sdma_v4_0.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771
  1. /*
  2. * Copyright 2016 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "amdgpu_ucode.h"
  27. #include "amdgpu_trace.h"
  28. #include "sdma0/sdma0_4_0_offset.h"
  29. #include "sdma0/sdma0_4_0_sh_mask.h"
  30. #include "sdma1/sdma1_4_0_offset.h"
  31. #include "sdma1/sdma1_4_0_sh_mask.h"
  32. #include "hdp/hdp_4_0_offset.h"
  33. #include "sdma0/sdma0_4_1_default.h"
  34. #include "soc15_common.h"
  35. #include "soc15.h"
  36. #include "vega10_sdma_pkt_open.h"
  37. #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
  38. #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
  39. MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  40. MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  41. MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
  42. MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
  43. MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
  44. MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
  45. MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  46. #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
  47. #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  48. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  49. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  50. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  51. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  52. static const struct soc15_reg_golden golden_settings_sdma_4[] = {
  53. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  54. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
  55. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  56. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  57. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  58. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  59. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
  60. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  61. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  62. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  63. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  64. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
  65. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
  66. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
  67. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
  68. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  69. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
  70. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  71. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
  72. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
  73. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  74. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
  75. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
  76. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0)
  77. };
  78. static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
  79. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
  80. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
  81. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
  82. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
  83. };
  84. static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
  85. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
  86. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
  87. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
  88. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
  89. };
  90. static const struct soc15_reg_golden golden_settings_sdma_4_1[] =
  91. {
  92. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  93. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
  94. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
  95. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  96. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
  97. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
  98. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  99. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
  100. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  101. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0)
  102. };
  103. static const struct soc15_reg_golden golden_settings_sdma_4_2[] =
  104. {
  105. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  106. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
  107. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
  108. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
  109. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  110. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  111. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
  112. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  113. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
  114. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
  115. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
  116. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
  117. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
  118. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  119. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  120. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  121. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
  122. SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0)
  123. };
  124. static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
  125. {
  126. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
  127. SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
  128. };
  129. static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
  130. u32 instance, u32 offset)
  131. {
  132. return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
  133. (adev->reg_offset[SDMA1_HWIP][0][0] + offset));
  134. }
  135. static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
  136. {
  137. switch (adev->asic_type) {
  138. case CHIP_VEGA10:
  139. soc15_program_register_sequence(adev,
  140. golden_settings_sdma_4,
  141. ARRAY_SIZE(golden_settings_sdma_4));
  142. soc15_program_register_sequence(adev,
  143. golden_settings_sdma_vg10,
  144. ARRAY_SIZE(golden_settings_sdma_vg10));
  145. break;
  146. case CHIP_VEGA12:
  147. soc15_program_register_sequence(adev,
  148. golden_settings_sdma_4,
  149. ARRAY_SIZE(golden_settings_sdma_4));
  150. soc15_program_register_sequence(adev,
  151. golden_settings_sdma_vg12,
  152. ARRAY_SIZE(golden_settings_sdma_vg12));
  153. break;
  154. case CHIP_VEGA20:
  155. soc15_program_register_sequence(adev,
  156. golden_settings_sdma_4_2,
  157. ARRAY_SIZE(golden_settings_sdma_4_2));
  158. break;
  159. case CHIP_RAVEN:
  160. soc15_program_register_sequence(adev,
  161. golden_settings_sdma_4_1,
  162. ARRAY_SIZE(golden_settings_sdma_4_1));
  163. soc15_program_register_sequence(adev,
  164. golden_settings_sdma_rv1,
  165. ARRAY_SIZE(golden_settings_sdma_rv1));
  166. break;
  167. default:
  168. break;
  169. }
  170. }
  171. /**
  172. * sdma_v4_0_init_microcode - load ucode images from disk
  173. *
  174. * @adev: amdgpu_device pointer
  175. *
  176. * Use the firmware interface to load the ucode images into
  177. * the driver (not loaded into hw).
  178. * Returns 0 on success, error on failure.
  179. */
  180. // emulation only, won't work on real chip
  181. // vega10 real chip need to use PSP to load firmware
  182. static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
  183. {
  184. const char *chip_name;
  185. char fw_name[30];
  186. int err = 0, i;
  187. struct amdgpu_firmware_info *info = NULL;
  188. const struct common_firmware_header *header = NULL;
  189. const struct sdma_firmware_header_v1_0 *hdr;
  190. DRM_DEBUG("\n");
  191. switch (adev->asic_type) {
  192. case CHIP_VEGA10:
  193. chip_name = "vega10";
  194. break;
  195. case CHIP_VEGA12:
  196. chip_name = "vega12";
  197. break;
  198. case CHIP_VEGA20:
  199. chip_name = "vega20";
  200. break;
  201. case CHIP_RAVEN:
  202. chip_name = "raven";
  203. break;
  204. default:
  205. BUG();
  206. }
  207. for (i = 0; i < adev->sdma.num_instances; i++) {
  208. if (i == 0)
  209. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  210. else
  211. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  212. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  213. if (err)
  214. goto out;
  215. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  216. if (err)
  217. goto out;
  218. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  219. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  220. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  221. if (adev->sdma.instance[i].feature_version >= 20)
  222. adev->sdma.instance[i].burst_nop = true;
  223. DRM_DEBUG("psp_load == '%s'\n",
  224. adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
  225. if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
  226. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  227. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  228. info->fw = adev->sdma.instance[i].fw;
  229. header = (const struct common_firmware_header *)info->fw->data;
  230. adev->firmware.fw_size +=
  231. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  232. }
  233. }
  234. out:
  235. if (err) {
  236. DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
  237. for (i = 0; i < adev->sdma.num_instances; i++) {
  238. release_firmware(adev->sdma.instance[i].fw);
  239. adev->sdma.instance[i].fw = NULL;
  240. }
  241. }
  242. return err;
  243. }
  244. /**
  245. * sdma_v4_0_ring_get_rptr - get the current read pointer
  246. *
  247. * @ring: amdgpu ring pointer
  248. *
  249. * Get the current rptr from the hardware (VEGA10+).
  250. */
  251. static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
  252. {
  253. u64 *rptr;
  254. /* XXX check if swapping is necessary on BE */
  255. rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
  256. DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
  257. return ((*rptr) >> 2);
  258. }
  259. /**
  260. * sdma_v4_0_ring_get_wptr - get the current write pointer
  261. *
  262. * @ring: amdgpu ring pointer
  263. *
  264. * Get the current wptr from the hardware (VEGA10+).
  265. */
  266. static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
  267. {
  268. struct amdgpu_device *adev = ring->adev;
  269. u64 wptr;
  270. if (ring->use_doorbell) {
  271. /* XXX check if swapping is necessary on BE */
  272. wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
  273. DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
  274. } else {
  275. u32 lowbit, highbit;
  276. lowbit = RREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR)) >> 2;
  277. highbit = RREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
  278. DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
  279. ring->me, highbit, lowbit);
  280. wptr = highbit;
  281. wptr = wptr << 32;
  282. wptr |= lowbit;
  283. }
  284. return wptr >> 2;
  285. }
  286. /**
  287. * sdma_v4_0_ring_set_wptr - commit the write pointer
  288. *
  289. * @ring: amdgpu ring pointer
  290. *
  291. * Write the wptr back to the hardware (VEGA10+).
  292. */
  293. static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
  294. {
  295. struct amdgpu_device *adev = ring->adev;
  296. DRM_DEBUG("Setting write pointer\n");
  297. if (ring->use_doorbell) {
  298. u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
  299. DRM_DEBUG("Using doorbell -- "
  300. "wptr_offs == 0x%08x "
  301. "lower_32_bits(ring->wptr) << 2 == 0x%08x "
  302. "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
  303. ring->wptr_offs,
  304. lower_32_bits(ring->wptr << 2),
  305. upper_32_bits(ring->wptr << 2));
  306. /* XXX check if swapping is necessary on BE */
  307. WRITE_ONCE(*wb, (ring->wptr << 2));
  308. DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
  309. ring->doorbell_index, ring->wptr << 2);
  310. WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
  311. } else {
  312. DRM_DEBUG("Not using doorbell -- "
  313. "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
  314. "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
  315. ring->me,
  316. lower_32_bits(ring->wptr << 2),
  317. ring->me,
  318. upper_32_bits(ring->wptr << 2));
  319. WREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
  320. WREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
  321. }
  322. }
  323. static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  324. {
  325. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  326. int i;
  327. for (i = 0; i < count; i++)
  328. if (sdma && sdma->burst_nop && (i == 0))
  329. amdgpu_ring_write(ring, ring->funcs->nop |
  330. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  331. else
  332. amdgpu_ring_write(ring, ring->funcs->nop);
  333. }
  334. /**
  335. * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
  336. *
  337. * @ring: amdgpu ring pointer
  338. * @ib: IB object to schedule
  339. *
  340. * Schedule an IB in the DMA ring (VEGA10).
  341. */
  342. static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
  343. struct amdgpu_ib *ib,
  344. unsigned vmid, bool ctx_switch)
  345. {
  346. /* IB packet must end on a 8 DW boundary */
  347. sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  348. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  349. SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
  350. /* base must be 32 byte aligned */
  351. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  352. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  353. amdgpu_ring_write(ring, ib->length_dw);
  354. amdgpu_ring_write(ring, 0);
  355. amdgpu_ring_write(ring, 0);
  356. }
  357. static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
  358. int mem_space, int hdp,
  359. uint32_t addr0, uint32_t addr1,
  360. uint32_t ref, uint32_t mask,
  361. uint32_t inv)
  362. {
  363. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  364. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
  365. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
  366. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  367. if (mem_space) {
  368. /* memory */
  369. amdgpu_ring_write(ring, addr0);
  370. amdgpu_ring_write(ring, addr1);
  371. } else {
  372. /* registers */
  373. amdgpu_ring_write(ring, addr0 << 2);
  374. amdgpu_ring_write(ring, addr1 << 2);
  375. }
  376. amdgpu_ring_write(ring, ref); /* reference */
  377. amdgpu_ring_write(ring, mask); /* mask */
  378. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  379. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
  380. }
  381. /**
  382. * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  383. *
  384. * @ring: amdgpu ring pointer
  385. *
  386. * Emit an hdp flush packet on the requested DMA ring.
  387. */
  388. static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  389. {
  390. struct amdgpu_device *adev = ring->adev;
  391. u32 ref_and_mask = 0;
  392. const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
  393. if (ring->me == 0)
  394. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
  395. else
  396. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
  397. sdma_v4_0_wait_reg_mem(ring, 0, 1,
  398. adev->nbio_funcs->get_hdp_flush_done_offset(adev),
  399. adev->nbio_funcs->get_hdp_flush_req_offset(adev),
  400. ref_and_mask, ref_and_mask, 10);
  401. }
  402. /**
  403. * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
  404. *
  405. * @ring: amdgpu ring pointer
  406. * @fence: amdgpu fence object
  407. *
  408. * Add a DMA fence packet to the ring to write
  409. * the fence seq number and DMA trap packet to generate
  410. * an interrupt if needed (VEGA10).
  411. */
  412. static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  413. unsigned flags)
  414. {
  415. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  416. /* write the fence */
  417. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  418. /* zero in first two bits */
  419. BUG_ON(addr & 0x3);
  420. amdgpu_ring_write(ring, lower_32_bits(addr));
  421. amdgpu_ring_write(ring, upper_32_bits(addr));
  422. amdgpu_ring_write(ring, lower_32_bits(seq));
  423. /* optionally write high bits as well */
  424. if (write64bit) {
  425. addr += 4;
  426. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  427. /* zero in first two bits */
  428. BUG_ON(addr & 0x3);
  429. amdgpu_ring_write(ring, lower_32_bits(addr));
  430. amdgpu_ring_write(ring, upper_32_bits(addr));
  431. amdgpu_ring_write(ring, upper_32_bits(seq));
  432. }
  433. /* generate an interrupt */
  434. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  435. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  436. }
  437. /**
  438. * sdma_v4_0_gfx_stop - stop the gfx async dma engines
  439. *
  440. * @adev: amdgpu_device pointer
  441. *
  442. * Stop the gfx async dma ring buffers (VEGA10).
  443. */
  444. static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
  445. {
  446. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  447. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  448. u32 rb_cntl, ib_cntl;
  449. int i;
  450. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  451. (adev->mman.buffer_funcs_ring == sdma1))
  452. amdgpu_ttm_set_buffer_funcs_status(adev, false);
  453. for (i = 0; i < adev->sdma.num_instances; i++) {
  454. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
  455. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  456. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  457. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
  458. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  459. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  460. }
  461. sdma0->ready = false;
  462. sdma1->ready = false;
  463. }
  464. /**
  465. * sdma_v4_0_rlc_stop - stop the compute async dma engines
  466. *
  467. * @adev: amdgpu_device pointer
  468. *
  469. * Stop the compute async dma queues (VEGA10).
  470. */
  471. static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
  472. {
  473. /* XXX todo */
  474. }
  475. /**
  476. * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
  477. *
  478. * @adev: amdgpu_device pointer
  479. * @enable: enable/disable the DMA MEs context switch.
  480. *
  481. * Halt or unhalt the async dma engines context switch (VEGA10).
  482. */
  483. static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  484. {
  485. u32 f32_cntl, phase_quantum = 0;
  486. int i;
  487. if (amdgpu_sdma_phase_quantum) {
  488. unsigned value = amdgpu_sdma_phase_quantum;
  489. unsigned unit = 0;
  490. while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  491. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
  492. value = (value + 1) >> 1;
  493. unit++;
  494. }
  495. if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  496. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
  497. value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  498. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
  499. unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  500. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
  501. WARN_ONCE(1,
  502. "clamping sdma_phase_quantum to %uK clock cycles\n",
  503. value << unit);
  504. }
  505. phase_quantum =
  506. value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
  507. unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
  508. }
  509. for (i = 0; i < adev->sdma.num_instances; i++) {
  510. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
  511. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  512. AUTO_CTXSW_ENABLE, enable ? 1 : 0);
  513. if (enable && amdgpu_sdma_phase_quantum) {
  514. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
  515. phase_quantum);
  516. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
  517. phase_quantum);
  518. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
  519. phase_quantum);
  520. }
  521. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
  522. }
  523. }
  524. /**
  525. * sdma_v4_0_enable - stop the async dma engines
  526. *
  527. * @adev: amdgpu_device pointer
  528. * @enable: enable/disable the DMA MEs.
  529. *
  530. * Halt or unhalt the async dma engines (VEGA10).
  531. */
  532. static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
  533. {
  534. u32 f32_cntl;
  535. int i;
  536. if (enable == false) {
  537. sdma_v4_0_gfx_stop(adev);
  538. sdma_v4_0_rlc_stop(adev);
  539. }
  540. for (i = 0; i < adev->sdma.num_instances; i++) {
  541. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
  542. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
  543. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
  544. }
  545. }
  546. /**
  547. * sdma_v4_0_gfx_resume - setup and start the async dma engines
  548. *
  549. * @adev: amdgpu_device pointer
  550. *
  551. * Set up the gfx DMA ring buffers and enable them (VEGA10).
  552. * Returns 0 for success, error for failure.
  553. */
  554. static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
  555. {
  556. struct amdgpu_ring *ring;
  557. u32 rb_cntl, ib_cntl, wptr_poll_cntl;
  558. u32 rb_bufsz;
  559. u32 wb_offset;
  560. u32 doorbell;
  561. u32 doorbell_offset;
  562. u32 temp;
  563. u64 wptr_gpu_addr;
  564. int i, r;
  565. for (i = 0; i < adev->sdma.num_instances; i++) {
  566. ring = &adev->sdma.instance[i].ring;
  567. wb_offset = (ring->rptr_offs * 4);
  568. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
  569. /* Set ring buffer size in dwords */
  570. rb_bufsz = order_base_2(ring->ring_size / 4);
  571. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
  572. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  573. #ifdef __BIG_ENDIAN
  574. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  575. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  576. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  577. #endif
  578. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  579. /* Initialize the ring buffer's read and write pointers */
  580. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
  581. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
  582. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
  583. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
  584. /* set the wb address whether it's enabled or not */
  585. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
  586. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  587. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
  588. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  589. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  590. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
  591. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
  592. ring->wptr = 0;
  593. /* before programing wptr to a less value, need set minor_ptr_update first */
  594. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
  595. if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
  596. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
  597. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
  598. }
  599. doorbell = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
  600. doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
  601. if (ring->use_doorbell) {
  602. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  603. doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
  604. OFFSET, ring->doorbell_index);
  605. } else {
  606. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  607. }
  608. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
  609. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
  610. adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
  611. ring->doorbell_index);
  612. if (amdgpu_sriov_vf(adev))
  613. sdma_v4_0_ring_set_wptr(ring);
  614. /* set minor_ptr_update to 0 after wptr programed */
  615. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
  616. /* set utc l1 enable flag always to 1 */
  617. temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
  618. temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
  619. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
  620. if (!amdgpu_sriov_vf(adev)) {
  621. /* unhalt engine */
  622. temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
  623. temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
  624. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
  625. }
  626. /* setup the wptr shadow polling */
  627. wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
  628. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
  629. lower_32_bits(wptr_gpu_addr));
  630. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
  631. upper_32_bits(wptr_gpu_addr));
  632. wptr_poll_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
  633. if (amdgpu_sriov_vf(adev))
  634. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
  635. else
  636. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
  637. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl);
  638. /* enable DMA RB */
  639. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  640. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  641. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
  642. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  643. #ifdef __BIG_ENDIAN
  644. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  645. #endif
  646. /* enable DMA IBs */
  647. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  648. ring->ready = true;
  649. if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
  650. sdma_v4_0_ctx_switch_enable(adev, true);
  651. sdma_v4_0_enable(adev, true);
  652. }
  653. r = amdgpu_ring_test_ring(ring);
  654. if (r) {
  655. ring->ready = false;
  656. return r;
  657. }
  658. if (adev->mman.buffer_funcs_ring == ring)
  659. amdgpu_ttm_set_buffer_funcs_status(adev, true);
  660. }
  661. return 0;
  662. }
  663. static void
  664. sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
  665. {
  666. uint32_t def, data;
  667. if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
  668. /* disable idle interrupt */
  669. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  670. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  671. if (data != def)
  672. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  673. } else {
  674. /* disable idle interrupt */
  675. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  676. data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  677. if (data != def)
  678. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  679. }
  680. }
  681. static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
  682. {
  683. uint32_t def, data;
  684. /* Enable HW based PG. */
  685. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  686. data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
  687. if (data != def)
  688. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  689. /* enable interrupt */
  690. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  691. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  692. if (data != def)
  693. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  694. /* Configure hold time to filter in-valid power on/off request. Use default right now */
  695. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  696. data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
  697. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
  698. /* Configure switch time for hysteresis purpose. Use default right now */
  699. data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
  700. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
  701. if(data != def)
  702. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  703. }
  704. static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
  705. {
  706. if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
  707. return;
  708. switch (adev->asic_type) {
  709. case CHIP_RAVEN:
  710. sdma_v4_1_init_power_gating(adev);
  711. sdma_v4_1_update_power_gating(adev, true);
  712. break;
  713. default:
  714. break;
  715. }
  716. }
  717. /**
  718. * sdma_v4_0_rlc_resume - setup and start the async dma engines
  719. *
  720. * @adev: amdgpu_device pointer
  721. *
  722. * Set up the compute DMA queues and enable them (VEGA10).
  723. * Returns 0 for success, error for failure.
  724. */
  725. static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
  726. {
  727. sdma_v4_0_init_pg(adev);
  728. return 0;
  729. }
  730. /**
  731. * sdma_v4_0_load_microcode - load the sDMA ME ucode
  732. *
  733. * @adev: amdgpu_device pointer
  734. *
  735. * Loads the sDMA0/1 ucode.
  736. * Returns 0 for success, -EINVAL if the ucode is not available.
  737. */
  738. static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
  739. {
  740. const struct sdma_firmware_header_v1_0 *hdr;
  741. const __le32 *fw_data;
  742. u32 fw_size;
  743. int i, j;
  744. /* halt the MEs */
  745. sdma_v4_0_enable(adev, false);
  746. for (i = 0; i < adev->sdma.num_instances; i++) {
  747. if (!adev->sdma.instance[i].fw)
  748. return -EINVAL;
  749. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  750. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  751. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  752. fw_data = (const __le32 *)
  753. (adev->sdma.instance[i].fw->data +
  754. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  755. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
  756. for (j = 0; j < fw_size; j++)
  757. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
  758. WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
  759. }
  760. return 0;
  761. }
  762. /**
  763. * sdma_v4_0_start - setup and start the async dma engines
  764. *
  765. * @adev: amdgpu_device pointer
  766. *
  767. * Set up the DMA engines and enable them (VEGA10).
  768. * Returns 0 for success, error for failure.
  769. */
  770. static int sdma_v4_0_start(struct amdgpu_device *adev)
  771. {
  772. int r = 0;
  773. if (amdgpu_sriov_vf(adev)) {
  774. sdma_v4_0_ctx_switch_enable(adev, false);
  775. sdma_v4_0_enable(adev, false);
  776. /* set RB registers */
  777. r = sdma_v4_0_gfx_resume(adev);
  778. return r;
  779. }
  780. if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
  781. r = sdma_v4_0_load_microcode(adev);
  782. if (r)
  783. return r;
  784. }
  785. /* unhalt the MEs */
  786. sdma_v4_0_enable(adev, true);
  787. /* enable sdma ring preemption */
  788. sdma_v4_0_ctx_switch_enable(adev, true);
  789. /* start the gfx rings and rlc compute queues */
  790. r = sdma_v4_0_gfx_resume(adev);
  791. if (r)
  792. return r;
  793. r = sdma_v4_0_rlc_resume(adev);
  794. return r;
  795. }
  796. /**
  797. * sdma_v4_0_ring_test_ring - simple async dma engine test
  798. *
  799. * @ring: amdgpu_ring structure holding ring information
  800. *
  801. * Test the DMA engine by writing using it to write an
  802. * value to memory. (VEGA10).
  803. * Returns 0 for success, error for failure.
  804. */
  805. static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
  806. {
  807. struct amdgpu_device *adev = ring->adev;
  808. unsigned i;
  809. unsigned index;
  810. int r;
  811. u32 tmp;
  812. u64 gpu_addr;
  813. r = amdgpu_device_wb_get(adev, &index);
  814. if (r) {
  815. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  816. return r;
  817. }
  818. gpu_addr = adev->wb.gpu_addr + (index * 4);
  819. tmp = 0xCAFEDEAD;
  820. adev->wb.wb[index] = cpu_to_le32(tmp);
  821. r = amdgpu_ring_alloc(ring, 5);
  822. if (r) {
  823. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  824. amdgpu_device_wb_free(adev, index);
  825. return r;
  826. }
  827. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  828. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  829. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  830. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  831. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
  832. amdgpu_ring_write(ring, 0xDEADBEEF);
  833. amdgpu_ring_commit(ring);
  834. for (i = 0; i < adev->usec_timeout; i++) {
  835. tmp = le32_to_cpu(adev->wb.wb[index]);
  836. if (tmp == 0xDEADBEEF)
  837. break;
  838. DRM_UDELAY(1);
  839. }
  840. if (i < adev->usec_timeout) {
  841. DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  842. } else {
  843. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  844. ring->idx, tmp);
  845. r = -EINVAL;
  846. }
  847. amdgpu_device_wb_free(adev, index);
  848. return r;
  849. }
  850. /**
  851. * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
  852. *
  853. * @ring: amdgpu_ring structure holding ring information
  854. *
  855. * Test a simple IB in the DMA ring (VEGA10).
  856. * Returns 0 on success, error on failure.
  857. */
  858. static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  859. {
  860. struct amdgpu_device *adev = ring->adev;
  861. struct amdgpu_ib ib;
  862. struct dma_fence *f = NULL;
  863. unsigned index;
  864. long r;
  865. u32 tmp = 0;
  866. u64 gpu_addr;
  867. r = amdgpu_device_wb_get(adev, &index);
  868. if (r) {
  869. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  870. return r;
  871. }
  872. gpu_addr = adev->wb.gpu_addr + (index * 4);
  873. tmp = 0xCAFEDEAD;
  874. adev->wb.wb[index] = cpu_to_le32(tmp);
  875. memset(&ib, 0, sizeof(ib));
  876. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  877. if (r) {
  878. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  879. goto err0;
  880. }
  881. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  882. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  883. ib.ptr[1] = lower_32_bits(gpu_addr);
  884. ib.ptr[2] = upper_32_bits(gpu_addr);
  885. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
  886. ib.ptr[4] = 0xDEADBEEF;
  887. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  888. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  889. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  890. ib.length_dw = 8;
  891. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  892. if (r)
  893. goto err1;
  894. r = dma_fence_wait_timeout(f, false, timeout);
  895. if (r == 0) {
  896. DRM_ERROR("amdgpu: IB test timed out\n");
  897. r = -ETIMEDOUT;
  898. goto err1;
  899. } else if (r < 0) {
  900. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  901. goto err1;
  902. }
  903. tmp = le32_to_cpu(adev->wb.wb[index]);
  904. if (tmp == 0xDEADBEEF) {
  905. DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
  906. r = 0;
  907. } else {
  908. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  909. r = -EINVAL;
  910. }
  911. err1:
  912. amdgpu_ib_free(adev, &ib, NULL);
  913. dma_fence_put(f);
  914. err0:
  915. amdgpu_device_wb_free(adev, index);
  916. return r;
  917. }
  918. /**
  919. * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
  920. *
  921. * @ib: indirect buffer to fill with commands
  922. * @pe: addr of the page entry
  923. * @src: src addr to copy from
  924. * @count: number of page entries to update
  925. *
  926. * Update PTEs by copying them from the GART using sDMA (VEGA10).
  927. */
  928. static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
  929. uint64_t pe, uint64_t src,
  930. unsigned count)
  931. {
  932. unsigned bytes = count * 8;
  933. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  934. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  935. ib->ptr[ib->length_dw++] = bytes - 1;
  936. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  937. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  938. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  939. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  940. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  941. }
  942. /**
  943. * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
  944. *
  945. * @ib: indirect buffer to fill with commands
  946. * @pe: addr of the page entry
  947. * @addr: dst addr to write into pe
  948. * @count: number of page entries to update
  949. * @incr: increase next addr by incr bytes
  950. * @flags: access flags
  951. *
  952. * Update PTEs by writing them manually using sDMA (VEGA10).
  953. */
  954. static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  955. uint64_t value, unsigned count,
  956. uint32_t incr)
  957. {
  958. unsigned ndw = count * 2;
  959. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  960. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  961. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  962. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  963. ib->ptr[ib->length_dw++] = ndw - 1;
  964. for (; ndw > 0; ndw -= 2) {
  965. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  966. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  967. value += incr;
  968. }
  969. }
  970. /**
  971. * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
  972. *
  973. * @ib: indirect buffer to fill with commands
  974. * @pe: addr of the page entry
  975. * @addr: dst addr to write into pe
  976. * @count: number of page entries to update
  977. * @incr: increase next addr by incr bytes
  978. * @flags: access flags
  979. *
  980. * Update the page tables using sDMA (VEGA10).
  981. */
  982. static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  983. uint64_t pe,
  984. uint64_t addr, unsigned count,
  985. uint32_t incr, uint64_t flags)
  986. {
  987. /* for physically contiguous pages (vram) */
  988. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
  989. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  990. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  991. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  992. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  993. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  994. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  995. ib->ptr[ib->length_dw++] = incr; /* increment size */
  996. ib->ptr[ib->length_dw++] = 0;
  997. ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
  998. }
  999. /**
  1000. * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
  1001. *
  1002. * @ib: indirect buffer to fill with padding
  1003. *
  1004. */
  1005. static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  1006. {
  1007. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  1008. u32 pad_count;
  1009. int i;
  1010. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  1011. for (i = 0; i < pad_count; i++)
  1012. if (sdma && sdma->burst_nop && (i == 0))
  1013. ib->ptr[ib->length_dw++] =
  1014. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  1015. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  1016. else
  1017. ib->ptr[ib->length_dw++] =
  1018. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  1019. }
  1020. /**
  1021. * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
  1022. *
  1023. * @ring: amdgpu_ring pointer
  1024. *
  1025. * Make sure all previous operations are completed (CIK).
  1026. */
  1027. static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  1028. {
  1029. uint32_t seq = ring->fence_drv.sync_seq;
  1030. uint64_t addr = ring->fence_drv.gpu_addr;
  1031. /* wait for idle */
  1032. sdma_v4_0_wait_reg_mem(ring, 1, 0,
  1033. addr & 0xfffffffc,
  1034. upper_32_bits(addr) & 0xffffffff,
  1035. seq, 0xffffffff, 4);
  1036. }
  1037. /**
  1038. * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
  1039. *
  1040. * @ring: amdgpu_ring pointer
  1041. * @vm: amdgpu_vm pointer
  1042. *
  1043. * Update the page table base and flush the VM TLB
  1044. * using sDMA (VEGA10).
  1045. */
  1046. static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  1047. unsigned vmid, uint64_t pd_addr)
  1048. {
  1049. amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
  1050. }
  1051. static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
  1052. uint32_t reg, uint32_t val)
  1053. {
  1054. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1055. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1056. amdgpu_ring_write(ring, reg);
  1057. amdgpu_ring_write(ring, val);
  1058. }
  1059. static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
  1060. uint32_t val, uint32_t mask)
  1061. {
  1062. sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
  1063. }
  1064. static int sdma_v4_0_early_init(void *handle)
  1065. {
  1066. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1067. if (adev->asic_type == CHIP_RAVEN)
  1068. adev->sdma.num_instances = 1;
  1069. else
  1070. adev->sdma.num_instances = 2;
  1071. sdma_v4_0_set_ring_funcs(adev);
  1072. sdma_v4_0_set_buffer_funcs(adev);
  1073. sdma_v4_0_set_vm_pte_funcs(adev);
  1074. sdma_v4_0_set_irq_funcs(adev);
  1075. return 0;
  1076. }
  1077. static int sdma_v4_0_sw_init(void *handle)
  1078. {
  1079. struct amdgpu_ring *ring;
  1080. int r, i;
  1081. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1082. /* SDMA trap event */
  1083. r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
  1084. &adev->sdma.trap_irq);
  1085. if (r)
  1086. return r;
  1087. /* SDMA trap event */
  1088. r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
  1089. &adev->sdma.trap_irq);
  1090. if (r)
  1091. return r;
  1092. r = sdma_v4_0_init_microcode(adev);
  1093. if (r) {
  1094. DRM_ERROR("Failed to load sdma firmware!\n");
  1095. return r;
  1096. }
  1097. for (i = 0; i < adev->sdma.num_instances; i++) {
  1098. ring = &adev->sdma.instance[i].ring;
  1099. ring->ring_obj = NULL;
  1100. ring->use_doorbell = true;
  1101. DRM_INFO("use_doorbell being set to: [%s]\n",
  1102. ring->use_doorbell?"true":"false");
  1103. ring->doorbell_index = (i == 0) ?
  1104. (AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
  1105. : (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
  1106. sprintf(ring->name, "sdma%d", i);
  1107. r = amdgpu_ring_init(adev, ring, 1024,
  1108. &adev->sdma.trap_irq,
  1109. (i == 0) ?
  1110. AMDGPU_SDMA_IRQ_TRAP0 :
  1111. AMDGPU_SDMA_IRQ_TRAP1);
  1112. if (r)
  1113. return r;
  1114. }
  1115. return r;
  1116. }
  1117. static int sdma_v4_0_sw_fini(void *handle)
  1118. {
  1119. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1120. int i;
  1121. for (i = 0; i < adev->sdma.num_instances; i++)
  1122. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1123. for (i = 0; i < adev->sdma.num_instances; i++) {
  1124. release_firmware(adev->sdma.instance[i].fw);
  1125. adev->sdma.instance[i].fw = NULL;
  1126. }
  1127. return 0;
  1128. }
  1129. static int sdma_v4_0_hw_init(void *handle)
  1130. {
  1131. int r;
  1132. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1133. sdma_v4_0_init_golden_registers(adev);
  1134. r = sdma_v4_0_start(adev);
  1135. return r;
  1136. }
  1137. static int sdma_v4_0_hw_fini(void *handle)
  1138. {
  1139. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1140. if (amdgpu_sriov_vf(adev))
  1141. return 0;
  1142. sdma_v4_0_ctx_switch_enable(adev, false);
  1143. sdma_v4_0_enable(adev, false);
  1144. return 0;
  1145. }
  1146. static int sdma_v4_0_suspend(void *handle)
  1147. {
  1148. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1149. return sdma_v4_0_hw_fini(adev);
  1150. }
  1151. static int sdma_v4_0_resume(void *handle)
  1152. {
  1153. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1154. return sdma_v4_0_hw_init(adev);
  1155. }
  1156. static bool sdma_v4_0_is_idle(void *handle)
  1157. {
  1158. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1159. u32 i;
  1160. for (i = 0; i < adev->sdma.num_instances; i++) {
  1161. u32 tmp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
  1162. if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
  1163. return false;
  1164. }
  1165. return true;
  1166. }
  1167. static int sdma_v4_0_wait_for_idle(void *handle)
  1168. {
  1169. unsigned i;
  1170. u32 sdma0, sdma1;
  1171. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1172. for (i = 0; i < adev->usec_timeout; i++) {
  1173. sdma0 = RREG32(sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
  1174. sdma1 = RREG32(sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
  1175. if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
  1176. return 0;
  1177. udelay(1);
  1178. }
  1179. return -ETIMEDOUT;
  1180. }
  1181. static int sdma_v4_0_soft_reset(void *handle)
  1182. {
  1183. /* todo */
  1184. return 0;
  1185. }
  1186. static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
  1187. struct amdgpu_irq_src *source,
  1188. unsigned type,
  1189. enum amdgpu_interrupt_state state)
  1190. {
  1191. u32 sdma_cntl;
  1192. u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
  1193. sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
  1194. sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
  1195. sdma_cntl = RREG32(reg_offset);
  1196. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
  1197. state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
  1198. WREG32(reg_offset, sdma_cntl);
  1199. return 0;
  1200. }
  1201. static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
  1202. struct amdgpu_irq_src *source,
  1203. struct amdgpu_iv_entry *entry)
  1204. {
  1205. DRM_DEBUG("IH: SDMA trap\n");
  1206. switch (entry->client_id) {
  1207. case SOC15_IH_CLIENTID_SDMA0:
  1208. switch (entry->ring_id) {
  1209. case 0:
  1210. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1211. break;
  1212. case 1:
  1213. /* XXX compute */
  1214. break;
  1215. case 2:
  1216. /* XXX compute */
  1217. break;
  1218. case 3:
  1219. /* XXX page queue*/
  1220. break;
  1221. }
  1222. break;
  1223. case SOC15_IH_CLIENTID_SDMA1:
  1224. switch (entry->ring_id) {
  1225. case 0:
  1226. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1227. break;
  1228. case 1:
  1229. /* XXX compute */
  1230. break;
  1231. case 2:
  1232. /* XXX compute */
  1233. break;
  1234. case 3:
  1235. /* XXX page queue*/
  1236. break;
  1237. }
  1238. break;
  1239. }
  1240. return 0;
  1241. }
  1242. static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1243. struct amdgpu_irq_src *source,
  1244. struct amdgpu_iv_entry *entry)
  1245. {
  1246. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1247. schedule_work(&adev->reset_work);
  1248. return 0;
  1249. }
  1250. static void sdma_v4_0_update_medium_grain_clock_gating(
  1251. struct amdgpu_device *adev,
  1252. bool enable)
  1253. {
  1254. uint32_t data, def;
  1255. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1256. /* enable sdma0 clock gating */
  1257. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1258. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1259. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1260. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1261. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1262. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1263. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1264. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1265. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1266. if (def != data)
  1267. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1268. if (adev->sdma.num_instances > 1) {
  1269. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1270. data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1271. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1272. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1273. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1274. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1275. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1276. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1277. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1278. if (def != data)
  1279. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1280. }
  1281. } else {
  1282. /* disable sdma0 clock gating */
  1283. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1284. data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1285. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1286. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1287. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1288. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1289. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1290. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1291. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1292. if (def != data)
  1293. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1294. if (adev->sdma.num_instances > 1) {
  1295. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1296. data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1297. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1298. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1299. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1300. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1301. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1302. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1303. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1304. if (def != data)
  1305. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1306. }
  1307. }
  1308. }
  1309. static void sdma_v4_0_update_medium_grain_light_sleep(
  1310. struct amdgpu_device *adev,
  1311. bool enable)
  1312. {
  1313. uint32_t data, def;
  1314. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1315. /* 1-not override: enable sdma0 mem light sleep */
  1316. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1317. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1318. if (def != data)
  1319. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1320. /* 1-not override: enable sdma1 mem light sleep */
  1321. if (adev->sdma.num_instances > 1) {
  1322. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1323. data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1324. if (def != data)
  1325. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1326. }
  1327. } else {
  1328. /* 0-override:disable sdma0 mem light sleep */
  1329. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1330. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1331. if (def != data)
  1332. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1333. /* 0-override:disable sdma1 mem light sleep */
  1334. if (adev->sdma.num_instances > 1) {
  1335. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1336. data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1337. if (def != data)
  1338. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1339. }
  1340. }
  1341. }
  1342. static int sdma_v4_0_set_clockgating_state(void *handle,
  1343. enum amd_clockgating_state state)
  1344. {
  1345. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1346. if (amdgpu_sriov_vf(adev))
  1347. return 0;
  1348. switch (adev->asic_type) {
  1349. case CHIP_VEGA10:
  1350. case CHIP_VEGA12:
  1351. case CHIP_VEGA20:
  1352. case CHIP_RAVEN:
  1353. sdma_v4_0_update_medium_grain_clock_gating(adev,
  1354. state == AMD_CG_STATE_GATE ? true : false);
  1355. sdma_v4_0_update_medium_grain_light_sleep(adev,
  1356. state == AMD_CG_STATE_GATE ? true : false);
  1357. break;
  1358. default:
  1359. break;
  1360. }
  1361. return 0;
  1362. }
  1363. static int sdma_v4_0_set_powergating_state(void *handle,
  1364. enum amd_powergating_state state)
  1365. {
  1366. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1367. switch (adev->asic_type) {
  1368. case CHIP_RAVEN:
  1369. sdma_v4_1_update_power_gating(adev,
  1370. state == AMD_PG_STATE_GATE ? true : false);
  1371. break;
  1372. default:
  1373. break;
  1374. }
  1375. return 0;
  1376. }
  1377. static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
  1378. {
  1379. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1380. int data;
  1381. if (amdgpu_sriov_vf(adev))
  1382. *flags = 0;
  1383. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1384. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1385. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
  1386. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1387. /* AMD_CG_SUPPORT_SDMA_LS */
  1388. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1389. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1390. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1391. }
  1392. const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
  1393. .name = "sdma_v4_0",
  1394. .early_init = sdma_v4_0_early_init,
  1395. .late_init = NULL,
  1396. .sw_init = sdma_v4_0_sw_init,
  1397. .sw_fini = sdma_v4_0_sw_fini,
  1398. .hw_init = sdma_v4_0_hw_init,
  1399. .hw_fini = sdma_v4_0_hw_fini,
  1400. .suspend = sdma_v4_0_suspend,
  1401. .resume = sdma_v4_0_resume,
  1402. .is_idle = sdma_v4_0_is_idle,
  1403. .wait_for_idle = sdma_v4_0_wait_for_idle,
  1404. .soft_reset = sdma_v4_0_soft_reset,
  1405. .set_clockgating_state = sdma_v4_0_set_clockgating_state,
  1406. .set_powergating_state = sdma_v4_0_set_powergating_state,
  1407. .get_clockgating_state = sdma_v4_0_get_clockgating_state,
  1408. };
  1409. static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
  1410. .type = AMDGPU_RING_TYPE_SDMA,
  1411. .align_mask = 0xf,
  1412. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1413. .support_64bit_ptrs = true,
  1414. .vmhub = AMDGPU_MMHUB,
  1415. .get_rptr = sdma_v4_0_ring_get_rptr,
  1416. .get_wptr = sdma_v4_0_ring_get_wptr,
  1417. .set_wptr = sdma_v4_0_ring_set_wptr,
  1418. .emit_frame_size =
  1419. 6 + /* sdma_v4_0_ring_emit_hdp_flush */
  1420. 3 + /* hdp invalidate */
  1421. 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
  1422. /* sdma_v4_0_ring_emit_vm_flush */
  1423. SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
  1424. SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
  1425. 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
  1426. .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
  1427. .emit_ib = sdma_v4_0_ring_emit_ib,
  1428. .emit_fence = sdma_v4_0_ring_emit_fence,
  1429. .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
  1430. .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
  1431. .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
  1432. .test_ring = sdma_v4_0_ring_test_ring,
  1433. .test_ib = sdma_v4_0_ring_test_ib,
  1434. .insert_nop = sdma_v4_0_ring_insert_nop,
  1435. .pad_ib = sdma_v4_0_ring_pad_ib,
  1436. .emit_wreg = sdma_v4_0_ring_emit_wreg,
  1437. .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
  1438. .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
  1439. };
  1440. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
  1441. {
  1442. int i;
  1443. for (i = 0; i < adev->sdma.num_instances; i++) {
  1444. adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
  1445. adev->sdma.instance[i].ring.me = i;
  1446. }
  1447. }
  1448. static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
  1449. .set = sdma_v4_0_set_trap_irq_state,
  1450. .process = sdma_v4_0_process_trap_irq,
  1451. };
  1452. static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
  1453. .process = sdma_v4_0_process_illegal_inst_irq,
  1454. };
  1455. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
  1456. {
  1457. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1458. adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
  1459. adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
  1460. }
  1461. /**
  1462. * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
  1463. *
  1464. * @ring: amdgpu_ring structure holding ring information
  1465. * @src_offset: src GPU address
  1466. * @dst_offset: dst GPU address
  1467. * @byte_count: number of bytes to xfer
  1468. *
  1469. * Copy GPU buffers using the DMA engine (VEGA10/12).
  1470. * Used by the amdgpu ttm implementation to move pages if
  1471. * registered as the asic copy callback.
  1472. */
  1473. static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1474. uint64_t src_offset,
  1475. uint64_t dst_offset,
  1476. uint32_t byte_count)
  1477. {
  1478. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1479. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1480. ib->ptr[ib->length_dw++] = byte_count - 1;
  1481. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1482. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1483. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1484. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1485. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1486. }
  1487. /**
  1488. * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
  1489. *
  1490. * @ring: amdgpu_ring structure holding ring information
  1491. * @src_data: value to write to buffer
  1492. * @dst_offset: dst GPU address
  1493. * @byte_count: number of bytes to xfer
  1494. *
  1495. * Fill GPU buffers using the DMA engine (VEGA10/12).
  1496. */
  1497. static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1498. uint32_t src_data,
  1499. uint64_t dst_offset,
  1500. uint32_t byte_count)
  1501. {
  1502. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1503. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1504. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1505. ib->ptr[ib->length_dw++] = src_data;
  1506. ib->ptr[ib->length_dw++] = byte_count - 1;
  1507. }
  1508. static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
  1509. .copy_max_bytes = 0x400000,
  1510. .copy_num_dw = 7,
  1511. .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
  1512. .fill_max_bytes = 0x400000,
  1513. .fill_num_dw = 5,
  1514. .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
  1515. };
  1516. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
  1517. {
  1518. if (adev->mman.buffer_funcs == NULL) {
  1519. adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
  1520. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1521. }
  1522. }
  1523. static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
  1524. .copy_pte_num_dw = 7,
  1525. .copy_pte = sdma_v4_0_vm_copy_pte,
  1526. .write_pte = sdma_v4_0_vm_write_pte,
  1527. .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
  1528. };
  1529. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1530. {
  1531. unsigned i;
  1532. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1533. adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
  1534. for (i = 0; i < adev->sdma.num_instances; i++)
  1535. adev->vm_manager.vm_pte_rings[i] =
  1536. &adev->sdma.instance[i].ring;
  1537. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1538. }
  1539. }
  1540. const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
  1541. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1542. .major = 4,
  1543. .minor = 0,
  1544. .rev = 0,
  1545. .funcs = &sdma_v4_0_ip_funcs,
  1546. };