83. }
  84. }
  85. /*
  86. * Isolate a page from LRU with optional get_page() pin.
  87. * Assumes lru_lock already held and page already pinned.
  88. */
  89. static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
  90. {
  91. if (PageLRU(page)) {
  92. struct lruvec *lruvec;
  93. lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
  94. if (getpage)
  95. get_page(page);
  96. ClearPageLRU(page);
  97. del_page_from_lru_list(page, lruvec, page_lru(page));
  98. return true;
  99. }
  100. return false;
  101. }
  102. /*
  103. * Finish munlock after successful page isolation
  104. *
  105. * Page must be locked. This is a wrapper for try_to_munlock()
  106. * and putback_lru_page() with munlock accounting.
  107. */
  108. static void __munlock_isolated_page(struct page *page)
  109. {
  110. int ret = SWAP_AGAIN;
  111. /*
  112. * Optimization: if the page was mapped just once, that's our mapping
  113. * and we don't need to check all the other vmas.
  114. */
  115. if (page_mapcount(page) > 1)
  116. ret = try_to_munlock(page);
  117. /* Did try_to_unlock() succeed or punt? */
  118. if (ret != SWAP_MLOCK)
  119. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  120. putback_lru_page(page);
  121. }
  122. /*
  123. * Accounting for page isolation fail during munlock
  124. *
  125. * Performs accounting when page isolation fails in munlock. There is nothing
  126. * else to do because it means some other task has already removed the page
  127. * from the LRU. putback_lru_page() will take care of removing the page from
  128. * the unevictable list, if necessary. vmscan [page_referenced()] will move
  129. * the page back to the unevictable list if some other vma has it mlocked.
  130. */
  131. static void __munlock_isolation_failed(struct page *page)
  132. {
  133. if (PageUnevictable(page))
  134. __count_vm_event(UNEVICTABLE_PGSTRANDED);
  135. else
  136. __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  137. }
  138. /**
  139. * munlock_vma_page - munlock a vma page
  140. * @page - page to be unlocked, either a normal page or THP page head
  141. *
  142. * returns the size of the page as a page mask (0 for normal page,
  143. * HPAGE_PMD_NR - 1 for THP head page)
  144. *
  145. * called from munlock()/munmap() path with page supposedly on the LRU.
  146. * When we munlock a page, because the vma where we found the page is being
  147. * munlock()ed or munmap()ed, we want to check whether other vmas hold the
  148. * page locked so that we can leave it on the unevictable lru list and not
  149. * bother vmscan with it. However, to walk the page's rmap list in
  150. * try_to_munlock() we must isolate the page from the LRU. If some other
  151. * task has removed the page from the LRU, we won't be able to do that.
  152. * So we clear the PageMlocked as we might not get another chance. If we
  153. * can't isolate the page, we leave it for putback_lru_page() and vmscan
  154. * [page_referenced()/try_to_unmap()] to deal with.
  155. */
  156. unsigned int munlock_vma_page(struct page *page)
  157. {
  158. unsigned int nr_pages;
  159. struct zone *zone = page_zone(page);
  160. /* For try_to_munlock() and to serialize with page migration */
  161. BUG_ON(!PageLocked(page));
  162. /*
  163. * Serialize with any parallel __split_huge_page_refcount() which
  164. * might otherwise copy PageMlocked to part of the tail pages before
  165. * we clear it in the head page. It also stabilizes hpage_nr_pages().
  166. */
  167. spin_lock_irq(&zone->lru_lock);
  168. nr_pages = hpage_nr_pages(page);
  169. if (!TestClearPageMlocked(page))
  170. goto unlock_out;
  171. __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
  172. if (__munlock_isolate_lru_page(page, true)) {
  173. spin_unlock_irq(&zone->lru_lock);
  174. __munlock_isolated_page(page);
  175. goto out;
  176. }
  177. __munlock_isolation_failed(page);
  178. unlock_out:
  179. spin_unlock_irq(&zone->lru_lock);
  180. out:
  181. return nr_pages - 1;
  182. }
  183. /*
  184. * convert get_user_pages() return value to posix mlock() error
  185. */
  186. static int __mlock_posix_error_return(long retval)
  187. {
  188. if (retval == -EFAULT)
  189. retval = -ENOMEM;
  190. else if (retval == -ENOMEM)
  191. retval = -EAGAIN;
  192. return retval;
  193. }
  194. /*
  195. * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
  196. *
  197. * The fast path is available only for evictable pages with single mapping.
  198. * Then we can bypass the per-cpu pvec and get better performance.
  199. * when mapcount > 1 we need try_to_munlock() which can fail.
  200. * when !page_evictable(), we need the full redo logic of putback_lru_page to
  201. * avoid leaving evictable page in unevictable list.
  202. *
  203. * In case of success, @page is added to @pvec and @pgrescued is incremented
  204. * in case that the page was previously unevictable. @page is also unlocked.
  205. */
  206. static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
  207. int *pgrescued)
  208. {
  209. VM_BUG_ON_PAGE(PageLRU(page), page);
  210. VM_BUG_ON_PAGE(!PageLocked(page), page);
  211. if (page_mapcount(page) <= 1 && page_evictable(page)) {
  212. pagevec_add(pvec, page);
  213. if (TestClearPageUnevictable(page))
  214. (*pgrescued)++;
  215. unlock_page(page);
  216. return true;
  217. }
  218. return false;
  219. }
  220. /*
  221. * Putback multiple evictable pages to the LRU
  222. *
  223. * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
  224. * the pages might have meanwhile become unevictable but that is OK.
  225. */
  226. static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
  227. {
  228. count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
  229. /*
  230. *__pagevec_lru_add() calls release_pages() so we don't call
  231. * put_page() explicitly
  232. */
  233. __pagevec_lru_add(pvec);
  234. count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
  235. }
  236. /*
  237. * Munlock a batch of pages from the same zone
  238. *
  239. * The work is split to two main phases. First phase clears the Mlocked flag
  240. * and attempts to isolate the pages, all under a single zone lru lock.
  241. * The second phase finishes the munlock only for pages where isolation
  242. * succeeded.
  243. *
  244. * Note that the pagevec may be modified during the process.
  245. */
  246. static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
  247. {
  248. int i;
  249. int nr = pagevec_count(pvec);
  250. int delta_munlocked;
  251. struct pagevec pvec_putback;
  252. int pgrescued = 0;
  253. pagevec_init(&pvec_putback, 0);
  254. /* Phase 1: page isolation */
  255. spin_lock_irq(&zone->lru_lock);
  256. for (i = 0; i < nr; i++) {
  257. struct page *page = pvec->pages[i];
  258. if (TestClearPageMlocked(page)) {
  259. /*
  260. * We already have pin from follow_page_mask()
  261. * so we can spare the get_page() here.
  262. */
  263. if (__munlock_isolate_lru_page(page, false))
  264. continue;
  265. else
  266. __munlock_isolation_failed(page);
  267. }
  268. /*
  269. * We won't be munlocking this page in the next phase
  270. * but we still need to release the follow_page_mask()
  271. * pin. We cannot do it under lru_lock however. If it's
  272. * the last pin, __page_cache_release() would deadlock.
  273. */
  274. pagevec_add(&pvec_putback, pvec->pages[i]);
  275. pvec->pages[i] = NULL;
  276. }
  277. delta_munlocked = -nr + pagevec_count(&pvec_putback);
  278. __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
  279. spin_unlock_irq(&zone->lru_lock);
  280. /* Now we can release pins of pages that we are not munlocking */
  281. pagevec_release(&pvec_putback);
  282. /* Phase 2: page munlock */
  283. for (i = 0; i < nr; i++) {
  284. struct page *page = pvec->pages[i];
  285. if (page) {
  286. lock_page(page);
  287. if (!__putback_lru_fast_prepare(page, &pvec_putback,
  288. &pgrescued)) {
  289. /*
  290. * Slow path. We don't want to lose the last
  291. * pin before unlock_page()
  292. */
  293. get_page(page); /* for putback_lru_page() */
  294. __munlock_isolated_page(page);
  295. unlock_page(page);
  296. put_page(page); /* from follow_page_mask() */
  297. }
  298. }
  299. }
  300. /*
  301. * Phase 3: page putback for pages that qualified for the fast path
  302. * This will also call put_page() to return pin from follow_page_mask()
  303. */
  304. if (pagevec_count(&pvec_putback))
  305. __putback_lru_fast(&pvec_putback, pgrescued);
  306. }
  307. /*
  308. * Fill up pagevec for __munlock_pagevec using pte walk
  309. *
  310. * The function expects that the struct page corresponding to @start address is
  311. * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
  312. *
  313. * The rest of @pvec is filled by subsequent pages within the same pmd and same
  314. * zone, as long as the pte's are present and vm_normal_page() succeeds. These
  315. * pages also get pinned.
  316. *
  317. * Returns the address of the next page that should be scanned. This equals
  318. * @start + PAGE_SIZE when no page could be added by the pte walk.
  319. */
  320. static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
  321. struct vm_area_struct *vma, int zoneid, unsigned long start,
  322. unsigned long end)
  323. {
  324. pte_t *pte;
  325. spinlock_t *ptl;
  326. /*
  327. * Initialize pte walk starting at the already pinned page where we
  328. * are sure that there is a pte, as it was pinned under the same
  329. * mmap_sem write op.
  330. */
  331. pte = get_locked_pte(vma->vm_mm, start, &ptl);
  332. /* Make sure we do not cross the page table boundary */
  333. end = pgd_addr_end(start, end);
  334. end = pud_addr_end(start, end);
  335. end = pmd_addr_end(start, end);
  336. /* The page next to the pinned page is the first we will try to get */
  337. start += PAGE_SIZE;
  338. while (start < end) {
  339. struct page *page = NULL;
  340. pte++;
  341. if (pte_present(*pte))
  342. page = vm_normal_page(vma, start, *pte);
  343. /*
  344. * Break if page could not be obtained or the page's node+zone does not
  345. * match
  346. */
  347. if (!page || page_zone_id(page) != zoneid)
  348. break;
  349. get_page(page);
  350. /*
  351. * Increase the address that will be returned *before* the
  352. * eventual break due to pvec becoming full by adding the page
  353. */
  354. start += PAGE_SIZE;
  355. if (pagevec_add(pvec, page) == 0)
  356. break;
  357. }
  358. pte_unmap_unlock(pte, ptl);
  359. return start;
  360. }
  361. /*
  362. * munlock_vma_pages_range() - munlock all pages in the vma range.'
  363. * @vma - vma containing range to be munlock()ed.
  364. * @start - start address in @vma of the range
  365. * @end - end of range in @vma.
  366. *
  367. * For mremap(), munmap() and exit().
  368. *
  369. * Called with @vma VM_LOCKED.
  370. *
  371. * Returns with VM_LOCKED cleared. Callers must be prepared to
  372. * deal with this.
  373. *
  374. * We don't save and restore VM_LOCKED here because pages are
  375. * still on lru. In unmap path, pages might be scanned by reclaim
  376. * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  377. * free them. This will result in freeing mlocked pages.
  378. */
  379. void munlock_vma_pages_range(struct vm_area_struct *vma,
  380. unsigned long start, unsigned long end)
  381. {
  382. vma->vm_flags &= ~VM_LOCKED;
  383. while (start < end) {
  384. struct page *page = NULL;
  385. unsigned int page_mask;
  386. unsigned long page_increm;
  387. struct pagevec pvec;
  388. struct zone *zone;
  389. int zoneid;
  390. pagevec_init(&pvec, 0);
  391. /*
  392. * Although FOLL_DUMP is intended for get_dump_page(),
  393. * it just so happens that its special treatment of the
  394. * ZERO_PAGE (returning an error instead of doing get_page)
  395. * suits munlock very well (and if somehow an abnormal page
  396. * has sneaked into the range, we won't oops here: great).
  397. */
  398. page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
  399. &page_mask);
  400. if (page && !IS_ERR(page)) {
  401. if (PageTransHuge(page)) {
  402. lock_page(page);
  403. /*
  404. * Any THP page found by follow_page_mask() may
  405. * have gotten split before reaching
  406. * munlock_vma_page(), so we need to recompute
  407. * the page_mask here.
  408. */
  409. page_mask = munlock_vma_page(page);
  410. unlock_page(page);
  411. put_page(page); /* follow_page_mask() */
  412. } else {
  413. /*
  414. * Non-huge pages are handled in batches via
  415. * pagevec. The pin from follow_page_mask()
  416. * prevents them from collapsing by THP.
  417. */
  418. pagevec_add(&pvec, page);
  419. zone = page_zone(page);
  420. zoneid = page_zone_id(page);
  421. /*
  422. * Try to fill the rest of pagevec using fast
  423. * pte walk. This will also update start to
  424. * the next page to process. Then munlock the
  425. * pagevec.
  426. */
  427. start = __munlock_pagevec_fill(&pvec, vma,
  428. zoneid, start, end);
  429. __munlock_pagevec(&pvec, zone);
  430. goto next;
  431. }
  432. }
  433. /* It's a bug to munlock in the middle of a THP page */
  434. VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
  435. page_increm = 1 + page_mask;
  436. start += page_increm * PAGE_SIZE;
  437. next:
  438. cond_resched();
  439. }
  440. }
  441. /*
  442. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  443. *
  444. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  445. * munlock is a no-op. However, for some special vmas, we go ahead and
  446. * populate the ptes.
  447. *
  448. * For vmas that pass the filters, merge/split as appropriate.
  449. */
  450. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  451. unsigned long start, unsigned long end, vm_flags_t newflags)
  452. {
  453. struct mm_struct *mm = vma->vm_mm;
  454. pgoff_t pgoff;
  455. int nr_pages;
  456. int ret = 0;
  457. int lock = !!(newflags & VM_LOCKED);
  458. if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
  459. is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
  460. goto out; /* don't set VM_LOCKED, don't count */
  461. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  462. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  463. vma->vm_file, pgoff, vma_policy(vma),
  464. vma->vm_userfaultfd_ctx);
  465. if (*prev) {
  466. vma = *prev;
  467. goto success;
  468. }
  469. if (start != vma->vm_start) {
  470. ret = split_vma(mm, vma, start, 1);
  471. if (ret)
  472. goto out;
  473. }
  474. if (end != vma->vm_end) {
  475. ret = split_vma(mm, vma, end, 0);
  476. if (ret)
  477. goto out;
  478. }
  479. success:
  480. /*
  481. * Keep track of amount of locked VM.
  482. */
  483. nr_pages = (end - start) >> PAGE_SHIFT;
  484. if (!lock)
  485. nr_pages = -nr_pages;
  486. mm->locked_vm += nr_pages;
  487. /*
  488. * vm_flags is protected by the mmap_sem held in write mode.
  489. * It's okay if try_to_unmap_one unmaps a page just after we
  490. * set VM_LOCKED, populate_vma_page_range will bring it back.
  491. */
  492. if (lock)
  493. vma->vm_flags = newflags;
  494. else
  495. munlock_vma_pages_range(vma, start, end);
  496. out:
  497. *prev = vma;
  498. return ret;
  499. }
  500. static int do_mlock(unsigned long start, size_t len, int on)
  501. {
  502. unsigned long nstart, end, tmp;
  503. struct vm_area_struct * vma, * prev;
  504. int error;
  505. VM_BUG_ON(start & ~PAGE_MASK);
  506. VM_BUG_ON(len != PAGE_ALIGN(len));
  507. end = start + len;
  508. if (end < start)
  509. return -EINVAL;
  510. if (end == start)
  511. return 0;
  512. vma = find_vma(current->mm, start);
  513. if (!vma || vma->vm_start > start)
  514. return -ENOMEM;
  515. prev = vma->vm_prev;
  516. if (start > vma->vm_start)
  517. prev = vma;
  518. for (nstart = start ; ; ) {
  519. vm_flags_t newflags;
  520. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  521. newflags = vma->vm_flags & ~VM_LOCKED;
  522. if (on)
  523. newflags |= VM_LOCKED;
  524. tmp = vma->vm_end;
  525. if (tmp > end)
  526. tmp = end;
  527. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  528. if (error)
  529. break;
  530. nstart = tmp;
  531. if (nstart < prev->vm_end)
  532. nstart = prev->vm_end;
  533. if (nstart >= end)
  534. break;
  535. vma = prev->vm_next;
  536. if (!vma || vma->vm_start != nstart) {
  537. error = -ENOMEM;
  538. break;
  539. }
  540. }
  541. return error;
  542. }
  543. SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  544. {
  545. unsigned long locked;
  546. unsigned long lock_limit;
  547. int error = -ENOMEM;
  548. if (!can_do_mlock())
  549. return -EPERM;
  550. lru_add_drain_all(); /* flush pagevec */
  551. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  552. start &= PAGE_MASK;
  553. lock_limit = rlimit(RLIMIT_MEMLOCK);
  554. lock_limit >>= PAGE_SHIFT;
  555. locked = len >> PAGE_SHIFT;
  556. down_write(&current->mm->mmap_sem);
  557. locked += current->mm->locked_vm;
  558. /* check against resource limits */
  559. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  560. error = do_mlock(start, len, 1);
  561. up_write(&current->mm->mmap_sem);
  562. if (error)
  563. return error;
  564. error = __mm_populate(start, len, 0);
  565. if (error)
  566. return __mlock_posix_error_return(error);
  567. return 0;
  568. }
  569. SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  570. {
  571. int ret;
  572. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  573. start &= PAGE_MASK;
  574. down_write(&current->mm->mmap_sem);
  575. ret = do_mlock(start, len, 0);
  576. up_write(&current->mm->mmap_sem);
  577. return ret;
  578. }
  579. static int do_mlockall(int flags)
  580. {
  581. struct vm_area_struct * vma, * prev = NULL;
  582. if (flags & MCL_FUTURE)
  583. current->mm->def_flags |= VM_LOCKED;
  584. else
  585. current->mm->def_flags &= ~VM_LOCKED;
  586. if (flags == MCL_FUTURE)
  587. goto out;
  588. for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  589. vm_flags_t newflags;
  590. newflags = vma->vm_flags & ~VM_LOCKED;
  591. if (flags & MCL_CURRENT)
  592. newflags |= VM_LOCKED;
  593. /* Ignore errors */
  594. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  595. cond_resched_rcu_qs();
  596. }
  597. out:
  598. return 0;
  599. }
  600. SYSCALL_DEFINE1(mlockall, int, flags)
  601. {
  602. unsigned long lock_limit;
  603. int ret = -EINVAL;
  604. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
  605. goto out;
  606. ret = -EPERM;
  607. if (!can_do_mlock())
  608. goto out;
  609. if (flags & MCL_CURRENT)
  610. lru_add_drain_all(); /* flush pagevec */
  611. lock_limit = rlimit(RLIMIT_MEMLOCK);
  612. lock_limit >>= PAGE_SHIFT;
  613. ret = -ENOMEM;
  614. down_write(&current->mm->mmap_sem);
  615. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  616. capable(CAP_IPC_LOCK))
  617. ret = do_mlockall(flags);
  618. up_write(&current->mm->mmap_sem);
  619. if (!ret && (flags & MCL_CURRENT))
  620. mm_populate(0, TASK_SIZE);
  621. out:
  622. return ret;
  623. }
  624. SYSCALL_DEFINE0(munlockall)
  625. {
  626. int ret;
  627. down_write(&current->mm->mmap_sem);
  628. ret = do_mlockall(0);
  629. up_write(&current->mm->mmap_sem);
  630. return ret;
  631. }
  632. /*
  633. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  634. * shm segments) get accounted against the user_struct instead.
  635. */
  636. static DEFINE_SPINLOCK(shmlock_user_lock);
  637. int user_shm_lock(size_t size, struct user_struct *user)
  638. {
  639. unsigned long lock_limit, locked;
  640. int allowed = 0;
  641. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  642. lock_limit = rlimit(RLIMIT_MEMLOCK);
  643. if (lock_limit == RLIM_INFINITY)
  644. allowed = 1;
  645. lock_limit >>= PAGE_SHIFT;
  646. spin_lock(&shmlock_user_lock);
  647. if (!allowed &&
  648. locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  649. goto out;
  650. get_uid(user);
  651. user->locked_shm += locked;
  652. allowed = 1;
  653. out:
  654. spin_unlock(&shmlock_user_lock);
  655. return allowed;
  656. }
  657. void user_shm_unlock(size_t size, struct user_struct *user)
  658. {
  659. spin_lock(&shmlock_user_lock);
  660. user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  661. spin_unlock(&shmlock_user_lock);
  662. free_uid(user);
  663. }