pci.c 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/bitops.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/blk-mq.h>
  17. #include <linux/cpu.h>
  18. #include <linux/delay.h>
  19. #include <linux/errno.h>
  20. #include <linux/fs.h>
  21. #include <linux/genhd.h>
  22. #include <linux/hdreg.h>
  23. #include <linux/idr.h>
  24. #include <linux/init.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/io.h>
  27. #include <linux/kdev_t.h>
  28. #include <linux/kthread.h>
  29. #include <linux/kernel.h>
  30. #include <linux/list_sort.h>
  31. #include <linux/mm.h>
  32. #include <linux/module.h>
  33. #include <linux/moduleparam.h>
  34. #include <linux/pci.h>
  35. #include <linux/poison.h>
  36. #include <linux/ptrace.h>
  37. #include <linux/sched.h>
  38. #include <linux/slab.h>
  39. #include <linux/t10-pi.h>
  40. #include <linux/types.h>
  41. #include <scsi/sg.h>
  42. #include <asm-generic/io-64-nonatomic-lo-hi.h>
  43. #include <uapi/linux/nvme_ioctl.h>
  44. #include "nvme.h"
  45. #define NVME_MINORS (1U << MINORBITS)
  46. #define NVME_Q_DEPTH 1024
  47. #define NVME_AQ_DEPTH 256
  48. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  49. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  50. #define ADMIN_TIMEOUT (admin_timeout * HZ)
  51. #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
  52. static unsigned char admin_timeout = 60;
  53. module_param(admin_timeout, byte, 0644);
  54. MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
  55. unsigned char nvme_io_timeout = 30;
  56. module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
  57. MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
  58. static unsigned char shutdown_timeout = 5;
  59. module_param(shutdown_timeout, byte, 0644);
  60. MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
  61. static int nvme_major;
  62. module_param(nvme_major, int, 0);
  63. static int nvme_char_major;
  64. module_param(nvme_char_major, int, 0);
  65. static int use_threaded_interrupts;
  66. module_param(use_threaded_interrupts, int, 0);
  67. static bool use_cmb_sqes = true;
  68. module_param(use_cmb_sqes, bool, 0644);
  69. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  70. static DEFINE_SPINLOCK(dev_list_lock);
  71. static LIST_HEAD(dev_list);
  72. static struct task_struct *nvme_thread;
  73. static struct workqueue_struct *nvme_workq;
  74. static wait_queue_head_t nvme_kthread_wait;
  75. static struct class *nvme_class;
  76. static int __nvme_reset(struct nvme_dev *dev);
  77. static int nvme_reset(struct nvme_dev *dev);
  78. static int nvme_process_cq(struct nvme_queue *nvmeq);
  79. static void nvme_dead_ctrl(struct nvme_dev *dev);
  80. struct async_cmd_info {
  81. struct kthread_work work;
  82. struct kthread_worker *worker;
  83. struct request *req;
  84. u32 result;
  85. int status;
  86. void *ctx;
  87. };
  88. /*
  89. * An NVM Express queue. Each device has at least two (one for admin
  90. * commands and one for I/O commands).
  91. */
  92. struct nvme_queue {
  93. struct device *q_dmadev;
  94. struct nvme_dev *dev;
  95. char irqname[24]; /* nvme4294967295-65535\0 */
  96. spinlock_t q_lock;
  97. struct nvme_command *sq_cmds;
  98. struct nvme_command __iomem *sq_cmds_io;
  99. volatile struct nvme_completion *cqes;
  100. struct blk_mq_tags **tags;
  101. dma_addr_t sq_dma_addr;
  102. dma_addr_t cq_dma_addr;
  103. u32 __iomem *q_db;
  104. u16 q_depth;
  105. s16 cq_vector;
  106. u16 sq_head;
  107. u16 sq_tail;
  108. u16 cq_head;
  109. u16 qid;
  110. u8 cq_phase;
  111. u8 cqe_seen;
  112. struct async_cmd_info cmdinfo;
  113. };
  114. /*
  115. * Check we didin't inadvertently grow the command struct
  116. */
  117. static inline void _nvme_check_size(void)
  118. {
  119. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  120. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  121. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  122. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  123. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  124. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  125. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  126. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  127. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
  128. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
  129. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  130. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  131. }
  132. typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
  133. struct nvme_completion *);
  134. struct nvme_cmd_info {
  135. nvme_completion_fn fn;
  136. void *ctx;
  137. int aborted;
  138. struct nvme_queue *nvmeq;
  139. struct nvme_iod iod[0];
  140. };
  141. /*
  142. * Max size of iod being embedded in the request payload
  143. */
  144. #define NVME_INT_PAGES 2
  145. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
  146. #define NVME_INT_MASK 0x01
  147. /*
  148. * Will slightly overestimate the number of pages needed. This is OK
  149. * as it only leads to a small amount of wasted memory for the lifetime of
  150. * the I/O.
  151. */
  152. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  153. {
  154. unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
  155. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  156. }
  157. static unsigned int nvme_cmd_size(struct nvme_dev *dev)
  158. {
  159. unsigned int ret = sizeof(struct nvme_cmd_info);
  160. ret += sizeof(struct nvme_iod);
  161. ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
  162. ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
  163. return ret;
  164. }
  165. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  166. unsigned int hctx_idx)
  167. {
  168. struct nvme_dev *dev = data;
  169. struct nvme_queue *nvmeq = dev->queues[0];
  170. WARN_ON(hctx_idx != 0);
  171. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  172. WARN_ON(nvmeq->tags);
  173. hctx->driver_data = nvmeq;
  174. nvmeq->tags = &dev->admin_tagset.tags[0];
  175. return 0;
  176. }
  177. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  178. {
  179. struct nvme_queue *nvmeq = hctx->driver_data;
  180. nvmeq->tags = NULL;
  181. }
  182. static int nvme_admin_init_request(void *data, struct request *req,
  183. unsigned int hctx_idx, unsigned int rq_idx,
  184. unsigned int numa_node)
  185. {
  186. struct nvme_dev *dev = data;
  187. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
  188. struct nvme_queue *nvmeq = dev->queues[0];
  189. BUG_ON(!nvmeq);
  190. cmd->nvmeq = nvmeq;
  191. return 0;
  192. }
  193. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  194. unsigned int hctx_idx)
  195. {
  196. struct nvme_dev *dev = data;
  197. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  198. if (!nvmeq->tags)
  199. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  200. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  201. hctx->driver_data = nvmeq;
  202. return 0;
  203. }
  204. static int nvme_init_request(void *data, struct request *req,
  205. unsigned int hctx_idx, unsigned int rq_idx,
  206. unsigned int numa_node)
  207. {
  208. struct nvme_dev *dev = data;
  209. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
  210. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  211. BUG_ON(!nvmeq);
  212. cmd->nvmeq = nvmeq;
  213. return 0;
  214. }
  215. static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
  216. nvme_completion_fn handler)
  217. {
  218. cmd->fn = handler;
  219. cmd->ctx = ctx;
  220. cmd->aborted = 0;
  221. blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
  222. }
  223. static void *iod_get_private(struct nvme_iod *iod)
  224. {
  225. return (void *) (iod->private & ~0x1UL);
  226. }
  227. /*
  228. * If bit 0 is set, the iod is embedded in the request payload.
  229. */
  230. static bool iod_should_kfree(struct nvme_iod *iod)
  231. {
  232. return (iod->private & NVME_INT_MASK) == 0;
  233. }
  234. /* Special values must be less than 0x1000 */
  235. #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
  236. #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
  237. #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
  238. #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
  239. static void special_completion(struct nvme_queue *nvmeq, void *ctx,
  240. struct nvme_completion *cqe)
  241. {
  242. if (ctx == CMD_CTX_CANCELLED)
  243. return;
  244. if (ctx == CMD_CTX_COMPLETED) {
  245. dev_warn(nvmeq->q_dmadev,
  246. "completed id %d twice on queue %d\n",
  247. cqe->command_id, le16_to_cpup(&cqe->sq_id));
  248. return;
  249. }
  250. if (ctx == CMD_CTX_INVALID) {
  251. dev_warn(nvmeq->q_dmadev,
  252. "invalid id %d completed on queue %d\n",
  253. cqe->command_id, le16_to_cpup(&cqe->sq_id));
  254. return;
  255. }
  256. dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
  257. }
  258. static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
  259. {
  260. void *ctx;
  261. if (fn)
  262. *fn = cmd->fn;
  263. ctx = cmd->ctx;
  264. cmd->fn = special_completion;
  265. cmd->ctx = CMD_CTX_CANCELLED;
  266. return ctx;
  267. }
  268. static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
  269. struct nvme_completion *cqe)
  270. {
  271. u32 result = le32_to_cpup(&cqe->result);
  272. u16 status = le16_to_cpup(&cqe->status) >> 1;
  273. if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
  274. ++nvmeq->dev->event_limit;
  275. if (status != NVME_SC_SUCCESS)
  276. return;
  277. switch (result & 0xff07) {
  278. case NVME_AER_NOTICE_NS_CHANGED:
  279. dev_info(nvmeq->q_dmadev, "rescanning\n");
  280. schedule_work(&nvmeq->dev->scan_work);
  281. default:
  282. dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
  283. }
  284. }
  285. static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
  286. struct nvme_completion *cqe)
  287. {
  288. struct request *req = ctx;
  289. u16 status = le16_to_cpup(&cqe->status) >> 1;
  290. u32 result = le32_to_cpup(&cqe->result);
  291. blk_mq_free_request(req);
  292. dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
  293. ++nvmeq->dev->abort_limit;
  294. }
  295. static void async_completion(struct nvme_queue *nvmeq, void *ctx,
  296. struct nvme_completion *cqe)
  297. {
  298. struct async_cmd_info *cmdinfo = ctx;
  299. cmdinfo->result = le32_to_cpup(&cqe->result);
  300. cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
  301. queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
  302. blk_mq_free_request(cmdinfo->req);
  303. }
  304. static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
  305. unsigned int tag)
  306. {
  307. struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
  308. return blk_mq_rq_to_pdu(req);
  309. }
  310. /*
  311. * Called with local interrupts disabled and the q_lock held. May not sleep.
  312. */
  313. static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
  314. nvme_completion_fn *fn)
  315. {
  316. struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
  317. void *ctx;
  318. if (tag >= nvmeq->q_depth) {
  319. *fn = special_completion;
  320. return CMD_CTX_INVALID;
  321. }
  322. if (fn)
  323. *fn = cmd->fn;
  324. ctx = cmd->ctx;
  325. cmd->fn = special_completion;
  326. cmd->ctx = CMD_CTX_COMPLETED;
  327. return ctx;
  328. }
  329. /**
  330. * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  331. * @nvmeq: The queue to use
  332. * @cmd: The command to send
  333. *
  334. * Safe to use from interrupt context
  335. */
  336. static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
  337. struct nvme_command *cmd)
  338. {
  339. u16 tail = nvmeq->sq_tail;
  340. if (nvmeq->sq_cmds_io)
  341. memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
  342. else
  343. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  344. if (++tail == nvmeq->q_depth)
  345. tail = 0;
  346. writel(tail, nvmeq->q_db);
  347. nvmeq->sq_tail = tail;
  348. }
  349. static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
  350. {
  351. unsigned long flags;
  352. spin_lock_irqsave(&nvmeq->q_lock, flags);
  353. __nvme_submit_cmd(nvmeq, cmd);
  354. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  355. }
  356. static __le64 **iod_list(struct nvme_iod *iod)
  357. {
  358. return ((void *)iod) + iod->offset;
  359. }
  360. static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
  361. unsigned nseg, unsigned long private)
  362. {
  363. iod->private = private;
  364. iod->offset = offsetof(struct nvme_iod, sg[nseg]);
  365. iod->npages = -1;
  366. iod->length = nbytes;
  367. iod->nents = 0;
  368. }
  369. static struct nvme_iod *
  370. __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
  371. unsigned long priv, gfp_t gfp)
  372. {
  373. struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
  374. sizeof(__le64 *) * nvme_npages(bytes, dev) +
  375. sizeof(struct scatterlist) * nseg, gfp);
  376. if (iod)
  377. iod_init(iod, bytes, nseg, priv);
  378. return iod;
  379. }
  380. static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
  381. gfp_t gfp)
  382. {
  383. unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
  384. sizeof(struct nvme_dsm_range);
  385. struct nvme_iod *iod;
  386. if (rq->nr_phys_segments <= NVME_INT_PAGES &&
  387. size <= NVME_INT_BYTES(dev)) {
  388. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
  389. iod = cmd->iod;
  390. iod_init(iod, size, rq->nr_phys_segments,
  391. (unsigned long) rq | NVME_INT_MASK);
  392. return iod;
  393. }
  394. return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
  395. (unsigned long) rq, gfp);
  396. }
  397. static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
  398. {
  399. const int last_prp = dev->page_size / 8 - 1;
  400. int i;
  401. __le64 **list = iod_list(iod);
  402. dma_addr_t prp_dma = iod->first_dma;
  403. if (iod->npages == 0)
  404. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  405. for (i = 0; i < iod->npages; i++) {
  406. __le64 *prp_list = list[i];
  407. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  408. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  409. prp_dma = next_prp_dma;
  410. }
  411. if (iod_should_kfree(iod))
  412. kfree(iod);
  413. }
  414. static int nvme_error_status(u16 status)
  415. {
  416. switch (status & 0x7ff) {
  417. case NVME_SC_SUCCESS:
  418. return 0;
  419. case NVME_SC_CAP_EXCEEDED:
  420. return -ENOSPC;
  421. default:
  422. return -EIO;
  423. }
  424. }
  425. #ifdef CONFIG_BLK_DEV_INTEGRITY
  426. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  427. {
  428. if (be32_to_cpu(pi->ref_tag) == v)
  429. pi->ref_tag = cpu_to_be32(p);
  430. }
  431. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  432. {
  433. if (be32_to_cpu(pi->ref_tag) == p)
  434. pi->ref_tag = cpu_to_be32(v);
  435. }
  436. /**
  437. * nvme_dif_remap - remaps ref tags to bip seed and physical lba
  438. *
  439. * The virtual start sector is the one that was originally submitted by the
  440. * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
  441. * start sector may be different. Remap protection information to match the
  442. * physical LBA on writes, and back to the original seed on reads.
  443. *
  444. * Type 0 and 3 do not have a ref tag, so no remapping required.
  445. */
  446. static void nvme_dif_remap(struct request *req,
  447. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  448. {
  449. struct nvme_ns *ns = req->rq_disk->private_data;
  450. struct bio_integrity_payload *bip;
  451. struct t10_pi_tuple *pi;
  452. void *p, *pmap;
  453. u32 i, nlb, ts, phys, virt;
  454. if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
  455. return;
  456. bip = bio_integrity(req->bio);
  457. if (!bip)
  458. return;
  459. pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
  460. p = pmap;
  461. virt = bip_get_seed(bip);
  462. phys = nvme_block_nr(ns, blk_rq_pos(req));
  463. nlb = (blk_rq_bytes(req) >> ns->lba_shift);
  464. ts = ns->disk->integrity->tuple_size;
  465. for (i = 0; i < nlb; i++, virt++, phys++) {
  466. pi = (struct t10_pi_tuple *)p;
  467. dif_swap(phys, virt, pi);
  468. p += ts;
  469. }
  470. kunmap_atomic(pmap);
  471. }
  472. static int nvme_noop_verify(struct blk_integrity_iter *iter)
  473. {
  474. return 0;
  475. }
  476. static int nvme_noop_generate(struct blk_integrity_iter *iter)
  477. {
  478. return 0;
  479. }
  480. struct blk_integrity_profile nvme_meta_noop = {
  481. .name = "NVME_META_NOOP",
  482. .generate_fn = nvme_noop_generate,
  483. .verify_fn = nvme_noop_verify,
  484. };
  485. static void nvme_init_integrity(struct nvme_ns *ns)
  486. {
  487. struct blk_integrity integrity;
  488. switch (ns->pi_type) {
  489. case NVME_NS_DPS_PI_TYPE3:
  490. integrity.profile = &t10_pi_type3_crc;
  491. break;
  492. case NVME_NS_DPS_PI_TYPE1:
  493. case NVME_NS_DPS_PI_TYPE2:
  494. integrity.profile = &t10_pi_type1_crc;
  495. break;
  496. default:
  497. integrity.profile = &nvme_meta_noop;
  498. break;
  499. }
  500. integrity.tuple_size = ns->ms;
  501. blk_integrity_register(ns->disk, &integrity);
  502. blk_queue_max_integrity_segments(ns->queue, 1);
  503. }
  504. #else /* CONFIG_BLK_DEV_INTEGRITY */
  505. static void nvme_dif_remap(struct request *req,
  506. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  507. {
  508. }
  509. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  510. {
  511. }
  512. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  513. {
  514. }
  515. static void nvme_init_integrity(struct nvme_ns *ns)
  516. {
  517. }
  518. #endif
  519. static void req_completion(struct nvme_queue *nvmeq, void *ctx,
  520. struct nvme_completion *cqe)
  521. {
  522. struct nvme_iod *iod = ctx;
  523. struct request *req = iod_get_private(iod);
  524. struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
  525. u16 status = le16_to_cpup(&cqe->status) >> 1;
  526. int error = 0;
  527. if (unlikely(status)) {
  528. if (!(status & NVME_SC_DNR || blk_noretry_request(req))
  529. && (jiffies - req->start_time) < req->timeout) {
  530. unsigned long flags;
  531. blk_mq_requeue_request(req);
  532. spin_lock_irqsave(req->q->queue_lock, flags);
  533. if (!blk_queue_stopped(req->q))
  534. blk_mq_kick_requeue_list(req->q);
  535. spin_unlock_irqrestore(req->q->queue_lock, flags);
  536. return;
  537. }
  538. if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
  539. if (cmd_rq->ctx == CMD_CTX_CANCELLED)
  540. error = -EINTR;
  541. else
  542. error = status;
  543. } else {
  544. error = nvme_error_status(status);
  545. }
  546. }
  547. if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
  548. u32 result = le32_to_cpup(&cqe->result);
  549. req->special = (void *)(uintptr_t)result;
  550. }
  551. if (cmd_rq->aborted)
  552. dev_warn(nvmeq->dev->dev,
  553. "completing aborted command with status:%04x\n",
  554. error);
  555. if (iod->nents) {
  556. dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
  557. rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  558. if (blk_integrity_rq(req)) {
  559. if (!rq_data_dir(req))
  560. nvme_dif_remap(req, nvme_dif_complete);
  561. dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
  562. rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  563. }
  564. }
  565. nvme_free_iod(nvmeq->dev, iod);
  566. blk_mq_complete_request(req, error);
  567. }
  568. /* length is in bytes. gfp flags indicates whether we may sleep. */
  569. static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
  570. int total_len, gfp_t gfp)
  571. {
  572. struct dma_pool *pool;
  573. int length = total_len;
  574. struct scatterlist *sg = iod->sg;
  575. int dma_len = sg_dma_len(sg);
  576. u64 dma_addr = sg_dma_address(sg);
  577. u32 page_size = dev->page_size;
  578. int offset = dma_addr & (page_size - 1);
  579. __le64 *prp_list;
  580. __le64 **list = iod_list(iod);
  581. dma_addr_t prp_dma;
  582. int nprps, i;
  583. length -= (page_size - offset);
  584. if (length <= 0)
  585. return total_len;
  586. dma_len -= (page_size - offset);
  587. if (dma_len) {
  588. dma_addr += (page_size - offset);
  589. } else {
  590. sg = sg_next(sg);
  591. dma_addr = sg_dma_address(sg);
  592. dma_len = sg_dma_len(sg);
  593. }
  594. if (length <= page_size) {
  595. iod->first_dma = dma_addr;
  596. return total_len;
  597. }
  598. nprps = DIV_ROUND_UP(length, page_size);
  599. if (nprps <= (256 / 8)) {
  600. pool = dev->prp_small_pool;
  601. iod->npages = 0;
  602. } else {
  603. pool = dev->prp_page_pool;
  604. iod->npages = 1;
  605. }
  606. prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
  607. if (!prp_list) {
  608. iod->first_dma = dma_addr;
  609. iod->npages = -1;
  610. return (total_len - length) + page_size;
  611. }
  612. list[0] = prp_list;
  613. iod->first_dma = prp_dma;
  614. i = 0;
  615. for (;;) {
  616. if (i == page_size >> 3) {
  617. __le64 *old_prp_list = prp_list;
  618. prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
  619. if (!prp_list)
  620. return total_len - length;
  621. list[iod->npages++] = prp_list;
  622. prp_list[0] = old_prp_list[i - 1];
  623. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  624. i = 1;
  625. }
  626. prp_list[i++] = cpu_to_le64(dma_addr);
  627. dma_len -= page_size;
  628. dma_addr += page_size;
  629. length -= page_size;
  630. if (length <= 0)
  631. break;
  632. if (dma_len > 0)
  633. continue;
  634. BUG_ON(dma_len < 0);
  635. sg = sg_next(sg);
  636. dma_addr = sg_dma_address(sg);
  637. dma_len = sg_dma_len(sg);
  638. }
  639. return total_len;
  640. }
  641. static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
  642. struct nvme_iod *iod)
  643. {
  644. struct nvme_command cmnd;
  645. memcpy(&cmnd, req->cmd, sizeof(cmnd));
  646. cmnd.rw.command_id = req->tag;
  647. if (req->nr_phys_segments) {
  648. cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  649. cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
  650. }
  651. __nvme_submit_cmd(nvmeq, &cmnd);
  652. }
  653. /*
  654. * We reuse the small pool to allocate the 16-byte range here as it is not
  655. * worth having a special pool for these or additional cases to handle freeing
  656. * the iod.
  657. */
  658. static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  659. struct request *req, struct nvme_iod *iod)
  660. {
  661. struct nvme_dsm_range *range =
  662. (struct nvme_dsm_range *)iod_list(iod)[0];
  663. struct nvme_command cmnd;
  664. range->cattr = cpu_to_le32(0);
  665. range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
  666. range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
  667. memset(&cmnd, 0, sizeof(cmnd));
  668. cmnd.dsm.opcode = nvme_cmd_dsm;
  669. cmnd.dsm.command_id = req->tag;
  670. cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
  671. cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
  672. cmnd.dsm.nr = 0;
  673. cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
  674. __nvme_submit_cmd(nvmeq, &cmnd);
  675. }
  676. static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  677. int cmdid)
  678. {
  679. struct nvme_command cmnd;
  680. memset(&cmnd, 0, sizeof(cmnd));
  681. cmnd.common.opcode = nvme_cmd_flush;
  682. cmnd.common.command_id = cmdid;
  683. cmnd.common.nsid = cpu_to_le32(ns->ns_id);
  684. __nvme_submit_cmd(nvmeq, &cmnd);
  685. }
  686. static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
  687. struct nvme_ns *ns)
  688. {
  689. struct request *req = iod_get_private(iod);
  690. struct nvme_command cmnd;
  691. u16 control = 0;
  692. u32 dsmgmt = 0;
  693. if (req->cmd_flags & REQ_FUA)
  694. control |= NVME_RW_FUA;
  695. if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
  696. control |= NVME_RW_LR;
  697. if (req->cmd_flags & REQ_RAHEAD)
  698. dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
  699. memset(&cmnd, 0, sizeof(cmnd));
  700. cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
  701. cmnd.rw.command_id = req->tag;
  702. cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
  703. cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  704. cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
  705. cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
  706. cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
  707. if (ns->ms) {
  708. switch (ns->pi_type) {
  709. case NVME_NS_DPS_PI_TYPE3:
  710. control |= NVME_RW_PRINFO_PRCHK_GUARD;
  711. break;
  712. case NVME_NS_DPS_PI_TYPE1:
  713. case NVME_NS_DPS_PI_TYPE2:
  714. control |= NVME_RW_PRINFO_PRCHK_GUARD |
  715. NVME_RW_PRINFO_PRCHK_REF;
  716. cmnd.rw.reftag = cpu_to_le32(
  717. nvme_block_nr(ns, blk_rq_pos(req)));
  718. break;
  719. }
  720. if (blk_integrity_rq(req))
  721. cmnd.rw.metadata =
  722. cpu_to_le64(sg_dma_address(iod->meta_sg));
  723. else
  724. control |= NVME_RW_PRINFO_PRACT;
  725. }
  726. cmnd.rw.control = cpu_to_le16(control);
  727. cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
  728. __nvme_submit_cmd(nvmeq, &cmnd);
  729. return 0;
  730. }
  731. /*
  732. * NOTE: ns is NULL when called on the admin queue.
  733. */
  734. static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  735. const struct blk_mq_queue_data *bd)
  736. {
  737. struct nvme_ns *ns = hctx->queue->queuedata;
  738. struct nvme_queue *nvmeq = hctx->driver_data;
  739. struct nvme_dev *dev = nvmeq->dev;
  740. struct request *req = bd->rq;
  741. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
  742. struct nvme_iod *iod;
  743. enum dma_data_direction dma_dir;
  744. /*
  745. * If formated with metadata, require the block layer provide a buffer
  746. * unless this namespace is formated such that the metadata can be
  747. * stripped/generated by the controller with PRACT=1.
  748. */
  749. if (ns && ns->ms && !blk_integrity_rq(req)) {
  750. if (!(ns->pi_type && ns->ms == 8) &&
  751. req->cmd_type != REQ_TYPE_DRV_PRIV) {
  752. blk_mq_complete_request(req, -EFAULT);
  753. return BLK_MQ_RQ_QUEUE_OK;
  754. }
  755. }
  756. iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
  757. if (!iod)
  758. return BLK_MQ_RQ_QUEUE_BUSY;
  759. if (req->cmd_flags & REQ_DISCARD) {
  760. void *range;
  761. /*
  762. * We reuse the small pool to allocate the 16-byte range here
  763. * as it is not worth having a special pool for these or
  764. * additional cases to handle freeing the iod.
  765. */
  766. range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
  767. &iod->first_dma);
  768. if (!range)
  769. goto retry_cmd;
  770. iod_list(iod)[0] = (__le64 *)range;
  771. iod->npages = 0;
  772. } else if (req->nr_phys_segments) {
  773. dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
  774. sg_init_table(iod->sg, req->nr_phys_segments);
  775. iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
  776. if (!iod->nents)
  777. goto error_cmd;
  778. if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
  779. goto retry_cmd;
  780. if (blk_rq_bytes(req) !=
  781. nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
  782. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  783. goto retry_cmd;
  784. }
  785. if (blk_integrity_rq(req)) {
  786. if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
  787. goto error_cmd;
  788. sg_init_table(iod->meta_sg, 1);
  789. if (blk_rq_map_integrity_sg(
  790. req->q, req->bio, iod->meta_sg) != 1)
  791. goto error_cmd;
  792. if (rq_data_dir(req))
  793. nvme_dif_remap(req, nvme_dif_prep);
  794. if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
  795. goto error_cmd;
  796. }
  797. }
  798. nvme_set_info(cmd, iod, req_completion);
  799. spin_lock_irq(&nvmeq->q_lock);
  800. if (req->cmd_type == REQ_TYPE_DRV_PRIV)
  801. nvme_submit_priv(nvmeq, req, iod);
  802. else if (req->cmd_flags & REQ_DISCARD)
  803. nvme_submit_discard(nvmeq, ns, req, iod);
  804. else if (req->cmd_flags & REQ_FLUSH)
  805. nvme_submit_flush(nvmeq, ns, req->tag);
  806. else
  807. nvme_submit_iod(nvmeq, iod, ns);
  808. nvme_process_cq(nvmeq);
  809. spin_unlock_irq(&nvmeq->q_lock);
  810. return BLK_MQ_RQ_QUEUE_OK;
  811. error_cmd:
  812. nvme_free_iod(dev, iod);
  813. return BLK_MQ_RQ_QUEUE_ERROR;
  814. retry_cmd:
  815. nvme_free_iod(dev, iod);
  816. return BLK_MQ_RQ_QUEUE_BUSY;
  817. }
  818. static int nvme_process_cq(struct nvme_queue *nvmeq)
  819. {
  820. u16 head, phase;
  821. head = nvmeq->cq_head;
  822. phase = nvmeq->cq_phase;
  823. for (;;) {
  824. void *ctx;
  825. nvme_completion_fn fn;
  826. struct nvme_completion cqe = nvmeq->cqes[head];
  827. if ((le16_to_cpu(cqe.status) & 1) != phase)
  828. break;
  829. nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
  830. if (++head == nvmeq->q_depth) {
  831. head = 0;
  832. phase = !phase;
  833. }
  834. ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
  835. fn(nvmeq, ctx, &cqe);
  836. }
  837. /* If the controller ignores the cq head doorbell and continuously
  838. * writes to the queue, it is theoretically possible to wrap around
  839. * the queue twice and mistakenly return IRQ_NONE. Linux only
  840. * requires that 0.1% of your interrupts are handled, so this isn't
  841. * a big problem.
  842. */
  843. if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
  844. return 0;
  845. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  846. nvmeq->cq_head = head;
  847. nvmeq->cq_phase = phase;
  848. nvmeq->cqe_seen = 1;
  849. return 1;
  850. }
  851. static irqreturn_t nvme_irq(int irq, void *data)
  852. {
  853. irqreturn_t result;
  854. struct nvme_queue *nvmeq = data;
  855. spin_lock(&nvmeq->q_lock);
  856. nvme_process_cq(nvmeq);
  857. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  858. nvmeq->cqe_seen = 0;
  859. spin_unlock(&nvmeq->q_lock);
  860. return result;
  861. }
  862. static irqreturn_t nvme_irq_check(int irq, void *data)
  863. {
  864. struct nvme_queue *nvmeq = data;
  865. struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
  866. if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
  867. return IRQ_NONE;
  868. return IRQ_WAKE_THREAD;
  869. }
  870. /*
  871. * Returns 0 on success. If the result is negative, it's a Linux error code;
  872. * if the result is positive, it's an NVM Express status code
  873. */
  874. int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
  875. void *buffer, void __user *ubuffer, unsigned bufflen,
  876. u32 *result, unsigned timeout)
  877. {
  878. bool write = cmd->common.opcode & 1;
  879. struct bio *bio = NULL;
  880. struct request *req;
  881. int ret;
  882. req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
  883. if (IS_ERR(req))
  884. return PTR_ERR(req);
  885. req->cmd_type = REQ_TYPE_DRV_PRIV;
  886. req->cmd_flags |= REQ_FAILFAST_DRIVER;
  887. req->__data_len = 0;
  888. req->__sector = (sector_t) -1;
  889. req->bio = req->biotail = NULL;
  890. req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
  891. req->cmd = (unsigned char *)cmd;
  892. req->cmd_len = sizeof(struct nvme_command);
  893. req->special = (void *)0;
  894. if (buffer && bufflen) {
  895. ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
  896. if (ret)
  897. goto out;
  898. } else if (ubuffer && bufflen) {
  899. ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
  900. if (ret)
  901. goto out;
  902. bio = req->bio;
  903. }
  904. blk_execute_rq(req->q, NULL, req, 0);
  905. if (bio)
  906. blk_rq_unmap_user(bio);
  907. if (result)
  908. *result = (u32)(uintptr_t)req->special;
  909. ret = req->errors;
  910. out:
  911. blk_mq_free_request(req);
  912. return ret;
  913. }
  914. int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
  915. void *buffer, unsigned bufflen)
  916. {
  917. return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
  918. }
  919. static int nvme_submit_async_admin_req(struct nvme_dev *dev)
  920. {
  921. struct nvme_queue *nvmeq = dev->queues[0];
  922. struct nvme_command c;
  923. struct nvme_cmd_info *cmd_info;
  924. struct request *req;
  925. req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
  926. if (IS_ERR(req))
  927. return PTR_ERR(req);
  928. req->cmd_flags |= REQ_NO_TIMEOUT;
  929. cmd_info = blk_mq_rq_to_pdu(req);
  930. nvme_set_info(cmd_info, NULL, async_req_completion);
  931. memset(&c, 0, sizeof(c));
  932. c.common.opcode = nvme_admin_async_event;
  933. c.common.command_id = req->tag;
  934. blk_mq_free_request(req);
  935. __nvme_submit_cmd(nvmeq, &c);
  936. return 0;
  937. }
  938. static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
  939. struct nvme_command *cmd,
  940. struct async_cmd_info *cmdinfo, unsigned timeout)
  941. {
  942. struct nvme_queue *nvmeq = dev->queues[0];
  943. struct request *req;
  944. struct nvme_cmd_info *cmd_rq;
  945. req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
  946. if (IS_ERR(req))
  947. return PTR_ERR(req);
  948. req->timeout = timeout;
  949. cmd_rq = blk_mq_rq_to_pdu(req);
  950. cmdinfo->req = req;
  951. nvme_set_info(cmd_rq, cmdinfo, async_completion);
  952. cmdinfo->status = -EINTR;
  953. cmd->common.command_id = req->tag;
  954. nvme_submit_cmd(nvmeq, cmd);
  955. return 0;
  956. }
  957. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  958. {
  959. struct nvme_command c;
  960. memset(&c, 0, sizeof(c));
  961. c.delete_queue.opcode = opcode;
  962. c.delete_queue.qid = cpu_to_le16(id);
  963. return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
  964. }
  965. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  966. struct nvme_queue *nvmeq)
  967. {
  968. struct nvme_command c;
  969. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  970. /*
  971. * Note: we (ab)use the fact the the prp fields survive if no data
  972. * is attached to the request.
  973. */
  974. memset(&c, 0, sizeof(c));
  975. c.create_cq.opcode = nvme_admin_create_cq;
  976. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  977. c.create_cq.cqid = cpu_to_le16(qid);
  978. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  979. c.create_cq.cq_flags = cpu_to_le16(flags);
  980. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  981. return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
  982. }
  983. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  984. struct nvme_queue *nvmeq)
  985. {
  986. struct nvme_command c;
  987. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
  988. /*
  989. * Note: we (ab)use the fact the the prp fields survive if no data
  990. * is attached to the request.
  991. */
  992. memset(&c, 0, sizeof(c));
  993. c.create_sq.opcode = nvme_admin_create_sq;
  994. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  995. c.create_sq.sqid = cpu_to_le16(qid);
  996. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  997. c.create_sq.sq_flags = cpu_to_le16(flags);
  998. c.create_sq.cqid = cpu_to_le16(qid);
  999. return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
  1000. }
  1001. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  1002. {
  1003. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  1004. }
  1005. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  1006. {
  1007. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  1008. }
  1009. int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
  1010. {
  1011. struct nvme_command c = { };
  1012. int error;
  1013. /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
  1014. c.identify.opcode = nvme_admin_identify;
  1015. c.identify.cns = cpu_to_le32(1);
  1016. *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
  1017. if (!*id)
  1018. return -ENOMEM;
  1019. error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
  1020. sizeof(struct nvme_id_ctrl));
  1021. if (error)
  1022. kfree(*id);
  1023. return error;
  1024. }
  1025. int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
  1026. struct nvme_id_ns **id)
  1027. {
  1028. struct nvme_command c = { };
  1029. int error;
  1030. /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
  1031. c.identify.opcode = nvme_admin_identify,
  1032. c.identify.nsid = cpu_to_le32(nsid),
  1033. *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
  1034. if (!*id)
  1035. return -ENOMEM;
  1036. error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
  1037. sizeof(struct nvme_id_ns));
  1038. if (error)
  1039. kfree(*id);
  1040. return error;
  1041. }
  1042. int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
  1043. dma_addr_t dma_addr, u32 *result)
  1044. {
  1045. struct nvme_command c;
  1046. memset(&c, 0, sizeof(c));
  1047. c.features.opcode = nvme_admin_get_features;
  1048. c.features.nsid = cpu_to_le32(nsid);
  1049. c.features.prp1 = cpu_to_le64(dma_addr);
  1050. c.features.fid = cpu_to_le32(fid);
  1051. return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
  1052. result, 0);
  1053. }
  1054. int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
  1055. dma_addr_t dma_addr, u32 *result)
  1056. {
  1057. struct nvme_command c;
  1058. memset(&c, 0, sizeof(c));
  1059. c.features.opcode = nvme_admin_set_features;
  1060. c.features.prp1 = cpu_to_le64(dma_addr);
  1061. c.features.fid = cpu_to_le32(fid);
  1062. c.features.dword11 = cpu_to_le32(dword11);
  1063. return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
  1064. result, 0);
  1065. }
  1066. int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
  1067. {
  1068. struct nvme_command c = { };
  1069. int error;
  1070. c.common.opcode = nvme_admin_get_log_page,
  1071. c.common.nsid = cpu_to_le32(0xFFFFFFFF),
  1072. c.common.cdw10[0] = cpu_to_le32(
  1073. (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
  1074. NVME_LOG_SMART),
  1075. *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
  1076. if (!*log)
  1077. return -ENOMEM;
  1078. error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
  1079. sizeof(struct nvme_smart_log));
  1080. if (error)
  1081. kfree(*log);
  1082. return error;
  1083. }
  1084. /**
  1085. * nvme_abort_req - Attempt aborting a request
  1086. *
  1087. * Schedule controller reset if the command was already aborted once before and
  1088. * still hasn't been returned to the driver, or if this is the admin queue.
  1089. */
  1090. static void nvme_abort_req(struct request *req)
  1091. {
  1092. struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
  1093. struct nvme_queue *nvmeq = cmd_rq->nvmeq;
  1094. struct nvme_dev *dev = nvmeq->dev;
  1095. struct request *abort_req;
  1096. struct nvme_cmd_info *abort_cmd;
  1097. struct nvme_command cmd;
  1098. if (!nvmeq->qid || cmd_rq->aborted) {
  1099. spin_lock(&dev_list_lock);
  1100. if (!__nvme_reset(dev)) {
  1101. dev_warn(dev->dev,
  1102. "I/O %d QID %d timeout, reset controller\n",
  1103. req->tag, nvmeq->qid);
  1104. }
  1105. spin_unlock(&dev_list_lock);
  1106. return;
  1107. }
  1108. if (!dev->abort_limit)
  1109. return;
  1110. abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
  1111. false);
  1112. if (IS_ERR(abort_req))
  1113. return;
  1114. abort_cmd = blk_mq_rq_to_pdu(abort_req);
  1115. nvme_set_info(abort_cmd, abort_req, abort_completion);
  1116. memset(&cmd, 0, sizeof(cmd));
  1117. cmd.abort.opcode = nvme_admin_abort_cmd;
  1118. cmd.abort.cid = req->tag;
  1119. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  1120. cmd.abort.command_id = abort_req->tag;
  1121. --dev->abort_limit;
  1122. cmd_rq->aborted = 1;
  1123. dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
  1124. nvmeq->qid);
  1125. nvme_submit_cmd(dev->queues[0], &cmd);
  1126. }
  1127. static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
  1128. {
  1129. struct nvme_queue *nvmeq = data;
  1130. void *ctx;
  1131. nvme_completion_fn fn;
  1132. struct nvme_cmd_info *cmd;
  1133. struct nvme_completion cqe;
  1134. if (!blk_mq_request_started(req))
  1135. return;
  1136. cmd = blk_mq_rq_to_pdu(req);
  1137. if (cmd->ctx == CMD_CTX_CANCELLED)
  1138. return;
  1139. if (blk_queue_dying(req->q))
  1140. cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
  1141. else
  1142. cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
  1143. dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
  1144. req->tag, nvmeq->qid);
  1145. ctx = cancel_cmd_info(cmd, &fn);
  1146. fn(nvmeq, ctx, &cqe);
  1147. }
  1148. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  1149. {
  1150. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
  1151. struct nvme_queue *nvmeq = cmd->nvmeq;
  1152. dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
  1153. nvmeq->qid);
  1154. spin_lock_irq(&nvmeq->q_lock);
  1155. nvme_abort_req(req);
  1156. spin_unlock_irq(&nvmeq->q_lock);
  1157. /*
  1158. * The aborted req will be completed on receiving the abort req.
  1159. * We enable the timer again. If hit twice, it'll cause a device reset,
  1160. * as the device then is in a faulty state.
  1161. */
  1162. return BLK_EH_RESET_TIMER;
  1163. }
  1164. static void nvme_free_queue(struct nvme_queue *nvmeq)
  1165. {
  1166. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  1167. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  1168. if (nvmeq->sq_cmds)
  1169. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  1170. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  1171. kfree(nvmeq);
  1172. }
  1173. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  1174. {
  1175. int i;
  1176. for (i = dev->queue_count - 1; i >= lowest; i--) {
  1177. struct nvme_queue *nvmeq = dev->queues[i];
  1178. dev->queue_count--;
  1179. dev->queues[i] = NULL;
  1180. nvme_free_queue(nvmeq);
  1181. }
  1182. }
  1183. /**
  1184. * nvme_suspend_queue - put queue into suspended state
  1185. * @nvmeq - queue to suspend
  1186. */
  1187. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  1188. {
  1189. int vector;
  1190. spin_lock_irq(&nvmeq->q_lock);
  1191. if (nvmeq->cq_vector == -1) {
  1192. spin_unlock_irq(&nvmeq->q_lock);
  1193. return 1;
  1194. }
  1195. vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
  1196. nvmeq->dev->online_queues--;
  1197. nvmeq->cq_vector = -1;
  1198. spin_unlock_irq(&nvmeq->q_lock);
  1199. if (!nvmeq->qid && nvmeq->dev->admin_q)
  1200. blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
  1201. irq_set_affinity_hint(vector, NULL);
  1202. free_irq(vector, nvmeq);
  1203. return 0;
  1204. }
  1205. static void nvme_clear_queue(struct nvme_queue *nvmeq)
  1206. {
  1207. spin_lock_irq(&nvmeq->q_lock);
  1208. if (nvmeq->tags && *nvmeq->tags)
  1209. blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
  1210. spin_unlock_irq(&nvmeq->q_lock);
  1211. }
  1212. static void nvme_disable_queue(struct nvme_dev *dev, int qid)
  1213. {
  1214. struct nvme_queue *nvmeq = dev->queues[qid];
  1215. if (!nvmeq)
  1216. return;
  1217. if (nvme_suspend_queue(nvmeq))
  1218. return;
  1219. /* Don't tell the adapter to delete the admin queue.
  1220. * Don't tell a removed adapter to delete IO queues. */
  1221. if (qid && readl(&dev->bar->csts) != -1) {
  1222. adapter_delete_sq(dev, qid);
  1223. adapter_delete_cq(dev, qid);
  1224. }
  1225. spin_lock_irq(&nvmeq->q_lock);
  1226. nvme_process_cq(nvmeq);
  1227. spin_unlock_irq(&nvmeq->q_lock);
  1228. }
  1229. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  1230. int entry_size)
  1231. {
  1232. int q_depth = dev->q_depth;
  1233. unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
  1234. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  1235. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  1236. mem_per_q = round_down(mem_per_q, dev->page_size);
  1237. q_depth = div_u64(mem_per_q, entry_size);
  1238. /*
  1239. * Ensure the reduced q_depth is above some threshold where it
  1240. * would be better to map queues in system memory with the
  1241. * original depth
  1242. */
  1243. if (q_depth < 64)
  1244. return -ENOMEM;
  1245. }
  1246. return q_depth;
  1247. }
  1248. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  1249. int qid, int depth)
  1250. {
  1251. if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
  1252. unsigned offset = (qid - 1) *
  1253. roundup(SQ_SIZE(depth), dev->page_size);
  1254. nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
  1255. nvmeq->sq_cmds_io = dev->cmb + offset;
  1256. } else {
  1257. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  1258. &nvmeq->sq_dma_addr, GFP_KERNEL);
  1259. if (!nvmeq->sq_cmds)
  1260. return -ENOMEM;
  1261. }
  1262. return 0;
  1263. }
  1264. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  1265. int depth)
  1266. {
  1267. struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
  1268. if (!nvmeq)
  1269. return NULL;
  1270. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  1271. &nvmeq->cq_dma_addr, GFP_KERNEL);
  1272. if (!nvmeq->cqes)
  1273. goto free_nvmeq;
  1274. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  1275. goto free_cqdma;
  1276. nvmeq->q_dmadev = dev->dev;
  1277. nvmeq->dev = dev;
  1278. snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
  1279. dev->instance, qid);
  1280. spin_lock_init(&nvmeq->q_lock);
  1281. nvmeq->cq_head = 0;
  1282. nvmeq->cq_phase = 1;
  1283. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1284. nvmeq->q_depth = depth;
  1285. nvmeq->qid = qid;
  1286. nvmeq->cq_vector = -1;
  1287. dev->queues[qid] = nvmeq;
  1288. /* make sure queue descriptor is set before queue count, for kthread */
  1289. mb();
  1290. dev->queue_count++;
  1291. return nvmeq;
  1292. free_cqdma:
  1293. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  1294. nvmeq->cq_dma_addr);
  1295. free_nvmeq:
  1296. kfree(nvmeq);
  1297. return NULL;
  1298. }
  1299. static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  1300. const char *name)
  1301. {
  1302. if (use_threaded_interrupts)
  1303. return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
  1304. nvme_irq_check, nvme_irq, IRQF_SHARED,
  1305. name, nvmeq);
  1306. return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
  1307. IRQF_SHARED, name, nvmeq);
  1308. }
  1309. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  1310. {
  1311. struct nvme_dev *dev = nvmeq->dev;
  1312. spin_lock_irq(&nvmeq->q_lock);
  1313. nvmeq->sq_tail = 0;
  1314. nvmeq->cq_head = 0;
  1315. nvmeq->cq_phase = 1;
  1316. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1317. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  1318. dev->online_queues++;
  1319. spin_unlock_irq(&nvmeq->q_lock);
  1320. }
  1321. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  1322. {
  1323. struct nvme_dev *dev = nvmeq->dev;
  1324. int result;
  1325. nvmeq->cq_vector = qid - 1;
  1326. result = adapter_alloc_cq(dev, qid, nvmeq);
  1327. if (result < 0)
  1328. return result;
  1329. result = adapter_alloc_sq(dev, qid, nvmeq);
  1330. if (result < 0)
  1331. goto release_cq;
  1332. result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
  1333. if (result < 0)
  1334. goto release_sq;
  1335. nvme_init_queue(nvmeq, qid);
  1336. return result;
  1337. release_sq:
  1338. adapter_delete_sq(dev, qid);
  1339. release_cq:
  1340. adapter_delete_cq(dev, qid);
  1341. return result;
  1342. }
  1343. static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
  1344. {
  1345. unsigned long timeout;
  1346. u32 bit = enabled ? NVME_CSTS_RDY : 0;
  1347. timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
  1348. while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
  1349. msleep(100);
  1350. if (fatal_signal_pending(current))
  1351. return -EINTR;
  1352. if (time_after(jiffies, timeout)) {
  1353. dev_err(dev->dev,
  1354. "Device not ready; aborting %s\n", enabled ?
  1355. "initialisation" : "reset");
  1356. return -ENODEV;
  1357. }
  1358. }
  1359. return 0;
  1360. }
  1361. /*
  1362. * If the device has been passed off to us in an enabled state, just clear
  1363. * the enabled bit. The spec says we should set the 'shutdown notification
  1364. * bits', but doing so may cause the device to complete commands to the
  1365. * admin queue ... and we don't know what memory that might be pointing at!
  1366. */
  1367. static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
  1368. {
  1369. dev->ctrl_config &= ~NVME_CC_SHN_MASK;
  1370. dev->ctrl_config &= ~NVME_CC_ENABLE;
  1371. writel(dev->ctrl_config, &dev->bar->cc);
  1372. return nvme_wait_ready(dev, cap, false);
  1373. }
  1374. static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
  1375. {
  1376. dev->ctrl_config &= ~NVME_CC_SHN_MASK;
  1377. dev->ctrl_config |= NVME_CC_ENABLE;
  1378. writel(dev->ctrl_config, &dev->bar->cc);
  1379. return nvme_wait_ready(dev, cap, true);
  1380. }
  1381. static int nvme_shutdown_ctrl(struct nvme_dev *dev)
  1382. {
  1383. unsigned long timeout;
  1384. dev->ctrl_config &= ~NVME_CC_SHN_MASK;
  1385. dev->ctrl_config |= NVME_CC_SHN_NORMAL;
  1386. writel(dev->ctrl_config, &dev->bar->cc);
  1387. timeout = SHUTDOWN_TIMEOUT + jiffies;
  1388. while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
  1389. NVME_CSTS_SHST_CMPLT) {
  1390. msleep(100);
  1391. if (fatal_signal_pending(current))
  1392. return -EINTR;
  1393. if (time_after(jiffies, timeout)) {
  1394. dev_err(dev->dev,
  1395. "Device shutdown incomplete; abort shutdown\n");
  1396. return -ENODEV;
  1397. }
  1398. }
  1399. return 0;
  1400. }
  1401. static struct blk_mq_ops nvme_mq_admin_ops = {
  1402. .queue_rq = nvme_queue_rq,
  1403. .map_queue = blk_mq_map_queue,
  1404. .init_hctx = nvme_admin_init_hctx,
  1405. .exit_hctx = nvme_admin_exit_hctx,
  1406. .init_request = nvme_admin_init_request,
  1407. .timeout = nvme_timeout,
  1408. };
  1409. static struct blk_mq_ops nvme_mq_ops = {
  1410. .queue_rq = nvme_queue_rq,
  1411. .map_queue = blk_mq_map_queue,
  1412. .init_hctx = nvme_init_hctx,
  1413. .init_request = nvme_init_request,
  1414. .timeout = nvme_timeout,
  1415. };
  1416. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  1417. {
  1418. if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
  1419. blk_cleanup_queue(dev->admin_q);
  1420. blk_mq_free_tag_set(&dev->admin_tagset);
  1421. }
  1422. }
  1423. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  1424. {
  1425. if (!dev->admin_q) {
  1426. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1427. dev->admin_tagset.nr_hw_queues = 1;
  1428. dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
  1429. dev->admin_tagset.reserved_tags = 1;
  1430. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1431. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1432. dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
  1433. dev->admin_tagset.driver_data = dev;
  1434. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1435. return -ENOMEM;
  1436. dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1437. if (IS_ERR(dev->admin_q)) {
  1438. blk_mq_free_tag_set(&dev->admin_tagset);
  1439. return -ENOMEM;
  1440. }
  1441. if (!blk_get_queue(dev->admin_q)) {
  1442. nvme_dev_remove_admin(dev);
  1443. dev->admin_q = NULL;
  1444. return -ENODEV;
  1445. }
  1446. } else
  1447. blk_mq_unfreeze_queue(dev->admin_q);
  1448. return 0;
  1449. }
  1450. static int nvme_configure_admin_queue(struct nvme_dev *dev)
  1451. {
  1452. int result;
  1453. u32 aqa;
  1454. u64 cap = readq(&dev->bar->cap);
  1455. struct nvme_queue *nvmeq;
  1456. unsigned page_shift = PAGE_SHIFT;
  1457. unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
  1458. unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
  1459. if (page_shift < dev_page_min) {
  1460. dev_err(dev->dev,
  1461. "Minimum device page size (%u) too large for "
  1462. "host (%u)\n", 1 << dev_page_min,
  1463. 1 << page_shift);
  1464. return -ENODEV;
  1465. }
  1466. if (page_shift > dev_page_max) {
  1467. dev_info(dev->dev,
  1468. "Device maximum page size (%u) smaller than "
  1469. "host (%u); enabling work-around\n",
  1470. 1 << dev_page_max, 1 << page_shift);
  1471. page_shift = dev_page_max;
  1472. }
  1473. dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
  1474. NVME_CAP_NSSRC(cap) : 0;
  1475. if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
  1476. writel(NVME_CSTS_NSSRO, &dev->bar->csts);
  1477. result = nvme_disable_ctrl(dev, cap);
  1478. if (result < 0)
  1479. return result;
  1480. nvmeq = dev->queues[0];
  1481. if (!nvmeq) {
  1482. nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
  1483. if (!nvmeq)
  1484. return -ENOMEM;
  1485. }
  1486. aqa = nvmeq->q_depth - 1;
  1487. aqa |= aqa << 16;
  1488. dev->page_size = 1 << page_shift;
  1489. dev->ctrl_config = NVME_CC_CSS_NVM;
  1490. dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
  1491. dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
  1492. dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
  1493. writel(aqa, &dev->bar->aqa);
  1494. writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
  1495. writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
  1496. result = nvme_enable_ctrl(dev, cap);
  1497. if (result)
  1498. goto free_nvmeq;
  1499. nvmeq->cq_vector = 0;
  1500. result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
  1501. if (result) {
  1502. nvmeq->cq_vector = -1;
  1503. goto free_nvmeq;
  1504. }
  1505. return result;
  1506. free_nvmeq:
  1507. nvme_free_queues(dev, 0);
  1508. return result;
  1509. }
  1510. static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
  1511. {
  1512. struct nvme_dev *dev = ns->dev;
  1513. struct nvme_user_io io;
  1514. struct nvme_command c;
  1515. unsigned length, meta_len;
  1516. int status, write;
  1517. dma_addr_t meta_dma = 0;
  1518. void *meta = NULL;
  1519. void __user *metadata;
  1520. if (copy_from_user(&io, uio, sizeof(io)))
  1521. return -EFAULT;
  1522. switch (io.opcode) {
  1523. case nvme_cmd_write:
  1524. case nvme_cmd_read:
  1525. case nvme_cmd_compare:
  1526. break;
  1527. default:
  1528. return -EINVAL;
  1529. }
  1530. length = (io.nblocks + 1) << ns->lba_shift;
  1531. meta_len = (io.nblocks + 1) * ns->ms;
  1532. metadata = (void __user *)(uintptr_t)io.metadata;
  1533. write = io.opcode & 1;
  1534. if (ns->ext) {
  1535. length += meta_len;
  1536. meta_len = 0;
  1537. }
  1538. if (meta_len) {
  1539. if (((io.metadata & 3) || !io.metadata) && !ns->ext)
  1540. return -EINVAL;
  1541. meta = dma_alloc_coherent(dev->dev, meta_len,
  1542. &meta_dma, GFP_KERNEL);
  1543. if (!meta) {
  1544. status = -ENOMEM;
  1545. goto unmap;
  1546. }
  1547. if (write) {
  1548. if (copy_from_user(meta, metadata, meta_len)) {
  1549. status = -EFAULT;
  1550. goto unmap;
  1551. }
  1552. }
  1553. }
  1554. memset(&c, 0, sizeof(c));
  1555. c.rw.opcode = io.opcode;
  1556. c.rw.flags = io.flags;
  1557. c.rw.nsid = cpu_to_le32(ns->ns_id);
  1558. c.rw.slba = cpu_to_le64(io.slba);
  1559. c.rw.length = cpu_to_le16(io.nblocks);
  1560. c.rw.control = cpu_to_le16(io.control);
  1561. c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
  1562. c.rw.reftag = cpu_to_le32(io.reftag);
  1563. c.rw.apptag = cpu_to_le16(io.apptag);
  1564. c.rw.appmask = cpu_to_le16(io.appmask);
  1565. c.rw.metadata = cpu_to_le64(meta_dma);
  1566. status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
  1567. (void __user *)(uintptr_t)io.addr, length, NULL, 0);
  1568. unmap:
  1569. if (meta) {
  1570. if (status == NVME_SC_SUCCESS && !write) {
  1571. if (copy_to_user(metadata, meta, meta_len))
  1572. status = -EFAULT;
  1573. }
  1574. dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
  1575. }
  1576. return status;
  1577. }
  1578. static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
  1579. struct nvme_passthru_cmd __user *ucmd)
  1580. {
  1581. struct nvme_passthru_cmd cmd;
  1582. struct nvme_command c;
  1583. unsigned timeout = 0;
  1584. int status;
  1585. if (!capable(CAP_SYS_ADMIN))
  1586. return -EACCES;
  1587. if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
  1588. return -EFAULT;
  1589. memset(&c, 0, sizeof(c));
  1590. c.common.opcode = cmd.opcode;
  1591. c.common.flags = cmd.flags;
  1592. c.common.nsid = cpu_to_le32(cmd.nsid);
  1593. c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
  1594. c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
  1595. c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
  1596. c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
  1597. c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
  1598. c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
  1599. c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
  1600. c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
  1601. if (cmd.timeout_ms)
  1602. timeout = msecs_to_jiffies(cmd.timeout_ms);
  1603. status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
  1604. NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
  1605. &cmd.result, timeout);
  1606. if (status >= 0) {
  1607. if (put_user(cmd.result, &ucmd->result))
  1608. return -EFAULT;
  1609. }
  1610. return status;
  1611. }
  1612. static int nvme_subsys_reset(struct nvme_dev *dev)
  1613. {
  1614. if (!dev->subsystem)
  1615. return -ENOTTY;
  1616. writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
  1617. return 0;
  1618. }
  1619. static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
  1620. unsigned long arg)
  1621. {
  1622. struct nvme_ns *ns = bdev->bd_disk->private_data;
  1623. switch (cmd) {
  1624. case NVME_IOCTL_ID:
  1625. force_successful_syscall_return();
  1626. return ns->ns_id;
  1627. case NVME_IOCTL_ADMIN_CMD:
  1628. return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
  1629. case NVME_IOCTL_IO_CMD:
  1630. return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
  1631. case NVME_IOCTL_SUBMIT_IO:
  1632. return nvme_submit_io(ns, (void __user *)arg);
  1633. case SG_GET_VERSION_NUM:
  1634. return nvme_sg_get_version_num((void __user *)arg);
  1635. case SG_IO:
  1636. return nvme_sg_io(ns, (void __user *)arg);
  1637. default:
  1638. return -ENOTTY;
  1639. }
  1640. }
  1641. #ifdef CONFIG_COMPAT
  1642. static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
  1643. unsigned int cmd, unsigned long arg)
  1644. {
  1645. switch (cmd) {
  1646. case SG_IO:
  1647. return -ENOIOCTLCMD;
  1648. }
  1649. return nvme_ioctl(bdev, mode, cmd, arg);
  1650. }
  1651. #else
  1652. #define nvme_compat_ioctl NULL
  1653. #endif
  1654. static void nvme_free_dev(struct kref *kref);
  1655. static void nvme_free_ns(struct kref *kref)
  1656. {
  1657. struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
  1658. spin_lock(&dev_list_lock);
  1659. ns->disk->private_data = NULL;
  1660. spin_unlock(&dev_list_lock);
  1661. kref_put(&ns->dev->kref, nvme_free_dev);
  1662. put_disk(ns->disk);
  1663. kfree(ns);
  1664. }
  1665. static int nvme_open(struct block_device *bdev, fmode_t mode)
  1666. {
  1667. int ret = 0;
  1668. struct nvme_ns *ns;
  1669. spin_lock(&dev_list_lock);
  1670. ns = bdev->bd_disk->private_data;
  1671. if (!ns)
  1672. ret = -ENXIO;
  1673. else if (!kref_get_unless_zero(&ns->kref))
  1674. ret = -ENXIO;
  1675. spin_unlock(&dev_list_lock);
  1676. return ret;
  1677. }
  1678. static void nvme_release(struct gendisk *disk, fmode_t mode)
  1679. {
  1680. struct nvme_ns *ns = disk->private_data;
  1681. kref_put(&ns->kref, nvme_free_ns);
  1682. }
  1683. static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
  1684. {
  1685. /* some standard values */
  1686. geo->heads = 1 << 6;
  1687. geo->sectors = 1 << 5;
  1688. geo->cylinders = get_capacity(bd->bd_disk) >> 11;
  1689. return 0;
  1690. }
  1691. static void nvme_config_discard(struct nvme_ns *ns)
  1692. {
  1693. u32 logical_block_size = queue_logical_block_size(ns->queue);
  1694. ns->queue->limits.discard_zeroes_data = 0;
  1695. ns->queue->limits.discard_alignment = logical_block_size;
  1696. ns->queue->limits.discard_granularity = logical_block_size;
  1697. blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
  1698. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
  1699. }
  1700. static int nvme_revalidate_disk(struct gendisk *disk)
  1701. {
  1702. struct nvme_ns *ns = disk->private_data;
  1703. struct nvme_dev *dev = ns->dev;
  1704. struct nvme_id_ns *id;
  1705. u8 lbaf, pi_type;
  1706. u16 old_ms;
  1707. unsigned short bs;
  1708. if (nvme_identify_ns(dev, ns->ns_id, &id)) {
  1709. dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
  1710. dev->instance, ns->ns_id);
  1711. return -ENODEV;
  1712. }
  1713. if (id->ncap == 0) {
  1714. kfree(id);
  1715. return -ENODEV;
  1716. }
  1717. old_ms = ns->ms;
  1718. lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
  1719. ns->lba_shift = id->lbaf[lbaf].ds;
  1720. ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
  1721. ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
  1722. /*
  1723. * If identify namespace failed, use default 512 byte block size so
  1724. * block layer can use before failing read/write for 0 capacity.
  1725. */
  1726. if (ns->lba_shift == 0)
  1727. ns->lba_shift = 9;
  1728. bs = 1 << ns->lba_shift;
  1729. /* XXX: PI implementation requires metadata equal t10 pi tuple size */
  1730. pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
  1731. id->dps & NVME_NS_DPS_PI_MASK : 0;
  1732. if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
  1733. ns->ms != old_ms ||
  1734. bs != queue_logical_block_size(disk->queue) ||
  1735. (ns->ms && ns->ext)))
  1736. blk_integrity_unregister(disk);
  1737. ns->pi_type = pi_type;
  1738. blk_queue_logical_block_size(ns->queue, bs);
  1739. if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
  1740. !ns->ext)
  1741. nvme_init_integrity(ns);
  1742. if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
  1743. set_capacity(disk, 0);
  1744. else
  1745. set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
  1746. if (dev->oncs & NVME_CTRL_ONCS_DSM)
  1747. nvme_config_discard(ns);
  1748. kfree(id);
  1749. return 0;
  1750. }
  1751. static const struct block_device_operations nvme_fops = {
  1752. .owner = THIS_MODULE,
  1753. .ioctl = nvme_ioctl,
  1754. .compat_ioctl = nvme_compat_ioctl,
  1755. .open = nvme_open,
  1756. .release = nvme_release,
  1757. .getgeo = nvme_getgeo,
  1758. .revalidate_disk= nvme_revalidate_disk,
  1759. };
  1760. static int nvme_kthread(void *data)
  1761. {
  1762. struct nvme_dev *dev, *next;
  1763. while (!kthread_should_stop()) {
  1764. set_current_state(TASK_INTERRUPTIBLE);
  1765. spin_lock(&dev_list_lock);
  1766. list_for_each_entry_safe(dev, next, &dev_list, node) {
  1767. int i;
  1768. u32 csts = readl(&dev->bar->csts);
  1769. if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
  1770. csts & NVME_CSTS_CFS) {
  1771. if (!__nvme_reset(dev)) {
  1772. dev_warn(dev->dev,
  1773. "Failed status: %x, reset controller\n",
  1774. readl(&dev->bar->csts));
  1775. }
  1776. continue;
  1777. }
  1778. for (i = 0; i < dev->queue_count; i++) {
  1779. struct nvme_queue *nvmeq = dev->queues[i];
  1780. if (!nvmeq)
  1781. continue;
  1782. spin_lock_irq(&nvmeq->q_lock);
  1783. nvme_process_cq(nvmeq);
  1784. while ((i == 0) && (dev->event_limit > 0)) {
  1785. if (nvme_submit_async_admin_req(dev))
  1786. break;
  1787. dev->event_limit--;
  1788. }
  1789. spin_unlock_irq(&nvmeq->q_lock);
  1790. }
  1791. }
  1792. spin_unlock(&dev_list_lock);
  1793. schedule_timeout(round_jiffies_relative(HZ));
  1794. }
  1795. return 0;
  1796. }
  1797. static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
  1798. {
  1799. struct nvme_ns *ns;
  1800. struct gendisk *disk;
  1801. int node = dev_to_node(dev->dev);
  1802. ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
  1803. if (!ns)
  1804. return;
  1805. ns->queue = blk_mq_init_queue(&dev->tagset);
  1806. if (IS_ERR(ns->queue))
  1807. goto out_free_ns;
  1808. queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
  1809. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
  1810. ns->dev = dev;
  1811. ns->queue->queuedata = ns;
  1812. disk = alloc_disk_node(0, node);
  1813. if (!disk)
  1814. goto out_free_queue;
  1815. kref_init(&ns->kref);
  1816. ns->ns_id = nsid;
  1817. ns->disk = disk;
  1818. ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
  1819. list_add_tail(&ns->list, &dev->namespaces);
  1820. blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
  1821. if (dev->max_hw_sectors) {
  1822. blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
  1823. blk_queue_max_segments(ns->queue,
  1824. ((dev->max_hw_sectors << 9) / dev->page_size) + 1);
  1825. }
  1826. if (dev->stripe_size)
  1827. blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
  1828. if (dev->vwc & NVME_CTRL_VWC_PRESENT)
  1829. blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
  1830. blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
  1831. disk->major = nvme_major;
  1832. disk->first_minor = 0;
  1833. disk->fops = &nvme_fops;
  1834. disk->private_data = ns;
  1835. disk->queue = ns->queue;
  1836. disk->driverfs_dev = dev->device;
  1837. disk->flags = GENHD_FL_EXT_DEVT;
  1838. sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
  1839. /*
  1840. * Initialize capacity to 0 until we establish the namespace format and
  1841. * setup integrity extentions if necessary. The revalidate_disk after
  1842. * add_disk allows the driver to register with integrity if the format
  1843. * requires it.
  1844. */
  1845. set_capacity(disk, 0);
  1846. if (nvme_revalidate_disk(ns->disk))
  1847. goto out_free_disk;
  1848. kref_get(&dev->kref);
  1849. add_disk(ns->disk);
  1850. if (ns->ms) {
  1851. struct block_device *bd = bdget_disk(ns->disk, 0);
  1852. if (!bd)
  1853. return;
  1854. if (blkdev_get(bd, FMODE_READ, NULL)) {
  1855. bdput(bd);
  1856. return;
  1857. }
  1858. blkdev_reread_part(bd);
  1859. blkdev_put(bd, FMODE_READ);
  1860. }
  1861. return;
  1862. out_free_disk:
  1863. kfree(disk);
  1864. list_del(&ns->list);
  1865. out_free_queue:
  1866. blk_cleanup_queue(ns->queue);
  1867. out_free_ns:
  1868. kfree(ns);
  1869. }
  1870. /*
  1871. * Create I/O queues. Failing to create an I/O queue is not an issue,
  1872. * we can continue with less than the desired amount of queues, and
  1873. * even a controller without I/O queues an still be used to issue
  1874. * admin commands. This might be useful to upgrade a buggy firmware
  1875. * for example.
  1876. */
  1877. static void nvme_create_io_queues(struct nvme_dev *dev)
  1878. {
  1879. unsigned i;
  1880. for (i = dev->queue_count; i <= dev->max_qid; i++)
  1881. if (!nvme_alloc_queue(dev, i, dev->q_depth))
  1882. break;
  1883. for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
  1884. if (nvme_create_queue(dev->queues[i], i)) {
  1885. nvme_free_queues(dev, i);
  1886. break;
  1887. }
  1888. }
  1889. static int set_queue_count(struct nvme_dev *dev, int count)
  1890. {
  1891. int status;
  1892. u32 result;
  1893. u32 q_count = (count - 1) | ((count - 1) << 16);
  1894. status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
  1895. &result);
  1896. if (status < 0)
  1897. return status;
  1898. if (status > 0) {
  1899. dev_err(dev->dev, "Could not set queue count (%d)\n", status);
  1900. return 0;
  1901. }
  1902. return min(result & 0xffff, result >> 16) + 1;
  1903. }
  1904. static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
  1905. {
  1906. u64 szu, size, offset;
  1907. u32 cmbloc;
  1908. resource_size_t bar_size;
  1909. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1910. void __iomem *cmb;
  1911. dma_addr_t dma_addr;
  1912. if (!use_cmb_sqes)
  1913. return NULL;
  1914. dev->cmbsz = readl(&dev->bar->cmbsz);
  1915. if (!(NVME_CMB_SZ(dev->cmbsz)))
  1916. return NULL;
  1917. cmbloc = readl(&dev->bar->cmbloc);
  1918. szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
  1919. size = szu * NVME_CMB_SZ(dev->cmbsz);
  1920. offset = szu * NVME_CMB_OFST(cmbloc);
  1921. bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
  1922. if (offset > bar_size)
  1923. return NULL;
  1924. /*
  1925. * Controllers may support a CMB size larger than their BAR,
  1926. * for example, due to being behind a bridge. Reduce the CMB to
  1927. * the reported size of the BAR
  1928. */
  1929. if (size > bar_size - offset)
  1930. size = bar_size - offset;
  1931. dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
  1932. cmb = ioremap_wc(dma_addr, size);
  1933. if (!cmb)
  1934. return NULL;
  1935. dev->cmb_dma_addr = dma_addr;
  1936. dev->cmb_size = size;
  1937. return cmb;
  1938. }
  1939. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1940. {
  1941. if (dev->cmb) {
  1942. iounmap(dev->cmb);
  1943. dev->cmb = NULL;
  1944. }
  1945. }
  1946. static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1947. {
  1948. return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1949. }
  1950. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1951. {
  1952. struct nvme_queue *adminq = dev->queues[0];
  1953. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1954. int result, i, vecs, nr_io_queues, size;
  1955. nr_io_queues = num_possible_cpus();
  1956. result = set_queue_count(dev, nr_io_queues);
  1957. if (result <= 0)
  1958. return result;
  1959. if (result < nr_io_queues)
  1960. nr_io_queues = result;
  1961. if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
  1962. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1963. sizeof(struct nvme_command));
  1964. if (result > 0)
  1965. dev->q_depth = result;
  1966. else
  1967. nvme_release_cmb(dev);
  1968. }
  1969. size = db_bar_size(dev, nr_io_queues);
  1970. if (size > 8192) {
  1971. iounmap(dev->bar);
  1972. do {
  1973. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1974. if (dev->bar)
  1975. break;
  1976. if (!--nr_io_queues)
  1977. return -ENOMEM;
  1978. size = db_bar_size(dev, nr_io_queues);
  1979. } while (1);
  1980. dev->dbs = ((void __iomem *)dev->bar) + 4096;
  1981. adminq->q_db = dev->dbs;
  1982. }
  1983. /* Deregister the admin queue's interrupt */
  1984. free_irq(dev->entry[0].vector, adminq);
  1985. /*
  1986. * If we enable msix early due to not intx, disable it again before
  1987. * setting up the full range we need.
  1988. */
  1989. if (!pdev->irq)
  1990. pci_disable_msix(pdev);
  1991. for (i = 0; i < nr_io_queues; i++)
  1992. dev->entry[i].entry = i;
  1993. vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
  1994. if (vecs < 0) {
  1995. vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
  1996. if (vecs < 0) {
  1997. vecs = 1;
  1998. } else {
  1999. for (i = 0; i < vecs; i++)
  2000. dev->entry[i].vector = i + pdev->irq;
  2001. }
  2002. }
  2003. /*
  2004. * Should investigate if there's a performance win from allocating
  2005. * more queues than interrupt vectors; it might allow the submission
  2006. * path to scale better, even if the receive path is limited by the
  2007. * number of interrupts.
  2008. */
  2009. nr_io_queues = vecs;
  2010. dev->max_qid = nr_io_queues;
  2011. result = queue_request_irq(dev, adminq, adminq->irqname);
  2012. if (result) {
  2013. adminq->cq_vector = -1;
  2014. goto free_queues;
  2015. }
  2016. /* Free previously allocated queues that are no longer usable */
  2017. nvme_free_queues(dev, nr_io_queues + 1);
  2018. nvme_create_io_queues(dev);
  2019. return 0;
  2020. free_queues:
  2021. nvme_free_queues(dev, 1);
  2022. return result;
  2023. }
  2024. static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
  2025. {
  2026. struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
  2027. struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
  2028. return nsa->ns_id - nsb->ns_id;
  2029. }
  2030. static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
  2031. {
  2032. struct nvme_ns *ns;
  2033. list_for_each_entry(ns, &dev->namespaces, list) {
  2034. if (ns->ns_id == nsid)
  2035. return ns;
  2036. if (ns->ns_id > nsid)
  2037. break;
  2038. }
  2039. return NULL;
  2040. }
  2041. static inline bool nvme_io_incapable(struct nvme_dev *dev)
  2042. {
  2043. return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
  2044. dev->online_queues < 2);
  2045. }
  2046. static void nvme_ns_remove(struct nvme_ns *ns)
  2047. {
  2048. bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
  2049. if (kill)
  2050. blk_set_queue_dying(ns->queue);
  2051. if (ns->disk->flags & GENHD_FL_UP) {
  2052. if (blk_get_integrity(ns->disk))
  2053. blk_integrity_unregister(ns->disk);
  2054. del_gendisk(ns->disk);
  2055. }
  2056. if (kill || !blk_queue_dying(ns->queue)) {
  2057. blk_mq_abort_requeue_list(ns->queue);
  2058. blk_cleanup_queue(ns->queue);
  2059. }
  2060. list_del_init(&ns->list);
  2061. kref_put(&ns->kref, nvme_free_ns);
  2062. }
  2063. static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
  2064. {
  2065. struct nvme_ns *ns, *next;
  2066. unsigned i;
  2067. for (i = 1; i <= nn; i++) {
  2068. ns = nvme_find_ns(dev, i);
  2069. if (ns) {
  2070. if (revalidate_disk(ns->disk))
  2071. nvme_ns_remove(ns);
  2072. } else
  2073. nvme_alloc_ns(dev, i);
  2074. }
  2075. list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
  2076. if (ns->ns_id > nn)
  2077. nvme_ns_remove(ns);
  2078. }
  2079. list_sort(NULL, &dev->namespaces, ns_cmp);
  2080. }
  2081. static void nvme_set_irq_hints(struct nvme_dev *dev)
  2082. {
  2083. struct nvme_queue *nvmeq;
  2084. int i;
  2085. for (i = 0; i < dev->online_queues; i++) {
  2086. nvmeq = dev->queues[i];
  2087. if (!nvmeq->tags || !(*nvmeq->tags))
  2088. continue;
  2089. irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
  2090. blk_mq_tags_cpumask(*nvmeq->tags));
  2091. }
  2092. }
  2093. static void nvme_dev_scan(struct work_struct *work)
  2094. {
  2095. struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
  2096. struct nvme_id_ctrl *ctrl;
  2097. if (!dev->tagset.tags)
  2098. return;
  2099. if (nvme_identify_ctrl(dev, &ctrl))
  2100. return;
  2101. nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
  2102. kfree(ctrl);
  2103. nvme_set_irq_hints(dev);
  2104. }
  2105. /*
  2106. * Return: error value if an error occurred setting up the queues or calling
  2107. * Identify Device. 0 if these succeeded, even if adding some of the
  2108. * namespaces failed. At the moment, these failures are silent. TBD which
  2109. * failures should be reported.
  2110. */
  2111. static int nvme_dev_add(struct nvme_dev *dev)
  2112. {
  2113. struct pci_dev *pdev = to_pci_dev(dev->dev);
  2114. int res;
  2115. struct nvme_id_ctrl *ctrl;
  2116. int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
  2117. res = nvme_identify_ctrl(dev, &ctrl);
  2118. if (res) {
  2119. dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
  2120. return -EIO;
  2121. }
  2122. dev->oncs = le16_to_cpup(&ctrl->oncs);
  2123. dev->abort_limit = ctrl->acl + 1;
  2124. dev->vwc = ctrl->vwc;
  2125. memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
  2126. memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
  2127. memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
  2128. if (ctrl->mdts)
  2129. dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
  2130. if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
  2131. (pdev->device == 0x0953) && ctrl->vs[3]) {
  2132. unsigned int max_hw_sectors;
  2133. dev->stripe_size = 1 << (ctrl->vs[3] + shift);
  2134. max_hw_sectors = dev->stripe_size >> (shift - 9);
  2135. if (dev->max_hw_sectors) {
  2136. dev->max_hw_sectors = min(max_hw_sectors,
  2137. dev->max_hw_sectors);
  2138. } else
  2139. dev->max_hw_sectors = max_hw_sectors;
  2140. }
  2141. kfree(ctrl);
  2142. if (!dev->tagset.tags) {
  2143. dev->tagset.ops = &nvme_mq_ops;
  2144. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  2145. dev->tagset.timeout = NVME_IO_TIMEOUT;
  2146. dev->tagset.numa_node = dev_to_node(dev->dev);
  2147. dev->tagset.queue_depth =
  2148. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  2149. dev->tagset.cmd_size = nvme_cmd_size(dev);
  2150. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  2151. dev->tagset.driver_data = dev;
  2152. if (blk_mq_alloc_tag_set(&dev->tagset))
  2153. return 0;
  2154. }
  2155. schedule_work(&dev->scan_work);
  2156. return 0;
  2157. }
  2158. static int nvme_dev_map(struct nvme_dev *dev)
  2159. {
  2160. u64 cap;
  2161. int bars, result = -ENOMEM;
  2162. struct pci_dev *pdev = to_pci_dev(dev->dev);
  2163. if (pci_enable_device_mem(pdev))
  2164. return result;
  2165. dev->entry[0].vector = pdev->irq;
  2166. pci_set_master(pdev);
  2167. bars = pci_select_bars(pdev, IORESOURCE_MEM);
  2168. if (!bars)
  2169. goto disable_pci;
  2170. if (pci_request_selected_regions(pdev, bars, "nvme"))
  2171. goto disable_pci;
  2172. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  2173. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  2174. goto disable;
  2175. dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
  2176. if (!dev->bar)
  2177. goto disable;
  2178. if (readl(&dev->bar->csts) == -1) {
  2179. result = -ENODEV;
  2180. goto unmap;
  2181. }
  2182. /*
  2183. * Some devices don't advertse INTx interrupts, pre-enable a single
  2184. * MSIX vec for setup. We'll adjust this later.
  2185. */
  2186. if (!pdev->irq) {
  2187. result = pci_enable_msix(pdev, dev->entry, 1);
  2188. if (result < 0)
  2189. goto unmap;
  2190. }
  2191. cap = readq(&dev->bar->cap);
  2192. dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
  2193. dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
  2194. dev->dbs = ((void __iomem *)dev->bar) + 4096;
  2195. if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
  2196. dev->cmb = nvme_map_cmb(dev);
  2197. return 0;
  2198. unmap:
  2199. iounmap(dev->bar);
  2200. dev->bar = NULL;
  2201. disable:
  2202. pci_release_regions(pdev);
  2203. disable_pci:
  2204. pci_disable_device(pdev);
  2205. return result;
  2206. }
  2207. static void nvme_dev_unmap(struct nvme_dev *dev)
  2208. {
  2209. struct pci_dev *pdev = to_pci_dev(dev->dev);
  2210. if (pdev->msi_enabled)
  2211. pci_disable_msi(pdev);
  2212. else if (pdev->msix_enabled)
  2213. pci_disable_msix(pdev);
  2214. if (dev->bar) {
  2215. iounmap(dev->bar);
  2216. dev->bar = NULL;
  2217. pci_release_regions(pdev);
  2218. }
  2219. if (pci_is_enabled(pdev))
  2220. pci_disable_device(pdev);
  2221. }
  2222. struct nvme_delq_ctx {
  2223. struct task_struct *waiter;
  2224. struct kthread_worker *worker;
  2225. atomic_t refcount;
  2226. };
  2227. static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
  2228. {
  2229. dq->waiter = current;
  2230. mb();
  2231. for (;;) {
  2232. set_current_state(TASK_KILLABLE);
  2233. if (!atomic_read(&dq->refcount))
  2234. break;
  2235. if (!schedule_timeout(ADMIN_TIMEOUT) ||
  2236. fatal_signal_pending(current)) {
  2237. /*
  2238. * Disable the controller first since we can't trust it
  2239. * at this point, but leave the admin queue enabled
  2240. * until all queue deletion requests are flushed.
  2241. * FIXME: This may take a while if there are more h/w
  2242. * queues than admin tags.
  2243. */
  2244. set_current_state(TASK_RUNNING);
  2245. nvme_disable_ctrl(dev, readq(&dev->bar->cap));
  2246. nvme_clear_queue(dev->queues[0]);
  2247. flush_kthread_worker(dq->worker);
  2248. nvme_disable_queue(dev, 0);
  2249. return;
  2250. }
  2251. }
  2252. set_current_state(TASK_RUNNING);
  2253. }
  2254. static void nvme_put_dq(struct nvme_delq_ctx *dq)
  2255. {
  2256. atomic_dec(&dq->refcount);
  2257. if (dq->waiter)
  2258. wake_up_process(dq->waiter);
  2259. }
  2260. static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
  2261. {
  2262. atomic_inc(&dq->refcount);
  2263. return dq;
  2264. }
  2265. static void nvme_del_queue_end(struct nvme_queue *nvmeq)
  2266. {
  2267. struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
  2268. nvme_put_dq(dq);
  2269. }
  2270. static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
  2271. kthread_work_func_t fn)
  2272. {
  2273. struct nvme_command c;
  2274. memset(&c, 0, sizeof(c));
  2275. c.delete_queue.opcode = opcode;
  2276. c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  2277. init_kthread_work(&nvmeq->cmdinfo.work, fn);
  2278. return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
  2279. ADMIN_TIMEOUT);
  2280. }
  2281. static void nvme_del_cq_work_handler(struct kthread_work *work)
  2282. {
  2283. struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
  2284. cmdinfo.work);
  2285. nvme_del_queue_end(nvmeq);
  2286. }
  2287. static int nvme_delete_cq(struct nvme_queue *nvmeq)
  2288. {
  2289. return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
  2290. nvme_del_cq_work_handler);
  2291. }
  2292. static void nvme_del_sq_work_handler(struct kthread_work *work)
  2293. {
  2294. struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
  2295. cmdinfo.work);
  2296. int status = nvmeq->cmdinfo.status;
  2297. if (!status)
  2298. status = nvme_delete_cq(nvmeq);
  2299. if (status)
  2300. nvme_del_queue_end(nvmeq);
  2301. }
  2302. static int nvme_delete_sq(struct nvme_queue *nvmeq)
  2303. {
  2304. return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
  2305. nvme_del_sq_work_handler);
  2306. }
  2307. static void nvme_del_queue_start(struct kthread_work *work)
  2308. {
  2309. struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
  2310. cmdinfo.work);
  2311. if (nvme_delete_sq(nvmeq))
  2312. nvme_del_queue_end(nvmeq);
  2313. }
  2314. static void nvme_disable_io_queues(struct nvme_dev *dev)
  2315. {
  2316. int i;
  2317. DEFINE_KTHREAD_WORKER_ONSTACK(worker);
  2318. struct nvme_delq_ctx dq;
  2319. struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
  2320. &worker, "nvme%d", dev->instance);
  2321. if (IS_ERR(kworker_task)) {
  2322. dev_err(dev->dev,
  2323. "Failed to create queue del task\n");
  2324. for (i = dev->queue_count - 1; i > 0; i--)
  2325. nvme_disable_queue(dev, i);
  2326. return;
  2327. }
  2328. dq.waiter = NULL;
  2329. atomic_set(&dq.refcount, 0);
  2330. dq.worker = &worker;
  2331. for (i = dev->queue_count - 1; i > 0; i--) {
  2332. struct nvme_queue *nvmeq = dev->queues[i];
  2333. if (nvme_suspend_queue(nvmeq))
  2334. continue;
  2335. nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
  2336. nvmeq->cmdinfo.worker = dq.worker;
  2337. init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
  2338. queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
  2339. }
  2340. nvme_wait_dq(&dq, dev);
  2341. kthread_stop(kworker_task);
  2342. }
  2343. /*
  2344. * Remove the node from the device list and check
  2345. * for whether or not we need to stop the nvme_thread.
  2346. */
  2347. static void nvme_dev_list_remove(struct nvme_dev *dev)
  2348. {
  2349. struct task_struct *tmp = NULL;
  2350. spin_lock(&dev_list_lock);
  2351. list_del_init(&dev->node);
  2352. if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
  2353. tmp = nvme_thread;
  2354. nvme_thread = NULL;
  2355. }
  2356. spin_unlock(&dev_list_lock);
  2357. if (tmp)
  2358. kthread_stop(tmp);
  2359. }
  2360. static void nvme_freeze_queues(struct nvme_dev *dev)
  2361. {
  2362. struct nvme_ns *ns;
  2363. list_for_each_entry(ns, &dev->namespaces, list) {
  2364. blk_mq_freeze_queue_start(ns->queue);
  2365. spin_lock_irq(ns->queue->queue_lock);
  2366. queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
  2367. spin_unlock_irq(ns->queue->queue_lock);
  2368. blk_mq_cancel_requeue_work(ns->queue);
  2369. blk_mq_stop_hw_queues(ns->queue);
  2370. }
  2371. }
  2372. static void nvme_unfreeze_queues(struct nvme_dev *dev)
  2373. {
  2374. struct nvme_ns *ns;
  2375. list_for_each_entry(ns, &dev->namespaces, list) {
  2376. queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
  2377. blk_mq_unfreeze_queue(ns->queue);
  2378. blk_mq_start_stopped_hw_queues(ns->queue, true);
  2379. blk_mq_kick_requeue_list(ns->queue);
  2380. }
  2381. }
  2382. static void nvme_dev_shutdown(struct nvme_dev *dev)
  2383. {
  2384. int i;
  2385. u32 csts = -1;
  2386. nvme_dev_list_remove(dev);
  2387. if (dev->bar) {
  2388. nvme_freeze_queues(dev);
  2389. csts = readl(&dev->bar->csts);
  2390. }
  2391. if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
  2392. for (i = dev->queue_count - 1; i >= 0; i--) {
  2393. struct nvme_queue *nvmeq = dev->queues[i];
  2394. nvme_suspend_queue(nvmeq);
  2395. }
  2396. } else {
  2397. nvme_disable_io_queues(dev);
  2398. nvme_shutdown_ctrl(dev);
  2399. nvme_disable_queue(dev, 0);
  2400. }
  2401. nvme_dev_unmap(dev);
  2402. for (i = dev->queue_count - 1; i >= 0; i--)
  2403. nvme_clear_queue(dev->queues[i]);
  2404. }
  2405. static void nvme_dev_remove(struct nvme_dev *dev)
  2406. {
  2407. struct nvme_ns *ns, *next;
  2408. list_for_each_entry_safe(ns, next, &dev->namespaces, list)
  2409. nvme_ns_remove(ns);
  2410. }
  2411. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  2412. {
  2413. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  2414. PAGE_SIZE, PAGE_SIZE, 0);
  2415. if (!dev->prp_page_pool)
  2416. return -ENOMEM;
  2417. /* Optimisation for I/Os between 4k and 128k */
  2418. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  2419. 256, 256, 0);
  2420. if (!dev->prp_small_pool) {
  2421. dma_pool_destroy(dev->prp_page_pool);
  2422. return -ENOMEM;
  2423. }
  2424. return 0;
  2425. }
  2426. static void nvme_release_prp_pools(struct nvme_dev *dev)
  2427. {
  2428. dma_pool_destroy(dev->prp_page_pool);
  2429. dma_pool_destroy(dev->prp_small_pool);
  2430. }
  2431. static DEFINE_IDA(nvme_instance_ida);
  2432. static int nvme_set_instance(struct nvme_dev *dev)
  2433. {
  2434. int instance, error;
  2435. do {
  2436. if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
  2437. return -ENODEV;
  2438. spin_lock(&dev_list_lock);
  2439. error = ida_get_new(&nvme_instance_ida, &instance);
  2440. spin_unlock(&dev_list_lock);
  2441. } while (error == -EAGAIN);
  2442. if (error)
  2443. return -ENODEV;
  2444. dev->instance = instance;
  2445. return 0;
  2446. }
  2447. static void nvme_release_instance(struct nvme_dev *dev)
  2448. {
  2449. spin_lock(&dev_list_lock);
  2450. ida_remove(&nvme_instance_ida, dev->instance);
  2451. spin_unlock(&dev_list_lock);
  2452. }
  2453. static void nvme_free_dev(struct kref *kref)
  2454. {
  2455. struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
  2456. put_device(dev->dev);
  2457. put_device(dev->device);
  2458. nvme_release_instance(dev);
  2459. if (dev->tagset.tags)
  2460. blk_mq_free_tag_set(&dev->tagset);
  2461. if (dev->admin_q)
  2462. blk_put_queue(dev->admin_q);
  2463. kfree(dev->queues);
  2464. kfree(dev->entry);
  2465. kfree(dev);
  2466. }
  2467. static int nvme_dev_open(struct inode *inode, struct file *f)
  2468. {
  2469. struct nvme_dev *dev;
  2470. int instance = iminor(inode);
  2471. int ret = -ENODEV;
  2472. spin_lock(&dev_list_lock);
  2473. list_for_each_entry(dev, &dev_list, node) {
  2474. if (dev->instance == instance) {
  2475. if (!dev->admin_q) {
  2476. ret = -EWOULDBLOCK;
  2477. break;
  2478. }
  2479. if (!kref_get_unless_zero(&dev->kref))
  2480. break;
  2481. f->private_data = dev;
  2482. ret = 0;
  2483. break;
  2484. }
  2485. }
  2486. spin_unlock(&dev_list_lock);
  2487. return ret;
  2488. }
  2489. static int nvme_dev_release(struct inode *inode, struct file *f)
  2490. {
  2491. struct nvme_dev *dev = f->private_data;
  2492. kref_put(&dev->kref, nvme_free_dev);
  2493. return 0;
  2494. }
  2495. static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  2496. {
  2497. struct nvme_dev *dev = f->private_data;
  2498. struct nvme_ns *ns;
  2499. switch (cmd) {
  2500. case NVME_IOCTL_ADMIN_CMD:
  2501. return nvme_user_cmd(dev, NULL, (void __user *)arg);
  2502. case NVME_IOCTL_IO_CMD:
  2503. if (list_empty(&dev->namespaces))
  2504. return -ENOTTY;
  2505. ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
  2506. return nvme_user_cmd(dev, ns, (void __user *)arg);
  2507. case NVME_IOCTL_RESET:
  2508. dev_warn(dev->dev, "resetting controller\n");
  2509. return nvme_reset(dev);
  2510. case NVME_IOCTL_SUBSYS_RESET:
  2511. return nvme_subsys_reset(dev);
  2512. default:
  2513. return -ENOTTY;
  2514. }
  2515. }
  2516. static const struct file_operations nvme_dev_fops = {
  2517. .owner = THIS_MODULE,
  2518. .open = nvme_dev_open,
  2519. .release = nvme_dev_release,
  2520. .unlocked_ioctl = nvme_dev_ioctl,
  2521. .compat_ioctl = nvme_dev_ioctl,
  2522. };
  2523. static void nvme_probe_work(struct work_struct *work)
  2524. {
  2525. struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
  2526. bool start_thread = false;
  2527. int result;
  2528. result = nvme_dev_map(dev);
  2529. if (result)
  2530. goto out;
  2531. result = nvme_configure_admin_queue(dev);
  2532. if (result)
  2533. goto unmap;
  2534. spin_lock(&dev_list_lock);
  2535. if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
  2536. start_thread = true;
  2537. nvme_thread = NULL;
  2538. }
  2539. list_add(&dev->node, &dev_list);
  2540. spin_unlock(&dev_list_lock);
  2541. if (start_thread) {
  2542. nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
  2543. wake_up_all(&nvme_kthread_wait);
  2544. } else
  2545. wait_event_killable(nvme_kthread_wait, nvme_thread);
  2546. if (IS_ERR_OR_NULL(nvme_thread)) {
  2547. result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
  2548. goto disable;
  2549. }
  2550. nvme_init_queue(dev->queues[0], 0);
  2551. result = nvme_alloc_admin_tags(dev);
  2552. if (result)
  2553. goto disable;
  2554. result = nvme_setup_io_queues(dev);
  2555. if (result)
  2556. goto free_tags;
  2557. dev->event_limit = 1;
  2558. /*
  2559. * Keep the controller around but remove all namespaces if we don't have
  2560. * any working I/O queue.
  2561. */
  2562. if (dev->online_queues < 2) {
  2563. dev_warn(dev->dev, "IO queues not created\n");
  2564. nvme_dev_remove(dev);
  2565. } else {
  2566. nvme_unfreeze_queues(dev);
  2567. nvme_dev_add(dev);
  2568. }
  2569. return;
  2570. free_tags:
  2571. nvme_dev_remove_admin(dev);
  2572. blk_put_queue(dev->admin_q);
  2573. dev->admin_q = NULL;
  2574. dev->queues[0]->tags = NULL;
  2575. disable:
  2576. nvme_disable_queue(dev, 0);
  2577. nvme_dev_list_remove(dev);
  2578. unmap:
  2579. nvme_dev_unmap(dev);
  2580. out:
  2581. if (!work_busy(&dev->reset_work))
  2582. nvme_dead_ctrl(dev);
  2583. }
  2584. static int nvme_remove_dead_ctrl(void *arg)
  2585. {
  2586. struct nvme_dev *dev = (struct nvme_dev *)arg;
  2587. struct pci_dev *pdev = to_pci_dev(dev->dev);
  2588. if (pci_get_drvdata(pdev))
  2589. pci_stop_and_remove_bus_device_locked(pdev);
  2590. kref_put(&dev->kref, nvme_free_dev);
  2591. return 0;
  2592. }
  2593. static void nvme_dead_ctrl(struct nvme_dev *dev)
  2594. {
  2595. dev_warn(dev->dev, "Device failed to resume\n");
  2596. kref_get(&dev->kref);
  2597. if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
  2598. dev->instance))) {
  2599. dev_err(dev->dev,
  2600. "Failed to start controller remove task\n");
  2601. kref_put(&dev->kref, nvme_free_dev);
  2602. }
  2603. }
  2604. static void nvme_reset_work(struct work_struct *ws)
  2605. {
  2606. struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
  2607. bool in_probe = work_busy(&dev->probe_work);
  2608. nvme_dev_shutdown(dev);
  2609. /* Synchronize with device probe so that work will see failure status
  2610. * and exit gracefully without trying to schedule another reset */
  2611. flush_work(&dev->probe_work);
  2612. /* Fail this device if reset occured during probe to avoid
  2613. * infinite initialization loops. */
  2614. if (in_probe) {
  2615. nvme_dead_ctrl(dev);
  2616. return;
  2617. }
  2618. /* Schedule device resume asynchronously so the reset work is available
  2619. * to cleanup errors that may occur during reinitialization */
  2620. schedule_work(&dev->probe_work);
  2621. }
  2622. static int __nvme_reset(struct nvme_dev *dev)
  2623. {
  2624. if (work_pending(&dev->reset_work))
  2625. return -EBUSY;
  2626. list_del_init(&dev->node);
  2627. queue_work(nvme_workq, &dev->reset_work);
  2628. return 0;
  2629. }
  2630. static int nvme_reset(struct nvme_dev *dev)
  2631. {
  2632. int ret;
  2633. if (!dev->admin_q || blk_queue_dying(dev->admin_q))
  2634. return -ENODEV;
  2635. spin_lock(&dev_list_lock);
  2636. ret = __nvme_reset(dev);
  2637. spin_unlock(&dev_list_lock);
  2638. if (!ret) {
  2639. flush_work(&dev->reset_work);
  2640. flush_work(&dev->probe_work);
  2641. return 0;
  2642. }
  2643. return ret;
  2644. }
  2645. static ssize_t nvme_sysfs_reset(struct device *dev,
  2646. struct device_attribute *attr, const char *buf,
  2647. size_t count)
  2648. {
  2649. struct nvme_dev *ndev = dev_get_drvdata(dev);
  2650. int ret;
  2651. ret = nvme_reset(ndev);
  2652. if (ret < 0)
  2653. return ret;
  2654. return count;
  2655. }
  2656. static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
  2657. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  2658. {
  2659. int node, result = -ENOMEM;
  2660. struct nvme_dev *dev;
  2661. node = dev_to_node(&pdev->dev);
  2662. if (node == NUMA_NO_NODE)
  2663. set_dev_node(&pdev->dev, 0);
  2664. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  2665. if (!dev)
  2666. return -ENOMEM;
  2667. dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
  2668. GFP_KERNEL, node);
  2669. if (!dev->entry)
  2670. goto free;
  2671. dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
  2672. GFP_KERNEL, node);
  2673. if (!dev->queues)
  2674. goto free;
  2675. INIT_LIST_HEAD(&dev->namespaces);
  2676. INIT_WORK(&dev->reset_work, nvme_reset_work);
  2677. dev->dev = get_device(&pdev->dev);
  2678. pci_set_drvdata(pdev, dev);
  2679. result = nvme_set_instance(dev);
  2680. if (result)
  2681. goto put_pci;
  2682. result = nvme_setup_prp_pools(dev);
  2683. if (result)
  2684. goto release;
  2685. kref_init(&dev->kref);
  2686. dev->device = device_create(nvme_class, &pdev->dev,
  2687. MKDEV(nvme_char_major, dev->instance),
  2688. dev, "nvme%d", dev->instance);
  2689. if (IS_ERR(dev->device)) {
  2690. result = PTR_ERR(dev->device);
  2691. goto release_pools;
  2692. }
  2693. get_device(dev->device);
  2694. dev_set_drvdata(dev->device, dev);
  2695. result = device_create_file(dev->device, &dev_attr_reset_controller);
  2696. if (result)
  2697. goto put_dev;
  2698. INIT_LIST_HEAD(&dev->node);
  2699. INIT_WORK(&dev->scan_work, nvme_dev_scan);
  2700. INIT_WORK(&dev->probe_work, nvme_probe_work);
  2701. schedule_work(&dev->probe_work);
  2702. return 0;
  2703. put_dev:
  2704. device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
  2705. put_device(dev->device);
  2706. release_pools:
  2707. nvme_release_prp_pools(dev);
  2708. release:
  2709. nvme_release_instance(dev);
  2710. put_pci:
  2711. put_device(dev->dev);
  2712. free:
  2713. kfree(dev->queues);
  2714. kfree(dev->entry);
  2715. kfree(dev);
  2716. return result;
  2717. }
  2718. static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
  2719. {
  2720. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2721. if (prepare)
  2722. nvme_dev_shutdown(dev);
  2723. else
  2724. schedule_work(&dev->probe_work);
  2725. }
  2726. static void nvme_shutdown(struct pci_dev *pdev)
  2727. {
  2728. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2729. nvme_dev_shutdown(dev);
  2730. }
  2731. static void nvme_remove(struct pci_dev *pdev)
  2732. {
  2733. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2734. spin_lock(&dev_list_lock);
  2735. list_del_init(&dev->node);
  2736. spin_unlock(&dev_list_lock);
  2737. pci_set_drvdata(pdev, NULL);
  2738. flush_work(&dev->probe_work);
  2739. flush_work(&dev->reset_work);
  2740. flush_work(&dev->scan_work);
  2741. device_remove_file(dev->device, &dev_attr_reset_controller);
  2742. nvme_dev_remove(dev);
  2743. nvme_dev_shutdown(dev);
  2744. nvme_dev_remove_admin(dev);
  2745. device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
  2746. nvme_free_queues(dev, 0);
  2747. nvme_release_cmb(dev);
  2748. nvme_release_prp_pools(dev);
  2749. kref_put(&dev->kref, nvme_free_dev);
  2750. }
  2751. /* These functions are yet to be implemented */
  2752. #define nvme_error_detected NULL
  2753. #define nvme_dump_registers NULL
  2754. #define nvme_link_reset NULL
  2755. #define nvme_slot_reset NULL
  2756. #define nvme_error_resume NULL
  2757. #ifdef CONFIG_PM_SLEEP
  2758. static int nvme_suspend(struct device *dev)
  2759. {
  2760. struct pci_dev *pdev = to_pci_dev(dev);
  2761. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2762. nvme_dev_shutdown(ndev);
  2763. return 0;
  2764. }
  2765. static int nvme_resume(struct device *dev)
  2766. {
  2767. struct pci_dev *pdev = to_pci_dev(dev);
  2768. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2769. schedule_work(&ndev->probe_work);
  2770. return 0;
  2771. }
  2772. #endif
  2773. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  2774. static const struct pci_error_handlers nvme_err_handler = {
  2775. .error_detected = nvme_error_detected,
  2776. .mmio_enabled = nvme_dump_registers,
  2777. .link_reset = nvme_link_reset,
  2778. .slot_reset = nvme_slot_reset,
  2779. .resume = nvme_error_resume,
  2780. .reset_notify = nvme_reset_notify,
  2781. };
  2782. /* Move to pci_ids.h later */
  2783. #define PCI_CLASS_STORAGE_EXPRESS 0x010802
  2784. static const struct pci_device_id nvme_id_table[] = {
  2785. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  2786. { 0, }
  2787. };
  2788. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  2789. static struct pci_driver nvme_driver = {
  2790. .name = "nvme",
  2791. .id_table = nvme_id_table,
  2792. .probe = nvme_probe,
  2793. .remove = nvme_remove,
  2794. .shutdown = nvme_shutdown,
  2795. .driver = {
  2796. .pm = &nvme_dev_pm_ops,
  2797. },
  2798. .err_handler = &nvme_err_handler,
  2799. };
  2800. static int __init nvme_init(void)
  2801. {
  2802. int result;
  2803. init_waitqueue_head(&nvme_kthread_wait);
  2804. nvme_workq = create_singlethread_workqueue("nvme");
  2805. if (!nvme_workq)
  2806. return -ENOMEM;
  2807. result = register_blkdev(nvme_major, "nvme");
  2808. if (result < 0)
  2809. goto kill_workq;
  2810. else if (result > 0)
  2811. nvme_major = result;
  2812. result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
  2813. &nvme_dev_fops);
  2814. if (result < 0)
  2815. goto unregister_blkdev;
  2816. else if (result > 0)
  2817. nvme_char_major = result;
  2818. nvme_class = class_create(THIS_MODULE, "nvme");
  2819. if (IS_ERR(nvme_class)) {
  2820. result = PTR_ERR(nvme_class);
  2821. goto unregister_chrdev;
  2822. }
  2823. result = pci_register_driver(&nvme_driver);
  2824. if (result)
  2825. goto destroy_class;
  2826. return 0;
  2827. destroy_class:
  2828. class_destroy(nvme_class);
  2829. unregister_chrdev:
  2830. __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
  2831. unregister_blkdev:
  2832. unregister_blkdev(nvme_major, "nvme");
  2833. kill_workq:
  2834. destroy_workqueue(nvme_workq);
  2835. return result;
  2836. }
  2837. static void __exit nvme_exit(void)
  2838. {
  2839. pci_unregister_driver(&nvme_driver);
  2840. unregister_blkdev(nvme_major, "nvme");
  2841. destroy_workqueue(nvme_workq);
  2842. class_destroy(nvme_class);
  2843. __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
  2844. BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
  2845. _nvme_check_size();
  2846. }
  2847. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  2848. MODULE_LICENSE("GPL");
  2849. MODULE_VERSION("1.0");
  2850. module_init(nvme_init);
  2851. module_exit(nvme_exit);