arm_arch_timer.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806
  1. /*
  2. * linux/drivers/clocksource/arm_arch_timer.c
  3. *
  4. * Copyright (C) 2011 ARM Ltd.
  5. * All Rights Reserved
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/device.h>
  14. #include <linux/smp.h>
  15. #include <linux/cpu.h>
  16. #include <linux/cpu_pm.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/clocksource.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/of_irq.h>
  21. #include <linux/of_address.h>
  22. #include <linux/io.h>
  23. #include <linux/slab.h>
  24. #include <linux/sched_clock.h>
  25. #include <asm/arch_timer.h>
  26. #include <asm/virt.h>
  27. #include <clocksource/arm_arch_timer.h>
  28. #define CNTTIDR 0x08
  29. #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
  30. #define CNTVCT_LO 0x08
  31. #define CNTVCT_HI 0x0c
  32. #define CNTFRQ 0x10
  33. #define CNTP_TVAL 0x28
  34. #define CNTP_CTL 0x2c
  35. #define CNTV_TVAL 0x38
  36. #define CNTV_CTL 0x3c
  37. #define ARCH_CP15_TIMER BIT(0)
  38. #define ARCH_MEM_TIMER BIT(1)
  39. static unsigned arch_timers_present __initdata;
  40. static void __iomem *arch_counter_base;
  41. struct arch_timer {
  42. void __iomem *base;
  43. struct clock_event_device evt;
  44. };
  45. #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  46. static u32 arch_timer_rate;
  47. enum ppi_nr {
  48. PHYS_SECURE_PPI,
  49. PHYS_NONSECURE_PPI,
  50. VIRT_PPI,
  51. HYP_PPI,
  52. MAX_TIMER_PPI
  53. };
  54. static int arch_timer_ppi[MAX_TIMER_PPI];
  55. static struct clock_event_device __percpu *arch_timer_evt;
  56. static bool arch_timer_use_virtual = true;
  57. static bool arch_timer_c3stop;
  58. static bool arch_timer_mem_use_virtual;
  59. /*
  60. * Architected system timer support.
  61. */
  62. static __always_inline
  63. void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  64. struct clock_event_device *clk)
  65. {
  66. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  67. struct arch_timer *timer = to_arch_timer(clk);
  68. switch (reg) {
  69. case ARCH_TIMER_REG_CTRL:
  70. writel_relaxed(val, timer->base + CNTP_CTL);
  71. break;
  72. case ARCH_TIMER_REG_TVAL:
  73. writel_relaxed(val, timer->base + CNTP_TVAL);
  74. break;
  75. }
  76. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  77. struct arch_timer *timer = to_arch_timer(clk);
  78. switch (reg) {
  79. case ARCH_TIMER_REG_CTRL:
  80. writel_relaxed(val, timer->base + CNTV_CTL);
  81. break;
  82. case ARCH_TIMER_REG_TVAL:
  83. writel_relaxed(val, timer->base + CNTV_TVAL);
  84. break;
  85. }
  86. } else {
  87. arch_timer_reg_write_cp15(access, reg, val);
  88. }
  89. }
  90. static __always_inline
  91. u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
  92. struct clock_event_device *clk)
  93. {
  94. u32 val;
  95. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  96. struct arch_timer *timer = to_arch_timer(clk);
  97. switch (reg) {
  98. case ARCH_TIMER_REG_CTRL:
  99. val = readl_relaxed(timer->base + CNTP_CTL);
  100. break;
  101. case ARCH_TIMER_REG_TVAL:
  102. val = readl_relaxed(timer->base + CNTP_TVAL);
  103. break;
  104. }
  105. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  106. struct arch_timer *timer = to_arch_timer(clk);
  107. switch (reg) {
  108. case ARCH_TIMER_REG_CTRL:
  109. val = readl_relaxed(timer->base + CNTV_CTL);
  110. break;
  111. case ARCH_TIMER_REG_TVAL:
  112. val = readl_relaxed(timer->base + CNTV_TVAL);
  113. break;
  114. }
  115. } else {
  116. val = arch_timer_reg_read_cp15(access, reg);
  117. }
  118. return val;
  119. }
  120. static __always_inline irqreturn_t timer_handler(const int access,
  121. struct clock_event_device *evt)
  122. {
  123. unsigned long ctrl;
  124. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
  125. if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
  126. ctrl |= ARCH_TIMER_CTRL_IT_MASK;
  127. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
  128. evt->event_handler(evt);
  129. return IRQ_HANDLED;
  130. }
  131. return IRQ_NONE;
  132. }
  133. static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
  134. {
  135. struct clock_event_device *evt = dev_id;
  136. return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
  137. }
  138. static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
  139. {
  140. struct clock_event_device *evt = dev_id;
  141. return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
  142. }
  143. static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
  144. {
  145. struct clock_event_device *evt = dev_id;
  146. return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
  147. }
  148. static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
  149. {
  150. struct clock_event_device *evt = dev_id;
  151. return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
  152. }
  153. static __always_inline void timer_set_mode(const int access, int mode,
  154. struct clock_event_device *clk)
  155. {
  156. unsigned long ctrl;
  157. switch (mode) {
  158. case CLOCK_EVT_MODE_UNUSED:
  159. case CLOCK_EVT_MODE_SHUTDOWN:
  160. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  161. ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
  162. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  163. break;
  164. default:
  165. break;
  166. }
  167. }
  168. static void arch_timer_set_mode_virt(enum clock_event_mode mode,
  169. struct clock_event_device *clk)
  170. {
  171. timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
  172. }
  173. static void arch_timer_set_mode_phys(enum clock_event_mode mode,
  174. struct clock_event_device *clk)
  175. {
  176. timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
  177. }
  178. static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
  179. struct clock_event_device *clk)
  180. {
  181. timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
  182. }
  183. static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
  184. struct clock_event_device *clk)
  185. {
  186. timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
  187. }
  188. static __always_inline void set_next_event(const int access, unsigned long evt,
  189. struct clock_event_device *clk)
  190. {
  191. unsigned long ctrl;
  192. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  193. ctrl |= ARCH_TIMER_CTRL_ENABLE;
  194. ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
  195. arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
  196. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  197. }
  198. static int arch_timer_set_next_event_virt(unsigned long evt,
  199. struct clock_event_device *clk)
  200. {
  201. set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
  202. return 0;
  203. }
  204. static int arch_timer_set_next_event_phys(unsigned long evt,
  205. struct clock_event_device *clk)
  206. {
  207. set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
  208. return 0;
  209. }
  210. static int arch_timer_set_next_event_virt_mem(unsigned long evt,
  211. struct clock_event_device *clk)
  212. {
  213. set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
  214. return 0;
  215. }
  216. static int arch_timer_set_next_event_phys_mem(unsigned long evt,
  217. struct clock_event_device *clk)
  218. {
  219. set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
  220. return 0;
  221. }
  222. static void __arch_timer_setup(unsigned type,
  223. struct clock_event_device *clk)
  224. {
  225. clk->features = CLOCK_EVT_FEAT_ONESHOT;
  226. if (type == ARCH_CP15_TIMER) {
  227. if (arch_timer_c3stop)
  228. clk->features |= CLOCK_EVT_FEAT_C3STOP;
  229. clk->name = "arch_sys_timer";
  230. clk->rating = 450;
  231. clk->cpumask = cpumask_of(smp_processor_id());
  232. if (arch_timer_use_virtual) {
  233. clk->irq = arch_timer_ppi[VIRT_PPI];
  234. clk->set_mode = arch_timer_set_mode_virt;
  235. clk->set_next_event = arch_timer_set_next_event_virt;
  236. } else {
  237. clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
  238. clk->set_mode = arch_timer_set_mode_phys;
  239. clk->set_next_event = arch_timer_set_next_event_phys;
  240. }
  241. } else {
  242. clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
  243. clk->name = "arch_mem_timer";
  244. clk->rating = 400;
  245. clk->cpumask = cpu_all_mask;
  246. if (arch_timer_mem_use_virtual) {
  247. clk->set_mode = arch_timer_set_mode_virt_mem;
  248. clk->set_next_event =
  249. arch_timer_set_next_event_virt_mem;
  250. } else {
  251. clk->set_mode = arch_timer_set_mode_phys_mem;
  252. clk->set_next_event =
  253. arch_timer_set_next_event_phys_mem;
  254. }
  255. }
  256. clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
  257. clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
  258. }
  259. static void arch_timer_evtstrm_enable(int divider)
  260. {
  261. u32 cntkctl = arch_timer_get_cntkctl();
  262. cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
  263. /* Set the divider and enable virtual event stream */
  264. cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
  265. | ARCH_TIMER_VIRT_EVT_EN;
  266. arch_timer_set_cntkctl(cntkctl);
  267. elf_hwcap |= HWCAP_EVTSTRM;
  268. #ifdef CONFIG_COMPAT
  269. compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
  270. #endif
  271. }
  272. static void arch_timer_configure_evtstream(void)
  273. {
  274. int evt_stream_div, pos;
  275. /* Find the closest power of two to the divisor */
  276. evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
  277. pos = fls(evt_stream_div);
  278. if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
  279. pos--;
  280. /* enable event stream */
  281. arch_timer_evtstrm_enable(min(pos, 15));
  282. }
  283. static void arch_counter_set_user_access(void)
  284. {
  285. u32 cntkctl = arch_timer_get_cntkctl();
  286. /* Disable user access to the timers and the physical counter */
  287. /* Also disable virtual event stream */
  288. cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
  289. | ARCH_TIMER_USR_VT_ACCESS_EN
  290. | ARCH_TIMER_VIRT_EVT_EN
  291. | ARCH_TIMER_USR_PCT_ACCESS_EN);
  292. /* Enable user access to the virtual counter */
  293. cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
  294. arch_timer_set_cntkctl(cntkctl);
  295. }
  296. static int arch_timer_setup(struct clock_event_device *clk)
  297. {
  298. __arch_timer_setup(ARCH_CP15_TIMER, clk);
  299. if (arch_timer_use_virtual)
  300. enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
  301. else {
  302. enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
  303. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  304. enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
  305. }
  306. arch_counter_set_user_access();
  307. if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
  308. arch_timer_configure_evtstream();
  309. return 0;
  310. }
  311. static void
  312. arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
  313. {
  314. /* Who has more than one independent system counter? */
  315. if (arch_timer_rate)
  316. return;
  317. /* Try to determine the frequency from the device tree or CNTFRQ */
  318. if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
  319. if (cntbase)
  320. arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
  321. else
  322. arch_timer_rate = arch_timer_get_cntfrq();
  323. }
  324. /* Check the timer frequency. */
  325. if (arch_timer_rate == 0)
  326. pr_warn("Architected timer frequency not available\n");
  327. }
  328. static void arch_timer_banner(unsigned type)
  329. {
  330. pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
  331. type & ARCH_CP15_TIMER ? "cp15" : "",
  332. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
  333. type & ARCH_MEM_TIMER ? "mmio" : "",
  334. (unsigned long)arch_timer_rate / 1000000,
  335. (unsigned long)(arch_timer_rate / 10000) % 100,
  336. type & ARCH_CP15_TIMER ?
  337. arch_timer_use_virtual ? "virt" : "phys" :
  338. "",
  339. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
  340. type & ARCH_MEM_TIMER ?
  341. arch_timer_mem_use_virtual ? "virt" : "phys" :
  342. "");
  343. }
  344. u32 arch_timer_get_rate(void)
  345. {
  346. return arch_timer_rate;
  347. }
  348. static u64 arch_counter_get_cntvct_mem(void)
  349. {
  350. u32 vct_lo, vct_hi, tmp_hi;
  351. do {
  352. vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  353. vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
  354. tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  355. } while (vct_hi != tmp_hi);
  356. return ((u64) vct_hi << 32) | vct_lo;
  357. }
  358. /*
  359. * Default to cp15 based access because arm64 uses this function for
  360. * sched_clock() before DT is probed and the cp15 method is guaranteed
  361. * to exist on arm64. arm doesn't use this before DT is probed so even
  362. * if we don't have the cp15 accessors we won't have a problem.
  363. */
  364. u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
  365. static cycle_t arch_counter_read(struct clocksource *cs)
  366. {
  367. return arch_timer_read_counter();
  368. }
  369. static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
  370. {
  371. return arch_timer_read_counter();
  372. }
  373. static struct clocksource clocksource_counter = {
  374. .name = "arch_sys_counter",
  375. .rating = 400,
  376. .read = arch_counter_read,
  377. .mask = CLOCKSOURCE_MASK(56),
  378. .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
  379. };
  380. static struct cyclecounter cyclecounter = {
  381. .read = arch_counter_read_cc,
  382. .mask = CLOCKSOURCE_MASK(56),
  383. };
  384. static struct timecounter timecounter;
  385. struct timecounter *arch_timer_get_timecounter(void)
  386. {
  387. return &timecounter;
  388. }
  389. static void __init arch_counter_register(unsigned type)
  390. {
  391. u64 start_count;
  392. /* Register the CP15 based counter if we have one */
  393. if (type & ARCH_CP15_TIMER) {
  394. if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
  395. arch_timer_read_counter = arch_counter_get_cntvct;
  396. else
  397. arch_timer_read_counter = arch_counter_get_cntpct;
  398. } else {
  399. arch_timer_read_counter = arch_counter_get_cntvct_mem;
  400. /* If the clocksource name is "arch_sys_counter" the
  401. * VDSO will attempt to read the CP15-based counter.
  402. * Ensure this does not happen when CP15-based
  403. * counter is not available.
  404. */
  405. clocksource_counter.name = "arch_mem_counter";
  406. }
  407. start_count = arch_timer_read_counter();
  408. clocksource_register_hz(&clocksource_counter, arch_timer_rate);
  409. cyclecounter.mult = clocksource_counter.mult;
  410. cyclecounter.shift = clocksource_counter.shift;
  411. timecounter_init(&timecounter, &cyclecounter, start_count);
  412. /* 56 bits minimum, so we assume worst case rollover */
  413. sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
  414. }
  415. static void arch_timer_stop(struct clock_event_device *clk)
  416. {
  417. pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
  418. clk->irq, smp_processor_id());
  419. if (arch_timer_use_virtual)
  420. disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
  421. else {
  422. disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
  423. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  424. disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
  425. }
  426. clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
  427. }
  428. static int arch_timer_cpu_notify(struct notifier_block *self,
  429. unsigned long action, void *hcpu)
  430. {
  431. /*
  432. * Grab cpu pointer in each case to avoid spurious
  433. * preemptible warnings
  434. */
  435. switch (action & ~CPU_TASKS_FROZEN) {
  436. case CPU_STARTING:
  437. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  438. break;
  439. case CPU_DYING:
  440. arch_timer_stop(this_cpu_ptr(arch_timer_evt));
  441. break;
  442. }
  443. return NOTIFY_OK;
  444. }
  445. static struct notifier_block arch_timer_cpu_nb = {
  446. .notifier_call = arch_timer_cpu_notify,
  447. };
  448. #ifdef CONFIG_CPU_PM
  449. static unsigned int saved_cntkctl;
  450. static int arch_timer_cpu_pm_notify(struct notifier_block *self,
  451. unsigned long action, void *hcpu)
  452. {
  453. if (action == CPU_PM_ENTER)
  454. saved_cntkctl = arch_timer_get_cntkctl();
  455. else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
  456. arch_timer_set_cntkctl(saved_cntkctl);
  457. return NOTIFY_OK;
  458. }
  459. static struct notifier_block arch_timer_cpu_pm_notifier = {
  460. .notifier_call = arch_timer_cpu_pm_notify,
  461. };
  462. static int __init arch_timer_cpu_pm_init(void)
  463. {
  464. return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
  465. }
  466. #else
  467. static int __init arch_timer_cpu_pm_init(void)
  468. {
  469. return 0;
  470. }
  471. #endif
  472. static int __init arch_timer_register(void)
  473. {
  474. int err;
  475. int ppi;
  476. arch_timer_evt = alloc_percpu(struct clock_event_device);
  477. if (!arch_timer_evt) {
  478. err = -ENOMEM;
  479. goto out;
  480. }
  481. if (arch_timer_use_virtual) {
  482. ppi = arch_timer_ppi[VIRT_PPI];
  483. err = request_percpu_irq(ppi, arch_timer_handler_virt,
  484. "arch_timer", arch_timer_evt);
  485. } else {
  486. ppi = arch_timer_ppi[PHYS_SECURE_PPI];
  487. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  488. "arch_timer", arch_timer_evt);
  489. if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  490. ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
  491. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  492. "arch_timer", arch_timer_evt);
  493. if (err)
  494. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  495. arch_timer_evt);
  496. }
  497. }
  498. if (err) {
  499. pr_err("arch_timer: can't register interrupt %d (%d)\n",
  500. ppi, err);
  501. goto out_free;
  502. }
  503. err = register_cpu_notifier(&arch_timer_cpu_nb);
  504. if (err)
  505. goto out_free_irq;
  506. err = arch_timer_cpu_pm_init();
  507. if (err)
  508. goto out_unreg_notify;
  509. /* Immediately configure the timer on the boot CPU */
  510. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  511. return 0;
  512. out_unreg_notify:
  513. unregister_cpu_notifier(&arch_timer_cpu_nb);
  514. out_free_irq:
  515. if (arch_timer_use_virtual)
  516. free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
  517. else {
  518. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  519. arch_timer_evt);
  520. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  521. free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
  522. arch_timer_evt);
  523. }
  524. out_free:
  525. free_percpu(arch_timer_evt);
  526. out:
  527. return err;
  528. }
  529. static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
  530. {
  531. int ret;
  532. irq_handler_t func;
  533. struct arch_timer *t;
  534. t = kzalloc(sizeof(*t), GFP_KERNEL);
  535. if (!t)
  536. return -ENOMEM;
  537. t->base = base;
  538. t->evt.irq = irq;
  539. __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
  540. if (arch_timer_mem_use_virtual)
  541. func = arch_timer_handler_virt_mem;
  542. else
  543. func = arch_timer_handler_phys_mem;
  544. ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
  545. if (ret) {
  546. pr_err("arch_timer: Failed to request mem timer irq\n");
  547. kfree(t);
  548. }
  549. return ret;
  550. }
  551. static const struct of_device_id arch_timer_of_match[] __initconst = {
  552. { .compatible = "arm,armv7-timer", },
  553. { .compatible = "arm,armv8-timer", },
  554. {},
  555. };
  556. static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
  557. { .compatible = "arm,armv7-timer-mem", },
  558. {},
  559. };
  560. static bool __init
  561. arch_timer_probed(int type, const struct of_device_id *matches)
  562. {
  563. struct device_node *dn;
  564. bool probed = true;
  565. dn = of_find_matching_node(NULL, matches);
  566. if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
  567. probed = false;
  568. of_node_put(dn);
  569. return probed;
  570. }
  571. static void __init arch_timer_common_init(void)
  572. {
  573. unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
  574. /* Wait until both nodes are probed if we have two timers */
  575. if ((arch_timers_present & mask) != mask) {
  576. if (!arch_timer_probed(ARCH_MEM_TIMER, arch_timer_mem_of_match))
  577. return;
  578. if (!arch_timer_probed(ARCH_CP15_TIMER, arch_timer_of_match))
  579. return;
  580. }
  581. arch_timer_banner(arch_timers_present);
  582. arch_counter_register(arch_timers_present);
  583. arch_timer_arch_init();
  584. }
  585. static void __init arch_timer_init(struct device_node *np)
  586. {
  587. int i;
  588. if (arch_timers_present & ARCH_CP15_TIMER) {
  589. pr_warn("arch_timer: multiple nodes in dt, skipping\n");
  590. return;
  591. }
  592. arch_timers_present |= ARCH_CP15_TIMER;
  593. for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
  594. arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
  595. arch_timer_detect_rate(NULL, np);
  596. /*
  597. * If we cannot rely on firmware initializing the timer registers then
  598. * we should use the physical timers instead.
  599. */
  600. if (IS_ENABLED(CONFIG_ARM) &&
  601. of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
  602. arch_timer_use_virtual = false;
  603. /*
  604. * If HYP mode is available, we know that the physical timer
  605. * has been configured to be accessible from PL1. Use it, so
  606. * that a guest can use the virtual timer instead.
  607. *
  608. * If no interrupt provided for virtual timer, we'll have to
  609. * stick to the physical timer. It'd better be accessible...
  610. */
  611. if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
  612. arch_timer_use_virtual = false;
  613. if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
  614. !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  615. pr_warn("arch_timer: No interrupt available, giving up\n");
  616. return;
  617. }
  618. }
  619. arch_timer_c3stop = !of_property_read_bool(np, "always-on");
  620. arch_timer_register();
  621. arch_timer_common_init();
  622. }
  623. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
  624. CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
  625. static void __init arch_timer_mem_init(struct device_node *np)
  626. {
  627. struct device_node *frame, *best_frame = NULL;
  628. void __iomem *cntctlbase, *base;
  629. unsigned int irq;
  630. u32 cnttidr;
  631. arch_timers_present |= ARCH_MEM_TIMER;
  632. cntctlbase = of_iomap(np, 0);
  633. if (!cntctlbase) {
  634. pr_err("arch_timer: Can't find CNTCTLBase\n");
  635. return;
  636. }
  637. cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
  638. iounmap(cntctlbase);
  639. /*
  640. * Try to find a virtual capable frame. Otherwise fall back to a
  641. * physical capable frame.
  642. */
  643. for_each_available_child_of_node(np, frame) {
  644. int n;
  645. if (of_property_read_u32(frame, "frame-number", &n)) {
  646. pr_err("arch_timer: Missing frame-number\n");
  647. of_node_put(best_frame);
  648. of_node_put(frame);
  649. return;
  650. }
  651. if (cnttidr & CNTTIDR_VIRT(n)) {
  652. of_node_put(best_frame);
  653. best_frame = frame;
  654. arch_timer_mem_use_virtual = true;
  655. break;
  656. }
  657. of_node_put(best_frame);
  658. best_frame = of_node_get(frame);
  659. }
  660. base = arch_counter_base = of_iomap(best_frame, 0);
  661. if (!base) {
  662. pr_err("arch_timer: Can't map frame's registers\n");
  663. of_node_put(best_frame);
  664. return;
  665. }
  666. if (arch_timer_mem_use_virtual)
  667. irq = irq_of_parse_and_map(best_frame, 1);
  668. else
  669. irq = irq_of_parse_and_map(best_frame, 0);
  670. of_node_put(best_frame);
  671. if (!irq) {
  672. pr_err("arch_timer: Frame missing %s irq",
  673. arch_timer_mem_use_virtual ? "virt" : "phys");
  674. return;
  675. }
  676. arch_timer_detect_rate(base, np);
  677. arch_timer_mem_register(base, irq);
  678. arch_timer_common_init();
  679. }
  680. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
  681. arch_timer_mem_init);