namespace.c 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/cred.h>
  18. #include <linux/idr.h>
  19. #include <linux/init.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_ns.h>
  24. #include <linux/magic.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/task_work.h>
  27. #include <linux/sched/task.h>
  28. #include "pnode.h"
  29. #include "internal.h"
  30. /* Maximum number of mounts in a mount namespace */
  31. unsigned int sysctl_mount_max __read_mostly = 100000;
  32. static unsigned int m_hash_mask __read_mostly;
  33. static unsigned int m_hash_shift __read_mostly;
  34. static unsigned int mp_hash_mask __read_mostly;
  35. static unsigned int mp_hash_shift __read_mostly;
  36. static __initdata unsigned long mhash_entries;
  37. static int __init set_mhash_entries(char *str)
  38. {
  39. if (!str)
  40. return 0;
  41. mhash_entries = simple_strtoul(str, &str, 0);
  42. return 1;
  43. }
  44. __setup("mhash_entries=", set_mhash_entries);
  45. static __initdata unsigned long mphash_entries;
  46. static int __init set_mphash_entries(char *str)
  47. {
  48. if (!str)
  49. return 0;
  50. mphash_entries = simple_strtoul(str, &str, 0);
  51. return 1;
  52. }
  53. __setup("mphash_entries=", set_mphash_entries);
  54. static u64 event;
  55. static DEFINE_IDA(mnt_id_ida);
  56. static DEFINE_IDA(mnt_group_ida);
  57. static DEFINE_SPINLOCK(mnt_id_lock);
  58. static int mnt_id_start = 0;
  59. static int mnt_group_start = 1;
  60. static struct hlist_head *mount_hashtable __read_mostly;
  61. static struct hlist_head *mountpoint_hashtable __read_mostly;
  62. static struct kmem_cache *mnt_cache __read_mostly;
  63. static DECLARE_RWSEM(namespace_sem);
  64. /* /sys/fs */
  65. struct kobject *fs_kobj;
  66. EXPORT_SYMBOL_GPL(fs_kobj);
  67. /*
  68. * vfsmount lock may be taken for read to prevent changes to the
  69. * vfsmount hash, ie. during mountpoint lookups or walking back
  70. * up the tree.
  71. *
  72. * It should be taken for write in all cases where the vfsmount
  73. * tree or hash is modified or when a vfsmount structure is modified.
  74. */
  75. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  76. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  77. {
  78. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  79. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  80. tmp = tmp + (tmp >> m_hash_shift);
  81. return &mount_hashtable[tmp & m_hash_mask];
  82. }
  83. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  84. {
  85. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  86. tmp = tmp + (tmp >> mp_hash_shift);
  87. return &mountpoint_hashtable[tmp & mp_hash_mask];
  88. }
  89. static int mnt_alloc_id(struct mount *mnt)
  90. {
  91. int res;
  92. retry:
  93. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  94. spin_lock(&mnt_id_lock);
  95. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  96. if (!res)
  97. mnt_id_start = mnt->mnt_id + 1;
  98. spin_unlock(&mnt_id_lock);
  99. if (res == -EAGAIN)
  100. goto retry;
  101. return res;
  102. }
  103. static void mnt_free_id(struct mount *mnt)
  104. {
  105. int id = mnt->mnt_id;
  106. spin_lock(&mnt_id_lock);
  107. ida_remove(&mnt_id_ida, id);
  108. if (mnt_id_start > id)
  109. mnt_id_start = id;
  110. spin_unlock(&mnt_id_lock);
  111. }
  112. /*
  113. * Allocate a new peer group ID
  114. *
  115. * mnt_group_ida is protected by namespace_sem
  116. */
  117. static int mnt_alloc_group_id(struct mount *mnt)
  118. {
  119. int res;
  120. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  121. return -ENOMEM;
  122. res = ida_get_new_above(&mnt_group_ida,
  123. mnt_group_start,
  124. &mnt->mnt_group_id);
  125. if (!res)
  126. mnt_group_start = mnt->mnt_group_id + 1;
  127. return res;
  128. }
  129. /*
  130. * Release a peer group ID
  131. */
  132. void mnt_release_group_id(struct mount *mnt)
  133. {
  134. int id = mnt->mnt_group_id;
  135. ida_remove(&mnt_group_ida, id);
  136. if (mnt_group_start > id)
  137. mnt_group_start = id;
  138. mnt->mnt_group_id = 0;
  139. }
  140. /*
  141. * vfsmount lock must be held for read
  142. */
  143. static inline void mnt_add_count(struct mount *mnt, int n)
  144. {
  145. #ifdef CONFIG_SMP
  146. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  147. #else
  148. preempt_disable();
  149. mnt->mnt_count += n;
  150. preempt_enable();
  151. #endif
  152. }
  153. /*
  154. * vfsmount lock must be held for write
  155. */
  156. unsigned int mnt_get_count(struct mount *mnt)
  157. {
  158. #ifdef CONFIG_SMP
  159. unsigned int count = 0;
  160. int cpu;
  161. for_each_possible_cpu(cpu) {
  162. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  163. }
  164. return count;
  165. #else
  166. return mnt->mnt_count;
  167. #endif
  168. }
  169. static void drop_mountpoint(struct fs_pin *p)
  170. {
  171. struct mount *m = container_of(p, struct mount, mnt_umount);
  172. dput(m->mnt_ex_mountpoint);
  173. pin_remove(p);
  174. mntput(&m->mnt);
  175. }
  176. static struct mount *alloc_vfsmnt(const char *name)
  177. {
  178. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  179. if (mnt) {
  180. int err;
  181. err = mnt_alloc_id(mnt);
  182. if (err)
  183. goto out_free_cache;
  184. if (name) {
  185. mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
  186. if (!mnt->mnt_devname)
  187. goto out_free_id;
  188. }
  189. #ifdef CONFIG_SMP
  190. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  191. if (!mnt->mnt_pcp)
  192. goto out_free_devname;
  193. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  194. #else
  195. mnt->mnt_count = 1;
  196. mnt->mnt_writers = 0;
  197. #endif
  198. INIT_HLIST_NODE(&mnt->mnt_hash);
  199. INIT_LIST_HEAD(&mnt->mnt_child);
  200. INIT_LIST_HEAD(&mnt->mnt_mounts);
  201. INIT_LIST_HEAD(&mnt->mnt_list);
  202. INIT_LIST_HEAD(&mnt->mnt_expire);
  203. INIT_LIST_HEAD(&mnt->mnt_share);
  204. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  205. INIT_LIST_HEAD(&mnt->mnt_slave);
  206. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  207. INIT_LIST_HEAD(&mnt->mnt_umounting);
  208. init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
  209. }
  210. return mnt;
  211. #ifdef CONFIG_SMP
  212. out_free_devname:
  213. kfree_const(mnt->mnt_devname);
  214. #endif
  215. out_free_id:
  216. mnt_free_id(mnt);
  217. out_free_cache:
  218. kmem_cache_free(mnt_cache, mnt);
  219. return NULL;
  220. }
  221. /*
  222. * Most r/o checks on a fs are for operations that take
  223. * discrete amounts of time, like a write() or unlink().
  224. * We must keep track of when those operations start
  225. * (for permission checks) and when they end, so that
  226. * we can determine when writes are able to occur to
  227. * a filesystem.
  228. */
  229. /*
  230. * __mnt_is_readonly: check whether a mount is read-only
  231. * @mnt: the mount to check for its write status
  232. *
  233. * This shouldn't be used directly ouside of the VFS.
  234. * It does not guarantee that the filesystem will stay
  235. * r/w, just that it is right *now*. This can not and
  236. * should not be used in place of IS_RDONLY(inode).
  237. * mnt_want/drop_write() will _keep_ the filesystem
  238. * r/w.
  239. */
  240. int __mnt_is_readonly(struct vfsmount *mnt)
  241. {
  242. if (mnt->mnt_flags & MNT_READONLY)
  243. return 1;
  244. if (sb_rdonly(mnt->mnt_sb))
  245. return 1;
  246. return 0;
  247. }
  248. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  249. static inline void mnt_inc_writers(struct mount *mnt)
  250. {
  251. #ifdef CONFIG_SMP
  252. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  253. #else
  254. mnt->mnt_writers++;
  255. #endif
  256. }
  257. static inline void mnt_dec_writers(struct mount *mnt)
  258. {
  259. #ifdef CONFIG_SMP
  260. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  261. #else
  262. mnt->mnt_writers--;
  263. #endif
  264. }
  265. static unsigned int mnt_get_writers(struct mount *mnt)
  266. {
  267. #ifdef CONFIG_SMP
  268. unsigned int count = 0;
  269. int cpu;
  270. for_each_possible_cpu(cpu) {
  271. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  272. }
  273. return count;
  274. #else
  275. return mnt->mnt_writers;
  276. #endif
  277. }
  278. static int mnt_is_readonly(struct vfsmount *mnt)
  279. {
  280. if (mnt->mnt_sb->s_readonly_remount)
  281. return 1;
  282. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  283. smp_rmb();
  284. return __mnt_is_readonly(mnt);
  285. }
  286. /*
  287. * Most r/o & frozen checks on a fs are for operations that take discrete
  288. * amounts of time, like a write() or unlink(). We must keep track of when
  289. * those operations start (for permission checks) and when they end, so that we
  290. * can determine when writes are able to occur to a filesystem.
  291. */
  292. /**
  293. * __mnt_want_write - get write access to a mount without freeze protection
  294. * @m: the mount on which to take a write
  295. *
  296. * This tells the low-level filesystem that a write is about to be performed to
  297. * it, and makes sure that writes are allowed (mnt it read-write) before
  298. * returning success. This operation does not protect against filesystem being
  299. * frozen. When the write operation is finished, __mnt_drop_write() must be
  300. * called. This is effectively a refcount.
  301. */
  302. int __mnt_want_write(struct vfsmount *m)
  303. {
  304. struct mount *mnt = real_mount(m);
  305. int ret = 0;
  306. preempt_disable();
  307. mnt_inc_writers(mnt);
  308. /*
  309. * The store to mnt_inc_writers must be visible before we pass
  310. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  311. * incremented count after it has set MNT_WRITE_HOLD.
  312. */
  313. smp_mb();
  314. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  315. cpu_relax();
  316. /*
  317. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  318. * be set to match its requirements. So we must not load that until
  319. * MNT_WRITE_HOLD is cleared.
  320. */
  321. smp_rmb();
  322. if (mnt_is_readonly(m)) {
  323. mnt_dec_writers(mnt);
  324. ret = -EROFS;
  325. }
  326. preempt_enable();
  327. return ret;
  328. }
  329. /**
  330. * mnt_want_write - get write access to a mount
  331. * @m: the mount on which to take a write
  332. *
  333. * This tells the low-level filesystem that a write is about to be performed to
  334. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  335. * is not frozen) before returning success. When the write operation is
  336. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  337. */
  338. int mnt_want_write(struct vfsmount *m)
  339. {
  340. int ret;
  341. sb_start_write(m->mnt_sb);
  342. ret = __mnt_want_write(m);
  343. if (ret)
  344. sb_end_write(m->mnt_sb);
  345. return ret;
  346. }
  347. EXPORT_SYMBOL_GPL(mnt_want_write);
  348. /**
  349. * mnt_clone_write - get write access to a mount
  350. * @mnt: the mount on which to take a write
  351. *
  352. * This is effectively like mnt_want_write, except
  353. * it must only be used to take an extra write reference
  354. * on a mountpoint that we already know has a write reference
  355. * on it. This allows some optimisation.
  356. *
  357. * After finished, mnt_drop_write must be called as usual to
  358. * drop the reference.
  359. */
  360. int mnt_clone_write(struct vfsmount *mnt)
  361. {
  362. /* superblock may be r/o */
  363. if (__mnt_is_readonly(mnt))
  364. return -EROFS;
  365. preempt_disable();
  366. mnt_inc_writers(real_mount(mnt));
  367. preempt_enable();
  368. return 0;
  369. }
  370. EXPORT_SYMBOL_GPL(mnt_clone_write);
  371. /**
  372. * __mnt_want_write_file - get write access to a file's mount
  373. * @file: the file who's mount on which to take a write
  374. *
  375. * This is like __mnt_want_write, but it takes a file and can
  376. * do some optimisations if the file is open for write already
  377. */
  378. int __mnt_want_write_file(struct file *file)
  379. {
  380. if (!(file->f_mode & FMODE_WRITER))
  381. return __mnt_want_write(file->f_path.mnt);
  382. else
  383. return mnt_clone_write(file->f_path.mnt);
  384. }
  385. /**
  386. * mnt_want_write_file_path - get write access to a file's mount
  387. * @file: the file who's mount on which to take a write
  388. *
  389. * This is like mnt_want_write, but it takes a file and can
  390. * do some optimisations if the file is open for write already
  391. *
  392. * Called by the vfs for cases when we have an open file at hand, but will do an
  393. * inode operation on it (important distinction for files opened on overlayfs,
  394. * since the file operations will come from the real underlying file, while
  395. * inode operations come from the overlay).
  396. */
  397. int mnt_want_write_file_path(struct file *file)
  398. {
  399. int ret;
  400. sb_start_write(file->f_path.mnt->mnt_sb);
  401. ret = __mnt_want_write_file(file);
  402. if (ret)
  403. sb_end_write(file->f_path.mnt->mnt_sb);
  404. return ret;
  405. }
  406. static inline int may_write_real(struct file *file)
  407. {
  408. struct dentry *dentry = file->f_path.dentry;
  409. struct dentry *upperdentry;
  410. /* Writable file? */
  411. if (file->f_mode & FMODE_WRITER)
  412. return 0;
  413. /* Not overlayfs? */
  414. if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
  415. return 0;
  416. /* File refers to upper, writable layer? */
  417. upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
  418. if (upperdentry && file_inode(file) == d_inode(upperdentry))
  419. return 0;
  420. /* Lower layer: can't write to real file, sorry... */
  421. return -EPERM;
  422. }
  423. /**
  424. * mnt_want_write_file - get write access to a file's mount
  425. * @file: the file who's mount on which to take a write
  426. *
  427. * This is like mnt_want_write, but it takes a file and can
  428. * do some optimisations if the file is open for write already
  429. *
  430. * Mostly called by filesystems from their ioctl operation before performing
  431. * modification. On overlayfs this needs to check if the file is on a read-only
  432. * lower layer and deny access in that case.
  433. */
  434. int mnt_want_write_file(struct file *file)
  435. {
  436. int ret;
  437. ret = may_write_real(file);
  438. if (!ret) {
  439. sb_start_write(file_inode(file)->i_sb);
  440. ret = __mnt_want_write_file(file);
  441. if (ret)
  442. sb_end_write(file_inode(file)->i_sb);
  443. }
  444. return ret;
  445. }
  446. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  447. /**
  448. * __mnt_drop_write - give up write access to a mount
  449. * @mnt: the mount on which to give up write access
  450. *
  451. * Tells the low-level filesystem that we are done
  452. * performing writes to it. Must be matched with
  453. * __mnt_want_write() call above.
  454. */
  455. void __mnt_drop_write(struct vfsmount *mnt)
  456. {
  457. preempt_disable();
  458. mnt_dec_writers(real_mount(mnt));
  459. preempt_enable();
  460. }
  461. /**
  462. * mnt_drop_write - give up write access to a mount
  463. * @mnt: the mount on which to give up write access
  464. *
  465. * Tells the low-level filesystem that we are done performing writes to it and
  466. * also allows filesystem to be frozen again. Must be matched with
  467. * mnt_want_write() call above.
  468. */
  469. void mnt_drop_write(struct vfsmount *mnt)
  470. {
  471. __mnt_drop_write(mnt);
  472. sb_end_write(mnt->mnt_sb);
  473. }
  474. EXPORT_SYMBOL_GPL(mnt_drop_write);
  475. void __mnt_drop_write_file(struct file *file)
  476. {
  477. __mnt_drop_write(file->f_path.mnt);
  478. }
  479. void mnt_drop_write_file_path(struct file *file)
  480. {
  481. mnt_drop_write(file->f_path.mnt);
  482. }
  483. void mnt_drop_write_file(struct file *file)
  484. {
  485. __mnt_drop_write(file->f_path.mnt);
  486. sb_end_write(file_inode(file)->i_sb);
  487. }
  488. EXPORT_SYMBOL(mnt_drop_write_file);
  489. static int mnt_make_readonly(struct mount *mnt)
  490. {
  491. int ret = 0;
  492. lock_mount_hash();
  493. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  494. /*
  495. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  496. * should be visible before we do.
  497. */
  498. smp_mb();
  499. /*
  500. * With writers on hold, if this value is zero, then there are
  501. * definitely no active writers (although held writers may subsequently
  502. * increment the count, they'll have to wait, and decrement it after
  503. * seeing MNT_READONLY).
  504. *
  505. * It is OK to have counter incremented on one CPU and decremented on
  506. * another: the sum will add up correctly. The danger would be when we
  507. * sum up each counter, if we read a counter before it is incremented,
  508. * but then read another CPU's count which it has been subsequently
  509. * decremented from -- we would see more decrements than we should.
  510. * MNT_WRITE_HOLD protects against this scenario, because
  511. * mnt_want_write first increments count, then smp_mb, then spins on
  512. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  513. * we're counting up here.
  514. */
  515. if (mnt_get_writers(mnt) > 0)
  516. ret = -EBUSY;
  517. else
  518. mnt->mnt.mnt_flags |= MNT_READONLY;
  519. /*
  520. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  521. * that become unheld will see MNT_READONLY.
  522. */
  523. smp_wmb();
  524. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  525. unlock_mount_hash();
  526. return ret;
  527. }
  528. static void __mnt_unmake_readonly(struct mount *mnt)
  529. {
  530. lock_mount_hash();
  531. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  532. unlock_mount_hash();
  533. }
  534. int sb_prepare_remount_readonly(struct super_block *sb)
  535. {
  536. struct mount *mnt;
  537. int err = 0;
  538. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  539. if (atomic_long_read(&sb->s_remove_count))
  540. return -EBUSY;
  541. lock_mount_hash();
  542. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  543. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  544. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  545. smp_mb();
  546. if (mnt_get_writers(mnt) > 0) {
  547. err = -EBUSY;
  548. break;
  549. }
  550. }
  551. }
  552. if (!err && atomic_long_read(&sb->s_remove_count))
  553. err = -EBUSY;
  554. if (!err) {
  555. sb->s_readonly_remount = 1;
  556. smp_wmb();
  557. }
  558. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  559. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  560. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  561. }
  562. unlock_mount_hash();
  563. return err;
  564. }
  565. static void free_vfsmnt(struct mount *mnt)
  566. {
  567. kfree_const(mnt->mnt_devname);
  568. #ifdef CONFIG_SMP
  569. free_percpu(mnt->mnt_pcp);
  570. #endif
  571. kmem_cache_free(mnt_cache, mnt);
  572. }
  573. static void delayed_free_vfsmnt(struct rcu_head *head)
  574. {
  575. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  576. }
  577. /* call under rcu_read_lock */
  578. int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  579. {
  580. struct mount *mnt;
  581. if (read_seqretry(&mount_lock, seq))
  582. return 1;
  583. if (bastard == NULL)
  584. return 0;
  585. mnt = real_mount(bastard);
  586. mnt_add_count(mnt, 1);
  587. if (likely(!read_seqretry(&mount_lock, seq)))
  588. return 0;
  589. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  590. mnt_add_count(mnt, -1);
  591. return 1;
  592. }
  593. return -1;
  594. }
  595. /* call under rcu_read_lock */
  596. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  597. {
  598. int res = __legitimize_mnt(bastard, seq);
  599. if (likely(!res))
  600. return true;
  601. if (unlikely(res < 0)) {
  602. rcu_read_unlock();
  603. mntput(bastard);
  604. rcu_read_lock();
  605. }
  606. return false;
  607. }
  608. /*
  609. * find the first mount at @dentry on vfsmount @mnt.
  610. * call under rcu_read_lock()
  611. */
  612. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  613. {
  614. struct hlist_head *head = m_hash(mnt, dentry);
  615. struct mount *p;
  616. hlist_for_each_entry_rcu(p, head, mnt_hash)
  617. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  618. return p;
  619. return NULL;
  620. }
  621. /*
  622. * lookup_mnt - Return the first child mount mounted at path
  623. *
  624. * "First" means first mounted chronologically. If you create the
  625. * following mounts:
  626. *
  627. * mount /dev/sda1 /mnt
  628. * mount /dev/sda2 /mnt
  629. * mount /dev/sda3 /mnt
  630. *
  631. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  632. * return successively the root dentry and vfsmount of /dev/sda1, then
  633. * /dev/sda2, then /dev/sda3, then NULL.
  634. *
  635. * lookup_mnt takes a reference to the found vfsmount.
  636. */
  637. struct vfsmount *lookup_mnt(const struct path *path)
  638. {
  639. struct mount *child_mnt;
  640. struct vfsmount *m;
  641. unsigned seq;
  642. rcu_read_lock();
  643. do {
  644. seq = read_seqbegin(&mount_lock);
  645. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  646. m = child_mnt ? &child_mnt->mnt : NULL;
  647. } while (!legitimize_mnt(m, seq));
  648. rcu_read_unlock();
  649. return m;
  650. }
  651. /*
  652. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  653. * current mount namespace.
  654. *
  655. * The common case is dentries are not mountpoints at all and that
  656. * test is handled inline. For the slow case when we are actually
  657. * dealing with a mountpoint of some kind, walk through all of the
  658. * mounts in the current mount namespace and test to see if the dentry
  659. * is a mountpoint.
  660. *
  661. * The mount_hashtable is not usable in the context because we
  662. * need to identify all mounts that may be in the current mount
  663. * namespace not just a mount that happens to have some specified
  664. * parent mount.
  665. */
  666. bool __is_local_mountpoint(struct dentry *dentry)
  667. {
  668. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  669. struct mount *mnt;
  670. bool is_covered = false;
  671. if (!d_mountpoint(dentry))
  672. goto out;
  673. down_read(&namespace_sem);
  674. list_for_each_entry(mnt, &ns->list, mnt_list) {
  675. is_covered = (mnt->mnt_mountpoint == dentry);
  676. if (is_covered)
  677. break;
  678. }
  679. up_read(&namespace_sem);
  680. out:
  681. return is_covered;
  682. }
  683. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  684. {
  685. struct hlist_head *chain = mp_hash(dentry);
  686. struct mountpoint *mp;
  687. hlist_for_each_entry(mp, chain, m_hash) {
  688. if (mp->m_dentry == dentry) {
  689. /* might be worth a WARN_ON() */
  690. if (d_unlinked(dentry))
  691. return ERR_PTR(-ENOENT);
  692. mp->m_count++;
  693. return mp;
  694. }
  695. }
  696. return NULL;
  697. }
  698. static struct mountpoint *get_mountpoint(struct dentry *dentry)
  699. {
  700. struct mountpoint *mp, *new = NULL;
  701. int ret;
  702. if (d_mountpoint(dentry)) {
  703. mountpoint:
  704. read_seqlock_excl(&mount_lock);
  705. mp = lookup_mountpoint(dentry);
  706. read_sequnlock_excl(&mount_lock);
  707. if (mp)
  708. goto done;
  709. }
  710. if (!new)
  711. new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  712. if (!new)
  713. return ERR_PTR(-ENOMEM);
  714. /* Exactly one processes may set d_mounted */
  715. ret = d_set_mounted(dentry);
  716. /* Someone else set d_mounted? */
  717. if (ret == -EBUSY)
  718. goto mountpoint;
  719. /* The dentry is not available as a mountpoint? */
  720. mp = ERR_PTR(ret);
  721. if (ret)
  722. goto done;
  723. /* Add the new mountpoint to the hash table */
  724. read_seqlock_excl(&mount_lock);
  725. new->m_dentry = dentry;
  726. new->m_count = 1;
  727. hlist_add_head(&new->m_hash, mp_hash(dentry));
  728. INIT_HLIST_HEAD(&new->m_list);
  729. read_sequnlock_excl(&mount_lock);
  730. mp = new;
  731. new = NULL;
  732. done:
  733. kfree(new);
  734. return mp;
  735. }
  736. static void put_mountpoint(struct mountpoint *mp)
  737. {
  738. if (!--mp->m_count) {
  739. struct dentry *dentry = mp->m_dentry;
  740. BUG_ON(!hlist_empty(&mp->m_list));
  741. spin_lock(&dentry->d_lock);
  742. dentry->d_flags &= ~DCACHE_MOUNTED;
  743. spin_unlock(&dentry->d_lock);
  744. hlist_del(&mp->m_hash);
  745. kfree(mp);
  746. }
  747. }
  748. static inline int check_mnt(struct mount *mnt)
  749. {
  750. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  751. }
  752. /*
  753. * vfsmount lock must be held for write
  754. */
  755. static void touch_mnt_namespace(struct mnt_namespace *ns)
  756. {
  757. if (ns) {
  758. ns->event = ++event;
  759. wake_up_interruptible(&ns->poll);
  760. }
  761. }
  762. /*
  763. * vfsmount lock must be held for write
  764. */
  765. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  766. {
  767. if (ns && ns->event != event) {
  768. ns->event = event;
  769. wake_up_interruptible(&ns->poll);
  770. }
  771. }
  772. /*
  773. * vfsmount lock must be held for write
  774. */
  775. static void unhash_mnt(struct mount *mnt)
  776. {
  777. mnt->mnt_parent = mnt;
  778. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  779. list_del_init(&mnt->mnt_child);
  780. hlist_del_init_rcu(&mnt->mnt_hash);
  781. hlist_del_init(&mnt->mnt_mp_list);
  782. put_mountpoint(mnt->mnt_mp);
  783. mnt->mnt_mp = NULL;
  784. }
  785. /*
  786. * vfsmount lock must be held for write
  787. */
  788. static void detach_mnt(struct mount *mnt, struct path *old_path)
  789. {
  790. old_path->dentry = mnt->mnt_mountpoint;
  791. old_path->mnt = &mnt->mnt_parent->mnt;
  792. unhash_mnt(mnt);
  793. }
  794. /*
  795. * vfsmount lock must be held for write
  796. */
  797. static void umount_mnt(struct mount *mnt)
  798. {
  799. /* old mountpoint will be dropped when we can do that */
  800. mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
  801. unhash_mnt(mnt);
  802. }
  803. /*
  804. * vfsmount lock must be held for write
  805. */
  806. void mnt_set_mountpoint(struct mount *mnt,
  807. struct mountpoint *mp,
  808. struct mount *child_mnt)
  809. {
  810. mp->m_count++;
  811. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  812. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  813. child_mnt->mnt_parent = mnt;
  814. child_mnt->mnt_mp = mp;
  815. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  816. }
  817. static void __attach_mnt(struct mount *mnt, struct mount *parent)
  818. {
  819. hlist_add_head_rcu(&mnt->mnt_hash,
  820. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  821. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  822. }
  823. /*
  824. * vfsmount lock must be held for write
  825. */
  826. static void attach_mnt(struct mount *mnt,
  827. struct mount *parent,
  828. struct mountpoint *mp)
  829. {
  830. mnt_set_mountpoint(parent, mp, mnt);
  831. __attach_mnt(mnt, parent);
  832. }
  833. void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
  834. {
  835. struct mountpoint *old_mp = mnt->mnt_mp;
  836. struct dentry *old_mountpoint = mnt->mnt_mountpoint;
  837. struct mount *old_parent = mnt->mnt_parent;
  838. list_del_init(&mnt->mnt_child);
  839. hlist_del_init(&mnt->mnt_mp_list);
  840. hlist_del_init_rcu(&mnt->mnt_hash);
  841. attach_mnt(mnt, parent, mp);
  842. put_mountpoint(old_mp);
  843. /*
  844. * Safely avoid even the suggestion this code might sleep or
  845. * lock the mount hash by taking advantage of the knowledge that
  846. * mnt_change_mountpoint will not release the final reference
  847. * to a mountpoint.
  848. *
  849. * During mounting, the mount passed in as the parent mount will
  850. * continue to use the old mountpoint and during unmounting, the
  851. * old mountpoint will continue to exist until namespace_unlock,
  852. * which happens well after mnt_change_mountpoint.
  853. */
  854. spin_lock(&old_mountpoint->d_lock);
  855. old_mountpoint->d_lockref.count--;
  856. spin_unlock(&old_mountpoint->d_lock);
  857. mnt_add_count(old_parent, -1);
  858. }
  859. /*
  860. * vfsmount lock must be held for write
  861. */
  862. static void commit_tree(struct mount *mnt)
  863. {
  864. struct mount *parent = mnt->mnt_parent;
  865. struct mount *m;
  866. LIST_HEAD(head);
  867. struct mnt_namespace *n = parent->mnt_ns;
  868. BUG_ON(parent == mnt);
  869. list_add_tail(&head, &mnt->mnt_list);
  870. list_for_each_entry(m, &head, mnt_list)
  871. m->mnt_ns = n;
  872. list_splice(&head, n->list.prev);
  873. n->mounts += n->pending_mounts;
  874. n->pending_mounts = 0;
  875. __attach_mnt(mnt, parent);
  876. touch_mnt_namespace(n);
  877. }
  878. static struct mount *next_mnt(struct mount *p, struct mount *root)
  879. {
  880. struct list_head *next = p->mnt_mounts.next;
  881. if (next == &p->mnt_mounts) {
  882. while (1) {
  883. if (p == root)
  884. return NULL;
  885. next = p->mnt_child.next;
  886. if (next != &p->mnt_parent->mnt_mounts)
  887. break;
  888. p = p->mnt_parent;
  889. }
  890. }
  891. return list_entry(next, struct mount, mnt_child);
  892. }
  893. static struct mount *skip_mnt_tree(struct mount *p)
  894. {
  895. struct list_head *prev = p->mnt_mounts.prev;
  896. while (prev != &p->mnt_mounts) {
  897. p = list_entry(prev, struct mount, mnt_child);
  898. prev = p->mnt_mounts.prev;
  899. }
  900. return p;
  901. }
  902. struct vfsmount *
  903. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  904. {
  905. struct mount *mnt;
  906. struct dentry *root;
  907. if (!type)
  908. return ERR_PTR(-ENODEV);
  909. mnt = alloc_vfsmnt(name);
  910. if (!mnt)
  911. return ERR_PTR(-ENOMEM);
  912. if (flags & SB_KERNMOUNT)
  913. mnt->mnt.mnt_flags = MNT_INTERNAL;
  914. root = mount_fs(type, flags, name, data);
  915. if (IS_ERR(root)) {
  916. mnt_free_id(mnt);
  917. free_vfsmnt(mnt);
  918. return ERR_CAST(root);
  919. }
  920. mnt->mnt.mnt_root = root;
  921. mnt->mnt.mnt_sb = root->d_sb;
  922. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  923. mnt->mnt_parent = mnt;
  924. lock_mount_hash();
  925. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  926. unlock_mount_hash();
  927. return &mnt->mnt;
  928. }
  929. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  930. struct vfsmount *
  931. vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
  932. const char *name, void *data)
  933. {
  934. /* Until it is worked out how to pass the user namespace
  935. * through from the parent mount to the submount don't support
  936. * unprivileged mounts with submounts.
  937. */
  938. if (mountpoint->d_sb->s_user_ns != &init_user_ns)
  939. return ERR_PTR(-EPERM);
  940. return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
  941. }
  942. EXPORT_SYMBOL_GPL(vfs_submount);
  943. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  944. int flag)
  945. {
  946. struct super_block *sb = old->mnt.mnt_sb;
  947. struct mount *mnt;
  948. int err;
  949. mnt = alloc_vfsmnt(old->mnt_devname);
  950. if (!mnt)
  951. return ERR_PTR(-ENOMEM);
  952. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  953. mnt->mnt_group_id = 0; /* not a peer of original */
  954. else
  955. mnt->mnt_group_id = old->mnt_group_id;
  956. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  957. err = mnt_alloc_group_id(mnt);
  958. if (err)
  959. goto out_free;
  960. }
  961. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  962. /* Don't allow unprivileged users to change mount flags */
  963. if (flag & CL_UNPRIVILEGED) {
  964. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  965. if (mnt->mnt.mnt_flags & MNT_READONLY)
  966. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  967. if (mnt->mnt.mnt_flags & MNT_NODEV)
  968. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  969. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  970. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  971. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  972. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  973. }
  974. /* Don't allow unprivileged users to reveal what is under a mount */
  975. if ((flag & CL_UNPRIVILEGED) &&
  976. (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
  977. mnt->mnt.mnt_flags |= MNT_LOCKED;
  978. atomic_inc(&sb->s_active);
  979. mnt->mnt.mnt_sb = sb;
  980. mnt->mnt.mnt_root = dget(root);
  981. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  982. mnt->mnt_parent = mnt;
  983. lock_mount_hash();
  984. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  985. unlock_mount_hash();
  986. if ((flag & CL_SLAVE) ||
  987. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  988. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  989. mnt->mnt_master = old;
  990. CLEAR_MNT_SHARED(mnt);
  991. } else if (!(flag & CL_PRIVATE)) {
  992. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  993. list_add(&mnt->mnt_share, &old->mnt_share);
  994. if (IS_MNT_SLAVE(old))
  995. list_add(&mnt->mnt_slave, &old->mnt_slave);
  996. mnt->mnt_master = old->mnt_master;
  997. } else {
  998. CLEAR_MNT_SHARED(mnt);
  999. }
  1000. if (flag & CL_MAKE_SHARED)
  1001. set_mnt_shared(mnt);
  1002. /* stick the duplicate mount on the same expiry list
  1003. * as the original if that was on one */
  1004. if (flag & CL_EXPIRE) {
  1005. if (!list_empty(&old->mnt_expire))
  1006. list_add(&mnt->mnt_expire, &old->mnt_expire);
  1007. }
  1008. return mnt;
  1009. out_free:
  1010. mnt_free_id(mnt);
  1011. free_vfsmnt(mnt);
  1012. return ERR_PTR(err);
  1013. }
  1014. static void cleanup_mnt(struct mount *mnt)
  1015. {
  1016. /*
  1017. * This probably indicates that somebody messed
  1018. * up a mnt_want/drop_write() pair. If this
  1019. * happens, the filesystem was probably unable
  1020. * to make r/w->r/o transitions.
  1021. */
  1022. /*
  1023. * The locking used to deal with mnt_count decrement provides barriers,
  1024. * so mnt_get_writers() below is safe.
  1025. */
  1026. WARN_ON(mnt_get_writers(mnt));
  1027. if (unlikely(mnt->mnt_pins.first))
  1028. mnt_pin_kill(mnt);
  1029. fsnotify_vfsmount_delete(&mnt->mnt);
  1030. dput(mnt->mnt.mnt_root);
  1031. deactivate_super(mnt->mnt.mnt_sb);
  1032. mnt_free_id(mnt);
  1033. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  1034. }
  1035. static void __cleanup_mnt(struct rcu_head *head)
  1036. {
  1037. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  1038. }
  1039. static LLIST_HEAD(delayed_mntput_list);
  1040. static void delayed_mntput(struct work_struct *unused)
  1041. {
  1042. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  1043. struct llist_node *next;
  1044. for (; node; node = next) {
  1045. next = llist_next(node);
  1046. cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
  1047. }
  1048. }
  1049. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  1050. static void mntput_no_expire(struct mount *mnt)
  1051. {
  1052. rcu_read_lock();
  1053. mnt_add_count(mnt, -1);
  1054. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  1055. rcu_read_unlock();
  1056. return;
  1057. }
  1058. lock_mount_hash();
  1059. if (mnt_get_count(mnt)) {
  1060. rcu_read_unlock();
  1061. unlock_mount_hash();
  1062. return;
  1063. }
  1064. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  1065. rcu_read_unlock();
  1066. unlock_mount_hash();
  1067. return;
  1068. }
  1069. mnt->mnt.mnt_flags |= MNT_DOOMED;
  1070. rcu_read_unlock();
  1071. list_del(&mnt->mnt_instance);
  1072. if (unlikely(!list_empty(&mnt->mnt_mounts))) {
  1073. struct mount *p, *tmp;
  1074. list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
  1075. umount_mnt(p);
  1076. }
  1077. }
  1078. unlock_mount_hash();
  1079. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  1080. struct task_struct *task = current;
  1081. if (likely(!(task->flags & PF_KTHREAD))) {
  1082. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  1083. if (!task_work_add(task, &mnt->mnt_rcu, true))
  1084. return;
  1085. }
  1086. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  1087. schedule_delayed_work(&delayed_mntput_work, 1);
  1088. return;
  1089. }
  1090. cleanup_mnt(mnt);
  1091. }
  1092. void mntput(struct vfsmount *mnt)
  1093. {
  1094. if (mnt) {
  1095. struct mount *m = real_mount(mnt);
  1096. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  1097. if (unlikely(m->mnt_expiry_mark))
  1098. m->mnt_expiry_mark = 0;
  1099. mntput_no_expire(m);
  1100. }
  1101. }
  1102. EXPORT_SYMBOL(mntput);
  1103. struct vfsmount *mntget(struct vfsmount *mnt)
  1104. {
  1105. if (mnt)
  1106. mnt_add_count(real_mount(mnt), 1);
  1107. return mnt;
  1108. }
  1109. EXPORT_SYMBOL(mntget);
  1110. /* path_is_mountpoint() - Check if path is a mount in the current
  1111. * namespace.
  1112. *
  1113. * d_mountpoint() can only be used reliably to establish if a dentry is
  1114. * not mounted in any namespace and that common case is handled inline.
  1115. * d_mountpoint() isn't aware of the possibility there may be multiple
  1116. * mounts using a given dentry in a different namespace. This function
  1117. * checks if the passed in path is a mountpoint rather than the dentry
  1118. * alone.
  1119. */
  1120. bool path_is_mountpoint(const struct path *path)
  1121. {
  1122. unsigned seq;
  1123. bool res;
  1124. if (!d_mountpoint(path->dentry))
  1125. return false;
  1126. rcu_read_lock();
  1127. do {
  1128. seq = read_seqbegin(&mount_lock);
  1129. res = __path_is_mountpoint(path);
  1130. } while (read_seqretry(&mount_lock, seq));
  1131. rcu_read_unlock();
  1132. return res;
  1133. }
  1134. EXPORT_SYMBOL(path_is_mountpoint);
  1135. struct vfsmount *mnt_clone_internal(const struct path *path)
  1136. {
  1137. struct mount *p;
  1138. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  1139. if (IS_ERR(p))
  1140. return ERR_CAST(p);
  1141. p->mnt.mnt_flags |= MNT_INTERNAL;
  1142. return &p->mnt;
  1143. }
  1144. #ifdef CONFIG_PROC_FS
  1145. /* iterator; we want it to have access to namespace_sem, thus here... */
  1146. static void *m_start(struct seq_file *m, loff_t *pos)
  1147. {
  1148. struct proc_mounts *p = m->private;
  1149. down_read(&namespace_sem);
  1150. if (p->cached_event == p->ns->event) {
  1151. void *v = p->cached_mount;
  1152. if (*pos == p->cached_index)
  1153. return v;
  1154. if (*pos == p->cached_index + 1) {
  1155. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1156. return p->cached_mount = v;
  1157. }
  1158. }
  1159. p->cached_event = p->ns->event;
  1160. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1161. p->cached_index = *pos;
  1162. return p->cached_mount;
  1163. }
  1164. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1165. {
  1166. struct proc_mounts *p = m->private;
  1167. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1168. p->cached_index = *pos;
  1169. return p->cached_mount;
  1170. }
  1171. static void m_stop(struct seq_file *m, void *v)
  1172. {
  1173. up_read(&namespace_sem);
  1174. }
  1175. static int m_show(struct seq_file *m, void *v)
  1176. {
  1177. struct proc_mounts *p = m->private;
  1178. struct mount *r = list_entry(v, struct mount, mnt_list);
  1179. return p->show(m, &r->mnt);
  1180. }
  1181. const struct seq_operations mounts_op = {
  1182. .start = m_start,
  1183. .next = m_next,
  1184. .stop = m_stop,
  1185. .show = m_show,
  1186. };
  1187. #endif /* CONFIG_PROC_FS */
  1188. /**
  1189. * may_umount_tree - check if a mount tree is busy
  1190. * @mnt: root of mount tree
  1191. *
  1192. * This is called to check if a tree of mounts has any
  1193. * open files, pwds, chroots or sub mounts that are
  1194. * busy.
  1195. */
  1196. int may_umount_tree(struct vfsmount *m)
  1197. {
  1198. struct mount *mnt = real_mount(m);
  1199. int actual_refs = 0;
  1200. int minimum_refs = 0;
  1201. struct mount *p;
  1202. BUG_ON(!m);
  1203. /* write lock needed for mnt_get_count */
  1204. lock_mount_hash();
  1205. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1206. actual_refs += mnt_get_count(p);
  1207. minimum_refs += 2;
  1208. }
  1209. unlock_mount_hash();
  1210. if (actual_refs > minimum_refs)
  1211. return 0;
  1212. return 1;
  1213. }
  1214. EXPORT_SYMBOL(may_umount_tree);
  1215. /**
  1216. * may_umount - check if a mount point is busy
  1217. * @mnt: root of mount
  1218. *
  1219. * This is called to check if a mount point has any
  1220. * open files, pwds, chroots or sub mounts. If the
  1221. * mount has sub mounts this will return busy
  1222. * regardless of whether the sub mounts are busy.
  1223. *
  1224. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1225. * give false negatives. The main reason why it's here is that we need
  1226. * a non-destructive way to look for easily umountable filesystems.
  1227. */
  1228. int may_umount(struct vfsmount *mnt)
  1229. {
  1230. int ret = 1;
  1231. down_read(&namespace_sem);
  1232. lock_mount_hash();
  1233. if (propagate_mount_busy(real_mount(mnt), 2))
  1234. ret = 0;
  1235. unlock_mount_hash();
  1236. up_read(&namespace_sem);
  1237. return ret;
  1238. }
  1239. EXPORT_SYMBOL(may_umount);
  1240. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1241. static void namespace_unlock(void)
  1242. {
  1243. struct hlist_head head;
  1244. hlist_move_list(&unmounted, &head);
  1245. up_write(&namespace_sem);
  1246. if (likely(hlist_empty(&head)))
  1247. return;
  1248. synchronize_rcu();
  1249. group_pin_kill(&head);
  1250. }
  1251. static inline void namespace_lock(void)
  1252. {
  1253. down_write(&namespace_sem);
  1254. }
  1255. enum umount_tree_flags {
  1256. UMOUNT_SYNC = 1,
  1257. UMOUNT_PROPAGATE = 2,
  1258. UMOUNT_CONNECTED = 4,
  1259. };
  1260. static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
  1261. {
  1262. /* Leaving mounts connected is only valid for lazy umounts */
  1263. if (how & UMOUNT_SYNC)
  1264. return true;
  1265. /* A mount without a parent has nothing to be connected to */
  1266. if (!mnt_has_parent(mnt))
  1267. return true;
  1268. /* Because the reference counting rules change when mounts are
  1269. * unmounted and connected, umounted mounts may not be
  1270. * connected to mounted mounts.
  1271. */
  1272. if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
  1273. return true;
  1274. /* Has it been requested that the mount remain connected? */
  1275. if (how & UMOUNT_CONNECTED)
  1276. return false;
  1277. /* Is the mount locked such that it needs to remain connected? */
  1278. if (IS_MNT_LOCKED(mnt))
  1279. return false;
  1280. /* By default disconnect the mount */
  1281. return true;
  1282. }
  1283. /*
  1284. * mount_lock must be held
  1285. * namespace_sem must be held for write
  1286. */
  1287. static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
  1288. {
  1289. LIST_HEAD(tmp_list);
  1290. struct mount *p;
  1291. if (how & UMOUNT_PROPAGATE)
  1292. propagate_mount_unlock(mnt);
  1293. /* Gather the mounts to umount */
  1294. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1295. p->mnt.mnt_flags |= MNT_UMOUNT;
  1296. list_move(&p->mnt_list, &tmp_list);
  1297. }
  1298. /* Hide the mounts from mnt_mounts */
  1299. list_for_each_entry(p, &tmp_list, mnt_list) {
  1300. list_del_init(&p->mnt_child);
  1301. }
  1302. /* Add propogated mounts to the tmp_list */
  1303. if (how & UMOUNT_PROPAGATE)
  1304. propagate_umount(&tmp_list);
  1305. while (!list_empty(&tmp_list)) {
  1306. struct mnt_namespace *ns;
  1307. bool disconnect;
  1308. p = list_first_entry(&tmp_list, struct mount, mnt_list);
  1309. list_del_init(&p->mnt_expire);
  1310. list_del_init(&p->mnt_list);
  1311. ns = p->mnt_ns;
  1312. if (ns) {
  1313. ns->mounts--;
  1314. __touch_mnt_namespace(ns);
  1315. }
  1316. p->mnt_ns = NULL;
  1317. if (how & UMOUNT_SYNC)
  1318. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1319. disconnect = disconnect_mount(p, how);
  1320. pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
  1321. disconnect ? &unmounted : NULL);
  1322. if (mnt_has_parent(p)) {
  1323. mnt_add_count(p->mnt_parent, -1);
  1324. if (!disconnect) {
  1325. /* Don't forget about p */
  1326. list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
  1327. } else {
  1328. umount_mnt(p);
  1329. }
  1330. }
  1331. change_mnt_propagation(p, MS_PRIVATE);
  1332. }
  1333. }
  1334. static void shrink_submounts(struct mount *mnt);
  1335. static int do_umount(struct mount *mnt, int flags)
  1336. {
  1337. struct super_block *sb = mnt->mnt.mnt_sb;
  1338. int retval;
  1339. retval = security_sb_umount(&mnt->mnt, flags);
  1340. if (retval)
  1341. return retval;
  1342. /*
  1343. * Allow userspace to request a mountpoint be expired rather than
  1344. * unmounting unconditionally. Unmount only happens if:
  1345. * (1) the mark is already set (the mark is cleared by mntput())
  1346. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1347. */
  1348. if (flags & MNT_EXPIRE) {
  1349. if (&mnt->mnt == current->fs->root.mnt ||
  1350. flags & (MNT_FORCE | MNT_DETACH))
  1351. return -EINVAL;
  1352. /*
  1353. * probably don't strictly need the lock here if we examined
  1354. * all race cases, but it's a slowpath.
  1355. */
  1356. lock_mount_hash();
  1357. if (mnt_get_count(mnt) != 2) {
  1358. unlock_mount_hash();
  1359. return -EBUSY;
  1360. }
  1361. unlock_mount_hash();
  1362. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1363. return -EAGAIN;
  1364. }
  1365. /*
  1366. * If we may have to abort operations to get out of this
  1367. * mount, and they will themselves hold resources we must
  1368. * allow the fs to do things. In the Unix tradition of
  1369. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1370. * might fail to complete on the first run through as other tasks
  1371. * must return, and the like. Thats for the mount program to worry
  1372. * about for the moment.
  1373. */
  1374. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1375. sb->s_op->umount_begin(sb);
  1376. }
  1377. /*
  1378. * No sense to grab the lock for this test, but test itself looks
  1379. * somewhat bogus. Suggestions for better replacement?
  1380. * Ho-hum... In principle, we might treat that as umount + switch
  1381. * to rootfs. GC would eventually take care of the old vfsmount.
  1382. * Actually it makes sense, especially if rootfs would contain a
  1383. * /reboot - static binary that would close all descriptors and
  1384. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1385. */
  1386. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1387. /*
  1388. * Special case for "unmounting" root ...
  1389. * we just try to remount it readonly.
  1390. */
  1391. if (!capable(CAP_SYS_ADMIN))
  1392. return -EPERM;
  1393. down_write(&sb->s_umount);
  1394. if (!sb_rdonly(sb))
  1395. retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
  1396. up_write(&sb->s_umount);
  1397. return retval;
  1398. }
  1399. namespace_lock();
  1400. lock_mount_hash();
  1401. event++;
  1402. if (flags & MNT_DETACH) {
  1403. if (!list_empty(&mnt->mnt_list))
  1404. umount_tree(mnt, UMOUNT_PROPAGATE);
  1405. retval = 0;
  1406. } else {
  1407. shrink_submounts(mnt);
  1408. retval = -EBUSY;
  1409. if (!propagate_mount_busy(mnt, 2)) {
  1410. if (!list_empty(&mnt->mnt_list))
  1411. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  1412. retval = 0;
  1413. }
  1414. }
  1415. unlock_mount_hash();
  1416. namespace_unlock();
  1417. return retval;
  1418. }
  1419. /*
  1420. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1421. *
  1422. * During unlink, rmdir, and d_drop it is possible to loose the path
  1423. * to an existing mountpoint, and wind up leaking the mount.
  1424. * detach_mounts allows lazily unmounting those mounts instead of
  1425. * leaking them.
  1426. *
  1427. * The caller may hold dentry->d_inode->i_mutex.
  1428. */
  1429. void __detach_mounts(struct dentry *dentry)
  1430. {
  1431. struct mountpoint *mp;
  1432. struct mount *mnt;
  1433. namespace_lock();
  1434. lock_mount_hash();
  1435. mp = lookup_mountpoint(dentry);
  1436. if (IS_ERR_OR_NULL(mp))
  1437. goto out_unlock;
  1438. event++;
  1439. while (!hlist_empty(&mp->m_list)) {
  1440. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1441. if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
  1442. hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
  1443. umount_mnt(mnt);
  1444. }
  1445. else umount_tree(mnt, UMOUNT_CONNECTED);
  1446. }
  1447. put_mountpoint(mp);
  1448. out_unlock:
  1449. unlock_mount_hash();
  1450. namespace_unlock();
  1451. }
  1452. /*
  1453. * Is the caller allowed to modify his namespace?
  1454. */
  1455. static inline bool may_mount(void)
  1456. {
  1457. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1458. }
  1459. static inline bool may_mandlock(void)
  1460. {
  1461. #ifndef CONFIG_MANDATORY_FILE_LOCKING
  1462. return false;
  1463. #endif
  1464. return capable(CAP_SYS_ADMIN);
  1465. }
  1466. /*
  1467. * Now umount can handle mount points as well as block devices.
  1468. * This is important for filesystems which use unnamed block devices.
  1469. *
  1470. * We now support a flag for forced unmount like the other 'big iron'
  1471. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1472. */
  1473. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1474. {
  1475. struct path path;
  1476. struct mount *mnt;
  1477. int retval;
  1478. int lookup_flags = 0;
  1479. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1480. return -EINVAL;
  1481. if (!may_mount())
  1482. return -EPERM;
  1483. if (!(flags & UMOUNT_NOFOLLOW))
  1484. lookup_flags |= LOOKUP_FOLLOW;
  1485. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1486. if (retval)
  1487. goto out;
  1488. mnt = real_mount(path.mnt);
  1489. retval = -EINVAL;
  1490. if (path.dentry != path.mnt->mnt_root)
  1491. goto dput_and_out;
  1492. if (!check_mnt(mnt))
  1493. goto dput_and_out;
  1494. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1495. goto dput_and_out;
  1496. retval = -EPERM;
  1497. if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
  1498. goto dput_and_out;
  1499. retval = do_umount(mnt, flags);
  1500. dput_and_out:
  1501. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1502. dput(path.dentry);
  1503. mntput_no_expire(mnt);
  1504. out:
  1505. return retval;
  1506. }
  1507. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1508. /*
  1509. * The 2.0 compatible umount. No flags.
  1510. */
  1511. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1512. {
  1513. return sys_umount(name, 0);
  1514. }
  1515. #endif
  1516. static bool is_mnt_ns_file(struct dentry *dentry)
  1517. {
  1518. /* Is this a proxy for a mount namespace? */
  1519. return dentry->d_op == &ns_dentry_operations &&
  1520. dentry->d_fsdata == &mntns_operations;
  1521. }
  1522. struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
  1523. {
  1524. return container_of(ns, struct mnt_namespace, ns);
  1525. }
  1526. static bool mnt_ns_loop(struct dentry *dentry)
  1527. {
  1528. /* Could bind mounting the mount namespace inode cause a
  1529. * mount namespace loop?
  1530. */
  1531. struct mnt_namespace *mnt_ns;
  1532. if (!is_mnt_ns_file(dentry))
  1533. return false;
  1534. mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
  1535. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1536. }
  1537. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1538. int flag)
  1539. {
  1540. struct mount *res, *p, *q, *r, *parent;
  1541. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1542. return ERR_PTR(-EINVAL);
  1543. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1544. return ERR_PTR(-EINVAL);
  1545. res = q = clone_mnt(mnt, dentry, flag);
  1546. if (IS_ERR(q))
  1547. return q;
  1548. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1549. p = mnt;
  1550. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1551. struct mount *s;
  1552. if (!is_subdir(r->mnt_mountpoint, dentry))
  1553. continue;
  1554. for (s = r; s; s = next_mnt(s, r)) {
  1555. if (!(flag & CL_COPY_UNBINDABLE) &&
  1556. IS_MNT_UNBINDABLE(s)) {
  1557. s = skip_mnt_tree(s);
  1558. continue;
  1559. }
  1560. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1561. is_mnt_ns_file(s->mnt.mnt_root)) {
  1562. s = skip_mnt_tree(s);
  1563. continue;
  1564. }
  1565. while (p != s->mnt_parent) {
  1566. p = p->mnt_parent;
  1567. q = q->mnt_parent;
  1568. }
  1569. p = s;
  1570. parent = q;
  1571. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1572. if (IS_ERR(q))
  1573. goto out;
  1574. lock_mount_hash();
  1575. list_add_tail(&q->mnt_list, &res->mnt_list);
  1576. attach_mnt(q, parent, p->mnt_mp);
  1577. unlock_mount_hash();
  1578. }
  1579. }
  1580. return res;
  1581. out:
  1582. if (res) {
  1583. lock_mount_hash();
  1584. umount_tree(res, UMOUNT_SYNC);
  1585. unlock_mount_hash();
  1586. }
  1587. return q;
  1588. }
  1589. /* Caller should check returned pointer for errors */
  1590. struct vfsmount *collect_mounts(const struct path *path)
  1591. {
  1592. struct mount *tree;
  1593. namespace_lock();
  1594. if (!check_mnt(real_mount(path->mnt)))
  1595. tree = ERR_PTR(-EINVAL);
  1596. else
  1597. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1598. CL_COPY_ALL | CL_PRIVATE);
  1599. namespace_unlock();
  1600. if (IS_ERR(tree))
  1601. return ERR_CAST(tree);
  1602. return &tree->mnt;
  1603. }
  1604. void drop_collected_mounts(struct vfsmount *mnt)
  1605. {
  1606. namespace_lock();
  1607. lock_mount_hash();
  1608. umount_tree(real_mount(mnt), UMOUNT_SYNC);
  1609. unlock_mount_hash();
  1610. namespace_unlock();
  1611. }
  1612. /**
  1613. * clone_private_mount - create a private clone of a path
  1614. *
  1615. * This creates a new vfsmount, which will be the clone of @path. The new will
  1616. * not be attached anywhere in the namespace and will be private (i.e. changes
  1617. * to the originating mount won't be propagated into this).
  1618. *
  1619. * Release with mntput().
  1620. */
  1621. struct vfsmount *clone_private_mount(const struct path *path)
  1622. {
  1623. struct mount *old_mnt = real_mount(path->mnt);
  1624. struct mount *new_mnt;
  1625. if (IS_MNT_UNBINDABLE(old_mnt))
  1626. return ERR_PTR(-EINVAL);
  1627. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1628. if (IS_ERR(new_mnt))
  1629. return ERR_CAST(new_mnt);
  1630. return &new_mnt->mnt;
  1631. }
  1632. EXPORT_SYMBOL_GPL(clone_private_mount);
  1633. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1634. struct vfsmount *root)
  1635. {
  1636. struct mount *mnt;
  1637. int res = f(root, arg);
  1638. if (res)
  1639. return res;
  1640. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1641. res = f(&mnt->mnt, arg);
  1642. if (res)
  1643. return res;
  1644. }
  1645. return 0;
  1646. }
  1647. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1648. {
  1649. struct mount *p;
  1650. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1651. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1652. mnt_release_group_id(p);
  1653. }
  1654. }
  1655. static int invent_group_ids(struct mount *mnt, bool recurse)
  1656. {
  1657. struct mount *p;
  1658. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1659. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1660. int err = mnt_alloc_group_id(p);
  1661. if (err) {
  1662. cleanup_group_ids(mnt, p);
  1663. return err;
  1664. }
  1665. }
  1666. }
  1667. return 0;
  1668. }
  1669. int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
  1670. {
  1671. unsigned int max = READ_ONCE(sysctl_mount_max);
  1672. unsigned int mounts = 0, old, pending, sum;
  1673. struct mount *p;
  1674. for (p = mnt; p; p = next_mnt(p, mnt))
  1675. mounts++;
  1676. old = ns->mounts;
  1677. pending = ns->pending_mounts;
  1678. sum = old + pending;
  1679. if ((old > sum) ||
  1680. (pending > sum) ||
  1681. (max < sum) ||
  1682. (mounts > (max - sum)))
  1683. return -ENOSPC;
  1684. ns->pending_mounts = pending + mounts;
  1685. return 0;
  1686. }
  1687. /*
  1688. * @source_mnt : mount tree to be attached
  1689. * @nd : place the mount tree @source_mnt is attached
  1690. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1691. * store the parent mount and mountpoint dentry.
  1692. * (done when source_mnt is moved)
  1693. *
  1694. * NOTE: in the table below explains the semantics when a source mount
  1695. * of a given type is attached to a destination mount of a given type.
  1696. * ---------------------------------------------------------------------------
  1697. * | BIND MOUNT OPERATION |
  1698. * |**************************************************************************
  1699. * | source-->| shared | private | slave | unbindable |
  1700. * | dest | | | | |
  1701. * | | | | | | |
  1702. * | v | | | | |
  1703. * |**************************************************************************
  1704. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1705. * | | | | | |
  1706. * |non-shared| shared (+) | private | slave (*) | invalid |
  1707. * ***************************************************************************
  1708. * A bind operation clones the source mount and mounts the clone on the
  1709. * destination mount.
  1710. *
  1711. * (++) the cloned mount is propagated to all the mounts in the propagation
  1712. * tree of the destination mount and the cloned mount is added to
  1713. * the peer group of the source mount.
  1714. * (+) the cloned mount is created under the destination mount and is marked
  1715. * as shared. The cloned mount is added to the peer group of the source
  1716. * mount.
  1717. * (+++) the mount is propagated to all the mounts in the propagation tree
  1718. * of the destination mount and the cloned mount is made slave
  1719. * of the same master as that of the source mount. The cloned mount
  1720. * is marked as 'shared and slave'.
  1721. * (*) the cloned mount is made a slave of the same master as that of the
  1722. * source mount.
  1723. *
  1724. * ---------------------------------------------------------------------------
  1725. * | MOVE MOUNT OPERATION |
  1726. * |**************************************************************************
  1727. * | source-->| shared | private | slave | unbindable |
  1728. * | dest | | | | |
  1729. * | | | | | | |
  1730. * | v | | | | |
  1731. * |**************************************************************************
  1732. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1733. * | | | | | |
  1734. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1735. * ***************************************************************************
  1736. *
  1737. * (+) the mount is moved to the destination. And is then propagated to
  1738. * all the mounts in the propagation tree of the destination mount.
  1739. * (+*) the mount is moved to the destination.
  1740. * (+++) the mount is moved to the destination and is then propagated to
  1741. * all the mounts belonging to the destination mount's propagation tree.
  1742. * the mount is marked as 'shared and slave'.
  1743. * (*) the mount continues to be a slave at the new location.
  1744. *
  1745. * if the source mount is a tree, the operations explained above is
  1746. * applied to each mount in the tree.
  1747. * Must be called without spinlocks held, since this function can sleep
  1748. * in allocations.
  1749. */
  1750. static int attach_recursive_mnt(struct mount *source_mnt,
  1751. struct mount *dest_mnt,
  1752. struct mountpoint *dest_mp,
  1753. struct path *parent_path)
  1754. {
  1755. HLIST_HEAD(tree_list);
  1756. struct mnt_namespace *ns = dest_mnt->mnt_ns;
  1757. struct mountpoint *smp;
  1758. struct mount *child, *p;
  1759. struct hlist_node *n;
  1760. int err;
  1761. /* Preallocate a mountpoint in case the new mounts need
  1762. * to be tucked under other mounts.
  1763. */
  1764. smp = get_mountpoint(source_mnt->mnt.mnt_root);
  1765. if (IS_ERR(smp))
  1766. return PTR_ERR(smp);
  1767. /* Is there space to add these mounts to the mount namespace? */
  1768. if (!parent_path) {
  1769. err = count_mounts(ns, source_mnt);
  1770. if (err)
  1771. goto out;
  1772. }
  1773. if (IS_MNT_SHARED(dest_mnt)) {
  1774. err = invent_group_ids(source_mnt, true);
  1775. if (err)
  1776. goto out;
  1777. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1778. lock_mount_hash();
  1779. if (err)
  1780. goto out_cleanup_ids;
  1781. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1782. set_mnt_shared(p);
  1783. } else {
  1784. lock_mount_hash();
  1785. }
  1786. if (parent_path) {
  1787. detach_mnt(source_mnt, parent_path);
  1788. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1789. touch_mnt_namespace(source_mnt->mnt_ns);
  1790. } else {
  1791. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1792. commit_tree(source_mnt);
  1793. }
  1794. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1795. struct mount *q;
  1796. hlist_del_init(&child->mnt_hash);
  1797. q = __lookup_mnt(&child->mnt_parent->mnt,
  1798. child->mnt_mountpoint);
  1799. if (q)
  1800. mnt_change_mountpoint(child, smp, q);
  1801. commit_tree(child);
  1802. }
  1803. put_mountpoint(smp);
  1804. unlock_mount_hash();
  1805. return 0;
  1806. out_cleanup_ids:
  1807. while (!hlist_empty(&tree_list)) {
  1808. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1809. child->mnt_parent->mnt_ns->pending_mounts = 0;
  1810. umount_tree(child, UMOUNT_SYNC);
  1811. }
  1812. unlock_mount_hash();
  1813. cleanup_group_ids(source_mnt, NULL);
  1814. out:
  1815. ns->pending_mounts = 0;
  1816. read_seqlock_excl(&mount_lock);
  1817. put_mountpoint(smp);
  1818. read_sequnlock_excl(&mount_lock);
  1819. return err;
  1820. }
  1821. static struct mountpoint *lock_mount(struct path *path)
  1822. {
  1823. struct vfsmount *mnt;
  1824. struct dentry *dentry = path->dentry;
  1825. retry:
  1826. inode_lock(dentry->d_inode);
  1827. if (unlikely(cant_mount(dentry))) {
  1828. inode_unlock(dentry->d_inode);
  1829. return ERR_PTR(-ENOENT);
  1830. }
  1831. namespace_lock();
  1832. mnt = lookup_mnt(path);
  1833. if (likely(!mnt)) {
  1834. struct mountpoint *mp = get_mountpoint(dentry);
  1835. if (IS_ERR(mp)) {
  1836. namespace_unlock();
  1837. inode_unlock(dentry->d_inode);
  1838. return mp;
  1839. }
  1840. return mp;
  1841. }
  1842. namespace_unlock();
  1843. inode_unlock(path->dentry->d_inode);
  1844. path_put(path);
  1845. path->mnt = mnt;
  1846. dentry = path->dentry = dget(mnt->mnt_root);
  1847. goto retry;
  1848. }
  1849. static void unlock_mount(struct mountpoint *where)
  1850. {
  1851. struct dentry *dentry = where->m_dentry;
  1852. read_seqlock_excl(&mount_lock);
  1853. put_mountpoint(where);
  1854. read_sequnlock_excl(&mount_lock);
  1855. namespace_unlock();
  1856. inode_unlock(dentry->d_inode);
  1857. }
  1858. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1859. {
  1860. if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
  1861. return -EINVAL;
  1862. if (d_is_dir(mp->m_dentry) !=
  1863. d_is_dir(mnt->mnt.mnt_root))
  1864. return -ENOTDIR;
  1865. return attach_recursive_mnt(mnt, p, mp, NULL);
  1866. }
  1867. /*
  1868. * Sanity check the flags to change_mnt_propagation.
  1869. */
  1870. static int flags_to_propagation_type(int ms_flags)
  1871. {
  1872. int type = ms_flags & ~(MS_REC | MS_SILENT);
  1873. /* Fail if any non-propagation flags are set */
  1874. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1875. return 0;
  1876. /* Only one propagation flag should be set */
  1877. if (!is_power_of_2(type))
  1878. return 0;
  1879. return type;
  1880. }
  1881. /*
  1882. * recursively change the type of the mountpoint.
  1883. */
  1884. static int do_change_type(struct path *path, int ms_flags)
  1885. {
  1886. struct mount *m;
  1887. struct mount *mnt = real_mount(path->mnt);
  1888. int recurse = ms_flags & MS_REC;
  1889. int type;
  1890. int err = 0;
  1891. if (path->dentry != path->mnt->mnt_root)
  1892. return -EINVAL;
  1893. type = flags_to_propagation_type(ms_flags);
  1894. if (!type)
  1895. return -EINVAL;
  1896. namespace_lock();
  1897. if (type == MS_SHARED) {
  1898. err = invent_group_ids(mnt, recurse);
  1899. if (err)
  1900. goto out_unlock;
  1901. }
  1902. lock_mount_hash();
  1903. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1904. change_mnt_propagation(m, type);
  1905. unlock_mount_hash();
  1906. out_unlock:
  1907. namespace_unlock();
  1908. return err;
  1909. }
  1910. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1911. {
  1912. struct mount *child;
  1913. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1914. if (!is_subdir(child->mnt_mountpoint, dentry))
  1915. continue;
  1916. if (child->mnt.mnt_flags & MNT_LOCKED)
  1917. return true;
  1918. }
  1919. return false;
  1920. }
  1921. /*
  1922. * do loopback mount.
  1923. */
  1924. static int do_loopback(struct path *path, const char *old_name,
  1925. int recurse)
  1926. {
  1927. struct path old_path;
  1928. struct mount *mnt = NULL, *old, *parent;
  1929. struct mountpoint *mp;
  1930. int err;
  1931. if (!old_name || !*old_name)
  1932. return -EINVAL;
  1933. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1934. if (err)
  1935. return err;
  1936. err = -EINVAL;
  1937. if (mnt_ns_loop(old_path.dentry))
  1938. goto out;
  1939. mp = lock_mount(path);
  1940. err = PTR_ERR(mp);
  1941. if (IS_ERR(mp))
  1942. goto out;
  1943. old = real_mount(old_path.mnt);
  1944. parent = real_mount(path->mnt);
  1945. err = -EINVAL;
  1946. if (IS_MNT_UNBINDABLE(old))
  1947. goto out2;
  1948. if (!check_mnt(parent))
  1949. goto out2;
  1950. if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
  1951. goto out2;
  1952. if (!recurse && has_locked_children(old, old_path.dentry))
  1953. goto out2;
  1954. if (recurse)
  1955. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1956. else
  1957. mnt = clone_mnt(old, old_path.dentry, 0);
  1958. if (IS_ERR(mnt)) {
  1959. err = PTR_ERR(mnt);
  1960. goto out2;
  1961. }
  1962. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1963. err = graft_tree(mnt, parent, mp);
  1964. if (err) {
  1965. lock_mount_hash();
  1966. umount_tree(mnt, UMOUNT_SYNC);
  1967. unlock_mount_hash();
  1968. }
  1969. out2:
  1970. unlock_mount(mp);
  1971. out:
  1972. path_put(&old_path);
  1973. return err;
  1974. }
  1975. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1976. {
  1977. int error = 0;
  1978. int readonly_request = 0;
  1979. if (ms_flags & MS_RDONLY)
  1980. readonly_request = 1;
  1981. if (readonly_request == __mnt_is_readonly(mnt))
  1982. return 0;
  1983. if (readonly_request)
  1984. error = mnt_make_readonly(real_mount(mnt));
  1985. else
  1986. __mnt_unmake_readonly(real_mount(mnt));
  1987. return error;
  1988. }
  1989. /*
  1990. * change filesystem flags. dir should be a physical root of filesystem.
  1991. * If you've mounted a non-root directory somewhere and want to do remount
  1992. * on it - tough luck.
  1993. */
  1994. static int do_remount(struct path *path, int ms_flags, int sb_flags,
  1995. int mnt_flags, void *data)
  1996. {
  1997. int err;
  1998. struct super_block *sb = path->mnt->mnt_sb;
  1999. struct mount *mnt = real_mount(path->mnt);
  2000. if (!check_mnt(mnt))
  2001. return -EINVAL;
  2002. if (path->dentry != path->mnt->mnt_root)
  2003. return -EINVAL;
  2004. /* Don't allow changing of locked mnt flags.
  2005. *
  2006. * No locks need to be held here while testing the various
  2007. * MNT_LOCK flags because those flags can never be cleared
  2008. * once they are set.
  2009. */
  2010. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  2011. !(mnt_flags & MNT_READONLY)) {
  2012. return -EPERM;
  2013. }
  2014. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  2015. !(mnt_flags & MNT_NODEV)) {
  2016. return -EPERM;
  2017. }
  2018. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  2019. !(mnt_flags & MNT_NOSUID)) {
  2020. return -EPERM;
  2021. }
  2022. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  2023. !(mnt_flags & MNT_NOEXEC)) {
  2024. return -EPERM;
  2025. }
  2026. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  2027. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  2028. return -EPERM;
  2029. }
  2030. err = security_sb_remount(sb, data);
  2031. if (err)
  2032. return err;
  2033. down_write(&sb->s_umount);
  2034. if (ms_flags & MS_BIND)
  2035. err = change_mount_flags(path->mnt, ms_flags);
  2036. else if (!capable(CAP_SYS_ADMIN))
  2037. err = -EPERM;
  2038. else
  2039. err = do_remount_sb(sb, sb_flags, data, 0);
  2040. if (!err) {
  2041. lock_mount_hash();
  2042. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  2043. mnt->mnt.mnt_flags = mnt_flags;
  2044. touch_mnt_namespace(mnt->mnt_ns);
  2045. unlock_mount_hash();
  2046. }
  2047. up_write(&sb->s_umount);
  2048. return err;
  2049. }
  2050. static inline int tree_contains_unbindable(struct mount *mnt)
  2051. {
  2052. struct mount *p;
  2053. for (p = mnt; p; p = next_mnt(p, mnt)) {
  2054. if (IS_MNT_UNBINDABLE(p))
  2055. return 1;
  2056. }
  2057. return 0;
  2058. }
  2059. static int do_move_mount(struct path *path, const char *old_name)
  2060. {
  2061. struct path old_path, parent_path;
  2062. struct mount *p;
  2063. struct mount *old;
  2064. struct mountpoint *mp;
  2065. int err;
  2066. if (!old_name || !*old_name)
  2067. return -EINVAL;
  2068. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  2069. if (err)
  2070. return err;
  2071. mp = lock_mount(path);
  2072. err = PTR_ERR(mp);
  2073. if (IS_ERR(mp))
  2074. goto out;
  2075. old = real_mount(old_path.mnt);
  2076. p = real_mount(path->mnt);
  2077. err = -EINVAL;
  2078. if (!check_mnt(p) || !check_mnt(old))
  2079. goto out1;
  2080. if (old->mnt.mnt_flags & MNT_LOCKED)
  2081. goto out1;
  2082. err = -EINVAL;
  2083. if (old_path.dentry != old_path.mnt->mnt_root)
  2084. goto out1;
  2085. if (!mnt_has_parent(old))
  2086. goto out1;
  2087. if (d_is_dir(path->dentry) !=
  2088. d_is_dir(old_path.dentry))
  2089. goto out1;
  2090. /*
  2091. * Don't move a mount residing in a shared parent.
  2092. */
  2093. if (IS_MNT_SHARED(old->mnt_parent))
  2094. goto out1;
  2095. /*
  2096. * Don't move a mount tree containing unbindable mounts to a destination
  2097. * mount which is shared.
  2098. */
  2099. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  2100. goto out1;
  2101. err = -ELOOP;
  2102. for (; mnt_has_parent(p); p = p->mnt_parent)
  2103. if (p == old)
  2104. goto out1;
  2105. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  2106. if (err)
  2107. goto out1;
  2108. /* if the mount is moved, it should no longer be expire
  2109. * automatically */
  2110. list_del_init(&old->mnt_expire);
  2111. out1:
  2112. unlock_mount(mp);
  2113. out:
  2114. if (!err)
  2115. path_put(&parent_path);
  2116. path_put(&old_path);
  2117. return err;
  2118. }
  2119. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  2120. {
  2121. int err;
  2122. const char *subtype = strchr(fstype, '.');
  2123. if (subtype) {
  2124. subtype++;
  2125. err = -EINVAL;
  2126. if (!subtype[0])
  2127. goto err;
  2128. } else
  2129. subtype = "";
  2130. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  2131. err = -ENOMEM;
  2132. if (!mnt->mnt_sb->s_subtype)
  2133. goto err;
  2134. return mnt;
  2135. err:
  2136. mntput(mnt);
  2137. return ERR_PTR(err);
  2138. }
  2139. /*
  2140. * add a mount into a namespace's mount tree
  2141. */
  2142. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  2143. {
  2144. struct mountpoint *mp;
  2145. struct mount *parent;
  2146. int err;
  2147. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  2148. mp = lock_mount(path);
  2149. if (IS_ERR(mp))
  2150. return PTR_ERR(mp);
  2151. parent = real_mount(path->mnt);
  2152. err = -EINVAL;
  2153. if (unlikely(!check_mnt(parent))) {
  2154. /* that's acceptable only for automounts done in private ns */
  2155. if (!(mnt_flags & MNT_SHRINKABLE))
  2156. goto unlock;
  2157. /* ... and for those we'd better have mountpoint still alive */
  2158. if (!parent->mnt_ns)
  2159. goto unlock;
  2160. }
  2161. /* Refuse the same filesystem on the same mount point */
  2162. err = -EBUSY;
  2163. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2164. path->mnt->mnt_root == path->dentry)
  2165. goto unlock;
  2166. err = -EINVAL;
  2167. if (d_is_symlink(newmnt->mnt.mnt_root))
  2168. goto unlock;
  2169. newmnt->mnt.mnt_flags = mnt_flags;
  2170. err = graft_tree(newmnt, parent, mp);
  2171. unlock:
  2172. unlock_mount(mp);
  2173. return err;
  2174. }
  2175. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
  2176. /*
  2177. * create a new mount for userspace and request it to be added into the
  2178. * namespace's tree
  2179. */
  2180. static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
  2181. int mnt_flags, const char *name, void *data)
  2182. {
  2183. struct file_system_type *type;
  2184. struct vfsmount *mnt;
  2185. int err;
  2186. if (!fstype)
  2187. return -EINVAL;
  2188. type = get_fs_type(fstype);
  2189. if (!type)
  2190. return -ENODEV;
  2191. mnt = vfs_kern_mount(type, sb_flags, name, data);
  2192. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2193. !mnt->mnt_sb->s_subtype)
  2194. mnt = fs_set_subtype(mnt, fstype);
  2195. put_filesystem(type);
  2196. if (IS_ERR(mnt))
  2197. return PTR_ERR(mnt);
  2198. if (mount_too_revealing(mnt, &mnt_flags)) {
  2199. mntput(mnt);
  2200. return -EPERM;
  2201. }
  2202. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2203. if (err)
  2204. mntput(mnt);
  2205. return err;
  2206. }
  2207. int finish_automount(struct vfsmount *m, struct path *path)
  2208. {
  2209. struct mount *mnt = real_mount(m);
  2210. int err;
  2211. /* The new mount record should have at least 2 refs to prevent it being
  2212. * expired before we get a chance to add it
  2213. */
  2214. BUG_ON(mnt_get_count(mnt) < 2);
  2215. if (m->mnt_sb == path->mnt->mnt_sb &&
  2216. m->mnt_root == path->dentry) {
  2217. err = -ELOOP;
  2218. goto fail;
  2219. }
  2220. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2221. if (!err)
  2222. return 0;
  2223. fail:
  2224. /* remove m from any expiration list it may be on */
  2225. if (!list_empty(&mnt->mnt_expire)) {
  2226. namespace_lock();
  2227. list_del_init(&mnt->mnt_expire);
  2228. namespace_unlock();
  2229. }
  2230. mntput(m);
  2231. mntput(m);
  2232. return err;
  2233. }
  2234. /**
  2235. * mnt_set_expiry - Put a mount on an expiration list
  2236. * @mnt: The mount to list.
  2237. * @expiry_list: The list to add the mount to.
  2238. */
  2239. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2240. {
  2241. namespace_lock();
  2242. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2243. namespace_unlock();
  2244. }
  2245. EXPORT_SYMBOL(mnt_set_expiry);
  2246. /*
  2247. * process a list of expirable mountpoints with the intent of discarding any
  2248. * mountpoints that aren't in use and haven't been touched since last we came
  2249. * here
  2250. */
  2251. void mark_mounts_for_expiry(struct list_head *mounts)
  2252. {
  2253. struct mount *mnt, *next;
  2254. LIST_HEAD(graveyard);
  2255. if (list_empty(mounts))
  2256. return;
  2257. namespace_lock();
  2258. lock_mount_hash();
  2259. /* extract from the expiration list every vfsmount that matches the
  2260. * following criteria:
  2261. * - only referenced by its parent vfsmount
  2262. * - still marked for expiry (marked on the last call here; marks are
  2263. * cleared by mntput())
  2264. */
  2265. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2266. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2267. propagate_mount_busy(mnt, 1))
  2268. continue;
  2269. list_move(&mnt->mnt_expire, &graveyard);
  2270. }
  2271. while (!list_empty(&graveyard)) {
  2272. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2273. touch_mnt_namespace(mnt->mnt_ns);
  2274. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2275. }
  2276. unlock_mount_hash();
  2277. namespace_unlock();
  2278. }
  2279. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2280. /*
  2281. * Ripoff of 'select_parent()'
  2282. *
  2283. * search the list of submounts for a given mountpoint, and move any
  2284. * shrinkable submounts to the 'graveyard' list.
  2285. */
  2286. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2287. {
  2288. struct mount *this_parent = parent;
  2289. struct list_head *next;
  2290. int found = 0;
  2291. repeat:
  2292. next = this_parent->mnt_mounts.next;
  2293. resume:
  2294. while (next != &this_parent->mnt_mounts) {
  2295. struct list_head *tmp = next;
  2296. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2297. next = tmp->next;
  2298. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2299. continue;
  2300. /*
  2301. * Descend a level if the d_mounts list is non-empty.
  2302. */
  2303. if (!list_empty(&mnt->mnt_mounts)) {
  2304. this_parent = mnt;
  2305. goto repeat;
  2306. }
  2307. if (!propagate_mount_busy(mnt, 1)) {
  2308. list_move_tail(&mnt->mnt_expire, graveyard);
  2309. found++;
  2310. }
  2311. }
  2312. /*
  2313. * All done at this level ... ascend and resume the search
  2314. */
  2315. if (this_parent != parent) {
  2316. next = this_parent->mnt_child.next;
  2317. this_parent = this_parent->mnt_parent;
  2318. goto resume;
  2319. }
  2320. return found;
  2321. }
  2322. /*
  2323. * process a list of expirable mountpoints with the intent of discarding any
  2324. * submounts of a specific parent mountpoint
  2325. *
  2326. * mount_lock must be held for write
  2327. */
  2328. static void shrink_submounts(struct mount *mnt)
  2329. {
  2330. LIST_HEAD(graveyard);
  2331. struct mount *m;
  2332. /* extract submounts of 'mountpoint' from the expiration list */
  2333. while (select_submounts(mnt, &graveyard)) {
  2334. while (!list_empty(&graveyard)) {
  2335. m = list_first_entry(&graveyard, struct mount,
  2336. mnt_expire);
  2337. touch_mnt_namespace(m->mnt_ns);
  2338. umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2339. }
  2340. }
  2341. }
  2342. /*
  2343. * Some copy_from_user() implementations do not return the exact number of
  2344. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2345. * Note that this function differs from copy_from_user() in that it will oops
  2346. * on bad values of `to', rather than returning a short copy.
  2347. */
  2348. static long exact_copy_from_user(void *to, const void __user * from,
  2349. unsigned long n)
  2350. {
  2351. char *t = to;
  2352. const char __user *f = from;
  2353. char c;
  2354. if (!access_ok(VERIFY_READ, from, n))
  2355. return n;
  2356. while (n) {
  2357. if (__get_user(c, f)) {
  2358. memset(t, 0, n);
  2359. break;
  2360. }
  2361. *t++ = c;
  2362. f++;
  2363. n--;
  2364. }
  2365. return n;
  2366. }
  2367. void *copy_mount_options(const void __user * data)
  2368. {
  2369. int i;
  2370. unsigned long size;
  2371. char *copy;
  2372. if (!data)
  2373. return NULL;
  2374. copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2375. if (!copy)
  2376. return ERR_PTR(-ENOMEM);
  2377. /* We only care that *some* data at the address the user
  2378. * gave us is valid. Just in case, we'll zero
  2379. * the remainder of the page.
  2380. */
  2381. /* copy_from_user cannot cross TASK_SIZE ! */
  2382. size = TASK_SIZE - (unsigned long)data;
  2383. if (size > PAGE_SIZE)
  2384. size = PAGE_SIZE;
  2385. i = size - exact_copy_from_user(copy, data, size);
  2386. if (!i) {
  2387. kfree(copy);
  2388. return ERR_PTR(-EFAULT);
  2389. }
  2390. if (i != PAGE_SIZE)
  2391. memset(copy + i, 0, PAGE_SIZE - i);
  2392. return copy;
  2393. }
  2394. char *copy_mount_string(const void __user *data)
  2395. {
  2396. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2397. }
  2398. /*
  2399. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2400. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2401. *
  2402. * data is a (void *) that can point to any structure up to
  2403. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2404. * information (or be NULL).
  2405. *
  2406. * Pre-0.97 versions of mount() didn't have a flags word.
  2407. * When the flags word was introduced its top half was required
  2408. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2409. * Therefore, if this magic number is present, it carries no information
  2410. * and must be discarded.
  2411. */
  2412. long do_mount(const char *dev_name, const char __user *dir_name,
  2413. const char *type_page, unsigned long flags, void *data_page)
  2414. {
  2415. struct path path;
  2416. unsigned int mnt_flags = 0, sb_flags;
  2417. int retval = 0;
  2418. /* Discard magic */
  2419. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2420. flags &= ~MS_MGC_MSK;
  2421. /* Basic sanity checks */
  2422. if (data_page)
  2423. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2424. if (flags & MS_NOUSER)
  2425. return -EINVAL;
  2426. /* ... and get the mountpoint */
  2427. retval = user_path(dir_name, &path);
  2428. if (retval)
  2429. return retval;
  2430. retval = security_sb_mount(dev_name, &path,
  2431. type_page, flags, data_page);
  2432. if (!retval && !may_mount())
  2433. retval = -EPERM;
  2434. if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
  2435. retval = -EPERM;
  2436. if (retval)
  2437. goto dput_out;
  2438. /* Default to relatime unless overriden */
  2439. if (!(flags & MS_NOATIME))
  2440. mnt_flags |= MNT_RELATIME;
  2441. /* Separate the per-mountpoint flags */
  2442. if (flags & MS_NOSUID)
  2443. mnt_flags |= MNT_NOSUID;
  2444. if (flags & MS_NODEV)
  2445. mnt_flags |= MNT_NODEV;
  2446. if (flags & MS_NOEXEC)
  2447. mnt_flags |= MNT_NOEXEC;
  2448. if (flags & MS_NOATIME)
  2449. mnt_flags |= MNT_NOATIME;
  2450. if (flags & MS_NODIRATIME)
  2451. mnt_flags |= MNT_NODIRATIME;
  2452. if (flags & MS_STRICTATIME)
  2453. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2454. if (flags & SB_RDONLY)
  2455. mnt_flags |= MNT_READONLY;
  2456. /* The default atime for remount is preservation */
  2457. if ((flags & MS_REMOUNT) &&
  2458. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2459. MS_STRICTATIME)) == 0)) {
  2460. mnt_flags &= ~MNT_ATIME_MASK;
  2461. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2462. }
  2463. sb_flags = flags & (SB_RDONLY |
  2464. SB_SYNCHRONOUS |
  2465. SB_MANDLOCK |
  2466. SB_DIRSYNC |
  2467. SB_SILENT |
  2468. SB_POSIXACL);
  2469. if (flags & MS_REMOUNT)
  2470. retval = do_remount(&path, flags, sb_flags, mnt_flags,
  2471. data_page);
  2472. else if (flags & MS_BIND)
  2473. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2474. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2475. retval = do_change_type(&path, flags);
  2476. else if (flags & MS_MOVE)
  2477. retval = do_move_mount(&path, dev_name);
  2478. else
  2479. retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
  2480. dev_name, data_page);
  2481. dput_out:
  2482. path_put(&path);
  2483. return retval;
  2484. }
  2485. static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
  2486. {
  2487. return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
  2488. }
  2489. static void dec_mnt_namespaces(struct ucounts *ucounts)
  2490. {
  2491. dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
  2492. }
  2493. static void free_mnt_ns(struct mnt_namespace *ns)
  2494. {
  2495. ns_free_inum(&ns->ns);
  2496. dec_mnt_namespaces(ns->ucounts);
  2497. put_user_ns(ns->user_ns);
  2498. kfree(ns);
  2499. }
  2500. /*
  2501. * Assign a sequence number so we can detect when we attempt to bind
  2502. * mount a reference to an older mount namespace into the current
  2503. * mount namespace, preventing reference counting loops. A 64bit
  2504. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2505. * is effectively never, so we can ignore the possibility.
  2506. */
  2507. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2508. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2509. {
  2510. struct mnt_namespace *new_ns;
  2511. struct ucounts *ucounts;
  2512. int ret;
  2513. ucounts = inc_mnt_namespaces(user_ns);
  2514. if (!ucounts)
  2515. return ERR_PTR(-ENOSPC);
  2516. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2517. if (!new_ns) {
  2518. dec_mnt_namespaces(ucounts);
  2519. return ERR_PTR(-ENOMEM);
  2520. }
  2521. ret = ns_alloc_inum(&new_ns->ns);
  2522. if (ret) {
  2523. kfree(new_ns);
  2524. dec_mnt_namespaces(ucounts);
  2525. return ERR_PTR(ret);
  2526. }
  2527. new_ns->ns.ops = &mntns_operations;
  2528. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2529. atomic_set(&new_ns->count, 1);
  2530. new_ns->root = NULL;
  2531. INIT_LIST_HEAD(&new_ns->list);
  2532. init_waitqueue_head(&new_ns->poll);
  2533. new_ns->event = 0;
  2534. new_ns->user_ns = get_user_ns(user_ns);
  2535. new_ns->ucounts = ucounts;
  2536. new_ns->mounts = 0;
  2537. new_ns->pending_mounts = 0;
  2538. return new_ns;
  2539. }
  2540. __latent_entropy
  2541. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2542. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2543. {
  2544. struct mnt_namespace *new_ns;
  2545. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2546. struct mount *p, *q;
  2547. struct mount *old;
  2548. struct mount *new;
  2549. int copy_flags;
  2550. BUG_ON(!ns);
  2551. if (likely(!(flags & CLONE_NEWNS))) {
  2552. get_mnt_ns(ns);
  2553. return ns;
  2554. }
  2555. old = ns->root;
  2556. new_ns = alloc_mnt_ns(user_ns);
  2557. if (IS_ERR(new_ns))
  2558. return new_ns;
  2559. namespace_lock();
  2560. /* First pass: copy the tree topology */
  2561. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2562. if (user_ns != ns->user_ns)
  2563. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2564. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2565. if (IS_ERR(new)) {
  2566. namespace_unlock();
  2567. free_mnt_ns(new_ns);
  2568. return ERR_CAST(new);
  2569. }
  2570. new_ns->root = new;
  2571. list_add_tail(&new_ns->list, &new->mnt_list);
  2572. /*
  2573. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2574. * as belonging to new namespace. We have already acquired a private
  2575. * fs_struct, so tsk->fs->lock is not needed.
  2576. */
  2577. p = old;
  2578. q = new;
  2579. while (p) {
  2580. q->mnt_ns = new_ns;
  2581. new_ns->mounts++;
  2582. if (new_fs) {
  2583. if (&p->mnt == new_fs->root.mnt) {
  2584. new_fs->root.mnt = mntget(&q->mnt);
  2585. rootmnt = &p->mnt;
  2586. }
  2587. if (&p->mnt == new_fs->pwd.mnt) {
  2588. new_fs->pwd.mnt = mntget(&q->mnt);
  2589. pwdmnt = &p->mnt;
  2590. }
  2591. }
  2592. p = next_mnt(p, old);
  2593. q = next_mnt(q, new);
  2594. if (!q)
  2595. break;
  2596. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2597. p = next_mnt(p, old);
  2598. }
  2599. namespace_unlock();
  2600. if (rootmnt)
  2601. mntput(rootmnt);
  2602. if (pwdmnt)
  2603. mntput(pwdmnt);
  2604. return new_ns;
  2605. }
  2606. /**
  2607. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2608. * @mnt: pointer to the new root filesystem mountpoint
  2609. */
  2610. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2611. {
  2612. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2613. if (!IS_ERR(new_ns)) {
  2614. struct mount *mnt = real_mount(m);
  2615. mnt->mnt_ns = new_ns;
  2616. new_ns->root = mnt;
  2617. new_ns->mounts++;
  2618. list_add(&mnt->mnt_list, &new_ns->list);
  2619. } else {
  2620. mntput(m);
  2621. }
  2622. return new_ns;
  2623. }
  2624. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2625. {
  2626. struct mnt_namespace *ns;
  2627. struct super_block *s;
  2628. struct path path;
  2629. int err;
  2630. ns = create_mnt_ns(mnt);
  2631. if (IS_ERR(ns))
  2632. return ERR_CAST(ns);
  2633. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2634. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2635. put_mnt_ns(ns);
  2636. if (err)
  2637. return ERR_PTR(err);
  2638. /* trade a vfsmount reference for active sb one */
  2639. s = path.mnt->mnt_sb;
  2640. atomic_inc(&s->s_active);
  2641. mntput(path.mnt);
  2642. /* lock the sucker */
  2643. down_write(&s->s_umount);
  2644. /* ... and return the root of (sub)tree on it */
  2645. return path.dentry;
  2646. }
  2647. EXPORT_SYMBOL(mount_subtree);
  2648. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2649. char __user *, type, unsigned long, flags, void __user *, data)
  2650. {
  2651. int ret;
  2652. char *kernel_type;
  2653. char *kernel_dev;
  2654. void *options;
  2655. kernel_type = copy_mount_string(type);
  2656. ret = PTR_ERR(kernel_type);
  2657. if (IS_ERR(kernel_type))
  2658. goto out_type;
  2659. kernel_dev = copy_mount_string(dev_name);
  2660. ret = PTR_ERR(kernel_dev);
  2661. if (IS_ERR(kernel_dev))
  2662. goto out_dev;
  2663. options = copy_mount_options(data);
  2664. ret = PTR_ERR(options);
  2665. if (IS_ERR(options))
  2666. goto out_data;
  2667. ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
  2668. kfree(options);
  2669. out_data:
  2670. kfree(kernel_dev);
  2671. out_dev:
  2672. kfree(kernel_type);
  2673. out_type:
  2674. return ret;
  2675. }
  2676. /*
  2677. * Return true if path is reachable from root
  2678. *
  2679. * namespace_sem or mount_lock is held
  2680. */
  2681. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2682. const struct path *root)
  2683. {
  2684. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2685. dentry = mnt->mnt_mountpoint;
  2686. mnt = mnt->mnt_parent;
  2687. }
  2688. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2689. }
  2690. bool path_is_under(const struct path *path1, const struct path *path2)
  2691. {
  2692. bool res;
  2693. read_seqlock_excl(&mount_lock);
  2694. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2695. read_sequnlock_excl(&mount_lock);
  2696. return res;
  2697. }
  2698. EXPORT_SYMBOL(path_is_under);
  2699. /*
  2700. * pivot_root Semantics:
  2701. * Moves the root file system of the current process to the directory put_old,
  2702. * makes new_root as the new root file system of the current process, and sets
  2703. * root/cwd of all processes which had them on the current root to new_root.
  2704. *
  2705. * Restrictions:
  2706. * The new_root and put_old must be directories, and must not be on the
  2707. * same file system as the current process root. The put_old must be
  2708. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2709. * pointed to by put_old must yield the same directory as new_root. No other
  2710. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2711. *
  2712. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2713. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2714. * in this situation.
  2715. *
  2716. * Notes:
  2717. * - we don't move root/cwd if they are not at the root (reason: if something
  2718. * cared enough to change them, it's probably wrong to force them elsewhere)
  2719. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2720. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2721. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2722. * first.
  2723. */
  2724. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2725. const char __user *, put_old)
  2726. {
  2727. struct path new, old, parent_path, root_parent, root;
  2728. struct mount *new_mnt, *root_mnt, *old_mnt;
  2729. struct mountpoint *old_mp, *root_mp;
  2730. int error;
  2731. if (!may_mount())
  2732. return -EPERM;
  2733. error = user_path_dir(new_root, &new);
  2734. if (error)
  2735. goto out0;
  2736. error = user_path_dir(put_old, &old);
  2737. if (error)
  2738. goto out1;
  2739. error = security_sb_pivotroot(&old, &new);
  2740. if (error)
  2741. goto out2;
  2742. get_fs_root(current->fs, &root);
  2743. old_mp = lock_mount(&old);
  2744. error = PTR_ERR(old_mp);
  2745. if (IS_ERR(old_mp))
  2746. goto out3;
  2747. error = -EINVAL;
  2748. new_mnt = real_mount(new.mnt);
  2749. root_mnt = real_mount(root.mnt);
  2750. old_mnt = real_mount(old.mnt);
  2751. if (IS_MNT_SHARED(old_mnt) ||
  2752. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2753. IS_MNT_SHARED(root_mnt->mnt_parent))
  2754. goto out4;
  2755. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2756. goto out4;
  2757. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2758. goto out4;
  2759. error = -ENOENT;
  2760. if (d_unlinked(new.dentry))
  2761. goto out4;
  2762. error = -EBUSY;
  2763. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2764. goto out4; /* loop, on the same file system */
  2765. error = -EINVAL;
  2766. if (root.mnt->mnt_root != root.dentry)
  2767. goto out4; /* not a mountpoint */
  2768. if (!mnt_has_parent(root_mnt))
  2769. goto out4; /* not attached */
  2770. root_mp = root_mnt->mnt_mp;
  2771. if (new.mnt->mnt_root != new.dentry)
  2772. goto out4; /* not a mountpoint */
  2773. if (!mnt_has_parent(new_mnt))
  2774. goto out4; /* not attached */
  2775. /* make sure we can reach put_old from new_root */
  2776. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2777. goto out4;
  2778. /* make certain new is below the root */
  2779. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2780. goto out4;
  2781. root_mp->m_count++; /* pin it so it won't go away */
  2782. lock_mount_hash();
  2783. detach_mnt(new_mnt, &parent_path);
  2784. detach_mnt(root_mnt, &root_parent);
  2785. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2786. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2787. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2788. }
  2789. /* mount old root on put_old */
  2790. attach_mnt(root_mnt, old_mnt, old_mp);
  2791. /* mount new_root on / */
  2792. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2793. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2794. /* A moved mount should not expire automatically */
  2795. list_del_init(&new_mnt->mnt_expire);
  2796. put_mountpoint(root_mp);
  2797. unlock_mount_hash();
  2798. chroot_fs_refs(&root, &new);
  2799. error = 0;
  2800. out4:
  2801. unlock_mount(old_mp);
  2802. if (!error) {
  2803. path_put(&root_parent);
  2804. path_put(&parent_path);
  2805. }
  2806. out3:
  2807. path_put(&root);
  2808. out2:
  2809. path_put(&old);
  2810. out1:
  2811. path_put(&new);
  2812. out0:
  2813. return error;
  2814. }
  2815. static void __init init_mount_tree(void)
  2816. {
  2817. struct vfsmount *mnt;
  2818. struct mnt_namespace *ns;
  2819. struct path root;
  2820. struct file_system_type *type;
  2821. type = get_fs_type("rootfs");
  2822. if (!type)
  2823. panic("Can't find rootfs type");
  2824. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2825. put_filesystem(type);
  2826. if (IS_ERR(mnt))
  2827. panic("Can't create rootfs");
  2828. ns = create_mnt_ns(mnt);
  2829. if (IS_ERR(ns))
  2830. panic("Can't allocate initial namespace");
  2831. init_task.nsproxy->mnt_ns = ns;
  2832. get_mnt_ns(ns);
  2833. root.mnt = mnt;
  2834. root.dentry = mnt->mnt_root;
  2835. mnt->mnt_flags |= MNT_LOCKED;
  2836. set_fs_pwd(current->fs, &root);
  2837. set_fs_root(current->fs, &root);
  2838. }
  2839. void __init mnt_init(void)
  2840. {
  2841. int err;
  2842. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2843. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2844. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2845. sizeof(struct hlist_head),
  2846. mhash_entries, 19,
  2847. HASH_ZERO,
  2848. &m_hash_shift, &m_hash_mask, 0, 0);
  2849. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2850. sizeof(struct hlist_head),
  2851. mphash_entries, 19,
  2852. HASH_ZERO,
  2853. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2854. if (!mount_hashtable || !mountpoint_hashtable)
  2855. panic("Failed to allocate mount hash table\n");
  2856. kernfs_init();
  2857. err = sysfs_init();
  2858. if (err)
  2859. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2860. __func__, err);
  2861. fs_kobj = kobject_create_and_add("fs", NULL);
  2862. if (!fs_kobj)
  2863. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2864. init_rootfs();
  2865. init_mount_tree();
  2866. }
  2867. void put_mnt_ns(struct mnt_namespace *ns)
  2868. {
  2869. if (!atomic_dec_and_test(&ns->count))
  2870. return;
  2871. drop_collected_mounts(&ns->root->mnt);
  2872. free_mnt_ns(ns);
  2873. }
  2874. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2875. {
  2876. struct vfsmount *mnt;
  2877. mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
  2878. if (!IS_ERR(mnt)) {
  2879. /*
  2880. * it is a longterm mount, don't release mnt until
  2881. * we unmount before file sys is unregistered
  2882. */
  2883. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2884. }
  2885. return mnt;
  2886. }
  2887. EXPORT_SYMBOL_GPL(kern_mount_data);
  2888. void kern_unmount(struct vfsmount *mnt)
  2889. {
  2890. /* release long term mount so mount point can be released */
  2891. if (!IS_ERR_OR_NULL(mnt)) {
  2892. real_mount(mnt)->mnt_ns = NULL;
  2893. synchronize_rcu(); /* yecchhh... */
  2894. mntput(mnt);
  2895. }
  2896. }
  2897. EXPORT_SYMBOL(kern_unmount);
  2898. bool our_mnt(struct vfsmount *mnt)
  2899. {
  2900. return check_mnt(real_mount(mnt));
  2901. }
  2902. bool current_chrooted(void)
  2903. {
  2904. /* Does the current process have a non-standard root */
  2905. struct path ns_root;
  2906. struct path fs_root;
  2907. bool chrooted;
  2908. /* Find the namespace root */
  2909. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2910. ns_root.dentry = ns_root.mnt->mnt_root;
  2911. path_get(&ns_root);
  2912. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2913. ;
  2914. get_fs_root(current->fs, &fs_root);
  2915. chrooted = !path_equal(&fs_root, &ns_root);
  2916. path_put(&fs_root);
  2917. path_put(&ns_root);
  2918. return chrooted;
  2919. }
  2920. static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
  2921. int *new_mnt_flags)
  2922. {
  2923. int new_flags = *new_mnt_flags;
  2924. struct mount *mnt;
  2925. bool visible = false;
  2926. down_read(&namespace_sem);
  2927. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2928. struct mount *child;
  2929. int mnt_flags;
  2930. if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
  2931. continue;
  2932. /* This mount is not fully visible if it's root directory
  2933. * is not the root directory of the filesystem.
  2934. */
  2935. if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
  2936. continue;
  2937. /* A local view of the mount flags */
  2938. mnt_flags = mnt->mnt.mnt_flags;
  2939. /* Don't miss readonly hidden in the superblock flags */
  2940. if (sb_rdonly(mnt->mnt.mnt_sb))
  2941. mnt_flags |= MNT_LOCK_READONLY;
  2942. /* Verify the mount flags are equal to or more permissive
  2943. * than the proposed new mount.
  2944. */
  2945. if ((mnt_flags & MNT_LOCK_READONLY) &&
  2946. !(new_flags & MNT_READONLY))
  2947. continue;
  2948. if ((mnt_flags & MNT_LOCK_ATIME) &&
  2949. ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
  2950. continue;
  2951. /* This mount is not fully visible if there are any
  2952. * locked child mounts that cover anything except for
  2953. * empty directories.
  2954. */
  2955. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2956. struct inode *inode = child->mnt_mountpoint->d_inode;
  2957. /* Only worry about locked mounts */
  2958. if (!(child->mnt.mnt_flags & MNT_LOCKED))
  2959. continue;
  2960. /* Is the directory permanetly empty? */
  2961. if (!is_empty_dir_inode(inode))
  2962. goto next;
  2963. }
  2964. /* Preserve the locked attributes */
  2965. *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
  2966. MNT_LOCK_ATIME);
  2967. visible = true;
  2968. goto found;
  2969. next: ;
  2970. }
  2971. found:
  2972. up_read(&namespace_sem);
  2973. return visible;
  2974. }
  2975. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
  2976. {
  2977. const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
  2978. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2979. unsigned long s_iflags;
  2980. if (ns->user_ns == &init_user_ns)
  2981. return false;
  2982. /* Can this filesystem be too revealing? */
  2983. s_iflags = mnt->mnt_sb->s_iflags;
  2984. if (!(s_iflags & SB_I_USERNS_VISIBLE))
  2985. return false;
  2986. if ((s_iflags & required_iflags) != required_iflags) {
  2987. WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
  2988. required_iflags);
  2989. return true;
  2990. }
  2991. return !mnt_already_visible(ns, mnt, new_mnt_flags);
  2992. }
  2993. bool mnt_may_suid(struct vfsmount *mnt)
  2994. {
  2995. /*
  2996. * Foreign mounts (accessed via fchdir or through /proc
  2997. * symlinks) are always treated as if they are nosuid. This
  2998. * prevents namespaces from trusting potentially unsafe
  2999. * suid/sgid bits, file caps, or security labels that originate
  3000. * in other namespaces.
  3001. */
  3002. return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
  3003. current_in_userns(mnt->mnt_sb->s_user_ns);
  3004. }
  3005. static struct ns_common *mntns_get(struct task_struct *task)
  3006. {
  3007. struct ns_common *ns = NULL;
  3008. struct nsproxy *nsproxy;
  3009. task_lock(task);
  3010. nsproxy = task->nsproxy;
  3011. if (nsproxy) {
  3012. ns = &nsproxy->mnt_ns->ns;
  3013. get_mnt_ns(to_mnt_ns(ns));
  3014. }
  3015. task_unlock(task);
  3016. return ns;
  3017. }
  3018. static void mntns_put(struct ns_common *ns)
  3019. {
  3020. put_mnt_ns(to_mnt_ns(ns));
  3021. }
  3022. static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  3023. {
  3024. struct fs_struct *fs = current->fs;
  3025. struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
  3026. struct path root;
  3027. int err;
  3028. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  3029. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  3030. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  3031. return -EPERM;
  3032. if (fs->users != 1)
  3033. return -EINVAL;
  3034. get_mnt_ns(mnt_ns);
  3035. old_mnt_ns = nsproxy->mnt_ns;
  3036. nsproxy->mnt_ns = mnt_ns;
  3037. /* Find the root */
  3038. err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
  3039. "/", LOOKUP_DOWN, &root);
  3040. if (err) {
  3041. /* revert to old namespace */
  3042. nsproxy->mnt_ns = old_mnt_ns;
  3043. put_mnt_ns(mnt_ns);
  3044. return err;
  3045. }
  3046. put_mnt_ns(old_mnt_ns);
  3047. /* Update the pwd and root */
  3048. set_fs_pwd(fs, &root);
  3049. set_fs_root(fs, &root);
  3050. path_put(&root);
  3051. return 0;
  3052. }
  3053. static struct user_namespace *mntns_owner(struct ns_common *ns)
  3054. {
  3055. return to_mnt_ns(ns)->user_ns;
  3056. }
  3057. const struct proc_ns_operations mntns_operations = {
  3058. .name = "mnt",
  3059. .type = CLONE_NEWNS,
  3060. .get = mntns_get,
  3061. .put = mntns_put,
  3062. .install = mntns_install,
  3063. .owner = mntns_owner,
  3064. };