disk-io.c 125 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
  64. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  65. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  66. struct btrfs_fs_info *fs_info);
  67. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  68. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  69. struct extent_io_tree *dirty_pages,
  70. int mark);
  71. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  72. struct extent_io_tree *pinned_extents);
  73. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  74. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  75. /*
  76. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  77. * is complete. This is used during reads to verify checksums, and it is used
  78. * by writes to insert metadata for new file extents after IO is complete.
  79. */
  80. struct btrfs_end_io_wq {
  81. struct bio *bio;
  82. bio_end_io_t *end_io;
  83. void *private;
  84. struct btrfs_fs_info *info;
  85. blk_status_t status;
  86. enum btrfs_wq_endio_type metadata;
  87. struct btrfs_work work;
  88. };
  89. static struct kmem_cache *btrfs_end_io_wq_cache;
  90. int __init btrfs_end_io_wq_init(void)
  91. {
  92. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  93. sizeof(struct btrfs_end_io_wq),
  94. 0,
  95. SLAB_MEM_SPREAD,
  96. NULL);
  97. if (!btrfs_end_io_wq_cache)
  98. return -ENOMEM;
  99. return 0;
  100. }
  101. void btrfs_end_io_wq_exit(void)
  102. {
  103. kmem_cache_destroy(btrfs_end_io_wq_cache);
  104. }
  105. /*
  106. * async submit bios are used to offload expensive checksumming
  107. * onto the worker threads. They checksum file and metadata bios
  108. * just before they are sent down the IO stack.
  109. */
  110. struct async_submit_bio {
  111. void *private_data;
  112. struct btrfs_fs_info *fs_info;
  113. struct bio *bio;
  114. extent_submit_bio_hook_t *submit_bio_start;
  115. extent_submit_bio_hook_t *submit_bio_done;
  116. int mirror_num;
  117. unsigned long bio_flags;
  118. /*
  119. * bio_offset is optional, can be used if the pages in the bio
  120. * can't tell us where in the file the bio should go
  121. */
  122. u64 bio_offset;
  123. struct btrfs_work work;
  124. blk_status_t status;
  125. };
  126. /*
  127. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  128. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  129. * the level the eb occupies in the tree.
  130. *
  131. * Different roots are used for different purposes and may nest inside each
  132. * other and they require separate keysets. As lockdep keys should be
  133. * static, assign keysets according to the purpose of the root as indicated
  134. * by btrfs_root->objectid. This ensures that all special purpose roots
  135. * have separate keysets.
  136. *
  137. * Lock-nesting across peer nodes is always done with the immediate parent
  138. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  139. * subclass to avoid triggering lockdep warning in such cases.
  140. *
  141. * The key is set by the readpage_end_io_hook after the buffer has passed
  142. * csum validation but before the pages are unlocked. It is also set by
  143. * btrfs_init_new_buffer on freshly allocated blocks.
  144. *
  145. * We also add a check to make sure the highest level of the tree is the
  146. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  147. * needs update as well.
  148. */
  149. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  150. # if BTRFS_MAX_LEVEL != 8
  151. # error
  152. # endif
  153. static struct btrfs_lockdep_keyset {
  154. u64 id; /* root objectid */
  155. const char *name_stem; /* lock name stem */
  156. char names[BTRFS_MAX_LEVEL + 1][20];
  157. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  158. } btrfs_lockdep_keysets[] = {
  159. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  160. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  161. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  162. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  163. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  164. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  165. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  166. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  167. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  168. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  169. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  170. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  171. { .id = 0, .name_stem = "tree" },
  172. };
  173. void __init btrfs_init_lockdep(void)
  174. {
  175. int i, j;
  176. /* initialize lockdep class names */
  177. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  178. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  179. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  180. snprintf(ks->names[j], sizeof(ks->names[j]),
  181. "btrfs-%s-%02d", ks->name_stem, j);
  182. }
  183. }
  184. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  185. int level)
  186. {
  187. struct btrfs_lockdep_keyset *ks;
  188. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  189. /* find the matching keyset, id 0 is the default entry */
  190. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  191. if (ks->id == objectid)
  192. break;
  193. lockdep_set_class_and_name(&eb->lock,
  194. &ks->keys[level], ks->names[level]);
  195. }
  196. #endif
  197. /*
  198. * extents on the btree inode are pretty simple, there's one extent
  199. * that covers the entire device
  200. */
  201. static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
  202. struct page *page, size_t pg_offset, u64 start, u64 len,
  203. int create)
  204. {
  205. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  206. struct extent_map_tree *em_tree = &inode->extent_tree;
  207. struct extent_map *em;
  208. int ret;
  209. read_lock(&em_tree->lock);
  210. em = lookup_extent_mapping(em_tree, start, len);
  211. if (em) {
  212. em->bdev = fs_info->fs_devices->latest_bdev;
  213. read_unlock(&em_tree->lock);
  214. goto out;
  215. }
  216. read_unlock(&em_tree->lock);
  217. em = alloc_extent_map();
  218. if (!em) {
  219. em = ERR_PTR(-ENOMEM);
  220. goto out;
  221. }
  222. em->start = 0;
  223. em->len = (u64)-1;
  224. em->block_len = (u64)-1;
  225. em->block_start = 0;
  226. em->bdev = fs_info->fs_devices->latest_bdev;
  227. write_lock(&em_tree->lock);
  228. ret = add_extent_mapping(em_tree, em, 0);
  229. if (ret == -EEXIST) {
  230. free_extent_map(em);
  231. em = lookup_extent_mapping(em_tree, start, len);
  232. if (!em)
  233. em = ERR_PTR(-EIO);
  234. } else if (ret) {
  235. free_extent_map(em);
  236. em = ERR_PTR(ret);
  237. }
  238. write_unlock(&em_tree->lock);
  239. out:
  240. return em;
  241. }
  242. u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
  243. {
  244. return btrfs_crc32c(seed, data, len);
  245. }
  246. void btrfs_csum_final(u32 crc, u8 *result)
  247. {
  248. put_unaligned_le32(~crc, result);
  249. }
  250. /*
  251. * compute the csum for a btree block, and either verify it or write it
  252. * into the csum field of the block.
  253. */
  254. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  255. struct extent_buffer *buf,
  256. int verify)
  257. {
  258. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  259. char *result = NULL;
  260. unsigned long len;
  261. unsigned long cur_len;
  262. unsigned long offset = BTRFS_CSUM_SIZE;
  263. char *kaddr;
  264. unsigned long map_start;
  265. unsigned long map_len;
  266. int err;
  267. u32 crc = ~(u32)0;
  268. unsigned long inline_result;
  269. len = buf->len - offset;
  270. while (len > 0) {
  271. err = map_private_extent_buffer(buf, offset, 32,
  272. &kaddr, &map_start, &map_len);
  273. if (err)
  274. return err;
  275. cur_len = min(len, map_len - (offset - map_start));
  276. crc = btrfs_csum_data(kaddr + offset - map_start,
  277. crc, cur_len);
  278. len -= cur_len;
  279. offset += cur_len;
  280. }
  281. if (csum_size > sizeof(inline_result)) {
  282. result = kzalloc(csum_size, GFP_NOFS);
  283. if (!result)
  284. return -ENOMEM;
  285. } else {
  286. result = (char *)&inline_result;
  287. }
  288. btrfs_csum_final(crc, result);
  289. if (verify) {
  290. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  291. u32 val;
  292. u32 found = 0;
  293. memcpy(&found, result, csum_size);
  294. read_extent_buffer(buf, &val, 0, csum_size);
  295. btrfs_warn_rl(fs_info,
  296. "%s checksum verify failed on %llu wanted %X found %X level %d",
  297. fs_info->sb->s_id, buf->start,
  298. val, found, btrfs_header_level(buf));
  299. if (result != (char *)&inline_result)
  300. kfree(result);
  301. return -EUCLEAN;
  302. }
  303. } else {
  304. write_extent_buffer(buf, result, 0, csum_size);
  305. }
  306. if (result != (char *)&inline_result)
  307. kfree(result);
  308. return 0;
  309. }
  310. /*
  311. * we can't consider a given block up to date unless the transid of the
  312. * block matches the transid in the parent node's pointer. This is how we
  313. * detect blocks that either didn't get written at all or got written
  314. * in the wrong place.
  315. */
  316. static int verify_parent_transid(struct extent_io_tree *io_tree,
  317. struct extent_buffer *eb, u64 parent_transid,
  318. int atomic)
  319. {
  320. struct extent_state *cached_state = NULL;
  321. int ret;
  322. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  323. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  324. return 0;
  325. if (atomic)
  326. return -EAGAIN;
  327. if (need_lock) {
  328. btrfs_tree_read_lock(eb);
  329. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  330. }
  331. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  332. &cached_state);
  333. if (extent_buffer_uptodate(eb) &&
  334. btrfs_header_generation(eb) == parent_transid) {
  335. ret = 0;
  336. goto out;
  337. }
  338. btrfs_err_rl(eb->fs_info,
  339. "parent transid verify failed on %llu wanted %llu found %llu",
  340. eb->start,
  341. parent_transid, btrfs_header_generation(eb));
  342. ret = 1;
  343. /*
  344. * Things reading via commit roots that don't have normal protection,
  345. * like send, can have a really old block in cache that may point at a
  346. * block that has been freed and re-allocated. So don't clear uptodate
  347. * if we find an eb that is under IO (dirty/writeback) because we could
  348. * end up reading in the stale data and then writing it back out and
  349. * making everybody very sad.
  350. */
  351. if (!extent_buffer_under_io(eb))
  352. clear_extent_buffer_uptodate(eb);
  353. out:
  354. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  355. &cached_state, GFP_NOFS);
  356. if (need_lock)
  357. btrfs_tree_read_unlock_blocking(eb);
  358. return ret;
  359. }
  360. /*
  361. * Return 0 if the superblock checksum type matches the checksum value of that
  362. * algorithm. Pass the raw disk superblock data.
  363. */
  364. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  365. char *raw_disk_sb)
  366. {
  367. struct btrfs_super_block *disk_sb =
  368. (struct btrfs_super_block *)raw_disk_sb;
  369. u16 csum_type = btrfs_super_csum_type(disk_sb);
  370. int ret = 0;
  371. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  372. u32 crc = ~(u32)0;
  373. const int csum_size = sizeof(crc);
  374. char result[csum_size];
  375. /*
  376. * The super_block structure does not span the whole
  377. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  378. * is filled with zeros and is included in the checksum.
  379. */
  380. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  381. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  382. btrfs_csum_final(crc, result);
  383. if (memcmp(raw_disk_sb, result, csum_size))
  384. ret = 1;
  385. }
  386. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  387. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  388. csum_type);
  389. ret = 1;
  390. }
  391. return ret;
  392. }
  393. /*
  394. * helper to read a given tree block, doing retries as required when
  395. * the checksums don't match and we have alternate mirrors to try.
  396. */
  397. static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
  398. struct extent_buffer *eb,
  399. u64 parent_transid)
  400. {
  401. struct extent_io_tree *io_tree;
  402. int failed = 0;
  403. int ret;
  404. int num_copies = 0;
  405. int mirror_num = 0;
  406. int failed_mirror = 0;
  407. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  408. io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
  409. while (1) {
  410. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  411. btree_get_extent, mirror_num);
  412. if (!ret) {
  413. if (!verify_parent_transid(io_tree, eb,
  414. parent_transid, 0))
  415. break;
  416. else
  417. ret = -EIO;
  418. }
  419. /*
  420. * This buffer's crc is fine, but its contents are corrupted, so
  421. * there is no reason to read the other copies, they won't be
  422. * any less wrong.
  423. */
  424. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  425. break;
  426. num_copies = btrfs_num_copies(fs_info,
  427. eb->start, eb->len);
  428. if (num_copies == 1)
  429. break;
  430. if (!failed_mirror) {
  431. failed = 1;
  432. failed_mirror = eb->read_mirror;
  433. }
  434. mirror_num++;
  435. if (mirror_num == failed_mirror)
  436. mirror_num++;
  437. if (mirror_num > num_copies)
  438. break;
  439. }
  440. if (failed && !ret && failed_mirror)
  441. repair_eb_io_failure(fs_info, eb, failed_mirror);
  442. return ret;
  443. }
  444. /*
  445. * checksum a dirty tree block before IO. This has extra checks to make sure
  446. * we only fill in the checksum field in the first page of a multi-page block
  447. */
  448. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  449. {
  450. u64 start = page_offset(page);
  451. u64 found_start;
  452. struct extent_buffer *eb;
  453. eb = (struct extent_buffer *)page->private;
  454. if (page != eb->pages[0])
  455. return 0;
  456. found_start = btrfs_header_bytenr(eb);
  457. /*
  458. * Please do not consolidate these warnings into a single if.
  459. * It is useful to know what went wrong.
  460. */
  461. if (WARN_ON(found_start != start))
  462. return -EUCLEAN;
  463. if (WARN_ON(!PageUptodate(page)))
  464. return -EUCLEAN;
  465. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  466. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  467. return csum_tree_block(fs_info, eb, 0);
  468. }
  469. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  470. struct extent_buffer *eb)
  471. {
  472. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  473. u8 fsid[BTRFS_FSID_SIZE];
  474. int ret = 1;
  475. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  476. while (fs_devices) {
  477. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  478. ret = 0;
  479. break;
  480. }
  481. fs_devices = fs_devices->seed;
  482. }
  483. return ret;
  484. }
  485. #define CORRUPT(reason, eb, root, slot) \
  486. btrfs_crit(root->fs_info, \
  487. "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
  488. btrfs_header_level(eb) == 0 ? "leaf" : "node", \
  489. reason, btrfs_header_bytenr(eb), root->objectid, slot)
  490. static noinline int check_leaf(struct btrfs_root *root,
  491. struct extent_buffer *leaf)
  492. {
  493. struct btrfs_fs_info *fs_info = root->fs_info;
  494. struct btrfs_key key;
  495. struct btrfs_key leaf_key;
  496. u32 nritems = btrfs_header_nritems(leaf);
  497. int slot;
  498. /*
  499. * Extent buffers from a relocation tree have a owner field that
  500. * corresponds to the subvolume tree they are based on. So just from an
  501. * extent buffer alone we can not find out what is the id of the
  502. * corresponding subvolume tree, so we can not figure out if the extent
  503. * buffer corresponds to the root of the relocation tree or not. So skip
  504. * this check for relocation trees.
  505. */
  506. if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
  507. struct btrfs_root *check_root;
  508. key.objectid = btrfs_header_owner(leaf);
  509. key.type = BTRFS_ROOT_ITEM_KEY;
  510. key.offset = (u64)-1;
  511. check_root = btrfs_get_fs_root(fs_info, &key, false);
  512. /*
  513. * The only reason we also check NULL here is that during
  514. * open_ctree() some roots has not yet been set up.
  515. */
  516. if (!IS_ERR_OR_NULL(check_root)) {
  517. struct extent_buffer *eb;
  518. eb = btrfs_root_node(check_root);
  519. /* if leaf is the root, then it's fine */
  520. if (leaf != eb) {
  521. CORRUPT("non-root leaf's nritems is 0",
  522. leaf, check_root, 0);
  523. free_extent_buffer(eb);
  524. return -EIO;
  525. }
  526. free_extent_buffer(eb);
  527. }
  528. return 0;
  529. }
  530. if (nritems == 0)
  531. return 0;
  532. /* Check the 0 item */
  533. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  534. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  535. CORRUPT("invalid item offset size pair", leaf, root, 0);
  536. return -EIO;
  537. }
  538. /*
  539. * Check to make sure each items keys are in the correct order and their
  540. * offsets make sense. We only have to loop through nritems-1 because
  541. * we check the current slot against the next slot, which verifies the
  542. * next slot's offset+size makes sense and that the current's slot
  543. * offset is correct.
  544. */
  545. for (slot = 0; slot < nritems - 1; slot++) {
  546. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  547. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  548. /* Make sure the keys are in the right order */
  549. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  550. CORRUPT("bad key order", leaf, root, slot);
  551. return -EIO;
  552. }
  553. /*
  554. * Make sure the offset and ends are right, remember that the
  555. * item data starts at the end of the leaf and grows towards the
  556. * front.
  557. */
  558. if (btrfs_item_offset_nr(leaf, slot) !=
  559. btrfs_item_end_nr(leaf, slot + 1)) {
  560. CORRUPT("slot offset bad", leaf, root, slot);
  561. return -EIO;
  562. }
  563. /*
  564. * Check to make sure that we don't point outside of the leaf,
  565. * just in case all the items are consistent to each other, but
  566. * all point outside of the leaf.
  567. */
  568. if (btrfs_item_end_nr(leaf, slot) >
  569. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  570. CORRUPT("slot end outside of leaf", leaf, root, slot);
  571. return -EIO;
  572. }
  573. }
  574. return 0;
  575. }
  576. static int check_node(struct btrfs_root *root, struct extent_buffer *node)
  577. {
  578. unsigned long nr = btrfs_header_nritems(node);
  579. struct btrfs_key key, next_key;
  580. int slot;
  581. u64 bytenr;
  582. int ret = 0;
  583. if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
  584. btrfs_crit(root->fs_info,
  585. "corrupt node: block %llu root %llu nritems %lu",
  586. node->start, root->objectid, nr);
  587. return -EIO;
  588. }
  589. for (slot = 0; slot < nr - 1; slot++) {
  590. bytenr = btrfs_node_blockptr(node, slot);
  591. btrfs_node_key_to_cpu(node, &key, slot);
  592. btrfs_node_key_to_cpu(node, &next_key, slot + 1);
  593. if (!bytenr) {
  594. CORRUPT("invalid item slot", node, root, slot);
  595. ret = -EIO;
  596. goto out;
  597. }
  598. if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
  599. CORRUPT("bad key order", node, root, slot);
  600. ret = -EIO;
  601. goto out;
  602. }
  603. }
  604. out:
  605. return ret;
  606. }
  607. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  608. u64 phy_offset, struct page *page,
  609. u64 start, u64 end, int mirror)
  610. {
  611. u64 found_start;
  612. int found_level;
  613. struct extent_buffer *eb;
  614. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  615. struct btrfs_fs_info *fs_info = root->fs_info;
  616. int ret = 0;
  617. int reads_done;
  618. if (!page->private)
  619. goto out;
  620. eb = (struct extent_buffer *)page->private;
  621. /* the pending IO might have been the only thing that kept this buffer
  622. * in memory. Make sure we have a ref for all this other checks
  623. */
  624. extent_buffer_get(eb);
  625. reads_done = atomic_dec_and_test(&eb->io_pages);
  626. if (!reads_done)
  627. goto err;
  628. eb->read_mirror = mirror;
  629. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  630. ret = -EIO;
  631. goto err;
  632. }
  633. found_start = btrfs_header_bytenr(eb);
  634. if (found_start != eb->start) {
  635. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  636. found_start, eb->start);
  637. ret = -EIO;
  638. goto err;
  639. }
  640. if (check_tree_block_fsid(fs_info, eb)) {
  641. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  642. eb->start);
  643. ret = -EIO;
  644. goto err;
  645. }
  646. found_level = btrfs_header_level(eb);
  647. if (found_level >= BTRFS_MAX_LEVEL) {
  648. btrfs_err(fs_info, "bad tree block level %d",
  649. (int)btrfs_header_level(eb));
  650. ret = -EIO;
  651. goto err;
  652. }
  653. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  654. eb, found_level);
  655. ret = csum_tree_block(fs_info, eb, 1);
  656. if (ret)
  657. goto err;
  658. /*
  659. * If this is a leaf block and it is corrupt, set the corrupt bit so
  660. * that we don't try and read the other copies of this block, just
  661. * return -EIO.
  662. */
  663. if (found_level == 0 && check_leaf(root, eb)) {
  664. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  665. ret = -EIO;
  666. }
  667. if (found_level > 0 && check_node(root, eb))
  668. ret = -EIO;
  669. if (!ret)
  670. set_extent_buffer_uptodate(eb);
  671. err:
  672. if (reads_done &&
  673. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  674. btree_readahead_hook(eb, ret);
  675. if (ret) {
  676. /*
  677. * our io error hook is going to dec the io pages
  678. * again, we have to make sure it has something
  679. * to decrement
  680. */
  681. atomic_inc(&eb->io_pages);
  682. clear_extent_buffer_uptodate(eb);
  683. }
  684. free_extent_buffer(eb);
  685. out:
  686. return ret;
  687. }
  688. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  689. {
  690. struct extent_buffer *eb;
  691. eb = (struct extent_buffer *)page->private;
  692. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  693. eb->read_mirror = failed_mirror;
  694. atomic_dec(&eb->io_pages);
  695. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  696. btree_readahead_hook(eb, -EIO);
  697. return -EIO; /* we fixed nothing */
  698. }
  699. static void end_workqueue_bio(struct bio *bio)
  700. {
  701. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  702. struct btrfs_fs_info *fs_info;
  703. struct btrfs_workqueue *wq;
  704. btrfs_work_func_t func;
  705. fs_info = end_io_wq->info;
  706. end_io_wq->status = bio->bi_status;
  707. if (bio_op(bio) == REQ_OP_WRITE) {
  708. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  709. wq = fs_info->endio_meta_write_workers;
  710. func = btrfs_endio_meta_write_helper;
  711. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  712. wq = fs_info->endio_freespace_worker;
  713. func = btrfs_freespace_write_helper;
  714. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  715. wq = fs_info->endio_raid56_workers;
  716. func = btrfs_endio_raid56_helper;
  717. } else {
  718. wq = fs_info->endio_write_workers;
  719. func = btrfs_endio_write_helper;
  720. }
  721. } else {
  722. if (unlikely(end_io_wq->metadata ==
  723. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  724. wq = fs_info->endio_repair_workers;
  725. func = btrfs_endio_repair_helper;
  726. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  727. wq = fs_info->endio_raid56_workers;
  728. func = btrfs_endio_raid56_helper;
  729. } else if (end_io_wq->metadata) {
  730. wq = fs_info->endio_meta_workers;
  731. func = btrfs_endio_meta_helper;
  732. } else {
  733. wq = fs_info->endio_workers;
  734. func = btrfs_endio_helper;
  735. }
  736. }
  737. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  738. btrfs_queue_work(wq, &end_io_wq->work);
  739. }
  740. blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  741. enum btrfs_wq_endio_type metadata)
  742. {
  743. struct btrfs_end_io_wq *end_io_wq;
  744. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  745. if (!end_io_wq)
  746. return BLK_STS_RESOURCE;
  747. end_io_wq->private = bio->bi_private;
  748. end_io_wq->end_io = bio->bi_end_io;
  749. end_io_wq->info = info;
  750. end_io_wq->status = 0;
  751. end_io_wq->bio = bio;
  752. end_io_wq->metadata = metadata;
  753. bio->bi_private = end_io_wq;
  754. bio->bi_end_io = end_workqueue_bio;
  755. return 0;
  756. }
  757. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  758. {
  759. unsigned long limit = min_t(unsigned long,
  760. info->thread_pool_size,
  761. info->fs_devices->open_devices);
  762. return 256 * limit;
  763. }
  764. static void run_one_async_start(struct btrfs_work *work)
  765. {
  766. struct async_submit_bio *async;
  767. blk_status_t ret;
  768. async = container_of(work, struct async_submit_bio, work);
  769. ret = async->submit_bio_start(async->private_data, async->bio,
  770. async->mirror_num, async->bio_flags,
  771. async->bio_offset);
  772. if (ret)
  773. async->status = ret;
  774. }
  775. static void run_one_async_done(struct btrfs_work *work)
  776. {
  777. struct btrfs_fs_info *fs_info;
  778. struct async_submit_bio *async;
  779. int limit;
  780. async = container_of(work, struct async_submit_bio, work);
  781. fs_info = async->fs_info;
  782. limit = btrfs_async_submit_limit(fs_info);
  783. limit = limit * 2 / 3;
  784. /*
  785. * atomic_dec_return implies a barrier for waitqueue_active
  786. */
  787. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  788. waitqueue_active(&fs_info->async_submit_wait))
  789. wake_up(&fs_info->async_submit_wait);
  790. /* If an error occurred we just want to clean up the bio and move on */
  791. if (async->status) {
  792. async->bio->bi_status = async->status;
  793. bio_endio(async->bio);
  794. return;
  795. }
  796. async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
  797. async->bio_flags, async->bio_offset);
  798. }
  799. static void run_one_async_free(struct btrfs_work *work)
  800. {
  801. struct async_submit_bio *async;
  802. async = container_of(work, struct async_submit_bio, work);
  803. kfree(async);
  804. }
  805. blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
  806. int mirror_num, unsigned long bio_flags,
  807. u64 bio_offset, void *private_data,
  808. extent_submit_bio_hook_t *submit_bio_start,
  809. extent_submit_bio_hook_t *submit_bio_done)
  810. {
  811. struct async_submit_bio *async;
  812. async = kmalloc(sizeof(*async), GFP_NOFS);
  813. if (!async)
  814. return BLK_STS_RESOURCE;
  815. async->private_data = private_data;
  816. async->fs_info = fs_info;
  817. async->bio = bio;
  818. async->mirror_num = mirror_num;
  819. async->submit_bio_start = submit_bio_start;
  820. async->submit_bio_done = submit_bio_done;
  821. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  822. run_one_async_done, run_one_async_free);
  823. async->bio_flags = bio_flags;
  824. async->bio_offset = bio_offset;
  825. async->status = 0;
  826. atomic_inc(&fs_info->nr_async_submits);
  827. if (op_is_sync(bio->bi_opf))
  828. btrfs_set_work_high_priority(&async->work);
  829. btrfs_queue_work(fs_info->workers, &async->work);
  830. while (atomic_read(&fs_info->async_submit_draining) &&
  831. atomic_read(&fs_info->nr_async_submits)) {
  832. wait_event(fs_info->async_submit_wait,
  833. (atomic_read(&fs_info->nr_async_submits) == 0));
  834. }
  835. return 0;
  836. }
  837. static blk_status_t btree_csum_one_bio(struct bio *bio)
  838. {
  839. struct bio_vec *bvec;
  840. struct btrfs_root *root;
  841. int i, ret = 0;
  842. ASSERT(!bio_flagged(bio, BIO_CLONED));
  843. bio_for_each_segment_all(bvec, bio, i) {
  844. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  845. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  846. if (ret)
  847. break;
  848. }
  849. return errno_to_blk_status(ret);
  850. }
  851. static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
  852. int mirror_num, unsigned long bio_flags,
  853. u64 bio_offset)
  854. {
  855. /*
  856. * when we're called for a write, we're already in the async
  857. * submission context. Just jump into btrfs_map_bio
  858. */
  859. return btree_csum_one_bio(bio);
  860. }
  861. static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
  862. int mirror_num, unsigned long bio_flags,
  863. u64 bio_offset)
  864. {
  865. struct inode *inode = private_data;
  866. blk_status_t ret;
  867. /*
  868. * when we're called for a write, we're already in the async
  869. * submission context. Just jump into btrfs_map_bio
  870. */
  871. ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
  872. if (ret) {
  873. bio->bi_status = ret;
  874. bio_endio(bio);
  875. }
  876. return ret;
  877. }
  878. static int check_async_write(unsigned long bio_flags)
  879. {
  880. if (bio_flags & EXTENT_BIO_TREE_LOG)
  881. return 0;
  882. #ifdef CONFIG_X86
  883. if (static_cpu_has(X86_FEATURE_XMM4_2))
  884. return 0;
  885. #endif
  886. return 1;
  887. }
  888. static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
  889. int mirror_num, unsigned long bio_flags,
  890. u64 bio_offset)
  891. {
  892. struct inode *inode = private_data;
  893. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  894. int async = check_async_write(bio_flags);
  895. blk_status_t ret;
  896. if (bio_op(bio) != REQ_OP_WRITE) {
  897. /*
  898. * called for a read, do the setup so that checksum validation
  899. * can happen in the async kernel threads
  900. */
  901. ret = btrfs_bio_wq_end_io(fs_info, bio,
  902. BTRFS_WQ_ENDIO_METADATA);
  903. if (ret)
  904. goto out_w_error;
  905. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  906. } else if (!async) {
  907. ret = btree_csum_one_bio(bio);
  908. if (ret)
  909. goto out_w_error;
  910. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  911. } else {
  912. /*
  913. * kthread helpers are used to submit writes so that
  914. * checksumming can happen in parallel across all CPUs
  915. */
  916. ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
  917. bio_offset, private_data,
  918. __btree_submit_bio_start,
  919. __btree_submit_bio_done);
  920. }
  921. if (ret)
  922. goto out_w_error;
  923. return 0;
  924. out_w_error:
  925. bio->bi_status = ret;
  926. bio_endio(bio);
  927. return ret;
  928. }
  929. #ifdef CONFIG_MIGRATION
  930. static int btree_migratepage(struct address_space *mapping,
  931. struct page *newpage, struct page *page,
  932. enum migrate_mode mode)
  933. {
  934. /*
  935. * we can't safely write a btree page from here,
  936. * we haven't done the locking hook
  937. */
  938. if (PageDirty(page))
  939. return -EAGAIN;
  940. /*
  941. * Buffers may be managed in a filesystem specific way.
  942. * We must have no buffers or drop them.
  943. */
  944. if (page_has_private(page) &&
  945. !try_to_release_page(page, GFP_KERNEL))
  946. return -EAGAIN;
  947. return migrate_page(mapping, newpage, page, mode);
  948. }
  949. #endif
  950. static int btree_writepages(struct address_space *mapping,
  951. struct writeback_control *wbc)
  952. {
  953. struct btrfs_fs_info *fs_info;
  954. int ret;
  955. if (wbc->sync_mode == WB_SYNC_NONE) {
  956. if (wbc->for_kupdate)
  957. return 0;
  958. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  959. /* this is a bit racy, but that's ok */
  960. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  961. BTRFS_DIRTY_METADATA_THRESH);
  962. if (ret < 0)
  963. return 0;
  964. }
  965. return btree_write_cache_pages(mapping, wbc);
  966. }
  967. static int btree_readpage(struct file *file, struct page *page)
  968. {
  969. struct extent_io_tree *tree;
  970. tree = &BTRFS_I(page->mapping->host)->io_tree;
  971. return extent_read_full_page(tree, page, btree_get_extent, 0);
  972. }
  973. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  974. {
  975. if (PageWriteback(page) || PageDirty(page))
  976. return 0;
  977. return try_release_extent_buffer(page);
  978. }
  979. static void btree_invalidatepage(struct page *page, unsigned int offset,
  980. unsigned int length)
  981. {
  982. struct extent_io_tree *tree;
  983. tree = &BTRFS_I(page->mapping->host)->io_tree;
  984. extent_invalidatepage(tree, page, offset);
  985. btree_releasepage(page, GFP_NOFS);
  986. if (PagePrivate(page)) {
  987. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  988. "page private not zero on page %llu",
  989. (unsigned long long)page_offset(page));
  990. ClearPagePrivate(page);
  991. set_page_private(page, 0);
  992. put_page(page);
  993. }
  994. }
  995. static int btree_set_page_dirty(struct page *page)
  996. {
  997. #ifdef DEBUG
  998. struct extent_buffer *eb;
  999. BUG_ON(!PagePrivate(page));
  1000. eb = (struct extent_buffer *)page->private;
  1001. BUG_ON(!eb);
  1002. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  1003. BUG_ON(!atomic_read(&eb->refs));
  1004. btrfs_assert_tree_locked(eb);
  1005. #endif
  1006. return __set_page_dirty_nobuffers(page);
  1007. }
  1008. static const struct address_space_operations btree_aops = {
  1009. .readpage = btree_readpage,
  1010. .writepages = btree_writepages,
  1011. .releasepage = btree_releasepage,
  1012. .invalidatepage = btree_invalidatepage,
  1013. #ifdef CONFIG_MIGRATION
  1014. .migratepage = btree_migratepage,
  1015. #endif
  1016. .set_page_dirty = btree_set_page_dirty,
  1017. };
  1018. void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
  1019. {
  1020. struct extent_buffer *buf = NULL;
  1021. struct inode *btree_inode = fs_info->btree_inode;
  1022. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1023. if (IS_ERR(buf))
  1024. return;
  1025. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  1026. buf, WAIT_NONE, btree_get_extent, 0);
  1027. free_extent_buffer(buf);
  1028. }
  1029. int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
  1030. int mirror_num, struct extent_buffer **eb)
  1031. {
  1032. struct extent_buffer *buf = NULL;
  1033. struct inode *btree_inode = fs_info->btree_inode;
  1034. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  1035. int ret;
  1036. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1037. if (IS_ERR(buf))
  1038. return 0;
  1039. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  1040. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  1041. btree_get_extent, mirror_num);
  1042. if (ret) {
  1043. free_extent_buffer(buf);
  1044. return ret;
  1045. }
  1046. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  1047. free_extent_buffer(buf);
  1048. return -EIO;
  1049. } else if (extent_buffer_uptodate(buf)) {
  1050. *eb = buf;
  1051. } else {
  1052. free_extent_buffer(buf);
  1053. }
  1054. return 0;
  1055. }
  1056. struct extent_buffer *btrfs_find_create_tree_block(
  1057. struct btrfs_fs_info *fs_info,
  1058. u64 bytenr)
  1059. {
  1060. if (btrfs_is_testing(fs_info))
  1061. return alloc_test_extent_buffer(fs_info, bytenr);
  1062. return alloc_extent_buffer(fs_info, bytenr);
  1063. }
  1064. int btrfs_write_tree_block(struct extent_buffer *buf)
  1065. {
  1066. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1067. buf->start + buf->len - 1);
  1068. }
  1069. void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1070. {
  1071. filemap_fdatawait_range(buf->pages[0]->mapping,
  1072. buf->start, buf->start + buf->len - 1);
  1073. }
  1074. struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
  1075. u64 parent_transid)
  1076. {
  1077. struct extent_buffer *buf = NULL;
  1078. int ret;
  1079. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1080. if (IS_ERR(buf))
  1081. return buf;
  1082. ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  1083. if (ret) {
  1084. free_extent_buffer(buf);
  1085. return ERR_PTR(ret);
  1086. }
  1087. return buf;
  1088. }
  1089. void clean_tree_block(struct btrfs_fs_info *fs_info,
  1090. struct extent_buffer *buf)
  1091. {
  1092. if (btrfs_header_generation(buf) ==
  1093. fs_info->running_transaction->transid) {
  1094. btrfs_assert_tree_locked(buf);
  1095. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1096. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  1097. -buf->len,
  1098. fs_info->dirty_metadata_batch);
  1099. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1100. btrfs_set_lock_blocking(buf);
  1101. clear_extent_buffer_dirty(buf);
  1102. }
  1103. }
  1104. }
  1105. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1106. {
  1107. struct btrfs_subvolume_writers *writers;
  1108. int ret;
  1109. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1110. if (!writers)
  1111. return ERR_PTR(-ENOMEM);
  1112. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1113. if (ret < 0) {
  1114. kfree(writers);
  1115. return ERR_PTR(ret);
  1116. }
  1117. init_waitqueue_head(&writers->wait);
  1118. return writers;
  1119. }
  1120. static void
  1121. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1122. {
  1123. percpu_counter_destroy(&writers->counter);
  1124. kfree(writers);
  1125. }
  1126. static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1127. u64 objectid)
  1128. {
  1129. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1130. root->node = NULL;
  1131. root->commit_root = NULL;
  1132. root->state = 0;
  1133. root->orphan_cleanup_state = 0;
  1134. root->objectid = objectid;
  1135. root->last_trans = 0;
  1136. root->highest_objectid = 0;
  1137. root->nr_delalloc_inodes = 0;
  1138. root->nr_ordered_extents = 0;
  1139. root->name = NULL;
  1140. root->inode_tree = RB_ROOT;
  1141. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1142. root->block_rsv = NULL;
  1143. root->orphan_block_rsv = NULL;
  1144. INIT_LIST_HEAD(&root->dirty_list);
  1145. INIT_LIST_HEAD(&root->root_list);
  1146. INIT_LIST_HEAD(&root->delalloc_inodes);
  1147. INIT_LIST_HEAD(&root->delalloc_root);
  1148. INIT_LIST_HEAD(&root->ordered_extents);
  1149. INIT_LIST_HEAD(&root->ordered_root);
  1150. INIT_LIST_HEAD(&root->logged_list[0]);
  1151. INIT_LIST_HEAD(&root->logged_list[1]);
  1152. spin_lock_init(&root->orphan_lock);
  1153. spin_lock_init(&root->inode_lock);
  1154. spin_lock_init(&root->delalloc_lock);
  1155. spin_lock_init(&root->ordered_extent_lock);
  1156. spin_lock_init(&root->accounting_lock);
  1157. spin_lock_init(&root->log_extents_lock[0]);
  1158. spin_lock_init(&root->log_extents_lock[1]);
  1159. mutex_init(&root->objectid_mutex);
  1160. mutex_init(&root->log_mutex);
  1161. mutex_init(&root->ordered_extent_mutex);
  1162. mutex_init(&root->delalloc_mutex);
  1163. init_waitqueue_head(&root->log_writer_wait);
  1164. init_waitqueue_head(&root->log_commit_wait[0]);
  1165. init_waitqueue_head(&root->log_commit_wait[1]);
  1166. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1167. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1168. atomic_set(&root->log_commit[0], 0);
  1169. atomic_set(&root->log_commit[1], 0);
  1170. atomic_set(&root->log_writers, 0);
  1171. atomic_set(&root->log_batch, 0);
  1172. atomic_set(&root->orphan_inodes, 0);
  1173. refcount_set(&root->refs, 1);
  1174. atomic_set(&root->will_be_snapshotted, 0);
  1175. atomic64_set(&root->qgroup_meta_rsv, 0);
  1176. root->log_transid = 0;
  1177. root->log_transid_committed = -1;
  1178. root->last_log_commit = 0;
  1179. if (!dummy)
  1180. extent_io_tree_init(&root->dirty_log_pages, NULL);
  1181. memset(&root->root_key, 0, sizeof(root->root_key));
  1182. memset(&root->root_item, 0, sizeof(root->root_item));
  1183. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1184. if (!dummy)
  1185. root->defrag_trans_start = fs_info->generation;
  1186. else
  1187. root->defrag_trans_start = 0;
  1188. root->root_key.objectid = objectid;
  1189. root->anon_dev = 0;
  1190. spin_lock_init(&root->root_item_lock);
  1191. }
  1192. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1193. gfp_t flags)
  1194. {
  1195. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1196. if (root)
  1197. root->fs_info = fs_info;
  1198. return root;
  1199. }
  1200. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1201. /* Should only be used by the testing infrastructure */
  1202. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
  1203. {
  1204. struct btrfs_root *root;
  1205. if (!fs_info)
  1206. return ERR_PTR(-EINVAL);
  1207. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1208. if (!root)
  1209. return ERR_PTR(-ENOMEM);
  1210. /* We don't use the stripesize in selftest, set it as sectorsize */
  1211. __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1212. root->alloc_bytenr = 0;
  1213. return root;
  1214. }
  1215. #endif
  1216. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1217. struct btrfs_fs_info *fs_info,
  1218. u64 objectid)
  1219. {
  1220. struct extent_buffer *leaf;
  1221. struct btrfs_root *tree_root = fs_info->tree_root;
  1222. struct btrfs_root *root;
  1223. struct btrfs_key key;
  1224. int ret = 0;
  1225. uuid_le uuid;
  1226. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1227. if (!root)
  1228. return ERR_PTR(-ENOMEM);
  1229. __setup_root(root, fs_info, objectid);
  1230. root->root_key.objectid = objectid;
  1231. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1232. root->root_key.offset = 0;
  1233. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1234. if (IS_ERR(leaf)) {
  1235. ret = PTR_ERR(leaf);
  1236. leaf = NULL;
  1237. goto fail;
  1238. }
  1239. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1240. btrfs_set_header_bytenr(leaf, leaf->start);
  1241. btrfs_set_header_generation(leaf, trans->transid);
  1242. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1243. btrfs_set_header_owner(leaf, objectid);
  1244. root->node = leaf;
  1245. write_extent_buffer_fsid(leaf, fs_info->fsid);
  1246. write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
  1247. btrfs_mark_buffer_dirty(leaf);
  1248. root->commit_root = btrfs_root_node(root);
  1249. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1250. root->root_item.flags = 0;
  1251. root->root_item.byte_limit = 0;
  1252. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1253. btrfs_set_root_generation(&root->root_item, trans->transid);
  1254. btrfs_set_root_level(&root->root_item, 0);
  1255. btrfs_set_root_refs(&root->root_item, 1);
  1256. btrfs_set_root_used(&root->root_item, leaf->len);
  1257. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1258. btrfs_set_root_dirid(&root->root_item, 0);
  1259. uuid_le_gen(&uuid);
  1260. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1261. root->root_item.drop_level = 0;
  1262. key.objectid = objectid;
  1263. key.type = BTRFS_ROOT_ITEM_KEY;
  1264. key.offset = 0;
  1265. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1266. if (ret)
  1267. goto fail;
  1268. btrfs_tree_unlock(leaf);
  1269. return root;
  1270. fail:
  1271. if (leaf) {
  1272. btrfs_tree_unlock(leaf);
  1273. free_extent_buffer(root->commit_root);
  1274. free_extent_buffer(leaf);
  1275. }
  1276. kfree(root);
  1277. return ERR_PTR(ret);
  1278. }
  1279. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1280. struct btrfs_fs_info *fs_info)
  1281. {
  1282. struct btrfs_root *root;
  1283. struct extent_buffer *leaf;
  1284. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1285. if (!root)
  1286. return ERR_PTR(-ENOMEM);
  1287. __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1288. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1289. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1290. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1291. /*
  1292. * DON'T set REF_COWS for log trees
  1293. *
  1294. * log trees do not get reference counted because they go away
  1295. * before a real commit is actually done. They do store pointers
  1296. * to file data extents, and those reference counts still get
  1297. * updated (along with back refs to the log tree).
  1298. */
  1299. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1300. NULL, 0, 0, 0);
  1301. if (IS_ERR(leaf)) {
  1302. kfree(root);
  1303. return ERR_CAST(leaf);
  1304. }
  1305. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1306. btrfs_set_header_bytenr(leaf, leaf->start);
  1307. btrfs_set_header_generation(leaf, trans->transid);
  1308. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1309. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1310. root->node = leaf;
  1311. write_extent_buffer_fsid(root->node, fs_info->fsid);
  1312. btrfs_mark_buffer_dirty(root->node);
  1313. btrfs_tree_unlock(root->node);
  1314. return root;
  1315. }
  1316. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1317. struct btrfs_fs_info *fs_info)
  1318. {
  1319. struct btrfs_root *log_root;
  1320. log_root = alloc_log_tree(trans, fs_info);
  1321. if (IS_ERR(log_root))
  1322. return PTR_ERR(log_root);
  1323. WARN_ON(fs_info->log_root_tree);
  1324. fs_info->log_root_tree = log_root;
  1325. return 0;
  1326. }
  1327. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1328. struct btrfs_root *root)
  1329. {
  1330. struct btrfs_fs_info *fs_info = root->fs_info;
  1331. struct btrfs_root *log_root;
  1332. struct btrfs_inode_item *inode_item;
  1333. log_root = alloc_log_tree(trans, fs_info);
  1334. if (IS_ERR(log_root))
  1335. return PTR_ERR(log_root);
  1336. log_root->last_trans = trans->transid;
  1337. log_root->root_key.offset = root->root_key.objectid;
  1338. inode_item = &log_root->root_item.inode;
  1339. btrfs_set_stack_inode_generation(inode_item, 1);
  1340. btrfs_set_stack_inode_size(inode_item, 3);
  1341. btrfs_set_stack_inode_nlink(inode_item, 1);
  1342. btrfs_set_stack_inode_nbytes(inode_item,
  1343. fs_info->nodesize);
  1344. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1345. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1346. WARN_ON(root->log_root);
  1347. root->log_root = log_root;
  1348. root->log_transid = 0;
  1349. root->log_transid_committed = -1;
  1350. root->last_log_commit = 0;
  1351. return 0;
  1352. }
  1353. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1354. struct btrfs_key *key)
  1355. {
  1356. struct btrfs_root *root;
  1357. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1358. struct btrfs_path *path;
  1359. u64 generation;
  1360. int ret;
  1361. path = btrfs_alloc_path();
  1362. if (!path)
  1363. return ERR_PTR(-ENOMEM);
  1364. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1365. if (!root) {
  1366. ret = -ENOMEM;
  1367. goto alloc_fail;
  1368. }
  1369. __setup_root(root, fs_info, key->objectid);
  1370. ret = btrfs_find_root(tree_root, key, path,
  1371. &root->root_item, &root->root_key);
  1372. if (ret) {
  1373. if (ret > 0)
  1374. ret = -ENOENT;
  1375. goto find_fail;
  1376. }
  1377. generation = btrfs_root_generation(&root->root_item);
  1378. root->node = read_tree_block(fs_info,
  1379. btrfs_root_bytenr(&root->root_item),
  1380. generation);
  1381. if (IS_ERR(root->node)) {
  1382. ret = PTR_ERR(root->node);
  1383. goto find_fail;
  1384. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1385. ret = -EIO;
  1386. free_extent_buffer(root->node);
  1387. goto find_fail;
  1388. }
  1389. root->commit_root = btrfs_root_node(root);
  1390. out:
  1391. btrfs_free_path(path);
  1392. return root;
  1393. find_fail:
  1394. kfree(root);
  1395. alloc_fail:
  1396. root = ERR_PTR(ret);
  1397. goto out;
  1398. }
  1399. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1400. struct btrfs_key *location)
  1401. {
  1402. struct btrfs_root *root;
  1403. root = btrfs_read_tree_root(tree_root, location);
  1404. if (IS_ERR(root))
  1405. return root;
  1406. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1407. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1408. btrfs_check_and_init_root_item(&root->root_item);
  1409. }
  1410. return root;
  1411. }
  1412. int btrfs_init_fs_root(struct btrfs_root *root)
  1413. {
  1414. int ret;
  1415. struct btrfs_subvolume_writers *writers;
  1416. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1417. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1418. GFP_NOFS);
  1419. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1420. ret = -ENOMEM;
  1421. goto fail;
  1422. }
  1423. writers = btrfs_alloc_subvolume_writers();
  1424. if (IS_ERR(writers)) {
  1425. ret = PTR_ERR(writers);
  1426. goto fail;
  1427. }
  1428. root->subv_writers = writers;
  1429. btrfs_init_free_ino_ctl(root);
  1430. spin_lock_init(&root->ino_cache_lock);
  1431. init_waitqueue_head(&root->ino_cache_wait);
  1432. ret = get_anon_bdev(&root->anon_dev);
  1433. if (ret)
  1434. goto fail;
  1435. mutex_lock(&root->objectid_mutex);
  1436. ret = btrfs_find_highest_objectid(root,
  1437. &root->highest_objectid);
  1438. if (ret) {
  1439. mutex_unlock(&root->objectid_mutex);
  1440. goto fail;
  1441. }
  1442. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1443. mutex_unlock(&root->objectid_mutex);
  1444. return 0;
  1445. fail:
  1446. /* the caller is responsible to call free_fs_root */
  1447. return ret;
  1448. }
  1449. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1450. u64 root_id)
  1451. {
  1452. struct btrfs_root *root;
  1453. spin_lock(&fs_info->fs_roots_radix_lock);
  1454. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1455. (unsigned long)root_id);
  1456. spin_unlock(&fs_info->fs_roots_radix_lock);
  1457. return root;
  1458. }
  1459. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1460. struct btrfs_root *root)
  1461. {
  1462. int ret;
  1463. ret = radix_tree_preload(GFP_NOFS);
  1464. if (ret)
  1465. return ret;
  1466. spin_lock(&fs_info->fs_roots_radix_lock);
  1467. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1468. (unsigned long)root->root_key.objectid,
  1469. root);
  1470. if (ret == 0)
  1471. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1472. spin_unlock(&fs_info->fs_roots_radix_lock);
  1473. radix_tree_preload_end();
  1474. return ret;
  1475. }
  1476. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1477. struct btrfs_key *location,
  1478. bool check_ref)
  1479. {
  1480. struct btrfs_root *root;
  1481. struct btrfs_path *path;
  1482. struct btrfs_key key;
  1483. int ret;
  1484. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1485. return fs_info->tree_root;
  1486. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1487. return fs_info->extent_root;
  1488. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1489. return fs_info->chunk_root;
  1490. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1491. return fs_info->dev_root;
  1492. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1493. return fs_info->csum_root;
  1494. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1495. return fs_info->quota_root ? fs_info->quota_root :
  1496. ERR_PTR(-ENOENT);
  1497. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1498. return fs_info->uuid_root ? fs_info->uuid_root :
  1499. ERR_PTR(-ENOENT);
  1500. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1501. return fs_info->free_space_root ? fs_info->free_space_root :
  1502. ERR_PTR(-ENOENT);
  1503. again:
  1504. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1505. if (root) {
  1506. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1507. return ERR_PTR(-ENOENT);
  1508. return root;
  1509. }
  1510. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1511. if (IS_ERR(root))
  1512. return root;
  1513. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1514. ret = -ENOENT;
  1515. goto fail;
  1516. }
  1517. ret = btrfs_init_fs_root(root);
  1518. if (ret)
  1519. goto fail;
  1520. path = btrfs_alloc_path();
  1521. if (!path) {
  1522. ret = -ENOMEM;
  1523. goto fail;
  1524. }
  1525. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1526. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1527. key.offset = location->objectid;
  1528. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1529. btrfs_free_path(path);
  1530. if (ret < 0)
  1531. goto fail;
  1532. if (ret == 0)
  1533. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1534. ret = btrfs_insert_fs_root(fs_info, root);
  1535. if (ret) {
  1536. if (ret == -EEXIST) {
  1537. free_fs_root(root);
  1538. goto again;
  1539. }
  1540. goto fail;
  1541. }
  1542. return root;
  1543. fail:
  1544. free_fs_root(root);
  1545. return ERR_PTR(ret);
  1546. }
  1547. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1548. {
  1549. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1550. int ret = 0;
  1551. struct btrfs_device *device;
  1552. struct backing_dev_info *bdi;
  1553. rcu_read_lock();
  1554. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1555. if (!device->bdev)
  1556. continue;
  1557. bdi = device->bdev->bd_bdi;
  1558. if (bdi_congested(bdi, bdi_bits)) {
  1559. ret = 1;
  1560. break;
  1561. }
  1562. }
  1563. rcu_read_unlock();
  1564. return ret;
  1565. }
  1566. /*
  1567. * called by the kthread helper functions to finally call the bio end_io
  1568. * functions. This is where read checksum verification actually happens
  1569. */
  1570. static void end_workqueue_fn(struct btrfs_work *work)
  1571. {
  1572. struct bio *bio;
  1573. struct btrfs_end_io_wq *end_io_wq;
  1574. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1575. bio = end_io_wq->bio;
  1576. bio->bi_status = end_io_wq->status;
  1577. bio->bi_private = end_io_wq->private;
  1578. bio->bi_end_io = end_io_wq->end_io;
  1579. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1580. bio_endio(bio);
  1581. }
  1582. static int cleaner_kthread(void *arg)
  1583. {
  1584. struct btrfs_root *root = arg;
  1585. struct btrfs_fs_info *fs_info = root->fs_info;
  1586. int again;
  1587. struct btrfs_trans_handle *trans;
  1588. do {
  1589. again = 0;
  1590. /* Make the cleaner go to sleep early. */
  1591. if (btrfs_need_cleaner_sleep(fs_info))
  1592. goto sleep;
  1593. /*
  1594. * Do not do anything if we might cause open_ctree() to block
  1595. * before we have finished mounting the filesystem.
  1596. */
  1597. if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
  1598. goto sleep;
  1599. if (!mutex_trylock(&fs_info->cleaner_mutex))
  1600. goto sleep;
  1601. /*
  1602. * Avoid the problem that we change the status of the fs
  1603. * during the above check and trylock.
  1604. */
  1605. if (btrfs_need_cleaner_sleep(fs_info)) {
  1606. mutex_unlock(&fs_info->cleaner_mutex);
  1607. goto sleep;
  1608. }
  1609. mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
  1610. btrfs_run_delayed_iputs(fs_info);
  1611. mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
  1612. again = btrfs_clean_one_deleted_snapshot(root);
  1613. mutex_unlock(&fs_info->cleaner_mutex);
  1614. /*
  1615. * The defragger has dealt with the R/O remount and umount,
  1616. * needn't do anything special here.
  1617. */
  1618. btrfs_run_defrag_inodes(fs_info);
  1619. /*
  1620. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1621. * with relocation (btrfs_relocate_chunk) and relocation
  1622. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1623. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1624. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1625. * unused block groups.
  1626. */
  1627. btrfs_delete_unused_bgs(fs_info);
  1628. sleep:
  1629. if (!again) {
  1630. set_current_state(TASK_INTERRUPTIBLE);
  1631. if (!kthread_should_stop())
  1632. schedule();
  1633. __set_current_state(TASK_RUNNING);
  1634. }
  1635. } while (!kthread_should_stop());
  1636. /*
  1637. * Transaction kthread is stopped before us and wakes us up.
  1638. * However we might have started a new transaction and COWed some
  1639. * tree blocks when deleting unused block groups for example. So
  1640. * make sure we commit the transaction we started to have a clean
  1641. * shutdown when evicting the btree inode - if it has dirty pages
  1642. * when we do the final iput() on it, eviction will trigger a
  1643. * writeback for it which will fail with null pointer dereferences
  1644. * since work queues and other resources were already released and
  1645. * destroyed by the time the iput/eviction/writeback is made.
  1646. */
  1647. trans = btrfs_attach_transaction(root);
  1648. if (IS_ERR(trans)) {
  1649. if (PTR_ERR(trans) != -ENOENT)
  1650. btrfs_err(fs_info,
  1651. "cleaner transaction attach returned %ld",
  1652. PTR_ERR(trans));
  1653. } else {
  1654. int ret;
  1655. ret = btrfs_commit_transaction(trans);
  1656. if (ret)
  1657. btrfs_err(fs_info,
  1658. "cleaner open transaction commit returned %d",
  1659. ret);
  1660. }
  1661. return 0;
  1662. }
  1663. static int transaction_kthread(void *arg)
  1664. {
  1665. struct btrfs_root *root = arg;
  1666. struct btrfs_fs_info *fs_info = root->fs_info;
  1667. struct btrfs_trans_handle *trans;
  1668. struct btrfs_transaction *cur;
  1669. u64 transid;
  1670. unsigned long now;
  1671. unsigned long delay;
  1672. bool cannot_commit;
  1673. do {
  1674. cannot_commit = false;
  1675. delay = HZ * fs_info->commit_interval;
  1676. mutex_lock(&fs_info->transaction_kthread_mutex);
  1677. spin_lock(&fs_info->trans_lock);
  1678. cur = fs_info->running_transaction;
  1679. if (!cur) {
  1680. spin_unlock(&fs_info->trans_lock);
  1681. goto sleep;
  1682. }
  1683. now = get_seconds();
  1684. if (cur->state < TRANS_STATE_BLOCKED &&
  1685. (now < cur->start_time ||
  1686. now - cur->start_time < fs_info->commit_interval)) {
  1687. spin_unlock(&fs_info->trans_lock);
  1688. delay = HZ * 5;
  1689. goto sleep;
  1690. }
  1691. transid = cur->transid;
  1692. spin_unlock(&fs_info->trans_lock);
  1693. /* If the file system is aborted, this will always fail. */
  1694. trans = btrfs_attach_transaction(root);
  1695. if (IS_ERR(trans)) {
  1696. if (PTR_ERR(trans) != -ENOENT)
  1697. cannot_commit = true;
  1698. goto sleep;
  1699. }
  1700. if (transid == trans->transid) {
  1701. btrfs_commit_transaction(trans);
  1702. } else {
  1703. btrfs_end_transaction(trans);
  1704. }
  1705. sleep:
  1706. wake_up_process(fs_info->cleaner_kthread);
  1707. mutex_unlock(&fs_info->transaction_kthread_mutex);
  1708. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1709. &fs_info->fs_state)))
  1710. btrfs_cleanup_transaction(fs_info);
  1711. set_current_state(TASK_INTERRUPTIBLE);
  1712. if (!kthread_should_stop() &&
  1713. (!btrfs_transaction_blocked(fs_info) ||
  1714. cannot_commit))
  1715. schedule_timeout(delay);
  1716. __set_current_state(TASK_RUNNING);
  1717. } while (!kthread_should_stop());
  1718. return 0;
  1719. }
  1720. /*
  1721. * this will find the highest generation in the array of
  1722. * root backups. The index of the highest array is returned,
  1723. * or -1 if we can't find anything.
  1724. *
  1725. * We check to make sure the array is valid by comparing the
  1726. * generation of the latest root in the array with the generation
  1727. * in the super block. If they don't match we pitch it.
  1728. */
  1729. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1730. {
  1731. u64 cur;
  1732. int newest_index = -1;
  1733. struct btrfs_root_backup *root_backup;
  1734. int i;
  1735. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1736. root_backup = info->super_copy->super_roots + i;
  1737. cur = btrfs_backup_tree_root_gen(root_backup);
  1738. if (cur == newest_gen)
  1739. newest_index = i;
  1740. }
  1741. /* check to see if we actually wrapped around */
  1742. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1743. root_backup = info->super_copy->super_roots;
  1744. cur = btrfs_backup_tree_root_gen(root_backup);
  1745. if (cur == newest_gen)
  1746. newest_index = 0;
  1747. }
  1748. return newest_index;
  1749. }
  1750. /*
  1751. * find the oldest backup so we know where to store new entries
  1752. * in the backup array. This will set the backup_root_index
  1753. * field in the fs_info struct
  1754. */
  1755. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1756. u64 newest_gen)
  1757. {
  1758. int newest_index = -1;
  1759. newest_index = find_newest_super_backup(info, newest_gen);
  1760. /* if there was garbage in there, just move along */
  1761. if (newest_index == -1) {
  1762. info->backup_root_index = 0;
  1763. } else {
  1764. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1765. }
  1766. }
  1767. /*
  1768. * copy all the root pointers into the super backup array.
  1769. * this will bump the backup pointer by one when it is
  1770. * done
  1771. */
  1772. static void backup_super_roots(struct btrfs_fs_info *info)
  1773. {
  1774. int next_backup;
  1775. struct btrfs_root_backup *root_backup;
  1776. int last_backup;
  1777. next_backup = info->backup_root_index;
  1778. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1779. BTRFS_NUM_BACKUP_ROOTS;
  1780. /*
  1781. * just overwrite the last backup if we're at the same generation
  1782. * this happens only at umount
  1783. */
  1784. root_backup = info->super_for_commit->super_roots + last_backup;
  1785. if (btrfs_backup_tree_root_gen(root_backup) ==
  1786. btrfs_header_generation(info->tree_root->node))
  1787. next_backup = last_backup;
  1788. root_backup = info->super_for_commit->super_roots + next_backup;
  1789. /*
  1790. * make sure all of our padding and empty slots get zero filled
  1791. * regardless of which ones we use today
  1792. */
  1793. memset(root_backup, 0, sizeof(*root_backup));
  1794. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1795. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1796. btrfs_set_backup_tree_root_gen(root_backup,
  1797. btrfs_header_generation(info->tree_root->node));
  1798. btrfs_set_backup_tree_root_level(root_backup,
  1799. btrfs_header_level(info->tree_root->node));
  1800. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1801. btrfs_set_backup_chunk_root_gen(root_backup,
  1802. btrfs_header_generation(info->chunk_root->node));
  1803. btrfs_set_backup_chunk_root_level(root_backup,
  1804. btrfs_header_level(info->chunk_root->node));
  1805. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1806. btrfs_set_backup_extent_root_gen(root_backup,
  1807. btrfs_header_generation(info->extent_root->node));
  1808. btrfs_set_backup_extent_root_level(root_backup,
  1809. btrfs_header_level(info->extent_root->node));
  1810. /*
  1811. * we might commit during log recovery, which happens before we set
  1812. * the fs_root. Make sure it is valid before we fill it in.
  1813. */
  1814. if (info->fs_root && info->fs_root->node) {
  1815. btrfs_set_backup_fs_root(root_backup,
  1816. info->fs_root->node->start);
  1817. btrfs_set_backup_fs_root_gen(root_backup,
  1818. btrfs_header_generation(info->fs_root->node));
  1819. btrfs_set_backup_fs_root_level(root_backup,
  1820. btrfs_header_level(info->fs_root->node));
  1821. }
  1822. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1823. btrfs_set_backup_dev_root_gen(root_backup,
  1824. btrfs_header_generation(info->dev_root->node));
  1825. btrfs_set_backup_dev_root_level(root_backup,
  1826. btrfs_header_level(info->dev_root->node));
  1827. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1828. btrfs_set_backup_csum_root_gen(root_backup,
  1829. btrfs_header_generation(info->csum_root->node));
  1830. btrfs_set_backup_csum_root_level(root_backup,
  1831. btrfs_header_level(info->csum_root->node));
  1832. btrfs_set_backup_total_bytes(root_backup,
  1833. btrfs_super_total_bytes(info->super_copy));
  1834. btrfs_set_backup_bytes_used(root_backup,
  1835. btrfs_super_bytes_used(info->super_copy));
  1836. btrfs_set_backup_num_devices(root_backup,
  1837. btrfs_super_num_devices(info->super_copy));
  1838. /*
  1839. * if we don't copy this out to the super_copy, it won't get remembered
  1840. * for the next commit
  1841. */
  1842. memcpy(&info->super_copy->super_roots,
  1843. &info->super_for_commit->super_roots,
  1844. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1845. }
  1846. /*
  1847. * this copies info out of the root backup array and back into
  1848. * the in-memory super block. It is meant to help iterate through
  1849. * the array, so you send it the number of backups you've already
  1850. * tried and the last backup index you used.
  1851. *
  1852. * this returns -1 when it has tried all the backups
  1853. */
  1854. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1855. struct btrfs_super_block *super,
  1856. int *num_backups_tried, int *backup_index)
  1857. {
  1858. struct btrfs_root_backup *root_backup;
  1859. int newest = *backup_index;
  1860. if (*num_backups_tried == 0) {
  1861. u64 gen = btrfs_super_generation(super);
  1862. newest = find_newest_super_backup(info, gen);
  1863. if (newest == -1)
  1864. return -1;
  1865. *backup_index = newest;
  1866. *num_backups_tried = 1;
  1867. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1868. /* we've tried all the backups, all done */
  1869. return -1;
  1870. } else {
  1871. /* jump to the next oldest backup */
  1872. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1873. BTRFS_NUM_BACKUP_ROOTS;
  1874. *backup_index = newest;
  1875. *num_backups_tried += 1;
  1876. }
  1877. root_backup = super->super_roots + newest;
  1878. btrfs_set_super_generation(super,
  1879. btrfs_backup_tree_root_gen(root_backup));
  1880. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1881. btrfs_set_super_root_level(super,
  1882. btrfs_backup_tree_root_level(root_backup));
  1883. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1884. /*
  1885. * fixme: the total bytes and num_devices need to match or we should
  1886. * need a fsck
  1887. */
  1888. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1889. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1890. return 0;
  1891. }
  1892. /* helper to cleanup workers */
  1893. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1894. {
  1895. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1896. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1897. btrfs_destroy_workqueue(fs_info->workers);
  1898. btrfs_destroy_workqueue(fs_info->endio_workers);
  1899. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1900. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1901. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1902. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1903. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1904. btrfs_destroy_workqueue(fs_info->submit_workers);
  1905. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1906. btrfs_destroy_workqueue(fs_info->caching_workers);
  1907. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1908. btrfs_destroy_workqueue(fs_info->flush_workers);
  1909. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1910. btrfs_destroy_workqueue(fs_info->extent_workers);
  1911. /*
  1912. * Now that all other work queues are destroyed, we can safely destroy
  1913. * the queues used for metadata I/O, since tasks from those other work
  1914. * queues can do metadata I/O operations.
  1915. */
  1916. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1917. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1918. }
  1919. static void free_root_extent_buffers(struct btrfs_root *root)
  1920. {
  1921. if (root) {
  1922. free_extent_buffer(root->node);
  1923. free_extent_buffer(root->commit_root);
  1924. root->node = NULL;
  1925. root->commit_root = NULL;
  1926. }
  1927. }
  1928. /* helper to cleanup tree roots */
  1929. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1930. {
  1931. free_root_extent_buffers(info->tree_root);
  1932. free_root_extent_buffers(info->dev_root);
  1933. free_root_extent_buffers(info->extent_root);
  1934. free_root_extent_buffers(info->csum_root);
  1935. free_root_extent_buffers(info->quota_root);
  1936. free_root_extent_buffers(info->uuid_root);
  1937. if (chunk_root)
  1938. free_root_extent_buffers(info->chunk_root);
  1939. free_root_extent_buffers(info->free_space_root);
  1940. }
  1941. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1942. {
  1943. int ret;
  1944. struct btrfs_root *gang[8];
  1945. int i;
  1946. while (!list_empty(&fs_info->dead_roots)) {
  1947. gang[0] = list_entry(fs_info->dead_roots.next,
  1948. struct btrfs_root, root_list);
  1949. list_del(&gang[0]->root_list);
  1950. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1951. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1952. } else {
  1953. free_extent_buffer(gang[0]->node);
  1954. free_extent_buffer(gang[0]->commit_root);
  1955. btrfs_put_fs_root(gang[0]);
  1956. }
  1957. }
  1958. while (1) {
  1959. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1960. (void **)gang, 0,
  1961. ARRAY_SIZE(gang));
  1962. if (!ret)
  1963. break;
  1964. for (i = 0; i < ret; i++)
  1965. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1966. }
  1967. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1968. btrfs_free_log_root_tree(NULL, fs_info);
  1969. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  1970. }
  1971. }
  1972. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1973. {
  1974. mutex_init(&fs_info->scrub_lock);
  1975. atomic_set(&fs_info->scrubs_running, 0);
  1976. atomic_set(&fs_info->scrub_pause_req, 0);
  1977. atomic_set(&fs_info->scrubs_paused, 0);
  1978. atomic_set(&fs_info->scrub_cancel_req, 0);
  1979. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1980. fs_info->scrub_workers_refcnt = 0;
  1981. }
  1982. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1983. {
  1984. spin_lock_init(&fs_info->balance_lock);
  1985. mutex_init(&fs_info->balance_mutex);
  1986. atomic_set(&fs_info->balance_running, 0);
  1987. atomic_set(&fs_info->balance_pause_req, 0);
  1988. atomic_set(&fs_info->balance_cancel_req, 0);
  1989. fs_info->balance_ctl = NULL;
  1990. init_waitqueue_head(&fs_info->balance_wait_q);
  1991. }
  1992. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
  1993. {
  1994. struct inode *inode = fs_info->btree_inode;
  1995. inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1996. set_nlink(inode, 1);
  1997. /*
  1998. * we set the i_size on the btree inode to the max possible int.
  1999. * the real end of the address space is determined by all of
  2000. * the devices in the system
  2001. */
  2002. inode->i_size = OFFSET_MAX;
  2003. inode->i_mapping->a_ops = &btree_aops;
  2004. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  2005. extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
  2006. BTRFS_I(inode)->io_tree.track_uptodate = 0;
  2007. extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
  2008. BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
  2009. BTRFS_I(inode)->root = fs_info->tree_root;
  2010. memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
  2011. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  2012. btrfs_insert_inode_hash(inode);
  2013. }
  2014. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  2015. {
  2016. fs_info->dev_replace.lock_owner = 0;
  2017. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2018. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2019. rwlock_init(&fs_info->dev_replace.lock);
  2020. atomic_set(&fs_info->dev_replace.read_locks, 0);
  2021. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  2022. init_waitqueue_head(&fs_info->replace_wait);
  2023. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  2024. }
  2025. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  2026. {
  2027. spin_lock_init(&fs_info->qgroup_lock);
  2028. mutex_init(&fs_info->qgroup_ioctl_lock);
  2029. fs_info->qgroup_tree = RB_ROOT;
  2030. fs_info->qgroup_op_tree = RB_ROOT;
  2031. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2032. fs_info->qgroup_seq = 1;
  2033. fs_info->qgroup_ulist = NULL;
  2034. fs_info->qgroup_rescan_running = false;
  2035. mutex_init(&fs_info->qgroup_rescan_lock);
  2036. }
  2037. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  2038. struct btrfs_fs_devices *fs_devices)
  2039. {
  2040. int max_active = fs_info->thread_pool_size;
  2041. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  2042. fs_info->workers =
  2043. btrfs_alloc_workqueue(fs_info, "worker",
  2044. flags | WQ_HIGHPRI, max_active, 16);
  2045. fs_info->delalloc_workers =
  2046. btrfs_alloc_workqueue(fs_info, "delalloc",
  2047. flags, max_active, 2);
  2048. fs_info->flush_workers =
  2049. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  2050. flags, max_active, 0);
  2051. fs_info->caching_workers =
  2052. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  2053. /*
  2054. * a higher idle thresh on the submit workers makes it much more
  2055. * likely that bios will be send down in a sane order to the
  2056. * devices
  2057. */
  2058. fs_info->submit_workers =
  2059. btrfs_alloc_workqueue(fs_info, "submit", flags,
  2060. min_t(u64, fs_devices->num_devices,
  2061. max_active), 64);
  2062. fs_info->fixup_workers =
  2063. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  2064. /*
  2065. * endios are largely parallel and should have a very
  2066. * low idle thresh
  2067. */
  2068. fs_info->endio_workers =
  2069. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  2070. fs_info->endio_meta_workers =
  2071. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  2072. max_active, 4);
  2073. fs_info->endio_meta_write_workers =
  2074. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  2075. max_active, 2);
  2076. fs_info->endio_raid56_workers =
  2077. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  2078. max_active, 4);
  2079. fs_info->endio_repair_workers =
  2080. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  2081. fs_info->rmw_workers =
  2082. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  2083. fs_info->endio_write_workers =
  2084. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  2085. max_active, 2);
  2086. fs_info->endio_freespace_worker =
  2087. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  2088. max_active, 0);
  2089. fs_info->delayed_workers =
  2090. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  2091. max_active, 0);
  2092. fs_info->readahead_workers =
  2093. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  2094. max_active, 2);
  2095. fs_info->qgroup_rescan_workers =
  2096. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  2097. fs_info->extent_workers =
  2098. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  2099. min_t(u64, fs_devices->num_devices,
  2100. max_active), 8);
  2101. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2102. fs_info->submit_workers && fs_info->flush_workers &&
  2103. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2104. fs_info->endio_meta_write_workers &&
  2105. fs_info->endio_repair_workers &&
  2106. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2107. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2108. fs_info->caching_workers && fs_info->readahead_workers &&
  2109. fs_info->fixup_workers && fs_info->delayed_workers &&
  2110. fs_info->extent_workers &&
  2111. fs_info->qgroup_rescan_workers)) {
  2112. return -ENOMEM;
  2113. }
  2114. return 0;
  2115. }
  2116. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2117. struct btrfs_fs_devices *fs_devices)
  2118. {
  2119. int ret;
  2120. struct btrfs_root *log_tree_root;
  2121. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2122. u64 bytenr = btrfs_super_log_root(disk_super);
  2123. if (fs_devices->rw_devices == 0) {
  2124. btrfs_warn(fs_info, "log replay required on RO media");
  2125. return -EIO;
  2126. }
  2127. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2128. if (!log_tree_root)
  2129. return -ENOMEM;
  2130. __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2131. log_tree_root->node = read_tree_block(fs_info, bytenr,
  2132. fs_info->generation + 1);
  2133. if (IS_ERR(log_tree_root->node)) {
  2134. btrfs_warn(fs_info, "failed to read log tree");
  2135. ret = PTR_ERR(log_tree_root->node);
  2136. kfree(log_tree_root);
  2137. return ret;
  2138. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2139. btrfs_err(fs_info, "failed to read log tree");
  2140. free_extent_buffer(log_tree_root->node);
  2141. kfree(log_tree_root);
  2142. return -EIO;
  2143. }
  2144. /* returns with log_tree_root freed on success */
  2145. ret = btrfs_recover_log_trees(log_tree_root);
  2146. if (ret) {
  2147. btrfs_handle_fs_error(fs_info, ret,
  2148. "Failed to recover log tree");
  2149. free_extent_buffer(log_tree_root->node);
  2150. kfree(log_tree_root);
  2151. return ret;
  2152. }
  2153. if (sb_rdonly(fs_info->sb)) {
  2154. ret = btrfs_commit_super(fs_info);
  2155. if (ret)
  2156. return ret;
  2157. }
  2158. return 0;
  2159. }
  2160. static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
  2161. {
  2162. struct btrfs_root *tree_root = fs_info->tree_root;
  2163. struct btrfs_root *root;
  2164. struct btrfs_key location;
  2165. int ret;
  2166. BUG_ON(!fs_info->tree_root);
  2167. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2168. location.type = BTRFS_ROOT_ITEM_KEY;
  2169. location.offset = 0;
  2170. root = btrfs_read_tree_root(tree_root, &location);
  2171. if (IS_ERR(root))
  2172. return PTR_ERR(root);
  2173. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2174. fs_info->extent_root = root;
  2175. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2176. root = btrfs_read_tree_root(tree_root, &location);
  2177. if (IS_ERR(root))
  2178. return PTR_ERR(root);
  2179. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2180. fs_info->dev_root = root;
  2181. btrfs_init_devices_late(fs_info);
  2182. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2183. root = btrfs_read_tree_root(tree_root, &location);
  2184. if (IS_ERR(root))
  2185. return PTR_ERR(root);
  2186. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2187. fs_info->csum_root = root;
  2188. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2189. root = btrfs_read_tree_root(tree_root, &location);
  2190. if (!IS_ERR(root)) {
  2191. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2192. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2193. fs_info->quota_root = root;
  2194. }
  2195. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2196. root = btrfs_read_tree_root(tree_root, &location);
  2197. if (IS_ERR(root)) {
  2198. ret = PTR_ERR(root);
  2199. if (ret != -ENOENT)
  2200. return ret;
  2201. } else {
  2202. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2203. fs_info->uuid_root = root;
  2204. }
  2205. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2206. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2207. root = btrfs_read_tree_root(tree_root, &location);
  2208. if (IS_ERR(root))
  2209. return PTR_ERR(root);
  2210. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2211. fs_info->free_space_root = root;
  2212. }
  2213. return 0;
  2214. }
  2215. int open_ctree(struct super_block *sb,
  2216. struct btrfs_fs_devices *fs_devices,
  2217. char *options)
  2218. {
  2219. u32 sectorsize;
  2220. u32 nodesize;
  2221. u32 stripesize;
  2222. u64 generation;
  2223. u64 features;
  2224. struct btrfs_key location;
  2225. struct buffer_head *bh;
  2226. struct btrfs_super_block *disk_super;
  2227. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2228. struct btrfs_root *tree_root;
  2229. struct btrfs_root *chunk_root;
  2230. int ret;
  2231. int err = -EINVAL;
  2232. int num_backups_tried = 0;
  2233. int backup_index = 0;
  2234. int max_active;
  2235. int clear_free_space_tree = 0;
  2236. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2237. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2238. if (!tree_root || !chunk_root) {
  2239. err = -ENOMEM;
  2240. goto fail;
  2241. }
  2242. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2243. if (ret) {
  2244. err = ret;
  2245. goto fail;
  2246. }
  2247. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2248. if (ret) {
  2249. err = ret;
  2250. goto fail_srcu;
  2251. }
  2252. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2253. (1 + ilog2(nr_cpu_ids));
  2254. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2255. if (ret) {
  2256. err = ret;
  2257. goto fail_dirty_metadata_bytes;
  2258. }
  2259. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2260. if (ret) {
  2261. err = ret;
  2262. goto fail_delalloc_bytes;
  2263. }
  2264. fs_info->btree_inode = new_inode(sb);
  2265. if (!fs_info->btree_inode) {
  2266. err = -ENOMEM;
  2267. goto fail_bio_counter;
  2268. }
  2269. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2270. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2271. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2272. INIT_LIST_HEAD(&fs_info->trans_list);
  2273. INIT_LIST_HEAD(&fs_info->dead_roots);
  2274. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2275. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2276. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2277. spin_lock_init(&fs_info->delalloc_root_lock);
  2278. spin_lock_init(&fs_info->trans_lock);
  2279. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2280. spin_lock_init(&fs_info->delayed_iput_lock);
  2281. spin_lock_init(&fs_info->defrag_inodes_lock);
  2282. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2283. spin_lock_init(&fs_info->super_lock);
  2284. spin_lock_init(&fs_info->qgroup_op_lock);
  2285. spin_lock_init(&fs_info->buffer_lock);
  2286. spin_lock_init(&fs_info->unused_bgs_lock);
  2287. rwlock_init(&fs_info->tree_mod_log_lock);
  2288. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2289. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2290. mutex_init(&fs_info->reloc_mutex);
  2291. mutex_init(&fs_info->delalloc_root_mutex);
  2292. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2293. seqlock_init(&fs_info->profiles_lock);
  2294. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2295. INIT_LIST_HEAD(&fs_info->space_info);
  2296. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2297. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2298. btrfs_mapping_init(&fs_info->mapping_tree);
  2299. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2300. BTRFS_BLOCK_RSV_GLOBAL);
  2301. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2302. BTRFS_BLOCK_RSV_DELALLOC);
  2303. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2304. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2305. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2306. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2307. BTRFS_BLOCK_RSV_DELOPS);
  2308. atomic_set(&fs_info->nr_async_submits, 0);
  2309. atomic_set(&fs_info->async_delalloc_pages, 0);
  2310. atomic_set(&fs_info->async_submit_draining, 0);
  2311. atomic_set(&fs_info->nr_async_bios, 0);
  2312. atomic_set(&fs_info->defrag_running, 0);
  2313. atomic_set(&fs_info->qgroup_op_seq, 0);
  2314. atomic_set(&fs_info->reada_works_cnt, 0);
  2315. atomic64_set(&fs_info->tree_mod_seq, 0);
  2316. fs_info->sb = sb;
  2317. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2318. fs_info->metadata_ratio = 0;
  2319. fs_info->defrag_inodes = RB_ROOT;
  2320. atomic64_set(&fs_info->free_chunk_space, 0);
  2321. fs_info->tree_mod_log = RB_ROOT;
  2322. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2323. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2324. /* readahead state */
  2325. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2326. spin_lock_init(&fs_info->reada_lock);
  2327. fs_info->thread_pool_size = min_t(unsigned long,
  2328. num_online_cpus() + 2, 8);
  2329. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2330. spin_lock_init(&fs_info->ordered_root_lock);
  2331. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2332. GFP_KERNEL);
  2333. if (!fs_info->delayed_root) {
  2334. err = -ENOMEM;
  2335. goto fail_iput;
  2336. }
  2337. btrfs_init_delayed_root(fs_info->delayed_root);
  2338. btrfs_init_scrub(fs_info);
  2339. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2340. fs_info->check_integrity_print_mask = 0;
  2341. #endif
  2342. btrfs_init_balance(fs_info);
  2343. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2344. sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
  2345. sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
  2346. btrfs_init_btree_inode(fs_info);
  2347. spin_lock_init(&fs_info->block_group_cache_lock);
  2348. fs_info->block_group_cache_tree = RB_ROOT;
  2349. fs_info->first_logical_byte = (u64)-1;
  2350. extent_io_tree_init(&fs_info->freed_extents[0], NULL);
  2351. extent_io_tree_init(&fs_info->freed_extents[1], NULL);
  2352. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2353. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2354. mutex_init(&fs_info->ordered_operations_mutex);
  2355. mutex_init(&fs_info->tree_log_mutex);
  2356. mutex_init(&fs_info->chunk_mutex);
  2357. mutex_init(&fs_info->transaction_kthread_mutex);
  2358. mutex_init(&fs_info->cleaner_mutex);
  2359. mutex_init(&fs_info->volume_mutex);
  2360. mutex_init(&fs_info->ro_block_group_mutex);
  2361. init_rwsem(&fs_info->commit_root_sem);
  2362. init_rwsem(&fs_info->cleanup_work_sem);
  2363. init_rwsem(&fs_info->subvol_sem);
  2364. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2365. btrfs_init_dev_replace_locks(fs_info);
  2366. btrfs_init_qgroup(fs_info);
  2367. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2368. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2369. init_waitqueue_head(&fs_info->transaction_throttle);
  2370. init_waitqueue_head(&fs_info->transaction_wait);
  2371. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2372. init_waitqueue_head(&fs_info->async_submit_wait);
  2373. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2374. /* Usable values until the real ones are cached from the superblock */
  2375. fs_info->nodesize = 4096;
  2376. fs_info->sectorsize = 4096;
  2377. fs_info->stripesize = 4096;
  2378. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2379. if (ret) {
  2380. err = ret;
  2381. goto fail_alloc;
  2382. }
  2383. __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2384. invalidate_bdev(fs_devices->latest_bdev);
  2385. /*
  2386. * Read super block and check the signature bytes only
  2387. */
  2388. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2389. if (IS_ERR(bh)) {
  2390. err = PTR_ERR(bh);
  2391. goto fail_alloc;
  2392. }
  2393. /*
  2394. * We want to check superblock checksum, the type is stored inside.
  2395. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2396. */
  2397. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2398. btrfs_err(fs_info, "superblock checksum mismatch");
  2399. err = -EINVAL;
  2400. brelse(bh);
  2401. goto fail_alloc;
  2402. }
  2403. /*
  2404. * super_copy is zeroed at allocation time and we never touch the
  2405. * following bytes up to INFO_SIZE, the checksum is calculated from
  2406. * the whole block of INFO_SIZE
  2407. */
  2408. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2409. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2410. sizeof(*fs_info->super_for_commit));
  2411. brelse(bh);
  2412. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2413. ret = btrfs_check_super_valid(fs_info);
  2414. if (ret) {
  2415. btrfs_err(fs_info, "superblock contains fatal errors");
  2416. err = -EINVAL;
  2417. goto fail_alloc;
  2418. }
  2419. disk_super = fs_info->super_copy;
  2420. if (!btrfs_super_root(disk_super))
  2421. goto fail_alloc;
  2422. /* check FS state, whether FS is broken. */
  2423. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2424. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2425. /*
  2426. * run through our array of backup supers and setup
  2427. * our ring pointer to the oldest one
  2428. */
  2429. generation = btrfs_super_generation(disk_super);
  2430. find_oldest_super_backup(fs_info, generation);
  2431. /*
  2432. * In the long term, we'll store the compression type in the super
  2433. * block, and it'll be used for per file compression control.
  2434. */
  2435. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2436. ret = btrfs_parse_options(fs_info, options, sb->s_flags);
  2437. if (ret) {
  2438. err = ret;
  2439. goto fail_alloc;
  2440. }
  2441. features = btrfs_super_incompat_flags(disk_super) &
  2442. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2443. if (features) {
  2444. btrfs_err(fs_info,
  2445. "cannot mount because of unsupported optional features (%llx)",
  2446. features);
  2447. err = -EINVAL;
  2448. goto fail_alloc;
  2449. }
  2450. features = btrfs_super_incompat_flags(disk_super);
  2451. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2452. if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2453. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2454. else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
  2455. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
  2456. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2457. btrfs_info(fs_info, "has skinny extents");
  2458. /*
  2459. * flag our filesystem as having big metadata blocks if
  2460. * they are bigger than the page size
  2461. */
  2462. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2463. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2464. btrfs_info(fs_info,
  2465. "flagging fs with big metadata feature");
  2466. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2467. }
  2468. nodesize = btrfs_super_nodesize(disk_super);
  2469. sectorsize = btrfs_super_sectorsize(disk_super);
  2470. stripesize = sectorsize;
  2471. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2472. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2473. /* Cache block sizes */
  2474. fs_info->nodesize = nodesize;
  2475. fs_info->sectorsize = sectorsize;
  2476. fs_info->stripesize = stripesize;
  2477. /*
  2478. * mixed block groups end up with duplicate but slightly offset
  2479. * extent buffers for the same range. It leads to corruptions
  2480. */
  2481. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2482. (sectorsize != nodesize)) {
  2483. btrfs_err(fs_info,
  2484. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2485. nodesize, sectorsize);
  2486. goto fail_alloc;
  2487. }
  2488. /*
  2489. * Needn't use the lock because there is no other task which will
  2490. * update the flag.
  2491. */
  2492. btrfs_set_super_incompat_flags(disk_super, features);
  2493. features = btrfs_super_compat_ro_flags(disk_super) &
  2494. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2495. if (!sb_rdonly(sb) && features) {
  2496. btrfs_err(fs_info,
  2497. "cannot mount read-write because of unsupported optional features (%llx)",
  2498. features);
  2499. err = -EINVAL;
  2500. goto fail_alloc;
  2501. }
  2502. max_active = fs_info->thread_pool_size;
  2503. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2504. if (ret) {
  2505. err = ret;
  2506. goto fail_sb_buffer;
  2507. }
  2508. sb->s_bdi->congested_fn = btrfs_congested_fn;
  2509. sb->s_bdi->congested_data = fs_info;
  2510. sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  2511. sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  2512. sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
  2513. sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
  2514. sb->s_blocksize = sectorsize;
  2515. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2516. mutex_lock(&fs_info->chunk_mutex);
  2517. ret = btrfs_read_sys_array(fs_info);
  2518. mutex_unlock(&fs_info->chunk_mutex);
  2519. if (ret) {
  2520. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2521. goto fail_sb_buffer;
  2522. }
  2523. generation = btrfs_super_chunk_root_generation(disk_super);
  2524. __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2525. chunk_root->node = read_tree_block(fs_info,
  2526. btrfs_super_chunk_root(disk_super),
  2527. generation);
  2528. if (IS_ERR(chunk_root->node) ||
  2529. !extent_buffer_uptodate(chunk_root->node)) {
  2530. btrfs_err(fs_info, "failed to read chunk root");
  2531. if (!IS_ERR(chunk_root->node))
  2532. free_extent_buffer(chunk_root->node);
  2533. chunk_root->node = NULL;
  2534. goto fail_tree_roots;
  2535. }
  2536. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2537. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2538. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2539. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2540. ret = btrfs_read_chunk_tree(fs_info);
  2541. if (ret) {
  2542. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2543. goto fail_tree_roots;
  2544. }
  2545. /*
  2546. * keep the device that is marked to be the target device for the
  2547. * dev_replace procedure
  2548. */
  2549. btrfs_close_extra_devices(fs_devices, 0);
  2550. if (!fs_devices->latest_bdev) {
  2551. btrfs_err(fs_info, "failed to read devices");
  2552. goto fail_tree_roots;
  2553. }
  2554. retry_root_backup:
  2555. generation = btrfs_super_generation(disk_super);
  2556. tree_root->node = read_tree_block(fs_info,
  2557. btrfs_super_root(disk_super),
  2558. generation);
  2559. if (IS_ERR(tree_root->node) ||
  2560. !extent_buffer_uptodate(tree_root->node)) {
  2561. btrfs_warn(fs_info, "failed to read tree root");
  2562. if (!IS_ERR(tree_root->node))
  2563. free_extent_buffer(tree_root->node);
  2564. tree_root->node = NULL;
  2565. goto recovery_tree_root;
  2566. }
  2567. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2568. tree_root->commit_root = btrfs_root_node(tree_root);
  2569. btrfs_set_root_refs(&tree_root->root_item, 1);
  2570. mutex_lock(&tree_root->objectid_mutex);
  2571. ret = btrfs_find_highest_objectid(tree_root,
  2572. &tree_root->highest_objectid);
  2573. if (ret) {
  2574. mutex_unlock(&tree_root->objectid_mutex);
  2575. goto recovery_tree_root;
  2576. }
  2577. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2578. mutex_unlock(&tree_root->objectid_mutex);
  2579. ret = btrfs_read_roots(fs_info);
  2580. if (ret)
  2581. goto recovery_tree_root;
  2582. fs_info->generation = generation;
  2583. fs_info->last_trans_committed = generation;
  2584. ret = btrfs_recover_balance(fs_info);
  2585. if (ret) {
  2586. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2587. goto fail_block_groups;
  2588. }
  2589. ret = btrfs_init_dev_stats(fs_info);
  2590. if (ret) {
  2591. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2592. goto fail_block_groups;
  2593. }
  2594. ret = btrfs_init_dev_replace(fs_info);
  2595. if (ret) {
  2596. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2597. goto fail_block_groups;
  2598. }
  2599. btrfs_close_extra_devices(fs_devices, 1);
  2600. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2601. if (ret) {
  2602. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2603. ret);
  2604. goto fail_block_groups;
  2605. }
  2606. ret = btrfs_sysfs_add_device(fs_devices);
  2607. if (ret) {
  2608. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2609. ret);
  2610. goto fail_fsdev_sysfs;
  2611. }
  2612. ret = btrfs_sysfs_add_mounted(fs_info);
  2613. if (ret) {
  2614. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2615. goto fail_fsdev_sysfs;
  2616. }
  2617. ret = btrfs_init_space_info(fs_info);
  2618. if (ret) {
  2619. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2620. goto fail_sysfs;
  2621. }
  2622. ret = btrfs_read_block_groups(fs_info);
  2623. if (ret) {
  2624. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2625. goto fail_sysfs;
  2626. }
  2627. if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
  2628. btrfs_warn(fs_info,
  2629. "writeable mount is not allowed due to too many missing devices");
  2630. goto fail_sysfs;
  2631. }
  2632. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2633. "btrfs-cleaner");
  2634. if (IS_ERR(fs_info->cleaner_kthread))
  2635. goto fail_sysfs;
  2636. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2637. tree_root,
  2638. "btrfs-transaction");
  2639. if (IS_ERR(fs_info->transaction_kthread))
  2640. goto fail_cleaner;
  2641. if (!btrfs_test_opt(fs_info, NOSSD) &&
  2642. !fs_info->fs_devices->rotating) {
  2643. btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
  2644. }
  2645. /*
  2646. * Mount does not set all options immediately, we can do it now and do
  2647. * not have to wait for transaction commit
  2648. */
  2649. btrfs_apply_pending_changes(fs_info);
  2650. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2651. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
  2652. ret = btrfsic_mount(fs_info, fs_devices,
  2653. btrfs_test_opt(fs_info,
  2654. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2655. 1 : 0,
  2656. fs_info->check_integrity_print_mask);
  2657. if (ret)
  2658. btrfs_warn(fs_info,
  2659. "failed to initialize integrity check module: %d",
  2660. ret);
  2661. }
  2662. #endif
  2663. ret = btrfs_read_qgroup_config(fs_info);
  2664. if (ret)
  2665. goto fail_trans_kthread;
  2666. /* do not make disk changes in broken FS or nologreplay is given */
  2667. if (btrfs_super_log_root(disk_super) != 0 &&
  2668. !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
  2669. ret = btrfs_replay_log(fs_info, fs_devices);
  2670. if (ret) {
  2671. err = ret;
  2672. goto fail_qgroup;
  2673. }
  2674. }
  2675. ret = btrfs_find_orphan_roots(fs_info);
  2676. if (ret)
  2677. goto fail_qgroup;
  2678. if (!sb_rdonly(sb)) {
  2679. ret = btrfs_cleanup_fs_roots(fs_info);
  2680. if (ret)
  2681. goto fail_qgroup;
  2682. mutex_lock(&fs_info->cleaner_mutex);
  2683. ret = btrfs_recover_relocation(tree_root);
  2684. mutex_unlock(&fs_info->cleaner_mutex);
  2685. if (ret < 0) {
  2686. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2687. ret);
  2688. err = -EINVAL;
  2689. goto fail_qgroup;
  2690. }
  2691. }
  2692. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2693. location.type = BTRFS_ROOT_ITEM_KEY;
  2694. location.offset = 0;
  2695. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2696. if (IS_ERR(fs_info->fs_root)) {
  2697. err = PTR_ERR(fs_info->fs_root);
  2698. goto fail_qgroup;
  2699. }
  2700. if (sb_rdonly(sb))
  2701. return 0;
  2702. if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
  2703. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2704. clear_free_space_tree = 1;
  2705. } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
  2706. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
  2707. btrfs_warn(fs_info, "free space tree is invalid");
  2708. clear_free_space_tree = 1;
  2709. }
  2710. if (clear_free_space_tree) {
  2711. btrfs_info(fs_info, "clearing free space tree");
  2712. ret = btrfs_clear_free_space_tree(fs_info);
  2713. if (ret) {
  2714. btrfs_warn(fs_info,
  2715. "failed to clear free space tree: %d", ret);
  2716. close_ctree(fs_info);
  2717. return ret;
  2718. }
  2719. }
  2720. if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
  2721. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2722. btrfs_info(fs_info, "creating free space tree");
  2723. ret = btrfs_create_free_space_tree(fs_info);
  2724. if (ret) {
  2725. btrfs_warn(fs_info,
  2726. "failed to create free space tree: %d", ret);
  2727. close_ctree(fs_info);
  2728. return ret;
  2729. }
  2730. }
  2731. down_read(&fs_info->cleanup_work_sem);
  2732. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2733. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2734. up_read(&fs_info->cleanup_work_sem);
  2735. close_ctree(fs_info);
  2736. return ret;
  2737. }
  2738. up_read(&fs_info->cleanup_work_sem);
  2739. ret = btrfs_resume_balance_async(fs_info);
  2740. if (ret) {
  2741. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2742. close_ctree(fs_info);
  2743. return ret;
  2744. }
  2745. ret = btrfs_resume_dev_replace_async(fs_info);
  2746. if (ret) {
  2747. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2748. close_ctree(fs_info);
  2749. return ret;
  2750. }
  2751. btrfs_qgroup_rescan_resume(fs_info);
  2752. if (!fs_info->uuid_root) {
  2753. btrfs_info(fs_info, "creating UUID tree");
  2754. ret = btrfs_create_uuid_tree(fs_info);
  2755. if (ret) {
  2756. btrfs_warn(fs_info,
  2757. "failed to create the UUID tree: %d", ret);
  2758. close_ctree(fs_info);
  2759. return ret;
  2760. }
  2761. } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
  2762. fs_info->generation !=
  2763. btrfs_super_uuid_tree_generation(disk_super)) {
  2764. btrfs_info(fs_info, "checking UUID tree");
  2765. ret = btrfs_check_uuid_tree(fs_info);
  2766. if (ret) {
  2767. btrfs_warn(fs_info,
  2768. "failed to check the UUID tree: %d", ret);
  2769. close_ctree(fs_info);
  2770. return ret;
  2771. }
  2772. } else {
  2773. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2774. }
  2775. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2776. /*
  2777. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2778. * no need to keep the flag
  2779. */
  2780. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2781. return 0;
  2782. fail_qgroup:
  2783. btrfs_free_qgroup_config(fs_info);
  2784. fail_trans_kthread:
  2785. kthread_stop(fs_info->transaction_kthread);
  2786. btrfs_cleanup_transaction(fs_info);
  2787. btrfs_free_fs_roots(fs_info);
  2788. fail_cleaner:
  2789. kthread_stop(fs_info->cleaner_kthread);
  2790. /*
  2791. * make sure we're done with the btree inode before we stop our
  2792. * kthreads
  2793. */
  2794. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2795. fail_sysfs:
  2796. btrfs_sysfs_remove_mounted(fs_info);
  2797. fail_fsdev_sysfs:
  2798. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2799. fail_block_groups:
  2800. btrfs_put_block_group_cache(fs_info);
  2801. fail_tree_roots:
  2802. free_root_pointers(fs_info, 1);
  2803. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2804. fail_sb_buffer:
  2805. btrfs_stop_all_workers(fs_info);
  2806. btrfs_free_block_groups(fs_info);
  2807. fail_alloc:
  2808. fail_iput:
  2809. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2810. iput(fs_info->btree_inode);
  2811. fail_bio_counter:
  2812. percpu_counter_destroy(&fs_info->bio_counter);
  2813. fail_delalloc_bytes:
  2814. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2815. fail_dirty_metadata_bytes:
  2816. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2817. fail_srcu:
  2818. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2819. fail:
  2820. btrfs_free_stripe_hash_table(fs_info);
  2821. btrfs_close_devices(fs_info->fs_devices);
  2822. return err;
  2823. recovery_tree_root:
  2824. if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
  2825. goto fail_tree_roots;
  2826. free_root_pointers(fs_info, 0);
  2827. /* don't use the log in recovery mode, it won't be valid */
  2828. btrfs_set_super_log_root(disk_super, 0);
  2829. /* we can't trust the free space cache either */
  2830. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2831. ret = next_root_backup(fs_info, fs_info->super_copy,
  2832. &num_backups_tried, &backup_index);
  2833. if (ret == -1)
  2834. goto fail_block_groups;
  2835. goto retry_root_backup;
  2836. }
  2837. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2838. {
  2839. if (uptodate) {
  2840. set_buffer_uptodate(bh);
  2841. } else {
  2842. struct btrfs_device *device = (struct btrfs_device *)
  2843. bh->b_private;
  2844. btrfs_warn_rl_in_rcu(device->fs_info,
  2845. "lost page write due to IO error on %s",
  2846. rcu_str_deref(device->name));
  2847. /* note, we don't set_buffer_write_io_error because we have
  2848. * our own ways of dealing with the IO errors
  2849. */
  2850. clear_buffer_uptodate(bh);
  2851. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2852. }
  2853. unlock_buffer(bh);
  2854. put_bh(bh);
  2855. }
  2856. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2857. struct buffer_head **bh_ret)
  2858. {
  2859. struct buffer_head *bh;
  2860. struct btrfs_super_block *super;
  2861. u64 bytenr;
  2862. bytenr = btrfs_sb_offset(copy_num);
  2863. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2864. return -EINVAL;
  2865. bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
  2866. /*
  2867. * If we fail to read from the underlying devices, as of now
  2868. * the best option we have is to mark it EIO.
  2869. */
  2870. if (!bh)
  2871. return -EIO;
  2872. super = (struct btrfs_super_block *)bh->b_data;
  2873. if (btrfs_super_bytenr(super) != bytenr ||
  2874. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2875. brelse(bh);
  2876. return -EINVAL;
  2877. }
  2878. *bh_ret = bh;
  2879. return 0;
  2880. }
  2881. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2882. {
  2883. struct buffer_head *bh;
  2884. struct buffer_head *latest = NULL;
  2885. struct btrfs_super_block *super;
  2886. int i;
  2887. u64 transid = 0;
  2888. int ret = -EINVAL;
  2889. /* we would like to check all the supers, but that would make
  2890. * a btrfs mount succeed after a mkfs from a different FS.
  2891. * So, we need to add a special mount option to scan for
  2892. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2893. */
  2894. for (i = 0; i < 1; i++) {
  2895. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2896. if (ret)
  2897. continue;
  2898. super = (struct btrfs_super_block *)bh->b_data;
  2899. if (!latest || btrfs_super_generation(super) > transid) {
  2900. brelse(latest);
  2901. latest = bh;
  2902. transid = btrfs_super_generation(super);
  2903. } else {
  2904. brelse(bh);
  2905. }
  2906. }
  2907. if (!latest)
  2908. return ERR_PTR(ret);
  2909. return latest;
  2910. }
  2911. /*
  2912. * Write superblock @sb to the @device. Do not wait for completion, all the
  2913. * buffer heads we write are pinned.
  2914. *
  2915. * Write @max_mirrors copies of the superblock, where 0 means default that fit
  2916. * the expected device size at commit time. Note that max_mirrors must be
  2917. * same for write and wait phases.
  2918. *
  2919. * Return number of errors when buffer head is not found or submission fails.
  2920. */
  2921. static int write_dev_supers(struct btrfs_device *device,
  2922. struct btrfs_super_block *sb, int max_mirrors)
  2923. {
  2924. struct buffer_head *bh;
  2925. int i;
  2926. int ret;
  2927. int errors = 0;
  2928. u32 crc;
  2929. u64 bytenr;
  2930. if (max_mirrors == 0)
  2931. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2932. for (i = 0; i < max_mirrors; i++) {
  2933. bytenr = btrfs_sb_offset(i);
  2934. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2935. device->commit_total_bytes)
  2936. break;
  2937. btrfs_set_super_bytenr(sb, bytenr);
  2938. crc = ~(u32)0;
  2939. crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
  2940. BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  2941. btrfs_csum_final(crc, sb->csum);
  2942. /* One reference for us, and we leave it for the caller */
  2943. bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
  2944. BTRFS_SUPER_INFO_SIZE);
  2945. if (!bh) {
  2946. btrfs_err(device->fs_info,
  2947. "couldn't get super buffer head for bytenr %llu",
  2948. bytenr);
  2949. errors++;
  2950. continue;
  2951. }
  2952. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2953. /* one reference for submit_bh */
  2954. get_bh(bh);
  2955. set_buffer_uptodate(bh);
  2956. lock_buffer(bh);
  2957. bh->b_end_io = btrfs_end_buffer_write_sync;
  2958. bh->b_private = device;
  2959. /*
  2960. * we fua the first super. The others we allow
  2961. * to go down lazy.
  2962. */
  2963. if (i == 0) {
  2964. ret = btrfsic_submit_bh(REQ_OP_WRITE,
  2965. REQ_SYNC | REQ_FUA | REQ_META | REQ_PRIO, bh);
  2966. } else {
  2967. ret = btrfsic_submit_bh(REQ_OP_WRITE,
  2968. REQ_SYNC | REQ_META | REQ_PRIO, bh);
  2969. }
  2970. if (ret)
  2971. errors++;
  2972. }
  2973. return errors < i ? 0 : -1;
  2974. }
  2975. /*
  2976. * Wait for write completion of superblocks done by write_dev_supers,
  2977. * @max_mirrors same for write and wait phases.
  2978. *
  2979. * Return number of errors when buffer head is not found or not marked up to
  2980. * date.
  2981. */
  2982. static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
  2983. {
  2984. struct buffer_head *bh;
  2985. int i;
  2986. int errors = 0;
  2987. u64 bytenr;
  2988. if (max_mirrors == 0)
  2989. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2990. for (i = 0; i < max_mirrors; i++) {
  2991. bytenr = btrfs_sb_offset(i);
  2992. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2993. device->commit_total_bytes)
  2994. break;
  2995. bh = __find_get_block(device->bdev,
  2996. bytenr / BTRFS_BDEV_BLOCKSIZE,
  2997. BTRFS_SUPER_INFO_SIZE);
  2998. if (!bh) {
  2999. errors++;
  3000. continue;
  3001. }
  3002. wait_on_buffer(bh);
  3003. if (!buffer_uptodate(bh))
  3004. errors++;
  3005. /* drop our reference */
  3006. brelse(bh);
  3007. /* drop the reference from the writing run */
  3008. brelse(bh);
  3009. }
  3010. return errors < i ? 0 : -1;
  3011. }
  3012. /*
  3013. * endio for the write_dev_flush, this will wake anyone waiting
  3014. * for the barrier when it is done
  3015. */
  3016. static void btrfs_end_empty_barrier(struct bio *bio)
  3017. {
  3018. complete(bio->bi_private);
  3019. }
  3020. /*
  3021. * Submit a flush request to the device if it supports it. Error handling is
  3022. * done in the waiting counterpart.
  3023. */
  3024. static void write_dev_flush(struct btrfs_device *device)
  3025. {
  3026. struct request_queue *q = bdev_get_queue(device->bdev);
  3027. struct bio *bio = device->flush_bio;
  3028. if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
  3029. return;
  3030. bio_reset(bio);
  3031. bio->bi_end_io = btrfs_end_empty_barrier;
  3032. bio_set_dev(bio, device->bdev);
  3033. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  3034. init_completion(&device->flush_wait);
  3035. bio->bi_private = &device->flush_wait;
  3036. btrfsic_submit_bio(bio);
  3037. device->flush_bio_sent = 1;
  3038. }
  3039. /*
  3040. * If the flush bio has been submitted by write_dev_flush, wait for it.
  3041. */
  3042. static blk_status_t wait_dev_flush(struct btrfs_device *device)
  3043. {
  3044. struct bio *bio = device->flush_bio;
  3045. if (!device->flush_bio_sent)
  3046. return BLK_STS_OK;
  3047. device->flush_bio_sent = 0;
  3048. wait_for_completion_io(&device->flush_wait);
  3049. return bio->bi_status;
  3050. }
  3051. static int check_barrier_error(struct btrfs_fs_info *fs_info)
  3052. {
  3053. if (!btrfs_check_rw_degradable(fs_info))
  3054. return -EIO;
  3055. return 0;
  3056. }
  3057. /*
  3058. * send an empty flush down to each device in parallel,
  3059. * then wait for them
  3060. */
  3061. static int barrier_all_devices(struct btrfs_fs_info *info)
  3062. {
  3063. struct list_head *head;
  3064. struct btrfs_device *dev;
  3065. int errors_wait = 0;
  3066. blk_status_t ret;
  3067. /* send down all the barriers */
  3068. head = &info->fs_devices->devices;
  3069. list_for_each_entry_rcu(dev, head, dev_list) {
  3070. if (dev->missing)
  3071. continue;
  3072. if (!dev->bdev)
  3073. continue;
  3074. if (!dev->in_fs_metadata || !dev->writeable)
  3075. continue;
  3076. write_dev_flush(dev);
  3077. dev->last_flush_error = BLK_STS_OK;
  3078. }
  3079. /* wait for all the barriers */
  3080. list_for_each_entry_rcu(dev, head, dev_list) {
  3081. if (dev->missing)
  3082. continue;
  3083. if (!dev->bdev) {
  3084. errors_wait++;
  3085. continue;
  3086. }
  3087. if (!dev->in_fs_metadata || !dev->writeable)
  3088. continue;
  3089. ret = wait_dev_flush(dev);
  3090. if (ret) {
  3091. dev->last_flush_error = ret;
  3092. btrfs_dev_stat_inc_and_print(dev,
  3093. BTRFS_DEV_STAT_FLUSH_ERRS);
  3094. errors_wait++;
  3095. }
  3096. }
  3097. if (errors_wait) {
  3098. /*
  3099. * At some point we need the status of all disks
  3100. * to arrive at the volume status. So error checking
  3101. * is being pushed to a separate loop.
  3102. */
  3103. return check_barrier_error(info);
  3104. }
  3105. return 0;
  3106. }
  3107. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3108. {
  3109. int raid_type;
  3110. int min_tolerated = INT_MAX;
  3111. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3112. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3113. min_tolerated = min(min_tolerated,
  3114. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3115. tolerated_failures);
  3116. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3117. if (raid_type == BTRFS_RAID_SINGLE)
  3118. continue;
  3119. if (!(flags & btrfs_raid_group[raid_type]))
  3120. continue;
  3121. min_tolerated = min(min_tolerated,
  3122. btrfs_raid_array[raid_type].
  3123. tolerated_failures);
  3124. }
  3125. if (min_tolerated == INT_MAX) {
  3126. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  3127. min_tolerated = 0;
  3128. }
  3129. return min_tolerated;
  3130. }
  3131. int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
  3132. {
  3133. struct list_head *head;
  3134. struct btrfs_device *dev;
  3135. struct btrfs_super_block *sb;
  3136. struct btrfs_dev_item *dev_item;
  3137. int ret;
  3138. int do_barriers;
  3139. int max_errors;
  3140. int total_errors = 0;
  3141. u64 flags;
  3142. do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
  3143. backup_super_roots(fs_info);
  3144. sb = fs_info->super_for_commit;
  3145. dev_item = &sb->dev_item;
  3146. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3147. head = &fs_info->fs_devices->devices;
  3148. max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
  3149. if (do_barriers) {
  3150. ret = barrier_all_devices(fs_info);
  3151. if (ret) {
  3152. mutex_unlock(
  3153. &fs_info->fs_devices->device_list_mutex);
  3154. btrfs_handle_fs_error(fs_info, ret,
  3155. "errors while submitting device barriers.");
  3156. return ret;
  3157. }
  3158. }
  3159. list_for_each_entry_rcu(dev, head, dev_list) {
  3160. if (!dev->bdev) {
  3161. total_errors++;
  3162. continue;
  3163. }
  3164. if (!dev->in_fs_metadata || !dev->writeable)
  3165. continue;
  3166. btrfs_set_stack_device_generation(dev_item, 0);
  3167. btrfs_set_stack_device_type(dev_item, dev->type);
  3168. btrfs_set_stack_device_id(dev_item, dev->devid);
  3169. btrfs_set_stack_device_total_bytes(dev_item,
  3170. dev->commit_total_bytes);
  3171. btrfs_set_stack_device_bytes_used(dev_item,
  3172. dev->commit_bytes_used);
  3173. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3174. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3175. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3176. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3177. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
  3178. flags = btrfs_super_flags(sb);
  3179. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3180. ret = write_dev_supers(dev, sb, max_mirrors);
  3181. if (ret)
  3182. total_errors++;
  3183. }
  3184. if (total_errors > max_errors) {
  3185. btrfs_err(fs_info, "%d errors while writing supers",
  3186. total_errors);
  3187. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3188. /* FUA is masked off if unsupported and can't be the reason */
  3189. btrfs_handle_fs_error(fs_info, -EIO,
  3190. "%d errors while writing supers",
  3191. total_errors);
  3192. return -EIO;
  3193. }
  3194. total_errors = 0;
  3195. list_for_each_entry_rcu(dev, head, dev_list) {
  3196. if (!dev->bdev)
  3197. continue;
  3198. if (!dev->in_fs_metadata || !dev->writeable)
  3199. continue;
  3200. ret = wait_dev_supers(dev, max_mirrors);
  3201. if (ret)
  3202. total_errors++;
  3203. }
  3204. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3205. if (total_errors > max_errors) {
  3206. btrfs_handle_fs_error(fs_info, -EIO,
  3207. "%d errors while writing supers",
  3208. total_errors);
  3209. return -EIO;
  3210. }
  3211. return 0;
  3212. }
  3213. /* Drop a fs root from the radix tree and free it. */
  3214. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3215. struct btrfs_root *root)
  3216. {
  3217. spin_lock(&fs_info->fs_roots_radix_lock);
  3218. radix_tree_delete(&fs_info->fs_roots_radix,
  3219. (unsigned long)root->root_key.objectid);
  3220. spin_unlock(&fs_info->fs_roots_radix_lock);
  3221. if (btrfs_root_refs(&root->root_item) == 0)
  3222. synchronize_srcu(&fs_info->subvol_srcu);
  3223. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3224. btrfs_free_log(NULL, root);
  3225. if (root->reloc_root) {
  3226. free_extent_buffer(root->reloc_root->node);
  3227. free_extent_buffer(root->reloc_root->commit_root);
  3228. btrfs_put_fs_root(root->reloc_root);
  3229. root->reloc_root = NULL;
  3230. }
  3231. }
  3232. if (root->free_ino_pinned)
  3233. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3234. if (root->free_ino_ctl)
  3235. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3236. free_fs_root(root);
  3237. }
  3238. static void free_fs_root(struct btrfs_root *root)
  3239. {
  3240. iput(root->ino_cache_inode);
  3241. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3242. btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
  3243. root->orphan_block_rsv = NULL;
  3244. if (root->anon_dev)
  3245. free_anon_bdev(root->anon_dev);
  3246. if (root->subv_writers)
  3247. btrfs_free_subvolume_writers(root->subv_writers);
  3248. free_extent_buffer(root->node);
  3249. free_extent_buffer(root->commit_root);
  3250. kfree(root->free_ino_ctl);
  3251. kfree(root->free_ino_pinned);
  3252. kfree(root->name);
  3253. btrfs_put_fs_root(root);
  3254. }
  3255. void btrfs_free_fs_root(struct btrfs_root *root)
  3256. {
  3257. free_fs_root(root);
  3258. }
  3259. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3260. {
  3261. u64 root_objectid = 0;
  3262. struct btrfs_root *gang[8];
  3263. int i = 0;
  3264. int err = 0;
  3265. unsigned int ret = 0;
  3266. int index;
  3267. while (1) {
  3268. index = srcu_read_lock(&fs_info->subvol_srcu);
  3269. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3270. (void **)gang, root_objectid,
  3271. ARRAY_SIZE(gang));
  3272. if (!ret) {
  3273. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3274. break;
  3275. }
  3276. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3277. for (i = 0; i < ret; i++) {
  3278. /* Avoid to grab roots in dead_roots */
  3279. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3280. gang[i] = NULL;
  3281. continue;
  3282. }
  3283. /* grab all the search result for later use */
  3284. gang[i] = btrfs_grab_fs_root(gang[i]);
  3285. }
  3286. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3287. for (i = 0; i < ret; i++) {
  3288. if (!gang[i])
  3289. continue;
  3290. root_objectid = gang[i]->root_key.objectid;
  3291. err = btrfs_orphan_cleanup(gang[i]);
  3292. if (err)
  3293. break;
  3294. btrfs_put_fs_root(gang[i]);
  3295. }
  3296. root_objectid++;
  3297. }
  3298. /* release the uncleaned roots due to error */
  3299. for (; i < ret; i++) {
  3300. if (gang[i])
  3301. btrfs_put_fs_root(gang[i]);
  3302. }
  3303. return err;
  3304. }
  3305. int btrfs_commit_super(struct btrfs_fs_info *fs_info)
  3306. {
  3307. struct btrfs_root *root = fs_info->tree_root;
  3308. struct btrfs_trans_handle *trans;
  3309. mutex_lock(&fs_info->cleaner_mutex);
  3310. btrfs_run_delayed_iputs(fs_info);
  3311. mutex_unlock(&fs_info->cleaner_mutex);
  3312. wake_up_process(fs_info->cleaner_kthread);
  3313. /* wait until ongoing cleanup work done */
  3314. down_write(&fs_info->cleanup_work_sem);
  3315. up_write(&fs_info->cleanup_work_sem);
  3316. trans = btrfs_join_transaction(root);
  3317. if (IS_ERR(trans))
  3318. return PTR_ERR(trans);
  3319. return btrfs_commit_transaction(trans);
  3320. }
  3321. void close_ctree(struct btrfs_fs_info *fs_info)
  3322. {
  3323. struct btrfs_root *root = fs_info->tree_root;
  3324. int ret;
  3325. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3326. /* wait for the qgroup rescan worker to stop */
  3327. btrfs_qgroup_wait_for_completion(fs_info, false);
  3328. /* wait for the uuid_scan task to finish */
  3329. down(&fs_info->uuid_tree_rescan_sem);
  3330. /* avoid complains from lockdep et al., set sem back to initial state */
  3331. up(&fs_info->uuid_tree_rescan_sem);
  3332. /* pause restriper - we want to resume on mount */
  3333. btrfs_pause_balance(fs_info);
  3334. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3335. btrfs_scrub_cancel(fs_info);
  3336. /* wait for any defraggers to finish */
  3337. wait_event(fs_info->transaction_wait,
  3338. (atomic_read(&fs_info->defrag_running) == 0));
  3339. /* clear out the rbtree of defraggable inodes */
  3340. btrfs_cleanup_defrag_inodes(fs_info);
  3341. cancel_work_sync(&fs_info->async_reclaim_work);
  3342. if (!sb_rdonly(fs_info->sb)) {
  3343. /*
  3344. * If the cleaner thread is stopped and there are
  3345. * block groups queued for removal, the deletion will be
  3346. * skipped when we quit the cleaner thread.
  3347. */
  3348. btrfs_delete_unused_bgs(fs_info);
  3349. ret = btrfs_commit_super(fs_info);
  3350. if (ret)
  3351. btrfs_err(fs_info, "commit super ret %d", ret);
  3352. }
  3353. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3354. btrfs_error_commit_super(fs_info);
  3355. kthread_stop(fs_info->transaction_kthread);
  3356. kthread_stop(fs_info->cleaner_kthread);
  3357. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3358. btrfs_free_qgroup_config(fs_info);
  3359. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3360. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3361. percpu_counter_sum(&fs_info->delalloc_bytes));
  3362. }
  3363. btrfs_sysfs_remove_mounted(fs_info);
  3364. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3365. btrfs_free_fs_roots(fs_info);
  3366. btrfs_put_block_group_cache(fs_info);
  3367. /*
  3368. * we must make sure there is not any read request to
  3369. * submit after we stopping all workers.
  3370. */
  3371. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3372. btrfs_stop_all_workers(fs_info);
  3373. btrfs_free_block_groups(fs_info);
  3374. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3375. free_root_pointers(fs_info, 1);
  3376. iput(fs_info->btree_inode);
  3377. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3378. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
  3379. btrfsic_unmount(fs_info->fs_devices);
  3380. #endif
  3381. btrfs_close_devices(fs_info->fs_devices);
  3382. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3383. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3384. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3385. percpu_counter_destroy(&fs_info->bio_counter);
  3386. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3387. btrfs_free_stripe_hash_table(fs_info);
  3388. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3389. root->orphan_block_rsv = NULL;
  3390. while (!list_empty(&fs_info->pinned_chunks)) {
  3391. struct extent_map *em;
  3392. em = list_first_entry(&fs_info->pinned_chunks,
  3393. struct extent_map, list);
  3394. list_del_init(&em->list);
  3395. free_extent_map(em);
  3396. }
  3397. }
  3398. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3399. int atomic)
  3400. {
  3401. int ret;
  3402. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3403. ret = extent_buffer_uptodate(buf);
  3404. if (!ret)
  3405. return ret;
  3406. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3407. parent_transid, atomic);
  3408. if (ret == -EAGAIN)
  3409. return ret;
  3410. return !ret;
  3411. }
  3412. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3413. {
  3414. struct btrfs_fs_info *fs_info;
  3415. struct btrfs_root *root;
  3416. u64 transid = btrfs_header_generation(buf);
  3417. int was_dirty;
  3418. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3419. /*
  3420. * This is a fast path so only do this check if we have sanity tests
  3421. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3422. * outside of the sanity tests.
  3423. */
  3424. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3425. return;
  3426. #endif
  3427. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3428. fs_info = root->fs_info;
  3429. btrfs_assert_tree_locked(buf);
  3430. if (transid != fs_info->generation)
  3431. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3432. buf->start, transid, fs_info->generation);
  3433. was_dirty = set_extent_buffer_dirty(buf);
  3434. if (!was_dirty)
  3435. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  3436. buf->len,
  3437. fs_info->dirty_metadata_batch);
  3438. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3439. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3440. btrfs_print_leaf(buf);
  3441. ASSERT(0);
  3442. }
  3443. #endif
  3444. }
  3445. static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
  3446. int flush_delayed)
  3447. {
  3448. /*
  3449. * looks as though older kernels can get into trouble with
  3450. * this code, they end up stuck in balance_dirty_pages forever
  3451. */
  3452. int ret;
  3453. if (current->flags & PF_MEMALLOC)
  3454. return;
  3455. if (flush_delayed)
  3456. btrfs_balance_delayed_items(fs_info);
  3457. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  3458. BTRFS_DIRTY_METADATA_THRESH);
  3459. if (ret > 0) {
  3460. balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
  3461. }
  3462. }
  3463. void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
  3464. {
  3465. __btrfs_btree_balance_dirty(fs_info, 1);
  3466. }
  3467. void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
  3468. {
  3469. __btrfs_btree_balance_dirty(fs_info, 0);
  3470. }
  3471. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3472. {
  3473. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3474. struct btrfs_fs_info *fs_info = root->fs_info;
  3475. return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  3476. }
  3477. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
  3478. {
  3479. struct btrfs_super_block *sb = fs_info->super_copy;
  3480. u64 nodesize = btrfs_super_nodesize(sb);
  3481. u64 sectorsize = btrfs_super_sectorsize(sb);
  3482. int ret = 0;
  3483. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3484. btrfs_err(fs_info, "no valid FS found");
  3485. ret = -EINVAL;
  3486. }
  3487. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3488. btrfs_warn(fs_info, "unrecognized super flag: %llu",
  3489. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3490. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3491. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3492. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3493. ret = -EINVAL;
  3494. }
  3495. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3496. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3497. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3498. ret = -EINVAL;
  3499. }
  3500. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3501. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3502. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3503. ret = -EINVAL;
  3504. }
  3505. /*
  3506. * Check sectorsize and nodesize first, other check will need it.
  3507. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3508. */
  3509. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3510. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3511. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3512. ret = -EINVAL;
  3513. }
  3514. /* Only PAGE SIZE is supported yet */
  3515. if (sectorsize != PAGE_SIZE) {
  3516. btrfs_err(fs_info,
  3517. "sectorsize %llu not supported yet, only support %lu",
  3518. sectorsize, PAGE_SIZE);
  3519. ret = -EINVAL;
  3520. }
  3521. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3522. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3523. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3524. ret = -EINVAL;
  3525. }
  3526. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3527. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3528. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3529. ret = -EINVAL;
  3530. }
  3531. /* Root alignment check */
  3532. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3533. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3534. btrfs_super_root(sb));
  3535. ret = -EINVAL;
  3536. }
  3537. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3538. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3539. btrfs_super_chunk_root(sb));
  3540. ret = -EINVAL;
  3541. }
  3542. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3543. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3544. btrfs_super_log_root(sb));
  3545. ret = -EINVAL;
  3546. }
  3547. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
  3548. btrfs_err(fs_info,
  3549. "dev_item UUID does not match fsid: %pU != %pU",
  3550. fs_info->fsid, sb->dev_item.fsid);
  3551. ret = -EINVAL;
  3552. }
  3553. /*
  3554. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3555. * done later
  3556. */
  3557. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3558. btrfs_err(fs_info, "bytes_used is too small %llu",
  3559. btrfs_super_bytes_used(sb));
  3560. ret = -EINVAL;
  3561. }
  3562. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3563. btrfs_err(fs_info, "invalid stripesize %u",
  3564. btrfs_super_stripesize(sb));
  3565. ret = -EINVAL;
  3566. }
  3567. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3568. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3569. btrfs_super_num_devices(sb));
  3570. if (btrfs_super_num_devices(sb) == 0) {
  3571. btrfs_err(fs_info, "number of devices is 0");
  3572. ret = -EINVAL;
  3573. }
  3574. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3575. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3576. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3577. ret = -EINVAL;
  3578. }
  3579. /*
  3580. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3581. * and one chunk
  3582. */
  3583. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3584. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3585. btrfs_super_sys_array_size(sb),
  3586. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3587. ret = -EINVAL;
  3588. }
  3589. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3590. + sizeof(struct btrfs_chunk)) {
  3591. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3592. btrfs_super_sys_array_size(sb),
  3593. sizeof(struct btrfs_disk_key)
  3594. + sizeof(struct btrfs_chunk));
  3595. ret = -EINVAL;
  3596. }
  3597. /*
  3598. * The generation is a global counter, we'll trust it more than the others
  3599. * but it's still possible that it's the one that's wrong.
  3600. */
  3601. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3602. btrfs_warn(fs_info,
  3603. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3604. btrfs_super_generation(sb),
  3605. btrfs_super_chunk_root_generation(sb));
  3606. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3607. && btrfs_super_cache_generation(sb) != (u64)-1)
  3608. btrfs_warn(fs_info,
  3609. "suspicious: generation < cache_generation: %llu < %llu",
  3610. btrfs_super_generation(sb),
  3611. btrfs_super_cache_generation(sb));
  3612. return ret;
  3613. }
  3614. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
  3615. {
  3616. mutex_lock(&fs_info->cleaner_mutex);
  3617. btrfs_run_delayed_iputs(fs_info);
  3618. mutex_unlock(&fs_info->cleaner_mutex);
  3619. down_write(&fs_info->cleanup_work_sem);
  3620. up_write(&fs_info->cleanup_work_sem);
  3621. /* cleanup FS via transaction */
  3622. btrfs_cleanup_transaction(fs_info);
  3623. }
  3624. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3625. {
  3626. struct btrfs_ordered_extent *ordered;
  3627. spin_lock(&root->ordered_extent_lock);
  3628. /*
  3629. * This will just short circuit the ordered completion stuff which will
  3630. * make sure the ordered extent gets properly cleaned up.
  3631. */
  3632. list_for_each_entry(ordered, &root->ordered_extents,
  3633. root_extent_list)
  3634. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3635. spin_unlock(&root->ordered_extent_lock);
  3636. }
  3637. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3638. {
  3639. struct btrfs_root *root;
  3640. struct list_head splice;
  3641. INIT_LIST_HEAD(&splice);
  3642. spin_lock(&fs_info->ordered_root_lock);
  3643. list_splice_init(&fs_info->ordered_roots, &splice);
  3644. while (!list_empty(&splice)) {
  3645. root = list_first_entry(&splice, struct btrfs_root,
  3646. ordered_root);
  3647. list_move_tail(&root->ordered_root,
  3648. &fs_info->ordered_roots);
  3649. spin_unlock(&fs_info->ordered_root_lock);
  3650. btrfs_destroy_ordered_extents(root);
  3651. cond_resched();
  3652. spin_lock(&fs_info->ordered_root_lock);
  3653. }
  3654. spin_unlock(&fs_info->ordered_root_lock);
  3655. }
  3656. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3657. struct btrfs_fs_info *fs_info)
  3658. {
  3659. struct rb_node *node;
  3660. struct btrfs_delayed_ref_root *delayed_refs;
  3661. struct btrfs_delayed_ref_node *ref;
  3662. int ret = 0;
  3663. delayed_refs = &trans->delayed_refs;
  3664. spin_lock(&delayed_refs->lock);
  3665. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3666. spin_unlock(&delayed_refs->lock);
  3667. btrfs_info(fs_info, "delayed_refs has NO entry");
  3668. return ret;
  3669. }
  3670. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3671. struct btrfs_delayed_ref_head *head;
  3672. struct btrfs_delayed_ref_node *tmp;
  3673. bool pin_bytes = false;
  3674. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3675. href_node);
  3676. if (!mutex_trylock(&head->mutex)) {
  3677. refcount_inc(&head->node.refs);
  3678. spin_unlock(&delayed_refs->lock);
  3679. mutex_lock(&head->mutex);
  3680. mutex_unlock(&head->mutex);
  3681. btrfs_put_delayed_ref(&head->node);
  3682. spin_lock(&delayed_refs->lock);
  3683. continue;
  3684. }
  3685. spin_lock(&head->lock);
  3686. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3687. list) {
  3688. ref->in_tree = 0;
  3689. list_del(&ref->list);
  3690. if (!list_empty(&ref->add_list))
  3691. list_del(&ref->add_list);
  3692. atomic_dec(&delayed_refs->num_entries);
  3693. btrfs_put_delayed_ref(ref);
  3694. }
  3695. if (head->must_insert_reserved)
  3696. pin_bytes = true;
  3697. btrfs_free_delayed_extent_op(head->extent_op);
  3698. delayed_refs->num_heads--;
  3699. if (head->processing == 0)
  3700. delayed_refs->num_heads_ready--;
  3701. atomic_dec(&delayed_refs->num_entries);
  3702. head->node.in_tree = 0;
  3703. rb_erase(&head->href_node, &delayed_refs->href_root);
  3704. spin_unlock(&head->lock);
  3705. spin_unlock(&delayed_refs->lock);
  3706. mutex_unlock(&head->mutex);
  3707. if (pin_bytes)
  3708. btrfs_pin_extent(fs_info, head->node.bytenr,
  3709. head->node.num_bytes, 1);
  3710. btrfs_put_delayed_ref(&head->node);
  3711. cond_resched();
  3712. spin_lock(&delayed_refs->lock);
  3713. }
  3714. spin_unlock(&delayed_refs->lock);
  3715. return ret;
  3716. }
  3717. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3718. {
  3719. struct btrfs_inode *btrfs_inode;
  3720. struct list_head splice;
  3721. INIT_LIST_HEAD(&splice);
  3722. spin_lock(&root->delalloc_lock);
  3723. list_splice_init(&root->delalloc_inodes, &splice);
  3724. while (!list_empty(&splice)) {
  3725. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3726. delalloc_inodes);
  3727. list_del_init(&btrfs_inode->delalloc_inodes);
  3728. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3729. &btrfs_inode->runtime_flags);
  3730. spin_unlock(&root->delalloc_lock);
  3731. btrfs_invalidate_inodes(btrfs_inode->root);
  3732. spin_lock(&root->delalloc_lock);
  3733. }
  3734. spin_unlock(&root->delalloc_lock);
  3735. }
  3736. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3737. {
  3738. struct btrfs_root *root;
  3739. struct list_head splice;
  3740. INIT_LIST_HEAD(&splice);
  3741. spin_lock(&fs_info->delalloc_root_lock);
  3742. list_splice_init(&fs_info->delalloc_roots, &splice);
  3743. while (!list_empty(&splice)) {
  3744. root = list_first_entry(&splice, struct btrfs_root,
  3745. delalloc_root);
  3746. list_del_init(&root->delalloc_root);
  3747. root = btrfs_grab_fs_root(root);
  3748. BUG_ON(!root);
  3749. spin_unlock(&fs_info->delalloc_root_lock);
  3750. btrfs_destroy_delalloc_inodes(root);
  3751. btrfs_put_fs_root(root);
  3752. spin_lock(&fs_info->delalloc_root_lock);
  3753. }
  3754. spin_unlock(&fs_info->delalloc_root_lock);
  3755. }
  3756. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  3757. struct extent_io_tree *dirty_pages,
  3758. int mark)
  3759. {
  3760. int ret;
  3761. struct extent_buffer *eb;
  3762. u64 start = 0;
  3763. u64 end;
  3764. while (1) {
  3765. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3766. mark, NULL);
  3767. if (ret)
  3768. break;
  3769. clear_extent_bits(dirty_pages, start, end, mark);
  3770. while (start <= end) {
  3771. eb = find_extent_buffer(fs_info, start);
  3772. start += fs_info->nodesize;
  3773. if (!eb)
  3774. continue;
  3775. wait_on_extent_buffer_writeback(eb);
  3776. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3777. &eb->bflags))
  3778. clear_extent_buffer_dirty(eb);
  3779. free_extent_buffer_stale(eb);
  3780. }
  3781. }
  3782. return ret;
  3783. }
  3784. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  3785. struct extent_io_tree *pinned_extents)
  3786. {
  3787. struct extent_io_tree *unpin;
  3788. u64 start;
  3789. u64 end;
  3790. int ret;
  3791. bool loop = true;
  3792. unpin = pinned_extents;
  3793. again:
  3794. while (1) {
  3795. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3796. EXTENT_DIRTY, NULL);
  3797. if (ret)
  3798. break;
  3799. clear_extent_dirty(unpin, start, end);
  3800. btrfs_error_unpin_extent_range(fs_info, start, end);
  3801. cond_resched();
  3802. }
  3803. if (loop) {
  3804. if (unpin == &fs_info->freed_extents[0])
  3805. unpin = &fs_info->freed_extents[1];
  3806. else
  3807. unpin = &fs_info->freed_extents[0];
  3808. loop = false;
  3809. goto again;
  3810. }
  3811. return 0;
  3812. }
  3813. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3814. {
  3815. struct inode *inode;
  3816. inode = cache->io_ctl.inode;
  3817. if (inode) {
  3818. invalidate_inode_pages2(inode->i_mapping);
  3819. BTRFS_I(inode)->generation = 0;
  3820. cache->io_ctl.inode = NULL;
  3821. iput(inode);
  3822. }
  3823. btrfs_put_block_group(cache);
  3824. }
  3825. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3826. struct btrfs_fs_info *fs_info)
  3827. {
  3828. struct btrfs_block_group_cache *cache;
  3829. spin_lock(&cur_trans->dirty_bgs_lock);
  3830. while (!list_empty(&cur_trans->dirty_bgs)) {
  3831. cache = list_first_entry(&cur_trans->dirty_bgs,
  3832. struct btrfs_block_group_cache,
  3833. dirty_list);
  3834. if (!cache) {
  3835. btrfs_err(fs_info, "orphan block group dirty_bgs list");
  3836. spin_unlock(&cur_trans->dirty_bgs_lock);
  3837. return;
  3838. }
  3839. if (!list_empty(&cache->io_list)) {
  3840. spin_unlock(&cur_trans->dirty_bgs_lock);
  3841. list_del_init(&cache->io_list);
  3842. btrfs_cleanup_bg_io(cache);
  3843. spin_lock(&cur_trans->dirty_bgs_lock);
  3844. }
  3845. list_del_init(&cache->dirty_list);
  3846. spin_lock(&cache->lock);
  3847. cache->disk_cache_state = BTRFS_DC_ERROR;
  3848. spin_unlock(&cache->lock);
  3849. spin_unlock(&cur_trans->dirty_bgs_lock);
  3850. btrfs_put_block_group(cache);
  3851. spin_lock(&cur_trans->dirty_bgs_lock);
  3852. }
  3853. spin_unlock(&cur_trans->dirty_bgs_lock);
  3854. while (!list_empty(&cur_trans->io_bgs)) {
  3855. cache = list_first_entry(&cur_trans->io_bgs,
  3856. struct btrfs_block_group_cache,
  3857. io_list);
  3858. if (!cache) {
  3859. btrfs_err(fs_info, "orphan block group on io_bgs list");
  3860. return;
  3861. }
  3862. list_del_init(&cache->io_list);
  3863. spin_lock(&cache->lock);
  3864. cache->disk_cache_state = BTRFS_DC_ERROR;
  3865. spin_unlock(&cache->lock);
  3866. btrfs_cleanup_bg_io(cache);
  3867. }
  3868. }
  3869. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3870. struct btrfs_fs_info *fs_info)
  3871. {
  3872. btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
  3873. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3874. ASSERT(list_empty(&cur_trans->io_bgs));
  3875. btrfs_destroy_delayed_refs(cur_trans, fs_info);
  3876. cur_trans->state = TRANS_STATE_COMMIT_START;
  3877. wake_up(&fs_info->transaction_blocked_wait);
  3878. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3879. wake_up(&fs_info->transaction_wait);
  3880. btrfs_destroy_delayed_inodes(fs_info);
  3881. btrfs_assert_delayed_root_empty(fs_info);
  3882. btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
  3883. EXTENT_DIRTY);
  3884. btrfs_destroy_pinned_extent(fs_info,
  3885. fs_info->pinned_extents);
  3886. cur_trans->state =TRANS_STATE_COMPLETED;
  3887. wake_up(&cur_trans->commit_wait);
  3888. }
  3889. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
  3890. {
  3891. struct btrfs_transaction *t;
  3892. mutex_lock(&fs_info->transaction_kthread_mutex);
  3893. spin_lock(&fs_info->trans_lock);
  3894. while (!list_empty(&fs_info->trans_list)) {
  3895. t = list_first_entry(&fs_info->trans_list,
  3896. struct btrfs_transaction, list);
  3897. if (t->state >= TRANS_STATE_COMMIT_START) {
  3898. refcount_inc(&t->use_count);
  3899. spin_unlock(&fs_info->trans_lock);
  3900. btrfs_wait_for_commit(fs_info, t->transid);
  3901. btrfs_put_transaction(t);
  3902. spin_lock(&fs_info->trans_lock);
  3903. continue;
  3904. }
  3905. if (t == fs_info->running_transaction) {
  3906. t->state = TRANS_STATE_COMMIT_DOING;
  3907. spin_unlock(&fs_info->trans_lock);
  3908. /*
  3909. * We wait for 0 num_writers since we don't hold a trans
  3910. * handle open currently for this transaction.
  3911. */
  3912. wait_event(t->writer_wait,
  3913. atomic_read(&t->num_writers) == 0);
  3914. } else {
  3915. spin_unlock(&fs_info->trans_lock);
  3916. }
  3917. btrfs_cleanup_one_transaction(t, fs_info);
  3918. spin_lock(&fs_info->trans_lock);
  3919. if (t == fs_info->running_transaction)
  3920. fs_info->running_transaction = NULL;
  3921. list_del_init(&t->list);
  3922. spin_unlock(&fs_info->trans_lock);
  3923. btrfs_put_transaction(t);
  3924. trace_btrfs_transaction_commit(fs_info->tree_root);
  3925. spin_lock(&fs_info->trans_lock);
  3926. }
  3927. spin_unlock(&fs_info->trans_lock);
  3928. btrfs_destroy_all_ordered_extents(fs_info);
  3929. btrfs_destroy_delayed_inodes(fs_info);
  3930. btrfs_assert_delayed_root_empty(fs_info);
  3931. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  3932. btrfs_destroy_all_delalloc_inodes(fs_info);
  3933. mutex_unlock(&fs_info->transaction_kthread_mutex);
  3934. return 0;
  3935. }
  3936. static struct btrfs_fs_info *btree_fs_info(void *private_data)
  3937. {
  3938. struct inode *inode = private_data;
  3939. return btrfs_sb(inode->i_sb);
  3940. }
  3941. static const struct extent_io_ops btree_extent_io_ops = {
  3942. /* mandatory callbacks */
  3943. .submit_bio_hook = btree_submit_bio_hook,
  3944. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3945. /* note we're sharing with inode.c for the merge bio hook */
  3946. .merge_bio_hook = btrfs_merge_bio_hook,
  3947. .readpage_io_failed_hook = btree_io_failed_hook,
  3948. .set_range_writeback = btrfs_set_range_writeback,
  3949. .tree_fs_info = btree_fs_info,
  3950. /* optional callbacks */
  3951. };