intel_ringbuffer.c 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. int __intel_ring_space(int head, int tail, int size)
  36. {
  37. int space = head - tail;
  38. if (space <= 0)
  39. space += size;
  40. return space - I915_RING_FREE_SPACE;
  41. }
  42. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  43. {
  44. if (ringbuf->last_retired_head != -1) {
  45. ringbuf->head = ringbuf->last_retired_head;
  46. ringbuf->last_retired_head = -1;
  47. }
  48. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  49. ringbuf->tail, ringbuf->size);
  50. }
  51. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  52. {
  53. intel_ring_update_space(ringbuf);
  54. return ringbuf->space;
  55. }
  56. bool intel_ring_stopped(struct intel_engine_cs *ring)
  57. {
  58. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  59. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  60. }
  61. static void __intel_ring_advance(struct intel_engine_cs *ring)
  62. {
  63. struct intel_ringbuffer *ringbuf = ring->buffer;
  64. ringbuf->tail &= ringbuf->size - 1;
  65. if (intel_ring_stopped(ring))
  66. return;
  67. ring->write_tail(ring, ringbuf->tail);
  68. }
  69. static int
  70. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  71. u32 invalidate_domains,
  72. u32 flush_domains)
  73. {
  74. struct intel_engine_cs *ring = req->ring;
  75. u32 cmd;
  76. int ret;
  77. cmd = MI_FLUSH;
  78. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  79. cmd |= MI_NO_WRITE_FLUSH;
  80. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  81. cmd |= MI_READ_FLUSH;
  82. ret = intel_ring_begin(req, 2);
  83. if (ret)
  84. return ret;
  85. intel_ring_emit(ring, cmd);
  86. intel_ring_emit(ring, MI_NOOP);
  87. intel_ring_advance(ring);
  88. return 0;
  89. }
  90. static int
  91. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  92. u32 invalidate_domains,
  93. u32 flush_domains)
  94. {
  95. struct intel_engine_cs *ring = req->ring;
  96. struct drm_device *dev = ring->dev;
  97. u32 cmd;
  98. int ret;
  99. /*
  100. * read/write caches:
  101. *
  102. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  103. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  104. * also flushed at 2d versus 3d pipeline switches.
  105. *
  106. * read-only caches:
  107. *
  108. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  109. * MI_READ_FLUSH is set, and is always flushed on 965.
  110. *
  111. * I915_GEM_DOMAIN_COMMAND may not exist?
  112. *
  113. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  114. * invalidated when MI_EXE_FLUSH is set.
  115. *
  116. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  117. * invalidated with every MI_FLUSH.
  118. *
  119. * TLBs:
  120. *
  121. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  122. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  123. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  124. * are flushed at any MI_FLUSH.
  125. */
  126. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  127. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  128. cmd &= ~MI_NO_WRITE_FLUSH;
  129. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  130. cmd |= MI_EXE_FLUSH;
  131. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  132. (IS_G4X(dev) || IS_GEN5(dev)))
  133. cmd |= MI_INVALIDATE_ISP;
  134. ret = intel_ring_begin(req, 2);
  135. if (ret)
  136. return ret;
  137. intel_ring_emit(ring, cmd);
  138. intel_ring_emit(ring, MI_NOOP);
  139. intel_ring_advance(ring);
  140. return 0;
  141. }
  142. /**
  143. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  144. * implementing two workarounds on gen6. From section 1.4.7.1
  145. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  146. *
  147. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  148. * produced by non-pipelined state commands), software needs to first
  149. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  150. * 0.
  151. *
  152. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  153. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  154. *
  155. * And the workaround for these two requires this workaround first:
  156. *
  157. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  158. * BEFORE the pipe-control with a post-sync op and no write-cache
  159. * flushes.
  160. *
  161. * And this last workaround is tricky because of the requirements on
  162. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  163. * volume 2 part 1:
  164. *
  165. * "1 of the following must also be set:
  166. * - Render Target Cache Flush Enable ([12] of DW1)
  167. * - Depth Cache Flush Enable ([0] of DW1)
  168. * - Stall at Pixel Scoreboard ([1] of DW1)
  169. * - Depth Stall ([13] of DW1)
  170. * - Post-Sync Operation ([13] of DW1)
  171. * - Notify Enable ([8] of DW1)"
  172. *
  173. * The cache flushes require the workaround flush that triggered this
  174. * one, so we can't use it. Depth stall would trigger the same.
  175. * Post-sync nonzero is what triggered this second workaround, so we
  176. * can't use that one either. Notify enable is IRQs, which aren't
  177. * really our business. That leaves only stall at scoreboard.
  178. */
  179. static int
  180. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  181. {
  182. struct intel_engine_cs *ring = req->ring;
  183. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  184. int ret;
  185. ret = intel_ring_begin(req, 6);
  186. if (ret)
  187. return ret;
  188. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  189. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  190. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  191. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  192. intel_ring_emit(ring, 0); /* low dword */
  193. intel_ring_emit(ring, 0); /* high dword */
  194. intel_ring_emit(ring, MI_NOOP);
  195. intel_ring_advance(ring);
  196. ret = intel_ring_begin(req, 6);
  197. if (ret)
  198. return ret;
  199. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  200. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  201. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  202. intel_ring_emit(ring, 0);
  203. intel_ring_emit(ring, 0);
  204. intel_ring_emit(ring, MI_NOOP);
  205. intel_ring_advance(ring);
  206. return 0;
  207. }
  208. static int
  209. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  210. u32 invalidate_domains, u32 flush_domains)
  211. {
  212. struct intel_engine_cs *ring = req->ring;
  213. u32 flags = 0;
  214. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  215. int ret;
  216. /* Force SNB workarounds for PIPE_CONTROL flushes */
  217. ret = intel_emit_post_sync_nonzero_flush(req);
  218. if (ret)
  219. return ret;
  220. /* Just flush everything. Experiments have shown that reducing the
  221. * number of bits based on the write domains has little performance
  222. * impact.
  223. */
  224. if (flush_domains) {
  225. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  226. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  227. /*
  228. * Ensure that any following seqno writes only happen
  229. * when the render cache is indeed flushed.
  230. */
  231. flags |= PIPE_CONTROL_CS_STALL;
  232. }
  233. if (invalidate_domains) {
  234. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  235. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  239. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  240. /*
  241. * TLB invalidate requires a post-sync write.
  242. */
  243. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  244. }
  245. ret = intel_ring_begin(req, 4);
  246. if (ret)
  247. return ret;
  248. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  249. intel_ring_emit(ring, flags);
  250. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  251. intel_ring_emit(ring, 0);
  252. intel_ring_advance(ring);
  253. return 0;
  254. }
  255. static int
  256. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  257. {
  258. struct intel_engine_cs *ring = req->ring;
  259. int ret;
  260. ret = intel_ring_begin(req, 4);
  261. if (ret)
  262. return ret;
  263. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  264. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  265. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  266. intel_ring_emit(ring, 0);
  267. intel_ring_emit(ring, 0);
  268. intel_ring_advance(ring);
  269. return 0;
  270. }
  271. static int
  272. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  273. u32 invalidate_domains, u32 flush_domains)
  274. {
  275. struct intel_engine_cs *ring = req->ring;
  276. u32 flags = 0;
  277. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  278. int ret;
  279. /*
  280. * Ensure that any following seqno writes only happen when the render
  281. * cache is indeed flushed.
  282. *
  283. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  284. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  285. * don't try to be clever and just set it unconditionally.
  286. */
  287. flags |= PIPE_CONTROL_CS_STALL;
  288. /* Just flush everything. Experiments have shown that reducing the
  289. * number of bits based on the write domains has little performance
  290. * impact.
  291. */
  292. if (flush_domains) {
  293. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  294. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  295. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  296. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  297. }
  298. if (invalidate_domains) {
  299. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  300. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  301. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  304. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  305. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  306. /*
  307. * TLB invalidate requires a post-sync write.
  308. */
  309. flags |= PIPE_CONTROL_QW_WRITE;
  310. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  311. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  312. /* Workaround: we must issue a pipe_control with CS-stall bit
  313. * set before a pipe_control command that has the state cache
  314. * invalidate bit set. */
  315. gen7_render_ring_cs_stall_wa(req);
  316. }
  317. ret = intel_ring_begin(req, 4);
  318. if (ret)
  319. return ret;
  320. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  321. intel_ring_emit(ring, flags);
  322. intel_ring_emit(ring, scratch_addr);
  323. intel_ring_emit(ring, 0);
  324. intel_ring_advance(ring);
  325. return 0;
  326. }
  327. static int
  328. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  329. u32 flags, u32 scratch_addr)
  330. {
  331. struct intel_engine_cs *ring = req->ring;
  332. int ret;
  333. ret = intel_ring_begin(req, 6);
  334. if (ret)
  335. return ret;
  336. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  337. intel_ring_emit(ring, flags);
  338. intel_ring_emit(ring, scratch_addr);
  339. intel_ring_emit(ring, 0);
  340. intel_ring_emit(ring, 0);
  341. intel_ring_emit(ring, 0);
  342. intel_ring_advance(ring);
  343. return 0;
  344. }
  345. static int
  346. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  347. u32 invalidate_domains, u32 flush_domains)
  348. {
  349. u32 flags = 0;
  350. u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  351. int ret;
  352. flags |= PIPE_CONTROL_CS_STALL;
  353. if (flush_domains) {
  354. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  355. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  356. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  357. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  358. }
  359. if (invalidate_domains) {
  360. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  361. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  362. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  365. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  366. flags |= PIPE_CONTROL_QW_WRITE;
  367. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  368. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  369. ret = gen8_emit_pipe_control(req,
  370. PIPE_CONTROL_CS_STALL |
  371. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  372. 0);
  373. if (ret)
  374. return ret;
  375. }
  376. return gen8_emit_pipe_control(req, flags, scratch_addr);
  377. }
  378. static void ring_write_tail(struct intel_engine_cs *ring,
  379. u32 value)
  380. {
  381. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  382. I915_WRITE_TAIL(ring, value);
  383. }
  384. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  385. {
  386. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  387. u64 acthd;
  388. if (INTEL_INFO(ring->dev)->gen >= 8)
  389. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  390. RING_ACTHD_UDW(ring->mmio_base));
  391. else if (INTEL_INFO(ring->dev)->gen >= 4)
  392. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  393. else
  394. acthd = I915_READ(ACTHD);
  395. return acthd;
  396. }
  397. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  398. {
  399. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  400. u32 addr;
  401. addr = dev_priv->status_page_dmah->busaddr;
  402. if (INTEL_INFO(ring->dev)->gen >= 4)
  403. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  404. I915_WRITE(HWS_PGA, addr);
  405. }
  406. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  407. {
  408. struct drm_device *dev = ring->dev;
  409. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  410. i915_reg_t mmio;
  411. /* The ring status page addresses are no longer next to the rest of
  412. * the ring registers as of gen7.
  413. */
  414. if (IS_GEN7(dev)) {
  415. switch (ring->id) {
  416. case RCS:
  417. mmio = RENDER_HWS_PGA_GEN7;
  418. break;
  419. case BCS:
  420. mmio = BLT_HWS_PGA_GEN7;
  421. break;
  422. /*
  423. * VCS2 actually doesn't exist on Gen7. Only shut up
  424. * gcc switch check warning
  425. */
  426. case VCS2:
  427. case VCS:
  428. mmio = BSD_HWS_PGA_GEN7;
  429. break;
  430. case VECS:
  431. mmio = VEBOX_HWS_PGA_GEN7;
  432. break;
  433. }
  434. } else if (IS_GEN6(ring->dev)) {
  435. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  436. } else {
  437. /* XXX: gen8 returns to sanity */
  438. mmio = RING_HWS_PGA(ring->mmio_base);
  439. }
  440. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  441. POSTING_READ(mmio);
  442. /*
  443. * Flush the TLB for this page
  444. *
  445. * FIXME: These two bits have disappeared on gen8, so a question
  446. * arises: do we still need this and if so how should we go about
  447. * invalidating the TLB?
  448. */
  449. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  450. i915_reg_t reg = RING_INSTPM(ring->mmio_base);
  451. /* ring should be idle before issuing a sync flush*/
  452. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  453. I915_WRITE(reg,
  454. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  455. INSTPM_SYNC_FLUSH));
  456. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  457. 1000))
  458. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  459. ring->name);
  460. }
  461. }
  462. static bool stop_ring(struct intel_engine_cs *ring)
  463. {
  464. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  465. if (!IS_GEN2(ring->dev)) {
  466. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  467. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  468. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  469. /* Sometimes we observe that the idle flag is not
  470. * set even though the ring is empty. So double
  471. * check before giving up.
  472. */
  473. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  474. return false;
  475. }
  476. }
  477. I915_WRITE_CTL(ring, 0);
  478. I915_WRITE_HEAD(ring, 0);
  479. ring->write_tail(ring, 0);
  480. if (!IS_GEN2(ring->dev)) {
  481. (void)I915_READ_CTL(ring);
  482. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  483. }
  484. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  485. }
  486. static int init_ring_common(struct intel_engine_cs *ring)
  487. {
  488. struct drm_device *dev = ring->dev;
  489. struct drm_i915_private *dev_priv = dev->dev_private;
  490. struct intel_ringbuffer *ringbuf = ring->buffer;
  491. struct drm_i915_gem_object *obj = ringbuf->obj;
  492. int ret = 0;
  493. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  494. if (!stop_ring(ring)) {
  495. /* G45 ring initialization often fails to reset head to zero */
  496. DRM_DEBUG_KMS("%s head not reset to zero "
  497. "ctl %08x head %08x tail %08x start %08x\n",
  498. ring->name,
  499. I915_READ_CTL(ring),
  500. I915_READ_HEAD(ring),
  501. I915_READ_TAIL(ring),
  502. I915_READ_START(ring));
  503. if (!stop_ring(ring)) {
  504. DRM_ERROR("failed to set %s head to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. ring->name,
  507. I915_READ_CTL(ring),
  508. I915_READ_HEAD(ring),
  509. I915_READ_TAIL(ring),
  510. I915_READ_START(ring));
  511. ret = -EIO;
  512. goto out;
  513. }
  514. }
  515. if (I915_NEED_GFX_HWS(dev))
  516. intel_ring_setup_status_page(ring);
  517. else
  518. ring_setup_phys_status_page(ring);
  519. /* Enforce ordering by reading HEAD register back */
  520. I915_READ_HEAD(ring);
  521. /* Initialize the ring. This must happen _after_ we've cleared the ring
  522. * registers with the above sequence (the readback of the HEAD registers
  523. * also enforces ordering), otherwise the hw might lose the new ring
  524. * register values. */
  525. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  526. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  527. if (I915_READ_HEAD(ring))
  528. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  529. ring->name, I915_READ_HEAD(ring));
  530. I915_WRITE_HEAD(ring, 0);
  531. (void)I915_READ_HEAD(ring);
  532. I915_WRITE_CTL(ring,
  533. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  534. | RING_VALID);
  535. /* If the head is still not zero, the ring is dead */
  536. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  537. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  538. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  539. DRM_ERROR("%s initialization failed "
  540. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  541. ring->name,
  542. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  543. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  544. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  545. ret = -EIO;
  546. goto out;
  547. }
  548. ringbuf->last_retired_head = -1;
  549. ringbuf->head = I915_READ_HEAD(ring);
  550. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  551. intel_ring_update_space(ringbuf);
  552. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  553. out:
  554. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  555. return ret;
  556. }
  557. void
  558. intel_fini_pipe_control(struct intel_engine_cs *ring)
  559. {
  560. struct drm_device *dev = ring->dev;
  561. if (ring->scratch.obj == NULL)
  562. return;
  563. if (INTEL_INFO(dev)->gen >= 5) {
  564. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  565. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  566. }
  567. drm_gem_object_unreference(&ring->scratch.obj->base);
  568. ring->scratch.obj = NULL;
  569. }
  570. int
  571. intel_init_pipe_control(struct intel_engine_cs *ring)
  572. {
  573. int ret;
  574. WARN_ON(ring->scratch.obj);
  575. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  576. if (ring->scratch.obj == NULL) {
  577. DRM_ERROR("Failed to allocate seqno page\n");
  578. ret = -ENOMEM;
  579. goto err;
  580. }
  581. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  582. if (ret)
  583. goto err_unref;
  584. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  585. if (ret)
  586. goto err_unref;
  587. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  588. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  589. if (ring->scratch.cpu_page == NULL) {
  590. ret = -ENOMEM;
  591. goto err_unpin;
  592. }
  593. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  594. ring->name, ring->scratch.gtt_offset);
  595. return 0;
  596. err_unpin:
  597. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  598. err_unref:
  599. drm_gem_object_unreference(&ring->scratch.obj->base);
  600. err:
  601. return ret;
  602. }
  603. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  604. {
  605. int ret, i;
  606. struct intel_engine_cs *ring = req->ring;
  607. struct drm_device *dev = ring->dev;
  608. struct drm_i915_private *dev_priv = dev->dev_private;
  609. struct i915_workarounds *w = &dev_priv->workarounds;
  610. if (w->count == 0)
  611. return 0;
  612. ring->gpu_caches_dirty = true;
  613. ret = intel_ring_flush_all_caches(req);
  614. if (ret)
  615. return ret;
  616. ret = intel_ring_begin(req, (w->count * 2 + 2));
  617. if (ret)
  618. return ret;
  619. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  620. for (i = 0; i < w->count; i++) {
  621. intel_ring_emit_reg(ring, w->reg[i].addr);
  622. intel_ring_emit(ring, w->reg[i].value);
  623. }
  624. intel_ring_emit(ring, MI_NOOP);
  625. intel_ring_advance(ring);
  626. ring->gpu_caches_dirty = true;
  627. ret = intel_ring_flush_all_caches(req);
  628. if (ret)
  629. return ret;
  630. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  631. return 0;
  632. }
  633. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  634. {
  635. int ret;
  636. ret = intel_ring_workarounds_emit(req);
  637. if (ret != 0)
  638. return ret;
  639. ret = i915_gem_render_state_init(req);
  640. if (ret)
  641. DRM_ERROR("init render state: %d\n", ret);
  642. return ret;
  643. }
  644. static int wa_add(struct drm_i915_private *dev_priv,
  645. i915_reg_t addr,
  646. const u32 mask, const u32 val)
  647. {
  648. const u32 idx = dev_priv->workarounds.count;
  649. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  650. return -ENOSPC;
  651. dev_priv->workarounds.reg[idx].addr = addr;
  652. dev_priv->workarounds.reg[idx].value = val;
  653. dev_priv->workarounds.reg[idx].mask = mask;
  654. dev_priv->workarounds.count++;
  655. return 0;
  656. }
  657. #define WA_REG(addr, mask, val) do { \
  658. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  659. if (r) \
  660. return r; \
  661. } while (0)
  662. #define WA_SET_BIT_MASKED(addr, mask) \
  663. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  664. #define WA_CLR_BIT_MASKED(addr, mask) \
  665. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  666. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  667. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  668. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  669. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  670. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  671. static int gen8_init_workarounds(struct intel_engine_cs *ring)
  672. {
  673. struct drm_device *dev = ring->dev;
  674. struct drm_i915_private *dev_priv = dev->dev_private;
  675. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  676. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  677. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  678. /* WaDisablePartialInstShootdown:bdw,chv */
  679. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  680. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  681. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  682. * workaround for for a possible hang in the unlikely event a TLB
  683. * invalidation occurs during a PSD flush.
  684. */
  685. /* WaForceEnableNonCoherent:bdw,chv */
  686. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  687. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  688. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  689. HDC_FORCE_NON_COHERENT);
  690. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  691. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  692. * polygons in the same 8x4 pixel/sample area to be processed without
  693. * stalling waiting for the earlier ones to write to Hierarchical Z
  694. * buffer."
  695. *
  696. * This optimization is off by default for BDW and CHV; turn it on.
  697. */
  698. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  699. /* Wa4x4STCOptimizationDisable:bdw,chv */
  700. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  701. /*
  702. * BSpec recommends 8x4 when MSAA is used,
  703. * however in practice 16x4 seems fastest.
  704. *
  705. * Note that PS/WM thread counts depend on the WIZ hashing
  706. * disable bit, which we don't touch here, but it's good
  707. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  708. */
  709. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  710. GEN6_WIZ_HASHING_MASK,
  711. GEN6_WIZ_HASHING_16x4);
  712. return 0;
  713. }
  714. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  715. {
  716. int ret;
  717. struct drm_device *dev = ring->dev;
  718. struct drm_i915_private *dev_priv = dev->dev_private;
  719. ret = gen8_init_workarounds(ring);
  720. if (ret)
  721. return ret;
  722. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  723. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  724. /* WaDisableDopClockGating:bdw */
  725. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  726. DOP_CLOCK_GATING_DISABLE);
  727. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  728. GEN8_SAMPLER_POWER_BYPASS_DIS);
  729. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  730. /* WaForceContextSaveRestoreNonCoherent:bdw */
  731. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  732. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  733. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  734. return 0;
  735. }
  736. static int chv_init_workarounds(struct intel_engine_cs *ring)
  737. {
  738. int ret;
  739. struct drm_device *dev = ring->dev;
  740. struct drm_i915_private *dev_priv = dev->dev_private;
  741. ret = gen8_init_workarounds(ring);
  742. if (ret)
  743. return ret;
  744. /* WaDisableThreadStallDopClockGating:chv */
  745. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  746. /* Improve HiZ throughput on CHV. */
  747. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  748. return 0;
  749. }
  750. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  751. {
  752. struct drm_device *dev = ring->dev;
  753. struct drm_i915_private *dev_priv = dev->dev_private;
  754. uint32_t tmp;
  755. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  756. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  757. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  758. /* WaDisableKillLogic:bxt,skl */
  759. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  760. ECOCHK_DIS_TLB);
  761. /* WaDisablePartialInstShootdown:skl,bxt */
  762. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  763. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  764. /* Syncing dependencies between camera and graphics:skl,bxt */
  765. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  766. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  767. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  768. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  769. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  770. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  771. GEN9_DG_MIRROR_FIX_ENABLE);
  772. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  773. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  774. IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  775. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  776. GEN9_RHWO_OPTIMIZATION_DISABLE);
  777. /*
  778. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  779. * but we do that in per ctx batchbuffer as there is an issue
  780. * with this register not getting restored on ctx restore
  781. */
  782. }
  783. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  784. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
  785. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  786. GEN9_ENABLE_YV12_BUGFIX);
  787. /* Wa4x4STCOptimizationDisable:skl,bxt */
  788. /* WaDisablePartialResolveInVc:skl,bxt */
  789. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  790. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  791. /* WaCcsTlbPrefetchDisable:skl,bxt */
  792. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  793. GEN9_CCS_TLB_PREFETCH_ENABLE);
  794. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  795. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
  796. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  797. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  798. PIXEL_MASK_CAMMING_DISABLE);
  799. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  800. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  801. if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
  802. IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
  803. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  804. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  805. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  806. if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
  807. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  808. GEN8_SAMPLER_POWER_BYPASS_DIS);
  809. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  810. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  811. return 0;
  812. }
  813. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  814. {
  815. struct drm_device *dev = ring->dev;
  816. struct drm_i915_private *dev_priv = dev->dev_private;
  817. u8 vals[3] = { 0, 0, 0 };
  818. unsigned int i;
  819. for (i = 0; i < 3; i++) {
  820. u8 ss;
  821. /*
  822. * Only consider slices where one, and only one, subslice has 7
  823. * EUs
  824. */
  825. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  826. continue;
  827. /*
  828. * subslice_7eu[i] != 0 (because of the check above) and
  829. * ss_max == 4 (maximum number of subslices possible per slice)
  830. *
  831. * -> 0 <= ss <= 3;
  832. */
  833. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  834. vals[i] = 3 - ss;
  835. }
  836. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  837. return 0;
  838. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  839. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  840. GEN9_IZ_HASHING_MASK(2) |
  841. GEN9_IZ_HASHING_MASK(1) |
  842. GEN9_IZ_HASHING_MASK(0),
  843. GEN9_IZ_HASHING(2, vals[2]) |
  844. GEN9_IZ_HASHING(1, vals[1]) |
  845. GEN9_IZ_HASHING(0, vals[0]));
  846. return 0;
  847. }
  848. static int skl_init_workarounds(struct intel_engine_cs *ring)
  849. {
  850. int ret;
  851. struct drm_device *dev = ring->dev;
  852. struct drm_i915_private *dev_priv = dev->dev_private;
  853. ret = gen9_init_workarounds(ring);
  854. if (ret)
  855. return ret;
  856. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
  857. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  858. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  859. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  860. }
  861. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  862. * involving this register should also be added to WA batch as required.
  863. */
  864. if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
  865. /* WaDisableLSQCROPERFforOCL:skl */
  866. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  867. GEN8_LQSC_RO_PERF_DIS);
  868. /* WaEnableGapsTsvCreditFix:skl */
  869. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
  870. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  871. GEN9_GAPS_TSV_CREDIT_DISABLE));
  872. }
  873. /* WaDisablePowerCompilerClockGating:skl */
  874. if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
  875. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  876. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  877. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
  878. /*
  879. *Use Force Non-Coherent whenever executing a 3D context. This
  880. * is a workaround for a possible hang in the unlikely event
  881. * a TLB invalidation occurs during a PSD flush.
  882. */
  883. /* WaForceEnableNonCoherent:skl */
  884. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  885. HDC_FORCE_NON_COHERENT);
  886. /* WaDisableHDCInvalidation:skl */
  887. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  888. BDW_DISABLE_HDC_INVALIDATION);
  889. }
  890. /* WaBarrierPerformanceFixDisable:skl */
  891. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
  892. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  893. HDC_FENCE_DEST_SLM_DISABLE |
  894. HDC_BARRIER_PERFORMANCE_DISABLE);
  895. /* WaDisableSbeCacheDispatchPortSharing:skl */
  896. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
  897. WA_SET_BIT_MASKED(
  898. GEN7_HALF_SLICE_CHICKEN1,
  899. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  900. return skl_tune_iz_hashing(ring);
  901. }
  902. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  903. {
  904. int ret;
  905. struct drm_device *dev = ring->dev;
  906. struct drm_i915_private *dev_priv = dev->dev_private;
  907. ret = gen9_init_workarounds(ring);
  908. if (ret)
  909. return ret;
  910. /* WaStoreMultiplePTEenable:bxt */
  911. /* This is a requirement according to Hardware specification */
  912. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  913. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  914. /* WaSetClckGatingDisableMedia:bxt */
  915. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  916. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  917. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  918. }
  919. /* WaDisableThreadStallDopClockGating:bxt */
  920. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  921. STALL_DOP_GATING_DISABLE);
  922. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  923. if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
  924. WA_SET_BIT_MASKED(
  925. GEN7_HALF_SLICE_CHICKEN1,
  926. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  927. }
  928. return 0;
  929. }
  930. int init_workarounds_ring(struct intel_engine_cs *ring)
  931. {
  932. struct drm_device *dev = ring->dev;
  933. struct drm_i915_private *dev_priv = dev->dev_private;
  934. WARN_ON(ring->id != RCS);
  935. dev_priv->workarounds.count = 0;
  936. if (IS_BROADWELL(dev))
  937. return bdw_init_workarounds(ring);
  938. if (IS_CHERRYVIEW(dev))
  939. return chv_init_workarounds(ring);
  940. if (IS_SKYLAKE(dev))
  941. return skl_init_workarounds(ring);
  942. if (IS_BROXTON(dev))
  943. return bxt_init_workarounds(ring);
  944. return 0;
  945. }
  946. static int init_render_ring(struct intel_engine_cs *ring)
  947. {
  948. struct drm_device *dev = ring->dev;
  949. struct drm_i915_private *dev_priv = dev->dev_private;
  950. int ret = init_ring_common(ring);
  951. if (ret)
  952. return ret;
  953. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  954. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  955. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  956. /* We need to disable the AsyncFlip performance optimisations in order
  957. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  958. * programmed to '1' on all products.
  959. *
  960. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  961. */
  962. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  963. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  964. /* Required for the hardware to program scanline values for waiting */
  965. /* WaEnableFlushTlbInvalidationMode:snb */
  966. if (INTEL_INFO(dev)->gen == 6)
  967. I915_WRITE(GFX_MODE,
  968. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  969. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  970. if (IS_GEN7(dev))
  971. I915_WRITE(GFX_MODE_GEN7,
  972. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  973. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  974. if (IS_GEN6(dev)) {
  975. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  976. * "If this bit is set, STCunit will have LRA as replacement
  977. * policy. [...] This bit must be reset. LRA replacement
  978. * policy is not supported."
  979. */
  980. I915_WRITE(CACHE_MODE_0,
  981. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  982. }
  983. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  984. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  985. if (HAS_L3_DPF(dev))
  986. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  987. return init_workarounds_ring(ring);
  988. }
  989. static void render_ring_cleanup(struct intel_engine_cs *ring)
  990. {
  991. struct drm_device *dev = ring->dev;
  992. struct drm_i915_private *dev_priv = dev->dev_private;
  993. if (dev_priv->semaphore_obj) {
  994. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  995. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  996. dev_priv->semaphore_obj = NULL;
  997. }
  998. intel_fini_pipe_control(ring);
  999. }
  1000. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1001. unsigned int num_dwords)
  1002. {
  1003. #define MBOX_UPDATE_DWORDS 8
  1004. struct intel_engine_cs *signaller = signaller_req->ring;
  1005. struct drm_device *dev = signaller->dev;
  1006. struct drm_i915_private *dev_priv = dev->dev_private;
  1007. struct intel_engine_cs *waiter;
  1008. int i, ret, num_rings;
  1009. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1010. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1011. #undef MBOX_UPDATE_DWORDS
  1012. ret = intel_ring_begin(signaller_req, num_dwords);
  1013. if (ret)
  1014. return ret;
  1015. for_each_ring(waiter, dev_priv, i) {
  1016. u32 seqno;
  1017. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1018. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1019. continue;
  1020. seqno = i915_gem_request_get_seqno(signaller_req);
  1021. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1022. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1023. PIPE_CONTROL_QW_WRITE |
  1024. PIPE_CONTROL_FLUSH_ENABLE);
  1025. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1026. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1027. intel_ring_emit(signaller, seqno);
  1028. intel_ring_emit(signaller, 0);
  1029. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1030. MI_SEMAPHORE_TARGET(waiter->id));
  1031. intel_ring_emit(signaller, 0);
  1032. }
  1033. return 0;
  1034. }
  1035. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1036. unsigned int num_dwords)
  1037. {
  1038. #define MBOX_UPDATE_DWORDS 6
  1039. struct intel_engine_cs *signaller = signaller_req->ring;
  1040. struct drm_device *dev = signaller->dev;
  1041. struct drm_i915_private *dev_priv = dev->dev_private;
  1042. struct intel_engine_cs *waiter;
  1043. int i, ret, num_rings;
  1044. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1045. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1046. #undef MBOX_UPDATE_DWORDS
  1047. ret = intel_ring_begin(signaller_req, num_dwords);
  1048. if (ret)
  1049. return ret;
  1050. for_each_ring(waiter, dev_priv, i) {
  1051. u32 seqno;
  1052. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1053. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1054. continue;
  1055. seqno = i915_gem_request_get_seqno(signaller_req);
  1056. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1057. MI_FLUSH_DW_OP_STOREDW);
  1058. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1059. MI_FLUSH_DW_USE_GTT);
  1060. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1061. intel_ring_emit(signaller, seqno);
  1062. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1063. MI_SEMAPHORE_TARGET(waiter->id));
  1064. intel_ring_emit(signaller, 0);
  1065. }
  1066. return 0;
  1067. }
  1068. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1069. unsigned int num_dwords)
  1070. {
  1071. struct intel_engine_cs *signaller = signaller_req->ring;
  1072. struct drm_device *dev = signaller->dev;
  1073. struct drm_i915_private *dev_priv = dev->dev_private;
  1074. struct intel_engine_cs *useless;
  1075. int i, ret, num_rings;
  1076. #define MBOX_UPDATE_DWORDS 3
  1077. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1078. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1079. #undef MBOX_UPDATE_DWORDS
  1080. ret = intel_ring_begin(signaller_req, num_dwords);
  1081. if (ret)
  1082. return ret;
  1083. for_each_ring(useless, dev_priv, i) {
  1084. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
  1085. if (i915_mmio_reg_valid(mbox_reg)) {
  1086. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1087. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1088. intel_ring_emit_reg(signaller, mbox_reg);
  1089. intel_ring_emit(signaller, seqno);
  1090. }
  1091. }
  1092. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1093. if (num_rings % 2 == 0)
  1094. intel_ring_emit(signaller, MI_NOOP);
  1095. return 0;
  1096. }
  1097. /**
  1098. * gen6_add_request - Update the semaphore mailbox registers
  1099. *
  1100. * @request - request to write to the ring
  1101. *
  1102. * Update the mailbox registers in the *other* rings with the current seqno.
  1103. * This acts like a signal in the canonical semaphore.
  1104. */
  1105. static int
  1106. gen6_add_request(struct drm_i915_gem_request *req)
  1107. {
  1108. struct intel_engine_cs *ring = req->ring;
  1109. int ret;
  1110. if (ring->semaphore.signal)
  1111. ret = ring->semaphore.signal(req, 4);
  1112. else
  1113. ret = intel_ring_begin(req, 4);
  1114. if (ret)
  1115. return ret;
  1116. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1117. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1118. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1119. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1120. __intel_ring_advance(ring);
  1121. return 0;
  1122. }
  1123. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1124. u32 seqno)
  1125. {
  1126. struct drm_i915_private *dev_priv = dev->dev_private;
  1127. return dev_priv->last_seqno < seqno;
  1128. }
  1129. /**
  1130. * intel_ring_sync - sync the waiter to the signaller on seqno
  1131. *
  1132. * @waiter - ring that is waiting
  1133. * @signaller - ring which has, or will signal
  1134. * @seqno - seqno which the waiter will block on
  1135. */
  1136. static int
  1137. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1138. struct intel_engine_cs *signaller,
  1139. u32 seqno)
  1140. {
  1141. struct intel_engine_cs *waiter = waiter_req->ring;
  1142. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1143. int ret;
  1144. ret = intel_ring_begin(waiter_req, 4);
  1145. if (ret)
  1146. return ret;
  1147. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1148. MI_SEMAPHORE_GLOBAL_GTT |
  1149. MI_SEMAPHORE_POLL |
  1150. MI_SEMAPHORE_SAD_GTE_SDD);
  1151. intel_ring_emit(waiter, seqno);
  1152. intel_ring_emit(waiter,
  1153. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1154. intel_ring_emit(waiter,
  1155. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1156. intel_ring_advance(waiter);
  1157. return 0;
  1158. }
  1159. static int
  1160. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1161. struct intel_engine_cs *signaller,
  1162. u32 seqno)
  1163. {
  1164. struct intel_engine_cs *waiter = waiter_req->ring;
  1165. u32 dw1 = MI_SEMAPHORE_MBOX |
  1166. MI_SEMAPHORE_COMPARE |
  1167. MI_SEMAPHORE_REGISTER;
  1168. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1169. int ret;
  1170. /* Throughout all of the GEM code, seqno passed implies our current
  1171. * seqno is >= the last seqno executed. However for hardware the
  1172. * comparison is strictly greater than.
  1173. */
  1174. seqno -= 1;
  1175. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1176. ret = intel_ring_begin(waiter_req, 4);
  1177. if (ret)
  1178. return ret;
  1179. /* If seqno wrap happened, omit the wait with no-ops */
  1180. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1181. intel_ring_emit(waiter, dw1 | wait_mbox);
  1182. intel_ring_emit(waiter, seqno);
  1183. intel_ring_emit(waiter, 0);
  1184. intel_ring_emit(waiter, MI_NOOP);
  1185. } else {
  1186. intel_ring_emit(waiter, MI_NOOP);
  1187. intel_ring_emit(waiter, MI_NOOP);
  1188. intel_ring_emit(waiter, MI_NOOP);
  1189. intel_ring_emit(waiter, MI_NOOP);
  1190. }
  1191. intel_ring_advance(waiter);
  1192. return 0;
  1193. }
  1194. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1195. do { \
  1196. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1197. PIPE_CONTROL_DEPTH_STALL); \
  1198. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1199. intel_ring_emit(ring__, 0); \
  1200. intel_ring_emit(ring__, 0); \
  1201. } while (0)
  1202. static int
  1203. pc_render_add_request(struct drm_i915_gem_request *req)
  1204. {
  1205. struct intel_engine_cs *ring = req->ring;
  1206. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1207. int ret;
  1208. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1209. * incoherent with writes to memory, i.e. completely fubar,
  1210. * so we need to use PIPE_NOTIFY instead.
  1211. *
  1212. * However, we also need to workaround the qword write
  1213. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1214. * memory before requesting an interrupt.
  1215. */
  1216. ret = intel_ring_begin(req, 32);
  1217. if (ret)
  1218. return ret;
  1219. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1220. PIPE_CONTROL_WRITE_FLUSH |
  1221. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1222. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1223. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1224. intel_ring_emit(ring, 0);
  1225. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1226. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1227. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1228. scratch_addr += 2 * CACHELINE_BYTES;
  1229. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1230. scratch_addr += 2 * CACHELINE_BYTES;
  1231. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1232. scratch_addr += 2 * CACHELINE_BYTES;
  1233. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1234. scratch_addr += 2 * CACHELINE_BYTES;
  1235. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1236. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1237. PIPE_CONTROL_WRITE_FLUSH |
  1238. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1239. PIPE_CONTROL_NOTIFY);
  1240. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1241. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1242. intel_ring_emit(ring, 0);
  1243. __intel_ring_advance(ring);
  1244. return 0;
  1245. }
  1246. static u32
  1247. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1248. {
  1249. /* Workaround to force correct ordering between irq and seqno writes on
  1250. * ivb (and maybe also on snb) by reading from a CS register (like
  1251. * ACTHD) before reading the status page. */
  1252. if (!lazy_coherency) {
  1253. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1254. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1255. }
  1256. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1257. }
  1258. static u32
  1259. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1260. {
  1261. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1262. }
  1263. static void
  1264. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1265. {
  1266. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1267. }
  1268. static u32
  1269. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1270. {
  1271. return ring->scratch.cpu_page[0];
  1272. }
  1273. static void
  1274. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1275. {
  1276. ring->scratch.cpu_page[0] = seqno;
  1277. }
  1278. static bool
  1279. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1280. {
  1281. struct drm_device *dev = ring->dev;
  1282. struct drm_i915_private *dev_priv = dev->dev_private;
  1283. unsigned long flags;
  1284. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1285. return false;
  1286. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1287. if (ring->irq_refcount++ == 0)
  1288. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1289. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1290. return true;
  1291. }
  1292. static void
  1293. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1294. {
  1295. struct drm_device *dev = ring->dev;
  1296. struct drm_i915_private *dev_priv = dev->dev_private;
  1297. unsigned long flags;
  1298. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1299. if (--ring->irq_refcount == 0)
  1300. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1301. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1302. }
  1303. static bool
  1304. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1305. {
  1306. struct drm_device *dev = ring->dev;
  1307. struct drm_i915_private *dev_priv = dev->dev_private;
  1308. unsigned long flags;
  1309. if (!intel_irqs_enabled(dev_priv))
  1310. return false;
  1311. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1312. if (ring->irq_refcount++ == 0) {
  1313. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1314. I915_WRITE(IMR, dev_priv->irq_mask);
  1315. POSTING_READ(IMR);
  1316. }
  1317. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1318. return true;
  1319. }
  1320. static void
  1321. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1322. {
  1323. struct drm_device *dev = ring->dev;
  1324. struct drm_i915_private *dev_priv = dev->dev_private;
  1325. unsigned long flags;
  1326. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1327. if (--ring->irq_refcount == 0) {
  1328. dev_priv->irq_mask |= ring->irq_enable_mask;
  1329. I915_WRITE(IMR, dev_priv->irq_mask);
  1330. POSTING_READ(IMR);
  1331. }
  1332. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1333. }
  1334. static bool
  1335. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1336. {
  1337. struct drm_device *dev = ring->dev;
  1338. struct drm_i915_private *dev_priv = dev->dev_private;
  1339. unsigned long flags;
  1340. if (!intel_irqs_enabled(dev_priv))
  1341. return false;
  1342. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1343. if (ring->irq_refcount++ == 0) {
  1344. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1345. I915_WRITE16(IMR, dev_priv->irq_mask);
  1346. POSTING_READ16(IMR);
  1347. }
  1348. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1349. return true;
  1350. }
  1351. static void
  1352. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1353. {
  1354. struct drm_device *dev = ring->dev;
  1355. struct drm_i915_private *dev_priv = dev->dev_private;
  1356. unsigned long flags;
  1357. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1358. if (--ring->irq_refcount == 0) {
  1359. dev_priv->irq_mask |= ring->irq_enable_mask;
  1360. I915_WRITE16(IMR, dev_priv->irq_mask);
  1361. POSTING_READ16(IMR);
  1362. }
  1363. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1364. }
  1365. static int
  1366. bsd_ring_flush(struct drm_i915_gem_request *req,
  1367. u32 invalidate_domains,
  1368. u32 flush_domains)
  1369. {
  1370. struct intel_engine_cs *ring = req->ring;
  1371. int ret;
  1372. ret = intel_ring_begin(req, 2);
  1373. if (ret)
  1374. return ret;
  1375. intel_ring_emit(ring, MI_FLUSH);
  1376. intel_ring_emit(ring, MI_NOOP);
  1377. intel_ring_advance(ring);
  1378. return 0;
  1379. }
  1380. static int
  1381. i9xx_add_request(struct drm_i915_gem_request *req)
  1382. {
  1383. struct intel_engine_cs *ring = req->ring;
  1384. int ret;
  1385. ret = intel_ring_begin(req, 4);
  1386. if (ret)
  1387. return ret;
  1388. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1389. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1390. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1391. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1392. __intel_ring_advance(ring);
  1393. return 0;
  1394. }
  1395. static bool
  1396. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1397. {
  1398. struct drm_device *dev = ring->dev;
  1399. struct drm_i915_private *dev_priv = dev->dev_private;
  1400. unsigned long flags;
  1401. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1402. return false;
  1403. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1404. if (ring->irq_refcount++ == 0) {
  1405. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1406. I915_WRITE_IMR(ring,
  1407. ~(ring->irq_enable_mask |
  1408. GT_PARITY_ERROR(dev)));
  1409. else
  1410. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1411. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1412. }
  1413. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1414. return true;
  1415. }
  1416. static void
  1417. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1418. {
  1419. struct drm_device *dev = ring->dev;
  1420. struct drm_i915_private *dev_priv = dev->dev_private;
  1421. unsigned long flags;
  1422. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1423. if (--ring->irq_refcount == 0) {
  1424. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1425. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1426. else
  1427. I915_WRITE_IMR(ring, ~0);
  1428. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1429. }
  1430. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1431. }
  1432. static bool
  1433. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1434. {
  1435. struct drm_device *dev = ring->dev;
  1436. struct drm_i915_private *dev_priv = dev->dev_private;
  1437. unsigned long flags;
  1438. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1439. return false;
  1440. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1441. if (ring->irq_refcount++ == 0) {
  1442. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1443. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1444. }
  1445. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1446. return true;
  1447. }
  1448. static void
  1449. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1450. {
  1451. struct drm_device *dev = ring->dev;
  1452. struct drm_i915_private *dev_priv = dev->dev_private;
  1453. unsigned long flags;
  1454. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1455. if (--ring->irq_refcount == 0) {
  1456. I915_WRITE_IMR(ring, ~0);
  1457. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1458. }
  1459. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1460. }
  1461. static bool
  1462. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1463. {
  1464. struct drm_device *dev = ring->dev;
  1465. struct drm_i915_private *dev_priv = dev->dev_private;
  1466. unsigned long flags;
  1467. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1468. return false;
  1469. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1470. if (ring->irq_refcount++ == 0) {
  1471. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1472. I915_WRITE_IMR(ring,
  1473. ~(ring->irq_enable_mask |
  1474. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1475. } else {
  1476. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1477. }
  1478. POSTING_READ(RING_IMR(ring->mmio_base));
  1479. }
  1480. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1481. return true;
  1482. }
  1483. static void
  1484. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1485. {
  1486. struct drm_device *dev = ring->dev;
  1487. struct drm_i915_private *dev_priv = dev->dev_private;
  1488. unsigned long flags;
  1489. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1490. if (--ring->irq_refcount == 0) {
  1491. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1492. I915_WRITE_IMR(ring,
  1493. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1494. } else {
  1495. I915_WRITE_IMR(ring, ~0);
  1496. }
  1497. POSTING_READ(RING_IMR(ring->mmio_base));
  1498. }
  1499. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1500. }
  1501. static int
  1502. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1503. u64 offset, u32 length,
  1504. unsigned dispatch_flags)
  1505. {
  1506. struct intel_engine_cs *ring = req->ring;
  1507. int ret;
  1508. ret = intel_ring_begin(req, 2);
  1509. if (ret)
  1510. return ret;
  1511. intel_ring_emit(ring,
  1512. MI_BATCH_BUFFER_START |
  1513. MI_BATCH_GTT |
  1514. (dispatch_flags & I915_DISPATCH_SECURE ?
  1515. 0 : MI_BATCH_NON_SECURE_I965));
  1516. intel_ring_emit(ring, offset);
  1517. intel_ring_advance(ring);
  1518. return 0;
  1519. }
  1520. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1521. #define I830_BATCH_LIMIT (256*1024)
  1522. #define I830_TLB_ENTRIES (2)
  1523. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1524. static int
  1525. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1526. u64 offset, u32 len,
  1527. unsigned dispatch_flags)
  1528. {
  1529. struct intel_engine_cs *ring = req->ring;
  1530. u32 cs_offset = ring->scratch.gtt_offset;
  1531. int ret;
  1532. ret = intel_ring_begin(req, 6);
  1533. if (ret)
  1534. return ret;
  1535. /* Evict the invalid PTE TLBs */
  1536. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1537. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1538. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1539. intel_ring_emit(ring, cs_offset);
  1540. intel_ring_emit(ring, 0xdeadbeef);
  1541. intel_ring_emit(ring, MI_NOOP);
  1542. intel_ring_advance(ring);
  1543. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1544. if (len > I830_BATCH_LIMIT)
  1545. return -ENOSPC;
  1546. ret = intel_ring_begin(req, 6 + 2);
  1547. if (ret)
  1548. return ret;
  1549. /* Blit the batch (which has now all relocs applied) to the
  1550. * stable batch scratch bo area (so that the CS never
  1551. * stumbles over its tlb invalidation bug) ...
  1552. */
  1553. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1554. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1555. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1556. intel_ring_emit(ring, cs_offset);
  1557. intel_ring_emit(ring, 4096);
  1558. intel_ring_emit(ring, offset);
  1559. intel_ring_emit(ring, MI_FLUSH);
  1560. intel_ring_emit(ring, MI_NOOP);
  1561. intel_ring_advance(ring);
  1562. /* ... and execute it. */
  1563. offset = cs_offset;
  1564. }
  1565. ret = intel_ring_begin(req, 2);
  1566. if (ret)
  1567. return ret;
  1568. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1569. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1570. 0 : MI_BATCH_NON_SECURE));
  1571. intel_ring_advance(ring);
  1572. return 0;
  1573. }
  1574. static int
  1575. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1576. u64 offset, u32 len,
  1577. unsigned dispatch_flags)
  1578. {
  1579. struct intel_engine_cs *ring = req->ring;
  1580. int ret;
  1581. ret = intel_ring_begin(req, 2);
  1582. if (ret)
  1583. return ret;
  1584. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1585. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1586. 0 : MI_BATCH_NON_SECURE));
  1587. intel_ring_advance(ring);
  1588. return 0;
  1589. }
  1590. static void cleanup_phys_status_page(struct intel_engine_cs *ring)
  1591. {
  1592. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1593. if (!dev_priv->status_page_dmah)
  1594. return;
  1595. drm_pci_free(ring->dev, dev_priv->status_page_dmah);
  1596. ring->status_page.page_addr = NULL;
  1597. }
  1598. static void cleanup_status_page(struct intel_engine_cs *ring)
  1599. {
  1600. struct drm_i915_gem_object *obj;
  1601. obj = ring->status_page.obj;
  1602. if (obj == NULL)
  1603. return;
  1604. kunmap(sg_page(obj->pages->sgl));
  1605. i915_gem_object_ggtt_unpin(obj);
  1606. drm_gem_object_unreference(&obj->base);
  1607. ring->status_page.obj = NULL;
  1608. }
  1609. static int init_status_page(struct intel_engine_cs *ring)
  1610. {
  1611. struct drm_i915_gem_object *obj = ring->status_page.obj;
  1612. if (obj == NULL) {
  1613. unsigned flags;
  1614. int ret;
  1615. obj = i915_gem_alloc_object(ring->dev, 4096);
  1616. if (obj == NULL) {
  1617. DRM_ERROR("Failed to allocate status page\n");
  1618. return -ENOMEM;
  1619. }
  1620. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1621. if (ret)
  1622. goto err_unref;
  1623. flags = 0;
  1624. if (!HAS_LLC(ring->dev))
  1625. /* On g33, we cannot place HWS above 256MiB, so
  1626. * restrict its pinning to the low mappable arena.
  1627. * Though this restriction is not documented for
  1628. * gen4, gen5, or byt, they also behave similarly
  1629. * and hang if the HWS is placed at the top of the
  1630. * GTT. To generalise, it appears that all !llc
  1631. * platforms have issues with us placing the HWS
  1632. * above the mappable region (even though we never
  1633. * actualy map it).
  1634. */
  1635. flags |= PIN_MAPPABLE;
  1636. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1637. if (ret) {
  1638. err_unref:
  1639. drm_gem_object_unreference(&obj->base);
  1640. return ret;
  1641. }
  1642. ring->status_page.obj = obj;
  1643. }
  1644. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1645. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1646. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1647. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1648. ring->name, ring->status_page.gfx_addr);
  1649. return 0;
  1650. }
  1651. static int init_phys_status_page(struct intel_engine_cs *ring)
  1652. {
  1653. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1654. if (!dev_priv->status_page_dmah) {
  1655. dev_priv->status_page_dmah =
  1656. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1657. if (!dev_priv->status_page_dmah)
  1658. return -ENOMEM;
  1659. }
  1660. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1661. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1662. return 0;
  1663. }
  1664. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1665. {
  1666. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1667. vunmap(ringbuf->virtual_start);
  1668. else
  1669. iounmap(ringbuf->virtual_start);
  1670. ringbuf->virtual_start = NULL;
  1671. ringbuf->vma = NULL;
  1672. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1673. }
  1674. static u32 *vmap_obj(struct drm_i915_gem_object *obj)
  1675. {
  1676. struct sg_page_iter sg_iter;
  1677. struct page **pages;
  1678. void *addr;
  1679. int i;
  1680. pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
  1681. if (pages == NULL)
  1682. return NULL;
  1683. i = 0;
  1684. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
  1685. pages[i++] = sg_page_iter_page(&sg_iter);
  1686. addr = vmap(pages, i, 0, PAGE_KERNEL);
  1687. drm_free_large(pages);
  1688. return addr;
  1689. }
  1690. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1691. struct intel_ringbuffer *ringbuf)
  1692. {
  1693. struct drm_i915_private *dev_priv = to_i915(dev);
  1694. struct drm_i915_gem_object *obj = ringbuf->obj;
  1695. int ret;
  1696. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1697. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
  1698. if (ret)
  1699. return ret;
  1700. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1701. if (ret) {
  1702. i915_gem_object_ggtt_unpin(obj);
  1703. return ret;
  1704. }
  1705. ringbuf->virtual_start = vmap_obj(obj);
  1706. if (ringbuf->virtual_start == NULL) {
  1707. i915_gem_object_ggtt_unpin(obj);
  1708. return -ENOMEM;
  1709. }
  1710. } else {
  1711. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1712. if (ret)
  1713. return ret;
  1714. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1715. if (ret) {
  1716. i915_gem_object_ggtt_unpin(obj);
  1717. return ret;
  1718. }
  1719. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1720. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1721. if (ringbuf->virtual_start == NULL) {
  1722. i915_gem_object_ggtt_unpin(obj);
  1723. return -EINVAL;
  1724. }
  1725. }
  1726. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1727. return 0;
  1728. }
  1729. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1730. {
  1731. drm_gem_object_unreference(&ringbuf->obj->base);
  1732. ringbuf->obj = NULL;
  1733. }
  1734. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1735. struct intel_ringbuffer *ringbuf)
  1736. {
  1737. struct drm_i915_gem_object *obj;
  1738. obj = NULL;
  1739. if (!HAS_LLC(dev))
  1740. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1741. if (obj == NULL)
  1742. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1743. if (obj == NULL)
  1744. return -ENOMEM;
  1745. /* mark ring buffers as read-only from GPU side by default */
  1746. obj->gt_ro = 1;
  1747. ringbuf->obj = obj;
  1748. return 0;
  1749. }
  1750. struct intel_ringbuffer *
  1751. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1752. {
  1753. struct intel_ringbuffer *ring;
  1754. int ret;
  1755. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1756. if (ring == NULL) {
  1757. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1758. engine->name);
  1759. return ERR_PTR(-ENOMEM);
  1760. }
  1761. ring->ring = engine;
  1762. list_add(&ring->link, &engine->buffers);
  1763. ring->size = size;
  1764. /* Workaround an erratum on the i830 which causes a hang if
  1765. * the TAIL pointer points to within the last 2 cachelines
  1766. * of the buffer.
  1767. */
  1768. ring->effective_size = size;
  1769. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1770. ring->effective_size -= 2 * CACHELINE_BYTES;
  1771. ring->last_retired_head = -1;
  1772. intel_ring_update_space(ring);
  1773. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1774. if (ret) {
  1775. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1776. engine->name, ret);
  1777. list_del(&ring->link);
  1778. kfree(ring);
  1779. return ERR_PTR(ret);
  1780. }
  1781. return ring;
  1782. }
  1783. void
  1784. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1785. {
  1786. intel_destroy_ringbuffer_obj(ring);
  1787. list_del(&ring->link);
  1788. kfree(ring);
  1789. }
  1790. static int intel_init_ring_buffer(struct drm_device *dev,
  1791. struct intel_engine_cs *ring)
  1792. {
  1793. struct intel_ringbuffer *ringbuf;
  1794. int ret;
  1795. WARN_ON(ring->buffer);
  1796. ring->dev = dev;
  1797. INIT_LIST_HEAD(&ring->active_list);
  1798. INIT_LIST_HEAD(&ring->request_list);
  1799. INIT_LIST_HEAD(&ring->execlist_queue);
  1800. INIT_LIST_HEAD(&ring->buffers);
  1801. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1802. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1803. init_waitqueue_head(&ring->irq_queue);
  1804. ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
  1805. if (IS_ERR(ringbuf)) {
  1806. ret = PTR_ERR(ringbuf);
  1807. goto error;
  1808. }
  1809. ring->buffer = ringbuf;
  1810. if (I915_NEED_GFX_HWS(dev)) {
  1811. ret = init_status_page(ring);
  1812. if (ret)
  1813. goto error;
  1814. } else {
  1815. WARN_ON(ring->id != RCS);
  1816. ret = init_phys_status_page(ring);
  1817. if (ret)
  1818. goto error;
  1819. }
  1820. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1821. if (ret) {
  1822. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1823. ring->name, ret);
  1824. intel_destroy_ringbuffer_obj(ringbuf);
  1825. goto error;
  1826. }
  1827. ret = i915_cmd_parser_init_ring(ring);
  1828. if (ret)
  1829. goto error;
  1830. return 0;
  1831. error:
  1832. intel_cleanup_ring_buffer(ring);
  1833. return ret;
  1834. }
  1835. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1836. {
  1837. struct drm_i915_private *dev_priv;
  1838. if (!intel_ring_initialized(ring))
  1839. return;
  1840. dev_priv = to_i915(ring->dev);
  1841. if (ring->buffer) {
  1842. intel_stop_ring_buffer(ring);
  1843. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1844. intel_unpin_ringbuffer_obj(ring->buffer);
  1845. intel_ringbuffer_free(ring->buffer);
  1846. ring->buffer = NULL;
  1847. }
  1848. if (ring->cleanup)
  1849. ring->cleanup(ring);
  1850. if (I915_NEED_GFX_HWS(ring->dev)) {
  1851. cleanup_status_page(ring);
  1852. } else {
  1853. WARN_ON(ring->id != RCS);
  1854. cleanup_phys_status_page(ring);
  1855. }
  1856. i915_cmd_parser_fini_ring(ring);
  1857. i915_gem_batch_pool_fini(&ring->batch_pool);
  1858. ring->dev = NULL;
  1859. }
  1860. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1861. {
  1862. struct intel_ringbuffer *ringbuf = ring->buffer;
  1863. struct drm_i915_gem_request *request;
  1864. unsigned space;
  1865. int ret;
  1866. if (intel_ring_space(ringbuf) >= n)
  1867. return 0;
  1868. /* The whole point of reserving space is to not wait! */
  1869. WARN_ON(ringbuf->reserved_in_use);
  1870. list_for_each_entry(request, &ring->request_list, list) {
  1871. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1872. ringbuf->size);
  1873. if (space >= n)
  1874. break;
  1875. }
  1876. if (WARN_ON(&request->list == &ring->request_list))
  1877. return -ENOSPC;
  1878. ret = i915_wait_request(request);
  1879. if (ret)
  1880. return ret;
  1881. ringbuf->space = space;
  1882. return 0;
  1883. }
  1884. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1885. {
  1886. uint32_t __iomem *virt;
  1887. int rem = ringbuf->size - ringbuf->tail;
  1888. virt = ringbuf->virtual_start + ringbuf->tail;
  1889. rem /= 4;
  1890. while (rem--)
  1891. iowrite32(MI_NOOP, virt++);
  1892. ringbuf->tail = 0;
  1893. intel_ring_update_space(ringbuf);
  1894. }
  1895. int intel_ring_idle(struct intel_engine_cs *ring)
  1896. {
  1897. struct drm_i915_gem_request *req;
  1898. /* Wait upon the last request to be completed */
  1899. if (list_empty(&ring->request_list))
  1900. return 0;
  1901. req = list_entry(ring->request_list.prev,
  1902. struct drm_i915_gem_request,
  1903. list);
  1904. /* Make sure we do not trigger any retires */
  1905. return __i915_wait_request(req,
  1906. atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
  1907. to_i915(ring->dev)->mm.interruptible,
  1908. NULL, NULL);
  1909. }
  1910. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1911. {
  1912. request->ringbuf = request->ring->buffer;
  1913. return 0;
  1914. }
  1915. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1916. {
  1917. /*
  1918. * The first call merely notes the reserve request and is common for
  1919. * all back ends. The subsequent localised _begin() call actually
  1920. * ensures that the reservation is available. Without the begin, if
  1921. * the request creator immediately submitted the request without
  1922. * adding any commands to it then there might not actually be
  1923. * sufficient room for the submission commands.
  1924. */
  1925. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1926. return intel_ring_begin(request, 0);
  1927. }
  1928. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1929. {
  1930. WARN_ON(ringbuf->reserved_size);
  1931. WARN_ON(ringbuf->reserved_in_use);
  1932. ringbuf->reserved_size = size;
  1933. }
  1934. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1935. {
  1936. WARN_ON(ringbuf->reserved_in_use);
  1937. ringbuf->reserved_size = 0;
  1938. ringbuf->reserved_in_use = false;
  1939. }
  1940. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1941. {
  1942. WARN_ON(ringbuf->reserved_in_use);
  1943. ringbuf->reserved_in_use = true;
  1944. ringbuf->reserved_tail = ringbuf->tail;
  1945. }
  1946. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  1947. {
  1948. WARN_ON(!ringbuf->reserved_in_use);
  1949. if (ringbuf->tail > ringbuf->reserved_tail) {
  1950. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  1951. "request reserved size too small: %d vs %d!\n",
  1952. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  1953. } else {
  1954. /*
  1955. * The ring was wrapped while the reserved space was in use.
  1956. * That means that some unknown amount of the ring tail was
  1957. * no-op filled and skipped. Thus simply adding the ring size
  1958. * to the tail and doing the above space check will not work.
  1959. * Rather than attempt to track how much tail was skipped,
  1960. * it is much simpler to say that also skipping the sanity
  1961. * check every once in a while is not a big issue.
  1962. */
  1963. }
  1964. ringbuf->reserved_size = 0;
  1965. ringbuf->reserved_in_use = false;
  1966. }
  1967. static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
  1968. {
  1969. struct intel_ringbuffer *ringbuf = ring->buffer;
  1970. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1971. int remain_actual = ringbuf->size - ringbuf->tail;
  1972. int ret, total_bytes, wait_bytes = 0;
  1973. bool need_wrap = false;
  1974. if (ringbuf->reserved_in_use)
  1975. total_bytes = bytes;
  1976. else
  1977. total_bytes = bytes + ringbuf->reserved_size;
  1978. if (unlikely(bytes > remain_usable)) {
  1979. /*
  1980. * Not enough space for the basic request. So need to flush
  1981. * out the remainder and then wait for base + reserved.
  1982. */
  1983. wait_bytes = remain_actual + total_bytes;
  1984. need_wrap = true;
  1985. } else {
  1986. if (unlikely(total_bytes > remain_usable)) {
  1987. /*
  1988. * The base request will fit but the reserved space
  1989. * falls off the end. So only need to to wait for the
  1990. * reserved size after flushing out the remainder.
  1991. */
  1992. wait_bytes = remain_actual + ringbuf->reserved_size;
  1993. need_wrap = true;
  1994. } else if (total_bytes > ringbuf->space) {
  1995. /* No wrapping required, just waiting. */
  1996. wait_bytes = total_bytes;
  1997. }
  1998. }
  1999. if (wait_bytes) {
  2000. ret = ring_wait_for_space(ring, wait_bytes);
  2001. if (unlikely(ret))
  2002. return ret;
  2003. if (need_wrap)
  2004. __wrap_ring_buffer(ringbuf);
  2005. }
  2006. return 0;
  2007. }
  2008. int intel_ring_begin(struct drm_i915_gem_request *req,
  2009. int num_dwords)
  2010. {
  2011. struct intel_engine_cs *ring;
  2012. struct drm_i915_private *dev_priv;
  2013. int ret;
  2014. WARN_ON(req == NULL);
  2015. ring = req->ring;
  2016. dev_priv = ring->dev->dev_private;
  2017. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  2018. dev_priv->mm.interruptible);
  2019. if (ret)
  2020. return ret;
  2021. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  2022. if (ret)
  2023. return ret;
  2024. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  2025. return 0;
  2026. }
  2027. /* Align the ring tail to a cacheline boundary */
  2028. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2029. {
  2030. struct intel_engine_cs *ring = req->ring;
  2031. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2032. int ret;
  2033. if (num_dwords == 0)
  2034. return 0;
  2035. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2036. ret = intel_ring_begin(req, num_dwords);
  2037. if (ret)
  2038. return ret;
  2039. while (num_dwords--)
  2040. intel_ring_emit(ring, MI_NOOP);
  2041. intel_ring_advance(ring);
  2042. return 0;
  2043. }
  2044. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  2045. {
  2046. struct drm_device *dev = ring->dev;
  2047. struct drm_i915_private *dev_priv = dev->dev_private;
  2048. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  2049. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  2050. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  2051. if (HAS_VEBOX(dev))
  2052. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  2053. }
  2054. ring->set_seqno(ring, seqno);
  2055. ring->hangcheck.seqno = seqno;
  2056. }
  2057. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  2058. u32 value)
  2059. {
  2060. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2061. /* Every tail move must follow the sequence below */
  2062. /* Disable notification that the ring is IDLE. The GT
  2063. * will then assume that it is busy and bring it out of rc6.
  2064. */
  2065. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2066. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2067. /* Clear the context id. Here be magic! */
  2068. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2069. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2070. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2071. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2072. 50))
  2073. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2074. /* Now that the ring is fully powered up, update the tail */
  2075. I915_WRITE_TAIL(ring, value);
  2076. POSTING_READ(RING_TAIL(ring->mmio_base));
  2077. /* Let the ring send IDLE messages to the GT again,
  2078. * and so let it sleep to conserve power when idle.
  2079. */
  2080. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2081. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2082. }
  2083. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2084. u32 invalidate, u32 flush)
  2085. {
  2086. struct intel_engine_cs *ring = req->ring;
  2087. uint32_t cmd;
  2088. int ret;
  2089. ret = intel_ring_begin(req, 4);
  2090. if (ret)
  2091. return ret;
  2092. cmd = MI_FLUSH_DW;
  2093. if (INTEL_INFO(ring->dev)->gen >= 8)
  2094. cmd += 1;
  2095. /* We always require a command barrier so that subsequent
  2096. * commands, such as breadcrumb interrupts, are strictly ordered
  2097. * wrt the contents of the write cache being flushed to memory
  2098. * (and thus being coherent from the CPU).
  2099. */
  2100. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2101. /*
  2102. * Bspec vol 1c.5 - video engine command streamer:
  2103. * "If ENABLED, all TLBs will be invalidated once the flush
  2104. * operation is complete. This bit is only valid when the
  2105. * Post-Sync Operation field is a value of 1h or 3h."
  2106. */
  2107. if (invalidate & I915_GEM_GPU_DOMAINS)
  2108. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2109. intel_ring_emit(ring, cmd);
  2110. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2111. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2112. intel_ring_emit(ring, 0); /* upper addr */
  2113. intel_ring_emit(ring, 0); /* value */
  2114. } else {
  2115. intel_ring_emit(ring, 0);
  2116. intel_ring_emit(ring, MI_NOOP);
  2117. }
  2118. intel_ring_advance(ring);
  2119. return 0;
  2120. }
  2121. static int
  2122. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2123. u64 offset, u32 len,
  2124. unsigned dispatch_flags)
  2125. {
  2126. struct intel_engine_cs *ring = req->ring;
  2127. bool ppgtt = USES_PPGTT(ring->dev) &&
  2128. !(dispatch_flags & I915_DISPATCH_SECURE);
  2129. int ret;
  2130. ret = intel_ring_begin(req, 4);
  2131. if (ret)
  2132. return ret;
  2133. /* FIXME(BDW): Address space and security selectors. */
  2134. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2135. (dispatch_flags & I915_DISPATCH_RS ?
  2136. MI_BATCH_RESOURCE_STREAMER : 0));
  2137. intel_ring_emit(ring, lower_32_bits(offset));
  2138. intel_ring_emit(ring, upper_32_bits(offset));
  2139. intel_ring_emit(ring, MI_NOOP);
  2140. intel_ring_advance(ring);
  2141. return 0;
  2142. }
  2143. static int
  2144. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2145. u64 offset, u32 len,
  2146. unsigned dispatch_flags)
  2147. {
  2148. struct intel_engine_cs *ring = req->ring;
  2149. int ret;
  2150. ret = intel_ring_begin(req, 2);
  2151. if (ret)
  2152. return ret;
  2153. intel_ring_emit(ring,
  2154. MI_BATCH_BUFFER_START |
  2155. (dispatch_flags & I915_DISPATCH_SECURE ?
  2156. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2157. (dispatch_flags & I915_DISPATCH_RS ?
  2158. MI_BATCH_RESOURCE_STREAMER : 0));
  2159. /* bit0-7 is the length on GEN6+ */
  2160. intel_ring_emit(ring, offset);
  2161. intel_ring_advance(ring);
  2162. return 0;
  2163. }
  2164. static int
  2165. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2166. u64 offset, u32 len,
  2167. unsigned dispatch_flags)
  2168. {
  2169. struct intel_engine_cs *ring = req->ring;
  2170. int ret;
  2171. ret = intel_ring_begin(req, 2);
  2172. if (ret)
  2173. return ret;
  2174. intel_ring_emit(ring,
  2175. MI_BATCH_BUFFER_START |
  2176. (dispatch_flags & I915_DISPATCH_SECURE ?
  2177. 0 : MI_BATCH_NON_SECURE_I965));
  2178. /* bit0-7 is the length on GEN6+ */
  2179. intel_ring_emit(ring, offset);
  2180. intel_ring_advance(ring);
  2181. return 0;
  2182. }
  2183. /* Blitter support (SandyBridge+) */
  2184. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2185. u32 invalidate, u32 flush)
  2186. {
  2187. struct intel_engine_cs *ring = req->ring;
  2188. struct drm_device *dev = ring->dev;
  2189. uint32_t cmd;
  2190. int ret;
  2191. ret = intel_ring_begin(req, 4);
  2192. if (ret)
  2193. return ret;
  2194. cmd = MI_FLUSH_DW;
  2195. if (INTEL_INFO(dev)->gen >= 8)
  2196. cmd += 1;
  2197. /* We always require a command barrier so that subsequent
  2198. * commands, such as breadcrumb interrupts, are strictly ordered
  2199. * wrt the contents of the write cache being flushed to memory
  2200. * (and thus being coherent from the CPU).
  2201. */
  2202. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2203. /*
  2204. * Bspec vol 1c.3 - blitter engine command streamer:
  2205. * "If ENABLED, all TLBs will be invalidated once the flush
  2206. * operation is complete. This bit is only valid when the
  2207. * Post-Sync Operation field is a value of 1h or 3h."
  2208. */
  2209. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2210. cmd |= MI_INVALIDATE_TLB;
  2211. intel_ring_emit(ring, cmd);
  2212. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2213. if (INTEL_INFO(dev)->gen >= 8) {
  2214. intel_ring_emit(ring, 0); /* upper addr */
  2215. intel_ring_emit(ring, 0); /* value */
  2216. } else {
  2217. intel_ring_emit(ring, 0);
  2218. intel_ring_emit(ring, MI_NOOP);
  2219. }
  2220. intel_ring_advance(ring);
  2221. return 0;
  2222. }
  2223. int intel_init_render_ring_buffer(struct drm_device *dev)
  2224. {
  2225. struct drm_i915_private *dev_priv = dev->dev_private;
  2226. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2227. struct drm_i915_gem_object *obj;
  2228. int ret;
  2229. ring->name = "render ring";
  2230. ring->id = RCS;
  2231. ring->mmio_base = RENDER_RING_BASE;
  2232. if (INTEL_INFO(dev)->gen >= 8) {
  2233. if (i915_semaphore_is_enabled(dev)) {
  2234. obj = i915_gem_alloc_object(dev, 4096);
  2235. if (obj == NULL) {
  2236. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2237. i915.semaphores = 0;
  2238. } else {
  2239. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2240. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2241. if (ret != 0) {
  2242. drm_gem_object_unreference(&obj->base);
  2243. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2244. i915.semaphores = 0;
  2245. } else
  2246. dev_priv->semaphore_obj = obj;
  2247. }
  2248. }
  2249. ring->init_context = intel_rcs_ctx_init;
  2250. ring->add_request = gen6_add_request;
  2251. ring->flush = gen8_render_ring_flush;
  2252. ring->irq_get = gen8_ring_get_irq;
  2253. ring->irq_put = gen8_ring_put_irq;
  2254. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2255. ring->get_seqno = gen6_ring_get_seqno;
  2256. ring->set_seqno = ring_set_seqno;
  2257. if (i915_semaphore_is_enabled(dev)) {
  2258. WARN_ON(!dev_priv->semaphore_obj);
  2259. ring->semaphore.sync_to = gen8_ring_sync;
  2260. ring->semaphore.signal = gen8_rcs_signal;
  2261. GEN8_RING_SEMAPHORE_INIT;
  2262. }
  2263. } else if (INTEL_INFO(dev)->gen >= 6) {
  2264. ring->init_context = intel_rcs_ctx_init;
  2265. ring->add_request = gen6_add_request;
  2266. ring->flush = gen7_render_ring_flush;
  2267. if (INTEL_INFO(dev)->gen == 6)
  2268. ring->flush = gen6_render_ring_flush;
  2269. ring->irq_get = gen6_ring_get_irq;
  2270. ring->irq_put = gen6_ring_put_irq;
  2271. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2272. ring->get_seqno = gen6_ring_get_seqno;
  2273. ring->set_seqno = ring_set_seqno;
  2274. if (i915_semaphore_is_enabled(dev)) {
  2275. ring->semaphore.sync_to = gen6_ring_sync;
  2276. ring->semaphore.signal = gen6_signal;
  2277. /*
  2278. * The current semaphore is only applied on pre-gen8
  2279. * platform. And there is no VCS2 ring on the pre-gen8
  2280. * platform. So the semaphore between RCS and VCS2 is
  2281. * initialized as INVALID. Gen8 will initialize the
  2282. * sema between VCS2 and RCS later.
  2283. */
  2284. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2285. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2286. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2287. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2288. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2289. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2290. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2291. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2292. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2293. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2294. }
  2295. } else if (IS_GEN5(dev)) {
  2296. ring->add_request = pc_render_add_request;
  2297. ring->flush = gen4_render_ring_flush;
  2298. ring->get_seqno = pc_render_get_seqno;
  2299. ring->set_seqno = pc_render_set_seqno;
  2300. ring->irq_get = gen5_ring_get_irq;
  2301. ring->irq_put = gen5_ring_put_irq;
  2302. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2303. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2304. } else {
  2305. ring->add_request = i9xx_add_request;
  2306. if (INTEL_INFO(dev)->gen < 4)
  2307. ring->flush = gen2_render_ring_flush;
  2308. else
  2309. ring->flush = gen4_render_ring_flush;
  2310. ring->get_seqno = ring_get_seqno;
  2311. ring->set_seqno = ring_set_seqno;
  2312. if (IS_GEN2(dev)) {
  2313. ring->irq_get = i8xx_ring_get_irq;
  2314. ring->irq_put = i8xx_ring_put_irq;
  2315. } else {
  2316. ring->irq_get = i9xx_ring_get_irq;
  2317. ring->irq_put = i9xx_ring_put_irq;
  2318. }
  2319. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2320. }
  2321. ring->write_tail = ring_write_tail;
  2322. if (IS_HASWELL(dev))
  2323. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2324. else if (IS_GEN8(dev))
  2325. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2326. else if (INTEL_INFO(dev)->gen >= 6)
  2327. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2328. else if (INTEL_INFO(dev)->gen >= 4)
  2329. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2330. else if (IS_I830(dev) || IS_845G(dev))
  2331. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2332. else
  2333. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2334. ring->init_hw = init_render_ring;
  2335. ring->cleanup = render_ring_cleanup;
  2336. /* Workaround batchbuffer to combat CS tlb bug. */
  2337. if (HAS_BROKEN_CS_TLB(dev)) {
  2338. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2339. if (obj == NULL) {
  2340. DRM_ERROR("Failed to allocate batch bo\n");
  2341. return -ENOMEM;
  2342. }
  2343. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2344. if (ret != 0) {
  2345. drm_gem_object_unreference(&obj->base);
  2346. DRM_ERROR("Failed to ping batch bo\n");
  2347. return ret;
  2348. }
  2349. ring->scratch.obj = obj;
  2350. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2351. }
  2352. ret = intel_init_ring_buffer(dev, ring);
  2353. if (ret)
  2354. return ret;
  2355. if (INTEL_INFO(dev)->gen >= 5) {
  2356. ret = intel_init_pipe_control(ring);
  2357. if (ret)
  2358. return ret;
  2359. }
  2360. return 0;
  2361. }
  2362. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2363. {
  2364. struct drm_i915_private *dev_priv = dev->dev_private;
  2365. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2366. ring->name = "bsd ring";
  2367. ring->id = VCS;
  2368. ring->write_tail = ring_write_tail;
  2369. if (INTEL_INFO(dev)->gen >= 6) {
  2370. ring->mmio_base = GEN6_BSD_RING_BASE;
  2371. /* gen6 bsd needs a special wa for tail updates */
  2372. if (IS_GEN6(dev))
  2373. ring->write_tail = gen6_bsd_ring_write_tail;
  2374. ring->flush = gen6_bsd_ring_flush;
  2375. ring->add_request = gen6_add_request;
  2376. ring->get_seqno = gen6_ring_get_seqno;
  2377. ring->set_seqno = ring_set_seqno;
  2378. if (INTEL_INFO(dev)->gen >= 8) {
  2379. ring->irq_enable_mask =
  2380. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2381. ring->irq_get = gen8_ring_get_irq;
  2382. ring->irq_put = gen8_ring_put_irq;
  2383. ring->dispatch_execbuffer =
  2384. gen8_ring_dispatch_execbuffer;
  2385. if (i915_semaphore_is_enabled(dev)) {
  2386. ring->semaphore.sync_to = gen8_ring_sync;
  2387. ring->semaphore.signal = gen8_xcs_signal;
  2388. GEN8_RING_SEMAPHORE_INIT;
  2389. }
  2390. } else {
  2391. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2392. ring->irq_get = gen6_ring_get_irq;
  2393. ring->irq_put = gen6_ring_put_irq;
  2394. ring->dispatch_execbuffer =
  2395. gen6_ring_dispatch_execbuffer;
  2396. if (i915_semaphore_is_enabled(dev)) {
  2397. ring->semaphore.sync_to = gen6_ring_sync;
  2398. ring->semaphore.signal = gen6_signal;
  2399. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2400. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2401. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2402. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2403. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2404. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2405. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2406. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2407. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2408. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2409. }
  2410. }
  2411. } else {
  2412. ring->mmio_base = BSD_RING_BASE;
  2413. ring->flush = bsd_ring_flush;
  2414. ring->add_request = i9xx_add_request;
  2415. ring->get_seqno = ring_get_seqno;
  2416. ring->set_seqno = ring_set_seqno;
  2417. if (IS_GEN5(dev)) {
  2418. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2419. ring->irq_get = gen5_ring_get_irq;
  2420. ring->irq_put = gen5_ring_put_irq;
  2421. } else {
  2422. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2423. ring->irq_get = i9xx_ring_get_irq;
  2424. ring->irq_put = i9xx_ring_put_irq;
  2425. }
  2426. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2427. }
  2428. ring->init_hw = init_ring_common;
  2429. return intel_init_ring_buffer(dev, ring);
  2430. }
  2431. /**
  2432. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2433. */
  2434. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2435. {
  2436. struct drm_i915_private *dev_priv = dev->dev_private;
  2437. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2438. ring->name = "bsd2 ring";
  2439. ring->id = VCS2;
  2440. ring->write_tail = ring_write_tail;
  2441. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2442. ring->flush = gen6_bsd_ring_flush;
  2443. ring->add_request = gen6_add_request;
  2444. ring->get_seqno = gen6_ring_get_seqno;
  2445. ring->set_seqno = ring_set_seqno;
  2446. ring->irq_enable_mask =
  2447. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2448. ring->irq_get = gen8_ring_get_irq;
  2449. ring->irq_put = gen8_ring_put_irq;
  2450. ring->dispatch_execbuffer =
  2451. gen8_ring_dispatch_execbuffer;
  2452. if (i915_semaphore_is_enabled(dev)) {
  2453. ring->semaphore.sync_to = gen8_ring_sync;
  2454. ring->semaphore.signal = gen8_xcs_signal;
  2455. GEN8_RING_SEMAPHORE_INIT;
  2456. }
  2457. ring->init_hw = init_ring_common;
  2458. return intel_init_ring_buffer(dev, ring);
  2459. }
  2460. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2461. {
  2462. struct drm_i915_private *dev_priv = dev->dev_private;
  2463. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2464. ring->name = "blitter ring";
  2465. ring->id = BCS;
  2466. ring->mmio_base = BLT_RING_BASE;
  2467. ring->write_tail = ring_write_tail;
  2468. ring->flush = gen6_ring_flush;
  2469. ring->add_request = gen6_add_request;
  2470. ring->get_seqno = gen6_ring_get_seqno;
  2471. ring->set_seqno = ring_set_seqno;
  2472. if (INTEL_INFO(dev)->gen >= 8) {
  2473. ring->irq_enable_mask =
  2474. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2475. ring->irq_get = gen8_ring_get_irq;
  2476. ring->irq_put = gen8_ring_put_irq;
  2477. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2478. if (i915_semaphore_is_enabled(dev)) {
  2479. ring->semaphore.sync_to = gen8_ring_sync;
  2480. ring->semaphore.signal = gen8_xcs_signal;
  2481. GEN8_RING_SEMAPHORE_INIT;
  2482. }
  2483. } else {
  2484. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2485. ring->irq_get = gen6_ring_get_irq;
  2486. ring->irq_put = gen6_ring_put_irq;
  2487. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2488. if (i915_semaphore_is_enabled(dev)) {
  2489. ring->semaphore.signal = gen6_signal;
  2490. ring->semaphore.sync_to = gen6_ring_sync;
  2491. /*
  2492. * The current semaphore is only applied on pre-gen8
  2493. * platform. And there is no VCS2 ring on the pre-gen8
  2494. * platform. So the semaphore between BCS and VCS2 is
  2495. * initialized as INVALID. Gen8 will initialize the
  2496. * sema between BCS and VCS2 later.
  2497. */
  2498. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2499. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2500. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2501. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2502. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2503. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2504. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2505. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2506. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2507. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2508. }
  2509. }
  2510. ring->init_hw = init_ring_common;
  2511. return intel_init_ring_buffer(dev, ring);
  2512. }
  2513. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2514. {
  2515. struct drm_i915_private *dev_priv = dev->dev_private;
  2516. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2517. ring->name = "video enhancement ring";
  2518. ring->id = VECS;
  2519. ring->mmio_base = VEBOX_RING_BASE;
  2520. ring->write_tail = ring_write_tail;
  2521. ring->flush = gen6_ring_flush;
  2522. ring->add_request = gen6_add_request;
  2523. ring->get_seqno = gen6_ring_get_seqno;
  2524. ring->set_seqno = ring_set_seqno;
  2525. if (INTEL_INFO(dev)->gen >= 8) {
  2526. ring->irq_enable_mask =
  2527. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2528. ring->irq_get = gen8_ring_get_irq;
  2529. ring->irq_put = gen8_ring_put_irq;
  2530. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2531. if (i915_semaphore_is_enabled(dev)) {
  2532. ring->semaphore.sync_to = gen8_ring_sync;
  2533. ring->semaphore.signal = gen8_xcs_signal;
  2534. GEN8_RING_SEMAPHORE_INIT;
  2535. }
  2536. } else {
  2537. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2538. ring->irq_get = hsw_vebox_get_irq;
  2539. ring->irq_put = hsw_vebox_put_irq;
  2540. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2541. if (i915_semaphore_is_enabled(dev)) {
  2542. ring->semaphore.sync_to = gen6_ring_sync;
  2543. ring->semaphore.signal = gen6_signal;
  2544. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2545. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2546. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2547. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2548. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2549. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2550. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2551. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2552. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2553. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2554. }
  2555. }
  2556. ring->init_hw = init_ring_common;
  2557. return intel_init_ring_buffer(dev, ring);
  2558. }
  2559. int
  2560. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2561. {
  2562. struct intel_engine_cs *ring = req->ring;
  2563. int ret;
  2564. if (!ring->gpu_caches_dirty)
  2565. return 0;
  2566. ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2567. if (ret)
  2568. return ret;
  2569. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2570. ring->gpu_caches_dirty = false;
  2571. return 0;
  2572. }
  2573. int
  2574. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2575. {
  2576. struct intel_engine_cs *ring = req->ring;
  2577. uint32_t flush_domains;
  2578. int ret;
  2579. flush_domains = 0;
  2580. if (ring->gpu_caches_dirty)
  2581. flush_domains = I915_GEM_GPU_DOMAINS;
  2582. ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2583. if (ret)
  2584. return ret;
  2585. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2586. ring->gpu_caches_dirty = false;
  2587. return 0;
  2588. }
  2589. void
  2590. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2591. {
  2592. int ret;
  2593. if (!intel_ring_initialized(ring))
  2594. return;
  2595. ret = intel_ring_idle(ring);
  2596. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2597. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2598. ring->name, ret);
  2599. stop_ring(ring);
  2600. }