disk-io.c 118 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static const struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61. struct btrfs_root *root);
  62. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  63. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  64. struct extent_io_tree *dirty_pages,
  65. int mark);
  66. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  67. struct extent_io_tree *pinned_extents);
  68. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  69. static void btrfs_error_commit_super(struct btrfs_root *root);
  70. /*
  71. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  72. * is complete. This is used during reads to verify checksums, and it is used
  73. * by writes to insert metadata for new file extents after IO is complete.
  74. */
  75. struct btrfs_end_io_wq {
  76. struct bio *bio;
  77. bio_end_io_t *end_io;
  78. void *private;
  79. struct btrfs_fs_info *info;
  80. int error;
  81. enum btrfs_wq_endio_type metadata;
  82. struct list_head list;
  83. struct btrfs_work work;
  84. };
  85. static struct kmem_cache *btrfs_end_io_wq_cache;
  86. int __init btrfs_end_io_wq_init(void)
  87. {
  88. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  89. sizeof(struct btrfs_end_io_wq),
  90. 0,
  91. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  92. NULL);
  93. if (!btrfs_end_io_wq_cache)
  94. return -ENOMEM;
  95. return 0;
  96. }
  97. void btrfs_end_io_wq_exit(void)
  98. {
  99. if (btrfs_end_io_wq_cache)
  100. kmem_cache_destroy(btrfs_end_io_wq_cache);
  101. }
  102. /*
  103. * async submit bios are used to offload expensive checksumming
  104. * onto the worker threads. They checksum file and metadata bios
  105. * just before they are sent down the IO stack.
  106. */
  107. struct async_submit_bio {
  108. struct inode *inode;
  109. struct bio *bio;
  110. struct list_head list;
  111. extent_submit_bio_hook_t *submit_bio_start;
  112. extent_submit_bio_hook_t *submit_bio_done;
  113. int rw;
  114. int mirror_num;
  115. unsigned long bio_flags;
  116. /*
  117. * bio_offset is optional, can be used if the pages in the bio
  118. * can't tell us where in the file the bio should go
  119. */
  120. u64 bio_offset;
  121. struct btrfs_work work;
  122. int error;
  123. };
  124. /*
  125. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  126. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  127. * the level the eb occupies in the tree.
  128. *
  129. * Different roots are used for different purposes and may nest inside each
  130. * other and they require separate keysets. As lockdep keys should be
  131. * static, assign keysets according to the purpose of the root as indicated
  132. * by btrfs_root->objectid. This ensures that all special purpose roots
  133. * have separate keysets.
  134. *
  135. * Lock-nesting across peer nodes is always done with the immediate parent
  136. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  137. * subclass to avoid triggering lockdep warning in such cases.
  138. *
  139. * The key is set by the readpage_end_io_hook after the buffer has passed
  140. * csum validation but before the pages are unlocked. It is also set by
  141. * btrfs_init_new_buffer on freshly allocated blocks.
  142. *
  143. * We also add a check to make sure the highest level of the tree is the
  144. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  145. * needs update as well.
  146. */
  147. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  148. # if BTRFS_MAX_LEVEL != 8
  149. # error
  150. # endif
  151. static struct btrfs_lockdep_keyset {
  152. u64 id; /* root objectid */
  153. const char *name_stem; /* lock name stem */
  154. char names[BTRFS_MAX_LEVEL + 1][20];
  155. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  156. } btrfs_lockdep_keysets[] = {
  157. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  158. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  159. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  160. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  161. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  162. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  163. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  164. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  165. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  166. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  167. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  168. { .id = 0, .name_stem = "tree" },
  169. };
  170. void __init btrfs_init_lockdep(void)
  171. {
  172. int i, j;
  173. /* initialize lockdep class names */
  174. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  175. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  176. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  177. snprintf(ks->names[j], sizeof(ks->names[j]),
  178. "btrfs-%s-%02d", ks->name_stem, j);
  179. }
  180. }
  181. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  182. int level)
  183. {
  184. struct btrfs_lockdep_keyset *ks;
  185. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  186. /* find the matching keyset, id 0 is the default entry */
  187. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  188. if (ks->id == objectid)
  189. break;
  190. lockdep_set_class_and_name(&eb->lock,
  191. &ks->keys[level], ks->names[level]);
  192. }
  193. #endif
  194. /*
  195. * extents on the btree inode are pretty simple, there's one extent
  196. * that covers the entire device
  197. */
  198. static struct extent_map *btree_get_extent(struct inode *inode,
  199. struct page *page, size_t pg_offset, u64 start, u64 len,
  200. int create)
  201. {
  202. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  203. struct extent_map *em;
  204. int ret;
  205. read_lock(&em_tree->lock);
  206. em = lookup_extent_mapping(em_tree, start, len);
  207. if (em) {
  208. em->bdev =
  209. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  210. read_unlock(&em_tree->lock);
  211. goto out;
  212. }
  213. read_unlock(&em_tree->lock);
  214. em = alloc_extent_map();
  215. if (!em) {
  216. em = ERR_PTR(-ENOMEM);
  217. goto out;
  218. }
  219. em->start = 0;
  220. em->len = (u64)-1;
  221. em->block_len = (u64)-1;
  222. em->block_start = 0;
  223. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  224. write_lock(&em_tree->lock);
  225. ret = add_extent_mapping(em_tree, em, 0);
  226. if (ret == -EEXIST) {
  227. free_extent_map(em);
  228. em = lookup_extent_mapping(em_tree, start, len);
  229. if (!em)
  230. em = ERR_PTR(-EIO);
  231. } else if (ret) {
  232. free_extent_map(em);
  233. em = ERR_PTR(ret);
  234. }
  235. write_unlock(&em_tree->lock);
  236. out:
  237. return em;
  238. }
  239. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  240. {
  241. return btrfs_crc32c(seed, data, len);
  242. }
  243. void btrfs_csum_final(u32 crc, char *result)
  244. {
  245. put_unaligned_le32(~crc, result);
  246. }
  247. /*
  248. * compute the csum for a btree block, and either verify it or write it
  249. * into the csum field of the block.
  250. */
  251. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  252. struct extent_buffer *buf,
  253. int verify)
  254. {
  255. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  256. char *result = NULL;
  257. unsigned long len;
  258. unsigned long cur_len;
  259. unsigned long offset = BTRFS_CSUM_SIZE;
  260. char *kaddr;
  261. unsigned long map_start;
  262. unsigned long map_len;
  263. int err;
  264. u32 crc = ~(u32)0;
  265. unsigned long inline_result;
  266. len = buf->len - offset;
  267. while (len > 0) {
  268. err = map_private_extent_buffer(buf, offset, 32,
  269. &kaddr, &map_start, &map_len);
  270. if (err)
  271. return 1;
  272. cur_len = min(len, map_len - (offset - map_start));
  273. crc = btrfs_csum_data(kaddr + offset - map_start,
  274. crc, cur_len);
  275. len -= cur_len;
  276. offset += cur_len;
  277. }
  278. if (csum_size > sizeof(inline_result)) {
  279. result = kzalloc(csum_size, GFP_NOFS);
  280. if (!result)
  281. return 1;
  282. } else {
  283. result = (char *)&inline_result;
  284. }
  285. btrfs_csum_final(crc, result);
  286. if (verify) {
  287. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  288. u32 val;
  289. u32 found = 0;
  290. memcpy(&found, result, csum_size);
  291. read_extent_buffer(buf, &val, 0, csum_size);
  292. printk_ratelimited(KERN_WARNING
  293. "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
  294. "level %d\n",
  295. fs_info->sb->s_id, buf->start,
  296. val, found, btrfs_header_level(buf));
  297. if (result != (char *)&inline_result)
  298. kfree(result);
  299. return 1;
  300. }
  301. } else {
  302. write_extent_buffer(buf, result, 0, csum_size);
  303. }
  304. if (result != (char *)&inline_result)
  305. kfree(result);
  306. return 0;
  307. }
  308. /*
  309. * we can't consider a given block up to date unless the transid of the
  310. * block matches the transid in the parent node's pointer. This is how we
  311. * detect blocks that either didn't get written at all or got written
  312. * in the wrong place.
  313. */
  314. static int verify_parent_transid(struct extent_io_tree *io_tree,
  315. struct extent_buffer *eb, u64 parent_transid,
  316. int atomic)
  317. {
  318. struct extent_state *cached_state = NULL;
  319. int ret;
  320. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  321. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  322. return 0;
  323. if (atomic)
  324. return -EAGAIN;
  325. if (need_lock) {
  326. btrfs_tree_read_lock(eb);
  327. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  328. }
  329. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  330. 0, &cached_state);
  331. if (extent_buffer_uptodate(eb) &&
  332. btrfs_header_generation(eb) == parent_transid) {
  333. ret = 0;
  334. goto out;
  335. }
  336. printk_ratelimited(KERN_ERR
  337. "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
  338. eb->fs_info->sb->s_id, eb->start,
  339. parent_transid, btrfs_header_generation(eb));
  340. ret = 1;
  341. /*
  342. * Things reading via commit roots that don't have normal protection,
  343. * like send, can have a really old block in cache that may point at a
  344. * block that has been free'd and re-allocated. So don't clear uptodate
  345. * if we find an eb that is under IO (dirty/writeback) because we could
  346. * end up reading in the stale data and then writing it back out and
  347. * making everybody very sad.
  348. */
  349. if (!extent_buffer_under_io(eb))
  350. clear_extent_buffer_uptodate(eb);
  351. out:
  352. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  353. &cached_state, GFP_NOFS);
  354. if (need_lock)
  355. btrfs_tree_read_unlock_blocking(eb);
  356. return ret;
  357. }
  358. /*
  359. * Return 0 if the superblock checksum type matches the checksum value of that
  360. * algorithm. Pass the raw disk superblock data.
  361. */
  362. static int btrfs_check_super_csum(char *raw_disk_sb)
  363. {
  364. struct btrfs_super_block *disk_sb =
  365. (struct btrfs_super_block *)raw_disk_sb;
  366. u16 csum_type = btrfs_super_csum_type(disk_sb);
  367. int ret = 0;
  368. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  369. u32 crc = ~(u32)0;
  370. const int csum_size = sizeof(crc);
  371. char result[csum_size];
  372. /*
  373. * The super_block structure does not span the whole
  374. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  375. * is filled with zeros and is included in the checkum.
  376. */
  377. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  378. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  379. btrfs_csum_final(crc, result);
  380. if (memcmp(raw_disk_sb, result, csum_size))
  381. ret = 1;
  382. }
  383. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  384. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  385. csum_type);
  386. ret = 1;
  387. }
  388. return ret;
  389. }
  390. /*
  391. * helper to read a given tree block, doing retries as required when
  392. * the checksums don't match and we have alternate mirrors to try.
  393. */
  394. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  395. struct extent_buffer *eb,
  396. u64 start, u64 parent_transid)
  397. {
  398. struct extent_io_tree *io_tree;
  399. int failed = 0;
  400. int ret;
  401. int num_copies = 0;
  402. int mirror_num = 0;
  403. int failed_mirror = 0;
  404. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  405. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  406. while (1) {
  407. ret = read_extent_buffer_pages(io_tree, eb, start,
  408. WAIT_COMPLETE,
  409. btree_get_extent, mirror_num);
  410. if (!ret) {
  411. if (!verify_parent_transid(io_tree, eb,
  412. parent_transid, 0))
  413. break;
  414. else
  415. ret = -EIO;
  416. }
  417. /*
  418. * This buffer's crc is fine, but its contents are corrupted, so
  419. * there is no reason to read the other copies, they won't be
  420. * any less wrong.
  421. */
  422. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  423. break;
  424. num_copies = btrfs_num_copies(root->fs_info,
  425. eb->start, eb->len);
  426. if (num_copies == 1)
  427. break;
  428. if (!failed_mirror) {
  429. failed = 1;
  430. failed_mirror = eb->read_mirror;
  431. }
  432. mirror_num++;
  433. if (mirror_num == failed_mirror)
  434. mirror_num++;
  435. if (mirror_num > num_copies)
  436. break;
  437. }
  438. if (failed && !ret && failed_mirror)
  439. repair_eb_io_failure(root, eb, failed_mirror);
  440. return ret;
  441. }
  442. /*
  443. * checksum a dirty tree block before IO. This has extra checks to make sure
  444. * we only fill in the checksum field in the first page of a multi-page block
  445. */
  446. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  447. {
  448. u64 start = page_offset(page);
  449. u64 found_start;
  450. struct extent_buffer *eb;
  451. eb = (struct extent_buffer *)page->private;
  452. if (page != eb->pages[0])
  453. return 0;
  454. found_start = btrfs_header_bytenr(eb);
  455. if (WARN_ON(found_start != start || !PageUptodate(page)))
  456. return 0;
  457. csum_tree_block(fs_info, eb, 0);
  458. return 0;
  459. }
  460. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  461. struct extent_buffer *eb)
  462. {
  463. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  464. u8 fsid[BTRFS_UUID_SIZE];
  465. int ret = 1;
  466. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  467. while (fs_devices) {
  468. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  469. ret = 0;
  470. break;
  471. }
  472. fs_devices = fs_devices->seed;
  473. }
  474. return ret;
  475. }
  476. #define CORRUPT(reason, eb, root, slot) \
  477. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  478. "root=%llu, slot=%d", reason, \
  479. btrfs_header_bytenr(eb), root->objectid, slot)
  480. static noinline int check_leaf(struct btrfs_root *root,
  481. struct extent_buffer *leaf)
  482. {
  483. struct btrfs_key key;
  484. struct btrfs_key leaf_key;
  485. u32 nritems = btrfs_header_nritems(leaf);
  486. int slot;
  487. if (nritems == 0)
  488. return 0;
  489. /* Check the 0 item */
  490. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  491. BTRFS_LEAF_DATA_SIZE(root)) {
  492. CORRUPT("invalid item offset size pair", leaf, root, 0);
  493. return -EIO;
  494. }
  495. /*
  496. * Check to make sure each items keys are in the correct order and their
  497. * offsets make sense. We only have to loop through nritems-1 because
  498. * we check the current slot against the next slot, which verifies the
  499. * next slot's offset+size makes sense and that the current's slot
  500. * offset is correct.
  501. */
  502. for (slot = 0; slot < nritems - 1; slot++) {
  503. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  504. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  505. /* Make sure the keys are in the right order */
  506. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  507. CORRUPT("bad key order", leaf, root, slot);
  508. return -EIO;
  509. }
  510. /*
  511. * Make sure the offset and ends are right, remember that the
  512. * item data starts at the end of the leaf and grows towards the
  513. * front.
  514. */
  515. if (btrfs_item_offset_nr(leaf, slot) !=
  516. btrfs_item_end_nr(leaf, slot + 1)) {
  517. CORRUPT("slot offset bad", leaf, root, slot);
  518. return -EIO;
  519. }
  520. /*
  521. * Check to make sure that we don't point outside of the leaf,
  522. * just incase all the items are consistent to eachother, but
  523. * all point outside of the leaf.
  524. */
  525. if (btrfs_item_end_nr(leaf, slot) >
  526. BTRFS_LEAF_DATA_SIZE(root)) {
  527. CORRUPT("slot end outside of leaf", leaf, root, slot);
  528. return -EIO;
  529. }
  530. }
  531. return 0;
  532. }
  533. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  534. u64 phy_offset, struct page *page,
  535. u64 start, u64 end, int mirror)
  536. {
  537. u64 found_start;
  538. int found_level;
  539. struct extent_buffer *eb;
  540. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  541. int ret = 0;
  542. int reads_done;
  543. if (!page->private)
  544. goto out;
  545. eb = (struct extent_buffer *)page->private;
  546. /* the pending IO might have been the only thing that kept this buffer
  547. * in memory. Make sure we have a ref for all this other checks
  548. */
  549. extent_buffer_get(eb);
  550. reads_done = atomic_dec_and_test(&eb->io_pages);
  551. if (!reads_done)
  552. goto err;
  553. eb->read_mirror = mirror;
  554. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  555. ret = -EIO;
  556. goto err;
  557. }
  558. found_start = btrfs_header_bytenr(eb);
  559. if (found_start != eb->start) {
  560. printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
  561. "%llu %llu\n",
  562. eb->fs_info->sb->s_id, found_start, eb->start);
  563. ret = -EIO;
  564. goto err;
  565. }
  566. if (check_tree_block_fsid(root->fs_info, eb)) {
  567. printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
  568. eb->fs_info->sb->s_id, eb->start);
  569. ret = -EIO;
  570. goto err;
  571. }
  572. found_level = btrfs_header_level(eb);
  573. if (found_level >= BTRFS_MAX_LEVEL) {
  574. btrfs_err(root->fs_info, "bad tree block level %d",
  575. (int)btrfs_header_level(eb));
  576. ret = -EIO;
  577. goto err;
  578. }
  579. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  580. eb, found_level);
  581. ret = csum_tree_block(root->fs_info, eb, 1);
  582. if (ret) {
  583. ret = -EIO;
  584. goto err;
  585. }
  586. /*
  587. * If this is a leaf block and it is corrupt, set the corrupt bit so
  588. * that we don't try and read the other copies of this block, just
  589. * return -EIO.
  590. */
  591. if (found_level == 0 && check_leaf(root, eb)) {
  592. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  593. ret = -EIO;
  594. }
  595. if (!ret)
  596. set_extent_buffer_uptodate(eb);
  597. err:
  598. if (reads_done &&
  599. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  600. btree_readahead_hook(root, eb, eb->start, ret);
  601. if (ret) {
  602. /*
  603. * our io error hook is going to dec the io pages
  604. * again, we have to make sure it has something
  605. * to decrement
  606. */
  607. atomic_inc(&eb->io_pages);
  608. clear_extent_buffer_uptodate(eb);
  609. }
  610. free_extent_buffer(eb);
  611. out:
  612. return ret;
  613. }
  614. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  615. {
  616. struct extent_buffer *eb;
  617. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  618. eb = (struct extent_buffer *)page->private;
  619. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  620. eb->read_mirror = failed_mirror;
  621. atomic_dec(&eb->io_pages);
  622. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  623. btree_readahead_hook(root, eb, eb->start, -EIO);
  624. return -EIO; /* we fixed nothing */
  625. }
  626. static void end_workqueue_bio(struct bio *bio, int err)
  627. {
  628. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  629. struct btrfs_fs_info *fs_info;
  630. struct btrfs_workqueue *wq;
  631. btrfs_work_func_t func;
  632. fs_info = end_io_wq->info;
  633. end_io_wq->error = err;
  634. if (bio->bi_rw & REQ_WRITE) {
  635. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  636. wq = fs_info->endio_meta_write_workers;
  637. func = btrfs_endio_meta_write_helper;
  638. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  639. wq = fs_info->endio_freespace_worker;
  640. func = btrfs_freespace_write_helper;
  641. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  642. wq = fs_info->endio_raid56_workers;
  643. func = btrfs_endio_raid56_helper;
  644. } else {
  645. wq = fs_info->endio_write_workers;
  646. func = btrfs_endio_write_helper;
  647. }
  648. } else {
  649. if (unlikely(end_io_wq->metadata ==
  650. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  651. wq = fs_info->endio_repair_workers;
  652. func = btrfs_endio_repair_helper;
  653. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  654. wq = fs_info->endio_raid56_workers;
  655. func = btrfs_endio_raid56_helper;
  656. } else if (end_io_wq->metadata) {
  657. wq = fs_info->endio_meta_workers;
  658. func = btrfs_endio_meta_helper;
  659. } else {
  660. wq = fs_info->endio_workers;
  661. func = btrfs_endio_helper;
  662. }
  663. }
  664. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  665. btrfs_queue_work(wq, &end_io_wq->work);
  666. }
  667. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  668. enum btrfs_wq_endio_type metadata)
  669. {
  670. struct btrfs_end_io_wq *end_io_wq;
  671. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  672. if (!end_io_wq)
  673. return -ENOMEM;
  674. end_io_wq->private = bio->bi_private;
  675. end_io_wq->end_io = bio->bi_end_io;
  676. end_io_wq->info = info;
  677. end_io_wq->error = 0;
  678. end_io_wq->bio = bio;
  679. end_io_wq->metadata = metadata;
  680. bio->bi_private = end_io_wq;
  681. bio->bi_end_io = end_workqueue_bio;
  682. return 0;
  683. }
  684. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  685. {
  686. unsigned long limit = min_t(unsigned long,
  687. info->thread_pool_size,
  688. info->fs_devices->open_devices);
  689. return 256 * limit;
  690. }
  691. static void run_one_async_start(struct btrfs_work *work)
  692. {
  693. struct async_submit_bio *async;
  694. int ret;
  695. async = container_of(work, struct async_submit_bio, work);
  696. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  697. async->mirror_num, async->bio_flags,
  698. async->bio_offset);
  699. if (ret)
  700. async->error = ret;
  701. }
  702. static void run_one_async_done(struct btrfs_work *work)
  703. {
  704. struct btrfs_fs_info *fs_info;
  705. struct async_submit_bio *async;
  706. int limit;
  707. async = container_of(work, struct async_submit_bio, work);
  708. fs_info = BTRFS_I(async->inode)->root->fs_info;
  709. limit = btrfs_async_submit_limit(fs_info);
  710. limit = limit * 2 / 3;
  711. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  712. waitqueue_active(&fs_info->async_submit_wait))
  713. wake_up(&fs_info->async_submit_wait);
  714. /* If an error occured we just want to clean up the bio and move on */
  715. if (async->error) {
  716. bio_endio(async->bio, async->error);
  717. return;
  718. }
  719. async->submit_bio_done(async->inode, async->rw, async->bio,
  720. async->mirror_num, async->bio_flags,
  721. async->bio_offset);
  722. }
  723. static void run_one_async_free(struct btrfs_work *work)
  724. {
  725. struct async_submit_bio *async;
  726. async = container_of(work, struct async_submit_bio, work);
  727. kfree(async);
  728. }
  729. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  730. int rw, struct bio *bio, int mirror_num,
  731. unsigned long bio_flags,
  732. u64 bio_offset,
  733. extent_submit_bio_hook_t *submit_bio_start,
  734. extent_submit_bio_hook_t *submit_bio_done)
  735. {
  736. struct async_submit_bio *async;
  737. async = kmalloc(sizeof(*async), GFP_NOFS);
  738. if (!async)
  739. return -ENOMEM;
  740. async->inode = inode;
  741. async->rw = rw;
  742. async->bio = bio;
  743. async->mirror_num = mirror_num;
  744. async->submit_bio_start = submit_bio_start;
  745. async->submit_bio_done = submit_bio_done;
  746. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  747. run_one_async_done, run_one_async_free);
  748. async->bio_flags = bio_flags;
  749. async->bio_offset = bio_offset;
  750. async->error = 0;
  751. atomic_inc(&fs_info->nr_async_submits);
  752. if (rw & REQ_SYNC)
  753. btrfs_set_work_high_priority(&async->work);
  754. btrfs_queue_work(fs_info->workers, &async->work);
  755. while (atomic_read(&fs_info->async_submit_draining) &&
  756. atomic_read(&fs_info->nr_async_submits)) {
  757. wait_event(fs_info->async_submit_wait,
  758. (atomic_read(&fs_info->nr_async_submits) == 0));
  759. }
  760. return 0;
  761. }
  762. static int btree_csum_one_bio(struct bio *bio)
  763. {
  764. struct bio_vec *bvec;
  765. struct btrfs_root *root;
  766. int i, ret = 0;
  767. bio_for_each_segment_all(bvec, bio, i) {
  768. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  769. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  770. if (ret)
  771. break;
  772. }
  773. return ret;
  774. }
  775. static int __btree_submit_bio_start(struct inode *inode, int rw,
  776. struct bio *bio, int mirror_num,
  777. unsigned long bio_flags,
  778. u64 bio_offset)
  779. {
  780. /*
  781. * when we're called for a write, we're already in the async
  782. * submission context. Just jump into btrfs_map_bio
  783. */
  784. return btree_csum_one_bio(bio);
  785. }
  786. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  787. int mirror_num, unsigned long bio_flags,
  788. u64 bio_offset)
  789. {
  790. int ret;
  791. /*
  792. * when we're called for a write, we're already in the async
  793. * submission context. Just jump into btrfs_map_bio
  794. */
  795. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  796. if (ret)
  797. bio_endio(bio, ret);
  798. return ret;
  799. }
  800. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  801. {
  802. if (bio_flags & EXTENT_BIO_TREE_LOG)
  803. return 0;
  804. #ifdef CONFIG_X86
  805. if (cpu_has_xmm4_2)
  806. return 0;
  807. #endif
  808. return 1;
  809. }
  810. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  811. int mirror_num, unsigned long bio_flags,
  812. u64 bio_offset)
  813. {
  814. int async = check_async_write(inode, bio_flags);
  815. int ret;
  816. if (!(rw & REQ_WRITE)) {
  817. /*
  818. * called for a read, do the setup so that checksum validation
  819. * can happen in the async kernel threads
  820. */
  821. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  822. bio, BTRFS_WQ_ENDIO_METADATA);
  823. if (ret)
  824. goto out_w_error;
  825. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  826. mirror_num, 0);
  827. } else if (!async) {
  828. ret = btree_csum_one_bio(bio);
  829. if (ret)
  830. goto out_w_error;
  831. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  832. mirror_num, 0);
  833. } else {
  834. /*
  835. * kthread helpers are used to submit writes so that
  836. * checksumming can happen in parallel across all CPUs
  837. */
  838. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  839. inode, rw, bio, mirror_num, 0,
  840. bio_offset,
  841. __btree_submit_bio_start,
  842. __btree_submit_bio_done);
  843. }
  844. if (ret) {
  845. out_w_error:
  846. bio_endio(bio, ret);
  847. }
  848. return ret;
  849. }
  850. #ifdef CONFIG_MIGRATION
  851. static int btree_migratepage(struct address_space *mapping,
  852. struct page *newpage, struct page *page,
  853. enum migrate_mode mode)
  854. {
  855. /*
  856. * we can't safely write a btree page from here,
  857. * we haven't done the locking hook
  858. */
  859. if (PageDirty(page))
  860. return -EAGAIN;
  861. /*
  862. * Buffers may be managed in a filesystem specific way.
  863. * We must have no buffers or drop them.
  864. */
  865. if (page_has_private(page) &&
  866. !try_to_release_page(page, GFP_KERNEL))
  867. return -EAGAIN;
  868. return migrate_page(mapping, newpage, page, mode);
  869. }
  870. #endif
  871. static int btree_writepages(struct address_space *mapping,
  872. struct writeback_control *wbc)
  873. {
  874. struct btrfs_fs_info *fs_info;
  875. int ret;
  876. if (wbc->sync_mode == WB_SYNC_NONE) {
  877. if (wbc->for_kupdate)
  878. return 0;
  879. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  880. /* this is a bit racy, but that's ok */
  881. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  882. BTRFS_DIRTY_METADATA_THRESH);
  883. if (ret < 0)
  884. return 0;
  885. }
  886. return btree_write_cache_pages(mapping, wbc);
  887. }
  888. static int btree_readpage(struct file *file, struct page *page)
  889. {
  890. struct extent_io_tree *tree;
  891. tree = &BTRFS_I(page->mapping->host)->io_tree;
  892. return extent_read_full_page(tree, page, btree_get_extent, 0);
  893. }
  894. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  895. {
  896. if (PageWriteback(page) || PageDirty(page))
  897. return 0;
  898. return try_release_extent_buffer(page);
  899. }
  900. static void btree_invalidatepage(struct page *page, unsigned int offset,
  901. unsigned int length)
  902. {
  903. struct extent_io_tree *tree;
  904. tree = &BTRFS_I(page->mapping->host)->io_tree;
  905. extent_invalidatepage(tree, page, offset);
  906. btree_releasepage(page, GFP_NOFS);
  907. if (PagePrivate(page)) {
  908. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  909. "page private not zero on page %llu",
  910. (unsigned long long)page_offset(page));
  911. ClearPagePrivate(page);
  912. set_page_private(page, 0);
  913. page_cache_release(page);
  914. }
  915. }
  916. static int btree_set_page_dirty(struct page *page)
  917. {
  918. #ifdef DEBUG
  919. struct extent_buffer *eb;
  920. BUG_ON(!PagePrivate(page));
  921. eb = (struct extent_buffer *)page->private;
  922. BUG_ON(!eb);
  923. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  924. BUG_ON(!atomic_read(&eb->refs));
  925. btrfs_assert_tree_locked(eb);
  926. #endif
  927. return __set_page_dirty_nobuffers(page);
  928. }
  929. static const struct address_space_operations btree_aops = {
  930. .readpage = btree_readpage,
  931. .writepages = btree_writepages,
  932. .releasepage = btree_releasepage,
  933. .invalidatepage = btree_invalidatepage,
  934. #ifdef CONFIG_MIGRATION
  935. .migratepage = btree_migratepage,
  936. #endif
  937. .set_page_dirty = btree_set_page_dirty,
  938. };
  939. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  940. {
  941. struct extent_buffer *buf = NULL;
  942. struct inode *btree_inode = root->fs_info->btree_inode;
  943. buf = btrfs_find_create_tree_block(root, bytenr);
  944. if (!buf)
  945. return;
  946. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  947. buf, 0, WAIT_NONE, btree_get_extent, 0);
  948. free_extent_buffer(buf);
  949. }
  950. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  951. int mirror_num, struct extent_buffer **eb)
  952. {
  953. struct extent_buffer *buf = NULL;
  954. struct inode *btree_inode = root->fs_info->btree_inode;
  955. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  956. int ret;
  957. buf = btrfs_find_create_tree_block(root, bytenr);
  958. if (!buf)
  959. return 0;
  960. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  961. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  962. btree_get_extent, mirror_num);
  963. if (ret) {
  964. free_extent_buffer(buf);
  965. return ret;
  966. }
  967. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  968. free_extent_buffer(buf);
  969. return -EIO;
  970. } else if (extent_buffer_uptodate(buf)) {
  971. *eb = buf;
  972. } else {
  973. free_extent_buffer(buf);
  974. }
  975. return 0;
  976. }
  977. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  978. u64 bytenr)
  979. {
  980. return find_extent_buffer(fs_info, bytenr);
  981. }
  982. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  983. u64 bytenr)
  984. {
  985. if (btrfs_test_is_dummy_root(root))
  986. return alloc_test_extent_buffer(root->fs_info, bytenr);
  987. return alloc_extent_buffer(root->fs_info, bytenr);
  988. }
  989. int btrfs_write_tree_block(struct extent_buffer *buf)
  990. {
  991. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  992. buf->start + buf->len - 1);
  993. }
  994. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  995. {
  996. return filemap_fdatawait_range(buf->pages[0]->mapping,
  997. buf->start, buf->start + buf->len - 1);
  998. }
  999. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1000. u64 parent_transid)
  1001. {
  1002. struct extent_buffer *buf = NULL;
  1003. int ret;
  1004. buf = btrfs_find_create_tree_block(root, bytenr);
  1005. if (!buf)
  1006. return ERR_PTR(-ENOMEM);
  1007. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1008. if (ret) {
  1009. free_extent_buffer(buf);
  1010. return ERR_PTR(ret);
  1011. }
  1012. return buf;
  1013. }
  1014. void clean_tree_block(struct btrfs_trans_handle *trans,
  1015. struct btrfs_fs_info *fs_info,
  1016. struct extent_buffer *buf)
  1017. {
  1018. if (btrfs_header_generation(buf) ==
  1019. fs_info->running_transaction->transid) {
  1020. btrfs_assert_tree_locked(buf);
  1021. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1022. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1023. -buf->len,
  1024. fs_info->dirty_metadata_batch);
  1025. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1026. btrfs_set_lock_blocking(buf);
  1027. clear_extent_buffer_dirty(buf);
  1028. }
  1029. }
  1030. }
  1031. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1032. {
  1033. struct btrfs_subvolume_writers *writers;
  1034. int ret;
  1035. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1036. if (!writers)
  1037. return ERR_PTR(-ENOMEM);
  1038. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1039. if (ret < 0) {
  1040. kfree(writers);
  1041. return ERR_PTR(ret);
  1042. }
  1043. init_waitqueue_head(&writers->wait);
  1044. return writers;
  1045. }
  1046. static void
  1047. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1048. {
  1049. percpu_counter_destroy(&writers->counter);
  1050. kfree(writers);
  1051. }
  1052. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1053. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1054. u64 objectid)
  1055. {
  1056. root->node = NULL;
  1057. root->commit_root = NULL;
  1058. root->sectorsize = sectorsize;
  1059. root->nodesize = nodesize;
  1060. root->stripesize = stripesize;
  1061. root->state = 0;
  1062. root->orphan_cleanup_state = 0;
  1063. root->objectid = objectid;
  1064. root->last_trans = 0;
  1065. root->highest_objectid = 0;
  1066. root->nr_delalloc_inodes = 0;
  1067. root->nr_ordered_extents = 0;
  1068. root->name = NULL;
  1069. root->inode_tree = RB_ROOT;
  1070. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1071. root->block_rsv = NULL;
  1072. root->orphan_block_rsv = NULL;
  1073. INIT_LIST_HEAD(&root->dirty_list);
  1074. INIT_LIST_HEAD(&root->root_list);
  1075. INIT_LIST_HEAD(&root->delalloc_inodes);
  1076. INIT_LIST_HEAD(&root->delalloc_root);
  1077. INIT_LIST_HEAD(&root->ordered_extents);
  1078. INIT_LIST_HEAD(&root->ordered_root);
  1079. INIT_LIST_HEAD(&root->logged_list[0]);
  1080. INIT_LIST_HEAD(&root->logged_list[1]);
  1081. spin_lock_init(&root->orphan_lock);
  1082. spin_lock_init(&root->inode_lock);
  1083. spin_lock_init(&root->delalloc_lock);
  1084. spin_lock_init(&root->ordered_extent_lock);
  1085. spin_lock_init(&root->accounting_lock);
  1086. spin_lock_init(&root->log_extents_lock[0]);
  1087. spin_lock_init(&root->log_extents_lock[1]);
  1088. mutex_init(&root->objectid_mutex);
  1089. mutex_init(&root->log_mutex);
  1090. mutex_init(&root->ordered_extent_mutex);
  1091. mutex_init(&root->delalloc_mutex);
  1092. init_waitqueue_head(&root->log_writer_wait);
  1093. init_waitqueue_head(&root->log_commit_wait[0]);
  1094. init_waitqueue_head(&root->log_commit_wait[1]);
  1095. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1096. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1097. atomic_set(&root->log_commit[0], 0);
  1098. atomic_set(&root->log_commit[1], 0);
  1099. atomic_set(&root->log_writers, 0);
  1100. atomic_set(&root->log_batch, 0);
  1101. atomic_set(&root->orphan_inodes, 0);
  1102. atomic_set(&root->refs, 1);
  1103. atomic_set(&root->will_be_snapshoted, 0);
  1104. root->log_transid = 0;
  1105. root->log_transid_committed = -1;
  1106. root->last_log_commit = 0;
  1107. if (fs_info)
  1108. extent_io_tree_init(&root->dirty_log_pages,
  1109. fs_info->btree_inode->i_mapping);
  1110. memset(&root->root_key, 0, sizeof(root->root_key));
  1111. memset(&root->root_item, 0, sizeof(root->root_item));
  1112. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1113. if (fs_info)
  1114. root->defrag_trans_start = fs_info->generation;
  1115. else
  1116. root->defrag_trans_start = 0;
  1117. root->root_key.objectid = objectid;
  1118. root->anon_dev = 0;
  1119. spin_lock_init(&root->root_item_lock);
  1120. }
  1121. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1122. {
  1123. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1124. if (root)
  1125. root->fs_info = fs_info;
  1126. return root;
  1127. }
  1128. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1129. /* Should only be used by the testing infrastructure */
  1130. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1131. {
  1132. struct btrfs_root *root;
  1133. root = btrfs_alloc_root(NULL);
  1134. if (!root)
  1135. return ERR_PTR(-ENOMEM);
  1136. __setup_root(4096, 4096, 4096, root, NULL, 1);
  1137. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1138. root->alloc_bytenr = 0;
  1139. return root;
  1140. }
  1141. #endif
  1142. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1143. struct btrfs_fs_info *fs_info,
  1144. u64 objectid)
  1145. {
  1146. struct extent_buffer *leaf;
  1147. struct btrfs_root *tree_root = fs_info->tree_root;
  1148. struct btrfs_root *root;
  1149. struct btrfs_key key;
  1150. int ret = 0;
  1151. uuid_le uuid;
  1152. root = btrfs_alloc_root(fs_info);
  1153. if (!root)
  1154. return ERR_PTR(-ENOMEM);
  1155. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1156. tree_root->stripesize, root, fs_info, objectid);
  1157. root->root_key.objectid = objectid;
  1158. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1159. root->root_key.offset = 0;
  1160. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1161. if (IS_ERR(leaf)) {
  1162. ret = PTR_ERR(leaf);
  1163. leaf = NULL;
  1164. goto fail;
  1165. }
  1166. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1167. btrfs_set_header_bytenr(leaf, leaf->start);
  1168. btrfs_set_header_generation(leaf, trans->transid);
  1169. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1170. btrfs_set_header_owner(leaf, objectid);
  1171. root->node = leaf;
  1172. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1173. BTRFS_FSID_SIZE);
  1174. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1175. btrfs_header_chunk_tree_uuid(leaf),
  1176. BTRFS_UUID_SIZE);
  1177. btrfs_mark_buffer_dirty(leaf);
  1178. root->commit_root = btrfs_root_node(root);
  1179. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1180. root->root_item.flags = 0;
  1181. root->root_item.byte_limit = 0;
  1182. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1183. btrfs_set_root_generation(&root->root_item, trans->transid);
  1184. btrfs_set_root_level(&root->root_item, 0);
  1185. btrfs_set_root_refs(&root->root_item, 1);
  1186. btrfs_set_root_used(&root->root_item, leaf->len);
  1187. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1188. btrfs_set_root_dirid(&root->root_item, 0);
  1189. uuid_le_gen(&uuid);
  1190. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1191. root->root_item.drop_level = 0;
  1192. key.objectid = objectid;
  1193. key.type = BTRFS_ROOT_ITEM_KEY;
  1194. key.offset = 0;
  1195. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1196. if (ret)
  1197. goto fail;
  1198. btrfs_tree_unlock(leaf);
  1199. return root;
  1200. fail:
  1201. if (leaf) {
  1202. btrfs_tree_unlock(leaf);
  1203. free_extent_buffer(root->commit_root);
  1204. free_extent_buffer(leaf);
  1205. }
  1206. kfree(root);
  1207. return ERR_PTR(ret);
  1208. }
  1209. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1210. struct btrfs_fs_info *fs_info)
  1211. {
  1212. struct btrfs_root *root;
  1213. struct btrfs_root *tree_root = fs_info->tree_root;
  1214. struct extent_buffer *leaf;
  1215. root = btrfs_alloc_root(fs_info);
  1216. if (!root)
  1217. return ERR_PTR(-ENOMEM);
  1218. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1219. tree_root->stripesize, root, fs_info,
  1220. BTRFS_TREE_LOG_OBJECTID);
  1221. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1222. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1223. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1224. /*
  1225. * DON'T set REF_COWS for log trees
  1226. *
  1227. * log trees do not get reference counted because they go away
  1228. * before a real commit is actually done. They do store pointers
  1229. * to file data extents, and those reference counts still get
  1230. * updated (along with back refs to the log tree).
  1231. */
  1232. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1233. NULL, 0, 0, 0);
  1234. if (IS_ERR(leaf)) {
  1235. kfree(root);
  1236. return ERR_CAST(leaf);
  1237. }
  1238. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1239. btrfs_set_header_bytenr(leaf, leaf->start);
  1240. btrfs_set_header_generation(leaf, trans->transid);
  1241. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1242. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1243. root->node = leaf;
  1244. write_extent_buffer(root->node, root->fs_info->fsid,
  1245. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1246. btrfs_mark_buffer_dirty(root->node);
  1247. btrfs_tree_unlock(root->node);
  1248. return root;
  1249. }
  1250. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1251. struct btrfs_fs_info *fs_info)
  1252. {
  1253. struct btrfs_root *log_root;
  1254. log_root = alloc_log_tree(trans, fs_info);
  1255. if (IS_ERR(log_root))
  1256. return PTR_ERR(log_root);
  1257. WARN_ON(fs_info->log_root_tree);
  1258. fs_info->log_root_tree = log_root;
  1259. return 0;
  1260. }
  1261. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1262. struct btrfs_root *root)
  1263. {
  1264. struct btrfs_root *log_root;
  1265. struct btrfs_inode_item *inode_item;
  1266. log_root = alloc_log_tree(trans, root->fs_info);
  1267. if (IS_ERR(log_root))
  1268. return PTR_ERR(log_root);
  1269. log_root->last_trans = trans->transid;
  1270. log_root->root_key.offset = root->root_key.objectid;
  1271. inode_item = &log_root->root_item.inode;
  1272. btrfs_set_stack_inode_generation(inode_item, 1);
  1273. btrfs_set_stack_inode_size(inode_item, 3);
  1274. btrfs_set_stack_inode_nlink(inode_item, 1);
  1275. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1276. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1277. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1278. WARN_ON(root->log_root);
  1279. root->log_root = log_root;
  1280. root->log_transid = 0;
  1281. root->log_transid_committed = -1;
  1282. root->last_log_commit = 0;
  1283. return 0;
  1284. }
  1285. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1286. struct btrfs_key *key)
  1287. {
  1288. struct btrfs_root *root;
  1289. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1290. struct btrfs_path *path;
  1291. u64 generation;
  1292. int ret;
  1293. path = btrfs_alloc_path();
  1294. if (!path)
  1295. return ERR_PTR(-ENOMEM);
  1296. root = btrfs_alloc_root(fs_info);
  1297. if (!root) {
  1298. ret = -ENOMEM;
  1299. goto alloc_fail;
  1300. }
  1301. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1302. tree_root->stripesize, root, fs_info, key->objectid);
  1303. ret = btrfs_find_root(tree_root, key, path,
  1304. &root->root_item, &root->root_key);
  1305. if (ret) {
  1306. if (ret > 0)
  1307. ret = -ENOENT;
  1308. goto find_fail;
  1309. }
  1310. generation = btrfs_root_generation(&root->root_item);
  1311. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1312. generation);
  1313. if (IS_ERR(root->node)) {
  1314. ret = PTR_ERR(root->node);
  1315. goto find_fail;
  1316. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1317. ret = -EIO;
  1318. free_extent_buffer(root->node);
  1319. goto find_fail;
  1320. }
  1321. root->commit_root = btrfs_root_node(root);
  1322. out:
  1323. btrfs_free_path(path);
  1324. return root;
  1325. find_fail:
  1326. kfree(root);
  1327. alloc_fail:
  1328. root = ERR_PTR(ret);
  1329. goto out;
  1330. }
  1331. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1332. struct btrfs_key *location)
  1333. {
  1334. struct btrfs_root *root;
  1335. root = btrfs_read_tree_root(tree_root, location);
  1336. if (IS_ERR(root))
  1337. return root;
  1338. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1339. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1340. btrfs_check_and_init_root_item(&root->root_item);
  1341. }
  1342. return root;
  1343. }
  1344. int btrfs_init_fs_root(struct btrfs_root *root)
  1345. {
  1346. int ret;
  1347. struct btrfs_subvolume_writers *writers;
  1348. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1349. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1350. GFP_NOFS);
  1351. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1352. ret = -ENOMEM;
  1353. goto fail;
  1354. }
  1355. writers = btrfs_alloc_subvolume_writers();
  1356. if (IS_ERR(writers)) {
  1357. ret = PTR_ERR(writers);
  1358. goto fail;
  1359. }
  1360. root->subv_writers = writers;
  1361. btrfs_init_free_ino_ctl(root);
  1362. spin_lock_init(&root->ino_cache_lock);
  1363. init_waitqueue_head(&root->ino_cache_wait);
  1364. ret = get_anon_bdev(&root->anon_dev);
  1365. if (ret)
  1366. goto free_writers;
  1367. return 0;
  1368. free_writers:
  1369. btrfs_free_subvolume_writers(root->subv_writers);
  1370. fail:
  1371. kfree(root->free_ino_ctl);
  1372. kfree(root->free_ino_pinned);
  1373. return ret;
  1374. }
  1375. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1376. u64 root_id)
  1377. {
  1378. struct btrfs_root *root;
  1379. spin_lock(&fs_info->fs_roots_radix_lock);
  1380. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1381. (unsigned long)root_id);
  1382. spin_unlock(&fs_info->fs_roots_radix_lock);
  1383. return root;
  1384. }
  1385. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1386. struct btrfs_root *root)
  1387. {
  1388. int ret;
  1389. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1390. if (ret)
  1391. return ret;
  1392. spin_lock(&fs_info->fs_roots_radix_lock);
  1393. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1394. (unsigned long)root->root_key.objectid,
  1395. root);
  1396. if (ret == 0)
  1397. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1398. spin_unlock(&fs_info->fs_roots_radix_lock);
  1399. radix_tree_preload_end();
  1400. return ret;
  1401. }
  1402. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1403. struct btrfs_key *location,
  1404. bool check_ref)
  1405. {
  1406. struct btrfs_root *root;
  1407. struct btrfs_path *path;
  1408. struct btrfs_key key;
  1409. int ret;
  1410. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1411. return fs_info->tree_root;
  1412. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1413. return fs_info->extent_root;
  1414. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1415. return fs_info->chunk_root;
  1416. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1417. return fs_info->dev_root;
  1418. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1419. return fs_info->csum_root;
  1420. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1421. return fs_info->quota_root ? fs_info->quota_root :
  1422. ERR_PTR(-ENOENT);
  1423. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1424. return fs_info->uuid_root ? fs_info->uuid_root :
  1425. ERR_PTR(-ENOENT);
  1426. again:
  1427. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1428. if (root) {
  1429. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1430. return ERR_PTR(-ENOENT);
  1431. return root;
  1432. }
  1433. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1434. if (IS_ERR(root))
  1435. return root;
  1436. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1437. ret = -ENOENT;
  1438. goto fail;
  1439. }
  1440. ret = btrfs_init_fs_root(root);
  1441. if (ret)
  1442. goto fail;
  1443. path = btrfs_alloc_path();
  1444. if (!path) {
  1445. ret = -ENOMEM;
  1446. goto fail;
  1447. }
  1448. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1449. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1450. key.offset = location->objectid;
  1451. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1452. btrfs_free_path(path);
  1453. if (ret < 0)
  1454. goto fail;
  1455. if (ret == 0)
  1456. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1457. ret = btrfs_insert_fs_root(fs_info, root);
  1458. if (ret) {
  1459. if (ret == -EEXIST) {
  1460. free_fs_root(root);
  1461. goto again;
  1462. }
  1463. goto fail;
  1464. }
  1465. return root;
  1466. fail:
  1467. free_fs_root(root);
  1468. return ERR_PTR(ret);
  1469. }
  1470. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1471. {
  1472. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1473. int ret = 0;
  1474. struct btrfs_device *device;
  1475. struct backing_dev_info *bdi;
  1476. rcu_read_lock();
  1477. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1478. if (!device->bdev)
  1479. continue;
  1480. bdi = blk_get_backing_dev_info(device->bdev);
  1481. if (bdi_congested(bdi, bdi_bits)) {
  1482. ret = 1;
  1483. break;
  1484. }
  1485. }
  1486. rcu_read_unlock();
  1487. return ret;
  1488. }
  1489. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1490. {
  1491. int err;
  1492. err = bdi_setup_and_register(bdi, "btrfs");
  1493. if (err)
  1494. return err;
  1495. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
  1496. bdi->congested_fn = btrfs_congested_fn;
  1497. bdi->congested_data = info;
  1498. return 0;
  1499. }
  1500. /*
  1501. * called by the kthread helper functions to finally call the bio end_io
  1502. * functions. This is where read checksum verification actually happens
  1503. */
  1504. static void end_workqueue_fn(struct btrfs_work *work)
  1505. {
  1506. struct bio *bio;
  1507. struct btrfs_end_io_wq *end_io_wq;
  1508. int error;
  1509. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1510. bio = end_io_wq->bio;
  1511. error = end_io_wq->error;
  1512. bio->bi_private = end_io_wq->private;
  1513. bio->bi_end_io = end_io_wq->end_io;
  1514. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1515. bio_endio_nodec(bio, error);
  1516. }
  1517. static int cleaner_kthread(void *arg)
  1518. {
  1519. struct btrfs_root *root = arg;
  1520. int again;
  1521. do {
  1522. again = 0;
  1523. /* Make the cleaner go to sleep early. */
  1524. if (btrfs_need_cleaner_sleep(root))
  1525. goto sleep;
  1526. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1527. goto sleep;
  1528. /*
  1529. * Avoid the problem that we change the status of the fs
  1530. * during the above check and trylock.
  1531. */
  1532. if (btrfs_need_cleaner_sleep(root)) {
  1533. mutex_unlock(&root->fs_info->cleaner_mutex);
  1534. goto sleep;
  1535. }
  1536. btrfs_run_delayed_iputs(root);
  1537. btrfs_delete_unused_bgs(root->fs_info);
  1538. again = btrfs_clean_one_deleted_snapshot(root);
  1539. mutex_unlock(&root->fs_info->cleaner_mutex);
  1540. /*
  1541. * The defragger has dealt with the R/O remount and umount,
  1542. * needn't do anything special here.
  1543. */
  1544. btrfs_run_defrag_inodes(root->fs_info);
  1545. sleep:
  1546. if (!try_to_freeze() && !again) {
  1547. set_current_state(TASK_INTERRUPTIBLE);
  1548. if (!kthread_should_stop())
  1549. schedule();
  1550. __set_current_state(TASK_RUNNING);
  1551. }
  1552. } while (!kthread_should_stop());
  1553. return 0;
  1554. }
  1555. static int transaction_kthread(void *arg)
  1556. {
  1557. struct btrfs_root *root = arg;
  1558. struct btrfs_trans_handle *trans;
  1559. struct btrfs_transaction *cur;
  1560. u64 transid;
  1561. unsigned long now;
  1562. unsigned long delay;
  1563. bool cannot_commit;
  1564. do {
  1565. cannot_commit = false;
  1566. delay = HZ * root->fs_info->commit_interval;
  1567. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1568. spin_lock(&root->fs_info->trans_lock);
  1569. cur = root->fs_info->running_transaction;
  1570. if (!cur) {
  1571. spin_unlock(&root->fs_info->trans_lock);
  1572. goto sleep;
  1573. }
  1574. now = get_seconds();
  1575. if (cur->state < TRANS_STATE_BLOCKED &&
  1576. (now < cur->start_time ||
  1577. now - cur->start_time < root->fs_info->commit_interval)) {
  1578. spin_unlock(&root->fs_info->trans_lock);
  1579. delay = HZ * 5;
  1580. goto sleep;
  1581. }
  1582. transid = cur->transid;
  1583. spin_unlock(&root->fs_info->trans_lock);
  1584. /* If the file system is aborted, this will always fail. */
  1585. trans = btrfs_attach_transaction(root);
  1586. if (IS_ERR(trans)) {
  1587. if (PTR_ERR(trans) != -ENOENT)
  1588. cannot_commit = true;
  1589. goto sleep;
  1590. }
  1591. if (transid == trans->transid) {
  1592. btrfs_commit_transaction(trans, root);
  1593. } else {
  1594. btrfs_end_transaction(trans, root);
  1595. }
  1596. sleep:
  1597. wake_up_process(root->fs_info->cleaner_kthread);
  1598. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1599. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1600. &root->fs_info->fs_state)))
  1601. btrfs_cleanup_transaction(root);
  1602. if (!try_to_freeze()) {
  1603. set_current_state(TASK_INTERRUPTIBLE);
  1604. if (!kthread_should_stop() &&
  1605. (!btrfs_transaction_blocked(root->fs_info) ||
  1606. cannot_commit))
  1607. schedule_timeout(delay);
  1608. __set_current_state(TASK_RUNNING);
  1609. }
  1610. } while (!kthread_should_stop());
  1611. return 0;
  1612. }
  1613. /*
  1614. * this will find the highest generation in the array of
  1615. * root backups. The index of the highest array is returned,
  1616. * or -1 if we can't find anything.
  1617. *
  1618. * We check to make sure the array is valid by comparing the
  1619. * generation of the latest root in the array with the generation
  1620. * in the super block. If they don't match we pitch it.
  1621. */
  1622. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1623. {
  1624. u64 cur;
  1625. int newest_index = -1;
  1626. struct btrfs_root_backup *root_backup;
  1627. int i;
  1628. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1629. root_backup = info->super_copy->super_roots + i;
  1630. cur = btrfs_backup_tree_root_gen(root_backup);
  1631. if (cur == newest_gen)
  1632. newest_index = i;
  1633. }
  1634. /* check to see if we actually wrapped around */
  1635. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1636. root_backup = info->super_copy->super_roots;
  1637. cur = btrfs_backup_tree_root_gen(root_backup);
  1638. if (cur == newest_gen)
  1639. newest_index = 0;
  1640. }
  1641. return newest_index;
  1642. }
  1643. /*
  1644. * find the oldest backup so we know where to store new entries
  1645. * in the backup array. This will set the backup_root_index
  1646. * field in the fs_info struct
  1647. */
  1648. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1649. u64 newest_gen)
  1650. {
  1651. int newest_index = -1;
  1652. newest_index = find_newest_super_backup(info, newest_gen);
  1653. /* if there was garbage in there, just move along */
  1654. if (newest_index == -1) {
  1655. info->backup_root_index = 0;
  1656. } else {
  1657. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1658. }
  1659. }
  1660. /*
  1661. * copy all the root pointers into the super backup array.
  1662. * this will bump the backup pointer by one when it is
  1663. * done
  1664. */
  1665. static void backup_super_roots(struct btrfs_fs_info *info)
  1666. {
  1667. int next_backup;
  1668. struct btrfs_root_backup *root_backup;
  1669. int last_backup;
  1670. next_backup = info->backup_root_index;
  1671. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1672. BTRFS_NUM_BACKUP_ROOTS;
  1673. /*
  1674. * just overwrite the last backup if we're at the same generation
  1675. * this happens only at umount
  1676. */
  1677. root_backup = info->super_for_commit->super_roots + last_backup;
  1678. if (btrfs_backup_tree_root_gen(root_backup) ==
  1679. btrfs_header_generation(info->tree_root->node))
  1680. next_backup = last_backup;
  1681. root_backup = info->super_for_commit->super_roots + next_backup;
  1682. /*
  1683. * make sure all of our padding and empty slots get zero filled
  1684. * regardless of which ones we use today
  1685. */
  1686. memset(root_backup, 0, sizeof(*root_backup));
  1687. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1688. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1689. btrfs_set_backup_tree_root_gen(root_backup,
  1690. btrfs_header_generation(info->tree_root->node));
  1691. btrfs_set_backup_tree_root_level(root_backup,
  1692. btrfs_header_level(info->tree_root->node));
  1693. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1694. btrfs_set_backup_chunk_root_gen(root_backup,
  1695. btrfs_header_generation(info->chunk_root->node));
  1696. btrfs_set_backup_chunk_root_level(root_backup,
  1697. btrfs_header_level(info->chunk_root->node));
  1698. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1699. btrfs_set_backup_extent_root_gen(root_backup,
  1700. btrfs_header_generation(info->extent_root->node));
  1701. btrfs_set_backup_extent_root_level(root_backup,
  1702. btrfs_header_level(info->extent_root->node));
  1703. /*
  1704. * we might commit during log recovery, which happens before we set
  1705. * the fs_root. Make sure it is valid before we fill it in.
  1706. */
  1707. if (info->fs_root && info->fs_root->node) {
  1708. btrfs_set_backup_fs_root(root_backup,
  1709. info->fs_root->node->start);
  1710. btrfs_set_backup_fs_root_gen(root_backup,
  1711. btrfs_header_generation(info->fs_root->node));
  1712. btrfs_set_backup_fs_root_level(root_backup,
  1713. btrfs_header_level(info->fs_root->node));
  1714. }
  1715. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1716. btrfs_set_backup_dev_root_gen(root_backup,
  1717. btrfs_header_generation(info->dev_root->node));
  1718. btrfs_set_backup_dev_root_level(root_backup,
  1719. btrfs_header_level(info->dev_root->node));
  1720. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1721. btrfs_set_backup_csum_root_gen(root_backup,
  1722. btrfs_header_generation(info->csum_root->node));
  1723. btrfs_set_backup_csum_root_level(root_backup,
  1724. btrfs_header_level(info->csum_root->node));
  1725. btrfs_set_backup_total_bytes(root_backup,
  1726. btrfs_super_total_bytes(info->super_copy));
  1727. btrfs_set_backup_bytes_used(root_backup,
  1728. btrfs_super_bytes_used(info->super_copy));
  1729. btrfs_set_backup_num_devices(root_backup,
  1730. btrfs_super_num_devices(info->super_copy));
  1731. /*
  1732. * if we don't copy this out to the super_copy, it won't get remembered
  1733. * for the next commit
  1734. */
  1735. memcpy(&info->super_copy->super_roots,
  1736. &info->super_for_commit->super_roots,
  1737. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1738. }
  1739. /*
  1740. * this copies info out of the root backup array and back into
  1741. * the in-memory super block. It is meant to help iterate through
  1742. * the array, so you send it the number of backups you've already
  1743. * tried and the last backup index you used.
  1744. *
  1745. * this returns -1 when it has tried all the backups
  1746. */
  1747. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1748. struct btrfs_super_block *super,
  1749. int *num_backups_tried, int *backup_index)
  1750. {
  1751. struct btrfs_root_backup *root_backup;
  1752. int newest = *backup_index;
  1753. if (*num_backups_tried == 0) {
  1754. u64 gen = btrfs_super_generation(super);
  1755. newest = find_newest_super_backup(info, gen);
  1756. if (newest == -1)
  1757. return -1;
  1758. *backup_index = newest;
  1759. *num_backups_tried = 1;
  1760. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1761. /* we've tried all the backups, all done */
  1762. return -1;
  1763. } else {
  1764. /* jump to the next oldest backup */
  1765. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1766. BTRFS_NUM_BACKUP_ROOTS;
  1767. *backup_index = newest;
  1768. *num_backups_tried += 1;
  1769. }
  1770. root_backup = super->super_roots + newest;
  1771. btrfs_set_super_generation(super,
  1772. btrfs_backup_tree_root_gen(root_backup));
  1773. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1774. btrfs_set_super_root_level(super,
  1775. btrfs_backup_tree_root_level(root_backup));
  1776. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1777. /*
  1778. * fixme: the total bytes and num_devices need to match or we should
  1779. * need a fsck
  1780. */
  1781. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1782. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1783. return 0;
  1784. }
  1785. /* helper to cleanup workers */
  1786. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1787. {
  1788. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1789. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1790. btrfs_destroy_workqueue(fs_info->workers);
  1791. btrfs_destroy_workqueue(fs_info->endio_workers);
  1792. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1793. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1794. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1795. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1796. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1797. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1798. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1799. btrfs_destroy_workqueue(fs_info->submit_workers);
  1800. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1801. btrfs_destroy_workqueue(fs_info->caching_workers);
  1802. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1803. btrfs_destroy_workqueue(fs_info->flush_workers);
  1804. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1805. btrfs_destroy_workqueue(fs_info->extent_workers);
  1806. }
  1807. static void free_root_extent_buffers(struct btrfs_root *root)
  1808. {
  1809. if (root) {
  1810. free_extent_buffer(root->node);
  1811. free_extent_buffer(root->commit_root);
  1812. root->node = NULL;
  1813. root->commit_root = NULL;
  1814. }
  1815. }
  1816. /* helper to cleanup tree roots */
  1817. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1818. {
  1819. free_root_extent_buffers(info->tree_root);
  1820. free_root_extent_buffers(info->dev_root);
  1821. free_root_extent_buffers(info->extent_root);
  1822. free_root_extent_buffers(info->csum_root);
  1823. free_root_extent_buffers(info->quota_root);
  1824. free_root_extent_buffers(info->uuid_root);
  1825. if (chunk_root)
  1826. free_root_extent_buffers(info->chunk_root);
  1827. }
  1828. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1829. {
  1830. int ret;
  1831. struct btrfs_root *gang[8];
  1832. int i;
  1833. while (!list_empty(&fs_info->dead_roots)) {
  1834. gang[0] = list_entry(fs_info->dead_roots.next,
  1835. struct btrfs_root, root_list);
  1836. list_del(&gang[0]->root_list);
  1837. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1838. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1839. } else {
  1840. free_extent_buffer(gang[0]->node);
  1841. free_extent_buffer(gang[0]->commit_root);
  1842. btrfs_put_fs_root(gang[0]);
  1843. }
  1844. }
  1845. while (1) {
  1846. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1847. (void **)gang, 0,
  1848. ARRAY_SIZE(gang));
  1849. if (!ret)
  1850. break;
  1851. for (i = 0; i < ret; i++)
  1852. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1853. }
  1854. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1855. btrfs_free_log_root_tree(NULL, fs_info);
  1856. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1857. fs_info->pinned_extents);
  1858. }
  1859. }
  1860. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1861. {
  1862. mutex_init(&fs_info->scrub_lock);
  1863. atomic_set(&fs_info->scrubs_running, 0);
  1864. atomic_set(&fs_info->scrub_pause_req, 0);
  1865. atomic_set(&fs_info->scrubs_paused, 0);
  1866. atomic_set(&fs_info->scrub_cancel_req, 0);
  1867. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1868. fs_info->scrub_workers_refcnt = 0;
  1869. }
  1870. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1871. {
  1872. spin_lock_init(&fs_info->balance_lock);
  1873. mutex_init(&fs_info->balance_mutex);
  1874. atomic_set(&fs_info->balance_running, 0);
  1875. atomic_set(&fs_info->balance_pause_req, 0);
  1876. atomic_set(&fs_info->balance_cancel_req, 0);
  1877. fs_info->balance_ctl = NULL;
  1878. init_waitqueue_head(&fs_info->balance_wait_q);
  1879. }
  1880. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1881. struct btrfs_root *tree_root)
  1882. {
  1883. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1884. set_nlink(fs_info->btree_inode, 1);
  1885. /*
  1886. * we set the i_size on the btree inode to the max possible int.
  1887. * the real end of the address space is determined by all of
  1888. * the devices in the system
  1889. */
  1890. fs_info->btree_inode->i_size = OFFSET_MAX;
  1891. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1892. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1893. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1894. fs_info->btree_inode->i_mapping);
  1895. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1896. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1897. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1898. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1899. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1900. sizeof(struct btrfs_key));
  1901. set_bit(BTRFS_INODE_DUMMY,
  1902. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1903. btrfs_insert_inode_hash(fs_info->btree_inode);
  1904. }
  1905. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1906. {
  1907. fs_info->dev_replace.lock_owner = 0;
  1908. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1909. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1910. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1911. mutex_init(&fs_info->dev_replace.lock);
  1912. init_waitqueue_head(&fs_info->replace_wait);
  1913. }
  1914. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1915. {
  1916. spin_lock_init(&fs_info->qgroup_lock);
  1917. mutex_init(&fs_info->qgroup_ioctl_lock);
  1918. fs_info->qgroup_tree = RB_ROOT;
  1919. fs_info->qgroup_op_tree = RB_ROOT;
  1920. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1921. fs_info->qgroup_seq = 1;
  1922. fs_info->quota_enabled = 0;
  1923. fs_info->pending_quota_state = 0;
  1924. fs_info->qgroup_ulist = NULL;
  1925. mutex_init(&fs_info->qgroup_rescan_lock);
  1926. }
  1927. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1928. struct btrfs_fs_devices *fs_devices)
  1929. {
  1930. int max_active = fs_info->thread_pool_size;
  1931. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1932. fs_info->workers =
  1933. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  1934. max_active, 16);
  1935. fs_info->delalloc_workers =
  1936. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  1937. fs_info->flush_workers =
  1938. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  1939. fs_info->caching_workers =
  1940. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  1941. /*
  1942. * a higher idle thresh on the submit workers makes it much more
  1943. * likely that bios will be send down in a sane order to the
  1944. * devices
  1945. */
  1946. fs_info->submit_workers =
  1947. btrfs_alloc_workqueue("submit", flags,
  1948. min_t(u64, fs_devices->num_devices,
  1949. max_active), 64);
  1950. fs_info->fixup_workers =
  1951. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  1952. /*
  1953. * endios are largely parallel and should have a very
  1954. * low idle thresh
  1955. */
  1956. fs_info->endio_workers =
  1957. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  1958. fs_info->endio_meta_workers =
  1959. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  1960. fs_info->endio_meta_write_workers =
  1961. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  1962. fs_info->endio_raid56_workers =
  1963. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  1964. fs_info->endio_repair_workers =
  1965. btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
  1966. fs_info->rmw_workers =
  1967. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  1968. fs_info->endio_write_workers =
  1969. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  1970. fs_info->endio_freespace_worker =
  1971. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  1972. fs_info->delayed_workers =
  1973. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  1974. fs_info->readahead_workers =
  1975. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  1976. fs_info->qgroup_rescan_workers =
  1977. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  1978. fs_info->extent_workers =
  1979. btrfs_alloc_workqueue("extent-refs", flags,
  1980. min_t(u64, fs_devices->num_devices,
  1981. max_active), 8);
  1982. if (!(fs_info->workers && fs_info->delalloc_workers &&
  1983. fs_info->submit_workers && fs_info->flush_workers &&
  1984. fs_info->endio_workers && fs_info->endio_meta_workers &&
  1985. fs_info->endio_meta_write_workers &&
  1986. fs_info->endio_repair_workers &&
  1987. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  1988. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  1989. fs_info->caching_workers && fs_info->readahead_workers &&
  1990. fs_info->fixup_workers && fs_info->delayed_workers &&
  1991. fs_info->extent_workers &&
  1992. fs_info->qgroup_rescan_workers)) {
  1993. return -ENOMEM;
  1994. }
  1995. return 0;
  1996. }
  1997. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  1998. struct btrfs_fs_devices *fs_devices)
  1999. {
  2000. int ret;
  2001. struct btrfs_root *tree_root = fs_info->tree_root;
  2002. struct btrfs_root *log_tree_root;
  2003. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2004. u64 bytenr = btrfs_super_log_root(disk_super);
  2005. if (fs_devices->rw_devices == 0) {
  2006. printk(KERN_WARNING "BTRFS: log replay required "
  2007. "on RO media\n");
  2008. return -EIO;
  2009. }
  2010. log_tree_root = btrfs_alloc_root(fs_info);
  2011. if (!log_tree_root)
  2012. return -ENOMEM;
  2013. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2014. tree_root->stripesize, log_tree_root, fs_info,
  2015. BTRFS_TREE_LOG_OBJECTID);
  2016. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2017. fs_info->generation + 1);
  2018. if (IS_ERR(log_tree_root->node)) {
  2019. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2020. ret = PTR_ERR(log_tree_root->node);
  2021. kfree(log_tree_root);
  2022. return ret;
  2023. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2024. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2025. free_extent_buffer(log_tree_root->node);
  2026. kfree(log_tree_root);
  2027. return -EIO;
  2028. }
  2029. /* returns with log_tree_root freed on success */
  2030. ret = btrfs_recover_log_trees(log_tree_root);
  2031. if (ret) {
  2032. btrfs_error(tree_root->fs_info, ret,
  2033. "Failed to recover log tree");
  2034. free_extent_buffer(log_tree_root->node);
  2035. kfree(log_tree_root);
  2036. return ret;
  2037. }
  2038. if (fs_info->sb->s_flags & MS_RDONLY) {
  2039. ret = btrfs_commit_super(tree_root);
  2040. if (ret)
  2041. return ret;
  2042. }
  2043. return 0;
  2044. }
  2045. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2046. struct btrfs_root *tree_root)
  2047. {
  2048. struct btrfs_root *root;
  2049. struct btrfs_key location;
  2050. int ret;
  2051. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2052. location.type = BTRFS_ROOT_ITEM_KEY;
  2053. location.offset = 0;
  2054. root = btrfs_read_tree_root(tree_root, &location);
  2055. if (IS_ERR(root))
  2056. return PTR_ERR(root);
  2057. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2058. fs_info->extent_root = root;
  2059. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2060. root = btrfs_read_tree_root(tree_root, &location);
  2061. if (IS_ERR(root))
  2062. return PTR_ERR(root);
  2063. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2064. fs_info->dev_root = root;
  2065. btrfs_init_devices_late(fs_info);
  2066. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2067. root = btrfs_read_tree_root(tree_root, &location);
  2068. if (IS_ERR(root))
  2069. return PTR_ERR(root);
  2070. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2071. fs_info->csum_root = root;
  2072. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2073. root = btrfs_read_tree_root(tree_root, &location);
  2074. if (!IS_ERR(root)) {
  2075. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2076. fs_info->quota_enabled = 1;
  2077. fs_info->pending_quota_state = 1;
  2078. fs_info->quota_root = root;
  2079. }
  2080. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2081. root = btrfs_read_tree_root(tree_root, &location);
  2082. if (IS_ERR(root)) {
  2083. ret = PTR_ERR(root);
  2084. if (ret != -ENOENT)
  2085. return ret;
  2086. } else {
  2087. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2088. fs_info->uuid_root = root;
  2089. }
  2090. return 0;
  2091. }
  2092. int open_ctree(struct super_block *sb,
  2093. struct btrfs_fs_devices *fs_devices,
  2094. char *options)
  2095. {
  2096. u32 sectorsize;
  2097. u32 nodesize;
  2098. u32 stripesize;
  2099. u64 generation;
  2100. u64 features;
  2101. struct btrfs_key location;
  2102. struct buffer_head *bh;
  2103. struct btrfs_super_block *disk_super;
  2104. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2105. struct btrfs_root *tree_root;
  2106. struct btrfs_root *chunk_root;
  2107. int ret;
  2108. int err = -EINVAL;
  2109. int num_backups_tried = 0;
  2110. int backup_index = 0;
  2111. int max_active;
  2112. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  2113. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  2114. if (!tree_root || !chunk_root) {
  2115. err = -ENOMEM;
  2116. goto fail;
  2117. }
  2118. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2119. if (ret) {
  2120. err = ret;
  2121. goto fail;
  2122. }
  2123. ret = setup_bdi(fs_info, &fs_info->bdi);
  2124. if (ret) {
  2125. err = ret;
  2126. goto fail_srcu;
  2127. }
  2128. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2129. if (ret) {
  2130. err = ret;
  2131. goto fail_bdi;
  2132. }
  2133. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  2134. (1 + ilog2(nr_cpu_ids));
  2135. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2136. if (ret) {
  2137. err = ret;
  2138. goto fail_dirty_metadata_bytes;
  2139. }
  2140. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2141. if (ret) {
  2142. err = ret;
  2143. goto fail_delalloc_bytes;
  2144. }
  2145. fs_info->btree_inode = new_inode(sb);
  2146. if (!fs_info->btree_inode) {
  2147. err = -ENOMEM;
  2148. goto fail_bio_counter;
  2149. }
  2150. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2151. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2152. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2153. INIT_LIST_HEAD(&fs_info->trans_list);
  2154. INIT_LIST_HEAD(&fs_info->dead_roots);
  2155. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2156. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2157. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2158. spin_lock_init(&fs_info->delalloc_root_lock);
  2159. spin_lock_init(&fs_info->trans_lock);
  2160. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2161. spin_lock_init(&fs_info->delayed_iput_lock);
  2162. spin_lock_init(&fs_info->defrag_inodes_lock);
  2163. spin_lock_init(&fs_info->free_chunk_lock);
  2164. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2165. spin_lock_init(&fs_info->super_lock);
  2166. spin_lock_init(&fs_info->qgroup_op_lock);
  2167. spin_lock_init(&fs_info->buffer_lock);
  2168. spin_lock_init(&fs_info->unused_bgs_lock);
  2169. rwlock_init(&fs_info->tree_mod_log_lock);
  2170. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2171. mutex_init(&fs_info->reloc_mutex);
  2172. mutex_init(&fs_info->delalloc_root_mutex);
  2173. seqlock_init(&fs_info->profiles_lock);
  2174. init_rwsem(&fs_info->delayed_iput_sem);
  2175. init_completion(&fs_info->kobj_unregister);
  2176. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2177. INIT_LIST_HEAD(&fs_info->space_info);
  2178. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2179. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2180. btrfs_mapping_init(&fs_info->mapping_tree);
  2181. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2182. BTRFS_BLOCK_RSV_GLOBAL);
  2183. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2184. BTRFS_BLOCK_RSV_DELALLOC);
  2185. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2186. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2187. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2188. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2189. BTRFS_BLOCK_RSV_DELOPS);
  2190. atomic_set(&fs_info->nr_async_submits, 0);
  2191. atomic_set(&fs_info->async_delalloc_pages, 0);
  2192. atomic_set(&fs_info->async_submit_draining, 0);
  2193. atomic_set(&fs_info->nr_async_bios, 0);
  2194. atomic_set(&fs_info->defrag_running, 0);
  2195. atomic_set(&fs_info->qgroup_op_seq, 0);
  2196. atomic64_set(&fs_info->tree_mod_seq, 0);
  2197. fs_info->sb = sb;
  2198. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2199. fs_info->metadata_ratio = 0;
  2200. fs_info->defrag_inodes = RB_ROOT;
  2201. fs_info->free_chunk_space = 0;
  2202. fs_info->tree_mod_log = RB_ROOT;
  2203. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2204. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2205. /* readahead state */
  2206. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  2207. spin_lock_init(&fs_info->reada_lock);
  2208. fs_info->thread_pool_size = min_t(unsigned long,
  2209. num_online_cpus() + 2, 8);
  2210. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2211. spin_lock_init(&fs_info->ordered_root_lock);
  2212. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2213. GFP_NOFS);
  2214. if (!fs_info->delayed_root) {
  2215. err = -ENOMEM;
  2216. goto fail_iput;
  2217. }
  2218. btrfs_init_delayed_root(fs_info->delayed_root);
  2219. btrfs_init_scrub(fs_info);
  2220. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2221. fs_info->check_integrity_print_mask = 0;
  2222. #endif
  2223. btrfs_init_balance(fs_info);
  2224. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2225. sb->s_blocksize = 4096;
  2226. sb->s_blocksize_bits = blksize_bits(4096);
  2227. sb->s_bdi = &fs_info->bdi;
  2228. btrfs_init_btree_inode(fs_info, tree_root);
  2229. spin_lock_init(&fs_info->block_group_cache_lock);
  2230. fs_info->block_group_cache_tree = RB_ROOT;
  2231. fs_info->first_logical_byte = (u64)-1;
  2232. extent_io_tree_init(&fs_info->freed_extents[0],
  2233. fs_info->btree_inode->i_mapping);
  2234. extent_io_tree_init(&fs_info->freed_extents[1],
  2235. fs_info->btree_inode->i_mapping);
  2236. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2237. fs_info->do_barriers = 1;
  2238. mutex_init(&fs_info->ordered_operations_mutex);
  2239. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2240. mutex_init(&fs_info->tree_log_mutex);
  2241. mutex_init(&fs_info->chunk_mutex);
  2242. mutex_init(&fs_info->transaction_kthread_mutex);
  2243. mutex_init(&fs_info->cleaner_mutex);
  2244. mutex_init(&fs_info->volume_mutex);
  2245. mutex_init(&fs_info->ro_block_group_mutex);
  2246. init_rwsem(&fs_info->commit_root_sem);
  2247. init_rwsem(&fs_info->cleanup_work_sem);
  2248. init_rwsem(&fs_info->subvol_sem);
  2249. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2250. btrfs_init_dev_replace_locks(fs_info);
  2251. btrfs_init_qgroup(fs_info);
  2252. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2253. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2254. init_waitqueue_head(&fs_info->transaction_throttle);
  2255. init_waitqueue_head(&fs_info->transaction_wait);
  2256. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2257. init_waitqueue_head(&fs_info->async_submit_wait);
  2258. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2259. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2260. if (ret) {
  2261. err = ret;
  2262. goto fail_alloc;
  2263. }
  2264. __setup_root(4096, 4096, 4096, tree_root,
  2265. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2266. invalidate_bdev(fs_devices->latest_bdev);
  2267. /*
  2268. * Read super block and check the signature bytes only
  2269. */
  2270. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2271. if (!bh) {
  2272. err = -EINVAL;
  2273. goto fail_alloc;
  2274. }
  2275. /*
  2276. * We want to check superblock checksum, the type is stored inside.
  2277. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2278. */
  2279. if (btrfs_check_super_csum(bh->b_data)) {
  2280. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2281. err = -EINVAL;
  2282. goto fail_alloc;
  2283. }
  2284. /*
  2285. * super_copy is zeroed at allocation time and we never touch the
  2286. * following bytes up to INFO_SIZE, the checksum is calculated from
  2287. * the whole block of INFO_SIZE
  2288. */
  2289. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2290. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2291. sizeof(*fs_info->super_for_commit));
  2292. brelse(bh);
  2293. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2294. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2295. if (ret) {
  2296. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2297. err = -EINVAL;
  2298. goto fail_alloc;
  2299. }
  2300. disk_super = fs_info->super_copy;
  2301. if (!btrfs_super_root(disk_super))
  2302. goto fail_alloc;
  2303. /* check FS state, whether FS is broken. */
  2304. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2305. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2306. /*
  2307. * run through our array of backup supers and setup
  2308. * our ring pointer to the oldest one
  2309. */
  2310. generation = btrfs_super_generation(disk_super);
  2311. find_oldest_super_backup(fs_info, generation);
  2312. /*
  2313. * In the long term, we'll store the compression type in the super
  2314. * block, and it'll be used for per file compression control.
  2315. */
  2316. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2317. ret = btrfs_parse_options(tree_root, options);
  2318. if (ret) {
  2319. err = ret;
  2320. goto fail_alloc;
  2321. }
  2322. features = btrfs_super_incompat_flags(disk_super) &
  2323. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2324. if (features) {
  2325. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2326. "unsupported optional features (%Lx).\n",
  2327. features);
  2328. err = -EINVAL;
  2329. goto fail_alloc;
  2330. }
  2331. /*
  2332. * Leafsize and nodesize were always equal, this is only a sanity check.
  2333. */
  2334. if (le32_to_cpu(disk_super->__unused_leafsize) !=
  2335. btrfs_super_nodesize(disk_super)) {
  2336. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2337. "blocksizes don't match. node %d leaf %d\n",
  2338. btrfs_super_nodesize(disk_super),
  2339. le32_to_cpu(disk_super->__unused_leafsize));
  2340. err = -EINVAL;
  2341. goto fail_alloc;
  2342. }
  2343. if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2344. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2345. "blocksize (%d) was too large\n",
  2346. btrfs_super_nodesize(disk_super));
  2347. err = -EINVAL;
  2348. goto fail_alloc;
  2349. }
  2350. features = btrfs_super_incompat_flags(disk_super);
  2351. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2352. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2353. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2354. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2355. printk(KERN_INFO "BTRFS: has skinny extents\n");
  2356. /*
  2357. * flag our filesystem as having big metadata blocks if
  2358. * they are bigger than the page size
  2359. */
  2360. if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
  2361. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2362. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2363. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2364. }
  2365. nodesize = btrfs_super_nodesize(disk_super);
  2366. sectorsize = btrfs_super_sectorsize(disk_super);
  2367. stripesize = btrfs_super_stripesize(disk_super);
  2368. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2369. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2370. /*
  2371. * mixed block groups end up with duplicate but slightly offset
  2372. * extent buffers for the same range. It leads to corruptions
  2373. */
  2374. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2375. (sectorsize != nodesize)) {
  2376. printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
  2377. "are not allowed for mixed block groups on %s\n",
  2378. sb->s_id);
  2379. goto fail_alloc;
  2380. }
  2381. /*
  2382. * Needn't use the lock because there is no other task which will
  2383. * update the flag.
  2384. */
  2385. btrfs_set_super_incompat_flags(disk_super, features);
  2386. features = btrfs_super_compat_ro_flags(disk_super) &
  2387. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2388. if (!(sb->s_flags & MS_RDONLY) && features) {
  2389. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2390. "unsupported option features (%Lx).\n",
  2391. features);
  2392. err = -EINVAL;
  2393. goto fail_alloc;
  2394. }
  2395. max_active = fs_info->thread_pool_size;
  2396. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2397. if (ret) {
  2398. err = ret;
  2399. goto fail_sb_buffer;
  2400. }
  2401. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2402. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2403. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2404. tree_root->nodesize = nodesize;
  2405. tree_root->sectorsize = sectorsize;
  2406. tree_root->stripesize = stripesize;
  2407. sb->s_blocksize = sectorsize;
  2408. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2409. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2410. printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
  2411. goto fail_sb_buffer;
  2412. }
  2413. if (sectorsize != PAGE_SIZE) {
  2414. printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
  2415. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2416. goto fail_sb_buffer;
  2417. }
  2418. mutex_lock(&fs_info->chunk_mutex);
  2419. ret = btrfs_read_sys_array(tree_root);
  2420. mutex_unlock(&fs_info->chunk_mutex);
  2421. if (ret) {
  2422. printk(KERN_ERR "BTRFS: failed to read the system "
  2423. "array on %s\n", sb->s_id);
  2424. goto fail_sb_buffer;
  2425. }
  2426. generation = btrfs_super_chunk_root_generation(disk_super);
  2427. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2428. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2429. chunk_root->node = read_tree_block(chunk_root,
  2430. btrfs_super_chunk_root(disk_super),
  2431. generation);
  2432. if (IS_ERR(chunk_root->node) ||
  2433. !extent_buffer_uptodate(chunk_root->node)) {
  2434. printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
  2435. sb->s_id);
  2436. goto fail_tree_roots;
  2437. }
  2438. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2439. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2440. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2441. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2442. ret = btrfs_read_chunk_tree(chunk_root);
  2443. if (ret) {
  2444. printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
  2445. sb->s_id);
  2446. goto fail_tree_roots;
  2447. }
  2448. /*
  2449. * keep the device that is marked to be the target device for the
  2450. * dev_replace procedure
  2451. */
  2452. btrfs_close_extra_devices(fs_devices, 0);
  2453. if (!fs_devices->latest_bdev) {
  2454. printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
  2455. sb->s_id);
  2456. goto fail_tree_roots;
  2457. }
  2458. retry_root_backup:
  2459. generation = btrfs_super_generation(disk_super);
  2460. tree_root->node = read_tree_block(tree_root,
  2461. btrfs_super_root(disk_super),
  2462. generation);
  2463. if (IS_ERR(tree_root->node) ||
  2464. !extent_buffer_uptodate(tree_root->node)) {
  2465. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2466. sb->s_id);
  2467. goto recovery_tree_root;
  2468. }
  2469. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2470. tree_root->commit_root = btrfs_root_node(tree_root);
  2471. btrfs_set_root_refs(&tree_root->root_item, 1);
  2472. ret = btrfs_read_roots(fs_info, tree_root);
  2473. if (ret)
  2474. goto recovery_tree_root;
  2475. fs_info->generation = generation;
  2476. fs_info->last_trans_committed = generation;
  2477. ret = btrfs_recover_balance(fs_info);
  2478. if (ret) {
  2479. printk(KERN_ERR "BTRFS: failed to recover balance\n");
  2480. goto fail_block_groups;
  2481. }
  2482. ret = btrfs_init_dev_stats(fs_info);
  2483. if (ret) {
  2484. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2485. ret);
  2486. goto fail_block_groups;
  2487. }
  2488. ret = btrfs_init_dev_replace(fs_info);
  2489. if (ret) {
  2490. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2491. goto fail_block_groups;
  2492. }
  2493. btrfs_close_extra_devices(fs_devices, 1);
  2494. ret = btrfs_sysfs_add_one(fs_info);
  2495. if (ret) {
  2496. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2497. goto fail_block_groups;
  2498. }
  2499. ret = btrfs_init_space_info(fs_info);
  2500. if (ret) {
  2501. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2502. goto fail_sysfs;
  2503. }
  2504. ret = btrfs_read_block_groups(fs_info->extent_root);
  2505. if (ret) {
  2506. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2507. goto fail_sysfs;
  2508. }
  2509. fs_info->num_tolerated_disk_barrier_failures =
  2510. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2511. if (fs_info->fs_devices->missing_devices >
  2512. fs_info->num_tolerated_disk_barrier_failures &&
  2513. !(sb->s_flags & MS_RDONLY)) {
  2514. printk(KERN_WARNING "BTRFS: "
  2515. "too many missing devices, writeable mount is not allowed\n");
  2516. goto fail_sysfs;
  2517. }
  2518. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2519. "btrfs-cleaner");
  2520. if (IS_ERR(fs_info->cleaner_kthread))
  2521. goto fail_sysfs;
  2522. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2523. tree_root,
  2524. "btrfs-transaction");
  2525. if (IS_ERR(fs_info->transaction_kthread))
  2526. goto fail_cleaner;
  2527. if (!btrfs_test_opt(tree_root, SSD) &&
  2528. !btrfs_test_opt(tree_root, NOSSD) &&
  2529. !fs_info->fs_devices->rotating) {
  2530. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2531. "mode\n");
  2532. btrfs_set_opt(fs_info->mount_opt, SSD);
  2533. }
  2534. /*
  2535. * Mount does not set all options immediatelly, we can do it now and do
  2536. * not have to wait for transaction commit
  2537. */
  2538. btrfs_apply_pending_changes(fs_info);
  2539. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2540. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2541. ret = btrfsic_mount(tree_root, fs_devices,
  2542. btrfs_test_opt(tree_root,
  2543. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2544. 1 : 0,
  2545. fs_info->check_integrity_print_mask);
  2546. if (ret)
  2547. printk(KERN_WARNING "BTRFS: failed to initialize"
  2548. " integrity check module %s\n", sb->s_id);
  2549. }
  2550. #endif
  2551. ret = btrfs_read_qgroup_config(fs_info);
  2552. if (ret)
  2553. goto fail_trans_kthread;
  2554. /* do not make disk changes in broken FS */
  2555. if (btrfs_super_log_root(disk_super) != 0) {
  2556. ret = btrfs_replay_log(fs_info, fs_devices);
  2557. if (ret) {
  2558. err = ret;
  2559. goto fail_qgroup;
  2560. }
  2561. }
  2562. ret = btrfs_find_orphan_roots(tree_root);
  2563. if (ret)
  2564. goto fail_qgroup;
  2565. if (!(sb->s_flags & MS_RDONLY)) {
  2566. ret = btrfs_cleanup_fs_roots(fs_info);
  2567. if (ret)
  2568. goto fail_qgroup;
  2569. mutex_lock(&fs_info->cleaner_mutex);
  2570. ret = btrfs_recover_relocation(tree_root);
  2571. mutex_unlock(&fs_info->cleaner_mutex);
  2572. if (ret < 0) {
  2573. printk(KERN_WARNING
  2574. "BTRFS: failed to recover relocation\n");
  2575. err = -EINVAL;
  2576. goto fail_qgroup;
  2577. }
  2578. }
  2579. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2580. location.type = BTRFS_ROOT_ITEM_KEY;
  2581. location.offset = 0;
  2582. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2583. if (IS_ERR(fs_info->fs_root)) {
  2584. err = PTR_ERR(fs_info->fs_root);
  2585. goto fail_qgroup;
  2586. }
  2587. if (sb->s_flags & MS_RDONLY)
  2588. return 0;
  2589. down_read(&fs_info->cleanup_work_sem);
  2590. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2591. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2592. up_read(&fs_info->cleanup_work_sem);
  2593. close_ctree(tree_root);
  2594. return ret;
  2595. }
  2596. up_read(&fs_info->cleanup_work_sem);
  2597. ret = btrfs_resume_balance_async(fs_info);
  2598. if (ret) {
  2599. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2600. close_ctree(tree_root);
  2601. return ret;
  2602. }
  2603. ret = btrfs_resume_dev_replace_async(fs_info);
  2604. if (ret) {
  2605. pr_warn("BTRFS: failed to resume dev_replace\n");
  2606. close_ctree(tree_root);
  2607. return ret;
  2608. }
  2609. btrfs_qgroup_rescan_resume(fs_info);
  2610. if (!fs_info->uuid_root) {
  2611. pr_info("BTRFS: creating UUID tree\n");
  2612. ret = btrfs_create_uuid_tree(fs_info);
  2613. if (ret) {
  2614. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2615. ret);
  2616. close_ctree(tree_root);
  2617. return ret;
  2618. }
  2619. } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
  2620. fs_info->generation !=
  2621. btrfs_super_uuid_tree_generation(disk_super)) {
  2622. pr_info("BTRFS: checking UUID tree\n");
  2623. ret = btrfs_check_uuid_tree(fs_info);
  2624. if (ret) {
  2625. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2626. ret);
  2627. close_ctree(tree_root);
  2628. return ret;
  2629. }
  2630. } else {
  2631. fs_info->update_uuid_tree_gen = 1;
  2632. }
  2633. fs_info->open = 1;
  2634. return 0;
  2635. fail_qgroup:
  2636. btrfs_free_qgroup_config(fs_info);
  2637. fail_trans_kthread:
  2638. kthread_stop(fs_info->transaction_kthread);
  2639. btrfs_cleanup_transaction(fs_info->tree_root);
  2640. btrfs_free_fs_roots(fs_info);
  2641. fail_cleaner:
  2642. kthread_stop(fs_info->cleaner_kthread);
  2643. /*
  2644. * make sure we're done with the btree inode before we stop our
  2645. * kthreads
  2646. */
  2647. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2648. fail_sysfs:
  2649. btrfs_sysfs_remove_one(fs_info);
  2650. fail_block_groups:
  2651. btrfs_put_block_group_cache(fs_info);
  2652. btrfs_free_block_groups(fs_info);
  2653. fail_tree_roots:
  2654. free_root_pointers(fs_info, 1);
  2655. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2656. fail_sb_buffer:
  2657. btrfs_stop_all_workers(fs_info);
  2658. fail_alloc:
  2659. fail_iput:
  2660. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2661. iput(fs_info->btree_inode);
  2662. fail_bio_counter:
  2663. percpu_counter_destroy(&fs_info->bio_counter);
  2664. fail_delalloc_bytes:
  2665. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2666. fail_dirty_metadata_bytes:
  2667. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2668. fail_bdi:
  2669. bdi_destroy(&fs_info->bdi);
  2670. fail_srcu:
  2671. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2672. fail:
  2673. btrfs_free_stripe_hash_table(fs_info);
  2674. btrfs_close_devices(fs_info->fs_devices);
  2675. return err;
  2676. recovery_tree_root:
  2677. if (!btrfs_test_opt(tree_root, RECOVERY))
  2678. goto fail_tree_roots;
  2679. free_root_pointers(fs_info, 0);
  2680. /* don't use the log in recovery mode, it won't be valid */
  2681. btrfs_set_super_log_root(disk_super, 0);
  2682. /* we can't trust the free space cache either */
  2683. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2684. ret = next_root_backup(fs_info, fs_info->super_copy,
  2685. &num_backups_tried, &backup_index);
  2686. if (ret == -1)
  2687. goto fail_block_groups;
  2688. goto retry_root_backup;
  2689. }
  2690. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2691. {
  2692. if (uptodate) {
  2693. set_buffer_uptodate(bh);
  2694. } else {
  2695. struct btrfs_device *device = (struct btrfs_device *)
  2696. bh->b_private;
  2697. printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
  2698. "I/O error on %s\n",
  2699. rcu_str_deref(device->name));
  2700. /* note, we dont' set_buffer_write_io_error because we have
  2701. * our own ways of dealing with the IO errors
  2702. */
  2703. clear_buffer_uptodate(bh);
  2704. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2705. }
  2706. unlock_buffer(bh);
  2707. put_bh(bh);
  2708. }
  2709. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2710. {
  2711. struct buffer_head *bh;
  2712. struct buffer_head *latest = NULL;
  2713. struct btrfs_super_block *super;
  2714. int i;
  2715. u64 transid = 0;
  2716. u64 bytenr;
  2717. /* we would like to check all the supers, but that would make
  2718. * a btrfs mount succeed after a mkfs from a different FS.
  2719. * So, we need to add a special mount option to scan for
  2720. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2721. */
  2722. for (i = 0; i < 1; i++) {
  2723. bytenr = btrfs_sb_offset(i);
  2724. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2725. i_size_read(bdev->bd_inode))
  2726. break;
  2727. bh = __bread(bdev, bytenr / 4096,
  2728. BTRFS_SUPER_INFO_SIZE);
  2729. if (!bh)
  2730. continue;
  2731. super = (struct btrfs_super_block *)bh->b_data;
  2732. if (btrfs_super_bytenr(super) != bytenr ||
  2733. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2734. brelse(bh);
  2735. continue;
  2736. }
  2737. if (!latest || btrfs_super_generation(super) > transid) {
  2738. brelse(latest);
  2739. latest = bh;
  2740. transid = btrfs_super_generation(super);
  2741. } else {
  2742. brelse(bh);
  2743. }
  2744. }
  2745. return latest;
  2746. }
  2747. /*
  2748. * this should be called twice, once with wait == 0 and
  2749. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2750. * we write are pinned.
  2751. *
  2752. * They are released when wait == 1 is done.
  2753. * max_mirrors must be the same for both runs, and it indicates how
  2754. * many supers on this one device should be written.
  2755. *
  2756. * max_mirrors == 0 means to write them all.
  2757. */
  2758. static int write_dev_supers(struct btrfs_device *device,
  2759. struct btrfs_super_block *sb,
  2760. int do_barriers, int wait, int max_mirrors)
  2761. {
  2762. struct buffer_head *bh;
  2763. int i;
  2764. int ret;
  2765. int errors = 0;
  2766. u32 crc;
  2767. u64 bytenr;
  2768. if (max_mirrors == 0)
  2769. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2770. for (i = 0; i < max_mirrors; i++) {
  2771. bytenr = btrfs_sb_offset(i);
  2772. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2773. device->commit_total_bytes)
  2774. break;
  2775. if (wait) {
  2776. bh = __find_get_block(device->bdev, bytenr / 4096,
  2777. BTRFS_SUPER_INFO_SIZE);
  2778. if (!bh) {
  2779. errors++;
  2780. continue;
  2781. }
  2782. wait_on_buffer(bh);
  2783. if (!buffer_uptodate(bh))
  2784. errors++;
  2785. /* drop our reference */
  2786. brelse(bh);
  2787. /* drop the reference from the wait == 0 run */
  2788. brelse(bh);
  2789. continue;
  2790. } else {
  2791. btrfs_set_super_bytenr(sb, bytenr);
  2792. crc = ~(u32)0;
  2793. crc = btrfs_csum_data((char *)sb +
  2794. BTRFS_CSUM_SIZE, crc,
  2795. BTRFS_SUPER_INFO_SIZE -
  2796. BTRFS_CSUM_SIZE);
  2797. btrfs_csum_final(crc, sb->csum);
  2798. /*
  2799. * one reference for us, and we leave it for the
  2800. * caller
  2801. */
  2802. bh = __getblk(device->bdev, bytenr / 4096,
  2803. BTRFS_SUPER_INFO_SIZE);
  2804. if (!bh) {
  2805. printk(KERN_ERR "BTRFS: couldn't get super "
  2806. "buffer head for bytenr %Lu\n", bytenr);
  2807. errors++;
  2808. continue;
  2809. }
  2810. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2811. /* one reference for submit_bh */
  2812. get_bh(bh);
  2813. set_buffer_uptodate(bh);
  2814. lock_buffer(bh);
  2815. bh->b_end_io = btrfs_end_buffer_write_sync;
  2816. bh->b_private = device;
  2817. }
  2818. /*
  2819. * we fua the first super. The others we allow
  2820. * to go down lazy.
  2821. */
  2822. if (i == 0)
  2823. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2824. else
  2825. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2826. if (ret)
  2827. errors++;
  2828. }
  2829. return errors < i ? 0 : -1;
  2830. }
  2831. /*
  2832. * endio for the write_dev_flush, this will wake anyone waiting
  2833. * for the barrier when it is done
  2834. */
  2835. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2836. {
  2837. if (err) {
  2838. if (err == -EOPNOTSUPP)
  2839. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2840. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2841. }
  2842. if (bio->bi_private)
  2843. complete(bio->bi_private);
  2844. bio_put(bio);
  2845. }
  2846. /*
  2847. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2848. * sent down. With wait == 1, it waits for the previous flush.
  2849. *
  2850. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2851. * capable
  2852. */
  2853. static int write_dev_flush(struct btrfs_device *device, int wait)
  2854. {
  2855. struct bio *bio;
  2856. int ret = 0;
  2857. if (device->nobarriers)
  2858. return 0;
  2859. if (wait) {
  2860. bio = device->flush_bio;
  2861. if (!bio)
  2862. return 0;
  2863. wait_for_completion(&device->flush_wait);
  2864. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2865. printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
  2866. rcu_str_deref(device->name));
  2867. device->nobarriers = 1;
  2868. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2869. ret = -EIO;
  2870. btrfs_dev_stat_inc_and_print(device,
  2871. BTRFS_DEV_STAT_FLUSH_ERRS);
  2872. }
  2873. /* drop the reference from the wait == 0 run */
  2874. bio_put(bio);
  2875. device->flush_bio = NULL;
  2876. return ret;
  2877. }
  2878. /*
  2879. * one reference for us, and we leave it for the
  2880. * caller
  2881. */
  2882. device->flush_bio = NULL;
  2883. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2884. if (!bio)
  2885. return -ENOMEM;
  2886. bio->bi_end_io = btrfs_end_empty_barrier;
  2887. bio->bi_bdev = device->bdev;
  2888. init_completion(&device->flush_wait);
  2889. bio->bi_private = &device->flush_wait;
  2890. device->flush_bio = bio;
  2891. bio_get(bio);
  2892. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2893. return 0;
  2894. }
  2895. /*
  2896. * send an empty flush down to each device in parallel,
  2897. * then wait for them
  2898. */
  2899. static int barrier_all_devices(struct btrfs_fs_info *info)
  2900. {
  2901. struct list_head *head;
  2902. struct btrfs_device *dev;
  2903. int errors_send = 0;
  2904. int errors_wait = 0;
  2905. int ret;
  2906. /* send down all the barriers */
  2907. head = &info->fs_devices->devices;
  2908. list_for_each_entry_rcu(dev, head, dev_list) {
  2909. if (dev->missing)
  2910. continue;
  2911. if (!dev->bdev) {
  2912. errors_send++;
  2913. continue;
  2914. }
  2915. if (!dev->in_fs_metadata || !dev->writeable)
  2916. continue;
  2917. ret = write_dev_flush(dev, 0);
  2918. if (ret)
  2919. errors_send++;
  2920. }
  2921. /* wait for all the barriers */
  2922. list_for_each_entry_rcu(dev, head, dev_list) {
  2923. if (dev->missing)
  2924. continue;
  2925. if (!dev->bdev) {
  2926. errors_wait++;
  2927. continue;
  2928. }
  2929. if (!dev->in_fs_metadata || !dev->writeable)
  2930. continue;
  2931. ret = write_dev_flush(dev, 1);
  2932. if (ret)
  2933. errors_wait++;
  2934. }
  2935. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2936. errors_wait > info->num_tolerated_disk_barrier_failures)
  2937. return -EIO;
  2938. return 0;
  2939. }
  2940. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2941. struct btrfs_fs_info *fs_info)
  2942. {
  2943. struct btrfs_ioctl_space_info space;
  2944. struct btrfs_space_info *sinfo;
  2945. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2946. BTRFS_BLOCK_GROUP_SYSTEM,
  2947. BTRFS_BLOCK_GROUP_METADATA,
  2948. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2949. int num_types = 4;
  2950. int i;
  2951. int c;
  2952. int num_tolerated_disk_barrier_failures =
  2953. (int)fs_info->fs_devices->num_devices;
  2954. for (i = 0; i < num_types; i++) {
  2955. struct btrfs_space_info *tmp;
  2956. sinfo = NULL;
  2957. rcu_read_lock();
  2958. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2959. if (tmp->flags == types[i]) {
  2960. sinfo = tmp;
  2961. break;
  2962. }
  2963. }
  2964. rcu_read_unlock();
  2965. if (!sinfo)
  2966. continue;
  2967. down_read(&sinfo->groups_sem);
  2968. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2969. if (!list_empty(&sinfo->block_groups[c])) {
  2970. u64 flags;
  2971. btrfs_get_block_group_info(
  2972. &sinfo->block_groups[c], &space);
  2973. if (space.total_bytes == 0 ||
  2974. space.used_bytes == 0)
  2975. continue;
  2976. flags = space.flags;
  2977. /*
  2978. * return
  2979. * 0: if dup, single or RAID0 is configured for
  2980. * any of metadata, system or data, else
  2981. * 1: if RAID5 is configured, or if RAID1 or
  2982. * RAID10 is configured and only two mirrors
  2983. * are used, else
  2984. * 2: if RAID6 is configured, else
  2985. * num_mirrors - 1: if RAID1 or RAID10 is
  2986. * configured and more than
  2987. * 2 mirrors are used.
  2988. */
  2989. if (num_tolerated_disk_barrier_failures > 0 &&
  2990. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2991. BTRFS_BLOCK_GROUP_RAID0)) ||
  2992. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2993. == 0)))
  2994. num_tolerated_disk_barrier_failures = 0;
  2995. else if (num_tolerated_disk_barrier_failures > 1) {
  2996. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2997. BTRFS_BLOCK_GROUP_RAID5 |
  2998. BTRFS_BLOCK_GROUP_RAID10)) {
  2999. num_tolerated_disk_barrier_failures = 1;
  3000. } else if (flags &
  3001. BTRFS_BLOCK_GROUP_RAID6) {
  3002. num_tolerated_disk_barrier_failures = 2;
  3003. }
  3004. }
  3005. }
  3006. }
  3007. up_read(&sinfo->groups_sem);
  3008. }
  3009. return num_tolerated_disk_barrier_failures;
  3010. }
  3011. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3012. {
  3013. struct list_head *head;
  3014. struct btrfs_device *dev;
  3015. struct btrfs_super_block *sb;
  3016. struct btrfs_dev_item *dev_item;
  3017. int ret;
  3018. int do_barriers;
  3019. int max_errors;
  3020. int total_errors = 0;
  3021. u64 flags;
  3022. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  3023. backup_super_roots(root->fs_info);
  3024. sb = root->fs_info->super_for_commit;
  3025. dev_item = &sb->dev_item;
  3026. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3027. head = &root->fs_info->fs_devices->devices;
  3028. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3029. if (do_barriers) {
  3030. ret = barrier_all_devices(root->fs_info);
  3031. if (ret) {
  3032. mutex_unlock(
  3033. &root->fs_info->fs_devices->device_list_mutex);
  3034. btrfs_error(root->fs_info, ret,
  3035. "errors while submitting device barriers.");
  3036. return ret;
  3037. }
  3038. }
  3039. list_for_each_entry_rcu(dev, head, dev_list) {
  3040. if (!dev->bdev) {
  3041. total_errors++;
  3042. continue;
  3043. }
  3044. if (!dev->in_fs_metadata || !dev->writeable)
  3045. continue;
  3046. btrfs_set_stack_device_generation(dev_item, 0);
  3047. btrfs_set_stack_device_type(dev_item, dev->type);
  3048. btrfs_set_stack_device_id(dev_item, dev->devid);
  3049. btrfs_set_stack_device_total_bytes(dev_item,
  3050. dev->commit_total_bytes);
  3051. btrfs_set_stack_device_bytes_used(dev_item,
  3052. dev->commit_bytes_used);
  3053. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3054. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3055. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3056. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3057. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3058. flags = btrfs_super_flags(sb);
  3059. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3060. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3061. if (ret)
  3062. total_errors++;
  3063. }
  3064. if (total_errors > max_errors) {
  3065. btrfs_err(root->fs_info, "%d errors while writing supers",
  3066. total_errors);
  3067. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3068. /* FUA is masked off if unsupported and can't be the reason */
  3069. btrfs_error(root->fs_info, -EIO,
  3070. "%d errors while writing supers", total_errors);
  3071. return -EIO;
  3072. }
  3073. total_errors = 0;
  3074. list_for_each_entry_rcu(dev, head, dev_list) {
  3075. if (!dev->bdev)
  3076. continue;
  3077. if (!dev->in_fs_metadata || !dev->writeable)
  3078. continue;
  3079. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3080. if (ret)
  3081. total_errors++;
  3082. }
  3083. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3084. if (total_errors > max_errors) {
  3085. btrfs_error(root->fs_info, -EIO,
  3086. "%d errors while writing supers", total_errors);
  3087. return -EIO;
  3088. }
  3089. return 0;
  3090. }
  3091. int write_ctree_super(struct btrfs_trans_handle *trans,
  3092. struct btrfs_root *root, int max_mirrors)
  3093. {
  3094. return write_all_supers(root, max_mirrors);
  3095. }
  3096. /* Drop a fs root from the radix tree and free it. */
  3097. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3098. struct btrfs_root *root)
  3099. {
  3100. spin_lock(&fs_info->fs_roots_radix_lock);
  3101. radix_tree_delete(&fs_info->fs_roots_radix,
  3102. (unsigned long)root->root_key.objectid);
  3103. spin_unlock(&fs_info->fs_roots_radix_lock);
  3104. if (btrfs_root_refs(&root->root_item) == 0)
  3105. synchronize_srcu(&fs_info->subvol_srcu);
  3106. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3107. btrfs_free_log(NULL, root);
  3108. if (root->free_ino_pinned)
  3109. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3110. if (root->free_ino_ctl)
  3111. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3112. free_fs_root(root);
  3113. }
  3114. static void free_fs_root(struct btrfs_root *root)
  3115. {
  3116. iput(root->ino_cache_inode);
  3117. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3118. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3119. root->orphan_block_rsv = NULL;
  3120. if (root->anon_dev)
  3121. free_anon_bdev(root->anon_dev);
  3122. if (root->subv_writers)
  3123. btrfs_free_subvolume_writers(root->subv_writers);
  3124. free_extent_buffer(root->node);
  3125. free_extent_buffer(root->commit_root);
  3126. kfree(root->free_ino_ctl);
  3127. kfree(root->free_ino_pinned);
  3128. kfree(root->name);
  3129. btrfs_put_fs_root(root);
  3130. }
  3131. void btrfs_free_fs_root(struct btrfs_root *root)
  3132. {
  3133. free_fs_root(root);
  3134. }
  3135. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3136. {
  3137. u64 root_objectid = 0;
  3138. struct btrfs_root *gang[8];
  3139. int i = 0;
  3140. int err = 0;
  3141. unsigned int ret = 0;
  3142. int index;
  3143. while (1) {
  3144. index = srcu_read_lock(&fs_info->subvol_srcu);
  3145. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3146. (void **)gang, root_objectid,
  3147. ARRAY_SIZE(gang));
  3148. if (!ret) {
  3149. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3150. break;
  3151. }
  3152. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3153. for (i = 0; i < ret; i++) {
  3154. /* Avoid to grab roots in dead_roots */
  3155. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3156. gang[i] = NULL;
  3157. continue;
  3158. }
  3159. /* grab all the search result for later use */
  3160. gang[i] = btrfs_grab_fs_root(gang[i]);
  3161. }
  3162. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3163. for (i = 0; i < ret; i++) {
  3164. if (!gang[i])
  3165. continue;
  3166. root_objectid = gang[i]->root_key.objectid;
  3167. err = btrfs_orphan_cleanup(gang[i]);
  3168. if (err)
  3169. break;
  3170. btrfs_put_fs_root(gang[i]);
  3171. }
  3172. root_objectid++;
  3173. }
  3174. /* release the uncleaned roots due to error */
  3175. for (; i < ret; i++) {
  3176. if (gang[i])
  3177. btrfs_put_fs_root(gang[i]);
  3178. }
  3179. return err;
  3180. }
  3181. int btrfs_commit_super(struct btrfs_root *root)
  3182. {
  3183. struct btrfs_trans_handle *trans;
  3184. mutex_lock(&root->fs_info->cleaner_mutex);
  3185. btrfs_run_delayed_iputs(root);
  3186. mutex_unlock(&root->fs_info->cleaner_mutex);
  3187. wake_up_process(root->fs_info->cleaner_kthread);
  3188. /* wait until ongoing cleanup work done */
  3189. down_write(&root->fs_info->cleanup_work_sem);
  3190. up_write(&root->fs_info->cleanup_work_sem);
  3191. trans = btrfs_join_transaction(root);
  3192. if (IS_ERR(trans))
  3193. return PTR_ERR(trans);
  3194. return btrfs_commit_transaction(trans, root);
  3195. }
  3196. void close_ctree(struct btrfs_root *root)
  3197. {
  3198. struct btrfs_fs_info *fs_info = root->fs_info;
  3199. int ret;
  3200. fs_info->closing = 1;
  3201. smp_mb();
  3202. /* wait for the uuid_scan task to finish */
  3203. down(&fs_info->uuid_tree_rescan_sem);
  3204. /* avoid complains from lockdep et al., set sem back to initial state */
  3205. up(&fs_info->uuid_tree_rescan_sem);
  3206. /* pause restriper - we want to resume on mount */
  3207. btrfs_pause_balance(fs_info);
  3208. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3209. btrfs_scrub_cancel(fs_info);
  3210. /* wait for any defraggers to finish */
  3211. wait_event(fs_info->transaction_wait,
  3212. (atomic_read(&fs_info->defrag_running) == 0));
  3213. /* clear out the rbtree of defraggable inodes */
  3214. btrfs_cleanup_defrag_inodes(fs_info);
  3215. cancel_work_sync(&fs_info->async_reclaim_work);
  3216. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3217. ret = btrfs_commit_super(root);
  3218. if (ret)
  3219. btrfs_err(fs_info, "commit super ret %d", ret);
  3220. }
  3221. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3222. btrfs_error_commit_super(root);
  3223. kthread_stop(fs_info->transaction_kthread);
  3224. kthread_stop(fs_info->cleaner_kthread);
  3225. fs_info->closing = 2;
  3226. smp_mb();
  3227. btrfs_free_qgroup_config(fs_info);
  3228. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3229. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3230. percpu_counter_sum(&fs_info->delalloc_bytes));
  3231. }
  3232. btrfs_sysfs_remove_one(fs_info);
  3233. btrfs_free_fs_roots(fs_info);
  3234. btrfs_put_block_group_cache(fs_info);
  3235. btrfs_free_block_groups(fs_info);
  3236. /*
  3237. * we must make sure there is not any read request to
  3238. * submit after we stopping all workers.
  3239. */
  3240. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3241. btrfs_stop_all_workers(fs_info);
  3242. fs_info->open = 0;
  3243. free_root_pointers(fs_info, 1);
  3244. iput(fs_info->btree_inode);
  3245. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3246. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3247. btrfsic_unmount(root, fs_info->fs_devices);
  3248. #endif
  3249. btrfs_close_devices(fs_info->fs_devices);
  3250. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3251. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3252. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3253. percpu_counter_destroy(&fs_info->bio_counter);
  3254. bdi_destroy(&fs_info->bdi);
  3255. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3256. btrfs_free_stripe_hash_table(fs_info);
  3257. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3258. root->orphan_block_rsv = NULL;
  3259. lock_chunks(root);
  3260. while (!list_empty(&fs_info->pinned_chunks)) {
  3261. struct extent_map *em;
  3262. em = list_first_entry(&fs_info->pinned_chunks,
  3263. struct extent_map, list);
  3264. list_del_init(&em->list);
  3265. free_extent_map(em);
  3266. }
  3267. unlock_chunks(root);
  3268. }
  3269. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3270. int atomic)
  3271. {
  3272. int ret;
  3273. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3274. ret = extent_buffer_uptodate(buf);
  3275. if (!ret)
  3276. return ret;
  3277. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3278. parent_transid, atomic);
  3279. if (ret == -EAGAIN)
  3280. return ret;
  3281. return !ret;
  3282. }
  3283. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3284. {
  3285. return set_extent_buffer_uptodate(buf);
  3286. }
  3287. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3288. {
  3289. struct btrfs_root *root;
  3290. u64 transid = btrfs_header_generation(buf);
  3291. int was_dirty;
  3292. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3293. /*
  3294. * This is a fast path so only do this check if we have sanity tests
  3295. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3296. * outside of the sanity tests.
  3297. */
  3298. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3299. return;
  3300. #endif
  3301. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3302. btrfs_assert_tree_locked(buf);
  3303. if (transid != root->fs_info->generation)
  3304. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3305. "found %llu running %llu\n",
  3306. buf->start, transid, root->fs_info->generation);
  3307. was_dirty = set_extent_buffer_dirty(buf);
  3308. if (!was_dirty)
  3309. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3310. buf->len,
  3311. root->fs_info->dirty_metadata_batch);
  3312. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3313. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3314. btrfs_print_leaf(root, buf);
  3315. ASSERT(0);
  3316. }
  3317. #endif
  3318. }
  3319. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3320. int flush_delayed)
  3321. {
  3322. /*
  3323. * looks as though older kernels can get into trouble with
  3324. * this code, they end up stuck in balance_dirty_pages forever
  3325. */
  3326. int ret;
  3327. if (current->flags & PF_MEMALLOC)
  3328. return;
  3329. if (flush_delayed)
  3330. btrfs_balance_delayed_items(root);
  3331. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3332. BTRFS_DIRTY_METADATA_THRESH);
  3333. if (ret > 0) {
  3334. balance_dirty_pages_ratelimited(
  3335. root->fs_info->btree_inode->i_mapping);
  3336. }
  3337. return;
  3338. }
  3339. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3340. {
  3341. __btrfs_btree_balance_dirty(root, 1);
  3342. }
  3343. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3344. {
  3345. __btrfs_btree_balance_dirty(root, 0);
  3346. }
  3347. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3348. {
  3349. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3350. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3351. }
  3352. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3353. int read_only)
  3354. {
  3355. struct btrfs_super_block *sb = fs_info->super_copy;
  3356. int ret = 0;
  3357. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3358. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3359. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3360. ret = -EINVAL;
  3361. }
  3362. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3363. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3364. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3365. ret = -EINVAL;
  3366. }
  3367. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3368. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3369. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3370. ret = -EINVAL;
  3371. }
  3372. /*
  3373. * The common minimum, we don't know if we can trust the nodesize/sectorsize
  3374. * items yet, they'll be verified later. Issue just a warning.
  3375. */
  3376. if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
  3377. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3378. btrfs_super_root(sb));
  3379. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
  3380. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3381. btrfs_super_chunk_root(sb));
  3382. if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
  3383. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3384. btrfs_super_log_root(sb));
  3385. /*
  3386. * Check the lower bound, the alignment and other constraints are
  3387. * checked later.
  3388. */
  3389. if (btrfs_super_nodesize(sb) < 4096) {
  3390. printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
  3391. btrfs_super_nodesize(sb));
  3392. ret = -EINVAL;
  3393. }
  3394. if (btrfs_super_sectorsize(sb) < 4096) {
  3395. printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
  3396. btrfs_super_sectorsize(sb));
  3397. ret = -EINVAL;
  3398. }
  3399. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3400. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3401. fs_info->fsid, sb->dev_item.fsid);
  3402. ret = -EINVAL;
  3403. }
  3404. /*
  3405. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3406. * done later
  3407. */
  3408. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3409. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3410. btrfs_super_num_devices(sb));
  3411. if (btrfs_super_num_devices(sb) == 0) {
  3412. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3413. ret = -EINVAL;
  3414. }
  3415. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3416. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3417. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3418. ret = -EINVAL;
  3419. }
  3420. /*
  3421. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3422. * and one chunk
  3423. */
  3424. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3425. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3426. btrfs_super_sys_array_size(sb),
  3427. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3428. ret = -EINVAL;
  3429. }
  3430. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3431. + sizeof(struct btrfs_chunk)) {
  3432. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3433. btrfs_super_sys_array_size(sb),
  3434. sizeof(struct btrfs_disk_key)
  3435. + sizeof(struct btrfs_chunk));
  3436. ret = -EINVAL;
  3437. }
  3438. /*
  3439. * The generation is a global counter, we'll trust it more than the others
  3440. * but it's still possible that it's the one that's wrong.
  3441. */
  3442. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3443. printk(KERN_WARNING
  3444. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3445. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3446. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3447. && btrfs_super_cache_generation(sb) != (u64)-1)
  3448. printk(KERN_WARNING
  3449. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3450. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3451. return ret;
  3452. }
  3453. static void btrfs_error_commit_super(struct btrfs_root *root)
  3454. {
  3455. mutex_lock(&root->fs_info->cleaner_mutex);
  3456. btrfs_run_delayed_iputs(root);
  3457. mutex_unlock(&root->fs_info->cleaner_mutex);
  3458. down_write(&root->fs_info->cleanup_work_sem);
  3459. up_write(&root->fs_info->cleanup_work_sem);
  3460. /* cleanup FS via transaction */
  3461. btrfs_cleanup_transaction(root);
  3462. }
  3463. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3464. {
  3465. struct btrfs_ordered_extent *ordered;
  3466. spin_lock(&root->ordered_extent_lock);
  3467. /*
  3468. * This will just short circuit the ordered completion stuff which will
  3469. * make sure the ordered extent gets properly cleaned up.
  3470. */
  3471. list_for_each_entry(ordered, &root->ordered_extents,
  3472. root_extent_list)
  3473. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3474. spin_unlock(&root->ordered_extent_lock);
  3475. }
  3476. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3477. {
  3478. struct btrfs_root *root;
  3479. struct list_head splice;
  3480. INIT_LIST_HEAD(&splice);
  3481. spin_lock(&fs_info->ordered_root_lock);
  3482. list_splice_init(&fs_info->ordered_roots, &splice);
  3483. while (!list_empty(&splice)) {
  3484. root = list_first_entry(&splice, struct btrfs_root,
  3485. ordered_root);
  3486. list_move_tail(&root->ordered_root,
  3487. &fs_info->ordered_roots);
  3488. spin_unlock(&fs_info->ordered_root_lock);
  3489. btrfs_destroy_ordered_extents(root);
  3490. cond_resched();
  3491. spin_lock(&fs_info->ordered_root_lock);
  3492. }
  3493. spin_unlock(&fs_info->ordered_root_lock);
  3494. }
  3495. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3496. struct btrfs_root *root)
  3497. {
  3498. struct rb_node *node;
  3499. struct btrfs_delayed_ref_root *delayed_refs;
  3500. struct btrfs_delayed_ref_node *ref;
  3501. int ret = 0;
  3502. delayed_refs = &trans->delayed_refs;
  3503. spin_lock(&delayed_refs->lock);
  3504. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3505. spin_unlock(&delayed_refs->lock);
  3506. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3507. return ret;
  3508. }
  3509. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3510. struct btrfs_delayed_ref_head *head;
  3511. struct btrfs_delayed_ref_node *tmp;
  3512. bool pin_bytes = false;
  3513. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3514. href_node);
  3515. if (!mutex_trylock(&head->mutex)) {
  3516. atomic_inc(&head->node.refs);
  3517. spin_unlock(&delayed_refs->lock);
  3518. mutex_lock(&head->mutex);
  3519. mutex_unlock(&head->mutex);
  3520. btrfs_put_delayed_ref(&head->node);
  3521. spin_lock(&delayed_refs->lock);
  3522. continue;
  3523. }
  3524. spin_lock(&head->lock);
  3525. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3526. list) {
  3527. ref->in_tree = 0;
  3528. list_del(&ref->list);
  3529. atomic_dec(&delayed_refs->num_entries);
  3530. btrfs_put_delayed_ref(ref);
  3531. }
  3532. if (head->must_insert_reserved)
  3533. pin_bytes = true;
  3534. btrfs_free_delayed_extent_op(head->extent_op);
  3535. delayed_refs->num_heads--;
  3536. if (head->processing == 0)
  3537. delayed_refs->num_heads_ready--;
  3538. atomic_dec(&delayed_refs->num_entries);
  3539. head->node.in_tree = 0;
  3540. rb_erase(&head->href_node, &delayed_refs->href_root);
  3541. spin_unlock(&head->lock);
  3542. spin_unlock(&delayed_refs->lock);
  3543. mutex_unlock(&head->mutex);
  3544. if (pin_bytes)
  3545. btrfs_pin_extent(root, head->node.bytenr,
  3546. head->node.num_bytes, 1);
  3547. btrfs_put_delayed_ref(&head->node);
  3548. cond_resched();
  3549. spin_lock(&delayed_refs->lock);
  3550. }
  3551. spin_unlock(&delayed_refs->lock);
  3552. return ret;
  3553. }
  3554. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3555. {
  3556. struct btrfs_inode *btrfs_inode;
  3557. struct list_head splice;
  3558. INIT_LIST_HEAD(&splice);
  3559. spin_lock(&root->delalloc_lock);
  3560. list_splice_init(&root->delalloc_inodes, &splice);
  3561. while (!list_empty(&splice)) {
  3562. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3563. delalloc_inodes);
  3564. list_del_init(&btrfs_inode->delalloc_inodes);
  3565. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3566. &btrfs_inode->runtime_flags);
  3567. spin_unlock(&root->delalloc_lock);
  3568. btrfs_invalidate_inodes(btrfs_inode->root);
  3569. spin_lock(&root->delalloc_lock);
  3570. }
  3571. spin_unlock(&root->delalloc_lock);
  3572. }
  3573. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3574. {
  3575. struct btrfs_root *root;
  3576. struct list_head splice;
  3577. INIT_LIST_HEAD(&splice);
  3578. spin_lock(&fs_info->delalloc_root_lock);
  3579. list_splice_init(&fs_info->delalloc_roots, &splice);
  3580. while (!list_empty(&splice)) {
  3581. root = list_first_entry(&splice, struct btrfs_root,
  3582. delalloc_root);
  3583. list_del_init(&root->delalloc_root);
  3584. root = btrfs_grab_fs_root(root);
  3585. BUG_ON(!root);
  3586. spin_unlock(&fs_info->delalloc_root_lock);
  3587. btrfs_destroy_delalloc_inodes(root);
  3588. btrfs_put_fs_root(root);
  3589. spin_lock(&fs_info->delalloc_root_lock);
  3590. }
  3591. spin_unlock(&fs_info->delalloc_root_lock);
  3592. }
  3593. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3594. struct extent_io_tree *dirty_pages,
  3595. int mark)
  3596. {
  3597. int ret;
  3598. struct extent_buffer *eb;
  3599. u64 start = 0;
  3600. u64 end;
  3601. while (1) {
  3602. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3603. mark, NULL);
  3604. if (ret)
  3605. break;
  3606. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3607. while (start <= end) {
  3608. eb = btrfs_find_tree_block(root->fs_info, start);
  3609. start += root->nodesize;
  3610. if (!eb)
  3611. continue;
  3612. wait_on_extent_buffer_writeback(eb);
  3613. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3614. &eb->bflags))
  3615. clear_extent_buffer_dirty(eb);
  3616. free_extent_buffer_stale(eb);
  3617. }
  3618. }
  3619. return ret;
  3620. }
  3621. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3622. struct extent_io_tree *pinned_extents)
  3623. {
  3624. struct extent_io_tree *unpin;
  3625. u64 start;
  3626. u64 end;
  3627. int ret;
  3628. bool loop = true;
  3629. unpin = pinned_extents;
  3630. again:
  3631. while (1) {
  3632. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3633. EXTENT_DIRTY, NULL);
  3634. if (ret)
  3635. break;
  3636. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3637. btrfs_error_unpin_extent_range(root, start, end);
  3638. cond_resched();
  3639. }
  3640. if (loop) {
  3641. if (unpin == &root->fs_info->freed_extents[0])
  3642. unpin = &root->fs_info->freed_extents[1];
  3643. else
  3644. unpin = &root->fs_info->freed_extents[0];
  3645. loop = false;
  3646. goto again;
  3647. }
  3648. return 0;
  3649. }
  3650. static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
  3651. struct btrfs_fs_info *fs_info)
  3652. {
  3653. struct btrfs_ordered_extent *ordered;
  3654. spin_lock(&fs_info->trans_lock);
  3655. while (!list_empty(&cur_trans->pending_ordered)) {
  3656. ordered = list_first_entry(&cur_trans->pending_ordered,
  3657. struct btrfs_ordered_extent,
  3658. trans_list);
  3659. list_del_init(&ordered->trans_list);
  3660. spin_unlock(&fs_info->trans_lock);
  3661. btrfs_put_ordered_extent(ordered);
  3662. spin_lock(&fs_info->trans_lock);
  3663. }
  3664. spin_unlock(&fs_info->trans_lock);
  3665. }
  3666. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3667. struct btrfs_root *root)
  3668. {
  3669. btrfs_destroy_delayed_refs(cur_trans, root);
  3670. cur_trans->state = TRANS_STATE_COMMIT_START;
  3671. wake_up(&root->fs_info->transaction_blocked_wait);
  3672. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3673. wake_up(&root->fs_info->transaction_wait);
  3674. btrfs_free_pending_ordered(cur_trans, root->fs_info);
  3675. btrfs_destroy_delayed_inodes(root);
  3676. btrfs_assert_delayed_root_empty(root);
  3677. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3678. EXTENT_DIRTY);
  3679. btrfs_destroy_pinned_extent(root,
  3680. root->fs_info->pinned_extents);
  3681. cur_trans->state =TRANS_STATE_COMPLETED;
  3682. wake_up(&cur_trans->commit_wait);
  3683. /*
  3684. memset(cur_trans, 0, sizeof(*cur_trans));
  3685. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3686. */
  3687. }
  3688. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3689. {
  3690. struct btrfs_transaction *t;
  3691. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3692. spin_lock(&root->fs_info->trans_lock);
  3693. while (!list_empty(&root->fs_info->trans_list)) {
  3694. t = list_first_entry(&root->fs_info->trans_list,
  3695. struct btrfs_transaction, list);
  3696. if (t->state >= TRANS_STATE_COMMIT_START) {
  3697. atomic_inc(&t->use_count);
  3698. spin_unlock(&root->fs_info->trans_lock);
  3699. btrfs_wait_for_commit(root, t->transid);
  3700. btrfs_put_transaction(t);
  3701. spin_lock(&root->fs_info->trans_lock);
  3702. continue;
  3703. }
  3704. if (t == root->fs_info->running_transaction) {
  3705. t->state = TRANS_STATE_COMMIT_DOING;
  3706. spin_unlock(&root->fs_info->trans_lock);
  3707. /*
  3708. * We wait for 0 num_writers since we don't hold a trans
  3709. * handle open currently for this transaction.
  3710. */
  3711. wait_event(t->writer_wait,
  3712. atomic_read(&t->num_writers) == 0);
  3713. } else {
  3714. spin_unlock(&root->fs_info->trans_lock);
  3715. }
  3716. btrfs_cleanup_one_transaction(t, root);
  3717. spin_lock(&root->fs_info->trans_lock);
  3718. if (t == root->fs_info->running_transaction)
  3719. root->fs_info->running_transaction = NULL;
  3720. list_del_init(&t->list);
  3721. spin_unlock(&root->fs_info->trans_lock);
  3722. btrfs_put_transaction(t);
  3723. trace_btrfs_transaction_commit(root);
  3724. spin_lock(&root->fs_info->trans_lock);
  3725. }
  3726. spin_unlock(&root->fs_info->trans_lock);
  3727. btrfs_destroy_all_ordered_extents(root->fs_info);
  3728. btrfs_destroy_delayed_inodes(root);
  3729. btrfs_assert_delayed_root_empty(root);
  3730. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3731. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3732. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3733. return 0;
  3734. }
  3735. static const struct extent_io_ops btree_extent_io_ops = {
  3736. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3737. .readpage_io_failed_hook = btree_io_failed_hook,
  3738. .submit_bio_hook = btree_submit_bio_hook,
  3739. /* note we're sharing with inode.c for the merge bio hook */
  3740. .merge_bio_hook = btrfs_merge_bio_hook,
  3741. };